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This dissertation examines the interconnected problems of (i) analyzing and (ii)

optimizing the impact of a multi-compartment dynamic system’s input history on the

identifiability of its parameters. Identifiability refers to the feasibility and accuracy with

which a system’s parameters can be uniquely estimated from input-output test data. The

shape of a system’s input history versus time often affects identifiability. This makes it

possible to optimize this input shape for identifiability, in a manner analogous to the use

of a cardiac stress test to better diagnose patients with heart disease.

The research in this dissertation makes four contributions to the literature, motivated

by the following four practical research questions. First, is it possible to characterize CO2

gas transport dynamics in a laboratory animal where the peritoneal perfusion of a perflu-

orocarbon (PFC) is used as a potential treatment for hypercarbia? Second, how does the

shaping of chemotherapeutic treatment affect the accuracy with which drug resistance

dynamics can be estimated in a partially drug-resistant cancerous tumor? Third, can the

dynamic cycling of a lithium-sulfur (Li-S) battery be tailored to maximize the accuracy



with which its parameters are estimated? Finally, can Pontryagin methods from optimal

control theory yield fundamental insights into the structure of the ambient temperature cy-

cling trajectory that maximizes the identifiability of a lithium-ion battery model’s thermal

parameters?

In addressing the above practical research questions, this dissertation navigates a

progression of four fundamental topics in the field of multi-compartment dynamic system

parameter identification and identifiability. Specifically, the dissertation’s examination of

peritoneal CO2 gas transport dynamics highlights and motivates the importance of ana-

lyzing multi-compartment dynamic system identifiability. The subsequent examination of

the identifiability of drug resistance dynamics in cancerous tumors highlights the degree

to which input shaping can negatively affect parameter identifiability. In contrast, the ex-

amination of parameter identifiability for Li-S batteries highlights the potential of input

shaping to improve identifiability significantly for multi-compartment systems. Finally,

the dissertation’s examination of thermal battery parameter identifiability highlights the

degree to which the fundamental tool of Pontryagin analysis can help gain insight into op-

timal input shaping for identifiability. In summary, the work in this dissertation explores a

progression of fundamental topics in the area of dynamic system parameter identifiability

while highlighting the broad applicability of this area to different practical domains.
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Chapter 1: Introduction

1.1 Motivation and Vision

This dissertation focuses on the impact of input shaping on the observability and

identifiability of multi-compartment, nonlinear dynamic system models. This problem is

particularly important in situations where the accurate modeling of such systems is needed

for subsequent model-based monitoring and control. Identifiability is an established con-

cept from the fields of system dynamics and information theory [1, 2]. It refers to the

degree to which one can estimate a model’s internal variables from input-output data.

One can classify these internal variables into constant parameters versus time-varying

state variables. The terms “parameter identifiability” and “state observability” refer, re-

spectively, to one’s ability to estimate these two types of internal variables from input-

output data. This research also studies combined state/parameter identifiability. This is a

broader concept that refers to one’s ability to estimate a given model’s state variables and

parameters simultaneously.

Analyzing identifiability for a particular model is, fundamentally, an exercise in un-

certainty quantification. The importance of this exercise stems in part from its potential

to serve as a starting point for uncertainty propagation. For example, knowing the un-

certainties in one’s estimates of a model’s internal variables, one can ask: how do these
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errors propagate to induce further errors in the model’s future predictions? To answer

this question, one can use methods such as sensitivity analysis and Fisher Information

analysis to obtain analytic bounds on parameter identifiability. This dissertation focuses

on identifiability analysis for four main applications, all of them illustrating the close

relationship between input structure and parameter identifiability. The first application

focuses on the parameter identification and identifiability for a multi-compartment model

of extracorporeal CO2 removal dynamics in hypoxic and hypercarbic laboratory animals

(more specifically, laboratory pigs). The second application focuses on the impact of in-

put shaping on identifiability for drug resistance dynamics in cancerous tumors. The third

application focuses on optimal input shaping for electrochemical battery model parame-

terization. The fourth application focuses on the structure of optimal input for parameter

identifiability. Each of these application problems is discussed further below.

The first application of this dissertation is motivated by the following question:

can the respiratory dynamics of an extracorporeal laboratory animal CO2 removal ex-

periment be identified to better characterize the underlying mechanisms? The primary

functions of the respiratory system are to bring oxygen into the body (oxygenation), and

expel carbon dioxide out of the body (CO2 removal). Inhaled oxygen enters the lungs and

reaches the alveoli (the small air sacs in the lungs that allow for rapid gaseous exchange).

The walls of the alveoli share a membrane with the capillaries (a network of small blood

vessels) that lets oxygen and carbon dioxide diffuse between the respiratory system and

the bloodstream. If either of these two mechanisms – namely, oxygenation and CO2 re-

moval – fails to meet the body’s demand, one effective treatment option is mechanical

ventilation. However, mechanical ventilation can cause serious lung injury [3]. Another
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option includes the direct oxygenation of the blood using techniques such as extracor-

poreal membrane oxygenation (ECMO) [4]. ECMO is a treatment that uses a pump to

circulate blood through an artificial lung back into the bloodstream. This system provides

heart-lung bypass support outside of the body. Unfortunately, ECMO is accompanied by

extreme limitations that make it inappropriate for many patients [5]. Therefore, there is

always a need for novel oxygenation and ventilation mechanisms and equipment to ease

life for patients with respiratory illnesses. A third potential treatment is currently be-

ing explored by a large, collaborative team of surgeons, medical researchers, and control

engineers. The particular technology of interest in this collaboration is the circulation

of an oxygenated perfluorocarbon (specifically, perfluorodecalin) through the abdominal

(specifically, peritoneal) cavity. The idea is to utilize diffusion dynamics within the peri-

toneal cavity to essentially create a “third lung”, in a manner akin to the use of this cavity

as a “third kidney” during peritoneal dialysis [6]. To date, experiments on large animals

(specifically, pigs) have demonstrated the potential benefits of this technology for treating

hypoxia and hypercarbia [7, 8]. However, the underlying dynamic mechanisms behind

this novel extracorporeal oxygenation technology are not yet fully understood.

The main question behind the second application problem is: to what extent does

the chemotherapeutic drug delivery protocol for treating a partially drug-resistant can-

cerous tumor affect the identifiability of the tumor’s drug resistance dynamics? Moti-

vation for examining this research problem stems from the fact that drug resistance is

responsible for a significant portion of chemotherapeutic treatment failures. Drug resis-

tance occurs because of various factors including changes in drug metabolism, mutations,

genetic rewiring, and tumor heterogeneity [9]. Regardless of the specific cause of drug
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resistance, the main outcome is that a portion of the cancerous cell population continues

to suffer from defective apoptosis, even in the presence of a given drug. Therefore, under-

standing and predicting the behaviour of drug resistant cells is essential for determining

an optimal chemotherapeutic treatment schedule. This study investigates the combined

state and parameter identifiability of a partially drug-resistant tumor to gain insight into

feasibility of accurate estimation of its dynamics. To the best of the author’s knowledge,

this problem has not been examined in the literature prior to this work.

The primary motivating questions behind the third and fourth applications are: what

is the shape of a periodic cycling input trajectory that maximizes parameter identifiability

of an electrochemical battery? Moreover, how does the shaping of a cycling trajectory

affect the accuracy with which the battery’s parameters can be estimated? Electrochemi-

cal batteries, such as lithium-ion and lithium-sulfur batteries, have high power and energy

densities which make them attractive for many energy storage applications. However,

aging, degradation and damage mechanisms are prevalent problems threatening the per-

formance and longevity of these batteries. There is growing interest in the use of model-

based online battery diagnostics and control in order to estimate the physical variables

directly responsible for degradation and damage. Improving the accuracy with which a

battery model’s parameters are estimated has the potential to lead to more accurate bat-

tery performance prediction and control. The literature already examines the problem of

optimizing the test cycles of electrochemical batteries in order to enable more accurate

parametere estimation [10, 11, 12, 13, 14, 15, 16, 17, 18]. Such optimization has the

potential to improve parameter estimation speeds and accuracies considerably, leading to

better utilization of costly laboratory test setups and time. These potential benefits are
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well-established in the literature for thermal, electrochemical, and multi-physics battery

models. However, to the best of the author’s knowledge, fundamental insights into the

structure of information-maximizing lithium-ion battery test protocols are still relatively

scarce in the literature. Also, the problem of optimal input shaping for maximizing pa-

rameter identifiability has not yet been studied for lithium-sulfur batteries, an important

emerging battery technology.

1.2 Parameter Identifiability: Definitions and Approaches

Identifiability is a well-established concept in control theory, with important math-

ematical connections to other concepts such as observability and controllability [19, 20].

To illustrate this concept, consider the following (potentially nonlinear) dynamic system

model:

ẋ(t) = f(x(t),u(t), θ)

y(t) = h(x(t),u(t), θ) (1.1)

The above model is presented in state-space form for simplicity, but the discussion

that follows can be generalized to other types of models (e.g., differential algebraic equa-

tion models, partial differential equation models, etc.). In this model, x(t) is a vector of

state variables, u(t) is a vector of known system inputs, y(t) is a vector of measurable

output quantities, and θ is an unknown parameter vector that needs to be estimated based

on experimental data. Broadly speaking, if there exists an admissible u(t) which can

5



transfer an initial state of interest to a target state in a finite time, the dynamic system in

the Eq. (1.1) is controllable. Moreover, given an initial state x0 and an admissible control

u(t), if the current system state x(t) can be determined from measurements of the sys-

tem inputs and outputs in a finite amount of time, the system is observable[21, 22, 23].

Finally, for this general dynamic system, identifiability can be seen as the answer to a

yes/no question: can one uniquely determine the parameter vector θ from the given sys-

tem’s input u(t) and the measurable system output y(t)? If the answer is yes, then the

parameter vector θ is identifiable[21]. Note that the above definitions of controllability

and observability assume the parameter vector θ to be known, whereas the definition of

identifiability assumes that this parameter vector is unknown. Therefore, in a broad sense,

one can view identifiability as a prerequisite condition that must be met in order for one

to pursue model-based observer/controller design.

There are two important questions that one can ask regarding a given model’s pa-

rameter identifiability. First, is the problem of identifying or estimating the parameters

mathematically solvable? Second, how accurately can this problem be solved? The for-

mer question, which focuses on feasibility, is known as the structural identifiability

question. The latter question, which focuses on estimation accuracy, is known as the

practical identifiability or (numerical identifiability) question.

Structural identifiability focuses on the question of whether or not the structure

of a given model enables the solution of the underlying parameter estimation problem.

The concept of structural identifiability was first introduced by Bellman and Åström

at 1970 for linear models based on Laplace transforms [24]. Later, other linear and

nonlinear structural identifiability methods were introduced based on power series ex-
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pansions, similarity transformations, differential algebra, and the implicit function the-

orem [25, 26, 27, 28]. Ljung et al. also pioneered the concept of global identifiability

[2, 29, 30]. There are two basic assumptions upon which structural identifiability analysis

heavily relies:(i) the model structure is known and (ii) measurements are exact, with no

measurement errors [21]. However, these two assumptions are clearly not valid in prac-

tice. For instance, in biomedical research, both model uncertainty and measurement error

are usually large. Therefore, even when structural identifiability analysis suggests that

model parameters can be uniquely identified, the estimates of model parameters may still

be unreliable or inaccurate. Thus, it is necessary to evaluate whether structurally iden-

tifiable parameters can be reliably estimated with acceptable accuracy from noisy data.

This is called practical identifiability analysis. The parameter identifiability studies in

this dissertation fall under the practical identifiability category. Practical identifiability

techniques encompass Monte Carlo simulation, correlation matrix methods, and sensitiv-

ity analysis methods [21, 31, 32]. In this work we apply sensitivity analysis to different

dynamic systems in order to assess the identifiability of their parameters.

1.3 Sensitivity Analysis and Fisher Information

Sensitivity analysis methods are frequently used for analyzing dynamic systems’

practical identifiability. This process typically begins with an assessment of the sen-

sitivity of the system output to variations in the underlying parameters. Consider, for

example, the dynamic system model in Eq. (1.1). For any given set of values of the pa-

rameter vector, θ, the model predicts a corresponding output history, y(t). The measured
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output history, ym(t), may not match this predicted history exactly. This mismatch can

result from multiple factors, including modeling errors, parameter estimation errors, and

measurement noise.

Consider a scenario where the output of the given dynamic system is measured

at sampling instants separated by a constant sampling time, δt. Suppose that at each

sampling instant, ti, the relationship between the measured output and true output is given

by:

ym(ti) = y(ti) + v(ti), (1.2)

where v(ti) refers to the measurement noise process. The above equation implicitly as-

sumes that the model in Eq. (1.1) describes the given system’s dynamics exactly. There-

fore, the only source of discrepancy between the true and measured dynamic system out-

put trajectories is a sensor noise process, v(ti). Different types of noise processes are

possible. The discussion below assumes that the sensor noise process, v(ti), is indepen-

dent, identically distributed, and Gaussian, with a mean of zero and a variance of σ2 (for

the special case of a scalar output measurement). Stated mathematically, the discussion

assumes that:

v(ti) ∼ N(0, σ2)

(1.3)
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The measured system output, ym(t), is not guaranteed to equal either the true sys-

tem output, y(t), or the predicted system output from Eq. (1.1). Discrepancies will

exist between these various signals, caused by factors such as parameter estimation er-

rors, modeling errors, and measurement noise. Let the likelihood function, p(ym(t)|θ),

represent the likelihood that this mismatch is caused solely by measurement noise. One

common parameter estimation approach - namely, maximum likelihood estimation - at-

tempts to find the parameter values that maximize this likelihood function. Intuitively,

maximizing the likelihood function furnishes a model whose output prediction errors are

most likely to be caused by measurement noise, as opposed to parameter estimation errors.

The choice of likelihood function depends on the nature of the underlying measurement

noise process. Consider, for example, a system with a single output variable, y(t), that

is measured at N discrete instants of time, ti. Suppose that the measurement noise at

these instants in time is an independent, identically distributed, Gaussian process with

zero mean and a variance σ2, as discussed above. Then the likelihood function can be

derived from the probability density function of the Gaussian noise process, as shown

below [33]:

p(ym(t)|θ) =

(
1√
2πσ

)N N∏
i=1

e−
(ym(ti)−y(ti,θ))

2

2σ2 (1.4)

In the above equation, the expression y(ti, θ) is shorthand for the ideal predicted

model output from Eq. (1.1) at time ti, for a given value θ of the parameter vector.

Maximizing the likelihood function is equivalent to maximizing its natural logarithm,

given the monotonicity of logarithmic functions. This leads to the so-called log likelihood
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function below:

ln p(ym(t)|θ) = N ln

(
1√
2πσ

)
−

N∑
i=1

(ym(ti)− y(ti, θ))
2

2σ2
(1.5)

The goal of maximum likelihood estimation is to determine the specific set of pa-

rameters that maximizes the above likelihood function. In other words, maximum likeli-

hood estimation solves the following problem:

θ∗ = arg maxθ p(ym(t)|θ) (1.6)

The above maximum likelihood estimation problem is analogous to classical least-

squares estimation. In particular, maximizing the log likelihood function is equivalent

to minimizing the sum of the squares of the model prediction residuals with respect to

the unknown model parameters. This is true under the above assumptions regarding the

measurement noise process - namely, that the measurement noise signal is a zero-mean,

Gaussian, and independent, identically distributed (iid).

Fisher information quantifies the expected curvature of the likelihood function around

the maximum likelihood estimate θ∗. The Fisher information matrix is defined as follows

[34]:

F = E

{(
∂

∂θ
ln p(ym(t)|θ)

)T (
∂

∂θ
ln p(ym(t)|θ)

)}
(1.7)

where the symbol E denotes the expectation operator [35]. Note that this definition of

the Fisher information matrix is broadly applicable to different likelihood functions, and
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hence to different noise processes.

By definition, the Fisher information matrix is positive semi-definite. The key idea

behind Fisher information analysis is that the inverse of this matrix, if it exists, furnishes

the well-known Cramér-Rao bounds on the best parameter estimation covariance achiev-

able by any unbiased parameter estimator [34, 35, 36]. Stated mathematically:

cov(θ̂) ≥ F−1 (1.8)

The above result is known as the Cramér-Rao theorem, and forms a key foundation

for this dissertation. The main idea behind this research is twofold. First, this work aims

to use Fisher information analysis to examine fundamental limitations on the accuracy

with which multi-compartment dynamic system model parameters can be estimated. Sec-

ond, this work also aims to examine the degree to which optimal input shaping can help

improve this parameter estimation accuracy.

Fisher information analysis is often closely intertwined with sensitivity analysis.

Consider, for example, a single-output dynamic system governed by Eq. (1.1), with an

output noise process governed by Eq. (1.3). Let the symbol Y (t, θ) denote the predicted

output of this system, without noise, at time t, for a specific assumed value of the parame-

ter vector θ. Given the above output measurement noise assumptions, let ei represent the

ith Eucledian vector in the n-dimensional combined space of unknown parameters and

initial values. For instance, let e1 = [1, 0, 0, 0, 0]T , e2 = [0, 1, 0, 0, 0]T , and so on. More-

over, let Y (kδt, θ) represent the true value of the output, Y , at time t = kδt, for a given
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set of unknowns, θ. Then the sensitivity function si(kδt), can be defined as follows:

si(kδt) = lim
δθi→0

Y (kδt, θ + eiδθi)− Y (kδt, θ)

δθi
, (1.9)

where δθi represents an infinitesimal change in the ith unknown parameter. Given the

above sensitivity function, one can construct the following sensitivity matrix:

S =



s1(δt) s2(δt) s3(δt) ... sn(δt)

s1(2δt) s2(2δt) s3(2δt) ... sn(2δt)

...
...

...
...

...

s1(Nδt) s2(Nδt) s3(Nδt) ... sn(Nδt)


, (1.10)

where N is the total number of samples over which identifiability analysis is performed.

If the measurement noise process is zero-mean, Gaussian, and iid, then the Fisher

information matrix can be related to the above definition of the sensitivity matrix as fol-

lows:

F =
1

σ2
STS (1.11)

The above result is important because it highlights the degree to which maximizing

the identifiability of a dynamic system’s parameters essentially amounts to maximizing

the sensitivity of its output to perturbations in these parameters. For linear estimation

problems, such maximization leads to the perhaps trivial conclusion that more aggressive

inputs lead to better parameter identifiability, assuming the underlying dynamic system

model to be accurate. However, for estimation problems that are nonlinear in the param-
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eters, optimizing a system’s input trajectory for identifiability has the potential to lead to

non-trivial insights. There may, for instance, be specific shapes of the input trajectory that

improve identifiability by exciting the underlying dynamics in an optimal manner. More-

over, there may be specific input trajectories that lead to particularly poor identifiability

by obscuring key underlying system dynamics. This dissertation examines these insights

for a variety of multi-compartment dynamic system models, covering both healthcare

systems and electrochemical batteries.

1.4 Dissertation Contributions and Outline

The remainder of this dissertation explores four practical problems related to multi-

compartment dynamic system identifiability, as explained earlier in this chapter. This ex-

ploration highlights the breadth of parameter identifiability analysis for dynamic systems.

Furthermore, the progression of problems is chosen to reflect a progression of funda-

mental research topics related to dynamic system parameter identifiability. Specifically,

the dissertation progresses from motivating the importance of identifiability analysis us-

ing animal experiments (Chapter 2), to analyzing identifiability in drug-resistance tumors

(Chapter 3), to optimizing identifiability for lithium-sulfur batteries (Chapter 4), to finally

unveiling the structure of an identifiability-optimizing lithium-ion battery test cycle using

the Pontryagin minimum principle (Chapter 5).
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Chapter 2: Parameterizing a Model of CO2 Transport in a Test Animal

During a Novel Extra-Corporeal Ventilation Experiment

2.1 Introduction

This chapter focuses on two interconnected research problems. First, from a prac-

tical perspective, the chapter examines the dynamics of CO2 removal from a hypercarbic

laboratory test animal via the perfusion of an oxygenated perfluorocarbon (specifically,

perfluorodecalin) through the animal’s peritoneal (or abdominal) cavity. This practical

research problem builds on the hypothesis that perfusing perfluorodecalin through a hy-

poxic and/or hypercarbic patient’s or animal’s abdominal cavity can provide significant

respiratory support. Second, from a fundamental perspective, the chapter highlights the

importance of dynamic system parameter identifiability in research problems including

the modeling of gas transport in human patients and test animals. This motivates subse-

quent work in this dissertation on the analysis and optimization of identifiability1.

The research in this chapter is motivated by the need for providing life support

to patients suffering from respiratory failure. Potential causes for respiratory failure in-

1Broadly speaking, the research presented in this chapter includes the development of a mechatronic
setup for perfluorodecalin perfusion experiments, as well as the analysis of gas transport dynamics in animal
experiments exploiting this setup. The former body of work has been submitted for potential archival in
the IEEE/ASME Transactions on Mechatronics, and the latter body of work is currently in preparation for
potential publication.
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clude acute respiratory distress syndrome (ARDS), pulmonary embolism, pneumonia,

toxic inhalation, as well as ailments such as COVID-19. The fact that the U.S. alone has

historically seen more than 100,000 ARDS-related hospitalizations annually, even during

pre-pandemic years, highlights the public health magnitude of respiratory failure [37].

The two main functions of the respiratory system are to bring oxygen into the body

and expel CO2 out of the body. If either of these two functions, oxygenation or CO2

removal, falls below critical levels, then the patient will not survive without additional

support. If the condition is severe, then the patient will require mechanical ventilation.

This is a technique where the airway is intubated in an airtight manner, allowing positive

pressure assistance of the lungs, often using an oxygen-enriched gas mixture. Potential

complications of mechanical ventilation, therefore, include oxygen toxicity and baro-

trauma to the lungs, both of which can result in ventilator induced lung injury (VILI).

VILI can compound the underlying lung dysfunction and exacerbate pulmonary failure –

potentially to a fatal degree [3, 38, 39, 40, 41]. In such situations, unless gas exchange is

augmented by extra-pulmonary means, the patient will not survive.

Extra-corporeal membrane oxygenation (ECMO) is currently the only pulmonary-

independent modality available to supplement gas exchange. It involves drawing blood

out of the patient through a vascular cannula, oxygenating it, then pumping it back into the

patient through another cannula [4]. Unfortunately, ECMO is an expensive resource, with

one study indicating a mean total hospital cost above $200,000 per patient[42]. The avail-

ability of ECMO is limited by cost and personnel requirements: its initiation is typically

performed by specially trained cardiac surgeons, and its maintenance requires constant

monitoring by highly trained personnel. Even when available, ECMO is accompanied by
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contraindications or exclusion criteria that may make it a nonviable option for patients

with potentially reversible lung failure. Therefore, there is a need for additional ways to

support respiration that do not require the lungs or ECMO.

