
Integrating Models for Complex Planning Policy
Analysis: Challenges and a Solution in Coupling
Dissimilar Models

Harutyun Shahumyan and Rolf Moeckel

Abstract

It is an expensive and time consuming task to develop a new model. Be-
sides, a single model often cannot provide answers required for integrated
decision making. Therefore, coupling existing models is often used for
model integration. The paper provides an overview of possible model inte-
gration approaches, briefly explains the models of a particular application
and focuses on the integration methods applied in this research. While the
initial attempt was to integrate all models as tightly as possible, the authors
developed a much more agile integration approach. Python wrappers were
developed to loosely couple land-use, transportation and emission models
developed in different environments. ArcGIS Model Builder was used to
provide a graphical user interface and to present the models’ workflow.
The suggested approach is efficient when the models are developed in dif-
ferent programming languages, their source codes are not available or the
licensing restrictions make other coupling approaches infeasible.

Keywords: model, integration, coupling, Python, CUBE, GIS

H. Shahumyan (Corresponding author) • R. Moeckel
National Center for Smart Growth Research and Education,
University of Maryland, College Park, MD 20742, USA
Email: harut@umd.edu

R. Moeckel
Email: moeckel@umd.edu

Shahumyan & Moeckel 2

1 Introduction

Policy makers are facing challenges of managing multifaceted urban and
environmental systems influenced by global factors such as population
growth, migration, recession, climate change as well as by local actors
such as parties or companies who direct the development according to their
own interest (Geertman and Stillwell 2009). Confronted with such com-
plexity, decision makers need adequate tools to better understand and
evaluate the effects of policy interventions in urban regions. Such pressure
already led to the development of numerous models covering different dis-
cipline-specific areas. However, the interconnected character of human
and natural systems requires an integrated approach in both decision mak-
ing and modeling. Integration may have a horizontal and vertical dimen-
sion (Moeckel et al. 2015). The horizontal dimension commonly refers to
the integration of various domains (such as environment, land use, trans-
portation, etc.), whereas the vertical integration refers to various geograph-
ic layers that need to be integrated.

Nevertheless, model integration faces some scientific and technical
challenges (van Delden et al. 2011). The main scientific challenges relate
to dealing with different domains, paradigms, assumptions, scales, spatial
and temporal resolutions used by individual models. Technical challenges
include implementing software integration of the models, providing dy-
namic feedback loops, and developing user interfaces (Lam et al. 2004).
Moreover, as Voinov and Shugart (2013) emphasize - treating models only
as software in solving the integration challenge may result in perfectly val-
id software products, which however, are useless as models.

The presented model coupling approach has been implemented by the
National Center for Smart Growth (NCSG) at University of Maryland
funded by the National Science Foundation program SESYNC (National
Socio-Environmental Synthesis Center). This work was built on existing
models and institutional relationships between the NCSG and the USGS
Eastern Geographic Science Center (EGSC) to form an integrated model-
ing system. Various models were coupled, including transportation, land-
use, land cover and environmental impact models. The task was compli-
cated because all those models have been developed independently without
any built-in method for linking to other models. Moreover, they have been
developed in different programming languages, software environments and
have various licensing restrictions, making their integration a challenging
task.

The authors explored diverse coupling approaches and evaluated their
applicability for the project needs. Several couplers were evaluated against

Integrating Models for Complex Planning Policy Analysis 3

the properties identified to be needed to satisfy the specific modeling re-
quirements. However, the existing couplers have been developed with dif-
ferent objectives and constraints in mind. None of the couplers identified
by the authors were suitable for the defined integration task. Therefore, an
alternative approach of loose model coupling was applied. The suggested
approach is especially efficient when the models are developed in different
programming languages, their source codes are not available or the licens-
ing restrictions are making other coupling approaches infeasible. It offers a
viable solution to coupling such models without the need of change or
even access to the sources codes.

2 Methodology

2.1 Individual Models

2.1.1 Maryland Statewide Transportation Model (MSTM)

The MSTM is an advanced trip-based model developed in 2008 by the
Maryland State Highway Administration in conjunction with the NCSG
and Parsons Brinkerhoff (FHWA 2014). It was designed to estimate the
impacts of transportation investments, changes to land-use development,
and impacts from factors beyond state boundaries, particularly freight.

