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Chapter 1

Introduction

1.1 Mathematical Models in Finance

Stochastic processes are at the core of asset price models in finance. These

processes can be classified into two broad categories based on their sample paths:

the continuous processes and the discontinuous processes. In the following section,

we will describe the evolution of stochastic processes used in finance, highlighting

key differences between them. We will especially focus on characteristics of these

processes which are important for asset price models.

1.1.1 Continuous Models

The earliest person credited with using advanced mathematics to model the

value of a financial asset is Louis Bachelier in his 1900 thesis, [1] (see [2] for an

English translation). In this paper, Bachelier used Brownian motion as the source

of uncertainty in the model and assumed that stock prices St were given by

St = S0 + σWt,

where Wt is a Brownian motion. Brownian motion continues to be one of the

fundamental building blocks in financial modeling and option pricing in general.

One obvious drawback to Bachelier’s model is that asset prices can (and almost
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surely will) go negative in time. In a world of limited-liability companies, this is

inappropriate. Subsequent models correct this error.

The most well known and popular model in mathematical finance is the Black-

Scholes model. In the Black-Scholes model, Bachelier’s model is modified so that

the log returns are normally distributed, instead of the price changes. In this model,

the asset price at time t is given by

St = S0e
µt+σWt , (1.1)

where once again Wt is a Brownian motion.

This model was published by Black and Scholes in [3] and Merton in [4]. In

these papers, Black, Scholes, and Merton develop several fundamental ideas, the

most important being a method of continuous trading by which an option payoff

can be perfectly replicated. This technique, known as delta-hedging, is still used

today by practitioners all over the world (see [5]). Merton and Scholes won the Nobel

Prize in Economics for this work in 1997 (Black had passed away at the time).

Under this model, the price of a European call option C with strike K and

expiration time T is given by the formula

C = S0N(d1)−Ke−rTN(d2),

where

d1 =
log(S0

K
) + (r + σ2

2
)T

σ
√
T

d2 =
log(S0

K
) + (r − σ2

2
)T

σ
√
T

.
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Here r is the risk-free interest rate, and the function N is the cumulative distribution

function of a standard normal distribution.

One can see that there are several inputs to the Black-Scholes formula. These

include the current stock price S0, the strike K, the time to expiration T , the

current interest rate r, and the volatility of the process, σ. Of these, S0, K, and

T are unambiguous, and r can be reasonably inferred from interest rates such as

LIBOR. However the volatility, σ, is unobservable. Because of this, traders will

discuss option prices in terms of volatility, using the Black-Scholes formula as a map

from volatility to price. Similarly, one can take option prices as an input, and invert

the Black-Scholes formula to find what is known as the implied volatility. This is

the volatility parameter σ which, when used in the Black-Scholes formula, gives the

observed option price.

It is assumed in the Black-Scholes formulation that volatility for a given stock is

constant and unchanging. However, if we look at option prices from actual markets,

we observe that the implied volatility is different as strike and maturity change.

This is called the volatility smile or volatility surface. An example of the volatility

surface can be seen in Figure 1.1. More information can be found in [6].

The curvature of the implied volatility surface increased markedly after the

stock market crash of 1987 (see [7]), leading to efforts to find models which allowed

for this phenomenon. There are two ways in which this has been done. The first way

to do this is through a local volatility process. The second way is to allow jumps in

prices.

The local volatility process was developed in the early 1990s and allows one

3



0.4
0.6

0.8

1000
1200

1400
1600

1800

0.15

0.2

0.25

0.3

0.35

0.4

Time

The Volatility Surface

Strike

Im
pl

ie
d 

Vo
la

til
iti

es

Figure 1.1: This figure shows the implied volatility surface for options
on the S&P 500 index on January 3, 2012. One can observe that the
implied volatility is higher for lower strikes and shorter expirations, a
common feature of the volatility surface for equity options.

4



to fit the volatility surface exactly. This is accomplished by slightly modifying the

Black-Scholes formula by making volatility a deterministic function of stock level

and time. Here the model satisfies the SDE

dSt
St

= µ dt+ σ(t, St) dWt.

In [8] and [9], Dupire, Derman, and Kani showed that if σ satisfies certain

conditions, this model will exactly replicate the option volatility surface. To denote

this volatility, we let C(K,T ) represent the price of a call option with strike K and

expiration time T , data which is available from the market. They then showed that

volatility σ should satisfy

∂C

∂T
(K,T ) =

1

2
σ(K,T )K2 ∂

2C

∂K2
(K,T )− rK ∂C

∂K
(K,T ).

Local volatility models successfully fit the option volatility surface, but they

are not perfect. One issue is that these models assume that the stock price process

is continuous, while even a glimpse at a stock chart will show that such an assump-

tion is not warranted. Another issue is that, in theory, this model requires the

parameterization of an entire function from R2 to R, an infinite dimensional prob-

lem. In practice, there will be one parameter for every option trading in the market,

which can number in the hundreds. This leads to difficulties in understanding and

adapting this model for other assets.

1.1.2 Lévy Processes

The second major branch from the Black-Scholes model was the introduction of

jumps in the asset price. Robert Merton was the first person to drop the requirement
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that asset prices move continuously, see [10]. Shortly after the introduction of the

Black-Scholes model, he wrote a paper in which he uses a Poisson process Nt to

model the arrival of jumps, where jump sizes are i.i.d. random variables Yi. In his

model, the stock price is given by

St = S0e
µt+σWt+

∑Nt
i=1 Yi .

One consequence of this model is that we can no longer dynamically hedge

options payoffs, as we could using the Black-Scholes model. This makes the problem

of asset pricing more difficult, because options can no longer be priced using only

the assumption of no arbitrage. However, it is more appealing on a practical level

because continuous trading is impossible and would be prohibitively expensive even

if it were. This leads to many interesting questions about hedging, which is an active

area of research. For an overview, see [11].

We should also note that empirical evidence exists showing the existence of

jumps in the risk-neutral price process. In a continuous model, the price of an out

of the money option with short maturity should be near 0. In contrast, a jump

process can jump into the money more readily, and so higher prices are expected.

By observing the rate at which the price of an out of the money option approaches

0, we can see evidence for the existence of jumps in the price process. This was done

in [12].

Since Merton’s initial paper, a great deal of research has been done to explore

the use of discontinuous processes. Processes which have independent and stationary

increments are the simplest of this type and are called Lévy processes. We will

6



discuss Lévy processes in more detail in Chapter 2, but we discuss a few key aspects

of the theory here.

A major theorem about Lévy processes is the Lévy- Khintchine theorem, which

is given in more detail in equation (2.1.4). This theorem describes the characteristic

function of any Lévy process in terms of three parameters: a drift term, a Brownian

term, and a measure called the Lévy measure. The drift and Brownian term describe

the continuous motion of the process, while the Lévy measure describes the jump

structure. Most Lévy processes used in finance are described in terms of these three

parameters.

One significant advancement which allowed Lévy processes to flourish was

the discovery of Fourier transform methods for option pricing. Recall that the

characteristic function of a process Xt is given by

Ψ(u) = E[eiuXt ],

which is the Fourier transform of the probability measure associated with Xt. The

characteristic function of a Lévy process is readily accessible because of the Lévy-

Khintchine theorem, and so the function Ψ is easily calculated. In 1999, Carr and

Madan showed how to value options when the characteristic equation of the log-price

process is known (see [13]). Lewis developed a similar method in [14]. These methods

use the fast Fourier transform to compute option prices, which allows for extremely

efficient computation. A fast and accurate pricing method is useful because many

times option pricing formulas are used in calibration, which require the pricing

algorithm to be called a large number of times. This theory is summarized in [15].

7



A simple method to construct a Lévy process is to take a continuous Brownian

motion and time change it using an increasing process. This was the method used

by Madan et al. in constructing the variance gamma model, which is a Brownian

motion time-changed by an increasing gamma process (see [16], [17], and [18]).

Other processes constructed in this manner are the normal inverse Gaussian (NIG)

model ([19]) and the generalized hyperbolic (GH) model ([20]).

Another method to construct a Lévy process is by specifying the Lévy measure

directly. This allows one to develop Lévy processes with specific features of interest

in the model, for example finite versus infinite jump activity, and finite or infinite

variation. Examples of Lévy processes of this type are the CGMY model in [21], the

KoBoL model in [22], and the Meixner process in [23]. Another example of this type

is the β-family of Lévy processes, described by Kuznetsov in [24] and [25] for use in

pricing barrier options. A fine source describing these and other Lévy processes is

[26].

Lévy processes and jump models in general do a good job of fitting the volatil-

ity smile for a single maturity, but are not as successful when calibrated to multiple

maturities. Figure 1.2 shows the fit of a simple Lévy process to options with the

same expiration date. One reason Lévy processes can fit the option surface is that

these processes are able to incorporate skewness and kurtosis into the marginal dis-

tribution of stock returns. In contrast, Brownian motion has zero skewness and

excess kurtosis, which is one possible explanation for the volatility smile, see [27].
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1.1.3 Extensions of Lévy Processes

One critique of Lévy processes is that the skewness and kurtosis of the Lévy

process scale deterministically in time. In [28], it was noted that skewness decays

according to 1/
√
t, while kurtosis decays according to 1/t. This is a feature of the

linear nature of the evolution of the characteristic exponent in time. Market data

can be used to show that market option prices have risk neutral distributions which

do not evolve in this manner, see [29] and [30]. All Lévy processes have this charac-

teristic decay, so no amount of modification will produce a Lévy process which fits

the market evolution of marginal distributions.

This observation lead to the use of additive processes in finance. An additive

process is similar to a Lévy process, except that the condition of stationary incre-

ments is dropped. This means that for a sequence of times t0 < t1 < . . . < tn,

the random variables Xt0 , Xt1 − Xt0 , . . . , Xtn − Xtn−1 are independent, but not

necessarily identically distributed. These processes are space homogeneous Markov

processes which are not time homogeneous.

The major class of additive processes used in finance are the Sato processes,

developed in [31]. These processes satisfy the property that

Xt = tγX,

where X is a self decomposable random variable and the equality is in distribution.

The characteristic equation of these processes has a convenient form. If the

characteristic equation of X can be written as

E[eiuX ] = eψ(u),

10



then the characteristic equation of the process Xt is given by

E[eiuXt ] = eψ(utγ). (1.2)

This allows one to use the Fourier option pricing methods discussed previously to

quickly price options and calibrate process of this type.

Another extension of the Lévy process are the local Lévy models. These pro-

cesses are both time and space inhomogeneous and are an extension of the local

volatility models described previously. To form a process of this type, the compen-

sator of a jump process (the Lévy measure, which we will denote Π(dx)) is multiplied

by a speed function, a(St, t). This function plays a role similar to the volatility func-

tion, σ(St, t), in a local volatility model. In [32], it is shown that the speed function

should satisfy the equation

CT + rKCK =

∫ ∞
0

CY Y Y a(Y, T )ψe

(
log(

K

Y
)

)
dY, (1.3)

where C, K, and r have the usual meaning. In this equation, ψe is the exponential

double tail of the Lévy measure, which is given by

ψe(z) =


∫ z
−∞ dx ex

∫ x
−∞Π(u) du if z < 0

∫∞
z

dx ex
∫∞
x

Π(u) du if z > 0

.

These models requires the parameterization of the entire function a : R2 → R.

Like the local volatility models, this model requires an infinite number of parameters,

which in practice reduces to one parameter for every option trading in the market.