The main idea motivating the research in this chapter is to supplement gas exchange

by perfusing (i.e., circulating) an oxygenated perfluorocarbon (PFC) through a patient’s

peritoneal (i.e., abdominal) cavity. Perfluorocarbons (PFCs) are organic compounds con-

sisting either predominantly or entirely of carbon and fluorine. They are inert and recog-

nized for their very high oxygen and carbon dioxide solubilities [43, 44]. Thanks to these

properties, PFCs are well-suited for medical applications [45, 46, 47, 48]. For example,

they have been investigated as blood substitutes [7, 49] and are also used for ophthal-

mologic surgeries [8]. One particularly relevant application is the use of PFCs for liquid

ventilation, or “liquid breathing”. This refers to filling the lungs partially or completely

with an oxygenated PFC in an effort to augment gas exchange [50, 51, 52, 53]. Both labo-

ratory studies and clinical trials have been performed on liquid ventilation. These studies

show that while liquid ventilation does indeed supplement gas exchange [54, 55, 56, 57],

its benefits do not justify its adoption as an alternative to mechanical ventilation [58].

The research in this chapter is similar to liquid ventilation in its use of PFC to

augment gas exchange, but fundamentally distinct in its use of the abdominal cavity, as

opposed to the lungs, for gas exchange. Figure (2.1) summarizes this respiratory support

approach. A perfusion circuit is used for oxygenating PFC, removing CO2 from it, and

warming it to body temperature. The oxygenated PFC is then perfused through the ab-

domen, where processes such as diffusion allow it to exchange oxygen and CO2 with the

bloodstream. Finally, the PFC is drained out of the abdomen, potentially using negative
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Figure 2.1: Schematic of the third lung concept

pressure from a suction/vacuum pump. The end result is a system that allows the peri-

toneal cavity to be used “like a lung,” analogous to the way it is used “like a kidney” for

peritoneal dialysis [6]. One potential benefit of this “third lung” concept is the fact that it

offers a pulmonary-independent means of gas exchange that can supplement mechanical

ventilation, thereby resting the lungs and helping them heal. Another potential benefit

is the fact that the third lung innovation does not require a direct blood-device interface,

thereby avoiding many of the risks and contra-indications of ECMO.

Previous medical research by one of this dissertation’s committee members (Fried-

berg) shows that the third lung concept is indeed effective at providing oxygenation to

large hypoxic animal models (namely, laboratory swine) [59]. While this prior research

is encouraging, it leaves at least four important open questions and research challenges.

First, it is not clear what operating conditions (e.g., perfusion flowrates, pressures, tem-

peratures, PFC oxygenation levels, etc.) are ideal for the third lung concept. Second, the
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impact of the third lung intervention on hemodynamic variables such as heart rate has

yet to be fully characterized. Third, the impact of the intervention on CO2 clearance in

large laboratory animals has not yet been fully examined in the literature. Fourth, there

is a need to implement the third lung concept using a mechatronic setup with extensive

data acquisition and control capabilities supporting both ongoing animal experiments and

potential future human interventions. To address these challenges, a research team in-

cluding the author has collaboratively developed a novel mechatronic setup capable of (i)

performing controlled peritoneal PFC perfusion experiments and (ii) gathering extensive

datasets characterizing these experiments, from both setup-side and physiological sen-

sors. The specific contributions of this dissertation’s author include: (i) the development

of this setup’s data acquisition and control capabilities as well as (ii) the identification of

a dynamic model of CO2 gas transport from animal test data gathered by this setup.

From a fundamental perspective, the research in this chapter investigates the prob-

lem of parameterizing a model of the CO2 transport dynamics associated with the “third

lung” intervention. The literature already presents multi-compartment dynamic models

of both human and animal gas transport [60, 61, 62, 63]. Moreover, the literature pa-

rameterizes these models from experiments not involving the abdominal circulation of

oxygenated PFCs [60, 62, 64, 65, 66, 67, 68, 69, 70, 71]. From a fundamental perspec-

tive, one important contribution of this chapter is the degree to which it extends the above

parameter identification and identifiability analyses to the “third lung” concept, building

on elementary physical principles such as Fick’s law of diffusion [72].

The remainder of this chapter is organized as follows. Section (2.2) summarizes

mechanical design of the third lung setup. Section (2.3) describes the setup’s monitor-
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Figure 2.2: The third lung ventilator setup diagram

ing and data acquisition system. Section (2.4) summarizes the setup’s key closed-loop

control functionalities. Section (2.5) presents preliminary data from laboratory animal

experiments highlighting some of the setup’s successes in controlling perfusion param-

eters such as perfusate flowrate, temperature, pressure, and oxygenation level. Section

(2.6) examines the problem of modeling and parameterization the CO2 transport dynam-

ics in a hypercarbic test animal. Section (2.7) performs identifiability analysis for the

estimated parameters from section (2.7). Finally, Section (2.8) summarizes the chapter’s

conclusions.

2.2 Design of the third lung ventilator

Experiments on the third lung intervention have, to date, focused on large laboratory

animals (swine) because they are close in size, core body temperature, and ventilation
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needs to human patients. The perfusion setup described in this chapter is designed to

facilitate these experiments, with the ultimate goal of enabling emergency interventions

in human patients. The setup is designed to meet five key requirements, namely:

1. Oxygenating the PFC and removing CO2 from it prior to perfusion.

2. Providing a PFC perfusion flowrate sufficient for supplementing gas exchange. For

large animal experiments, prior research suggests that flowrates of up to 6 liters per

minute may potentially be required.

3. Delivering up to 11 liters of PFC to the abdomen at any given time. This is impor-

tant, considering the degree to which the abdominal cavity distends during perfu-

sion. Filling the distended abdomen of a 40-50kg adult pig, for example, typically

requires 6-7 liters of PFC.

4. Achieving perfusion temperatures that are consistent with core body temperature -

namely, 37◦C for human patients and 39◦C for laboratory pigs.

5. Ensuring safety by avoiding intra-cavity pressures conducive to compartment syn-

drome.

Figure (2.2) presents the design of the third lung setup, tailored to meet the above

requirements. When filled, the setup can accommodate 26 liters of PFC, of which 11

liters can be supplied to the animal’s or patient’s body at any time. The remaining PFC

must stay in the setup to ensure that the setup is properly primed and able to sufficiently

oxygenate the PFC. PFC enters and leaves the abdomen through tubes typically used as

central venuous catheters. Different catheter sizes can be accommodated, a typical size
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being 36 on the French scale (i.e., 12mm diameter). An oxygenated PFC (specifically, a

mix of cis- and trans-Perfluorodecalin) is perfused through the abdomen of the patient or

animal. The PFC then drains into an accumulator using a combination of gravitational

drainage and active suction via a vacuum pump. Two different versions of this accumu-

lator have been built and can be rapidly interchanged, namely: a single-canister system

and the dual-canister system in Fig. (2.3). The former system uses one canister to receive

fluid drained from the test animal and supply it to the rest of the setup. In contrast, the

dual-canister system switches periodically between a canister that recovers fluid from the

animal versus a canister from which fluid is pumped into the rest of the setup.

Once the fluid is recovered by the accumulator system, it is filtered then exposed to

an ultraviolet flood light. The fluid then passes through a chamber where CO2 is purged.

The specific setup sketched in Fig. (2.2) uses PFC heating plus exposure to an oxygen

stream as means of CO2 removal, the idea being to rapidly achieve equilibrium between

dissolved and incoming gas concentrations. Alternative CO2 removal mechanisms in-
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clude the use of vacuum to bubble CO2 out of the PFC as well as the use of chemical

removal means (e.g., soda lime canisters). If the temperatures used for CO2 removal ex-

ceed the ideal perfusion temperature, the setup provides the option to pass the warm PFC

through a heat exchanger connected to cold water flow from a cardioplegic heater/chiller.

The PFC is then oxygenated using a gas bubble chamber connected to an oxygen tank

through an actively-controlled valve, with the possibility that future designs may employ

membrane gas exchangers instead. Next, the temperature of the PFC is regulated to meet

the desired perfusion target using a mix of electric heating and heat exchange with hot

water from the cardioplegic heater/chiller unit. Finally, the oxygenated PFC is pumped

into the abdomen.

As shown in Fig. (2.2), the setup needs to transfer PFC from the suction canisters to

the CO2 removal chamber, then to the oxygenation chamber, then finally to the abdomen.

Two peristaltic pumps are used for achieving these three functionalities. A dual-head “re-

trieval pump” transfers fluid from the suction canister(s) to the CO2 removal chamber,

then to the oxygenation chamber. Next, a “perfusion pump” supplies PFC to the animal.

Balancing the PFC fluid levels in the various chambers can be achieved through bypass

valves, as shown in Fig. (2.2), with the recognition that modifying the setup to incor-

porate three independent pumps may potentially provide greater control authority. The

setup incorporates a mix of spring-loaded passive and actively-controlled mechanical by-

pass valves on the final perfusion line. These valves provide the ability to bypass the

abdomen if intra-cavity pressure increases beyond critical limits dictated by setup design

(in case of the passive valves) or operator input, if the operator dictates a software-based

pressure limit (in case of the active valves). This is important for avoiding cavity pressures
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conducive to compartment syndrome.

Temperature control is potentially critical for the success of the third lung inter-

vention, and requires significant fluid heating capabilities. Heating the PFC entering the

final perfusion line is needed for ensuring compatibility between perfusion temperature

and core body temperature. Moreover, pre-heating the PFC beyond core body tempera-

ture followed by cooling it back down may potentially important for CO2 removal. For

illustrative purposes, consider the problem of heating the PFC from a room temperature

of 22◦C, to a desired CO2 removal temperature of 42◦C, assuming a PFC flowrate of

5 liters per minute. Knowing that the density, ρ, of Perfluorodecalin is 1.93 [kg/L] and

its specific heat capacity, Cp, is 1000 [J kg−1 K−1], Eq. (2.1) solves for the heat, Qth,

required for this functionality:

Qth = ṁcp∆T

= (5 [
L

min
]) ∗ (1.93 [

kg

L
]) ∗ (1000 [

J

KgK
]) ∗ (20 [K])

= 193000 [
J

min
] =

193000

60 [sec]
∼= 3216 [W ], (2.1)

where ∆T is the desired rise in PFC temperature and ṁ is the mass flowrate of PFC.

The setup is equipped with two 250[W ] electric heaters in itsCO2 removal chamber

plus a 100[W ] electric heater attached to the final perfusion line. Moreover, the setup is

connected through heat exchangers to the hot and (optionally) cold water outputs of a

cardioplegic chiller/heater unit. The chiller/heater unit can provide up to 3000[W ] of heat

to its output hot water, which can be raised to temperatures as high as 41◦C. Given the
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proximity of this hot water temperature to the final perfusion temperature, three of the

setup’s four heat exchangers are used for heating the PFC, compared to a single optional

heat exchanger for cooling. These details highlight the importance of the coordinated

control of the setup’s heating (and potential cooling) assets in order to ensure effective

perfusion temperature control. Other critical variables that the setup must monitor and

control include perfusion flowrate, total perfused volume, perfusate gas concentrations,

and intra-cavity pressure. The next section of this chapter presents a detailed description

of the monitoring, data acquisition, and control functionalities implemented to meet these

goals.

2.3 Setup monitoring and data acquisition

Figure (2.4) provides a high-level overview of the components of the setup’s mon-

itoring and data acquisition system. This system: (i) monitors the setup’s performance,

(ii) monitors the effect of perfusion on the test animal, and (iii) enables important closed-

loop control functionalities. Up to 43 signals are collected by this system, from 28 dif-

ferent sensors and patient monitors, in order to collectively satisfy the data acquisition

requirements below. Note that the physical locations of these sensors, where possible, are

indicated in Fig.s (2-3).

• Fluid height/volume monitoring (6 sensors, 6 signals): The setup has the ability to

monitor the height of the PFC in all of its canisters - namely, the oxygenation can-

ister, the CO2 removal canister, and its 1-2 canister accumulator. This is important

for controlling the setup, as well as estimating the total volume of fluid delivered to
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Figure 2.4: Setup monitoring and data acquisition system

the animal. To achieve this functionality, pressure sensors are mounted at the bot-

toms of all four canisters. Moreover, two pressure sensors are mounted at the tops

of the two suction canisters in the dual-canister accumulator in order to measure air

pressure during suction. The difference between air pressure in each canister and

the pressure at the bottom of the canister enables the estimation of fluid height in

the canister.

• Secondary fluid height/volume monitoring (4 sensors, 4 signals): The setup is

equipped with an optional redundant method for estimating the height of the fluid

in its canisters using 4 fluid level sensors.

• PFC flowrate monitoring (1 sensor, 1 signal): The setup monitors perfusion using

a PFC flowrate sensor.

• Oxygen flowrate monitoring (2 sensors, 2 signals): The setup monitors the rate at
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which oxygen flows into the CO2 removal tank using a gas mass flowrate sensor.

This rate is adjusted using a manual valve. The setup also controls oxygen flowrate

into its oxygenation chamber using an active gas flowrate controller. This controller

provides a measurement of the achieved oxygen flowrate back to the setup’s data

acquisition system.

• Oxygen concentration monitoring (1 sensor, 1 signal): An optical sensor is mounted

on the final perfusion line in order to monitor the concentration of dissolved oxygen

in the PFC.

• Fluid temperature monitoring (6 sensors, 6 signals): Thermocouples are used

for monitoring PFC temperatures at multiple critical points in the setup. Specifi-

cally, six thermocouples are used for monitoring PFC temperature at: (i) the CO2

removal tank; (ii) the inlet of the oxygenation tank; (iii) the inlet of the perfusion

pump; (iv) the outlet of the perfusion pump; (v) the last point in the setup prior to

perfusion; and (vi) either the return flow line or the surface of the final polishing

heater, depending on usage of the setup.

• Perfusion pressure monitoring (4 sensors, 4 signals): The setup has the ability

to measure the test animal’s abdominal intra-cavity pressure and bladder pressure

through two catheter-mounted pressure sensors. This is important for ensuring safe

perfusion. Moreover, the setup uses two additional pressure sensors for monitoring

internal fluid pressures prior to perfusion in order to avoid excessive pumping rates.

• Physiological signal monitoring (4 monitors, 19 signals): The setup has the abil-
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ity to interface with four different medical monitoring systems in order to collect

data regarding the test animal’s physiological state (e.g., hemodynamics) and re-

sponse to perfusion. Specifically, the setup can interface with: (i) a Nellcor pulse

oximeter; (ii) a Capnomac capnograph; (iii) a Penlon anesthesia machine; and

(iv) a TRAM-RAC patient monitor. Collectively, these devices provide 19 differ-

ent measurements of physiological and/or anesthesia-related variables, with some

of these measurements providing an important degree of redundnacy. For example,

pulse oximetry is monitored using both the Nellcor oximeter and the TRAM-RAC

patient monitor. Tables (2.1) and (2.2) list the signals provided by these monitoring

devices using their serial and analog communication protocols.

The setup’s monitoring and control system is built around a central data acquisition

board - in this case, a dSpace MicroLabBox II board. Similar data acquisition boards are

often used for instrumentation and control research [73, 74]. All analog sensor/monitor

signals are read directly by the dSpace board’s analog-to-digital converter. For sensor sig-

nals that use a current-based (i.e., 4 − 20mA) analog communication protocol, standard

integrated circuits are used for converting the signals to a voltage-based protocol first,

prior to dSpace-based data acquisition. The remaining signals are communicated using

either the RS-232 serial protocol or the serial peripheral interface (SPI) protocol. Figure

(2.5) shows two Arduino Mega 2560 boards, together with a Teensy board (an Arduino

clone) that they are used for reading these non-analog signals. As shown in Fig. (2.4),

one of the Arduino boards is used for aggregating data from the pulse oximeter and anes-

thesia machine. The second Arduino board adds capnograph and SPI-based temperature
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Table 2.1: The serial data from medical equipment

Pulse Oximeter
(Nellcor)

Capnograph
(Capnomac)

Anesthesia Machine
(AVS)

SpO2

[0− 100%]
EtCO2

[0− 76 mmHg]

Measured Tidal Volume
[0− 200cL]

(TV*0.01 for L)

BPM
[0− 250]

FiCO2

[0− 76mmHg]
Measured O2

[0− 100%]

EtO2

[0− 100%]
BPM

[0− 120]

FiO2

[0− 100%]
Measured Peak Pressure

[−22 to 99 cmH2O]

EtN2O
[0− 100%]

FiN2O
[0− 100%]

Respiratory Rate
[4− 60 breaths/min]

Signal
processing time

2000[ms]

Signal
processing time

10, 000[ms]

Signal
processing time

2000[ms]

General Sampling time (150[ms])
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Table 2.2: The analog data from the anesthesia machine (AVS)

Parameter Range Unit

Real-time
breathing circuit pressure

(AWP)

[-10 to 100 cmH2O]
(0 to 4950 mV)

cmH2O

Average
breathing circuit pressure

for
previous respiratory cycle

(MnAWP)

[-10 to 100 cmH2O]
(0 to 4950 mV)

cmH2O

Real-time
measured tidal volume

(TidV)

[0 to 2.0 L]
(0 to 5000 mV)

Liters

Real-time
breathing circuit flow

(AWF)

[0 to± 100 L/min]
(0 mV = 100 L/min)

inspiratory flow
2480 mV = 0 L/min

inspiratory flow
5000 mV = 100 L/min

expiratory flow)

L/min

Measured
minute volume for

previous respiratory cycle
(MinV)

[0 to 75 L]
(0 to 4950 mV)

Liters

Real-time
measured oxygen

percentage
(O2%)

[0 to 100 %]
(0 to 5000 mV)

Percent

data to this aggregate datastream, and forwards it to the dSpace board. Finally, the Teensy

board selects specific signals from the fairly large dataset communicated serially by the

TRAM-RAC patient monitor, repackages these signals, and communicates them directly

to the dSpace board. Minimizing the amount of physical wiring necessary for communi-

29



Arduino(2)_To_Dspace
Mega2560_(2)

DSPACE

Capnograph
(Capnomac)

Anesthesia 
Machine

(AVS)

Arduino(1)_To_Arduino(2)
Mega2560_(1)

Pulse Oximeter
(Nellcor)

TX2
RX2

TX3
RX3

RX1

TX1

TX2 RX2

TX3
RX3

TX1 RX1

RX(1)
TX(1)

RX TXTX TX

Teensy
Patient 

Monitor
(Tram_Rac)

Solar 8000 M
(Patient Monitor)

TX1

RX2

TX
RX

RX(2) TX(2)

Thermocouples

SPI

6×MAX31856/65

RX1

RXRX

Figure 2.5: Setup communication layout

cating between these various devices is important, given the space limitation of a typical

operating room. To address this issue, the setup collects the signals from all the medical

devices using a custom printed circuit board (PCB), as shown on the left hand side of Fig.

(2.6). A second custom PCB board, shown on the right hand side of Fig. (2.6) is then

used to input these signals into the Arduino and dSpace boards.

Different components of the above data acquisition system monitor different under-

lying dynamics, with significantly different associated time constants. For example, if any

of the setup’s tubes are accidentally pinched during an experiment, the dynamics of the

associated rise in fluid pressure are likely to be much faster than the dynamics of animal

blood gas concentrations. With this in mind, the setup’s dSpace board has a relatively fast

master sampling time of 10ms, corresponding to a sampling rate of 100 samples/second.

Other components of the setup have progressively slower sampling rates and/or data pro-

cessing times. For example: (i) The SPI protocol is used for reading temperatures every
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PCB Board (1) PCB Board (2) 

Figure 2.6: Medical equipment communication boards

100ms. (ii) The Arduino boards communicate data to the dSpace board every 150ms.

(iii) The Teensy board communicates data to the dSpace board every 500ms. (iv) The

pulse oximeter, anesthesia machine, and patient monitor communicate data to the Ar-

duino and Teensy boards every 2000ms. (v) The capgnograph communicates data to the

corresponding Arduino board every 10, 000ms. (vi) Finally, the oxygen sensor updates

its readings every 60 seconds, with the caveat that this is the only sensor that is read by a

(proprietary) standalone program not communicating with the dSpace board.

Ensuring proper calibration of the above sensors and monitors is essential for the

successful use of the setup. Four particular calibration efforts are needed on a regular

basis, potentially as frequently as once per use of the setup for animal experiments. First,

it is important to calibrate the PFC flowrate sensor, especially if it is used for closed-loop

perfusion flowrate control. This is achieved by using the setup to pump a known volume

of fluid into an external tank, then calibrating the sensor’s data processing software to

ensure that the time integral of the flowrate measured by the sensor matches the volume of
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fluid delivered. Second, it is important to calibrate the canister pressure sensors to ensure

correct fluid height estimates. This is done by filling the canisters to known fluid heights,

then adjusting the reference voltage outputs of these sensors to furnish height estimates

matching these known heights. Third, it is particularly critical to calibrate the cavity

and bladder pressure sensors. This is done at the beginning of each animal experiment

by exposing these sensors to atmospheric pressures, then adjusting the reference voltage

outputs of these sensors to furnish a correct reading of atmospheric pressure. Finally, it

is important to calibrate the optical dissolved oxygen concentration sensor. This sensor

produces a raw output signal that does not equal dissolved oxygen concentration, but

can be correlated to it. To calibrate this sensor, two samples of PFC were prepared with

dissolved oxygen concentrations corresponding to partial oxygen pressures of 159mmHg

and 760mmHg, respectively, at room temperature. These samples were then mixed in

different proportions in order to prepare PFC samples with intermediate oxygen partial

pressures. A small but noticeable increase in fluid turbidity occurred at dissolved oxygen

partial pressures approaching 760mmHg. The sensor’s reading was then correlated to

dissolved oxygen fraction, defined as the partial pressure of dissolved oxygen divided by

760mmHg. Figure (2.7) shows the resulting sensor calibration plot.
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Figure 2.7: Calibration plot for optical oxygen sensor
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2.4 Setup control

Four closed-loop control functionalities are implemented in the setup. Specifically,

the setup contains discrete-event algorithms to control: (i) the filling of the two-canister

system when in use; and (ii) the filling of the CO2 removal chamber and oxygenation

chambers. The setup also contains proportional-integral (PI) algorithms for controlling

(iii) the temperatures of the PFC in the CO2 removal chamber and final perfusion line;

and (iv) the final perfusion flowrate/pressure. These controllers are discussed below.

2.4.1 Multi-Canister Switching Control

The intent of the dual-canister accumulator is twofold. First, it enables smooth,

continuous PFC drainage from the test animal into the setup, potentially in the presence

of active suction via a vacuum pump applied to the canisters. Second, it achieves this

while minimizing the loading that this suction may apply on the retrieval pump. Discrete-

event logic is needed for switching between two configurations. In one configuration, the

“left” canister is receiving drained PFC and the “right” canister is supplying PFC to the

rest of the setup. In the second configuration, these roles are reversed.

Figure (2.8) summarizes the discrete-event logic used for operating the dual-canister

system when it is used. The figure generalizes this algorithm to an N -canister system.

Most of the time, the setup is in a “k-filling” state, where canister k is being filled and all

other canisters are being emptied. When canister k is full or any other canister is empty,

an immediate switch takes place to a “transitioning” state. This state persists for a fixed
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duration of time, during which the retrieval pump is shut down, suction is applied to the

next canister in the sequence of canisters to fill, fluid is routed to that new canister, the out-

let valves from the canisters to the rest of the setup are opened and closed appropriately,

and the retrieval pump is restarted. Once this transition is complete, the discrete-event

control algorithm automatically moves to a state where it is filling the next canister in the

filling sequence, namely, canister number (k + 1)modN .