Input data include population and employment by model zones, high-
way and transit networks, and data on travel behavior. The model outputs
report traffic impacts on the overall system, corridors or individual links.

2.1.2 Simple Integrated Land Use Orchestrator (SILO)

Initially developed as a research project by Parsons Brinckerhoff for Min-
neapolis/St. Paul (Moeckel 2011), SILO has been implemented for the
state of Maryland. It micro-simulates household relocation, demographic
changes and developers who add, upgrade or demolish dwellings. SILO is
designed as a discrete choice model. Thus, every household, person and
dwelling is treated as an individual object. Spatial decisions, such as relo-
cation, development of new dwellings, etc., are modeled with Logit mod-
els (McFadden 1978). Other decisions, such as getting married, giving
birth to a child, etc., are modeled by Markov models that apply transition
probabilities.

Shahumyan & Moeckel 4

SILO uses the Public Use Microdata Sample to create individual house-

holds and their dwellings. The MSTM provides the zone-to-zone travel
time by auto and transit. SILO generates a synthetic population with
households, persons, dwellings and jobs for the base year 2000 and incre-
mentally updates these dataset in one-year increments through 2040. Every
year the MSTM runs, SILO provides updated socio-demographic data.

2.1.3 Mobile Emissions Model (MEM)

The MEM is developed at NCSG and estimates transportation emissions
by applying emission of the MOVES2010 EPA1 model to MSTM-
generated traffic flows (Welch 2013).

The MEM input data includes road network, vehicle trips, temperatures
by month and hour for each county in the study area, humidity, average
speed distribution, the vehicle miles of travel on varied road types, fuel
formulation and supply. MEM runs every time the MSTM has run.

2.1.4 Building Energy Consumption & Emissions Model (BEM)

The BEM estimates CO2 emissions and energy consumption from the built
environment within Maryland (Welch 2013). It is developed at NCSG and
uses the building, location and climate variables of each property to deter-
mine whether the structure is likely to combust fossil fuels on site. If the
probability is greater than 50%, then the model calculates CO2 emissions
from local combustion based on a set of related multipliers derived from a
regression of the national building energy consumption survey data.

SILO provides the building stock for BEM. CO2 emissions and energy
consumption are the primary outputs of the model.

2.1.5 Chesapeake Bay Land Change Model (CBLCM)

The CBLCM was developed by the USGS within the Chesapeake Bay
Program. It uses a stochastic methodology to emulate residential urban
land use development in Maryland over a series of pre-defined time seg-
ments. It is as an independent cellular automata model that translates ex-
ogenous county-level projections of population and employment to esti-
mates of urban land demand and then spatially allocates that onto 30m-
resolution raster cells. The locations of future growth are informed by data
on protected lands, zoning, slopes, land cover, proximity to urban centers,
and proximity to locations of recent job and housing growth.

1 http://www.epa.gov/otaq/models/moves/

Integrating Models for Complex Planning Policy Analysis 5

The model calculates a probability surface for growth locations, and al-

locates households and dwellings provided by SILO. CBLCM generates
fine-grained patterns of residential urban growth across the study area.

2.2 Data Exchange

One- or two-way data flows are implemented between the models de-
scribed above. For example, MSTM provides travel times and auto-
operating costs to SILO and number of trips and average speed distribution
to MEM models; while SILO provides population, employment and auto
availability data to MSTM, building data to BEM and population, em-
ployment and accessibility to CBLCM. Currently MEM and BEM models
are just users of output data from MSTM and SILO, and their output is not
used by any other models. However, there are many other variables result-
ing from those models, which can be potentially used by other models.

At present, data exchange between those models is rather slow because
the output from one model is written to a hard drive, that model shuts
down, the other model starts and reads the data from the hard drive. In
some cases, this form of data exchange is time consuming and may limit
the intervals of data exchange to few simulation periods only. Though
technically those data exchanges could be done for every simulation year,
presently it is implemented only for selected simulation years. For exam-
ple, auto and transit travel times are obtained from the MSTM for the year
2007 and used as constant values in SILO for the years 2007-2030. In the
opposite direction, SILO writes out population and employment for 2030
and feeds those back to MSTM in 2030, and so on. Thus, while SILO runs
internally in one-year increments, MSTM, MEM and BEM are run only
for a few specific time points.