The final common extensions are the stochastic volatility models, both with

and without jumps. In these models, the asset price St is no longer a Markov process,

11



but if you include one or more dimensions, the resulting system is Markovian. In

diffusion models of this type, it is usually assumed that

dSt
St

= µ dt+ σt dWt,

where σt is a random process called the volatility process.

To model the volatility, two important factors are usually considered. First,

volatility must be positive; and second, volatility is usually believed to be mean-

reverting. To accomplish this, we set σt = f(yt), where f is a positive function

and yt is a mean reverting process. We note that it is a simple matter to introduce

correlation between the volatility and the asset returns, a desirable feature which is

manifest in markets and is sometimes referred to as volatility clustering (see [33]).

Several models have been proposed for the underlying volatility process yt.

These include modeling yt as geometric Brownian motion in the Hull–White model

in [34] and as a Gaussian Ornstein-Uhlenbeck process in [35].

However, the most influential model is the Heston model in [36]. This model

satisfies the requirement that volatility be positive and mean reverting by setting

the function f(yt) =
√
yt. We then allow yt to follow what has come to be known

as a Cox-Ingersol-Ross (CIR) process, in which yt satisfies the stochastic differential

equation

dyt = κ(η − yt) dt+ v
√
yt dW

(2)
t .

Here η is the long-run average value of yt, while κ is the rate of mean reversion.

W
(2)
t is a second Brownian motion that can be made to correlate to the Brownian

motion in the asset price process. This process is sometimes also called the square

12



root process, because the square root in the last term of this equation forces yt to

remain positive. This model has been extended to allow the parameters η and κ to

be time dependent, for example in [37].

It is also the case that stochastic volatility models can be designed to in-

corporate discontinuities. These stochastic jump models share many of the same

characteristics as their continuous relatives. The simplest and best known model of

this type is the Bates model, see [38]. This model differs from the Heston model by

adding a compound Poisson process Zt to the asset price, so that

dSt
St

= µ dt+ σt dWt + dZt.

The addition of this jump component allows one to fit the volatility surface at short

time periods using the jump parameters, while adjusting the correlation between

asset price and volatility level to introduce a smile at longer maturities.

Of course, more complicated stochastic volatility models can be developed

by allowing the volatility to develop in a discontinuous manner. Barndorff-Nielen

and Shephard have developed a model in [39] in which the uncertainty driving the

volatility is a Lévy process.

Stochastic volatility models are currently the state-of-the-art in financial mod-

eling. However, there are shortcomings with these models as with all of the others.

It can be shown that if the stock price follows a 1-dimensional Markovian process,

than the option surface is arbitrage free (see [40]). Stochastic volatility models are

2-dimensional Markov processes, and so there is unnecessary dimensionality in these

models.

13
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Figure 1.3: This figure gives an overview of common stochastic processes
used in finance. Continuous processes are found on the top line, while
discontinuous processes form the bottom line. The complexity of the
process also increases from left to right.

For further information on stochastic processes used in finance, we refer the

reader to the excellent summary in [41]. Figure 1.3 also shows a convenient way to

observe the different types of models currently in use.

1.2 Dissertation Subject

In this dissertation, we will define a stochastic process that has previously not

been used in financial modeling. This process, which we call the Hunt variance

gamma process, is a one dimensional Markov process which is spatially inhomoge-

neous and temporally homogeneous. Its closest analog is the Sato process, which

has the opposite characteristic of being spatially homogeneous while being time-

14



inhomogeneous. Figure 1.4 describes the mathematical relationship between Lévy

processes, the Hunt variance gamma process, Sato processes, and local Lévy pro-

cesses in graphic form.

As a model for pricing financial instruments, the Hunt variance gamma pro-

cess combines several of the nice features of these related processes. First of all, it

can be described in only a few parameters, as opposed to the local Lévy mod-

els which require describing the entire speed function a : R2 → R (see equa-

tion ??LocalLevySpecificationForAEqn)). Unlike a regular Lévy process, the Hunt

variance gamma process can, after calibration, effectively price options at several

maturities simultaneously. Finally, unlike Sato processes, the Hunt variance gamma

process can more accurately describe the term structure of moments, found in the

market. We explore each of these features in more detail in other parts of this

dissertation.

1.3 Dissertation Organization

The remainder of this dissertation is organized in the following way. Chapter 2

gives an overview of Lévy processes, with definitions, examples, and key theorems.

Lévy processes are the base from which we develop the Hunt variance gamma pro-

cess, so we discuss them in some depth. We define the Hunt variance gamma process

in Chapter 3, and prove some existence and uniqueness results as well. In Chapter 4,

we describe a method to do calculations using the Hunt variance gamma process,

and use it to calibrate several Hunt variance gamma processes to market prices over

15
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five years. This method is based on recent work which demonstrates a method to

approximate one-dimensional Markov processes using Markov chains. In Chapter 5,

we investigate several characteristics and applications of the Hunt variance gamma

process, using the calibrations from Chapter 4.
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Chapter 2

Lévy Processes

In this chapter, we describe the general theory of Lévy processes. We will

review the definition together with some of the fundamental theorems of these pro-

cesses. We also give some examples of specific Lévy processes to gain a more intuitive

understanding of their characteristics.

Lévy processes serve as a point of departure for the Hunt variance gamma

process which we describe in later chapters of this dissertation, so this is a natural

starting point.

2.1 Definition and Lévy-Khintchine Theorem

Lévy processes are a class of stochastic processes which have become extremely

popular in recent years. They are commonly used to model financial instruments.

In this section, we define Lévy processes and explain some of their common features.

For a more thorough treatment of the subject, the reader is invited to look at classic

textbooks on the subject, such as [42], [43], or [44].

Definition 2.1.1. A stochastic process Xt on the probability space (Ω,F ,P) is called

a Lévy process if:

1. X0 = 0 almost surely

2. For any n ≥ 1 and for 0 ≤ t0 < · · · < tn we have that the random variables
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Xt0 , Xt1 −Xt0 , · · · , Xtn −Xtn−1 are independent.

3. Xt has stationary increments (Xt −Xs has the same distribution as Xt−s)

4. Xt is cádlàg, meaning paths are right continuous with left limits almost surely

5. Xt is stochastically continuous, meaning that for every t ≥ 0 and ε > 0,

lim
s→t

P(|Xs −Xt| > ε] = 0

Observe that any Lévy process which is continuous is a Brownian motion, so

Brownian motion is a type of Lévy process.

Definition 2.1.2. A probability measure P on R is called infinitely divisible if for

any positive integer n, there exists n independent and identically distributed random

variables X1, · · · , Xn such that the distribution of X1 + · · ·+Xn is equal to that of

P.

If Xt is a Lévy process, one can write

Xt = (Xt/n −X0) + · · ·+ (Xt −X(n−1)t/n) (2.1)

for any positive integer n, showing that the distribution of a Lévy process is infinitely

divisible. It is also the case that one can construct a Lévy process from any infinitely

divisible distribution.

The most important theorem about infinitely divisible distributions is the

Lévy-Khintchine formula.
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Theorem 2.1.3 (Lévy-Khintchine). For any infinitely divisible measure P, its char-

acteristic function can be written as

∫
R
eiuxP(dx) = eψ(u),

where

ψ(u) = iµu− 1

2
σ2u2 +

∫
R

(
eiux − 1− iux1{|x|<1}

)
Π(dx) (2.2)

and
∫

(1 ∧ x2)Π(dx) <∞.

Similarly, given (µ, σ2,Π(dx)) such that
∫

(1 ∧ x2)Π(dx) < ∞, there exists

an infinitely divisible probability measure P with characteristic exponent given by

equation (2.2).

As Lévy processes and infinitely divisible measures are in one-to-one corre-

spondence, one can rewrite this theorem as it applies to Lévy processes. One should

note that because of the decomposition given in equation (2.1), the characteristic

exponent of Xt can be written in terms of the characteristic exponent of X1. The

following, more common, form of the Lévy-Khintchine theorem illustrates this.

Theorem 2.1.4 (Lévy-Khintchine). The characteristic function of any Lévy process

Xt can be written as

E[eiuXt ] = etψ(u),

where

ψ(u) = iµu− 1

2
σ2u2 +

∫
R

(
eiux − 1− iux1{|x|<1}

)
Π(dx) (2.3)

and
∫

(1 ∧ x2)Π(dx) <∞. Here ψ(u) = log(E[eiuX1 ]).
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Similarly, given (µ, σ2,Π(dx)) such that
∫

(1 ∧ x2)Π(dx) < ∞, there exists a

Lévy process with characteristic exponent given by equation (2.3).

The function ψ is called the characteristic exponent. The parameters (µ, σ2,Π(dx))

together are called the Lévy triplet of a Lévy process, and uniquely characterize it.

The measure Π(dx) is called the Lévy measure.

2.2 Examples

We will now give a few examples of the characteristic exponents of Lévy pro-

cesses.

Example 2.2.1. Let Xt be a Brownian motion, with parameters (µ, σ2). This means

that Xt is distributed normally with mean µt and variance σ2t. One can integrate to

see that

E[eiuXt ] = eiµut−
1
2
σ2u2t,

and so

ψ(u) = iµu− 1

2
σ2u2.

We see that the Lévy triplet is given by (µ, σ2, 0(dx)) .

Example 2.2.2. A Poisson process is a one parameter Lévy process. If Nt is a

Poisson process with parameter λ, then it has measure P satisfying

P[Nt = k] =
e−λt(λt)k

k!
.

To construct a compound Poisson process, we let Nt be as shown, and define
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Xt :=
∑Nt

i=1 Yi, where the random variables Yi are independent, identically distributed

random variables having some law F.

Then once again, by first conditioning on Nt and then summing we can find

that

E[eiuXt ] = eλt
∫
R(eiux−1)F (dx)

and so

ψ(u) = λ

∫
R
(eiux − 1)F (dx).

The Levy triplet is µ = λ
∫ 1

−1
xF (dx), σ2 = 0, and Π(dx) = λF (dx).

These two examples provide a great deal of intuition about the meaning of the

Lévy triplet. We see from Example 2.2.1 that the parameters µ and σ2 correspond

to the drift and variance of a brownian motion. We also observe in Example 2.2.2

that we can construct a variety of Lévy measures Π by simply varying the intensity

λ and underlying law F of a complex poisson process.

We will see in Section 2.4 that these two examples are the main building blocks

for any Lévy process.

2.3 Poisson Random Measures

To better understand the jump structure of Lévy processes, we introduce the

subject of Poisson random measures.

Definition 2.3.1. Let (E,E ) be a measurable space, and let (Ω,F ,P) be a proba-

bility space. A random measure N is a mapping N : Ω × E → R+ which satisfies

the following:
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1. For each A ∈ E , the mapping ω → N(ω,A) is a random variable

2. P almost surely, A→ N(ω,A) is a measure on (E,E )

We are interested in counting measures, where the measure N(ω, ·) is atomic

and every atom has weight one. In this case, N maps into {0, 1, 2, · · · }
⋃
{∞}.

Definition 2.3.2. Let E = (R/{0} × [0,∞]) and E be the product topology. Let η

be a measure on (E,E ). A Poisson random measure is a random measure N where

the following conditions hold:

1. for disjoint sets A1, A2, · · · , An ∈ E , the random variables N(·, A1), N(·, A2), · · ·N(·, An)

are independent,

2. for each A ∈ E , the random variable N(·, A) follows a Poisson distribution

with parameter η(A). If η(A) = 0 then N(·, A) = 0, and if η(A) = ∞,

N(·, A) =∞.

The measure η is called the intensity of N.

Proof of the existence of Poison random measures can be found in [45] or [46].