State: k-filling

• Suction applied to tank k (only)

• Animal draining into tank k (only)

• Tank k outlet valve closed

• All other tank outlet valves open

• Retrieval pump obtaining fluid from 

remaining tanks

State: transitioning

• Retrieval pump disabled

• Tank (k+1) mod N outlet valve closed

• Suction applied to tank (k+1) mod N

• Animal drainage routed from tank k to tank (k+1) mod N

• Tank k outlet valve opened

• Retrieval pump restarted

Event: 
transition 
complete

Event:
Tank k is 

full or 
other 

tanks are 
empty

Figure 2.8: Multi-canister switching control algorithm

2.4.2 Control of Oxygenation and CO2 Chamber Filling

Three different control algorithms/loops are used for controlling the retrieval pump

and its associated bypass valves. Collectively, these loops ensure that the oxygenation

and CO2 removal chambers are replenished with fluid whenever possible, but prevented

from overfilling.

• The first loop controls the retrieval pump flowrate. During normal operation, this

flowrate is set to a constant value. However, when both the oxygenation and CO2

removal tanks are full or when all the canisters in the accumulator are empty, the

pump enters a temporary shutdown state, where flowrate is set to zero. The pump
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dwells in this state for a fixed time duration, then returns to normal operation. This

translates to a 2-state finite state machine governing the pump’s operation, where

it transitions automatically from normal operation to shutdown whenever needed.

The setup’s graphical user interface (GUI) allows the user to define the “empty”

and “full” fluid levels for all canisters. The GUI also allows the user to dictate the

constant flowrate used by the retrieval pump during normal operation. This flowrate

should ideally be 0.5lpm-1.0lpm larger than the desired perfusion flowrate to ensure

that the oxygenation and CO2 removal tanks are always replenished.

• The second loop controls the bypass valve for the first retrieval pump head. This

valve is closed during normal operation, allowing the retrieval pump to supply PFC

from the accumulator to the CO2 removal tank. However, when the CO2 removal

tank is full, this valve automatically switches to a state where it is open, allowing

flow to bypass the CO2 removal tank. The valve dwells in this state for a fixed time

duration, then automatically returns to the normal operation state. This makes it

possible for the retrieval pump to replenish the oxygenation tank through its second

pump head, without overfilling the CO2 removal tank.

• The third loop controls the bypass valve for the second retrieval pump head. The

logic governing this loop is identical to the logic governing the second control loop,

the only difference being the the transition from closed- to open-valve operation is

governed by fluid level in the oxygenation chamber. This loop allows the CO2

chamber to be replenished, without overfilling the oxygenation chamber.
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2.4.3 PFC Temperature Control

Two different loops are used for controlling PFC temperature (i) in theCO2 removal

chamber and (ii) at the final perfusion point. Both loops rely on proportional integral

(PI) control with saturation and anti-windup logic. In both cases, the dynamics of PFC

temperature are assumed to be governed by the following simple energy balance:

ρV Cp
dT

dt
= ρQCp(Tin − T )

+hA(T∞ − T ) + uRoI
2
o (2.2)

In the above equation, T is the PFC temperature in the given control volume, as-

sumed to be equal to the control volume’s outlet temperature. Depending on the control

loop, this control volume is either the CO2 removal chamber or the pipe section/manifold

being heated by the final perfusion heater. The volume of PFC being heated is denoted

by V . Moreover, the density and specific heat capacity of the PFC are denoted by ρ

and Cp, respectively. Thus, the term ρV CpdT/dt equals the rate of change of thermal

energy stored in the control volume, assuming that the amount of PFC in this control

volume, V , is approximately constant. The first term contributing to this rate of change,

ρQCp(Tin − T ), equals the rate of energy transfer due to the flow of PFC, where Q is the

volumetric flowrate of the PFC and Tin is the PFC temperature at the inlet of the control

volume. The second term contributing to temperature change, hA(T∞ − T ), represents

the rate of convection heat transfer, where h is the heat transfer coefficient, A is the area
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exposed to convection, and T∞ is ambient temperature. Finally, the term uRoI
2
o represents

electric heating of the PFC, where Ro is the heater’s effective resistance, Io is the nominal

current flowing through the heater when it is turned on, and u is an adjustable pulse width

modulation (PWM) duty ratio for the heater. This PWM duty ratio is constrained to have

a value between 0 and 1. Note that the above model is used for controlling the setup’s two

sets of electric heaters, keeping in mind that additional heating/cooling functionalities are

provided in an open-loop manner by the setup’s heat exchangers.

Figure (2.9) shows the PI loop used for temperature control in the CO2 removal

chamber. The plant dynamics block in the figure represents Eq. (2.2). The difference,

E(s) between the desired reference temperature, R(s), and actual temperature, T (s), is

passed through a PI controller, kp + kI/s, with a proportional gain kp and integral gain

kI , in order to produce a PWM ratio U ′(s). This PWM ratio is then passed through a

saturation function in order to ensure that the final commanded PWM ratio, U(s), lies

between 0 and 1. If the saturation function is active, meaning that there is a difference

between the signals U ′ and U , then the integral feedback functionality is disabled in or-

der to prevent integrator windup. When the saturation function is inactive, the resulting

closed-loop expression for the PFC temperature, T (s), ensures ideal steady-state target

temperature tracking in the presence of constant ambient and inflow temperature distur-

bances, as expected:

T (s) =
ρQCpTin + hAT∞ + (kps+ kI)RoI

2
oR(s)

s(ρCp(V s+Q) + hA) + (kps+ kI)RoI2o
(2.3)

Temperature control for the CO2 removal chamber was tuned by fitting the open-
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Figure 2.9: Closed-loop temperature control

loop dynamics of Eq. (2.2) to an experimental step response test, then using classical

pole placement to set the gains kp and kI . A similar process was used for tuning the gains

of the final perfusion temperature controller, with one important caveat compared to the

CO2 chamber temperature controller. Specifically, because the final perfusion heater is

mounted directly on a metal pipe carrying PFC, as opposed to being immersed in a canis-

ter containing PFC, it is significantly more vulnerable to overheating. This vulnerability

is particularly noticeable for small or zero PFC flowrates. To address this, the final per-

fusion heater’s controller contains an additional term that brings the corresponding PWM

ratio quickly to zero if the temperature of the final perfusion heater exceeds 55◦C. When

this function is activated, integral control is disabled in order to prevent integrator windup.

2.4.4 Perfusion Flowrate and Pressure Control

The final perfusion controller dictates the flowrate command to the perfusion pump.

The controller allows its user to select between two modes: a manual mode and an au-
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tomatic mode. In both modes, the controller determines a raw flowrate command, Q′(t).

In the manual mode, this flowrate command is equal to kffQdes(t), where Qdes(t) is the

flowrate dictated by the setup’s user through its GUI, and kff is a feedforward calibration

constant determined through setup testing. In the automatic mode, the flowrate command

is related to the user-defined desired flowrate as follows:

Q′(t) = kffQdes(t)

+I(t)kq

∫ t

0

(Qdes(τ)−Qmeas(τ))dτ

+(1− I(t))kc

∫ t

0

(P (τ)− Pset)dτ (2.4)

In the above control law, P (t) denotes peritoneal cavity pressure, and Pset is a

user-defined pertioneal cavity setpoint pressure that should ideally not be exceeded for

prolonged time durations. A dimensionless indicator function, I(t), is defined as being

equal to 1 when P (t) > Pset, and being equal to 0 otherwise. Therefore, when this indi-

cator function equals 1, the implication is that the peritoneal cavity pressure setpoint has

been exceeded. The volumetric flowrate, Q′(t), is governed by three terms: a feedfor-

ward term identical to the one used for manual flow control, plus two integral feedback

terms. The controls gains for these three terms are denoted by kff (dimensionless) for the

feedforward gain, kq (units: s−1) for the integral flowrate correction gain, and kc (units:

m3Pa−1s−2) for the integral pressure correction gain. Only one of the above integral

feedback terms is active at any given time. When peritoneal cavity pressure exceeds the

setpoint pressure, an integral controller with a gain kc is used for bringing cavity pressure
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down to the setpoint. In contrast, when peritoneal cavity pressure is below the setpoint,

an integral controller with a gain kq is used for matching the true perfusion flowrate mea-

sured by the flowrate sensor, Qmeas(t), to the desired flowrate dictated by the user. The

actual flowrate command communicated to the perfusion pump is equal to Q′(t) from the

above equation, with the exception of two extreme conditions:

• First, when the fluid level in the oxygenation tank drops below a certain minimum

level, the perfusion pump controller enters a temporary discrete-event state where

perfusate flowrate is curtailed by 50% while the oxygention tank is replenished.

This prevents the excessive emptying of the oxygenation tank.

• Second, when cavity pressure exceeds a user-defined safety limit Pmax > Pset, the

perfusion pump controller enters a different temporary discrete-event state where

perfusion is completely disabled.

The intent of the above perfusion flowrate control algorithms is to ensure steady-

state tracking of a user-defined desired perfusion flowrate during normal operation. For

safety reasons, this is interrupted when perfusion pressures increase beyond a user-defined

setpoint and/or safety limit, or when the oxygenation chamber becomes excessively empty.

2.5 Laboratory animal experiment’s results

Four animal experiments have been conducted to date, as illustrated in Fig. (2.10).

These experiments employed different functionalities in the above setup. For example,

the first animal experiment did not employ active suction for drainage of PFC from the
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Second Animal Experiment (10/30/2020)First Animal Experiment (07/31/2020)

Figure 2.10: The first and second animal experiment

test animal, whereas the next 3 animal experiments did. Moreover, the first two animal

experiments employed a single-canister accumulator, whereas the third and fourth exper-

iments predominantly employed a dual-canister accumulator. The purpose of this section

is to discuss the efficacy of the setup’s data acquisition and control functionalities, from a

mechatronics perspective. Future work will build on these results, with a deeper focus on

the viability of the setup’s use for supplementing test animal gas exchange. Seven lessons

are visible from experiments performed with the setup to date:

First, the setup is capable of rapidly oxygenating its stored Perfluorodecalin. Figure

(2.11) illustrates this by plotting the open-loop commanded flowrate of oxygen into the

oxygenation chamber (blue) and the resulting measured percentage of dissolved oxygen

in the PFC as a function of time (red), during one of the animal experiments. A rapid

increase in dissolved oxygen percentage is achieved while the PFC is recirculated through
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Figure 2.11: Illustration of setup oxygenation performance

the setup, in preparation for one of the perfusion events.

Second, the setup is capable of monitoring and controlling the temperature at which

CO2 stripping takes place. Figure (2.12) (a) illustrates this, by highlighting the setup’s

CO2 tank reference temperature tracking performance during a portion of the second

animal experiment. Good reference tracking is achieved, with a very small steady-state

error corresponding to slight overheating of the PFC. As expected, once the PFC reaches

this slightly overheated state, the PWM command to the CO2 tank heaters drops mostly

to zero.

Third, the setup is capable of monitoring and controlling the temperature of the

PFC at the final perfusion line. Figure (2.12) (b) illustrates this by plotting perfusion

temperature versus time for a portion of the second animal experiment.

Fourth, the setup is capable of both monitoring and controlling the final perfusion

flowrate, in compliance with user input. Figure (2.13) illustrates this by comparing the

commanded (blue) versus measured (red) PFC flowrate profiles during a portion of the

third animal experiment. The setup was operated in manual flowrate control mode during

this particular experiment, as opposed to automated control mode. Therefore, Fig. (2.13)
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Figure 2.12: CO2 removal tank and perfusing PFC temperatures (second animal experi-
ment)

illustrates successful feedforward control tuning, as opposed to successful steady-state

flowrate command tracking through integral action.
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Figure 2.13: Measured vs. commanded PFC flowrate (third animal experiment)

Fifth, the setup is capable of detecting and avoiding excessive peritoneal intracavity

pressures. Figure (2.14) illustrates this by plotting the setpoint cavity pressure (red) versus

measured cavity pressure (blue) for a portion of the third animal experiment. Excursions

beyond the setpoint pressure are brief. Moreover, they are followed by rapid curtailment
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of fluid flowrate (not shown), leading to rapid curtailment of cavity pressure. Negative

cavity pressures at the end of the plot are indicative of the use of active suction for fluid

retrieval.
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Figure 2.14: The peritoneal cavity pressure measurement vs the pressure setpoint (Data
from the third animal experiment)

Sixth, the setup provides sufficient data for assessing the viability of perfusion for

oxygenating the test animal. Figure (2.15) illustrates this by showing data from one of the

animal oxygenation events. Specifically, the figure plots the animal pulse oximetry (blue)

and PFC flowrate (red) versus time. The initial decline in pulse oximetry corresponds

to a change in ventilator settings inducing hypoxia. Subsequent improvements in pulse

oximetry may be due to a combination of physiological recovery by the animal and/or

PFC perfusion. Analyzing the viability of perfusion for improving pulse oximetry is an

open topic for ongoing research, exploiting this chapter’s setup. However, the figure

clearly shows that the setup is capable of measuring key variables that can be used for

this type of analysis.

Finally, the setup provides sufficient data for assessing the viability of CO2 re-

moval from test animals. Figure (2.16) illustrates this by plotting perfusion flowrate,

inspired CO2 concentration, and end-tidal CO2 concentration for a portion of the second
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Figure 2.15: Perfusate flowrate and pulse oximetry (second animal experiment)

animal experiment. Hypercarbia is induced, in this case, through a reduction in minute

ventilation. Improvements in end-tidal CO2 concentration (ETCO2) may be caused by

physiological recovery mechanisms or perfusion, or a combination of both effects. An-

alyzing these different recovery mechanisms is left open for ongoing research, building

on the setup described in this chapter. Please note that the setup’s capnograph measures

gas concentrations in an endo-tracheal tube, and infers both inspired and end-tidal CO2

concentrations from tracheal measurements. Therefore, changes in inspired gas concen-

tration (FICO2) measurements are likely to reflect gas mixing and re-breathing in the

endo-tracheal tube.

0 100 200 300 400 500 600 700 800 900 1000

Time [Sec]

1

2

3

4

5

6

F
iC

O
2 

an
d

 E
T

C
O

2 
[0

-1
0%

 ~
 0

 -
 7

6 
m

m
H

g
]

0

1

2

3

4

P
F

C
 F

lo
w

 R
at

e 
[L

it
/m

]

FiCO2 and ETCO2 (Capnomac)

ETCO2 %

FiCO2 %

PFC Flow Rate [L/m]

Figure 2.16: Inspired and end-tidal CO2 concentrations and perfusate flowrate (second
animal experiment)
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2.6 Modeling “third lung” CO2 transport dynamics

Animal experiments conducted using the above setup make it possible to build sim-

ple, control-oriented models of “third lung” gas transport dynamics. This section develops

and parameterizes one such model - namely, a model of “third lung” CO2 mass transport.

The intent of the model is to examine the feasibility of using Perfluorodecalin to remove

CO2 from a hypercarbic test animal.

One of the difficulties in developing mathematical models is to decide what struc-

tural features need to be included in a mathematical model to capture certain phenomena.

This is particularly challenging in biological systems where processes occurring on mul-

tiple scales need to be considered simultaneously. For example, gas exchange takes place

between compartments such as the alveoli, vasculature, and tissue, with potentially dif-

ferent time constants associated with different transport phenomena/steps/compartments.

This section present a three-compartment CO2 transport model, including the lung, the

vasculature, and the PFC in the peritoneal cavity during perfusion. The intent of the

model is to capture the rate of change of CO2 partial pressure in each compartment un-

der some simplifying assumptions. The model has two input variables, namely, the lung

minute ventilation rate (i.e., the inhalation rate in liters per minute) and the perfusate PFC

flow rate (also in liters per minute). The model’s output is the predicted end-tidal carbon

dioxide partial pressure, ETCO2 (in mmHg). Figure (2.17) shows the compartments

and their connections. The symbols Vl, Vv, and Vp denote the effective volumes of the

lung, vasculature, and peritoneal compartments, respectively. Moreover, the symbols Pl,

Pv, and Pp denote the partial pressures of CO2 in these three compartments, respectively.
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Figure 2.17: A three-compartment model for representing the CO2 removal dynamics.

The filled volumes of the lung and peritoneal cavity compartments change as a re-

sult of inhalation, exhalation, and perfusion. To account for this, Fig.2.17 uses different

symbols to refer to inhalation rate (u1), exhalation rate (u′1), perfusate inflow into the

animal (u2), and perfusate outflow from the animal (u′2). Neglecting fluid compressibil-

ity, one can therefore write the following differential equations for the real-time filled

volumes of the lung and peritoneal cavity:

dVl
dt

= u1 − u′1 (2.5)

dVp
dt

= u2 − u′2 (2.6)

For simplicity, the remainder of this chapter assumes the dynamics of CO2 trans-

port to be sufficiently slow compared to the dynamics of the filling and emptying of the

lung and peritoneal cavity. This assumption makes it possible to simplify the above equa-
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tions by approximating the cavity filling dynamics as being infinitely fast, and therefore

always at steady state. Doing so is referred to as model residualization (a specific type

of model reduction) in the dynamic systems literature. Such residualization implies that

the filled volumes of the lung and peritoneal cavity, Vl and Vp are approximately constant,

respectively. Moreover, this residualization leads to the conclusions that u1 ≈ u′1 and

u2 ≈ u′2.

One common assumption in multi-compartment dynamic system modeling is that

the concentration (or partial pressure) of the species of interest is spatially uniform within

each compartment. Another common assumption is that advective mass transport from

any compartment to another occurs at the concentration of the source compartment. For

example, the air that enters the lungs has a CO2 concentration identical to ambient air,

whereas the exhaled air has a CO2 concentration identical to the concentration in the lung

compartment. We assume, for simplicity, that carbon dioxide is removed perfectly from

PFC prior to perfusion, and that CO2 concentration in inhaled air and incoming PFC is

therefore equal to zero. Given these assumptions, one can apply the law of conservation

of mass to each of the three compartments to obtain the following state equations:

d

dt

(
Pl
R′T

Vl

)
= u1(0)− u′1

Pl
R′T

+ klv(Pv − Pl)

= −u1
Pl
R′T

+ klv(Pv − Pl)

d

dt
(PvHvVv) = klv(Pl − Pv) + kvp(Pp − Pv) + w

d

dt
(PpHpVp) = kvp(Pv − Pp)− u2PpHp

(2.7)
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In the above state-space model, R′ is the ideal gas constant for CO2, and T is

CO2 gas temperature (assumed constant). Therefore, by the ideal gas law, Pl/R′T is the

density of exhaled CO2. The product of this density withe the lung volume quantifies

the mass of CO2 in the lung compartment. Moreover, the rate of change of this mass is

governed by advection to exhaled breaths and by transport between the lungs and vascula-

ture. This transport is assumed to be a linear function of the difference in partial pressure

between these two compartments, with some proportionality constant klv. Similarly, a

proportionality constant kvp governs the rate of diffusive mass transport between the vas-

culature and the peritoneal cavity. The coefficients Hv and Hp are Henry’s law constants

for the vasculature and peritoneal cavity compartments, respectively, and w is a metabolic

CO2 mass generation rate, assumed to be constant for simplicity.

To fit the above model to animal test data, one must estimate both the constant

parameters in the model as well as the model’s initial conditions. Since this is a three-

compartment model, three initial conditions are required for its three state variables. One

can simplify this estimation exercise by exploiting time scale separation to residualize the

model further. The time constants associated with two of this model’s three compartments

- namely, the lung compartment and peritoneal cavity compartment - are governed at least

partially by the rates at which these compartments are replenished with external fluid,

respectively. For instance, the larger the inhalation/exhalation rate, u1, compared to the

lung volume, Vl, the faster the lung gas dynamics will generally be. With this in mind, this

chapter residualizes the lung and peritoneal cavity gas dynamics, leading to a first-order

gas exchange model. To illustrate this residualization process, consider the dynamics of
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the lung compartment:

d

dt

(
Pl
R′T

Vl

)
= −u1

Pl
R′T

+ klv(Pv − Pl) (2.8)

Approximating these dynamics as being infinitely fast compared to the dynamics

of the vasculature compartment is equivalent to setting the left hand side of hte above

equation to zero, thereby obtaining:

0 ≈ −u1
Pl
R′T

+ klv(Pv − Pl) (2.9)

Solving the above equation provides the following quasi-steady expression for the

partial pressure of CO2 in the lung compartment:

Pl =
klv

klv + u1/R′T
Pv (2.10)

Finally, plugging the above expression into the state equation for the partial pressure of

CO2 in the vasculature compartment leads to the following state equation:

ṖvHvVv = −klv
u1/R

′T

klv + u1/R′T
Pv + kvp(Pp − Pv) + w (2.11)

In the above state equation, the term klv
u1/R′T

klv+u1/R′T
Pv represents diffusion-based

CO2 mass transport from the vasculature compartment to the lung compartment, assum-

ing that the latter compartment’s dynamics are infinitely fast. The mathematical structure

of this term reveals a diminishing gas transport benefit associated with higher and higher

breathing rates. For small values of the inhalation/exhalation rate, u1, CO2 mass trans-
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port increases approximately linearly with u1. However, for values of u1 much larger than

klvR
′T , mass transport is governed predominantly by the constant klv. This observation

makes intuitive sense: it suggests that faster breathing benefits CO2 transport only up to

the point where diffusion-based transport between the vasculature and the lungs becomes

the rate-limiting transport phenomenon.

Applying a similar residualization to the peritoneal cavity’s CO2 dynamics simpli-

fies the above state-space model further, to the point where it is governed by a single state

equation:

ṖvHvVv = −klv
u1/R

′T

klv + u1/R′T
Pv − kvp

u2/R
′T

kvp + u2/R′T
Pv + w (2.12)

The above state equation highlights the desirability of increasing the PFC flowrate,

u2, from the perspective of mass transport. Specifically, the equation predicts that higher

PFC perfusion flowrates will improve mass transport, at least up to a point of diminish-

ing returns where u2 is much larger than kpvR′T . This creates motivation for pushing

PFC perfusion flowrates to high values. Unfortunately, doing so comes with the risk

of elevated peritoneal cavity pressures, and possibly compartment syndrome. Taking

this into account, this chapter makes the conservative assumption that the PFC perfusion

flowrate, u2, is sufficiently small to the point where is may potentially be much smaller

than kvpR′T . This makes it possible to simplify the above state equation as follows:

ṖvHvVv = −klv
u1/R

′T

klv + u1/R′T
Pv −

u2
R′T

Pv + w (2.13)

This concludes the chapter’s effort to model “third lung” CO2 gas transport dynam-
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ics. Specifically, the remainder of this chapter will use the above three-compartment gas

transport model, residualized to a single compartment - namely, the vasculature compart-

ment. Lumping this model’s parameters allows it to be rewritten in terms of the following

state and output equations:

Ṗv = −a1
u1

a2 + u1
Pv − a3u2Pv + a4, (2.14)

Pl =
1

1 + u1/a2
Pv (2.15)

where the output equation provides a quasi-steady expression for ETCO2 in terms of

the partial pressure of CO2 in the vasculature compartment, and the constants in this

final state-space model are given by: a1 = klv
HvVv

, a2 = klvR
′T , a3 = 1/R′THvVv, and

a4 = w
HvVv

.

