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Abstract 

It is an expensive and time consuming task to develop a new model. Be-
sides, a single model often cannot provide answers required for integrated 
decision making. Therefore, coupling existing models is often used for 
model integration. The paper provides an overview of possible model inte-
gration approaches, briefly explains the models of a particular application 
and focuses on the integration methods applied in this research. While the 
initial attempt was to integrate all models as tightly as possible, the authors 
developed a much more agile integration approach. Python wrappers were 
developed to loosely couple land-use, transportation and emission models 
developed in different environments. ArcGIS Model Builder was used to 
provide a graphical user interface and to present the models’ workflow. 
The suggested approach is efficient when the models are developed in dif-
ferent programming languages, their source codes are not available or the 
licensing restrictions make other coupling approaches infeasible. 
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1 Introduction 

Policy makers are facing challenges of managing multifaceted urban and 
environmental systems influenced by global factors such as population 
growth, migration, recession, climate change as well as by local actors 
such as parties or companies who direct the development according to their 
own interest (Geertman and Stillwell 2009). Confronted with such com-
plexity, decision makers need adequate tools to better understand and 
evaluate the effects of policy interventions in urban regions. Such pressure 
already led to the development of numerous models covering different dis-
cipline-specific areas. However, the interconnected character of human 
and natural systems requires an integrated approach in both decision mak-
ing and modeling. Integration may have a horizontal and vertical dimen-
sion (Moeckel et al. 2015). The horizontal dimension commonly refers to 
the integration of various domains (such as environment, land use, trans-
portation, etc.), whereas the vertical integration refers to various geograph-
ic layers that need to be integrated.  

Nevertheless, model integration faces some scientific and technical 
challenges (van Delden et al. 2011). The main scientific challenges relate 
to dealing with different domains, paradigms, assumptions, scales, spatial 
and temporal resolutions used by individual models. Technical challenges 
include implementing software integration of the models, providing dy-
namic feedback loops, and developing user interfaces (Lam et al. 2004). 
Moreover, as Voinov and Shugart (2013) emphasize - treating models only 
as software in solving the integration challenge may result in perfectly val-
id software products, which however, are useless as models.  

The presented model coupling approach has been implemented by the 
National Center for Smart Growth (NCSG) at University of Maryland 
funded by the National Science Foundation program SESYNC (National 
Socio-Environmental Synthesis Center). This work was built on existing 
models and institutional relationships between the NCSG and the USGS 
Eastern Geographic Science Center (EGSC) to form an integrated model-
ing system. Various models were coupled, including transportation, land-
use, land cover and environmental impact models. The task was compli-
cated because all those models have been developed independently without 
any built-in method for linking to other models. Moreover, they have been 
developed in different programming languages, software environments and 
have various licensing restrictions, making their integration a challenging 
task.  

The authors explored diverse coupling approaches and evaluated their 
applicability for the project needs. Several couplers were evaluated against 
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the properties identified to be needed to satisfy the specific modeling re-
quirements. However, the existing couplers have been developed with dif-
ferent objectives and constraints in mind. None of the couplers identified 
by the authors were suitable for the defined integration task. Therefore, an 
alternative approach of loose model coupling was applied. The suggested 
approach is especially efficient when the models are developed in different 
programming languages, their source codes are not available or the licens-
ing restrictions are making other coupling approaches infeasible. It offers a 
viable solution to coupling such models without the need of change or 
even access to the sources codes.  

2 Methodology 

2.1 Individual Models 

2.1.1 Maryland Statewide Transportation Model (MSTM) 

The MSTM is an advanced trip-based model developed in 2008 by the 
Maryland State Highway Administration in conjunction with the NCSG 
and Parsons Brinkerhoff (FHWA 2014). It was designed to estimate the 
impacts of transportation investments, changes to land-use development, 
and impacts from factors beyond state boundaries, particularly freight.  

Input data include population and employment by model zones, high-
way and transit networks, and data on travel behavior. The model outputs 
report traffic impacts on the overall system, corridors or individual links.  