More frequent (e.g. annual) data exchange between SILO and MSTM is
prohibited by the long model runtime of the MSTM. Currently, running the
MSTM for one time point takes about 16 hours (Table 1). The implemen-
tation of full feedback between the models during each simulation step
may require tighter integration. However, in addition to the difficulties
with modifying model sources codes, language interoperability and licens-
ing restrictions, tighter integration may also result in a loss of performance
measures such as speed, accuracy, or stability (Peckham et al. 2013). As a
result, limited data exchange frequency is weighted against the advantage
of supporting different types of components and linking them under a sin-
gle user interface without changing their source codes. In this work, mod-
els developed in Java, CUBE script, Excel and Python have been coupled,
while the coupling with a C++ based model is under development.

Shahumyan & Moeckel 6

Table 1 Main characteristics of the used models

Model
Environ-
ment

Operation
System

Licensing
Simulation
Period

Sim.
years

Runtime

MSTM CUBE Windows
Scripts: Open
CUBE: CitiLabs

2007 or 2030 1
15-16
houra

SILO Java
Multi-
platform

Open source 2007-2030 23 4-5 houra

MEM CUBE Windows USGS, CitiLabs 2007 or 2030 1 < 30 mina

BEM Excel
Multi-
platform

n/a 2007 or 2030 1 < 1 mina

CBLCM C / C++ CentOS USGS 2007-2030 4 3 hourb

a 20 x AMD Opteron Processor 6328 @ 3.20GHz, 42GB RAM, Windows 7.
b 2 x 2.56 GHz CPU’s, 24GB RAM, Centos 6.

2.3 Practical Value and Key Requirements of Integration

Integrating described models means to better represent complex interac-
tions observed empirically between land-use, transportation, environment
and economy in the Baltimore/Washington region. Multiple agencies at the
US federal, state, and local level have an interest in linking such models.
This includes the US Environmental Protection Agency, the Department of
the Interior, and the Maryland Departments of Transportation, Environ-
ment, Natural Resources and Planning. Whereas from a scientific perspec-
tive, this work aims to improve our understanding of human activity and
environmental linkages and to enable improved policy development deal-
ing with environmental sustainability.

Taking into consideration overall goals of this research and the models
involved, the following key requirements have been identified for the inte-
grated modeling suite:

 Ability to develop models independently, such that they may be
plugged-in easily.

 A modular approach supporting reusability and adding new compo-
nents.

 Minimal or no change in source codes of the models.
 Capacity to link models developed in different programming languages

and environments.
 Ability to deal with different licensing requirements.
 Minimizing manual data transfer.

Integrating Models for Complex Planning Policy Analysis 7

 User friendly graphical interface.
 Compatibility with GIS for easy data visualization and spatial analysis.
 Adequate running time.
 Minimal costs and efficient timing for implementation.

2.4 Model Coupling Approaches

For the coupling of environmental models, Brandmeyer and Karimi (2000)
develop a five-level coupling hierarchy, which includes manual data trans-
fer, loose coupling, shared coupling, joined coupling and tool coupling.

The manual data transfer method is the most basic level of model cou-
pling, which includes manual extraction, transfer and conversion of output
produced by one model to be used as an input for other models. Though
this approach requires minimal initial cost and time to apply, it is not at-
tractive when multiple runs and frequent data exchange are required
(Brandmeyer and Karimi 2000).

The data exchange between models is automated in loose coupling.
Models, though, still work independently and the user interacts with each
model separately (Wong et al. 2009). Loose coupling also has low initial
cost, requires minimal changes to existing codes, and the models still can
be developed independently. However, if data structures change in any of
the linked models, attention needs to be paid to data conversion.

In shared coupling, the models either share the user interface or the data
storage. For the first approach, a single user-friendly interface hides the in-
ternal coupling method making it less confusing (Berry et al. 1997). In da-
ta coupling, the models are kept separate, but share the data storage (van
Walsum and Veldhuizen 2011). Shared user interface coupling supports
proprietary models and reduces user interaction time. But a user interface
update is required in case of model updates. Data coupling makes data
maintenance simpler. However, the overall model interface and perfor-
mance depend on the Database Management System used (Brandmeyer
and Karimi 2000).

Joined coupling employs both the common user interface and data stor-
age and may use two structurally different approaches: embedded cou-
pling, when one model contains another (Liu et al. 2014); and integrated
coupling, when each model is a peer of every other model (Sudicky et al.
2003). Joined coupling reduce the development costs and promotes code
reusability. But it requires access to the models’ source codes and a single
operating system (OS).