2.7 Parameterizing “third lung” CO2 dynamics

Given the above residualized three-compartment model, the next goal of this chap-

ter is to identify the parameters of the model from experimental data. Four animal exper-

iments have been conducted to date. A shortage of PFC, combined with a lack of active

suction, caused the first animal experiment to terminate without successful PFC drainage.

Moreover, significant drops in real-time tidal volume during perfusion resulted in failure

to realize the gas transport benefits of PFC perfusion during the third and fourth animal

experiments. These drops in real-time tidal volume appear to have been caused by a leak-
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age in the mechanical ventilator utilized for inducing hypoxia and hypercarbia, discovered

after the fourth animal experiment. Given this mixed history of animal tests, the current

model parameterization exercise focuses on the second animal experiment, where signifi-

cant gas transport benefits were successfully realized through peritoneal PFC circulation.

Two hypercabia episiodes were induced during the second animal experiment through the

deliberate manipulation of real-time tidal volume. The first hypercarbia episode was in-

duced without PFC perfusion, whereas the second hypercabia episode was induced with

PFC perfusion. Together, data sets gathered during both hypercarbia episodes were used

for identifying the parameters of the above state-space model. Specifically, optimization

was used for estimating the values of the parameters a1.2.3.4, plus the initial partial pres-

sure of CO2 in the vasculature compartment at the beginning of each hypercabia episode.

Figures (2.18) and (2.19) show the results of the above parameterization exercise.

The top plot in each figure is the animal’s real-time minute ventilation (i.e., inhala-

tion/exhalation) rate. The middle plot in each figure is the volumetric flowrate at which

PFC is supplied to the animal. Figure (2.18) corresponds to a hypercarbia attempt with

no perfusion, whereas Fig. (2.19) corresponds to a perfusion attempt. The bottom plot

in each figure compares the measured animal ETCO2 to the predictions of the proposed

model. The model’s parameters are obtained by solving a single optimization problem

covering both hypercarbia episodes simultaneously. This probelm can be written as fol-
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lows:

min
a1,..,4,P̂v(T1),P̂v(T2)

∑
k

[ym(tk)− ŷ(tk)]
2

s.to :
˙̂
Pv = −a1

u1
a2 + u1

P̂v − a3u2P̂v + a4

ŷ(t) =
1

1 + u1(t)/a2
P̂v(t)

(2.16)

In the above problem statement, the goal is to minimize the sum of the squared

ETCO2 prediction errors over all moments in time, for both of the above hypercarbia

episodes. The index k refers to different moments in time when ETCO2 is sampled ex-

perimentally, and the ranges of values of k are selected to correspond to the two hy-

percarbia episodes. Optimization proceeds with respect to the initial conditions for the

partial pressure of CO2 in the vasculature compartment, as well as the parameters a1.2.3.4.

The proposed gas exchange model is applied as a dynamic constraint on the optimization

problem, Because of the diminishing impact of inhalation rate on gas exchange, as well

as the bilinearity of the gas transport dynamics (i.e., the fact that gas transport depends

on the products of volumetric flowrates and partial pressures), this is a nonlinear, non-

convex optimal estimation problem. A particle swarm algorithm is used for solving this

non-convex problem, leading to the curve fits in Figures (2.18,2.19).

The curve fits in Figures (2.18,2.19) correspond to the following parameter values:

a1 = 5.6 × 10−3, a2 = 7.89, a3 = 1.55 × 10−4, and a4 = 3.1 × 10−2. Moreover, the

optimal initial partial pressures of CO2 in the vasculature compartment, corresponding

to these curve fits, are 48.9 and 48.7 mmHg for the episodes without and with perfusion,
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Figure 2.18: Estimated vs. measured ETCO2 without perfusion.

respectively. Perhaps the most important of the above parameter/state estimates, for the

purposes of this chapter, is the estimate of a3. This estimate suggests that for each addi-

tional liter per minute of PFC perfuste flow, the test animal is able to reduce its vasculature

compartment’s partial pressure of CO2 by 1.55×10−4 mmHg per second for each mmHg

of this partial pressure. For example, if the partial pressure ofCO2 in the vasculature com-

partment is 45 mmHg, and if PFC is perfused through the animal at 3 liters per minute,

then perfusion will reduce this partial pressure by 3 × 45 × 1.55 × 10−4 × 60 ≈ 1.26

mmHg per minute. Comparing this number to 60a4 = 60 × 3.1 × 10−2 ≈ 1.86 mmHg
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Figure 2.19: Estimated vs. measured ETCO2 with perfusion

per minute suggests that PFC perfusion, alone, at a volumetric flow rate of 3 liters per

minute, is capable of removing approximately 68% of all the CO2 generated by the test

animal during perfusion, assuming a CO2 partial pressure of 45mmHg in the vasculature

compartment.

The above result, while quite encouraging, must be taken with a grain of salt. Un-

certainty quantification tools such as Fisher information analysis can help provide confi-

dence bounds on this result, as discussed in the next section of this chapter.
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Figure 2.20: Histogram of ETCO2 residuals

2.8 Identifiability analysis for “third lung” CO2 dynamics

Figure (2.20) shows a histogram of the ETCO2 prediction errors - or residuals - for

the two hypercarbia episodes examined in this chapter. Moreover, Fig. (2.21) shows the

autocorrelations of these residuals. Both figures are generated for a sampling time step of

10 seconds, corresponding to the communication time step of the capnograph used in third

lung animal experiments. Together, these two figures suggest that the ETCO2 prediction

residuals may not be independent, identically distributed, and Gaussian. One possible

explanation for this observation may be that the ETCO2 measurement noise is, itself, not

independent, identically distributed, and Gaussian. Another possible explanation may be

that the simple model used in this chapter for predicting ETCO2 does not necessarily

capture the full dynamics of test animal gas transport. In addition to these observations, it
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Figure 2.21: Auto-correlation of ETCO2

is important to note that the nonlinearity of the assumed ETCO2 gas transport dynamics

in terms of the underlying estimation parameters implies that Fisher information analysis

will furnish a local - as opposed to global - quantification of parameter identifiability. Al-

together, these observations suggest that the use of Fisher information analysis for ETCO2

model parameter identifiability analysis in this chapter will furnish an imperfect estimate

of model parameter identifiability.

With the above important caveats in mind, the proposed gas transport dynamics

model was simulated for perturbed values of all six unknown model parameters and initial

conditions. The magnitude of the perturbation was set to 0.1% of the nominal value

of each parameter, leading to a numerical computation of Fisher information. Based

on this numerical computation, the ±3σ Cramér-Rao estimation bounds on the model’s
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parameters were found to be as follows: a1 = 5.6×10−3±6.15×10−4, a2 = 7.89±0.78,

a3 = 1.55× 10−4 ± 1.28× 10−5, and a4 = 3.1× 10−2 ± 1.3× 10−3.

The above estimation error bounds are encouraging, in the sense that they suggest

that the peritoneal perfusion of oxygenated PFC is indeed potentially effective as a mech-

anism for CO2 clearance. In particular, the fact that the ±3σ bounds on the parameter a3

are both positive suggests that such perfusion is successful in CO2 clearance, even when

modeling and measurement errors are accounted for through uncertainty quantification.

This type of uncertainty quantification motivates subsequent work in this dissertation on

the Fisher identifiability of multi-compartment dynamic system models. Of particular

importance to this dissertation is the question of how the shaping of a given dynamic

system’s input trajectory affects its underlying parameter identifiability.

2.9 Conclusions

This chapter presents the development, design, and implementation of a peritoneal

perfusion setup for studies on animal oxygenation using perfluorocarbon. The chapter

also examines the modeling, parameterization, and identifiability analysis for the under-

lying CO2 gas transport. The outcomes of this chapter are twofold. First, the research de-

scribed in this chapter is successful in furnishing a mechatronic setup with the monitoring,

data acquisition, and control capabilities needed for extra-pulmonary animal gas transport

experiments. Second, analyzing the results of one of the experiments furnishes valuable

insights into a primary function of the setup, namely, CO2 removal. Four animal experi-

ments have been conducted to date using this setup. These animal experiments highlight
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the setup’s functionalities from an engineering perspective. These functionalities include

the ability to monitor and control perfusate flowrate, pressure, and temperature. More

importantly, the setup is also capable of simultaneously tracking both physical perfusion

variables and physiological animal responses. Based on the results of this study, CO2

concentration is indeed diminishing as a result of peritoneal PFC perfusion in a hypercar-

bic test animal. Moreover, the uncertainty quantification of the estimated parameters in

this chapter illustrates the accuracy with which the parameters are identified. It is impor-

tant to mention that diminishing the partial pressure of CO2 in the vasculature (PCO2)

during peritoneal cavity PFC perfusion for a hypercarbic animal is indeed the goal of the

third lung setup, and the residualized model presented in this chapter is actually modeling

this dynamic. However, we need to implement a novel sensor for gathering more data

to fit the model for PCO2. There is an ongoing research on designing such a sensor to

implement for the next animal experiments within the third lung team to make it possi-

ble to actually model for the PCO2. The question of what factors affect the efficacy of

peritoneal PFC perfusion as a gas exchange mechanism remain open for ongoing/future

research. Moreover, the related question of the minimum viable level of setup complexity

and sophistication for gas exchange also remains open for ongoing/future research. The

design of the setup in this study focuses predominantly on achieving a level of sophisti-

cation in data acquisition and control that is conducive to scientific exploration, with the

recognition that practical clinical implementation may benefit from potential setup sim-

plifications. Perhaps most importantly, the work in this chapter highlights the value of

uncertainty quantification tools such as Fisher information analysis in assessing the out-

comes of multi-compartment model parameterization experiments. Subsequent chapters
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in this dissertation focus on the follow-on fundamental question of how input shaping

affects multi-compartment model parameter identifiability.
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Chapter 3: Combined State and Parameter Identifiability for a Model of

Drug-Resistant Cancer Dynamics

3.1 Overview

This chapter analyzes the combined parameter and state identifiability for a model

of a cancerous tumor’s growth dynamics. The model describes the impact of drug ad-

ministration on the growth of two populations of cancer cells: a drug-sensitive population

and a drug-resistant population. The model’s dynamic behavior depends on the under-

lying values of its state variables and parameters, including the initial sizes and growth

rates of the drug-sensitive and drug-resistant populations, respectively. The chapter’s pri-

mary goal is to use Fisher identifiability analysis to derive and analyze the Cramér-Rao

theoretical bounds on the best-achievable accuracy with which this estimation can be per-

formed locally. This analysis highlights two key scenarios where estimation accuracy is

particularly poor. First, a critical drug administration rate exists where the model’s state

observability is lost, thereby making the independent estimation of the drug-sensitive and

drug-resistant population sizes impossible. Second, a different critical drug administra-

tion rate exists that brings the overall growth rate of the drug-sensitive population to zero,
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thereby worsening model parameter identifiability1.

The cancerous tumor dynamics model presented in this chapter is largely based on

earlier modeling efforts in the literature, and parameterized based on those efforts. This

places some limitations on the work included in this chapter. For instance, this work is

not fully validated against experimental tumor growth data sets, from either petri dish or

animal experiments. As a result, legitimate questions remain open regarding the validity

of the tumor model’s parameters, particularly the parameters associated with cancerous

tumor growth rates. The intent of the chapter is not to assert the correctness of the un-

derlying tumor dynamics model for any particular type of cancer, or to develop directly

translatable treatment protocols. Rather, the intent is to explore the fundamental question

of how the combined state/parameter identifiability of a multi-compartment cell popula-

tion dynamics model is potentially influenced by input shaping. From a broad, fundamen-

tal perspective, the chapter highlights the degree to which poor input shaping can result

in poor identifiability, thereby motivating the use of optimal input shaping in subsequent

chapters to improve identifiability.

3.2 Introduction

This chapter examines the Fisher identifiability of drug resistance dynamics in

cancerous tumors. The chapter models a tumor as a dynamic system. From a control-

theoretic perspective, the “input” to this system is the rate at which the tumor is treated

1The work presented in this chapter already appears in publication. Specifically, a preliminary version
of this work appears in the peer-reviewed Proceedings of the European Control Conference, focusing solely
on initial population observability. Moreover, a complete version of the work appears in the ASME Journal
of Dynamic Systems, Measurement, and Control, focusing on combined state/parameter identifiability.
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versus time. One example is the rate of drug administration versus time during chemother-

apy. The “output” of the system is any measurement used for monitoring the cancer. One

example is total tumor size measurement versus time. The chapter focuses on the case

where part of the tumor’s cell population is sensitive to chemotherapy, and part of the

population is resistant to chemotherapy.

Identifiability is an established concept from the fields of system dynamics and

information theory [1, 2]. It refers to the degree to which one can estimate a model’s

internal variables from input-output data. One can classify these variables into constant

parameters (e.g., cell mutation rates) versus time-varying state variables (e.g., sizes of

the drug-sensitive and drug-resistant cell populations). The terms “parameter identifia-

bility” and “state observability” refer, respectively, to one’s ability to estimate these two

types of internal variables from input-output data. This chapter focuses on combined

state/parameter identifiability. This is a broader concept that refers to one’s ability to

estimate a given model’s state variables and parameters simultaneously. One possible

approach for estimating a model’s state variables and parameters simultaneously is to

treat the parameters and initial states of the model, collectively, as a vector of unknown

quantities to be estimated concurrently.

Analyzing combined state/parameter identifiability for a partially drug-resistant

cancerous tumor model is, in essence, an exercise in uncertainty quantification. The im-

portance of this exercise stems partly from its potential to serve as a starting point for

uncertainty propagation. For example, knowing the uncertainties in one’s estimates of a

model’s internal variables, one can ask: how do these errors propagate to induce further

errors in the model’s future predictions? Furthermore, how do these prediction errors
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affect the accuracy with which one can optimize future treatment protocols? Of particu-

lar importance, here, is the choice between aggressive chemotherapy protocols that seek

tumor remission versus more benign protocols that favor containment. Aggressive can-

cer treatment is a standard approach where the goal is to eliminate drug-sensitive cells

as quickly as possible, partly in order to lessen the likelihood of the emergence of drug

resistance. Such a treatment strategy inherently neglects the potential importance of nat-

ural competition between the drug-sensitive and drug-resistant cell populations (for nu-

trients, etc.) as a means for decelerating the growth of the latter population. Containment

strategies, in contrast, typically use less aggressive drug administration rates in order to

maintain a clinically acceptable target overall tumor size. By doing so, they encourage

the competitive suppression of drug resistance, which can potentially be beneficial for the

patient in the long run.

Previous work by Hansen et al. shows that the relative merit of aggressive cancer

treatment versus containment strategies depends on the relative sizes of the drug-sensitive

and drug-resistant cancer cell populations [75]. Specifically, they show that there exists

a threshold level of drug resistance, above which containment is optimal. [75] Making an

informed cancer treatment decision, therefore, ideally involves the measurement of these

two population sizes. Unfortunately, it is difficult to measure the size of the population

of drug-resistant cells in a cancer tumor, at least early on during treatment, when this

population is very small. This raises the following two questions. First, can the resis-

tant population size be estimated from measurements of overall population size? Second,

how accurately can one estimate primary drug resistance (i.e., the initial population of

drug-resistant cells, prior to the beginning of treatment) from total population measure-
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ments during the cancer treatment phase? The theoretical accuracy with which these

models, combined with measurements, can estimate the prevalence of drug resistance re-

mains relatively unexplored. The fields of estimation theory and systems biology provide

fundamental tools for assessing the accuracy of an estimator, one example being Fisher

identifiability analysis. The goal of this chapter is to use these tools to answer the above

questions.

There is a rich existing literature on the identifiability of biological system models,

much of it tracing back to Bellman and Åström’s seminal work in 1970 [24]. As shown by

Jacquez et al., identifiability analysis makes it possible to both estimate the uncertainty in

a given model’s parameters and optimally design subsequent parameter estimation exper-

iments [76]. The focus in this chapter is on the identifiability of drug resistance dynamics

in cancerous tumors. The research in this chapter is motivated by the fact that drug resis-

tance is responsible for a significant portion of chemotherapeutic treatment failures. Drug

resistance occurs because of various factors including changes in drug metabolism, mu-

tations, genetic rewiring, and tumor heterogeneity [9, 77, 78]. Regardless of the specific

cause of drug resistance, the main outcome is that a portion of the cancerous cell popu-

lation continues to suffer from defective apoptosis (i.e., controlled cell death) even in the

presence of a given drug. Therefore, understanding and predicting the behavior of drug re-

sistant cells is essential for determining an optimal chemotherapeutic treatment schedule.

Drug resistance dynamics have been studied from both the mathematical and experimen-

tal perspectives [79, 80, 81, 82]. Numerous mathematical models of cancer growth have

also been formulated [83, 84, 85, 86, 87, 88, 89, 90, 91, 92]. Among these models, the

Gompertz model has been widely used in optimizing treatment protocols [93, 94, 95, 96].
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This model considers the slowdown in tumor growth as a function of increasing tumor

size.

Identifiability is a challenge in cancer treatment because not all of the internal vari-

ables affecting a given tumor’s dynamics can be measured directly [92]. For instance,

the sizes, growth rates, and mutation rates of various cancer cell populations are often

not measured directly. This raises the question of whether one can estimate such quan-

tities from other measurements, such as measurements of total tumor size versus time.

Multiple studies in the literature are relevant in addressing this question. For instance,

Lebedeva et al. use a global sensitivity method to analyze uncertainties in the parameters

of biochemical networks involved in cancerous tumors [97]. Raue et al. discuss meth-

ods for improving identifiability in biological applications. They show that parameter

estimation accuracy is related to both the model structure and the information provided

by experimental data [98]. Eisenberg et al. examine the identifiability and estimability

of compartmental cancer models [99]. Wu et al. investigate the algebraic identifiability

of a third-order HIV/AIDS dynamics model with six unknown parameters. They also

study the effect of initial values of state variables on the identifiability of this model’s

unknown parameters [100]. Xia et al. study the identifiability of nonlinear HIV system

models [101]. Finally, work by the author examines the observability of drug resistance

dynamics in cancerous tumors [102]. To the best of the author’s knowledge, this chapter

is the first work examining combined state/parameter identifiability for drug resistance

dynamics in cancers. The chapter highlights two specific scenarios with particularly poor

identifiability. In the first scenario, the rate of drug administration causes the net popu-

lation growth rates of the drug-sensitive and drug-resistant cell populations to be almost
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equal. In this scenario, state observability – and therefore, combined state/parameter iden-

tifiability – is lost. In the second scenario, drug administration causes the net growth rate

of the drug-sensitive cell population to diminish to zero. This treatment protocol causes

parameter identifiability - and, therefore, combined state/parameter identifiability - to be

particularly poor. An important insight from the chapter is that a treatment protocol that

attempts to maintain a constant drug-sensitive cell population size can worsen identifia-

bility substantially. The remainder of this chapter is organized as follows. Section 3.2

presents the nonlinear cancer dynamics model used in this work. The chapter then pro-

ceeds to three different identifiability analysis studies:

• First, Section 3.3 analyzes combined state/parameter identifiability for the nonlin-

ear tumor model. This analysis shows that combined state/parameter identifiability

is particularly poor when the rate of mutation of drug-sensitive cells is unknown.

Even when this mutation rate is assumed to be known a priori, two situations arise

where identifiability is poor, corresponding to two different drug administration

rates.

• Second, Sections 3.4 and 3.5 provide an explanation for one of the two poor identi-

fiability scenarios. In particular, Section 3.4 shows that the drug administration rate

in this scenario corresponds to the loss of state observability for a linearized model

of the tumor dynamics. Moreover, Section 3.5 shows that this loss of observability

persists in the nonlinear tumor dynamics model.

• Third, Section 3.6 uses both the linearized and nonlinear models of tumor dynamics

to show that the second poor identifiability scenario corresponds to a drug admin-
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istration rate that maintains a constant sensitive cell population size.

The intent of Sections 3.4-3.6 is to obtain insights into the factors contributing to

poor combined state/parameter identifiability for the full nonlinear model of tumor dy-

namics. Simplifying (i.e., linearizing) the model aids in obtaining these insights, with the

goal of shedding light on the more complex, nonlinear model. The main outcomes of

the work are: (i) the fact that it pinpoints two scenarios where combined state/parameter

identifiability is poor, and (ii) the fact that it provides intuitive insights, supported by

simpler models/studies, for this poor identifiability. Section 3.7 concludes the chapter by

summarizing these insights.

3.3 Nonlinear model of tumor dynamics

Consider a two-compartment representation of tumor dynamics, where cancer cells

are either drug-sensitive or drug-resistant. Let the sizes of these two populations be S(t)

and R(t), respectively. Suppose that the sum of these two population sizes, P (t), is a

measurable output variable. Moreover, let the dynamics of these populations be governed

by the following differential equations [102]:

Ṡ = [(1− ε)rs − µs] (1− P

Pc
)S − αDS

Ṙ = (rr − µr)(1−
P

Pc
)R + εrs(1−

P

Pc
)S

P = S +R (3.1)
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The above model expresses the net rates of change of the two cancer cell population

sizes in terms of the current population sizes. The external input to the model, D(t), is

a drug administration rate. This drug administration rate has a direct impact only on the

sensitive cell population. The constant multiplier α scales this drug administration rate to

furnish an effective drug-induced sensitive cell death rate. In the absence of drug admin-

istration, the sensitive and resistant cell populations birth rates are rs and rr, respectively.

Moreover, these populations’ death rates are µs and µr, respectively. The rate at which

sensitive cells mutate to become drug-resistant equals εrs, where ε is a small mutation

fraction. Finally, all of these rates are multiplied by a logistic term, 1 − P/Pc, where Pc

is the carrying capacity of the cancerous tumor. Mathematically, this logistic term makes

the cancer dynamics nonlinear. Intuitively, the logistic effect represents a slowdown in

tumor growth as the tumor becomes larger, perhaps caused by competition for resources

among the sensitive and resistant cells. The presence of the logistic term couples the dy-

namics of the drug-sensitive and drug-resistant cells in a manner that motivates research

on containment protocols. Specifically, the idea behind containment strategies is to main-

tain a nonzero target total tumor size that slows down the growth of the drug-resistant

cell population through competition for resources, represented in this model via the lo-

gistic effect. The initial drug-sensitive cell population is taken to be S(0) = 108 cells,

which is 10 times smaller than the clinically detectable population size [103]. The initial

drug-resistant cell population is assumed to be a very small fraction of the whole tumor

size. We consider it to be only 220 cells initially. Once a tumor is clinically detected,

we assume that its size can be measured with a measurement error standard deviation of

σ = 106 cells, which corresponds roughly to one milligram of tumor mass. We set the
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sampling time for the measurements to δt = 1 week. Similar to the authors’ previous

work [102], parameter values for the above model are listed in Table (3.1).