2.1.2 Simple Integrated Land Use Orchestrator (SILO) 

Initially developed as a research project by Parsons Brinckerhoff for Min-
neapolis/St. Paul (Moeckel 2011), SILO has been implemented for the 
state of Maryland. It micro-simulates household relocation, demographic 
changes and developers who add, upgrade or demolish dwellings. SILO is 
designed as a discrete choice model. Thus, every household, person and 
dwelling is treated as an individual object. Spatial decisions, such as relo-
cation, development of new dwellings, etc., are modeled with Logit mod-
els (McFadden 1978). Other decisions, such as getting married, giving 
birth to a child, etc., are modeled by Markov models that apply transition 
probabilities. 
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SILO uses the Public Use Microdata Sample to create individual house-

holds and their dwellings. The MSTM provides the zone-to-zone travel 
time by auto and transit. SILO generates a synthetic population with 
households, persons, dwellings and jobs for the base year 2000 and incre-
mentally updates these dataset in one-year increments through 2040. Every 
year the MSTM runs, SILO provides updated socio-demographic data.  

2.1.3 Mobile Emissions Model (MEM) 

The MEM is developed at NCSG and estimates transportation emissions 
by applying emission of the MOVES2010 EPA1 model to MSTM-
generated traffic flows (Welch 2013).   

The MEM input data includes road network, vehicle trips, temperatures 
by month and hour for each county in the study area, humidity, average 
speed distribution, the vehicle miles of travel on varied road types, fuel 
formulation and supply. MEM runs every time the MSTM has run.  

2.1.4 Building Energy Consumption & Emissions Model (BEM) 

The BEM estimates CO2 emissions and energy consumption from the built 
environment within Maryland (Welch 2013). It is developed at NCSG and 
uses the building, location and climate variables of each property to deter-
mine whether the structure is likely to combust fossil fuels on site. If the 
probability is greater than 50%, then the model calculates CO2 emissions 
from local combustion based on a set of related multipliers derived from a 
regression of the national building energy consumption survey data.  

SILO provides the building stock for BEM. CO2 emissions and energy 
consumption are the primary outputs of the model.  

2.1.5 Chesapeake Bay Land Change Model (CBLCM) 

The CBLCM was developed by the USGS within the Chesapeake Bay 
Program. It uses a stochastic methodology to emulate residential urban 
land use development in Maryland over a series of pre-defined time seg-
ments. It is as an independent cellular automata model that translates ex-
ogenous county-level projections of population and employment to esti-
mates of urban land demand and then spatially allocates that onto 30m-
resolution raster cells. The locations of future growth are informed by data 
on protected lands, zoning, slopes, land cover, proximity to urban centers, 
and proximity to locations of recent job and housing growth.  

                                                      
1 http://www.epa.gov/otaq/models/moves/ 
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The model calculates a probability surface for growth locations, and al-

locates households and dwellings provided by SILO. CBLCM generates 
fine-grained patterns of residential urban growth across the study area. 

2.2 Data Exchange 

One- or two-way data flows are implemented between the models de-
scribed above. For example, MSTM provides travel times and auto-
operating costs to SILO and number of trips and average speed distribution 
to MEM models; while SILO provides population, employment and auto 
availability data to MSTM, building data to BEM and population, em-
ployment and accessibility to CBLCM. Currently MEM and BEM models 
are just users of output data from MSTM and SILO, and their output is not 
used by any other models. However, there are many other variables result-
ing from those models, which can be potentially used by other models. 

At present, data exchange between those models is rather slow because 
the output from one model is written to a hard drive, that model shuts 
down, the other model starts and reads the data from the hard drive. In 
some cases, this form of data exchange is time consuming and may limit 
the intervals of data exchange to few simulation periods only. Though 
technically those data exchanges could be done for every simulation year, 
presently it is implemented only for selected simulation years. For exam-
ple, auto and transit travel times are obtained from the MSTM for the year 
2007 and used as constant values in SILO for the years 2007-2030. In the 
opposite direction, SILO writes out population and employment for 2030 
and feeds those back to MSTM in 2030, and so on. Thus, while SILO runs 
internally in one-year increments, MSTM, MEM and BEM are run only 
for a few specific time points. 

More frequent (e.g. annual) data exchange between SILO and MSTM is 
prohibited by the long model runtime of the MSTM. Currently, running the 
MSTM for one time point takes about 16 hours (Table 1). The implemen-
tation of full feedback between the models during each simulation step 
may require tighter integration. However, in addition to the difficulties 
with modifying model sources codes, language interoperability and licens-
ing restrictions, tighter integration may also result in a loss of performance 
measures such as speed, accuracy, or stability (Peckham et al. 2013). As a 
result, limited data exchange frequency is weighted against the advantage 
of supporting different types of components and linking them under a sin-
gle user interface without changing their source codes. In this work, mod-
els developed in Java, CUBE script, Excel and Python have been coupled, 
while the coupling with a C++ based model is under development.  
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Table 1 Main characteristics of the used models  