Shahumyan & Moeckel 8

In case of tool coupling, the models are coupled using a modeling

framework (Babendreier and Castleton 2005, Moore and Tindall 2005).
This supports community model development and can be used with both
legacy and new models. Though it has higher initial cost due to framework
design and development, there are a few such tools developed, such as the
Open Modelling Interface (OpenMI) (Gregersen et al. 2007), Model Cou-
pling Toolkit (MCT) (Warner et al. 2008), Community Surface Dynamics
Modeling System (CSDMS) (Overeem et al. 2013), Earth System Model-
ing Framework (ESMF) (Hill et al. 2004), Framework for Risk Analysis
Multimedia Environmental Systems (FRAMES) (Shah et al. 2004),
PCRaster (Schmitz et al. 2009), O-PALM (Piacentini et al. 2011), OASIS
(Valcke 2013) and ICMS (Rahman et al. 2004). However, these tools have
their specific requirements on OS, programming languages, data format,
access to the source code, licenses, and so on. They often demand changes
or rewriting the model codes requiring programming and data/language in-
teroperability expertise.

The order of running the models and the data feedback frequencies are
also effecting on coupling choices. Thus, the ‘sequential’ coupling scheme
provides the weakest form of the integration, when the first model runs the
required time step/period and provides the output to the second model,
which only runs after getting the results of the first model (van Walsum
and Veldhuizen 2011). This scheme is often used for manual data transfer
or loose model coupling. A drawback of such an approach is that the sta-
bility between the two linked models is determined by the model that gets
updated first, which can lead to inconsistencies for the second model. In
contrast, the ‘fully coupled’ scheme supports the full feedback between
models within each time step. Though to organize such feedback, fully
coupling may require code modification. Moreover, it may result in itera-
tions within iterations and increase its computational load essentially, re-
ducing overall efficiency (van Walsum and Veldhuizen 2011).

Each of the described approaches has its advantages and disadvantages
(Brandmeyer and Karimi 2000); and the selection of the method mainly
depends on the model requirements, project goals and available resources.

2.5 Model Integration through GIS

Considerable efforts have been made to use GIS as an integration tool for
different environmental models including soil erosion (Brazier et al. 2005),
land-use (Clarke and Gaydos 1998), hydrologic (Devantier and Feldman
1993), water quality (León et al. 2002), pollution and watershed (Basnyat
et al. 2000) and other models. In most of such cases, GIS is used for loose

Integrating Models for Complex Planning Policy Analysis 9

coupling of the models, implementing data exchange and visualization.
GIS helps to overcome some of the problems related to data interoperabil-
ity (Goodchild et al. 1997). Moreover, availability of flexible scripting
languages in modern GIS packages allow to develop of interactive user in-
terfaces within GIS under which the models can be linked (Tao et al.
1996). Particularly, in this study, the ArcGIS Model Builder was used as a
programming environment for Python wrappers linking various independ-
ent models and allowing us to capitalize on data management and visuali-
zation functionality of ArcGIS package.

2.6 Python

Python is an open source object-oriented programming language balancing
high-level programming with low-level optimization. Though Python pro-
grams usually run slower than FORTRAN, Java or C/C++ programs, they
have cleaner syntax and require less time to develop.

From the model integration perspective, Python has specific libraries
supporting scientific programming (SciPy), modeling and data analysis
(Pandas), visualizations and parallel computing (IPython). Another ad-
vantage is its language interoperability often used to glue other program-
ming languages. Thus, Python has libraries supporting function calls from
MatLab (MLabWrap), R (RPy), Excel (OpenPyxl), FORTRAN (F2PY,
PyFort), Delphi (Python4Delphi), Java (Jyton, JPype, Jepp), Perl (PyPerl),
PHP (PiP), C/C++ (Ctypes, Cython, SWIG), etc. Moreover, Python runs
natively on Windows, Mac and Linux operation systems. Thus, Python can
facilitate interoperating modules implemented in other programming lan-
guages (Roberts et al. 2010) and has been successfully used to link such
models (Schmitz et al. 2009).

3. Model Integration Results

As described above, in this application the models are developed in differ-
ent programming environments; they have various licensing requirements
and run sequentially, which makes loose coupling method the most rele-
vant approach.