Table 3.1: List of parameters
Parameter Value [Week−1] Parameter Value [Unit]

rs 0.0256 ε 10−7 -

µs 0.0026 σ 106 [Cell]

rr 0.0026 α 1 [Cell/D]

µr 0.00026 δ(t) 1 [Week]

Table 3.2: List of cell Populations for 10 weeks with minimum (D = 0) and maximum
(D = 1) drug administration rates.

D Cell Populations Pc = 1010 Pc = 1012

S(0) 108 108

D = 0 R(0) 220 220

S(10 Weeks) 1.225×108 1.259×108

R(10 Weeks) 228 228

S(0) 108 108

D = 1 R(0) 220 220

S(10 Weeks) 5713 5714

R(10 Weeks) 225 225

Fig. (3.1) shows the evolution of the drug-sensitive and drug-resistant cell popula-

tions over a 10-week period, for both a no-treatment scenario (D = 0) and an aggressive

treatment scenario (D = 1). The choice of a 10-week simulation duration, when com-

pared to the rate at which the tumor cell population evolves, reflects a desire to analyze

the degree to which the tumor dynamics can be identified early in the evolution of the

tumor, thereby guiding subsequent treatment decisions. The plots in Fig. (3.1) are gener-

ated for two different carrying capacities, namely, Pc = 1010 cells and Pc = 1012 cells. In
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Figure 3.1: Drug-sensitive and drug-resistant cell populations for two different carrying
capacities and drug administrations rates.

both scenarios, total tumor size remains well below the corresponding carrying capacity

over the examined 10-week duration: a fact that has two main consequences. First, as

evident from the figure, drug-resistant population growth is governed predominantly by

mutation as opposed to competition during this 10-week period. In other words, the larger

the drug-sensitive cell population, the more the drug-resistant cell population grows dur-

ing this period. Second, one can see from the figure that there is very little difference

between the two carrying capacities in terms of the resulting evolution of the two cell

populations. We compare these two carrying capacities not because of fundamental dif-

ferences in overall population growth during this 10-week duration, but rather because

of non-trivial differences in identifiability outcomes, as will be seen later in this chapter.

The impact of drug administration on sensitive cell population is visible from these plots,
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as well as from the corresponding final population size list in Table (3.2). In this work,

only the sum of these two populations is assumed to be directly measurable, as opposed

to the individual population sizes.

The overarching goal of this chapter is to analyze the identifiability of the time-

varying state variables and constant parameters in the above model. Identifiability analy-

sis is, in essence, a two-step process. The first step is to analyze structural identifiability

by determining whether the state/parameter estimation problem is solvable. The second

step is to analyze numerical identifiability (often referred to as “practical identifiability”

in the literature) by determining the accuracy with which this estimation problem can be

solved. Structural identifiability is lost when the impacts of two different internal vari-

ables on a dynamic model are indistinguishable from one another. In the above model,

for example, equal changes in the growth and death rates of the drug-resistant cells, rr

and µr, will not affect overall tumor dynamics. Therefore, treating these two parame-

ters as independent jeopardizes structural identifiability. To avoid this issue, we create

three aggregate model parameters, namely, λ1, λ2, and εrs, with the first two aggregate

parameters defined as shown below,

λ1 = (1− ε)rs − µs − αD,

λ2 = rr − µr, (3.2)

where λ1 and λ2 are the net growth rate of drug-sensitive and drug-resistant cell popu-

lation, respectively, and εrs represents the mutation effect. In performing this parameter
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aggregation, we focus on the special case where the drug administration rate, D(t), is

equal to some fixed constant D, as opposed to the more general case where it varies with

time. Rewriting this model in terms of λ1 and λ2 furnishes the following equations:

Ṡ = λ1S − (
1

Pc
)(λ1 + αD)S2 − (

1

Pc
)(λ1 + αD)RS

Ṙ = λ2R + (εrs)S − (
1

Pc
)(λ2 + εrs)RS

−(
λ2
Pc

)R2 − (
εrs
Pc

)S2

P = S +R (3.3)

Redefining the model’s parameters as shown above eliminates redundancies among

these parameters, thereby addressing the structural identifiability issue. This paves the

way towards numerical identifiability assessment, which we perform using Fisher infor-

mation analysis. Fisher information analysis is model-agnostic. However, its outcomes

are model-dependent. Therefore, the conclusions of this chapter are closely tied to the

above tumor dynamics model.

3.4 Combined State and parameter identifiability for the Nonlinear Model

This section presents a numerical study of combined state and parameter identifia-

bility for the nonlinear tumor model. The study assumes that the effective rate of drug-

induced sensitive cell death, αD, is a known constant. Moreover, the study assumes that

the remaining three parameters (namely, λ1, λ2 and εrs) and initial conditions (namely,
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S(0) and R(0)) of the tumor dynamics model are unknown. Fisher information analysis

provides a convenient method for analyzing the combined identifiability of these parame-

ters and state variables. To perform Fisher information analysis, we begin by defining an

output variable, Y (t, θ), equal to the true total tumor size, i.e., P , at time t, for a given set

of values of a combined unknown initial state and parameter vector, θ. Measurements of

this output variable are noisy, but the symbol Y (t, θ) refers to the true output, uncorrupted

by noise. The vector θ is, in turn, defined as follows:

θ =



S(0)

R(0)

λ1

λ2

εrs


(3.4)

Suppose that the above output Y (t, θ), is measured at moments in time separated

by a sampling time δt = 1 week. Moreover, suppose that the measured output at every

sampling instant is equal to the true output plus an independent, identically distributed

measurement noise signal with a zero mean and some variance σ2. In the following

analysis, we assume this noise signal to be Gaussian, but Fisher information analysis can

be generalized to other noise distributions. Given these assumptions and definitions, let

ei represent the ith Euclidean vector in the 5-dimensional combined space of unknown

parameters and initial values. For instance, let e1 = [1, 0, 0, 0, 0]T , e2 = [0, 1, 0, 0, 0]T ,

and so on. Moreover, let Y (kδt, θ) represent the true value of the output, Y , at time

t = kδt, for a given set of unknowns, θ. Then the sensitivity function si(kδt), can be
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defined as follows:

si(kδt) = lim
δθi→0

Y (kδt, θ + eiδθi)− Y (kδt, θ)

δθi
, (3.5)

where δθi represents an infinitesimal change in the ith unknown parameter. Given the

above sensitivity function, one can construct the following sensitivity matrix:

S =



s1(δt) s2(δt) s3(δt) s4(δt) s5(δt)

s1(2δt) s2(2δt) s3(2δt) s4(2δt) s5(2δt)

...
...

...
...

...

s1(Nδt) s2(Nδt) s3(Nδt) s4(Nδt) s5(Nδt)


(3.6)

where N is the total number of samples over which identifiability analysis is performed.

In this study, we choose N = 10, the goal being to assess the accuracy with which one

can estimate the vector θ after 10 weeks of treatment, recognizing that the total duration

of cancer treatment may potentially be longer, especially for containment protocols.

The Fisher information matrix can be constructed from the above sensitivity matrix

as follows:

F =
1

σ2
STS (3.7)

The above computation furnishes a 5x5 matrix. The inverse of this matrix, if it exists, fur-

nishes a local estimate of the Cramér-Rao Lower Bound (CRLB) on the best estimation

covariance achievable by any unbiased estimator of the vector θ. The condition number of

the Fisher information matrix therefore serves as a combined state/parameter identifiabil-
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ity metric, with poor (i.e., low) condition numbers indicating poor identifiability, and vice

versa. Moreover, the diagonal elements of the inverse of the Fisher information matrix

provide the best-achievable estimation variance for each element of the vector θ. Divid-

ing each parameter’s variance by the nominal value of the parameter squared provides

a normalized estimation variance, useful for comparing the accuracy levels with which

different parameters can be estimated.

Table (3.3) shows the condition numbers for the above 5x5 Fisher information ma-

trix, for different values of the drug administration rate,D, assuming α = 1 and Pc = 1012

cells. These condition numbers are computed through numerical simulation, given the

nonlinearity of the underlying dynamics. One important conclusion from this table is that

combined state/parameter identifiability is very poor across the board, for a broad range

of drug administration rates, at least for the tumor carrying capacity under consideration.

A poorly conditioned Fisher information matrix indicates that parameter estimation errors

are expected to be excessively large, and in fact difficult to evaluate (given the difficult

of numerically inverting poorly conditioned matrices). One rule of thumb in identifiabil-

ity analysis is that attempting to estimate more unknowns leads to poorer identifiability,

and vice versa. When the parameter εrs is excluded from the above Fisher analysis, for

instance, the condition number of the (now 4x4) Fisher information matrix improves con-

siderably. This occurs across the board, for a broad range of drug administration rates.

This leads to the insight that the parameter εrs is particularly difficult to estimate accu-

rately from 10 weeks of tumor size measurements, regardless of the drug administration

rate. Intuitively, the impact of the mutation process on overall tumor size is quite small

over a 10-week duration, resulting in the above difficulty in estimating εrs. Given this
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insight, the remainder of this chapter eliminates εrs from Fisher analysis, focusing on the

remaining 4 parameters and initial conditions. The underlying question is to what extent

can the remaining parameters be estimated if εrs is assumed to be known a priori.

Table 3.3: Comparing the reciprocal condition number for different drug administration
rates.

D 0.085 0.1 0.5 1

5× 5 FIM (εrs included) 2.01× 10−32 1.08× 10−31 6.4× 10−26 6.3× 10−24

4× 4 FIM (εrs excluded) 1.7× 10−21 1.03× 10−21 2.4× 10−17 4.3× 10−17

Even when εrs is eliminated from the combined state/parameter estimation prob-

lem, identifiability remains a challenge for the tumor model examined in this research,

at least for the two tumor carrying capacities of 1012 cells and 1010 cells. Fig. (3.2)

and Fig. (3.3) illustrate this by presenting the normalized estimation variances for the

remaining four elements of θ versus different drug administration rates, for two differ-

ent carrying capacities. From these two figures it is evident that carrying capacity does

not affect the specific drug administration rates corresponding to the worst-case identi-

fiability scenarios. The determinant of the corresponding 4x4 Fisher information matrix

is plotted versus the drug administration rate in Fig. (3.4). Two particular drug admin-

istration rates appear to result in poor combined state/parameter identifiabiliy, namely,

D = 0.02 and D = 0.023. These administration rates correspond to α = 1, and can

therefore be construed as drug-induced sensitive cell death rates. For example, the sce-

nario where D = 0.02 corresponds to a drug-induced sensitive cell death rate of 2% cell

deaths per week. In both scenarios, identifiability is sufficiently poor to the point that
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Figure 3.2: Combined states and parameters identifiability for two parameters and two
initial states together when Pc = 1012.

the Fisher information matrix cannot be inverted numerically, hence the corresponding

“gaps” in Fig. (3.2), Fig. (3.3) and Fig. (3.4). The goal of the remainder of this chapter

is to obtain insights into the above two poor identifiability scenarios. These insights are

obtained by analyzing state observability alone (assuming the tumor model’s parameters

are known) then analyzing parameter identifiability alone (assuming the tumor model’s

state variables are directly measurable). We perform these two analyses first using a lin-

earized tumor dynamics model that neglects the logistic effect, then using the nonlinear

tumor dynamics model. The intent is to gain insights through the linearized model, then
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Figure 3.3: Combined states and parameters identifiability for two parameters and two
initial states together when Pc = 1010.

examine the degree to which these insights continue to hold in the nonlinear case.

3.5 State observability for linear tumor dynamics

A dynamic system model is observable if one can estimate its time-varying internal

state variables, assuming that the model (including its parameters) is known and that both

its inputs and outputs are measured versus time. In this case, the model’s state variables

are S(t) and R(t), its input is the drug administration rate D(t), and its output is total

population size P (t). The tumor dynamics model is observable if and only if the initial
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sizes of sensitive and resistant cells, S(0) andR(0), can be estimated. Knowledge of these

initial conditions plus the drug administration history, D(t) makes it possible to estimate

S(t) and R(t) at other instants in time. This section analyzes the observability of a lin-

earized version of the tumor dynamics model. In doing so, the section summarizes earlier

findings by the authors [102] and provides simple, closed-form analytic expressions that

shed light on the chapter’s broader combined state/parameter identifiability analysis.

Consider the two-compartment model in Eq. (3.3). This is a nonlinear dynamic

model that can be simplified if one assumes the carrying capacity Pc to be much larger

than the total cancer cell population size P . In this case, the logistic effect becomes

negligible. Furthermore, the model becomes bilinear, in the sense that all the terms in

its underlying differential equations become linear except for the product term S(t)D(t).

Under the additional simplifying assumption of a constant drug administration rate, D,
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the model becomes linear and can be rewritten as follows:

ẋ1 = ((1− ε)rs − µs − αD)x1,

ẋ2 = εrsx1 + (rr − µr)x2,

y(t) = x1(t) + x2(t) (3.8)

where the state variables x1(t) and x2(t) denote the drug-sensitive and drug-resistant pop-

ulation sizes, respectively, and the output y(t) denotes the total population size.

The dynamics of the above model can be expressed in terms of the redefined model

parameters as follows:

ẋ1 = λ1x1

ẋ2 = εrsx1 + λ2x2

y = x1 + x2 (3.9)

The model’s system matrix, or A matrix, is then given by:

A =

 λ1 0

εrs λ2

 (3.10)

The above model is a lower-triangular representation of the dynamics of an au-
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tonomous system. The term “autonomous”, here, refers to the absence of a time-varying

input signal. Because the drug administration rate, D, is treated as constant, its impact

on the overall system dynamics is absorbed into the above A matrix. The roles of the

system’s three redefined parameters are now clear: λ1 and λ2 serve as eigenvalues af-

fecting the system’s dynamics, and εrs governs the mutation of drug-sensitive cells into

drug-resistant cells.

To analyze the above model’s observability, we determine the output matrix C and

observability test matrix Q as follows:

C =
[

1 1
]

(3.11)

Q =

[
C
CA

]
=

 1 1

λ1 + εrs λ2

 (3.12)

In order for the above model to be observable, the rank of the matrix Q, must

equal 2, the number of state variables. This leads to the following condition for loss of

observability:

λ1 + εrs = λ2 ⇒ Loss of Observability

⇒ αD = rs − µs − rr + µr (3.13)

When the above condition is met, it is impossible to estimate the drug-sensitive and

drug-resistant cell population sizes simultaneously. This occurs at a specific drug admin-
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istration rate. To analyze this undesirable condition further, we examine the following

arguments. First, the term εrs governs the degree to which the mutation of drug-sensitive

cells contributes to the drug-resistant population. It is, therefore, reasonable to treat this

term as a positive constant. Second, it is reasonable to assume that the cell mutation rate is

quite small compared to the net growth rates of both the drug-sensitive and drug-resistant

cells. This assumption implies that εrs is likely to be much smaller in magnitude than

λ1 or λ2. Together, these arguments/assumptions imply that the loss of observability co-

incides with λ1 ≈ λ2 . In other words, when the net growth rates of the sensitive and

resistant cells are approximately equal, one can no longer estimate the sizes of these two

populations simultaneously. This condition coincides with the loss of diagonalizability of

the system’s A matrix, as indicated below:

λ1 = λ2 ⇒ Loss of Diagonalizability

αD = (1− ε)rs − µs − rr + µr (3.14)

3.6 State Observability for Nonlinear Tumor Dynamics

Fisher identifiability analysis provides a pathway for generalizing the above state

observability results to the nonlinear tumor model. To perform Fisher analysis, recall the

sensitivity definitions in Eq. (3.5). Assuming the model’s parameters to be known, only

the sensitivities of the output with respect to S(0) and R(0) are needed in this section,

given its focus on initial state estimation. To perform Fisher analysis for the two ini-
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tial states, define a sensitivity vector s(t), such that s(kδt) = [s1(kδt), s2(kδt)]
T (where

the definitions of s1 and s2 are given in Eq.(3.5)). Then the corresponding 2x2 Fisher

information matrix is given by:

F =
1

σ2

N∑
k=1

s(kδt)sT (kδt), (3.15)

One convenient mathematical simplification is to approximate the expression for

the Fisher information matrix using integration, as opposed to summation, with respect to

time. Specifically, as the sampling time δt approaches zero, the Fisher information matrix

approaches the approximation below.

F ≈ 1

σ2δt

∫ Nδt

0

s(τ)s(τ)Tdτ (3.16)

Fisher analysis can be used for assessing state observability, parameter identifiabil-

ity, or combined state/parameter identifiability. To use it for analyzing state observability,

consider the nonlinear tumor dynamics model presented in Eq. (3.3). Let the vector of

parameters to be estimated consist of the initial sizes, S(0) andR(0), of the drug-sensitive

and drug-resistant cell populations, respectively. Let the true/nominal values of these two

parameters be So and Ro, respectively. Moreover, denote the time-dependent populations

corresponding to these nominal initial conditions by Sref (t) and Rref (t), respectively.

Now consider a situation where the initial drug-sensitive population is perturbed slightly

by some δS(0), i.e., S(0) = So + δS(0). Let the resulting perturbed drug-sensitive and

drug-resistant cell populations be S(t) + δS(t) and R(t) + δR(t), respectively. Then the
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true rate of change of the drug-sensitive cell population is given by:

Ṡ(t) = Ṡref (t) + δṠ(t) (3.17)

Combining Eq. (3.3) and Eq. (3.17) then gives:

Ṡ(t) = λ1(Sref (t) + δS(t))

−(
1

Pc
)(λ1 + αD)(Sref (t) + δS(t))2

−(
1

Pc
)(λ1 + αD)(Sref (t) + δS(t))(Rref (t) + δR(t)) (3.18)

Also, since Sref and similarlyRref are nominal solutions for the Ṡ and Ṙ equations,

the following equation is obtained:

Ṡref (t) = λ1Sref (t)− (
1

Pc
)(λ1 + αD)Sref (t)2

−(
1

Pc
)(λ1 + αD)Sref (t)Rref (t) (3.19)

Subtracting the expression for Ṡref from the expression for Ṡ and neglecting higher-

order terms gives the following differential sensitivity equation:
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δṠ(t) ≈ [λ1 − (
2

Pc
)(λ1 + αD)Sref (t)

−(
1

Pc
)(λ1 + αD)Rref (t)]δS(t)

+[−(
1

Pc
)(λ1 + αD)Sref (t)]δR(t) (3.20)

Repeating the same procedure for δṘ gives the following:

δṘ(t) ≈ [εrs − ( 1
Pc

)(λ2 + εrs)Rref (t)

−( 1
Pc

)(2εrs)Sref (t)]δS(t)

+[λ2 − ( 1
Pc

)(λ2 + εrs)Sref (t)

−( 1
Pc

)(2λ2)Rref (t)]δR(t) (3.21)

The sensitivity of the output with respect to a perturbation in the initial sensitive

cell population, s1(t), is obtained by solving the above two equations for a nonzero initial

δS(0) plus a zero initial perturbation δR(0). Summing the resulting δS(t) and δR(t) then

furnishes the desired sensitivity. Stated mathematically:

s1(t) =
[δS(t) + δR(t)]δS(0)6=0,δR(0)=0

δS(0)
(3.22)

Similarly, the sensitivity of the output to a perturbation in the initial resistant cell
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population is given by:

s2(t) =
[δS(t) + δR(t)]δS(0)=0,δR(0)6=0

δR(0)
(3.23)

Together, these two sensitivities constitute the vector of sensitivities s(t) needed

for computing the Fisher information matrix. The diagonal terms of the inverse of this

matrix represent the variances with which the best possible unbiased parameter estimator

can determine the initial values of the drug-sensitive and drug-resistant cell populations.

Please note that the governing equations for δS(t) and δR(t), namely, Eqs. (3.20,3.21),

are linear and time-varying. As a result, their solutions scale linearly with δS(0) and

δR(0). The implication is that the solutions of Eqs. (3.22,3.23) do not change with the

choice of δS(0) and δR(0).

Fig. (3.5) performs the above Fisher information analysis for the nonlinear cancer

dynamics model for two different carrying capacities. The vertical axes in the subplots

are the variances of the cell population estimation errors, normalized with respect to the

true initial population values. The worst-case estimation errors are obtained at a drug

administration rate almost identical to the rate at which the linearized cancer model loses

observability. Moreover, as seen in the subplots, changing the cell mutation rate has al-

most no effect on this worst-case scenario. In summary, the results of this Fisher analysis

are consistent with the earlier findings using the approximate linearized model.
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Figure 3.5: Normalized nonlinear drug-sensitive and drug-resistant initial population size
observabilities. The mutation rate (ε) is changing from 0 to 10−6 in 10 incre-
ments.

3.7 Parameter identifiability analysis

The chapter’s next goal is to analyze parameter identifiability for the linear cancer

dynamics model and compare the results with a practical parameter identifiability study

for the nonlinear model. Towards this goal, the work in this chapter uses Eq. (3.9) to

examine how parameter perturbations affects the model’s output measurements. In order

to derive sensitivity equations, the two states equations are solved assuming given initial

populations x1,0 and x2,0 as follows:
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x1(t) = x1,0e
λ1t

x2(t = εrsx1,0

∫ t

0

eλ1τeλ2(t−τ)dτ + x2,0e
λ2t

= εrsx1,0e
λ2t

∫ t

0

e(λ1−λ2)τdτ + x2,0e
λ2t

= εrsx1,0e
λ2t

1

λ1 − λ2
[e(λ1−λ2)t − 1] + x2,0e

λ2t

y(t) = x1(t) + x2(t) (3.24)

In the above equation, x1(t) and x2(t) are the analytic solutions of the linearized

cancer dynamics model. These solutions are expressed in terms of the initial pathogen

population sizes as well as the constant model parameters, λ1 and λ2. To perform param-

eter identifiability analysis on this model, we begin by perturbing these two parameters

and analyzing the sensitivity of the above analytic model solution to these perturbations.

Specifically, we perturb the parameter λ1 in a manner conducive to performing a normal-

ized Fisher analysis, by setting its perturbed value to λ1(1 + ε1). Similarly, we replace λ2

by λ2(1 + ε2). The use of normalization upfront within Fisher analysis furnishes normal-

ized parameter error bounds. This is convenient for the purpose of performing apples-to-

apples comparisons of parameter estimation errors. Moreover, the main conclusion of this

section is easier to observe mathematically through this normalization. Applying the λ1

perturbation to the linearized tumor dynamics model furnishes the following sensitivity

function:
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x1(t)|pert.(λ1) = x1,0e
λ1(1+ε1)t

x2(t)|pert.(λ1) = εrsx1,0e
λ2t

1

λ1(1 + ε1)− λ2

×[e(λ1(1+ε1)−λ2)t − 1] + x2,0e
λ2t

y(t)|pert.(λ1) = x1(t)|pert.(λ1) + x2(t)|pert.(λ1)

sl,1(t) =
y(t)|pert.(λ1) − y(t)|nominal

ε1
(3.25)

A similar perturbation analysis can be used to solve for sensitivity of the output

with respect to perturbations in λ2, producing the equations below:

x1(t)|pert.(λ2) = x1,0e
λ1t

x2(t)|pert.(λ2) = εrsx1,0e
λ2(1+ε2)t

1

λ1 − λ2(1 + ε2)

×[e(λ1−λ2(1+ε2))t − 1] + x2,0e
λ2(1+ε2)t

y(t)|pert.(λ2) = x1(t)|pert.(λ2) + x2(t)|pert.(λ2)

sl,2(t)|pert.(λ2) =
y(t)|pert.(λ2) − y(t)|nominal

ε2
(3.26)

The above two sensitivity functions, sl,1(t) and sl,2(t), are conceptually analogous

to the sensitivity functions s1(t) and s2(t) in Eq. (3.5), with two important caveats. First,

the above derivation assumes a linearized tumor dynamics model, whereas Eq. (3.5) ap-

plies to the full nonlinear tumor dynamics model. Second, the fact that the denominators
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in these sensitivity equations are non-dimensional (e.g., ε1 instead of ε1λ1) means that the

resulting Fisher information analysis will automatically furnish normalized estimation

variances. In other words, one will not need to divide the parameter estimation variances

by the corresponding nominal parameter values squared in order to obtain normalized

results.