Model 
Environ-
ment 

Operation 
System 

Licensing 
Simulation  
Period 

Sim. 
years 

Runtime  

MSTM CUBE Windows 
Scripts: Open  
CUBE: CitiLabs 

2007 or 2030 1 
15-16 
houra  

SILO Java 
Multi-
platform 

Open source 2007-2030 23 4-5 houra 

MEM CUBE Windows USGS, CitiLabs 2007 or 2030 1 < 30 mina 

BEM Excel 
Multi-
platform 

n/a 2007 or 2030 1 < 1 mina 

CBLCM C / C++ CentOS USGS 2007-2030 4  3 hourb 

a 20 x AMD Opteron Processor 6328 @ 3.20GHz, 42GB RAM, Windows 7. 
b 2 x 2.56 GHz CPU’s, 24GB RAM, Centos 6. 

2.3 Practical Value and Key Requirements of Integration 

Integrating described models means to better represent complex interac-
tions observed empirically between land-use, transportation, environment 
and economy in the Baltimore/Washington region. Multiple agencies at the 
US federal, state, and local level have an interest in linking such models. 
This includes the US Environmental Protection Agency, the Department of 
the Interior, and the Maryland Departments of Transportation, Environ-
ment, Natural Resources and Planning. Whereas from a scientific perspec-
tive, this work aims to improve our understanding of human activity and 
environmental linkages and to enable improved policy development deal-
ing with environmental sustainability. 

Taking into consideration overall goals of this research and the models 
involved, the following key requirements have been identified for the inte-
grated modeling suite: 

 Ability to develop models independently, such that they may be 
plugged-in easily. 

 A modular approach supporting reusability and adding new compo-
nents. 

 Minimal or no change in source codes of the models. 
 Capacity to link models developed in different programming languages 

and environments. 
 Ability to deal with different licensing requirements. 
 Minimizing manual data transfer. 
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 User friendly graphical interface. 
 Compatibility with GIS for easy data visualization and spatial analysis. 
 Adequate running time. 
 Minimal costs and efficient timing for implementation. 

2.4 Model Coupling Approaches 

For the coupling of environmental models, Brandmeyer and Karimi (2000) 
develop a five-level coupling hierarchy, which includes manual data trans-
fer, loose coupling, shared coupling, joined coupling and tool coupling.  

The manual data transfer method is the most basic level of model cou-
pling, which includes manual extraction, transfer and conversion of output 
produced by one model to be used as an input for other models. Though 
this approach requires minimal initial cost and time to apply, it is not at-
tractive when multiple runs and frequent  data exchange are required 
(Brandmeyer and Karimi 2000).  

The data exchange between models is automated in loose coupling. 
Models, though, still work independently and the user interacts with each 
model separately (Wong et al. 2009). Loose coupling also has low initial 
cost, requires minimal changes to existing codes, and the models still can 
be developed independently. However, if data structures change in any of 
the linked models, attention needs to be paid to data conversion.  

In shared coupling, the models either share the user interface or the data 
storage. For the first approach, a single user-friendly interface hides the in-
ternal coupling method making it less confusing (Berry et al. 1997). In da-
ta coupling, the models are kept separate, but share the data storage (van 
Walsum and Veldhuizen 2011). Shared user interface coupling supports 
proprietary models and reduces user interaction time. But a user interface 
update is required in case of model updates. Data coupling makes data 
maintenance simpler. However, the overall model interface and perfor-
mance depend on the Database Management System used (Brandmeyer 
and Karimi 2000).  

Joined coupling employs both the common user interface and data stor-
age and may use two structurally different approaches: embedded cou-
pling, when one model contains another (Liu et al. 2014); and integrated 
coupling, when each model is a peer of every other model (Sudicky et al. 
2003). Joined coupling reduce the development costs and promotes code 
reusability. But it requires access to the models’ source codes and a single 
operating system (OS). 
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In case of tool coupling, the models are coupled using a modeling 

framework (Babendreier and Castleton 2005, Moore and Tindall 2005). 
This supports community model development and can be used with both 
legacy and new models. Though it has higher initial cost due to framework 
design and development, there are a few such tools developed, such as the 
Open Modelling Interface (OpenMI) (Gregersen et al. 2007), Model Cou-
pling Toolkit (MCT) (Warner et al. 2008), Community Surface Dynamics 
Modeling System (CSDMS) (Overeem et al. 2013), Earth System Model-
ing Framework (ESMF) (Hill et al. 2004), Framework for Risk Analysis 
Multimedia Environmental Systems (FRAMES) (Shah et al. 2004), 
PCRaster (Schmitz et al. 2009), O-PALM (Piacentini et al. 2011), OASIS 
(Valcke 2013) and ICMS (Rahman et al. 2004). However, these tools have 
their specific requirements on OS, programming languages, data format, 
access to the source code, licenses, and so on. They often demand changes 
or rewriting the model codes requiring programming and data/language in-
teroperability expertise. 