Wrappers were developed in Python for each of the models, which then
were integrated in the ArcGIS Model Builder environment. The process
flow diagram paradigm provided by the Model Builder was used to present
the models’ workflow and linkages. The structures of the wrappers are

Shahumyan & Moeckel 10

similar, with a different number of input and output files and parameter
sets. Fig. 1 shows a sample Python code used to run the transportation
model from ArcGIS.

ESRI Arcpy library was used for getting and setting the model parame-
ters as well as for displaying status messages in ArcGIS geo-processing
window. However, those functions can be replaced with standard Python
functions if the wrapper shall run without ArcGIS.

The os.system()standard function was used to call the actual models
from the wrapper. In some cases, access to a model source code may be re-
stricted or changing it is not desirable. To avoid any problems with the file
paths, the current path is set to the folder containing the model using the
os.chdir()command. The exchangeable output files are set as wrapper
output parameters and can be used by other models.

The geo-processing workflow model developed in ArcGIS Model
Builder consists of a set of coupled modules (Fig. 2). Solid lines represent
data flow directions between models, while the dotted lines represent the
preconditions to run the modules. The direction of the links and the pre-
conditions determine a suitable order for model execution. Execution be-
gins with models that have no incoming links or preconditions and pro-
ceeds to models whose preconditions have already been satisfied. All
module parameters have their default values. However, they can be
changed by double clicking on the relevant module icon. The wrapper
codes can be viewed or edited by ‘Edit’ function available in the context
menu, which opens the script in a text editor. The actual model code is not
accessible from here, though their file paths are defined in the wrapper and
can be used to open the models in their specific environment (e.g. CUBE,
Microsoft Visual Studio).

Models are executed for a specific simulation year or period defined by
the model’s parameters. The same model can be included in the geo-
processing model multiple times to represent different simulation periods.
Thus, the overall simulation presented in Fig. 2 starts with MSTM for the
year 2007. This is followed by MEM and SILO, which are using the output
of MSTM for 2007 and run for year 2007 and the period 2007-2030 ac-
cordingly. Then, SILO results for 2030 are used by BEM to run for the
year 2030. Though it is not presented in the figure, SILO 2030 results can
fed back to MSTM to run it for the year 2030, which then can be followed
by SILO running for 2030-2040, and so on.

In addition to a standard status log by the ArcGIS geo-processing win-
dow, component models have their separate log files delivering detailed in-
formation on the specifics of the model run.

Integrating Models for Complex Planning Policy Analysis 11

Fig. 1 Python wrapper for the transportation model

#**
MSTM model wrapper
Arguments: 0 - MSTM Model executable file, 1 – Scenario,
2 - Data exchange folder, 3 - Output file 1: sovTimePk.csv
4 - Output file 2: walkToTransitTimePk.csv
Created by: Harutyun Shahumyan
#**
Standard error handling
try:
 import arcpy
 import time
 import os
 import string

 start = time.time()
 arcpy.AddMessage("Start time: %s" % time.strftime('%X %x %Z'))

 # Get input arguments
 in_Program = arcpy.GetParameterAsText(0)
 in_Scenario = arcpy.GetParameterAsText(1)
 in_ExchangeFolder = arcpy.GetParameterAsText(2)

 runParam=in_Scenario+" 6 50 20"
 runCommand = in_Program+" "+runParam

 if not arcpy.Exists(in_Program):
 raise Exception, "Input program does not exist"

 # Run the model
 arcpy.AddMessage("")
 arcpy.AddMessage("Running %s" % (runCommand))
 desc = arcpy.Describe(in_Program)
 sourceFilePath = desc.path
 os.chdir(sourceFilePath)
 os.system(runCommand)

 # Export shared files
 desc = arcpy.Describe(in_Program)
 sourceFilePath = desc.path + "\\"+ in_Scenario +
"\\JavaModule\\input\\"
 file2SILO1=sourceFilePath+"sovTimePk.csv"
 file2SILO2=sourceFilePath+"walkToTransitTimePk.csv"
 arcpy.AddMessage("Exporting exchange data files:")
 arcpy.AddMessage(file2SILO1)
 arcpy.AddMessage(file2SILO2)
 arcpy.SetParameter(3, file2SILO1)
 arcpy.SetParameter(4, file2SILO2)

 elapsed = (time.time() - start)
 arcpy.AddMessage("End time: %s" % time.strftime('%X %x %Z'))
 arcpy.AddMessage("Processing time in seconds is %s" %
str(elapsed))

except Exception, errMsg:
 if arcpy.GetMessages(2):
 arcpy.AddError(arcpy.GetMessages(2))

 else:
 arcpy.AddError(str(errMsg))