When the meaning is clear, we will not denote the dependence of N on Ω, writing

for example, N(A) instead of N(·, A). As E = (R/{0} × [0,∞]), we will usually

represent a set in E as A × B and the random measure of that set by N(A,B)

instead of N(A×B).

As N is a measure almost surely, we can use the standard results in measure

theory to integrate. These techniques can be found anywhere; we mention [47] and
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[48] specifically. This allows us to consider integrals of the form

∫ T

0

∫
R/{0}

f(x, t)N(dx, dt).

In the case of Poisson random measures, the support of N is countable almost

surely (see [43]), and so this integral can be written as

∑
(xi,ti)

f(xi, ti)

where (xi, ti) are points where N has support, counted without multiplicity.

With these definitions in hand, we introduce the major theorem of this section.

Theorem 2.3.3. Let N be a Poisson random measure with intensity η on the mea-

sure space (E,E ). Let f : E → R.

1. The random variable

X =

∫
E

f(x, t)N(dx, dt)

is almost surely absolutely convergent if and only if

∫
E

(|f(x, t)| ∧ 1) η(dx, dt) <∞ (2.4)

2. If equation (2.4) holds, then the characteristic function of X is given by

E[eiuX ] = exp

(∫
E

(eiuf(x,t) − 1)η(dx, dt)

)
(2.5)

The proof of this result can be found in [45] or [49].

We now wish to relate this back to Example 2.2.2, demonstrating that a com-

pound Poisson process can be written in terms of the integral of a Poisson random

measure. Define an intensity measure η on R/{0} × [0,∞] by η = λF × Leb, where
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λ > 0, F is a probability law, and Leb represents Lebesgue measure. Using η, we

can construct a probability space and Poisson random measure N , and then define

Xt =

∫ t

0

∫
R/{0}

xN(ds, dx).

This integral will converge absolutely using Theorem 2.3.3 because

∫ t

0

∫
R/{0}

(|x| ∧ 1)λF (dx)ds <∞.

Furthermore, its characteristic exponent is also given from Theorem 2.3.3, and is

given by

E[eiuXt ] = exp

(∫ t

0

∫
R/{0}

(eiux − 1)λF (dx)ds)

)
= exp

(
t

∫
R/{0}

(eiux − 1)λF (dx)

)
.

This matches the characteristic exponent of a compound Poisson process given in

equation (2.2.2), and so these two processes are equal in distribution.

A sample path of this process is given in Figure 4.1. Here λ = 10 and F is

a uniform measure on the set [−2, 2]. The support of the Poisson random measure

N is also marked, so one can see the size and times of the jumps associated with a

Poisson random measure.

2.4 The Lévy Measure

We are now in position to describe the relationship between Lévy processes

and Poisson Random measures. We can also describe some properties of the paths

of Lévy processes based on their Lévy measures.
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Figure 2.1: A sample path of Xt =
∫ t

0

∫
R/{0} xN(dx, ds), together with

support of the Poisson random measure N. For this image, N has gen-
erator given by λF × Leb where λ = 10 and F (A) = 1

4

∫
A
1[−2,2](s)dx.

26



Suppose that a Lévy process Xt has characteristic exponent given by

ψ(u) = iµu− 1

2
σ2u2 +

∫
R

(
eiux − 1− iux1{|x|<1}

)
Π(dx).

From the Lévy-Khintchine theorem (Theorem 2.1.4), we know that this uniquely

identifies a Lévy process.

The path properties of Xt are intimately related to the Lévy measure Π. There

are three cases to consider:

1.
∫
R/{0}Π(dx) <∞

2.
∫
R/{0}Π(dx) =∞ but

∫
R/{0}(1 ∧ |x|)Π(dx) <∞

3.
∫
R/{0}(1 ∧ |x|)Π(dx) =∞ but

∫
R/{0}(1 ∧ x

2)Π(dx) <∞

Note that since a Lévy measure must satisfy
∫
R /{0}(1 ∧ x

2)Π(dx) < ∞, any Lévy

process will fall into one of these three categories. The first category corresponds

to compound Poisson processes, the second to processes of bounded variation, and

the third to processes of unbounded variation. Each of these categories is explained

below.

Before we continue, we make one note. If σ > 0, we can write Xt = σWt + Yt,

where Wt is a standard Brownian motion and Yt is an independent Lévy process. Yt

will then have Lévy triplet (µ, 0,Π). As Brownian motion has unbounded variation

(see [50]), Xt will always have unbounded variation if σ > 0. In the discussion

to follow, we assume that σ = 0 so there is no Brownian component to the Lévy

process.
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2.4.1 Finite Measure

We first consider the case where Π(R/{0}) < ∞. In this case, set λ =

Π(R/{0}), and define a measure F on R such that F (A) = Π(A)
λ
. Observe that

F (R) = 1, and so F is a probability measure on R.

Using these parameters, define a compound Poisson process as in example 2.2.2.

We let Nt be a Poisson process with parameter λ, and Yi a sequence of inde-

pendent and identically distributed random variables with law F. Then we can

write Xt :=
∑Nt

i=1 Yi. The characteristic function for this process is given in equa-

tion (2.2.2).

We showed in the previous section that such a process can be written in terms

of a Poisson random process with intensity measure η on R/{0} × [0,∞] given by

η(A,B) = Π(A)Leb(B). We can also apply Theorem 2.3.3 to the function f(x) =

1 to show that a Poisson process have a finite number of jumps by noting that∫
[R/{0}](1)Π(dx) <∞. Thus Poisson processes have bounded variation.

2.4.2 Paths of Finite Variation

In this section we consider Lévy process with Lévy measures satisfying
∫
R/{0}Π(dx) =

∞ but
∫
R/{0}(1∧|x|)Π(dx) <∞. In this case, we cannot construct a compound Pois-

son process out of the Lévy measure. Instead, we turn directly to Poisson random

measures to define our process. As before, we define a Poisson random measure N

by specifying its intensity η on R/{0} × [0,∞] by η = Π× Leb.
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We define a Lévy process Xt by

Xt =

∫ t

0

∫
R/{0}

xN(dx, ds). (2.6)

We can once again appeal to Theorem 2.3.3 to prove that Xt is defined almost surely,

because ∫ t

0

∫
R/{0}

(|x| ∧ 1)Π(dx)ds <∞.

We can also use Theorem 2.3.3 part (ii) to compute that the characteristic

function of this process is given by

E[eiuXt ] = exp

(
t

∫
R/{0}

(eiux − 1)Π(dx)

)
.

This characteristic exponent takes a slightly different form than that given in the

Lévy Khintchine formula (Theorem 2.1.4). It can be made to match by computing∫ 1

−1
xΠ(dx) and adjusting the drift accordingly.

We can also prove that the process Xt will have finite variation on any interval

[0, t]. To do so, observe that as Xt is a pure jump process, its total variation is given

by the sum of the absolute value of its jumps, which can be written in terms of an

integral involving the random measure, N . If xi are the jumps in the interval [0, t],

then ∑
|xi| =

∫ t

0

∫
R/{0}

|x|N(dx, ds).

This integral converges if it meets the condition given in Theorem 2.3.3, namely∫ t
0

∫
R/{0}(1 ∧ |x|)Π(dx)ds <∞, which is precisely the case we are discussing in this

section. Thus Xt will have finite variation.
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2.4.3 Paths of Infinite Variation

We now consider the case where the Lévy measure satifies
∫
R/{0}(1∧x

2)Π(dx) <

∞, but
∫
R/{0}(1 ∧ |x|)Π(dx) = ∞. In this case, we can no longer define Xt as in

equation (2.6), because this integral would not converge. Instead, Lévy processes of

this type are constructed in a different manner.

Define the set Bε = R/(−ε, ε) for ε > 0. Define the measure Πε to be given

by Πε(A) = Π(A ∩Bε). Observe that
∫
R/{0}(1 ∧ |x|)Πε(dx) <∞ for all ε, and so we

can define a Lévy process Xε
t using the Poisson random measure Nε induced by this

measure. We will write this as

Xε
t =

∫ t

0

∫
Bε

xN(dx, ds)− t
∫
Bε

xΠ(dx). (2.7)

The characteristic function of this process is

E[eiuX
ε
t ] = exp

(
t

∫
Bε

(eiux − 1− iux)Π(dx)

)
. (2.8)

Theorem 2.4.1. If Xε
t is defined in equation (2.7), where the measure Π satisfies∫

R/{0}(1 ∧ x
2)Π(dx) <∞, then Xε

t is a square integrable martingale.

This result can be found in [43].

To discuss the limit as ε → ∞, we need the following well known results,

discussed at length in [51] and [52].

Theorem 2.4.2. The space of real-valued, zero mean, right-continuous, square

integrable martingales on [0, T ] is a Hilbert space with inner product given by <

Xt, Yt >= E[XTYT ].
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We continue by noting that under the norm given in Theorem 2.4.2, the se-

quence Xε
t is Cauchy as ε → 0. The completeness of the space of square integrable

martingales then gives us the existence of a process Xt which satisfies Xε
t → Xt

in L2 as ε → 0. Using the Doob maximal inequality, we can get a deterministic

subsequence of εi such that the convergence is uniform and pointwise almost surely,

which is used to show that Xt is still a Lévy process. [46] and [42] both provide

excellent summaries of these results.

It is customary to write

Xt =

∫ t

0

∫
R/{0}

x (N(dx, ds)− Π(dx)ds) ,

where the right hand side is defined to be the square integrable martingale discussed

above.

As convergence in L2 implies weak convergence, we also see from equation (2.8)

that the characteristic function of Xt is given by

E[eiuXt ] = exp

(
t

∫
R/{0}

(eiux − 1− iux)Π(dx)

)
.

Notice that this differs slightly from the characteristic function in the Levy-Khintchine

theorem (Theorem 2.1.4). The difference can be explained by dividing the Lévy

measure Π into two separate measures, Π = Π1 + Π2 where Π1 = Π|{|x|≥1} and

Π2 = Π|{|x|<1}. Then one can create two independent Lévy processes, one with large

jumps and finite variation and one with small jumps and infinite variation. This

will cause the addition of the term 1{|x|<1} in the characteristic function. We should

also mention at this point that the choice of {|x| ≥ 1} and {|x| < 1} was com-
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pletely arbitrary, any α < 0 < β could be used with a corresponding change in the

characteristic function.

Finally, we comment on the total variation of the paths of Xt. Recall that the

variation of Y ε
t :=

∫ t
0

∫
Bε
xN(dx, ds) is finite if and only if

∫
Bε

(1 ∧ |x|)Π(dx) < ∞.

As the jump structure of Xε
t is the same as that of Y ε

t , the total variation of Xε
t is

at least as big as that of Y ε
t . As ε → ∞,

∫
Bε

(1 ∧ |x|)Π(dx) → ∞, and so the total

variation of Yt is going to ∞. Thus, the total variation of Xt is going to ∞, and we

can conclude that Xt has infinite variation.
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Chapter 3

The Hunt Variance Gamma Process

In this chapter we define a Hunt variance gamma process. This process is a

time-homogeneous, space-inhomogeneous Markov process. We will first describe the

variance gamma process, a Lévy process developed in the early 1990’s. This process

serves as a starting point for the development of the Hunt variance gamma process.

Next we define the Hunt variance gamma process by describing its stochastic gener-

ator. We conclude this chapter by proving the existence and uniqueness of a Hunt

variance gamma process.

3.1 The Variance Gamma Process

The variance gamma process provides several of the theoretical underpinnings

of our later work, and so we will discuss it in some detail in this section. Much of

this work was first described by Madan and Senata in [16] and later expanded and

generalized in [17] and [18].