The order of running the models and the data feedback frequencies are 
also effecting on coupling choices. Thus, the ‘sequential’ coupling scheme 
provides the weakest form of the integration, when the first model runs the 
required time step/period and provides the output to the second model, 
which only runs after getting the results of the first model (van Walsum 
and Veldhuizen 2011). This scheme is often used for manual data transfer 
or loose model coupling. A drawback of such an approach is that the sta-
bility between the two linked models is determined by the model that gets 
updated first, which can lead to inconsistencies for the second model. In 
contrast, the ‘fully coupled’ scheme supports the full feedback between 
models within each time step. Though to organize such feedback, fully 
coupling may require code modification. Moreover, it may result in itera-
tions within iterations and increase its computational load essentially, re-
ducing overall efficiency (van Walsum and Veldhuizen 2011). 

Each of the described approaches has its advantages and disadvantages 
(Brandmeyer and Karimi 2000); and the selection of the method mainly 
depends on the model requirements, project goals and available resources.  

2.5 Model Integration through GIS 

Considerable efforts have been made to use GIS as an integration tool for 
different environmental models including soil erosion (Brazier et al. 2005), 
land-use (Clarke and Gaydos 1998), hydrologic (Devantier and Feldman 
1993), water quality (León et al. 2002), pollution and watershed (Basnyat 
et al. 2000) and other models. In most of such cases, GIS is used for loose 
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coupling of the models, implementing data exchange and visualization. 
GIS helps to overcome some of the problems related to data interoperabil-
ity (Goodchild et al. 1997). Moreover, availability of flexible scripting 
languages in modern GIS packages allow to develop of interactive user in-
terfaces within GIS under which the models can be linked (Tao et al. 
1996). Particularly, in this study, the ArcGIS Model Builder was used as a 
programming environment for Python wrappers linking various independ-
ent models and allowing us to capitalize on data management and visuali-
zation functionality of ArcGIS package.  

2.6 Python 

Python is an open source object-oriented programming language balancing 
high-level programming with low-level optimization. Though Python pro-
grams usually run slower than FORTRAN, Java or C/C++ programs, they 
have cleaner syntax and require less time to develop.  

From the model integration perspective, Python has specific libraries 
supporting scientific programming (SciPy), modeling and data analysis 
(Pandas), visualizations and parallel computing (IPython). Another ad-
vantage is its language interoperability often used to glue other program-
ming languages. Thus, Python has libraries supporting function calls from 
MatLab (MLabWrap), R (RPy), Excel (OpenPyxl), FORTRAN (F2PY, 
PyFort), Delphi (Python4Delphi), Java (Jyton,  JPype, Jepp), Perl (PyPerl), 
PHP (PiP), C/C++ (Ctypes, Cython, SWIG), etc. Moreover, Python runs 
natively on Windows, Mac and Linux operation systems. Thus, Python can 
facilitate interoperating modules implemented in other programming lan-
guages (Roberts et al. 2010) and has been successfully used to link such 
models (Schmitz et al. 2009). 

 

3. Model Integration Results 

As described above, in this application the models are developed in differ-
ent programming environments; they have various licensing requirements 
and run sequentially, which makes loose coupling method the most rele-
vant approach. 

Wrappers were developed in Python for each of the models, which then 
were integrated in the ArcGIS Model Builder environment. The process 
flow diagram paradigm provided by the Model Builder was used to present 
the models’ workflow and linkages. The structures of the wrappers are 
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similar, with a different number of input and output files and parameter 
sets. Fig. 1 shows a sample Python code used to run the transportation 
model from ArcGIS.  

ESRI Arcpy library was used for getting and setting the model parame-
ters as well as for displaying status messages in ArcGIS geo-processing 
window. However, those functions can be replaced with standard Python 
functions if the wrapper shall run without ArcGIS.  