Shahumyan & Moeckel 12

Fig. 2 ArcGIS geo-processing model organizing the models simulation workflow

Integrating Models for Complex Planning Policy Analysis 13

With the use of Python wrappers, the implementation of the coupler is

separated from the models’ source codes. This gives a flexibility, which
can help in terms of portability, performance and maintenance of the
codes. Though having limitations, this approach supports different types of
components and links them under a single user interface without changing
their original source codes. The integrated system automatically calls
component models developed in Java (SILO), CUBE script (MSTM and
MEM) and Excel (BEM) environments (Fig. 2). Works to add the CBLCM
model developed in C++ are in process.

Key benefits and limitations of the system are summarized below:
Benefits

 Open Source.
 No need to change the source codes of the models.
 Allows to run models developed in different programming languages

and file formats (e.g. exe, dll, bat, jar).
 Can be extended with additional models over time.
 General user interface showing process flows and linkages between the

models.
 Availability of wide documentation and support on Python and ArcGIS.
 Rich visualisation and mapping capabilities through integration with

ArcGIS.
 Easy to implement in sense of required time, resources and program-

ming experience.

Limitations

 Parallel model runs and dynamic data exchange during simulation time
steps is not supported.

 Model processes run independently from one another.
 Data exchanged between modules need to be written to and read from a

hard drive. No in-memory data exchange is available.

It is worth mentioning that these limitations are mainly caused by the
constraints of licensing and changing the source codes of the models.

Though the suggested approach focuses on spatial models that integrate
transportation, land-use and environmental impact models, the methodolo-
gy is not limited to this type of systems. It can also be applied to other sys-
tems requiring consecutive implementation of standalone components in-
cluding non-spatial models.

Shahumyan & Moeckel 14

Conclusion

Close model integration has become the mantra among model developers.
New tools under development, such as the above-mentioned OpenMI or
CSDMS, promote tight integration of different models and ease infor-
mation transfer between the same. Continuously increasing computational
capacities enable ever more comprehensive model integrations. From a
technical perspective, the prospects of tight model integration are excel-
lent.

However, the research presented here also exemplified limitations of
model integration. Attempts to integrate the models using existing couplers
and integration frameworks failed due to a lack of software compatibility
and licensing restrictions. Instead, a less sophisticated but robust GIS-
based data exchange integration has been implemented, satisfying the pro-
ject goals. Notwithstanding the ability to run complex model scenarios, the
probably most important lesson learned of this research refers to the level
of model integration. While the initial attempt of this research was to inte-
grate all models as tightly as possible, the authors developed a much more
agile integration approach. A key finding of this research is that model in-
tegration should depend on direction of information exchange and fre-
quency of data flows.

Model direction refers to the sender model and receiver model of infor-
mation. For example, an economic model is used to provide regional con-
trol totals of population and employment growth for the entire study area.
While the land-use model allocates this growth to individual zones, the
overall growth is provided exogenously by this national economic in-
put/output model. In theory, the performance of this study area could be
fed back into the economic model, as for example tighter land-use re-
strictions could push some growth to neighboring regions. In reality, how-
ever, the impacts of scenarios for the Baltimore/Washington area on the
national economy are minimal. Raising tolls or restricting land develop-
ment is unlikely to have a notable effect of growth in this study area. Giv-
en that economic growth is used as a one-way flow of information, the in-
tegration between the economic model and the land-use model is kept
offline and solved with a single file transfer covering a 40-year growth
forecast. This model linkages is represented by the oval “Loose coupling
sufficient” in Fig. 3.

Integrating Models for Complex Planning Policy Analysis 15

Fig. 3 Reasons for loose coupling and tight integration

The second aspect of model integration is the frequency of interaction.

For example, mobile emissions are calculated every time after the trans-
portation model ran. This is a one-way flow of information: transportation
generates emissions and emissions (commonly) do not affect the travel be-
havior. However, even though this is a one-way flow of information, the
exchange of information is frequent enough that the transportation model
and the mobile emissions model warrant closer integration. Frequent data
flows deserve closer integration to ease information flow, even if the flow
is only happening in one-way direction (lower left quadrant of Fig. 3).