Definition 3.1.1. A Lévy process Xt is called a subordinator if it is an increasing

process on R.

It should be clear from our discussion in Chapter 2 that the Lévy triplet of a

subordinator will have several characteristics to insure that the process it describes

is increasing. The Lévy triplet of a subordinator will satisfy µ ≥ 0, σ = 0, and
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Π(−∞, 0) = 0.

The idea of subordinating one random process by another was introduced by

Bochner in [53] and later expanded in [54]. It is best described by the following

theorem, with proof given in [42].

Theorem 3.1.2. Let Yt be a Lévy process, and let Zt be a subordinator. Then the

process

Xt(ω) := YZt(ω)(ω)

is defined almost surely, and is a Lévy process.

Using subordinated processes to model stock prices was first introduced in

[55], and continued in [56], to name one instance. The variance gamma process is a

continuation of these efforts.

We can now define a variance gamma process as a diffusion process subordi-

nated by a gamma process. We let

Yt = θt+ σWt,

where Wt is a standard brownian motion. This is a diffusion process with drift θ

and volatility σ. Let Zt be a gamma process, with parameters µ and ν. Recall that

a gamma distribution with parameters µ and ν has density function given by

f(x) =
(µ
ν

)µ2
ν x

µ2

ν
−1 exp(−µ

ν
x)

Γ(µ
2

ν
)

, for x > 0. (3.1)

This density function has characteristic function

∫ ∞
−∞

eiuxf(x)dx =

(
1

1− iu ν
µ

)µ2

ν

,
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which is infinitely divisible. Any infinitely divisible distribution can be used to

create a Lévy process (see [26] for details), so we have a Lévy process Zt based on

the gamma distribution. At time t, this process has a gamma distribution with

parameters µt and νt. We will denote this process by Z
(µ,ν)
t below.

Using this notation, the variance gamma process Xt with parameters (σ, ν, θ)

can then be written as

Xt = Y
Z

(µ,ν)
t

= θZ
(µ,ν)
t + σW

Z
(µ,ν)
t

.

The distribution of Xt has only three degrees of freedom, so we set the parameter

µ to be equal to one by default. The result is a three parameter family, with

parameters (σ, ν, θ). Madan, Carr, and Chang showed several important features of

this process in [18], which are summarized below.

First of all, one can find the density function of the variance gamma process

by first conditioning on the value of the gamma process Z
(1,ν)
t , and then integrating

using the density function in equation (3.1). Upon doing this, we see that the

probability density function of the variance gamma process is given by

fXt(x) =

∫ ∞
0

1

σ
√

2πu
exp

(
−(x− θu)2

2σ2u

)
u
t
ν
−1 exp(−u

ν
)

ν
t
ν Γ( t

ν
)

du.

We can use the same method to find the characteristic function, which is given

by

E[eiuXt ] =

(
1

1− iθνu+ (σ2ν/2)u2

)t/ν
. (3.2)

The Lévy-Khintchine representation of the characteristic exponent can be found by

writing the variance gamma process as the difference of two independent gamma
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processes, as detailed in [18]. There we see that the variance gamma process is an

infinite activity, finite total variation process with no diffusion component and having

Lévy measure absolutely continuous to Lebesgue measure with Radon-Nikodym

derivative

Π(x) =
exp(θx/σ2)

ν|x|
exp

−
√

2
ν

+ θ2

σ2

σ
|x|

 . (3.3)

There are several other parameterizations of the Lévy measure, we mention one

other. Define

µp =
1

2

√
θ2 +

2σ2

ν
+
θ

2

µn =
1

2

√
θ2 +

2σ2

ν
− θ

2

νp =

(
1

2

√
θ2 +

2σ2

ν
+
θ

2

)2

ν

νn =

(
1

2

√
θ2 +

2σ2

ν
− θ

2

)2

ν.

Then we can write the Lévy measure as

Π(x) =


µ2n
νn

exp(−µn
νn
|x|)

|x| for x < 0

µ2p
νp

exp(−µp
νp
|x|)

|x| for x > 0

.

This characterization is useful in understanding the relationship between the rate

of positive jumps versus negative jumps.

One motivating factor in the development of the variance gamma process was

the desire to be able to incorporate both skewness and kurtosis in asset returns. We

can use the characteristic function in equation (3.2) to find the central moments of
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the variance gamma process. These are given by

E[Xt] = θt

E[(Xt − E[Xt])
2] = (θ2ν + σ2)t

E[(Xt − E[Xt])
3] = (2θ3ν2 + 3σ2θν)t

E[(Xt − E[Xt])
4] = (3σ4ν + 12σ2θ2ν2 + 6θ4ν3)t+ (3σ4 + 6σ2θ2ν + 3θ4ν2)t2.

We now attempt to give some intuitive explanation for the parameters of the

variance gamma process. First, observe that the skewness of Xt is given by

E[(Xt − E[Xt])
3]

E [(Xt − E[Xt])2]3/2
= θ

2θ2ν2 + 3σ2ν

(θ2ν + σ2)3/2
√
t
.

σ and ν are positive by definition, and so the sign of the skewness is completely

determined by θ. So θ > 0 implies that the process will be right-skewed, while θ < 0

implies left-skewness. If θ = 0, the process has 0 skewness. In this case, the kurtosis

is given by

E[(Xt − E[Xt])
4]

E[(Xt − E[Xt])
2]2

= 3(1 + ν).

We can then interpret ν to represent excess kurtosis, see [57].

3.2 Definition of the Hunt Variance Gamma Process

We now wish to modify the variance gamma process into a new process that

will no longer be Lévy. Recall that for a Lévy process Xt, we have that Xt − Xs

is independent of its history given by the sigma algebra Fs. We wish to relax this

assumption and instead create a process which is Markovian. To do this, we make
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a slight change to the generator of the process. Before outlining the changes, we

share some important results concerning generators of Lévy processes.

Recall that a strongly continuous semigroup is a family of bounded linear

operators Pt for t ∈ [0,∞) on a Banach space X which satisfy:

1. PtPs = Pt+s

2. P0 = I (the identity operator)

3. limt→0 Ptf = f strongly .

For a Lévy process, we can define a continuous semigroup in the following

manner. Let X = C0, where C0 = C0(R) is the space of continuous functions

f : R→ R satisfying lim|x|→∞ f(x) = 0. Equip this space with the sup-norm, where

||f || = supx |f(x)|. This space is a Banach space (see [58]). For f ∈ C0, and a Lévy

process Xt, we can define the strongly continuous semigroup

Ptf(x) = E[f(x+Xt)]. (3.4)

The generator, or infinitesimal generator, of a strongly continuous semigroup

is the linear operator L given by

L f = lim
t→0

Ptf − f
t

, (3.5)

where once again the limit is taken in the strong sense from the metric. The gen-

erator is defined only on f ∈ D(L ), where D(L ) is the set where the limit on the

right hand side of equation (3.5) converges.
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The relationship between generators and strongly continuous semigroups is

rich and has been studied extensively. For more information, we reference Hille

([59]) and Yosida ([60]).

A natural question in the discussion of generators is a description of D(L ). As

this space is oftentimes difficult to identify, the identification of a core is important.

A linear subspace D0 of X is called a core of the operator L if D0 ⊂ D(L ), and if

the smallest closed extension of L |D0 is equal to L . For more on cores related to

Lévy processes, see [61].

The following theorem can be found in [42], but was originally proven in [62]

and [63]. It provides a description of the generator of a variance gamma process.

Theorem 3.2.1. Let Xt be a variance gamma process with Lévy measure Π. Then

the semigroup described in equation (3.4) is a strongly continuous semigroup on C0.

The infinitesimal generator of this semigroup L : D(L )→ C0 has C∞c as a core of

L and C2
0 ⊂ D(L ). Furthermore, for f ∈ C2

0 ,

L f(x) =

∫ ∞
−∞

(f(x+ h)− f(x)) Π(dh).

We are now in position to modify the generator of the variance gamma process.

We wish to include some dependence on the value of the Lévy process, Xt. To do

so, we form what is called in the literature a Lévy–type generator (see [64]). This

is done by modifying the Lévy measure Π to depend on the value of our process,

so that for each x we have a measure Π(x, ·). Then we will define a linear operator

L : D(L )→ C0 by

L f(x) =

∫ ∞
−∞

(f(x+ h)− f(x)) Π(x, dh). (3.6)
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We consider the measure given by modifying the parameters of the variance

gamma Lévy measure to depend on x, so that

Π(x,A) =

∫
A

exp(θ(x)y/σ(x)2)

ν(x)|y|
exp

−
√

2
ν(x)

+ θ(x)2

σ(x)2

σ(x)
|y|

 dy. (3.7)

Note the similarities between this measure and the Lévy measure for a variance

gamma process given in equation (3.3).

At this point we provide a fairly straightforward functional form of σ, µ, and

θ. We choose three values, x1, x2, and x3 with x1 < x2 < x3, and then define

σ(x) =



σ1 for x ≤ x1

σ1 + (σ2 − σ1) x−x1
x2−x1 for x1 < x ≤ x2

σ2 + (σ3 − σ2) x−x2
x3−x2 for x2 < x ≤ x3

σ3 for x3 < x

so that σ(x) is piecewise linear, continuous, and bounded. We define θ(x) and ν(x)

in the same manner using three parameters for each function.

We will call the process resulting from this generator a Hunt variance gamma

process (HVG process). A Hunt process is a strong Markov process which is quasi-

left continuous (see [46]). In the next section we will show that the probability

measure resulting from this generator has these characteristics, and so is a Hunt

process.
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3.3 Existence and Uniqueness

One question to be answered regarding this process is the question of existence.

With the addition of spatial dependence in the generators measure, we lose the

necessary Lévy property of independence. In this section, we show the existence of

a process having generator given in equation (3.6).

To begin, we wish to more explicitly define the notion of existence. This can

best be explained using what is known as the martingale problem. Before we explain

the martingale problem, we will first address some preliminaries.

We introduce the notation D to represent the space of all cádlàg functions in

R+, i.e.

D = {ω : [0,∞)→ R : ω is right continuous and lim
s↑t

ω(s) exists}.

We give D a metric topology, known as the Skorohod topology, by defining a

metric in the following way:

Let Λ be the set of all bijective, monotonicly increasing Lipschitz functions

λ : [0,∞)→ [0,∞) with the property that

||λ||Λ = sup
s,t≥0

∣∣∣∣log
λ(s)− λ(t)

s− t

∣∣∣∣ <∞.
Then for any ω1, ω2 ∈ D, λ ∈ Λ, and u ≥ 0 we define

d̃(ω1, ω2, λ, u) = sup
t≥0
|ω1(t ∧ u)− ω2(λ(t) ∧ u)| ∧ 1.

Finally, we can define the Skorohod metric d on D given by

d(ω1, ω2) = inf
λ∈Λ

(
||λ||Λ ∨

∫ ∞
0

e−ud̃(ω1, ω2, λ, u)du

)
.
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The Skorohod metric and topology is a generalization of the sup-norm topol-

ogy on the set of continuous functions, C[0,∞). This metric is unsuitable for cádlág

functions, because convergence in the sup-norm would require jumps to occur at the

exact same time for convergence, as illustrated in the example below.

Example 3.3.1. Let ωn : [0,∞)→ R be given by

ωn(x) =


0 for x < 1− 1

n

1 for x ≥ 1− 1
n

.

Let ω(x) = 1{x≥1}. Under the max-norm, ||ω − ωn|| = supx |ω(x)− ωn(x)| = 1, and

so ωn does not converge to ω.