The os.system()standard function was used to call the actual models 
from the wrapper. In some cases, access to a model source code may be re-
stricted or changing it is not desirable. To avoid any problems with the file 
paths, the current path is set to the folder containing the model using the 
os.chdir()command. The exchangeable output files are set as wrapper 
output parameters and can be used by other models.  

The geo-processing workflow model developed in ArcGIS Model 
Builder consists of a set of coupled modules (Fig. 2). Solid lines represent 
data flow directions between models, while the dotted lines represent the 
preconditions to run the modules. The direction of the links and the pre-
conditions determine a suitable order for model execution. Execution be-
gins with models that have no incoming links or preconditions and pro-
ceeds to models whose preconditions have already been satisfied. All 
module parameters have their default values. However, they can be 
changed by double clicking on the relevant module icon. The wrapper 
codes can be viewed or edited by ‘Edit’ function available in the context 
menu, which opens the script in a text editor. The actual model code is not 
accessible from here, though their file paths are defined in the wrapper and 
can be used to open the models in their specific environment (e.g. CUBE, 
Microsoft Visual Studio).  

Models are executed for a specific simulation year or period defined by 
the model’s parameters. The same model can be included in the geo-
processing model multiple times to represent different simulation periods. 
Thus, the overall simulation presented in Fig. 2 starts with MSTM for the 
year 2007. This is followed by MEM and SILO, which are using the output 
of MSTM for 2007 and run for year 2007 and the period 2007-2030 ac-
cordingly. Then, SILO results for 2030 are used by BEM to run for the 
year 2030. Though it is not presented in the figure, SILO 2030 results can 
fed back to MSTM to run it for the year 2030, which then can be followed 
by SILO running for 2030-2040, and so on.  

In addition to a standard status log by the ArcGIS geo-processing win-
dow, component models have their separate log files delivering detailed in-
formation on the specifics of the model run. 
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Fig. 1 Python wrapper for the transportation model 

#************************************************************** 
# MSTM model wrapper 
# Arguments: 0 - MSTM Model executable file, 1 – Scenario,  
#  2 - Data exchange folder, 3 - Output file 1: sovTimePk.csv 
#  4 - Output file 2: walkToTransitTimePk.csv 
# Created by: Harutyun Shahumyan 
#************************************************************** 
# Standard error handling 
try: 
    import arcpy 
    import time 
    import os 
    import string 
 

    start = time.time() 
    arcpy.AddMessage("Start time: %s" % time.strftime('%X %x %Z')) 
  

    # Get input arguments  
    in_Program = arcpy.GetParameterAsText(0) 
    in_Scenario = arcpy.GetParameterAsText(1) 
    in_ExchangeFolder = arcpy.GetParameterAsText(2) 
 

    runParam=in_Scenario+" 6 50 20" 
    runCommand = in_Program+" "+runParam 
 

    if not arcpy.Exists(in_Program): 
       raise Exception, "Input program does not exist" 
 

    # Run the model 
    arcpy.AddMessage("") 
    arcpy.AddMessage("Running %s" % (runCommand))   
    desc = arcpy.Describe(in_Program) 
    sourceFilePath = desc.path 
    os.chdir(sourceFilePath) 
    os.system(runCommand) 
 

    # Export shared files 
    desc = arcpy.Describe(in_Program) 
    sourceFilePath = desc.path + "\\"+ in_Scenario + 
"\\JavaModule\\input\\" 
    file2SILO1=sourceFilePath+"sovTimePk.csv" 
    file2SILO2=sourceFilePath+"walkToTransitTimePk.csv" 
    arcpy.AddMessage("Exporting exchange data files:")  
    arcpy.AddMessage(file2SILO1) 
    arcpy.AddMessage(file2SILO2) 
    arcpy.SetParameter(3, file2SILO1) 
    arcpy.SetParameter(4, file2SILO2) 
 
    elapsed = (time.time() - start) 
    arcpy.AddMessage("End time: %s" % time.strftime('%X %x %Z')) 
    arcpy.AddMessage("Processing time in seconds is %s" % 
str(elapsed )) 
 
except Exception, errMsg: 
    if arcpy.GetMessages(2):    
        arcpy.AddError(arcpy.GetMessages(2)) 

    else: 
        arcpy.AddError(str(errMsg))    
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Fig. 2 ArcGIS geo-processing model organizing the models simulation workflow 
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With the use of Python wrappers, the implementation of the coupler is 

separated from the models’ source codes. This gives a flexibility, which 
can help in terms of portability, performance and maintenance of the 
codes. Though having limitations, this approach supports different types of 
components and links them under a single user interface without changing 
their original source codes. The integrated system automatically calls 
component models developed in Java (SILO), CUBE script (MSTM and 
MEM) and Excel (BEM) environments (Fig. 2). Works to add the CBLCM 
model developed in C++ are in process. 