The tightest integration should be pursuit for models that exchange in-
formation frequently and bi-directionally. In the model presented in this
paper, this level of integration applies to the land-use and transportation
models. These models exchange information in both directions: the loca-
tion of households and employment define the origins and destinations in
the transportation model, and travel times are converted into accessibilities
that affect household relocation decisions. Given the frequency of this bi-
directional flow, these two models deserve most attention for simple data
exchange methods to ensure information exchange with little translation
loss and limited impact on model runtime.

More integration is not always better. Using the appropriate level of in-
tegration improves model stability and runtimes without compromising
important linkages between models.

Shahumyan & Moeckel 16

Acknowledgement

This research was supported by a Marie Curie International Outgoing
Fellowship within the 7th European Community Framework Program and
by the National Science Foundation program SESYNC (National Socio-
Environmental Synthesis Center). The research presented in this paper
benefited from many discussions with Uri Avin, Frederick Ducca, Dan
Engelbert, Sevgi Erdogan, Gerrit Knaap, Tim Welch, Peter Claggett and
Di Yang.

References

Babendreier, J. E. and K. J. Castleton (2005). Investigating uncertainty and
sensitivity in integrated, multimedia environmental models: tools for
FRAMES-3MRA. Environmental Modelling & Software 20(8): 1043-1055.

Basnyat, P., L. D. Teeter, B. G. Lockaby and K. M. Flynn (2000). The use of
remote sensing and GIS in watershed level analyses of non-point source
pollution problems. Forest Ecology and Management 128(1-2): 65-73.

Berry, J., D. Buckley and K. McGarigal (1997). Seamlessly linking ARC/INFO to
forest growth and landscape analysis models. ESRI User Conference, San
Diego, California.

Brandmeyer, J. E. and H. A. Karimi (2000). Coupling methodologies for
environmental models. Environmental Modelling & Software 15(5): 479-488.

Brazier, R. E., A. L. Heathwaite and S. Liu (2005). Scaling issues relating to
phosphorus transfer from land to water in agricultural catchments. Journal of
Hydrology 301(1-4): 330–342.

Clarke, K. C. and L. J. Gaydos (1998). Loose-coupling a cellular automaton model
and GIS: long-term urban growth prediction for San Francisco and
Washington/Baltimore. International Journal of Geographical Information
Science 12(7): 699-714.

Devantier, B. A. and A. D. Feldman (1993). Review of Gis Applications in
Hydrologic Modeling. Journal of Water Resources Planning and
Management-Asce 119(2): 246-261.

FHWA (2014). Maryland State Highway Administration Maryland Statewide
Travel Model (MSTM) Peer Review Report, US Department of
Transportation Federal Highway Administration.

Geertman, S. and J. Stillwell (2009). Planning Support Systems: Content, Issues
and Trends. Planning Support Systems Best Practice and New Methods 95: 1-
26.

Goodchild, M. F., M. J. Egenhofer and R. Fegeas (1997). Interoperating GISs.
Report of a specialist meeting held under the auspices of the Varenius
ProjectNCGIA. Santa Barbara.

Integrating Models for Complex Planning Policy Analysis 17

Gregersen, J. B., P. J. A. Gijsbers and S. J. P. Westen (2007). OpenMI: Open

modelling interface. Journal of Hydroinformatics 9(3): 175-191.
Hill, C., C. DeLuca, Balaji, M. Suarez and A. da Silva (2004). The architecture of

the earth system modeling framework. Computing in Science & Engineering
6(1): 18-28.

Lam, D., L. Leon, S. Hamilton, N. Crookshank, D. Bonin and D. Swayne (2004).
Multi-model integration in a decision support system: a technical user
interface approach for watershed and lake management scenarios.
Environmental Modelling & Software 19(3): 317-324.

León, L. F., E. D. Soulis, N. Kouwen and G. J. Farquhar (2002). Modeling diffuse
pollution with a distributed approach. Water Science & Technology 45(9):
149–156.

Liu, S., R. E. Brazier, A. L. Heathwaite and W. Liu (2014). Fully integrated
approach: an alternative solution of coupling a GIS and diffuse pollution
models. Frontiers of Environmental Science & Engineering 8(4): 616-623.