To show that ωn → ω in the Skorohod topology, we distort the time scale using

the function λn(t) = 1
1−1/n

t. Observe that for this function, ω(λn(t)) = ωn(t) for all

t. Furthermore, if u < 1− 1/n or u ≥ 1, then

sup
t≥0
|ω(λn(t) ∧ u)− ωn(t ∧ u)| = 0

and so ∫ ∞
0

e−ud̃(ωn, ω, λn, u)du ≤
∫ 1

1−1/n

e−udu ≤ 1

n
.

We can also see that

||λn||Λ = log

(
1

1− 1/n

)
,

and so

lim
n→∞

d(ωn, ω) ≤ lim
n→∞

(
log

(
1

1− 1/n

)
∨ 1

n

)
= 0

under the Skorohod metric.
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More information about convergence under the Skorohod metric can be found

in [65], along with several other sources.

The space D of cádlág functions is a complete separable metric space using

this metric (see [66]). We will be considering stochastic processes in D, and using

the usual notation where for t ∈ [0,∞), Xt : D → R is given by Xt(ω) = ω(t). We

can define the σ algebra

F = σ(Xs : s ∈ [0,∞))

and the filtrations

(Ft) = σ(Xs : s ≤ t).

Using this notation, we explain the martingale problem. Let M(D) denote the

space of probability measures on D, and let B(R) denote the space of measurable

and bounded functions on R. Let L : D(L ) → B(R) where D(L ) ⊂ B(R) is the

domain of L . Finally, let µ be a probability measure on R. A probability measure

P ∈M(D) is called a solution to the martingale problem starting with distribution

µ for the operator L if:

1. P(X0 ∈ A) = µ(A))

2. for every f ∈ D(L ),

f(Xt)−
∫ t

0

L f(Xs)dx

is a martingale with respect to (Ft).

A martingale problem is called well–posed if for every starting distribution µ there

exists a unique solution to the martingale problem.
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The martingale problem was first introduced by Stroock and Varadhan (see

[67]) for generators associated with diffusion processes, and later expanded to include

theory of Lévy processes in [68]. The following result can be found in [64].

Theorem 3.3.2. If the martingale problem is well–posed, then the probability space

(D,F ,P, {Xt}) is a strong Markov process.

To show that the Hunt variance gamma process is well posed, we follow the

approach given in [69]. Bass shows the following:

Theorem 3.3.3. Suppose that

1.

sup
x

∫
(1 ∧ y2)Π(x, dy) <∞, and (3.8)

2. for each f ∈ C2
0 , L f(x) is uniformly continuous in x.

Then for every x0 there exists a solution to the martingale problem for L starting

with distribution δx0 .

It is straightforward to show that part (1) of this theorem is applicable to

the Hunt variance gamma process. We know from the Lévy-Khintchine theorem

(Theorem 2.1.4) that for any single x,
∫

(1 ∧ y2)Π(x, dy) < ∞. For fixed x this

integral reduces to the characteristic exponent of a variance gamma process, and so

this integral can be evaluated and is given by the log of equation (3.2), which is a

continuous function in θ, ν, and σ. In the case of the VG Hunt process, θ, ν, and σ

are continuous and bounded functions of x, and so the integral in equation (3.8) is

constant except on a compact set, where it is continuous. Thus it is bounded.
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To show that part (2) of this theorem applies to the Hunt VG process, we will

define, for any f ∈ C2
0 , the operator Af (x, y) given by

Af (x, y) =

∫
R/{0}

(f(x+ h)− f(x)) Π(y, dh).

It will also be useful to define the function χ(y), given by

χ(y) = x11x≤x1(y) + y1x1≤x≤x3(y) + x31x3≤x(y).

Observe that because of our definition of the functions σ, ν, and θ in Section 3.2,

the relationship

L f(x) = Af (x, χ(x))

will hold.

We will first show the following two lemmas, and then use them to show that

part (2) of Theorem 3.3.3 is satisfied for the Hunt VG process. In all cases, assume

f is a fixed element of C2
0 , and let A = Af .

Lemma 3.3.4. The mapping x→ A (x, χ(y)) is uniformly continuous, independent

of y.

Proof. Let ε > 0 be given. We need to show that

sup
y∈I
|A (x1, y)−A (x2, y)| < ε (3.9)

if x1 and x2 are close. Here I is the range of χ.

To show this, write out the above statement in terms of the definition of A .

We see that the statement on the left of equation (3.9) is∫
R/{0}

(f(x1 + h)− f(x1))− (f(x2 + h)− f(x2)) Π(χ(y), dh),
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which we split into two integrals. Let

I1 =

∫
B(0,r)/{0}

(f(x1 + h)− f(x1))− (f(x2 + h)− f(x2))Π(χ(y), dh),

and let

I2 =

∫
R/B(0,r)

(f(x1 + h)− f(x1))− (f(x2 + h)− f(x2)) Π(χ(y), dh).

Then by Taylor’s theorem and f ∈ C2
0 ,

I1 ≤ C

∫
B(0,r)/{0}

hΠ(χ(y), dh).

From our definition of Π in equation (3.7), we can see that hΠ(χ(y), dh) is a bounded

function, and that his bound can be chosen independent of y. Thus by choosing r

small enough, we can bound I1.

Bounding I2 is similarly straightforward. For h ∈ [r, R], the function f is

uniformly continuous and Π is bounded (independent of y), and so if |x1 − x2| < δ

that piece of the integral can be made arbitrarily small. Finally, fΠ is integrable,

and so the integral outside of R can be made arbitrarily small by choosing R large.

Lemma 3.3.5. The operator T : R→ C0(R) given by y → A (x, χ(y)) is uniformly

continuous.
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Proof. Consider that

A (x, χ(y1))−A (x, χ(y2))

=

∫
R/{0}

(f(x+ h)− f(x)) (Π(χ(y1), dh)− Π(χ(y2), dh))

=

∫
B(0,r)/{0}

(f(x+ h)− f(x)) (Π(χ(y1), dh)− Π(χ(y2), dh))

+

∫
B(0,R)/B(0,r)

(f(x+ h)− f(x)) (Π(χ(y1), dh)− Π(χ(y2), dh))

+

∫
R/B(0,R)

(f(x+ h)− f(x)) (Π(χ(y1), dh)− Π(χ(y2), dh))

= I1 + I2 + I3,

where I1, I2, and I3 are the three integrals shown.

I1 and I3 can be made arbitrarily small by choosing r small and R large, as

was done in the previous lemma. I2 is also easily bounded by

|I2| ≤ C

∫
B(0,R)/B(0,r)

(Π(χ(y1), dh)− Π(χ(y2), dh)) .

As Π is a continuous function and is being integrated on a compact set, it can be

made arbitrarily small by choosing y1 and y2 near each other.

Finally, none of the arguments made above rely on the specific value of x

chosen. Thus if we take the supremum over x of |A (x, χ(y1))−A (x, χ(y2))|, we

can make it arbitrarily small if |y1 − y2| is small.

With these lemmas, it is straightforward to prove that the Hunt variance

gamma process satisfies part (2) of Theorem 3.3.3. To show that L f is uniformly
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continuous, we observe that

|L f(x1)−L f(x2)| = |A (x1, χ(x1))−A (x2, χ(x2))|

≤ |A (x1, χ(x1))−A (x2, χ(x1))|

+|A (x2, χ(x1))−A (x2, χ(x2))|.

Lemma 3.3.4 says that if |x1−x2| is small, the first expression is small. Lemma 3.3.5

says the same about the second.

Once existence of a solution to the martingale problem has been established, it

is a simple matter to get uniqueness for the martingale problem we have described.

In [66], it is shown that if a solution to the martingale problem exists for each initial

distribution δx, a solution exists for any distribution µ. A uniqueness result applying

to our problem can be found in [68]. It says:

Theorem 3.3.6. Assume that L f(x) is defined as in equation (3.6). Furthermore,

assume that ∫
A

(
eiuh − 1− iuh1{|h|<1}

)
Π(x, dh)

is bounded and continuous for all Borel sets A ⊂ R. Then the solution P to the

martingale problem is unique.

This theorem, combined with Theorem 3.3.2 shows that the solution (Xt,Pt)

is a strong Markov process. It is also shown in [69] that the solution is a Feller

process.

At this point, we should note that it would be straightforward to construct

several other Hunt processes in this manner. Here we allowed the parameters of

48



a variance gamma process to depend continuously on x in a linear manner. Note

however, that the only properties we used to prove existence and uniqueness was

that the parameters depended continuously on x, and that they were only allowed

to take on values in a compact set. So long as these two properties are preserved, we

could generate many other Hunt processes based on the variance gamma process.

One way to do this is to let θ, ν, and σ be more complicated functions of x, instead

of piecewise linear.

We also note that this approach could be used on other types of Lévy processes.

The characteristics of the measure Π are general to all Lévy measures, and so the

same techniques could be employed. Slight modifications would be needed if the

process had infinite variation instead of finite variation (for example, the generator

would have a derivative term in it), but these present no real obstacles.
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Chapter 4

Computation Using the Hunt Variance Gamma Process

In this chapter we will describe a method to compute probabilities from a

Hunt variance gamma process. This is done by constructing a Markov chain which

approximates the behavior of the Hunt variance gamma process. We will describe

how to construct this chain, investigate the convergence rate of this approximation

scheme, and finally use the Markov chain to find option prices. We also calibrate

a Hunt variance gamma process to fit the S&P 500 option surface on a variety of

days, and investigate the resulting goodness of fit.

4.1 Markov Chain Approximations

We now will explain how to price options using the Hunt variance gamma

process described earlier. We begin with a risk-neutral stock model, where the

stock price St at time t is given by

St = S0e
rt+Xt−

∫ t
0 ω(Xs)ds. (4.1)

Here S0 is the current stock price, r is the risk free interest rate, and Xt is a hunt

variance gamma process. The integral of ω(Xs) exists so that the discounted process

is a martingale in the approximation process described below. We define

ω(x) =
−1

ν(x)
log

(
1− θ(x)ν(x)− 1

2
σ(x)2ν(x)

)
,
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and note that if Xt is a variance gamma process with Lévy measure Π(x, dy) (for

fixed x) then eXt−ω(x)t is a martinagale. This can be seen using the Lévy pro-

cess properties of independence and stationary increments. Expectations can be

computed using the characteristic function of a variance gamma process shown in

equation (3.2).

Note that in this model, we have directly modeled the risk-neutral price pro-

cess instead of first modeling the physical measure and then converting to a risk

neutral process. Under the risk-neutral measure, the discounted price process is a

martingale. There is a well established link between martingales and arbitrage-free

pricing rules, namely that any martingale measure equivalent to the true probability

measure specifies a pricing rule which is arbitrage free. This fact was first estab-

lished for discrete time models in [70], and was later proved for continuous time

models in [71] and [72]. Since this introduction, a large amount of work has been

done. More detailed summaries can be found in [73], [74], and [75].

Under a risk-neutral measure, European option prices can be found by com-

puting expectations of their payoffs at expiration. If a European option has terminal

payoff H(ST ), the time 0 cost of this option is given by

e−rTE[H(ST )].

For call options, H(x) = (x−K)+, where x+ = max{x, 0}. Put options have payout

given by H(x) = (K−x)+. In both of these contracts, K is an agreed upon constant,

called the strike price.

Usually we can compute these expectations using the characteristic function
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of the driving random process, E[eiuXt ]. To do so we use Fourier transform methods

detailed in [15]. This is convenient for both Lévy and Sato processes for example,

because their characteristic function is known analytically (see Theorem 2.1.4 and

equation (1.2)). However, we have no information about the characteristic function

of the Hunt variance gamma process because of the spatial inhomogeneity of Xt, so

this method will not work.