Given the sensitivity expressions in Eqs. (3.25,3.26), one can use Fisher infor-

mation analysis to analyze the identifiability of the linear model’s parameters, as shown

below. The Fisher information matrix corresponding to the parameters λ1 and λ2 is as

follows:

F ∼=
1

σ2δt


∫ Nδt
0

sl,1(t)
2dτ

∫ Nδt
0

sl,1(t)sl,2(t)dτ

∫ Nδt
0

sl,2(t)sl,1(t)dτ
∫ Nδt
0

sl,2(t)
2dτ

 (3.27)

Inverting the above Fisher matrix furnishes the best-achievable estimation covari-

ance matrix for the parameters λ1 and λ2, normalized with respect to the nominal values

of these parameters. The diagonal terms in this matrix represent the best-achievable nor-

malized variances for λ1 and λ2.

Fig. (3.6) plots the above normalized estimation variances versus different values

of the drug administration rate, D for two different carrying capacities. The solid lines

in all figures represent the normalized parameter estimation variances for the linearized

drug administration model, which neglects the logistic effect. The dashed lines in all the

figures represent the normalized parameter estimation variances computed numerically
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for the nonlinear tumor dynamics model, accounting for the logistic effect. As shown

in the Fig. (3.6), the two different carrying capacities are assumed to be Pc = 1012 and

Pc = 1010, 100 times smaller. The intent is to gain insight into the degree to which the

value of the carrying capacity affects the applicability of the linear model identifiability

analysis to the nonlinear case. Normalization is performed with respect to the nominal

parameter values in the figures.

Three important conclusions are visible from these figures and results. First, the

identifiability of the parameters of the tumor dynamics model is quite poor, even when
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Figure 3.6: Comparing uncertainty of both drug-sensitive and drug resistant cells net
growth rate estimation for two different nominal carrying capacities of Pc =
1012 and Pc = 1010 cells.
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the drug-sensitive and drug-resistant cell populations are assumed to be directly measur-

able. For example, when the tumor has a carrying capacity of 1012 cells, the best achiev-

able normalized estimation error squared for λ1 is 4.13 which corresponds to D = 0.334,

meaning that the error in estimating λ1 is almost 2 times the nominal value of λ1. More-

over, a drug administration rate of D = 0.137 minimizes the estimation variance of λ2

down to 6.019 × 106, meaning that one cannot estimate the drug resistance net growth

rate better than 2453 times its nominal value. This highlights the difficulty of estimating

the parameters of drug resistance in a cancer dynamics model solely from total tumor size

measurements. Second, the linear and nonlinear identifiability analyses produce consis-

tent results when the tumor carrying capacity is large. When the tumor carrying capacity

is reduced, the primary difference between these two analyses is a reduction in the best-

achievable normalized estimation variance for λ2. Even with this reduction, the identifi-

ability of the model’s parameters remains poor. Third, as with combined state/parameter

identifiability, we see two peak scenarios where parameter identifiability is particularly

poor. One of these two peaks corresponds to the loss of observability of the cancer dy-

namics, as explained earlier in this research. The second peak corresponds to a drug

administration rate of D = 0.023. The remainder of this section provides insight into the

significance of this peak by continuing the above linear model parameter identifiability

analysis.

One benefit of using a linearized model of tumor dynamics to analyze Fisher pa-

rameter identifiabiltiy is the fact that it makes it possible to compute the resulting Fisher

information matrix analytically. Specifically, the sensitivies in Eq. (3.25,3.26) can be

computed analytically. Moreover, one can use this analytic computation to derive an
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expression for the Fisher information matrix in Eq. (3.27), under the assumption that

λ1 = 0. The significance of assuming that λ1 = 0 in the analysis below is twofold. First,

as the analysis will show, the specific scenario where λ1 = 0 coincides with one of the two

worst-case conditions for poor parameter identifiability. Second, setting λ1 = 0 furnishes

a treatment protocol where the goal is to maintain a constant sensitive cell population

size. Such a protocol is conceptually close to the “containment” protocols examined in

earlier literature, and therefore sheds light on the potential impact of tumor containment

on identifiability. Performing this analysis produces the results below:

y(t) = x1,0 e
λ1t + x2,0 e

λ2t + εrs x1,0

∫ t

0

eλ1teλ2(t−τ)dτ

λ1 = λ1,0(1 + ε1)

s1(t) =
∂y

∂ε1
∂y

∂ε1
= λ1,0t x1,0 e

λ1,0(1+ε1)t

+εrs x1,0

∫ t

0

λ1,0t e
λ1,0(1+ε1)teλ2(t−τ)dτ (3.28)

= λ1,0t (y − x2,0 eλ2t)

if λ1,0 = 0 ⇒ s1(t) = 0

⇒ F ∼=
1

σ2δt

∫ Nδt

0

 0 0

0 s2(t)
2dτ


The above Fisher information matrix is singular, and therefore not invertible. This

singularity implies the loss of parameter identifiability. The singularity occurs when λ1 =

0, which occurs when D = 0.023. Therefore, we arrive at the important insight that when
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the drug administration rate is tailored such that the net growth rate of the drug-sensitive

pathogen cell population equals zero, parameter identifiability is lost. This conclusion

can be seen using an analytic derivation for the parameter identifiability of the linearized

tumor dynamics model. Moreover, it is consistent with the practical identifiability results

for the nonlinear tumor dynamics model. The practical implication of this conclusion

is that drug administration rates that are conducive to sensitive population containment

make it especially difficult to estimate the parameters of the underlying tumor dynamics

model.

One important caveat in the field of identifiability analysis is the fact that the larger

the set of quantities one seeks to estimate, the less accurately one can estimate these

quantities, and vice versa. Table (3.4) illustrates this insight by listing the normalized

estimation variances of the nonlinear tumor dynamics model’s initial conditions and con-

stant parameters for two different drug administration rates. The rows of the table for

each one of the drug administration rates show: (i) the parameter estimation variances

one obtains if the model’s initial conditions are known; (ii) the state estimation variances

if the model’s parameters are known; and (iii) the combined state/parameter estimation

variances one obtains through combined state/parameter identifiability analysis. A vis-

ible worsening is seen in both state and parameter estimation accuracy when one ana-

lyzes combined state/parameter identifiability. This illustrates the important point that the

availability of more accurate means of measuring the prevalence of drug resistance in a

cancerous tumor (i.e., the sizes of the drug-sensitive and drug-resistant populations) can

be valuable for quantifying the uncertainties in that tumor’s underlying dynamics.
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Table 3.4: Normalized CRLBs two drug administration rates of D = 0.015 and D = 0.035.
D Identifiability of: λ1 λ2 S(0) R(0)

Parameters 1.3× 105 1.26× 108 - -

D = 0.015 States - - 0.034 7.5× 109

Combined 1.4× 1010 2.5× 1012 5.46× 106 1.12× 1018

Parameters 3.4× 104 7.6× 107 - -

D = 0.035 States - - 0.0066 1.1× 109

Combined 5.3× 108 3.5× 1011 3.5× 104 7.3× 1015

3.8 Conclusion

This chapter examines the problem of estimating the initial conditions and parame-

ters of a model of drug-resistance cancerous dynamics. The chapter analyzes this model’s

combined state/parameter identifiability using Fisher information analysis. This analysis

is performed numerically for a nonlinear model of the tumor’s dynamics. To gain further

insights into the results of this analysis, the chapter then linearizes the tumor dynamics

model, and uses the linearized model to analyze state observability and parameter iden-

tifiability independently. The results of these simplified analyses are shown to hold for

the original model, especially for tumors with large carrying capacities. One conclusion

from this analysis is that it is extremely difficult to obtain accurate estimates of the tumor

dynamics model’s initial conditions and parameters, especially if the mutation rate of the

drug-sensitive pathogen cell population is unknown. Another conclusion is that two sce-

narios exist where combined state/parameter identifiability is particularly poor. The first

scenario occurs when the rate of drug administration causes the net growth rates of the

drug-sensitive and drug-resistant pathogen cell populations to be approximately equal,

leading to the loss of observability. The second scenario occurs when the rate of drug
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administration causes the net growth rate of the drug-sensitive cell population to equal

zero.

From a high-level perspective, the fundamental message of this chapter is that poor

input shaping can jeopardize the identifiability of multi-compartment dynamic system

model parameters. The next chapter explores the opposite side of this fundamental coin

by showing the degree to which optimal input shaping can potentially improve multi-

compartment dynamic system model identifiability.
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Chapter 4: Periodic Optimal Input Shaping for Maximizing Lithium-Sulfur

Battery Parameter Identifiability

4.1 Overview

This chapter investigates the problem of optimal periodic cycling for maximizing

the identifiability of the unknown states and parameters of a Lithium-Sulfur (Li-S) battery

model. This research is motivated by the need for more accurate Li-S battery modeling

and diagnostics. Li-S batteries offer higher energy density levels compared to more tradi-

tional lithium-ion batteries, making them an attractive option for energy storage applica-

tions. However, the monitoring and control of Li-S batteries is challenging because of the

complexity of the underlying multi-step reaction chain. The existing literature addresses

poor battery parameter identifiability through a variety of tools including optimal input

shaping for Fisher information maximization. However, this literature’s focus is predomi-

nantly on the identifiability of lithium-sulfur battery model parameters. The main purpose

of this study is to optimize Li-S battery Fisher identifiability through optimal input shap-

ing. The study shows that such optimal input shaping has the potential to improve the

accuracy of Li-S battery state and parameter estimation significantly.

Broadly speaking, the problems examined in Chapters 3 and 4 of this dissertation
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can be seen as two sides of the same coin. On the one hand, Chapter 3 illustrates the

fact that poor input shaping has the potential to lead to poor dynamic system parameter

identifiability. On the other hand, this chapter illustrates the degree to which optimal

input shaping has the potential to improve multi-compartment dynamic system parameter

identifiability. The compartments in a Li-S battery model represent the various species

involved in the battery discharge reaction chain. Moreover, the identifiability optimization

problem for Li-S batteries is complicated by the multiplicity of species involved in this

reaction chain. 1

4.2 Introduction

This chapter present a simulation-based study that demonstrates how the input cur-

rent trajectory can be optimized to maximize the parameter identifiability of a physics-

based zero-dimensional electrochemical model of a lithium-sulfur (Li-S) battery. This

research uses Fisher information as the metric for quantifying parameter identifiabil-

ity. Li-S batteries are attractive due to their potential to achieve very high specific en-

ergy levels (2600 watts/kg) and specific charge capacities (1672Ah/kg). [104]. Proto-

type Li-S cells have achieved specific energies well over 700 Watts/kg [105]. Li-S tech-

nology, however, suffers from limitations such as complex reaction kinetics and high

self-discharge rates [106, 107, 108]. The literature presents several efforts focusing on

improving Li-S battery performance through electrodes, separator and electrolyte design

[109, 110, 111, 112]. Building on this existing research, this chapter focuses on improving

battery performance by maximizing the identifiability of Li-S battery model parameters,
1The work in this chapter is currently in preparation for potential archival publication.
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with the goal of ultimately enabling optimal model-based diagnosis and control.

Maximizing the identifiability of the lithium-ion batteries’ states and parameters

through optimal input shaping is a well-established topic of inquiry in the literature [12,

14, 15, 18, 113, 114]. However, the challenge of applying this topic of inquiry to the Li-S

chemistry remains relatively unexplored. This open gap in the literature can be attributed

at least in part to the complexity of the electrochemical models for Li-S batteries. The

discharge of a lithium-sulfur battery involves multiple electrochemical reduction reactions

and intermediate reaction products/species, unlike the discharge of a typical lithium-ion

battery, where only one major reduction/oxidation step takes place. This complicates

Li-S battery management, diagnostics, and (in the context of this work) identifiability

optimization.

The Li-S battery model used in this research is a zero-dimensional (0D) elec-

trochemical model, meaning that it captures the multiplicity of underlying oxidation-

reduction reactions but neglects the spatial diffusion of ions within the battery in favor of

the simplifying assumption that all ion distributions are spatially uniform within each bat-

tery electrode. This model builds on an extensive existing Li-S battery modeling literature

that examines equivalent circuit models [115, 116, 117, 118] and more complex models

of the underlying coupled diffusion-reaction dynamics [119, 120, 121, 122, 123, 124].

The equivalent circuit models presented in this literature are typically used for online state

of charge estimation, given their appealing computational tractability [125, 126, 127]. In

contrast, the literature’s coupled diffusion-reaction models, usually expressed in terms of

systems of partial differential algebraic equations (PDAEs), are typically more accurate

but computationally prohibitive for applications such as identifiability optimization. The
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zero-dimensional model used in this study represents a middle ground between these two

extremes, in the sense that it captures key underlying battery physics while remaining

computationally tractable [128, 129].

The literature already presents multiple Li-S battery state and parameter estimation

methods and studies [125, 126, 127, 130, 131, 132]. This includes previous work by

one of the author’s collaborators on Li-S battery model parameterization and sensitivity

analysis [133, 134]. The intent of this article is to extend the above work significantly by

using identifiability optimization to maximize the accuracy with which one can potentially

estimate the state and parameters of Li-S batteries. Identifiability is a well-established

concept in control theory, with important mathematical connections to other key concepts

in control theory such as observability and controllability [19, 20]. To say that a battery

model has good identifiability is to assert that it is possible to estimate the model’s states

and parameters uniquely and accurately from input-output cycling data. Moreover, to

achieve such good identifiability, one often needs to optimize the underlying battery test

protocol.

Different approaches exist in the literature for testing electrochemical batteries, in-

cluding both destructive and non-destructive testing approaches. Non-destructive battery

tests include both thermal and electrical cycling tests. The focus of this chapter is specifi-

cally on optimizing a periodic electric cycling test for an Li-S battery cell. Simple electric

battery cycling tests include both galvanostatic (i.e. constant current) and potentiostatic

(i.e., constant voltage) tests. The family of test protocols examined in this chapter goes

further than either the galvanostatic or potentiostatic testing approaches. Specifically, the

chapter considers a scenario where an Li-S battery cell is attached to a flexible cycler at
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room temperature. Suppose the cycler is able to dictate a time-varying charge/discharge

current as an input to the battery. Moreover, supposed that this current is periodic, leading

to a repeatable or periodic test cycle/protocol. Finally, suppose that one is able to mea-

sure the terminal voltage of the battery cell while it is being cycled. The main question

addressed in this chapter is: what is the optimal shape of the input current applied to this

battery cell, if the goal is to estimate its underlying parameters uniquely and accurately

from the resulting cycling data?

The remainder of this chapter is organized as follows. Section (4.3) presents the 0D

physics-based Li-S battery model used in this study. The chapter then proceeds to two

bodies of work. First, section (4.4) summarizes the steps needed for applying identifia-

bility analysis to Li-S batteries. Specifically, the application of tools such as sensitivity-

based Fisher information analysis to Li-S battery cell models is discussed. Second, sec-

tion (4.5) uses numerical optimization to design a battery input current trajectory that

maximizes the Fisher identifiability of Li-S battery states and parameters. Finally, Sec-

tion (4.6) summarizes the chapter’s findings and conclusions.

4.3 Li-S Battery Model

This section describes the zero-dimensional physics-based Li-S battery model used

throughout this chapter, building on earlier modeling efforts in the literature [128, 129].

This model serves as a foundation for subsequent identifiability analysis and optimal input

shaping. Similar to lithium-ion batteries, Li-S battery cells consist of a separator sand-

wiched between two electrically conductive, porous positive and negative electrodes. The
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components are soaked in electrolyte to allow for the transport of Lithium ions between

both electrodes. However, the voltage performance characteristics of Li-S batteries are

fundamentally different from Lithium-ion cells. Figure (4.1) shows a typical Li-S battery

discharge voltage curve. The curve exhibit a high plateau region and a low plateau region,

separated by a “dipping point” where the precipitation of the final reduction reaction prod-

uct is triggered. During Li-S battery operation, cathode-side sulfur reacts with lithium to

form different sulfide species, including S2−
8 , S2−

6 , S2−
4 , S2−

2 , and finally S2− [135]. At

the same time, lithium is oxidized to furnish lithium ions in the negative electrode.
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Figure 4.1: Li-S battery voltage curve during discharge

Table (4.1) shows five dissolved sulfur species (S8, S
2−
8 , S2−

6 , S2−
4 and S2−) in four

reduction reactions in Li-S batteries. These reactions form the 0D model assuming that

there exists no mass transport due to the dissolved species diffusion/migration. Only

the electrochemical reaction and precipitation change the masses of the dissolved and

precipitated sulfur.

The zero-dimensional model is presented in Figure (4.3). The model shows the state
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variables, state equations (Eq. (4.1-4.3)) and algebraic constraints (Eq. (4.4-4.7)) for Li-S

batteries [133, 136]. The state equations in this model governs the rate of change of the

masses for five different dissolved sulfur species and for the precipitated sulfur, plus the

rate of change of cathode material porosity. These dynamics form the state space model

for Li-S batteries. The model’s input is discharge current I , and the model’s output is the

voltage measurement across the battery V . The Nerst equation for reduction potentials

and the Butler-Volmer equation for reaction kinetics are the physics-based algebraic con-

straints in this model. Fig. (4.2) shows a simple schematic of the Li-S battery’s governing

dynamics and constraints from an input-output perspective.
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Figure 4.2: Schematic of an Li-S battery cell during discharge

The above model is based on three main assumptions. First, the only redox reac-

tions that take place in the Li-S battery are the ones listed in Table (4.1). Second, the

only sulfide species that participates out of solution is Li2S. Third, The model does not
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Table 4.1: Reduction reactions considered in the 0D model

Reduction
Reactions # j

#1 : 1
2
S8 + e− ⇀↽ 1

2
S2−
8

#2 : 3
2
S2−
8 + e− ⇀↽ 2S2−

6

#3 : S2−
6 + e− ⇀↽ 3

2
S2−
4

#4 : 1
6
S2−
4 + e− ⇀↽ 2

3
S2−

Dissolved
Sulfur Species # i S8, S

2−
8 , S2−

6 , S2−
4 , S2−

St
at

e 
Va
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Figure 4.3: Li-S battery state variables, stat equations and constraints.

consider the polysulfide shuttle effect in the Li-S battery: a relatively slow process that

causes the battery to self-discharge and potentially age/degrade. This assumption reflects

the author’s interest in the identifability of the initial states and paraemeters pertaining
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Table 4.2: List of all the parameters and initial values for the Li-S DAE model
Param. Description Values Unit

𝐸 Standard potential 2.4673,  2.3742,  2.3420,  2.0693 [𝑉]

𝑖 Exchange current density 2.00,  0.02,  0.02,  0.02 [𝐴/𝑚 ]

𝑆 Saturation mass of  𝑆 0.0001 [𝑔]

𝑘 Precipitation rate constant 22 [1/(𝑔 𝑠)]

𝑚 , 𝑚 Initial mass of  species 𝑖, Initial mass of sulfur precipitate 3.0377, 0.216, 0.078, 0.0055, 1.84E-07, 5.77E-07 [𝑔]

𝜔 Porosity change rate constant 0.6133 [1/𝑔]

𝛾 Power of the relative porosity 0.4832 −

𝑀 Molar mass of a sulfur atom 32 [𝑔/𝑚𝑜𝑙]

𝑠 , Stoichiometric coefficients of the reactions Table II −

𝑛 Number of sulfur atoms in species 𝑖 8, 8, 6, 4, 1 −

𝑛 Number of electrons exchanged in reaction 𝑗 1, 1, 1, 1 −

𝑣 Cell volume 0.0114 [𝐿]

𝑅 Gas constant 8.3145 [𝐽/(𝐾 𝑚𝑜𝑙)]

𝑇 Room temperature 298 [𝑘]

𝐹 Faraday’s constant 9.649E4 [𝐶/𝑚𝑜𝑙]

𝑎 Initial active reaction area 1 [𝑚 ]

𝑝 ,  , 𝑞 , Number of species / reactions Table II −

to the battery’s voltage performance as opposed to its health. This list of assumptions is

consistent with earlier modeling work in the literature that forms an important foundation

for the current research ([120, 128, 129, 134]).

Tables (4.2,4.3) list all the parameters and initial conditions that one needs to es-

timate for the above Li-S battery model, along with nominal values of these quantities

obtained from earlier work by one of the author’s collaborators [133].

The model presented so far is a differential algebraic equation (DAE) model. How-

ever, the optimization and identifiability study in this work relies on Fisher information

theory, which is more established in the literature for ordinary differential equation (ODE)

models [12, 14, 19, 20]. Previous work in the literature shows that the DAE model’s al-

gebraic loop can be eliminated by analytically solving the reaction current Ij in Eq. (4.7),

thereby allowing this DAE model to be reformulated to an ODE model [133]. The result-
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Table 4.3: Stoichiometric coefficients of the reactions and corresponding parameters
Param. Values

sij


−1/2 0 0 0
1/2 −3/2 0 0
0 2 −1 0
0 0 3/2 −1/6
0 0 0 2/3


pij = sij (for sij ≥ 0); otherwise 0
qij = −sij (for sij ≤ 0); otherwise 0

ing ODE model can then be written in the following standard state-space form:

Ẋ = f(X, I)

V = h(X, I)

(4.8)

The state vector for the above model consists of seven state variables:

X = [m1, . . . , m5, mSp , α]T (4.9)

This model provides a foundation for the sensitivity analysis, identifiability and the

subsequent input optimization study presented in the remainder of the chapter.

4.4 Combined State and Parameter Identifiability for Li-S Batteries: An

Overview

Consider the problem of estimating the unknown parameters and initial masses of

sulfur species in the above Li-S model. Table (4.4) lists all the 19 unknown initial states
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and parameters including the initial masses of S8, S
2−
8 , S2−

6 , S2−
4 , S2−, the initial mass

of precipitated sulfur, the precipitation rate constant, the cathode porosity parameters,

the saturation mass of S2−, the cell volume, each reaction’s standard potential, and each

reaction’s exchange current densities. This section analyzes the theoretical Cramér-Rao

bounds on the accuracy of estimating these unknown parameters for a given discharge

current profile. This analysis makes a number simplifying assumptions, but the under-

lying methods can be generalized to relax these assumptions. In particular, we assume

that: (i) the true dynamics of sulfur species masses and cathode porosity are governed by

Eq. (4.8); (ii) this ODE model is known; (iii) its parameters and initial states are known;

(iv) the model’s output (namely, the cell voltage) is measured at regular time intervals δt;

and (v) this measurement is corrupted by zero-mean, independent, identically distributed

Gaussian noise with variance σ2. In light of these assumptions, Fisher information anal-

ysis provides a general method for estimating the accuracy with which initial states and

parameters can be determined: [137].