McFadden D. (1978) Modelling the choice of residential location. In: A Karlqvist,
L Lundqvist, F Snickars, J W Weibull (Eds.) Spatial Interaction Theory and
Planning Models. North-Holland Publishing Company: Amsterdam, New
York, Oxford. Pages 75-96.

Moeckel R. (2011). Simulating household budgets for housing and transport.
International Conference on Computers in Urban Planning and Urban
Management. Lake Louise, Canada.

Moeckel, R., S. Mishra, F. Ducca and T. Weidner (2015) Modeling complex
Megaregion systems: Horizontal and vertical integration for a Megaregion
Model. International Journal of Transportation. Forthcoming in April 2015.

Moore, R. V. and C. I. Tindall (2005). An overview of the open modelling
interface and environment (the OpenMI). Environmental Science & Policy
8(3): 279-286.

Overeem, I., M. M. Berlin and J. P. M. Syvitski (2013). Strategies for integrated
modeling: The community surface dynamics modeling system example.
Environmental Modelling & Software 39: 314-321.

Peckham, S. D., E. W. H. Hutton and B. Norris (2013). A component-based
approach to integrated modeling in the geosciences: The design of CSDMS.
Computers & Geosciences 53: 3-12.

Piacentini, A., T. Morel, A. Thevenin and F. Duchaine (2011). O-Palm: An Open
Source Dynamic Parallel Coupler. Computational Methods for Coupled
Problems in Science and Engineering Iv: 885-895.

Rahman, J. M., S. M. Cuddy and F. G. R. Watson (2004). Tarsier and ICMS: two
approaches to framework development. Mathematics and Computers in
Simulation 64(3-4): 339-350

Roberts, J. J., B. D. Best, D. C. Dunn, E. A. Treml and P. N. Halpin (2010).
Marine Geospatial Ecology Tools: An integrated framework for ecological
geoprocessing with ArcGIS, Python, R, MATLAB, and C plus.
Environmental Modelling & Software 25(10): 1197-1207.

Schmitz, O., D. Karssenberg, W. P. A. van Deursen and C. G. Wesseling (2009).
Linking external components to a spatio-temporal modelling framework:

Shahumyan & Moeckel 18

Coupling MODFLOW and PCRaster. Environmental Modelling & Software
24(9): 1088-1099.

Shah, A. R., K. J. Castleton and B. L. Hoopes (2004). Framework for risk analysis
in multimedia environmental systems: Modeling individual steps of a risk
analysis process. Msv'04 & Amcs'04, Proceedings: 38-44.

Sudicky, E., J. Vanderkwaak, J. Jones, J. Keizer, R. Mclaren and G. Matanga
(2003). Fully-integrated modelling of surface and subsurface water flow and
solute transport: Model overview and application. Developments in Water
Science 50: 313-318.

Tao, C., W. Kainz and R. van Zuidam (1996). Coupling GIS and Environmental
Modelling: The Implications for Spatio-Temporal Data Modelling.
International Archives of Photogrammertry and Remote Sensing 31(B3).

Valcke, S. (2013). The OASIS3 coupler: a European climate modelling
community software. Geoscientific Model Development 6(2): 373-388.

van Delden, H., R. Seppelt, R. White and A. J. Jakeman (2011). A methodology
for the design and development of integrated models for policy support.
Environmental Modelling & Software 26(3): 266-279.

van Walsum, P. E. V. and A. A. Veldhuizen (2011). Integration of models using
shared state variables: Implementation in the regional hydrologic modelling
system SIMGRO. Journal of Hydrology 409(1-2): 363-370.

Voinov, A. and H. H. Shugart (2013). 'Integronsters', integral and integrated
modeling. Environmental Modelling & Software 39: 149-158.

Warner, J. C., N. Perlin and E. D. Skyllingstad (2008). Using the Model Coupling
Toolkit to couple earth system models. Environmental Modelling & Software
23(10-11): 1240-1249.

Welch, T. F. (2013). Climate Action Plans – Fact or Fiction? Evidence from
Maryland. Doctor of Philosophy Thesis, University of Maryland, College
Park.

Wong, I., D. Lam, W. Booty and P. Fong (2009). A Loosely-Coupled
Collaborative Integrated Environmental Modelling Framework. Americas
Conference on Information Systems, AIS Electronic Library.