Instead, we use a new approach developed by Mijatović and Pistorius in 2011

(see [76]). In this paper, the authors describe a method to construct a finite–state

continuous time Markov chain approximation for processes with known generators.

We will construct the Markov chain approximation for the Hunt variance gamma

process, and then compute expectations and option prices using the approximation.

There are two major steps in the approximation process. First, one needs to

specify the (finite) state space upon which the process will be approximated. This

space will be denoted G = {s1, . . . , sn}. After specifying a state space, we will define

the generator matrix for a Markov chain on that state space, which will be denoted

by Λ. This generator matrix completely defines the Markov process.

The most obvious choice for G is to use a uniform grid over some bounded set.

This is computationally inefficient, so a non-uniform approach is adapted. There

are two goals in choosing a non-uniform grid. First, we wish to minimize error

due to the truncation of an unbounded state space into a necessarily bounded state

space. This implies that sn−s1 should be as large as possible. However, there is high

probability that the stock remains near its starting location, and so a finer resolution

is desired in this location. Note that the idea of an adaptive mesh in option pricing
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has been studied in the past. Early work includes [77]. In what follows, we use the

same approach as Mijatović and Pistorius in [76], who based their method on an

algorithm from [78].

The algorithm is as follows. Choose a lower bound a and an upper bound b

for the state space. Use the current stock price, S0, and let n be the total number

of states desires. Finally, choose a density parameter g. Then set

c1 = arcsinh

(
a− S0

g

)
c2 = arcsinh

(
b− S0

g

)

Let the lower part of the grid, {s1, . . . , sn/2}, be given by

sk = S0 + gsinh (c1(1− (k − 1)/(n/2− 1))) .

for k ∈ {1 . . . , n/2}. We let the upper part of the grid be given by

sn/2+k = S0 + gsinh (c22k/M) .

The density parameter controls the concentration of points around the middle point,

S0. High values of g result in more uniform spacing, while lower values lead to a

higher concentration of points around S0. A sample grid is given in Figure 4.1.

With the state space G = {s1, . . . , sn} constructed, we now turn our atten-

tion to the generator matrix Λ of the Markov chain. This is carried out in two

steps. First, we will construct the generator, ΛJ of the jump component of the dis-

cretization of the stochastic process, and then we will construct ΛC , the continuous

part.
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20 40 60 80 100 120 140 160 180 200

Sample Non Uniform Grid Points

Figure 4.1: This is a sample non-uniform grid generated by the algorithm
described in Section 4.1. Here we used as parameters S0 = 100, n = 60,
a = 25, b = 200, and g = 10.

To construct ΛJ , we start by looking at the jump sizes required to jump from

si to sk. For each s ∈ G, we define the set

Gs = {log(sj/s)} for j = {1, . . . , n}.

This set gives the change needed in Xt to jump from s to any other point in G.

Consider now the set Gsi and label it Gsi = {j1, . . . , jn}, with j1 < j2 < . . . < jn.

To compute the (i, k) entry of ΛJ (i 6= k) we integrate the jump measure on

a set surrounding the appropriate jump size. The (i, k) entry of ΛJ represents the

jump intensity of a jump from si to sk, and so we set

ΛJ(i, k) =

∫ α(jk+1)

α(jk)

Π(log(si), dy)

for i 6= k.

Here α : G→ R with jk−1 < α(jk) < jk for all k. Any function satisfying this

requirement can be used. The convenient choice is to simply let

α(jk) =
jk−1 + jk

2
.
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We also set α(j1) = −∞ and α(jn+1) =∞. This function partitions the jump space

R and we then integrate the jump measure to approximate the jump intensity.

Finally, we set

ΛJ(i, i) = −
∑
k 6=i

ΛJ(i, k).

Markov generator matrices have the property that each row sums to one, so this

condition assures that ΛJ will be a generator matrix. Also, for i ∈ {1, n}, we set

Λ(i, k) = 0 for all k. This will cause the left and right endpoint of G to be absorbing

states in the Markov chain approximation.

Next, we construct the continuous part of the generator matrix, ΛC . This por-

tion assures us that the first and second instantaneous moments of the Markov chain

approximation match the moments of St. If Xt is the Markov chain approximation

process starting at S0 which we are currently constructing, we require

E[(St − S0)j] = E[(Xt − S0)j] + o(t).

This Markov chain approximation must hold as St changes values, and so we require

the above equality to hold for all S0 ∈ G, not just the initial stock price.

In order for this condition to hold, ΛC must be chosen so that the process

generated by ΛJ+ΛC has this property. This means that the following two conditions

must hold

n∑
k=1

ΛC(i, k)(sk − si) = rsi −
n∑
k=1

ΛJ(i, k)(sk − si)

n∑
k=1

ΛC(i, k)(sk − si)2 = s2
iC(si)−

n∑
k=1

ΛJ(i, k)(sk − si)2

Here C(si) is chosen to be the instantaneous rate of change of the expected
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value of (St − S0)2) for an exponential variance gamma process with Lévy measure

Π(log(si), dy). This can be calculated using the characteristic equation of a variance

gamma process shown in equation (3.2), and is given by

C(s) = s2

(
2

ν
log(1− θν − σ2ν/2)− 1

ν
(1− 2θν − 2σ2ν)

)
.

Here ν is actually ν(log(s)), and θ and σ are given in a similar manner.

ΛC must also be chosen in such a way that ΛC + ΛJ is a generator, which

means that
n∑
k=1

ΛC(i, k) = 0

and

ΛJ(i, k) + ΛC(i, k) ≥ 0

for all i and k.

The generator Λ of the Markov chain approximation is then given by setting

Λ = ΛJ + ΛC . A Markov chain matrix can be obtained from the generator using

matrix exponentiation. Many numerical software programs have packages designed

for matrix exponentiation. Matlab uses the Padé approximation with scaling and

squaring, see [79] for a description.

Pricing options using the generator is now a straightforward process. Let

s = [s1, s2, . . . , sn]T , a column vector of the state space. Let 1k be a zero row vector

with a one in the k-th entry. If the current stock price S0 = sk, then the price of a

European call option C(K,T ) with strike K, expiration time T , and interest rate r

is given by the expression

C(K,T ) = e−rT1ke
TΛ(s−K)+.
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A put option has price P (K,T ) given by

P (K,T ) = e−rT1ke
TΛ(K− s)+.

Here K is a vector of K’s having the same size as s, and the + operation is applied

to each component individually.

4.2 Convergence and Error Estimates

We wish to show that the Markov chain approximation outlined in the previous

section converges to the process given in equation (4.1). In this context, we are

discussing weak convergence of measures on the space of cádlág function under the

Skorohod topology. Note that if X
(n)
t → St weakly, then

E[H(X
(n)
T )]→ E[H(ST )]

for bounded and continuous functions H, and so we can accurately evaluate Euro-

pean option prices in the limit.

To show weak convergence, we once again follow the approach done in [76]. We

define Λ(n) as above, where n shows the number of discrete states (so that |G| = n).

We let G(n) be the grid generated, where G(n) = {s(n)
1 , . . . , s

(n)
n }. We also assume

that as n → ∞, s(n)
1 → 0 and s

(n)
n → ∞. Using this notation, we define for f in a

core of L ,

εn(f) = max
s∈G

∣∣Λ(n)fn(s)−L f(s)
∣∣ .

Here fn = f |G(n) .
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A theorem of Ethier and Kurtz ([66]) says that if

εn(f)→ 0 (4.2)

then the sequence X
(n)
t will converge weakly to St, and so a study of εn(f) will give

the desired result.

Before we do this, notice that if εn(f) → 0 for all f , it must be the case

that G(n) covers R+. If, for example, there exists an open set (a, b) ⊂ R+ where

G(n) ∩ (a, b) = ∅ for large n, then the condition that εn(f) → 0 can not hold. To

see this, observe that there exists a continuous, infinitely differentiable, nonnegative

function f having support in (a, b). For this f , Λ(n)fn(x) ≡ 0, because f = 0 on

G(n). However, L f(x) 6= 0. This shows what it means for G(n) to cover R+. Observe

also that this same argument can be applied to show that as n→∞, s(n)
1 → 0 and

s
(n)
n →∞.

To show that εn(f)→ 0, we need to know the generator of the process St given

in equation (4.1). This will differ from the generator given in equation (3.6) because

of the exponential and drift terms. It will also be convenient to denote the measure

of the variance gamma Hunt process in terms of the stock value St instead of in terms

of Xt, so that for fixed S0, Π(s, dy) is actually referring to Π(log( s
S0

), dy) under the

previous notation. A similar modification is done to ω. Using this notation, the

generator L for St is given by

L f(s) = (r − ω(s)) s
∂f

∂s
+

∫
R/{0}

(f(sey)− f(s)) Π(s, dy).

Furthermore, we look at the class of functions f : [0,∞)→ R which vanish at

both 0 and infinity. Details on this can be found in [80].

58



To show that εn(f) goes to 0, we begin by ignoring the diffusion term of L

which will be taken care of by the conditions placed on ΛC . Instead, we look only

at the jump measure and ΛJ .

We can write

Λ
(n)
J fn(si) =

∑
k 6=i

(f(sk)− f(si))

∫ α(jk+1)

α(jk)

Π(si, dy),

and so

Λ
(n)
J fn(si)−L f(si) =

∑
k 6=i

∫ α(jk+1)

α(jk)

(f(sk)− f(sie
y)) Π(si, dy)

−
∫ α(ji+1)

α(ji)

(f(sie
y)− f(si)) Π(si, dy).

The first integral in the above equation goes to 0 as n→∞ because of several

factors. First, f vanishes at both 0 and infinity and is bounded. The same is true for

f ′. We then use Taylor’s theorem and properties of G(n) as it is described above to

show that the integral goes to 0 as n→∞ independent of si ∈ G(n). This procedure

is done in detail in [81] for a similar process. It is easy to see that the second integral

goes to 0 as n→∞, because α(ji) and α(ji+1) both go to 0 and f(sie
y)− f(si) has

a finite integral.

In this manner, we show that εn(f)→ 0 as n→∞. As stated above, this tells

us that X(n)t converges to St weakly, and so we can take limits to price European

options which are bounded as functions of ST . The boundedness condition theoret-

ically excludes call options (which are unbounded), but in practice we truncate the

payoff without losing any noticeable accuracy.

Recall also that the weak convergence is weak convergence of a measure on the
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space of cádlág functions, and so the expectation of any continuous functional from

this space will converge. This means that we can price options which are functions

not only of the stock price at time T , but also functionals which are path dependent,

so long as they are continuous maps under the Skorohod topology. Mijatović and

Pistorius show in [76] that barrier options satisfy this continuity requirement. More

work needs to be done to show that other derivatives, such as Asian options, binary

options, and other exotic options (see [82]), satisfy this requirement.

We will now discuss the rate of convergence. Recall thatG(n) = {s(n)
1 , . . . , s

(n)
n },

and that to jump from s
(n)
i to s

(n)
k , St must change by jk. For a given n, let

h(n) = max
i
|si+1 − si|,

the mesh size in the discretization.

Also, for a given s
(n)
i define

L
(
s

(n)
i

)
= j1

which is the smallest possible jump and

U
(
s

(n)
i

)
= hn,

the largest possible jump.