To perform Fisher information analysis, we begin by defining an output variable,

Y (t,θ), equal to the true open circuit cell voltage, V , at time t, for a given set of values of

a combined unknown initial state and parameter vector, θ. Measurements of this output

variable are noisy, but the symbol Y (t,θ) refers to the true output, uncorrupted by noise.

The vector θ is, in turn, defined as θ = [θ1, θ2, θ3, . . . , θ19]
T

Suppose that the above output Y (t,θ), is measured at moments in time separated

by a sampling time δt in seconds. Moreover, suppose that the measured output at every

sampling instant is equal to the true output plus an independent, identically distributed

measurement noise signal with a zero mean and some variance σ2. For a given set of

109



Table 4.4: Parameters for identifiability

# Param. Description Unit

1 m0
s8

Initial mass of S8 [g]

2 m0
s2−8

Initial mass of s2−8 [g]

3 m0
s2−6

Initial mass of s2−6 [g]

4 m0
s2−4

Initial mass of s2−4 [g]

5 m0
s2− Initial mass of s2− [g]

6 m0
Sp Initial mass of Sp [g]

7 ω Porosity change rate constant [1/g]

8 γ Power of the relative porosity −

9 kp Precipitation rate constant [1/(gs)]

10 Ssat Saturation mass of S2− [g]

11 v Cell volume [L]

12 E0
1 Standard potential for reaction #1 [V ]

13 E0
2 Standard potential for reaction #2 [V ]

14 E0
3 Standard potential for reaction #3 [V ]

15 E0
4 Standard potential for reaction #4 [V ]

16 i01 Exchange current density for reaction #1 [A]

17 i02 Exchange current density for reaction #2 [A]

18 i03 Exchange current density for reaction #3 [A]

19 i04 Exchange current density for reaction #4 [A]
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unknowns, θ the sensitivity function si(kδt), can be defined as follows:

si(kδt) = lim
δθi→0

Y (kδt, θ + eiδθi)− Y (kδt, θ)

δθi
, (4.10)

where δθi represents an infinitesimal change in the ith unknown parameter, and the ei rep-

resents a selector that only perturbs one parameter at a time. Given the above sensitivity

function, one can construct the following sensitivity matrix:

S =


s1(δt) . . . s19(δt)

... . . . ...

s1(Nδt) . . . s19(Nδt)

 , (4.11)

where N is the total number of samples over which identifiability analysis is performed.

Each column of the sensitivity matrix in Eq. (4.11) represents the sensitivity of the out-

put voltage to small perturbation in the corresponding parameter estimate over the total

measurement time. The Fisher information matrix can be constructed from the above

sensitivity matrix as follows:

F =
1

σ2
STS (4.12)

The above computation furnishes a 19 × 19 matrix. We implemented this combined

parameter and initial states sensitivity analyses numerically for all the unknown states

and parameters listed in the table (4.4). The sensitivity analysis in this research is based

on normalized perturbation in the parameter vector θ by multiplying θi with (1 + εi). The

reason we normalize the perturbations is that it makes it possible to obtain normalized
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parameter error bounds directly from Fisher analysis. In this way, parameter estimation

errors can be compared for different parameters.

One can quantify the identifiability of the model’s parameters from their covariance

matrix. Eq. (4.15) presents the covariance matrix derived from the expected values of es-

timation accuracies. The diagonal elements of this matrix are the expected errors squared

for parameter vector θ.

θ = [θ1, θ2, . . . , θi]
T (4.14)

where θi is the ith parameter in this vector.

Cov(θ̂) =
E{(θ̂1 − θ1,t)2} . . . E{(θ̂1 − θ1,t)(θ̂i − θi,t)}

... . . . ...

E{(θ̂i − θi,t)(θ̂1 − θ1,t)} . . . E{(θ̂i − θi,t)2}

 ,

(4.15)

where θ̂i is the ith estimated parameter and the θi,t is the true value for the ith parameter.

The Cramér-Rao theorem states that the best covariance matrix achievable by any

unbiased estimator is equal to the inverse of the Fisher information matrix. This theorem

is mathematically expressed in Eq. (4.16):

Cov(θ̂) ≥ CRLB = F−1 (4.16)
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The diagonal elements of the inverse of the Fisher information matrix provide the

best-achievable estimation variance for each element of the vector θ. Dividing each pa-

rameter’s variance by the nominal value of the parameter squared provides a normalized

estimation variance, useful for comparing the accuracy levels with which different param-

eters can be estimated [114].

In order to have a benchmark for comparing the results of identifiability study in

this chapter, we first solve for the CRLBs for 19 parameters and initial states for a fully

charged Li-S battery which is undergoing a cyclic input current of constant current dis-

charge and charge for 8 hours. Then we optimize the current profile for maximizing the

parameters and initial states identifiability in the next section.
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Figure 4.4: One period of cycling Li-S battery with a constant current of ± 3[A].

Figure (4.4) shows a periodic constant discharging input (−3 [A]) followed by a

constant charging input (3 [A]) profile for 8 hours and the corresponding cell voltage for
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an Li-S battery with a capacity of 3.2[Ah]. The cell is initialized at its fully charged state

prior to the application of the constant discharge current. We simulate the battery output

voltage by numerically solving the zero-dimensional model presented in Section (4.3).

We then solve for the model’s Fisher identifiability matrix by perturbing the parameters

and initial states and then determining the sensitivity of the simulated output to those

perturbations numerically. Using the parameters and initial state sensitivity profiles, one

can calculate the Fisher information matrix and Cramér-Rao lower bound. The first col-

umn of Table (4.5) represents the normalized estimation variances for all the 19 unknown

parameters and initial states that we obtained numerically.

4.5 Periodic Optimal Input Current Design

In this section, we aim to derive a periodic current input trajectory that maximizes

the combined identifiability of the nineteen parameters and initial states of the 0D elec-

trochemical Li-S battery model. One way to do that is to maximize the determinant of

the Fisher information matrix subject to the battery dynamics and inequality bounds on

the input current. This approach makes intuitive sense because the Fisher information

matrix places a bound on the best-achievable parameter estimation accuracy for any unbi-

ased estimator. Therefore, maximizing the determinant of this matrix leads to maximizing

identifiability of the parameter vector θ [138, 139]. The resulting optimal input current

would be a periodic trajectory that returns the battery back to the same origin of its initial

states, if periodicity constraints are imposed on this trajectory optimization problem. One

can solve this trajectory optimization problem using a number of different methods, in-
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cluding numerical methods involving the use of a truncated Fourier series to approximate

and parameterize the optimal input trajectory. For example, Eq. (4.13) presents the input

current as a cyclic Fourier series with three harmonics, and we optimize its coefficients

over a bounded domain for maximizing Fisher identifiability. Alternative approaches for

trajectory optimization do exist, including the use of the Pontryagin minimum principle

to analyze the fundamental structure of the optimal trajectory: an approach highlighted in

the next chapter of this dissertation.

I(φ, kδt) = φ1sin(φ2.kδt) + φ3cos(φ2.kδt)

+ φ4sin(2φ2.kδt) + φ5cos(2φ2.kδt)

+ φ6sin(3φ2.kδt) + φ7cos(3φ2.kδt)

(4.13)

The goal of this section is to minimize the theoretical lower bound on the Li-S

battery parameters estimation covariance matrix with respect to input current. Minimiz-

ing the CRLB is analogous to maximizing the determinant of Fisher information matrix.

We address this minimization problem in two different approaches. First, we optimize

the periodic current coefficients by maximizing the determinant of FIM within bounded

optimization domain in order to prevent infinitely large charge and discharge currents

3 C. However, the problem of maximizing the FIM is a non-convex optimization prob-

lem, causing the solution to be a boundary-optimal solution that brings some or all of

the optimization variables to the edges of the optimization domain. This motivates the

second problem formulation, which is to formulate a Pareto optimization problem that
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optimizes a weighted sum of a Fisher information maximization objective and an input

current trajectory L2 norm minimization problem. By optimizing both objectives simul-

taneously, through linear scalarization, one hopes to protect the battery from excessive

current without hitting potentially arbitrary, or ad-hoc, optimization bounds. Both opti-

mization problem formulations are explored in this work.

Eq. (4.17) defines the first optimization problem and its constraints.

min
I(φ)

J1 = −Det(F )

where : φ = [φ1, φ2, . . . , φ7]

Subject to :

Ẋ = f(x, I)

V = h(x, I)

where : x = [m1, . . . , m5, mSp , α]T

−3 ≤ φi ≤ 3

(4.17)

We use a particle swarm optimization (PSO) algorithm to solve this optimization

problem. This algorithm scans the optimization domain with 10 particles to find the

optimum, and runs for 60 iterations. In the first approach of optimizing the input current

trajectory, we only aimed for maximizing the determinant of Fisher information matrix

under certain bounds on the variables that keep the battery in safe cycling region. Eq.

(4.18) shows the resulting optimal periodic input current (IOpt#1) with the optimized

116



variable vector φopt as a result of the first approach.

I(φopt, kδt)#1 = −2.99× sin(1.65 kδt)− 2.39× cos(1.65 kδt)

− 1.77× sin(3.3 kδt)− 0.67× cos(3.3 kδt)

− 0.88× sin(4.95 kδt) + 3× cos(4.95 kδt)

(4.18)

We simulated cycling the Li-S battery’s 0D electrochemical model using the op-

timal periodic input current in Eq. (4.18), corresponding to almost eight cycles over 8

hours. Figure (4.5) shows that one cycle of the optimal current input and the correspond-

ing output cell voltage has a period of approximately 1 hour.

We now numerically analyze the normalized CRLB based on the sensitivity pro-

files for the above optimal trajectory. Integration of each parameter’s sensitivity squared

furnishes the Fisher information matrix’s diagonal elements. The remaining elements in

the Fisher information matrix are obtained through numerical integration of off-diagonal

products of the sensitivities in sensitivity matrix. The CRLB matrix is then obtained by

solving the inverse of the FIM. The second column of Table (4.5) represents the CRLB

for individual parameters and initial states after cycling the Li-S battery based on this

input trajectory for 8 hours. The arrows in this table show the change in the CRLB for an

optimal periodic input current versus a baseline, non-optimized periodic discharge-charge

current. According to the second column of Table (4.5) the estimation accuracies for 18

out of 19 parameters and initial states of the Li-S battery improve as a result of the first

optimal input trajectory (IOpt#1). Specifically, the Fisher identifiability improvement for
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Figure 4.5: Li-S battery optimal cycling current and voltage curves.

initial precipitated sulfur m0
Sp is %67.2, for Ssat is %73.9, for %Kp is %81.3, and for the

initial mass pf the lowest polysulfide m0
s2− that precipitates as Li2S is %74.2.

The bottom line is that after cycling the battery with the optimized periodic input

current for 8 hours, the estimation error shrinks by one to two orders of magnitude for

all the Li-S unknown parameters and initial states except the porosity ratio ω, whose

identifiability remains almost the same compared to the test of cycling the battery with

a constant charge/discharge current. Interestingly, the improvement in the estimation

errors is occurring mostly because the optimal cycling current trajectory tends to linger

on the low plateau, particularly during battery charging. Figure (4.6) shows one cycle
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Figure 4.6: One cycle of the optimal input current trajectory.

of this current input and its corresponding voltage output. According to this figure, the

input trajectory drains the fully charged battery down to its dip point more than three

times faster than charging it back to its initial state. A possible explanation lies in the

poorly identifiable precipitation parameters and initial states whose dynamics are mostly

triggered during the low voltage plateau. Therefore, the optimal input current causes the

battery to linger more on its low voltage plateau to capture more information about the
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less identifiable parameters.

min
I(φ)

J2 = −Det(F ) +

∫ N.δt

0

w × I2optdt

where : φ = [φ1, φ2, . . . , φ7]

−10 ≤ φi ≤ 10

(4.19)

In the second approach of optimizing the input current for maximizing the Fisher

identifiability, we include the fact that we are not allowed to cycle the battery beyond its

safe limits into our optimization problem. Eq. (4.19) represents the second optimization

problem with an additional term that minimizes the magnitude of the optimal current as

well as maximizing the determinant of FIM. These two objectives are in opposition, so the

problem is a Pareto optimization problem. Using weighted integration, we make the effect

of input squared comparable with the FIM determinant. Therefore, the w is chosen to be

in the order of magnitude of 50. Moreover, we introduce a large optimization domain to

protect the Particle swarm optimization algorithm from deliberately finding the optimal

solutions near the bounds. Eq. (4.20) is the optimal three harmonics input current where

its coefficients are optimized based on running the particle swarm optimization algorithm

for 10 particles and 60 iterations. Figure (4.7) shows this optimal input current trajectory

and its corresponding voltage curve that both maximizes the Fisher identifiability of the

Li-s battery parameters and initial states and also minimizes the integration of the input

current squared for protecting the battery.
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Figure 4.7: Li-S battery optimal cycling current and voltage curves.

I(φopt, kδt)#2 = −3.99× sin(1.74 kδt) + 0.013× cos(1.74 kδt)

− 0.5465× sin(3.48 kδt)− 2.53× cos(3.48 kδt)

+ 0.145× sin(4.95 kδt) + 0.6877× cos(4.95 kδt)

(4.20)

Two interesting differences between (IOpt#2) and (IOpt#1) are (i) the Pareto op-

timized current has a higher frequency and (ii) it does not make the battery to linger on

the low voltage plateau as much as the first optimal current does for maximizing Fisher

identifiability. Significant improvements in Fisher identifiability are obtained for almost

all parameters with the Pareto formulation compared to the single-objective formulation,
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reflecting the more generous bounds on the optimization variables employed in the Pareto

formulation.
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Figure 4.8: One cycle of the Pareto optimization result

4.6 Conclusion

The work presented in this chapter includes the derivation and simulation of an

optimized periodic current trajectory to maximize identifiability of the states and param-

eters of the 0D electrochemical Li-S battery model. The current trajectory is designed to

maximize the Fisher identifiability of the total set of 19 parameters of the model. With a

cycling time of eight hours, the parameters estimation variances are reduced by a signifi-

cant amount using the optimal periodic current input.

One important note is that the precipitation parameters such as the precipitated mass

mSp do not directly affect the output battery voltage V . Instead, the impact of precipita-

tion on this output voltage takes place indirectly, through other species dynamics. This
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causes the observability of the precipitation parameters to be fairly weak. These param-

eters are more involved in the dynamics of the battery on its low voltage plateau region.

Perhaps this explains the fact that the single-objective optimal battery input trajectory

lingers in the low plateau region.
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Table 4.5: Normalized variances for 19 parameters and initial states of the Li-S battery
model for non-optimized vs optimized currents.

Params.
Periodic ± 3 [A] Periodic Single-Obj.

Change
CRLB

m0
s8

2.45E-07 1.21E-07 ↓

m0
s2−8

0.0103 0.001 ↓

m0
s2−6

0.093 0.014 ↓

m0
s2−4

13.956 4.518 ↓

m0
s2− 1.43E10 3.68E09 ↓

E0
1 6.56E-09 2.73E-09 ↓

E0
2 3.13E-07 1.17E-07 ↓

E0
3 1.09E-07 3.33E-08 ↓

E0
4 3.72E-08 2.61E-08 ↓

i01 5.79E-05 2.29E-05 ↓

i02 2.805 0.328 ↓

i03 1.212 0.238 ↓

i04 0.251 0.221 ↓

Kp 8.13E-07 1.52E-07 ↓

Ssat 3.62E04 9.45E03 ↓

m0
Sp

2.68E09 8.79E08 ↓

v 5.739 0.752 ↓

ω 2.22E-04 9.44E-04 ↑

γ 0.0018 7.96E-04 ↓
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Table 4.6: Normalized variances for 19 parameters and initial states of the Li-S battery
model for single-objective vs Pareto optimized currents.

Params.
Periodic Single-Obj. Periodic Pareto-Obj.

Change
CRLB

m0
s8

1.21E-07 5.16E-08 ↓

m0
s2−8

0.001 4.28E-04 ↓

m0
s2−6

0.014 0.0035 ↓

m0
s2−4

4.518 0.9105 ↓

m0
s2− 3.68E09 6.31E08 ↓

E0
1 2.73E-09 2.37E-09 ↓

E0
2 1.17E-07 4.09E-08 ↓

E0
3 3.33E-08 1.80E-08 ↓

E0
4 2.61E-08 4.09E-08 ↑

i01 2.29E-05 4.79E-06 ↓

i02 0.328 0.066 ↓

i03 0.238 0.0491 ↓

i04 0.221 0.0581 ↓

Kp 1.52E-07 5.78E-08 ↓

Ssat 9.45E03 2.73E03 ↓

m0
Sp

8.79E08 2.93E08 ↓

v 0.752 0.181 ↓

ω 9.44E-04 3.42E-04 ↓

γ 7.96E-04 4.17E-04 ↓
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Chapter 5: On the Structure of the Optimal Input for Maximizing Lithium-

Ion Battery Thermal Parameter Identifiability

5.1 Overview

This chapter investigates input trajectory optimization for parameter identifiability

in a lithium-ion battery temperature cycling experiment. Such optimal experimental de-

sign can improve battery parameterization speeds and accuracies significantly. These po-

tential improvements are well-established in the literature for thermal, electrochemical,

and multi-physics battery models. However, to the best of the author’s knowledge, the

fundamental structure of the resulting optimal test trajectories is relatively less-explored.

The chapter examines the problem of optimizing the trajectory of thermal chamber tem-

perature versus time in a lithium-ion battery temperature cycling test. This is posed as a

Pareto-optimal control problem, with the competing objectives being the maximization of

the Fisher identifiability of the battery’s thermal time constant versus the minimization of

the L2 norm of the control input. Pontryagin analysis reveals that the optimal trajectory

is a switching trajectory constrained within battery cell temperature bounds, where the

rate at which the solution proceeds from one bound to another is governed by the Pareto

weight. Solving this problem numerically, using dynamic programming, supports these
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insights from Pontryagin analysis.

From a high-level, fundamental perspective, this chapter represents the conclusion

of a progression of key ideas pertaining to multi-compartment dynamic system parame-

ter identifiability. Specifically, while Chapters 2, 3, and 4 illustrated the importance of

identifiability analysis, the degree to which poor input shaping can worsen identifiability,

and the degree to which optimal input shaping can improve identifiability, the goal in this

chapter is to utilize a fundamental tool from optimal control theory to better understand

the structure of the identifiability-optimizing input profile for a given dynamic system. To

the best of the author’s knowledge, the use of Pontryagin methods to perform this analysis

is novel, particularly in the context of optimal battery cycling. Therefore, in a sense, this

chapter represents a progression from the application of identifiability analysis to prati-

cal research problems on the one hand to the pursuit of new fundamental mathematical

frameworks for identifiability analysis on the other hand. 1

5.2 Introduction

This chapter examines the thermal cycling of a lithium-ion battery. This is a well-

established test process where a battery cell is placed in a thermal chamber that varies

ambient temperature and measures response signals such as cell voltage, surface tem-

perature, core temperature, etc. Thermal cycling is typically used for estimating battery

parameters such as entropy coefficients and thermal time constants. Such estimation is

typically performed offline, in a laboratory, as a precursor to the design of online model-

1This work already appears as a peer-reviewed publication in the Proceedings of the 2020 American
Control Conference.
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based battery management systems.

The literature already provides models of the temperature dynamics of lithium-ion

batteries. This includes work by Guo et al. [140] and Kumaresan et al. [141]. Studies by

Maleki et al. [142], Tian et al. [143], and others already parameterize battery models from

experimental data. Moreover, work by researchers including Marcicki et al. [144] already

uses experimentally-parameterized models for online battery estimation/control applica-

tions. Beneath these successes lies a fundamental challenge, evident from references

including Schmidt et al. [145]: lithium-ion battery parameters are not always identifiable

from experimental data. Tools such as sensitivity analysis and Fisher information analy-

sis can furnish analytic bounds on battery parameter identifiability. See, for example, re-

search by: Sharma and Fathy [146]; Zhang et al. [147]; and Lin and Stefanopoulou [148].

Moreover, one can optimize battery test protocols in order to improve parameter identifi-

ability. Examples of such optimization include work by Forman et al. [10], Rothenberger

et al. [12], Mendoza et al. [14], and Park et al. [15].

In summary, there is a growing literature on the optimization of battery experiments

for parameter identifiability. Such optimization has the potential to improve parameter es-

timation speeds and accuracies considerably, leading to better utilization of costly labora-

tory test setups and time. These potential benefits are well-established in the literature for

thermal, electrochemical, and multi-physics battery models. However, to the best of the

author’s knowledge, fundamental insights into the structure of information-maximizing

battery test protocols are still relatively scarce in the literature.

The goal of this research is to address the above gap, in the specific context of

thermal battery cycling. The chapter presents an analytic examination of the structure
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of the solution to a battery thermal cycle optimization problem. It poses a thermal cy-

cle optimization problem where the competing Pareto objectives are Fisher identifiability

optimization and control input minimization. Battery cell temperature is constrained in

this problem formulation, reflecting the need to avoid undesirable phenomena such as

thermal runaway. The chapter examines this problem using Pontryagin methods for two

scenarios, one where the battery cell temperature constraint is active, and one where this

constraint is inactive. The chapter follows the approach presented in Geering [149, 150]

when analyzing the constrained solution arc. This analysis reveals that the optimal so-

lution trajectory has a switching structure. The chapter observes this switching structure

numerically, using a dynamic programming study. Finally, the chapter end by summariz-

ing the conclusions of this work.

5.3 Problem Formulation

Thermal cycling experiments can be used for estimating the parameters governing a

battery cell’s thermal behavior, such as the cell’s thermal time constant. They can also be

used for estimating the parameters governing the coupling between the cell’s thermal and

electrochemical behavior, such as the cell’s ohmic resistance and entropy coefficient. The

entropy coefficient of a lithium-ion battery quantifies the sensitivity of its open-circuit

voltage with respect to its underlying temperature, and has a direct impact on the rate of

reversible heat generation during charge/discharge. For simplicity, the focus of this re-

search is on estimating a parameter governing the thermal behavior of a battery - namely,

its thermal time constant. However, the chapter begins this analysis with a general model
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that can be used for both thermal and thermo-electrochemical parameter identification.

Specifically, consider the following first-order lumped-parameter model of lithium-ion

battery cell temperature, by Bernardi et al. [151]:

dT

dt
=

hA

mCp
(Tamb − T ) +

C(SOC)

mCp
IT +

R

mCp
I2 (5.1)

The above model captures four key phenomena. First, the term mCp
dT
dt

represents

the battery cell’s thermal energy storage ability, where T ,m, andCp denote the cell’s tem-

perature, mass, and specific heat capacity, respectively. Second, the term hA(Tamb − T )

represents convective heat transfer between the battery cell and the surrounding thermal

chamber, where h, A, and Tamb denote the convection heat transfer coefficient, convec-

tion area, and chamber temperature, respectively. Third, the term C(SOC)IT represents

reversible heat generation due to entropic effects. Fourth, irreversible heat generation is

represented by I2R, where R is the cell’s Ohmic resistance. Nominal parameters for this

model, corresponding to a commercial 26650-sized LiFePO4 battery cell, are taken from

previous research by Mendoza et al. [113] and shown in Table (5.1) below.