Key benefits and limitations of the system are summarized below: 
Benefits 

 Open Source. 
 No need to change the source codes of the models. 
 Allows to run models developed in different programming languages 

and file formats (e.g. exe, dll, bat, jar).  
 Can be extended with additional models over time. 
 General user interface showing process flows and linkages between the 

models. 
 Availability of wide documentation and support on Python and ArcGIS. 
 Rich visualisation and mapping capabilities through integration with 

ArcGIS. 
 Easy to implement in sense of required time, resources and program-

ming experience. 

Limitations 

 Parallel model runs and dynamic data exchange during simulation time 
steps is not supported. 

 Model processes run independently from one another. 
 Data exchanged between modules need to be written to and read from a 

hard drive. No in-memory data exchange is available. 

It is worth mentioning that these limitations are mainly caused by the 
constraints of licensing and changing the source codes of the models.  

Though the suggested approach focuses on spatial models that integrate 
transportation, land-use and environmental impact models, the methodolo-
gy is not limited to this type of systems. It can also be applied to other sys-
tems requiring consecutive implementation of standalone components in-
cluding non-spatial models.  
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Conclusion 

Close model integration has become the mantra among model developers. 
New tools under development, such as the above-mentioned OpenMI or 
CSDMS, promote tight integration of different models and ease infor-
mation transfer between the same. Continuously increasing computational 
capacities enable ever more comprehensive model integrations. From a 
technical perspective, the prospects of tight model integration are excel-
lent.  

However, the research presented here also exemplified limitations of 
model integration. Attempts to integrate the models using existing couplers 
and integration frameworks failed due to a lack of software compatibility 
and licensing restrictions. Instead, a less sophisticated but robust GIS-
based data exchange integration has been implemented, satisfying the pro-
ject goals. Notwithstanding the ability to run complex model scenarios, the 
probably most important lesson learned of this research refers to the level 
of model integration. While the initial attempt of this research was to inte-
grate all models as tightly as possible, the authors developed a much more 
agile integration approach. A key finding of this research is that model in-
tegration should depend on direction of information exchange and fre-
quency of data flows.  

Model direction refers to the sender model and receiver model of infor-
mation. For example, an economic model is used to provide regional con-
trol totals of population and employment growth for the entire study area. 
While the land-use model allocates this growth to individual zones, the 
overall growth is provided exogenously by this national economic in-
put/output model. In theory, the performance of this study area could be 
fed back into the economic model, as for example tighter land-use re-
strictions could push some growth to neighboring regions. In reality, how-
ever, the impacts of scenarios for the Baltimore/Washington area on the 
national economy are minimal. Raising tolls or restricting land develop-
ment is unlikely to have a notable effect of growth in this study area. Giv-
en that economic growth is used as a one-way flow of information, the in-
tegration between the economic model and the land-use model is kept 
offline and solved with a single file transfer covering a 40-year growth 
forecast. This model linkages is represented by the oval “Loose coupling 
sufficient” in Fig. 3. 
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Fig. 3 Reasons for loose coupling and tight integration 

 
The second aspect of model integration is the frequency of interaction. 

For example, mobile emissions are calculated every time after the trans-
portation model ran. This is a one-way flow of information: transportation 
generates emissions and emissions (commonly) do not affect the travel be-
havior. However, even though this is a one-way flow of information, the 
exchange of information is frequent enough that the transportation model 
and the mobile emissions model warrant closer integration. Frequent data 
flows deserve closer integration to ease information flow, even if the flow 
is only happening in one-way direction (lower left quadrant of Fig. 3).  

The tightest integration should be pursuit for models that exchange in-
formation frequently and bi-directionally. In the model presented in this 
paper, this level of integration applies to the land-use and transportation 
models. These models exchange information in both directions: the loca-
tion of households and employment define the origins and destinations in 
the transportation model, and travel times are converted into accessibilities 
that affect household relocation decisions. Given the frequency of this bi-
directional flow, these two models deserve most attention for simple data 
exchange methods to ensure information exchange with little translation 
loss and limited impact on model runtime.  

More integration is not always better. Using the appropriate level of in-
tegration improves model stability and runtimes without compromising 
important linkages between models.  
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