Using this notation, we define

k(n) = max
s
(n)
i ∈G(n)

∫
R/[L(s

(n)
i ),U(s

(n)
i )]

Π(s
(n)
i , dh),

which corresponds to the total jump measure which is not included in the construc-

tion of Λ(n).

Using this notation we get the following theorem.
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Theorem 4.2.1. Suppose that f is Lipshitz continuous with compact support. Sup-

pose furthermore that the sequence of grids, G(n), satisfies

lim
n→∞

h(n) = lim
n→∞

k(n) = 0.

Then for large n and for all s
(n)
i ∈ G(n), there exists constants c1 and c2 such that

∣∣∣E [e−rTf(ST )
]
− E

[
e−rTf(X

(n)
T )
]∣∣∣ ≤ c1h(n) + c2k(n).

This theorem with its corresponding proof can be found in [76]. Note that this

theorem is a special case of that one, because

max
x

∫
R/{0}

|y|Π(x, dy) <∞.

Figure 4.2 shows the rate of convergence for option prices under a variance

gamma process. The variance gamma process can be simulated exactly (see [83]),

and so exact option prices were computing using a Monte Carlo simulation. The

upper and lower bounds were fixed, so that k(n) is constant. The figure shows that

the log error decays linearly with log(h(n)) with an approximate slope of 1. Here

G(n) is calculated using the method detailed earlier in this chapter.

4.3 Calibration

We can use the approach described in Section 4.1 to price European options.

We know that the option prices generated from a given set of parameters will be

arbitrage free because the discounted price process is a martingale ([84]). How-

ever, every set of parameters for the Hunt variance gamma process will generate an
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Figure 4.2: This figure plots the log error of the price of a European call
option with the log of the maximum mesh size. The mesh was generated
using the algorithm in this chapter for G(n). The stock value is given by
St = S0 exp((r+ω)t+Xt) where Xt is a variance gamma process and ω
forces the process to be a martingale. The variance gamma process has
parameters σ = 0.25, ν = 0.1, and θ = 0.35. Other necessary parameters
are r = 0.01, T = 1, S0 = 1000, and K = 1000.
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equivalent martingale measure, and so any set of parameters will generate option

prices which are free of static arbitrage. We cannot hedge option payouts because

markets are incomplete, and so a no-arbitrage assumption alone is insufficient to

chose parameters. This is true for any jump process, and so we use a calibration

procedure to choose parameters for these types of models.

Calibration consists of choosing parameters for a model which give prices con-

sistent with the option prices which are currently being traded in the market. In

other words, the model parameters are chosen to fit the observable market data. In

this way we hope to incorporate as much market information as possible into the

model.

To calibrate a model described by the parameters Θ, we will attempt to mini-

mize the least-square difference between model prices and market prices. We assume

there are N options trading in the market, and that option i has price Oi. For given

values of Θ, we assume that the model gives option prices OΘ
i . We then choose Θ

by letting

Θ∗ = arg min
Θ

N∑
i=1

(
Oi −OΘ

i

)2
. (4.3)

This is a common approach to calibrating a model (see [85] or [86] for exam-

ples). The error function to be minimized can be adjusted to include weights based

on liquidity indicators such as the bid-ask spread. Other criteria for calibration is

discussed in [87].

In what will follow, we minimize equation (4.3) when model prices come from

a variance gamma and a Hunt variance gamma process. We do this using a built
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in MATLAB function minimizing routine. In this case, we used the fminsearch

command, which uses a simplex search routine. Information on the algorithm can

be found in MATLAB documentation. The original algorithm was developed by

Nelder and Mead in [88], see also [89] for more recent work.

One issue that arises in the minimization is that the objective function is not

necessarily convex, and so there is no guarantee of finding the true minimizer. This

means that the parameter estimation is sensitive to the choice of initial conditions

(see [90]). To mitigate this problem when calibrating the variance gamma process,

we minimize from several different initial points. This strategy is effective for the

variance gamma process because we can compute option prices extremely efficiently

for this model, and so the minimization is fast.

For a Hunt variance gamma process, it is computationally expensive to price

options, and so each calibration requires a nontrivial amount of time. This means

that the initial point for the minimization routine must be chosen in an intelligent

manner. In our calibration, we set σ1 = σ2 = σ3, and set this equal to the value of σ

from the variance gamma calibration. We repeat with ν1, ν2, and ν3 and θ1, θ2, and

θ3. Note that in this case, the Hunt variance gamma process reduces to a variance

gamma process. So we are starting our Hunt variance gamma calibration with the

optimal variance gamma process.

The data we use to calibrate our process is S&P 500 futures option closing

prices. We use both call and put options. Only options with a minimum bid price

above $0.25 and open interest above 1500 contracts are used in an effort to base our

calibration on only liquidly traded contracts. The data is taken from the Wharton
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Research Data Services (WRDS) database.

For the variance gamma process, the best fit was computed for every trading

day between September 1, 2006 and December 30, 2011, for a total of 1342 days.

The Hunt variance gamma process is calibrated approximately once a month during

that same time period, for a total of 52 days. A summary of the fit statistics for

the Hunt variance gamma process is given in Figure 4.3, and a summary for the

variance gamma process is given in Figure 4.4.

We measure the goodness of fit in three different ways in Figures 4.3 and 4.4.

The first column gives information about the daily root mean square error (RMSE).

The second column gives the average absolute error (AAE), while the third column

represents average absolute percent error (AAPE). We note that the reported AAPE

has been computed using only the options with prices greater than $1, to avoid

dividing by very small numbers. These quantities are computed in the following

way

RMSE =

√√√√ 1

N

N∑
i=1

(Oi −OΘ∗
i )2

AAE =
1

N

N∑
i=1

|Oi −OΘ∗

i |

AAPE =
1

N

N∑
i=1

∣∣∣∣Oi −OΘ∗
i

Oi

∣∣∣∣ .
The last column gives statistics about the number of options fitted on each day

(NO).

A sample calibration for a Hunt variance gamma process is shown in Fig-

ure 4.5, while a sample variance gamma calibration is shown in Figure 4.6. These
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Fit Statistics of Hunt VG Process

RMSE AAE AAPE∗ NO

Mean 1.224 0.887 0.088 217.3

St Dev 0.724 0.546 0.040 48.0

5 pctl 0.429 0.313 0.039 144.8

10 pctl 0.534 0.387 0.045 147.4

25 pctl 0.805 0.593 0.062 175.0

50 pctl 1.029 0.729 0.079 217.0

75 pctl 1.450 0.987 0.101 249.0

90 pctl 1.982 1.489 0.134 280.2

95 pctl 2.538 1.928 0.155 299.4

Figure 4.3: This table shows the fit statistics for a Hunt variance gamma
process. A Hunt variance gamma process was fit to option data on 52
trading days evenly spaced between September 1, 2006 and December
30, 2011. This table summarizes the error between model and market
prices.
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Fit Statistics of a Variance Gamma Process

RMSE AAE AAPE∗ NO

Mean 4.026 3.190 0.324 219.1

St Dev 2.328 1.852 0.111 49.9

5 pctl 1.876 1.529 0.169 144.0

10 pctl 2.148 1.750 0.197 154.2

25 pctl 2.724 2.180 0.243 179.0

50 pctl 3.254 2.614 0.305 217.0

75 pctl 4.381 3.338 0.390 257.0

90 pctl 7.012 5.528 0.473 288.0

95 pctl 8.783 6.970 0.520 301.0

Figure 4.4: This table shows the fit statistics for a variance gamma
process. A variance gamma process was fit to option data on the 1342
trading days between September 1, 2006 and December 30, 2011. This
table summarizes the error between model and market prices.
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samples both come from September 1, 2006, the first day on which both models

were calibrated. In both cases, the number of options used (NO) was 142. For

comparison with the reported fit statistics given in Figures 4.3 and 4.4, we show the

fit statistics on this day below. For the Hunt variance gamma calibration,

RMSE = 0.429

AAE = 0.335

AAPE = 0.051.

The variance gamma calibration had the following fit stats on September 1, 2006

RMSE = 2.134

AAE = 1.833

AAPE = 0.247.

These fit statistics rank roughly between the 5th and 25th percentile for their re-

spective models, making this an example of a good fit for each model.

We can observe one important distinction between the two models in these

images. It was mentioned in the introduction that Lévy processes (which include

the variance gamma process) do a poor job of fitting the option surface at multiple

maturities. We see evidence of this in Figure 4.6. We see that the variance gamma

model overestimates option prices at short maturities (which correspond to lower

prices in the image), while underestimating option pricing at longer maturities. The

Hunt variance gamma process is much more accurate for multiple maturities.
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Figure 4.5: This figure shows model prices and market prices for S&P 500
futures options. The model was taken to be a Hunt variance gamma pro-
cess with parameters chosen to minimize the error between the market
and model prices. Option data comes from September 1, 2006. Compare
this image with Image 4.6.
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Figure 4.6: This figure shows model prices and market prices for S&P 500
futures options. The model was taken to be a variance gamma process
with parameters chosen to minimize the error between the market and
model prices. Option data comes from September 1, 2006. Compare this
image with Image 4.5.
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Chapter 5

Characteristics and Applications of the Hunt Variance Gamma

Process

In this chapter we investigate several different aspects of the Hunt variance

gamma process. We first verify that the process is fundamentally different from

both a Lévy process and a Sato process by investigating the marginal distributions

at a single time and the evolution of moments over time. Next we investigate how

well the term structure of moments matches the market term structure, computed

in a model-independent manner.

We then turn our attention to investigating conditional probabilities of cer-

tain events, where we condition on the level of the underlying stock. This type of

investigation is impossible using a spatially homogeneous model, and so a spatially

inhomogeneous model such as the Hunt variance gamma process is required.

5.1 Relation to Lévy and Sato Processes

Generally both Lévy and Sato processes are described through either their

characteristic exponent or Lévy measure (see [26] for examples). To define the Hunt

variance gamma process, we started with the infinitesimal generator and found a

solution to the martingale problem. In this section we will show that the resulting

process is not a Lévy process, nor is it a Sato process.
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This is not an unexpected result. The Hunt variance gamma process was

designed so that increments Xt −Xs are not independent of the sigma–algebra Fs,

but instead are Markovian. This differs from both the Lévy and Sato process.

5.1.1 Time Evolution of Moments

We will first examine the evolution in time of the moments of a Lévy process,

and compare this to that of the Hunt VG process. In the discussion below, we will

assume that the Lévy process in question has a finite moment generating function,

i.e. that E[euXt ] <∞. Kruglov gives several criteria for this to occur, see [91]. Also

note that for many financial applications, some variant of eXt is used to model the

price of a security, and so a finite moment generating function is standard.

As usual, we let Xt denote a Lévy process, and let its moment generating

function be denoted E[euXt ] = Ψt(u). Observe that if this function exists, the char-

acteristic function of a Lévy process described in Theorem 2.1.4 can be analytically

extended to describe it. One important result of this is that if we let Ψ(u) = Ψ1(u)

then

Ψt(u) = Ψ(u)t. (5.1)

We now follow the process shown in [28] to observe the evolution in time of

moments. Standard probability theory tells us that E[Xj
t ] = Ψ

(j)
t (0). By differentiat-

ing equation (5.1), we can write the moments of Xt in terms of t and the derivatives

of Ψ(u).

Let Ψj = Ψ(j)(0), the j-th derivative of Ψ(u) evaluated at 0. Upon differenti-
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ating, we get the following results:

E[Xt] = tΨ1

E[X2
t ] = t(t− 1)Ψ2

1 + tΨ2

E[X3
t ] = tΨ3 + t(t− 1)(t− 2)Ψ3

1 + 3t(t− 1)Ψ1Ψ2

E[X4
t ] = 6t(t− 1)(t− 2)Ψ2

1Ψ2 + 3t(t− 1)Ψ2
2 + 4t(t− 1)Ψ1Ψ3

+tΨ4 + t(t− 1)(t− 2)(t− 3)Ψ4
1.