This research examines the Fisher identifiability of the lumped thermal parameter

hA/mCp in a thermal cycling experiment. Thermal cycling experiments involve setting

the battery charge/discharge current, I , to zero, and adjusting the ambient chamber tem-

perature, Tamb as a controllable quantity. One can then measure either the battery cell

temperature, T , or open-circuit voltage, or both. Given our focus on estimating the cell’s

thermal time constant, we choose cell temperature, T , as a measured output. This leads
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Table 5.1: Battery thermal model parameters

Parameter values, Unit

h 13.45 [J/s.m2K]

A 0.004 [m2]

m 50e-3 [kg]

Cp 1000 [J/Kg.k]

I 0 [Amp]

R 2.21e-2 [Ω]

to the state-space model below:

ẋ1(t) = u

ẋ2(t) = θ(x1(t)− x2(t))

y(t) = x2(t),

(5.2)

where θ represents thermal parameter of the battery (hA/mCp). This parameter’s recip-

rocal is the time constant of the battery temperature dynamics. The state variables x1(t)

and x2(t) denote the temperatures Tamb and T , respectively, and the output y(t) denotes

the battery temperature measurement. The work in this research treats the rate of change

of ambient temperature as the input variable u(t) in order to explore physically feasible

battery thermal cycling tests with reasonable values of this rate.

To optimize the battery thermal test trajectory for identifiability, one must first com-
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pute the sensitivity of output temperature measurement to the parameter θ. We use Eq.

(5.2) to perform this sensitivity analysis. To derive an equation for the desired sensitivity,

the two states equations are solved assuming given initial temperatures x1,0 and x2,0 as

follows:

x1(t) = (x1,0) +

∫ t

0

u(τ)dτ

x2(t) = (x2,0) e
−θt + (x1,0)

∫ t

0

θx1(τ) e−θ(t−τ)dτ

y(t) = x2(t)

s(t) =
∂y(t)

∂θ

= −t(x2,0) e−θt + (x1,0)

∫ t

0

x1(τ) e−θ(t−τ)dτ

+ (x1,0)

∫ t

0

−θ(t− τ)x1(τ) e−θ(t−τ)dτ

(5.3)

Given this sensitivity analysis, one can use Fisher analysis to determine the theo-

retical Cramér-Rao bound on the accuracy with which the parameter θ can be estimated.

In performing this Fisher analysis, we assume that the model in Eq. (5.2) provides an

accurate representation of the true battery temperature dynamics. Moreover, we assume

that the output temperature, y(t), is measured at discrete sampling instants separated by

a fixed sampling time δt. Noise can affect these output measurements, and an assumed

noise model is needed in order to perform Fisher information analysis. In this work,

we assume that this measurement noise is a zero-mean, white, Gaussian process with a

variance σ2. Given these assumptions, one can employ Fisher information analysis to de-
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termine the best-achievable battery parameter estimation accuracy, assuming an unbiased

estimator [137],[152]. The Fisher information matrix in this case is a scalar since there is

only one unknown parameter in Eq. (5.2). It is given by:

F =
1

σ2

N∑
k=1

s(kδt)s(kδt)T , (5.4)

where N is the number of measurements of the battery temperature and s(t) is a vec-

tor containing the sensitivities of the model’s output, y(t), to small perturbations in the

parameters.

The Fisher information metric in Eq. (5.4) can be approximated as an integral with

respect to time for sufficiently small sampling time δt.

F ≈ 1

σ2δt

∫ Nδt

0

s(τ)s(τ)Tdτ (5.5)

Since there is only one sensitivity equation corresponding to one parameter per-

turbation in this work, Eq. (5.5) can be written in form of a scalar sensitivity function:

F ≈ 1

σ2δt

∫ Nδt

0

s(τ)2dτ (5.6)

where s(t) is the sensitivity as a function of time derived in Eq. (5.3). Given this approx-

imate expression for Fisher information, one can formulate the following test trajectory
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optimization problem:

min
u

∫ T

0

−s2 + αu2dt

s.t. ẋ1 = u

ẋ2 = θ(x1 − x2)

x(0) : Given

Tmin ≤ x2 ≤ Tmax

(5.7)

The optimization objective is a Pareto-weighted summation of two competing ob-

jectives, namely, maximizing Fisher information and minimizing the L2 norm of the con-

trol input, with α serving as the Pareto weight. Penalizing the control input is important

because of the physical limitations on the rate at which a thermal chamber can adjust its

temperature versus time. Moreover, the imposition of upper and lower bounds on cham-

ber temperature is important for battery safety. Constraining chamber temperature is rel-

atively less critical considering the fact that the range of operating chamber temperatures

is typically far in excess of battery safety limits.

In the standard formulation of an optimal control problem, the optimization objec-

tive is assumed to be an explicit function of the state and input trajectories versus time

[153]. However, in the Eq.(5.7), the objective function is not in this standard form. In

particular, Eq. (5.3) shows that the sensitivity, s(t) is not an explicit function of states and

input. Therefore, there is a need to introduce the sensitivity, s(t) into the optimal control
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problem as a new state variable, as shown in Eq.( 5.8).

s(t) + tx2(t) =

∫ t

0

(1 + τθ)x1(τ)e−θ(t−τ)dτ

ṡ(t) + tẋ2(t) + x2(t) = (1 + θt)x1(t)− θ(s(t) + tx2(t))

ṡ(t) = x1(t)− x2(t)− θs(t)

(5.8)

Given the above state equation for the sensitivity variable, the optimal control prob-

lem can now be written as follows:

min
u

∫ T

0

−x23 + αu2dt

s.t. ẋ1 = u

ẋ2 = θ(x1 − x2)

ẋ3 = x1 − x2 − θx3

x(0) : Given

Tmin ≤ x2 ≤ Tmax

(5.9)

The main goal of this research is to use Pontryagin analysis to investigate the struc-

ture of the solution to this trajectory optimization problem.
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5.4 Pontryagin Analysis for Optimal Input Design

This section applies Pontryagin analysis to: (i) the scenario where the constraints

on battery cell temperature are inactive; (ii) the scenario where one of these constraints

(either the upper or lower cell temperature bound) ia active; and (iii) the transitions be-

tween these two solution arcs. When the battery cell temperature constraints are inactive,

the Hamiltonian is given by:

H = −x23 + αu2 + λ1u+ λ2θ(x1 − x2)

+ λ3(x1 − x2 − θx3)
(5.10)

Differentiating this Hamiltonian with respect to the three state variables furnishes the

following co-state equations:

λ̇1 = −Hx1 = −λ2θ − λ3

λ̇2 = −Hx2 = λ2θ + λ3

λ̇3 = −Hx3 = 2x3 + λ3θ

(5.11)

The optimal battery temperature trajectory must minimize the above Hamiltonian

with respect to the control input, u(t), at every instant in time. Because the Pareto weight,

α, is positive by construction of the multi-objective optimization problem, the Hamilto-

nian is convex with respect to u(t). Therefore, an interior optimum exists, corresponding
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to the condition ∂H/∂u = 0, i.e.,

u∗ = − λ1
2α

(5.12)

Substituting the above optimal control input into the state equations couples the

state and co-state dynamics. The end result is an autonomous linear system of state and

co-state equations, as shown below:

ẋ
λ̇

 =



0 0 0 −1
2α

0 0

θ −θ 0 0 0 0

1 −1 −θ 0 0 0

0 0 0 0 −θ −1

0 0 0 0 θ 1

0 0 2 0 0 θ



[
x
λ

]
(5.13)

where x(t) and λ(t) are the vectors of state and co-state variables, respectively. The

characteristic equation corresponding to these state and co-state dynamics can be written

as follows, in terms of the Laplace variable s:

s6 − 2θ2s4 + (θ4 − 1

α
)s2 = 0 (5.14)

The above characteristic equation is unstable for all possible (i.e., finite and positive) val-

ues of the Pareto weight, α. Two of the eigenvalues of this characteristic equation are zero

regardless of α, and one can show using a parametric root locus plot that either one or

two of the four remaining eigenvalues will exhibit instability, depending on the value of

α. Moreover, the above autonomous dynamic system is observable from the state variable
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x2: a fact that can be shown by computing the system’s observability test matrix with x2

as the output. This means that the trajectories of all of this autonomous system’s state

variables can be expressed in terms of x2(t) and its time derivatives. Therefore, if the

above autonomous system’s initial condition excites its underlying instability, the time

history of x2(t) will contain an unstable, exponentially growing component. Together,

these observations indicate that the battery cell temperature bounds cannot remain in-

active indefinitely, for arbitrary initial conditions of the above system’s state and co-state

variables. The optimal cell temperature trajectory migrates from one bound to another at a

rate that depends on the eigenvalues of the above autonomous system of equations, which

are in turn dependent on the Pareto weight α. This concludes our analysis of the scenario

where the battery cell temperature bounds are inactive. When one of the bounds is active,

Pontryagin analysis can proceed as follows (see references such as Geering [149] for more

details). Let the battery cell temperature be constrained as follows: x2 ∈ [Tmin, Tmax].

The upper and lower bounds on this temperature are mutually exclusive. Therefore, only

one of these bounds can be active at a given moment in time. Without loss of gener-

ality, consider the case where the upper bound is active. Then the constraint function

G(x) = x2 − T must equal zero, where T = Tmax is a constant. The Hamiltonian

must now be augmented with the lowest-order time derivative of this constraint function

in which the input variable, u(t), appears explicitly. Two derivatives of the constraint
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function are needed for this purpose, as shown below:

G(x) = x2 − T

d

dt
G(x) = ẋ2

= θ(x1 − x2)

d

dt
(
d

dt
G(x)) = θẋ1 − θẋ2

= uθ − θ2(x1 − x2)

(5.15)

The Hamiltonian must now be augmented with the above second derivative of the

constraint function, using a non-negative Lagrange multiplier µ2(t). Based on this aug-
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mented Hamiltonian, a new set of Pontryagin optimallity conditions arises:

H̄ = −x23 + αu2 + λ1u+ λ2θ(x1 − x2)

+ λ3(x1 − x2 − θx3) + µ2(uθ − θ2(x1 − x2))

u∗ =
−1

2α
(λ1 + µ2θ), µ2(t) ≥ 0

ẋ1 = u

ẋ2 = θ(x1 − x2)

ẋ3 = x1 − x2 − θx3

λ̇1 = −Hx1 + µ2
∂

∂x1
(uθ − θ2(x1 − x2))

= −λ2θ − λ3 − µ2θ
2

λ̇2 = −Hx2 + µ2
∂

∂x2
(uθ − θ2(x1 − x2))

= λ2θ + λ3 + µ2θ
2

λ̇3 = −Hx3 + µ2
∂

∂x3
(uθ − θ2(x1 − x2))

= 2x3 + λ3θ

(5.16)

If the battery cell temperature constraint is active for a nonzero amount of time, then

x2(t) must be constant over that duration of time. This implies that ẋ2 equals zero for this

duration of time. Furthermore, because ẋ2 = θ(x1 − x2), the chamber temperature x1(t)

must also be constant and equal to the temperature bound during the above finite duration
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of time. This, in turn, implies that ẋ1 must equal zero. Therefore, the optimal control

input, u∗(t), must equal zero. These facts simplify the above Pontryagin conditions as

follows:

x2 = Tmax

u∗ = 0

µ2 =
−1

θ
λ1

ẋ1 = u∗ = 0

ẋ2 = θ(x1 − x2) = 0

ẋ3 = −θx3

λ̇1 = −λ2θ − λ3 + λ1θ

λ̇2 = λ2θ + λ3 − λ1θ

λ̇3 = 2x3 + λ3θ

(5.17)

It is interesting to examine the value, from an information-theoretic perspective, of

this solution arc. Suppose the solution trajectory enters the arc at some time t = t1, and

without loss of generality, let t1 = 0 for simplicity. Then the trajectory of x3(t), over the

course of this constrained solution arc, is given by:

x3(t) = x3(0)e−θt (5.18)
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Moreover, recall that our (approximate) expression for Fisher information is proportional

to the integral of −x23 with respect to time. Together with Eq. (5.18), this implies that

the total amount of (Fisher) information that can be collected over the course of this

constrained solution arc is bounded, regardless of how long the solution lingers on this

arc. Moreover, the rate at which (Fisher) information is gathered by lingering on this

solution arc diminishes exponentially with time.

This concludes our analysis of the state-constrained solution arc. Next, we examine

the transitions between the above two solution arcs. At least three observations can be

made regarding these transitions. First, in order for the state-constrained solution arc to

persist for a nonzero amount of time, it is necessary for both the battery cell temperature,

x2(t) and the thermal chamber temperature x1(t) to hit the corresponding temperature

bound (Tmin or Tmax) at the same moment in time. Otherwise, the Pontryagin conditions

in Eq. (5.17) are impossible to fulfill. Second, departures from the constrained solution

arc occur when the Lagrange multiplier, µ2(t), is no longer greater than or equal to zero.

This implies that such departures occur when λ1 is no longer less than or equal to zero,

since µ2 = −λ/θ (Eq. (5.17)). The time history of λ2(t) can be determined analytically

over the course of the constrained solution arc. Plugging Eq. (5.18) into the differential
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equation for λ3 and solving for λ3 gives:

λ3(t) = λ3(0)eθt +

∫ t

0

2x3(τ)eθ(t−τ)dτ

= λ3(0)eθt + 2

∫ t

0

x3(0)e−θτeθ(t−τ)dτ

= λ3(0)eθt − 1

θ
x3(0)(e−θt − eθt)

(5.19)

Eq. (5.17) shows that λ̇1 + λ̇2 = 0. One can define two variables z1 = λ1 + λ2 and

z2 = λ1 − λ2, and solve for z2 as follow:

z2 = λ1 − λ2

ż2 = 2θλ1 − 2θλ2 − 2λ3

= 2θz2 − 2λ3

z2(t) = e2θtz2(0)− 2

∫ t

0

λ3(τ)e2θ(t−τ)dτ

(5.20)
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Substituting Eq. (5.19) into the above expression gives us the following equation:

z2(t) = z2(0)e2θt

− 2e2θt
∫ t

0

λ3(0)e−θτ − 1

θ
x3(0)(e−3θτ − e−θτ ) dτ

= z2(0)e2θt − 2e2θt[
−1

θ
λ3(0)(e−θt − 1)+

1

3θ2
x3(0)(e−3θt − 1)− 1

θ2
x3(0)(e−θt − 1)]

(5.21)

Equation (5.21) provides a pathway for determining the time history of the co-state

variable λ1. Specifically, λ1 = 1
2
(z1 + z2), where z1 is constant throughout the duration

of the state-constrained solution arc. Departure from this solution arc occurs when λ1 is

no longer zero or negative.

Our third and final observation regarding the transitions between the unconstrained

and constrained solution arcs pertains to the instantaneous co-state jumps associated with

these transitions. Consider a time window [t1, t2] such that one of the battery cell tem-

perature bounds is active during this window, but inactive before and after this window.

Then the three state variables – namely, chamber temperature, battery temperature, and

sensitivity x3(t) = s(t) are continuous but not necessarily differentiable at t1 and t2. In

contrast, however, the co-state variables may undergo jump discontinuities at these two

moments in time. Without loss of generality, consider the moment in time t = t2. Then
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there exist two non-negative Lagrange multipliers, µ0 and µ1, such that:

−→
λ ∗(t2−) =

−→
λ ∗(t2+) +

L−1∑
i=0

µ∗i
−→
∇xG

(i)(x∗(t2), t2)

⇒
−→
λ ∗(t2−) =

−→
λ ∗(t2+) + µ∗0

0

1

+ µ∗1

 θ

−θ


⇒λ∗1(t2+) = λ∗1(t2−)− µ∗1θ,

λ∗2(t2+) = λ∗2(t2−)− µ∗0 + µ∗1θ,

λ∗3(t2+) = λ∗3(t2−)

(5.22)

The above results show that the third Lagrange multiplier, λ3, does not experience

a jump discontinuity when temperature constraint activity changes. Moreover, the fact

that the Lagrange multiplier λ1, switches from a negative value to a positive value when

the upper battery temperature bound becomes inactive suggests that µ1 equals zero at that

particular moment of transition.

Altogether, the above analyses point to a switching optimal thermal battery testing

procedure. The policy switches between two linear systems, both of them dynamically

unstable. When the battery cell temperature constraints are inactive, the rate at which

the optimal policy navigates the corresponding interior-optimal but unstable solution arc

depends on the Pareto weight, α. When battery temperature hits either an upper or lower

bound, an instantaneous co-state jump occurs. In order for the battery to remain for a

nonzero amount of time on either the upper or lower temperature bound, the temperatures
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of both the test chamber and battery cell must be equal when that bound is hit. Only a

finite amount of additional (Fisher) information can be gathered while one of the battery

cell temperature bounds is active, regardless of how long the battery cell lingers at that

bound. Finally, departure from a state-constrained solution arc occurs when the first co-

state variable, λ1, switches sign. The dynamics of this co-state variable, over the course

of the constrained solution arc, are unstable.

5.5 Numerical Solution of the Battery Test Trajectory Optimization Prob-

lem

This section presents a dynamic programming-based numerical solution of the bat-

tery test trajectory optimization problem in Eq. (5.9). The only constraint applied for this

problem is the constraint on cell temperature x2 ∈ [−10, 50] ◦ C. The mesh size for the

ambient temperature x1 is intentionally bigger than the limits of the battery temperature

to make sure that the DP solution is not affected by a artificial numerical constraint on

x1. Therefore x1 ∈ [−15, 55] ◦ C. Also u ∈ [−3/60, 3/60] ◦ C/sec. The time step for

executing dynamic programming is 60 seconds which is 24% of the battery’s thermal time

constant θ−1.

The Pontryagin analysis presented earlier suggests that the solution for u(t) is a

switching optimal solution that makes the cell temperature migrate from one boundary

on temperature to another. The DP results in Fig. (5.1) are consistent with this analysis,

showing an optimal solution trajectory that oscillates between the upper and lower battery

cell temperature bounds. The majority of the test cycle time involves switching between
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Figure 5.1: DP for α = 106.

these temperature bounds as opposed to adhering to one of the bounds: an observation

that is consistent with the limited information-theoretic value of adhering to these bounds.

This is true for different values of the Pareto weight, as seen in Fig. (1-2). Changing the

Pareto weight, α, has an impact on the resulting solution trajectory, but this impact is fairly

small, at least for values of α in the range of 103 to 106, as shown in Fig. (3). Increasing

the value of α increases the optimization cost/penalty associated with control actuation.

Fig. (3) shows a slight slowdown of the thermal cycling trajectory in association with this

heavier penalization of control actuation.
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Figure 5.2: DP for α = 1000.

Figure 5.3: Comparing DP results for two different α = 106 and α = 1000.
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5.6 Conclusion

This chapter presents a Pontryagin-based analysis to obtain insights into the struc-

ture of the optimal input solution trajectory for maximizing Fisher identifiability of lithium

ion battery thermal parameter. Our analysis reveals that the optimal solution trajectory

switches between two sets of solution arcs, where the battery cell temperature bounds are

either active or inactive. Both sets of solution arcs are governed by unstable linear and

time-invariant dynamics. Moreover, the constrained solution arc can only generate a finite

additional amount of (Fisher) information, regardless of how long the test lingers on this

solution arc.
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Chapter 6: The Dissertation’s Conclusions and Outcomes

In this chapter we summarize the main conclusions and results from five bodies

of work in this dissertation for analysing and optimizing input trajectories for parameter

identifiability in multi-compartment dynamic system models. This dissertation focuses

on the following questions for biomedical applications and electrochemical batteries: (i)

How accurately can one estimate the state variables and parameters of a dynamic system

from input/output data? (ii) How does the value of the input to a dynamic system impact

its observability and/or identifiability? (iii) What is the structure and shape of the optimal

input for maximizing identifiability?

The research in this dissertation builds on insights from the existing literature on

practical identifiability analysis. The focus of this dissertation is on Fisher Information

Matrix and Cramér-Rao theoretical bounds on the best-achievable estimation accuracy.

Particularly, the dissertation uses the Pontryagin Minimum Principle method to gain in-

sights into the trajectory of the optimized input for maximizing identifiability for the first

time in the literature. From a fundamental perspective, the main contributions of this

work are threefold:

• First, Fisher analysis helps show that the parameter identifiability can be prob-

lematic for many dynamic systems. While this identifiability challenge is well-
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described in the literature, its implications within contexts such as “third lung”

gas exchange dynamics, drug-resistant cancer dynamics, and lithium-sulfur battery

electrochemical dynamics, are not well-characterized. The dissertation examines

theoretical bounds on parameter identifiability of (i) the CO2 gas transport in the

“thirs lung” ventilation for a hypercarbic test animal along the design and devel-

opment of the data aquisition and control unit for the “third lung” setup [154], (ii)

drug-resistant cancerous cells initial population and growth rates [114, 152], (iii)

and a novel contribution to the lithium-sulfur electrochemical model parameters

and initial states.

• Second, the above theoretical identifiability bounds are input-dependent. Therefore,

the precise shape of a system’s input trajectory has the potential to either improve

or worsen identifiability substantially. Using Fisher analysis, one can analyze the

specific input conditions for which identifiability is particularly poor, for problems

such as drug resistance estimation in cancerous tumors [155].

• Third, knowing that identifiability in many dynamic systems is very poor, and at the

same time very strongly input dependent, we examine optimizing the identifiability

of dynamic systems parameters. By analysing the optimization problem we try to

figure out conditions under which the shape of input can be improved, and what the

structure of that input can be for identifiability. To fulfill this contribution, for the

first time in literature, we examine the structure of optimal input trajectory using the

Pontryagin minimum principle for maximizing thermal parameter identifiability of

a lithium-ion battery[18].
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Global sensitivity methods for design of experiments in lithium-ion battery context.
arXiv preprint arXiv:2004.09668, 2020.

[18] Mahsa Doosthosseini and Hosam K Fathy. On the structure of the optimal in-
put for maximizing lithium-ion battery thermal parameter identifiability. In 2020
American Control Conference (ACC), pages 379–385. IEEE, 2020.

[19] William S Levine. The control handbook. CRC press, 1996.

[20] Thomas L Vincent and Walter J Grantham. Nonlinear and optimal control systems.
John Wiley & Sons, 1997.

[21] Hongyu Miao, Xiaohua Xia, Alan S Perelson, and Hulin Wu. On identifiability
of nonlinear ode models and applications in viral dynamics. SIAM review, 53(1):
3–39, 2011.

[22] Milena Anguelova. Observability and identifiability of nonlinear systems with ap-
plications in biology. Chalmers Tekniska Hogskola (Sweden), 2007.

153



[23] Claudio Cobelli and Giorgio Romanin-Jacur. Controllability, observability and
structural identifiability of multi input and multi output biological compartmental
systems. IEEE Transactions on Biomedical Engineering, (2):93–100, 1976.
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