Using these equations, we find the moments about the mean

E[(Xt − E[Xt])
2] = t(Ψ2 −Ψ2

1)

E[(Xt − E[Xt])
3] = t(Ψ3 + 2Ψ3

1 − 3Ψ1Ψ2)

E[(Xt − E[Xt])
4] = 3t2(Ψ2 −Ψ2

1) + t(12Ψ2
1Ψ2 − 3Ψ2

2 − 4Ψ1Ψ3 + Ψ4 − 6Ψ4
1).

Finally, we see that the skewness of Xt is given by

E[(Xt − E[Xt])
3]

E[(Xt − E[Xt])2]3/2
=

1√
t

(
Ψ3 + 2Ψ3

1 − 3Ψ1Ψ2

(Ψ2 −Ψ2
1)3/2

)
,

and the excess kurtosis of Xt is

E[(Xt − E[Xt])
4]

E[(Xt − E[Xt])2]2
− 3 =

1

t

(
12Ψ2

1Ψ2 − 3Ψ2
2 − 4Ψ1Ψ3 + Ψ4 − 6Ψ4

1

(Ψ2 −Ψ2
1)2

)
.

We can use these results to test to see if the Hunt Variance Gamma process

is a Lévy process. If so, the skewness and excess kurtosis will decline at a rate

proportional to 1/
√
t and 1/t, respectively. To do so, we construct a Markov chain

approximation to any Hunt VG process using the ideas from Chapter 4, and then

calculate the skewness and excess kurtosis at several different times, and observe

the decay.
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We did this for Hunt VG processes using several different parameters, and

found that the skewness and excess kurtosis did not decay proportional to 1/
√
t and

1/t. To control for error introduced by the approximation scheme, we approximated

known Lévy processes (in this case, a variance gamma process) using the same

scheme, and found the expected decay. These experiments showed that the Hunt

VG process does not satisfy a basic characteristic of Lévy processes, and is thus not

a Lévy process.

Sample results of these experiments are given in Figure 5.1 and Figure 5.2.

Figure 5.1 shows skewness×
√
t for a Hunt VG process (approximated using methods

from Chapter 4), a VG process (also approximated), and the true value for the

same variance gamma process. Figure 5.2 shows (kurtosis − 3) × t for the same

three processes. One can see in the figures that the Markov Chain approximation

method gives a result that is essentially constant in both cases, but that the Hunt

VG process is decidedly not.

5.1.2 Non-Infinite Divisibility of Marginal Distributions

Next we examine a marginal distribution of the Hunt Variance Gamma pro-

cess and compare it to that of an infinitely divisible distribution. Recall that the

predominant feature of a Lévy process, as discussed in Section 2.1, is that the law of

a Lévy process is infinitely divisible. The same is true of Sato processes. This fact

allowed us to use the Lévy-Khintchine representation to describe the characteristic

function of both Lévy and Sato processes. We now show that the distribution of a
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Figure 5.1: This figure shows the skewness in time of two processes.
One is a Hunt Variance Gamma process with parameters σ1 = 0.458,
ν1 = 0.128, θ1 = 0.746, σ2 = 0.149, ν2 = 0.251, θ2 = −0.484, σ3 = 0.106,
ν3 = 0.001, and θ3 = 0.135. The other process is a variance gamma
process with parameters σ = 0.149, ν = 0.251, and θ = −0.484. The
skewness of this process is computed in two ways, one using the exact
number and the other using the Markov Chain approximation method
detailed in Chapter 4.
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Figure 5.2: This figure shows the excess kurtosis in time of the same two
process detailed in Figure 5.1.
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Hunt Variance Gamma process is not infinitely divisible.

In order to do this testing, we will use several ideas from Fourier analysis. The

Fourier transform of an integrable function f, denoted by f̂ , is given by

f̂(u) =

∫ ∞
−∞

eiuxf(x)dx.

We also define the inverse Fourier transform, which, when applied to an inte-

grable function f̂(u) gives

f(x) =
1

2π

∫ ∞
−∞

e−iuxf̂(u)du.

As the name and notation suggest, there is a relationship between the Fourier

transform and inverse Fourier transform, developed by Plancherel in [92] and [93].

This theorem tells us that the Fourier transform defined above can be extended

to a linear bijection between functions in L2(R). We do not need to go into this

much detail, and instead use a weaker version, the Jordan Theorem. A proof of this

theorem is given in [94].

Theorem 5.1.1 (Jordan). Suppose that f is a continuous, integrable function of

bounded variation. Let f̂(u) denote the Fourier transform of f . Then

f(x) = lim
a→∞

1

2π

∫ a

−a
e−ixuf̂(u)du

With this information in hand, we are prepared to demonstrate that the law of

the Hunt VG process is not infinitely divisible. To do so, recall the Lévy-Khintchine

theorem, first shown in Theorem 2.1.4. It says

Theorem 5.1.2 (Lévy-Khintchine). The characteristic function of any Lévy process
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Xt can be written as

E[eiuXt ] = etψ(u),

where

ψ(u) = iµu− 1

2
σ2u2 +

∫
R

(
eiux − 1− iux1{|x|<1}

)
Π(dx)

and
∫

(1 ∧ x2)Π(dx) <∞. Here ψ(u) = log(E[eiuX1 ]).

Observe that if there is no Brownian component to the Lévy process, then

ψ′′(u) = −
∫
R
x2eiuxΠ(dx).

We see that for a Lévy process, the second derivative of the characteristic exponent

is the Fourier transform of x2Π(dx), the Lévy measure. If we assume that the

Lévy measure Π is absolutely continuous with respect to Lebesgue measure, and

furthermore that it is continuos and has bounded variation, we can apply the Jordan

Theorem to recover x2Π(x). In this case

x2Π(x) = − 1

2π

∫ ∞
−∞

ψ′′(u)e−iuxdu. (5.2)

In [21] it is argued that infinite activity models are a suitable substitute for

models which include a Brownian component, so we are unconcerned about the

assumption that no Brownian component is present. In fact, several papers have

argued that models with infinitely many small jumps give a better representation

of asset behavior than Brownian motion can (see [95]). The other assumptions are

satisfied by almost every common Lévy process used in financial mathematics (every

example in [26] except for a Poisson process satisfies this criteria).
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In Chapter 4, we developed an algorithm to approximate the Hunt VG process.

Using this approximation, we can compute an approximation to

ψ(u) = log
(
E[eiuXt ]

)
.

To show that the distribution of Xt is not necessarily infinitely divisible, we can

compute x2Π(x) using equation (5.2), and show that Π(x) is not always positive.

Note that for a Lévy process, it must be.

Rather than do the computation from equation (5.2) directly, we use another

fact from Fourier analysis, namely that there is a relationship between the inverse

Fourier transform of a derivative and the inverse transform of the original function.

This relationship can be seen by integrating equation (5.2) by parts twice. Then

x2Π(x) = −x
2

2π

∫ ∞
−∞

ψ(u)e−iuxdu.

To perform this integration, we begin by choosing a value M and perform the

integration between −M and M. Then

x2Π(x) ≈ −x
2

2π

∫ M

−M
ψ(u)e−iuxdu. (5.3)

This step has an impact on the accuracy of our results, which we will discuss later.

We also choose N, the number of steps we will use to perform the integration.

We partition the real line along the points uj stretching between −M and M, by

letting

uj = −M + (j − 1)
2M

N
for j = 1, . . . , N.

Set ψj = ψ(uj). Using this notation, we can approximate equation (5.3) by

x2Π(x) ≈ −x
2

2π

N∑
j=1

ψje
−iujx2M

N
.
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This integration can be performed more efficiently using the Fast Fourier

Transform (see [96] for a history of the development). This is done by setting

λ = π/M, b = πN
2M

, and xu = −b+ λ(u− 1) for u = 1, . . . , N. Then we see that

x2
uΠ(xu) = − M

πN
x2
ue
iMxu

N∑
j=1

ψje
ib 2M

N
(j−1)

(
e−

2πi
N

)(j−1)(u−1)

.

This sum can be evaluated for all N values of xu in time N log2(N) instead of N2

using an algorithm developed by Cooley and Tukey in [97]. The MATLAB command

fft can be used for this purpose.

There is error in the computation involved, particularly for small values of x.

For this reason, it will be convenient to solve for xΠ(x). This gives the equation we

will use for computation, which is

xuΠ(xu) = − M

πN
xue

iMxu

N∑
j=1

ψje
ib 2M

N
(j−1)

(
e−

2πi
N

)(j−1)(u−1)

. (5.4)

Figure 5.3 shows a sample of the results of this integration for a Hunt VG

process. Observe that in this image, there is a section where xΠ(x) < 0 for positive

x, showing that the law of the Hunt VG process is not infinitely divisible. This

result can be compared to the result obtained by applying this procedure to a

variance gamma process obtained using the same methodology. The result is given

in Figure 5.4, together with the true value obtained using equation (3.3).

One feature of these figures is that the computed Lévy measure appears to

oscillate. The cause of this oscillation is the decision to truncate the integration

outside of the set [−M,M ]. We explain this principle below.

To understand, we first define a convolution. For two integrable functions f
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Figure 5.3: This figure shows the result of applying equation (5.4) to
a Hunt VG process with parameters σ1 = 0.3, ν1 = 0.1, θ1 = −0.1,
σ2 = 0.3, ν2 = 0.1, θ2 = 0.5, σ3 = 0.3, ν3 = 0.1, and θ3 = −0.1.

For the integration settings we use N = 212 and M = 20.
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Figure 5.4: This figure shows the result of applying equation (5.4) to a
VG process with parameters σ = 0.3, ν = 0.1, and θ = −0.1. The true
Lévy measure is shown together with the approximation using the same
method as in Figure 5.3.
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and g, the convolution of f with g, denoted f ∗ g, is given by

f ∗ g(u) =

∫ ∞
−∞

f(u− x)g(x)dx.

The Fourier transform has the interesting property that it converts convolutions to

products and products to convolutions (see [94]). In other words, if f has Fourier

transform f̂ , and g has Fourier transform ĝ, then

f̂ ∗ g = f̂ ĝ.

With this in mind, we rewrite equation (5.3) as

− x

2π

∫ M

−M
ψ(u)e−iuxdu = − x

2π

∫ ∞
−∞

ψ(u)1{|u|<M}e
−iuxdu,

so that we are taking the inverse Fourier transform of a product. We can see from the

property above that our result, instead of being the true inverse Fourier transform (

which is xΠ(x) ), will be the convolution of xΠ(x) with the inverse Fourier transform

of the indicator function 1{|x|<M}.

This function can be found by direct computation, as

1

2π

∫ ∞
−∞

1{|u|<M}e
−iuxdu =

1

2π

∫ M

−M
e−iux =

1

πx
sin(Mx).

This is related to the well known sinc function.

We have shown that the procedure detailed above to compute xΠ(x) is actually

approximating

xΠ(x) ∗ 1

πx
sin(Mx).

This accounts for the oscillation seen in Figures 5.3 and 5.4.
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Figure 5.5: This figure shows the effect of convolution with a sinc func-
tion on the function xΠ(x). Here we use a variance gamma process. The
introduction of oscillation can clearly be seen.

We show the impact of this oscillation in Figure 5.5. Here we see the actual

value of xΠ(x) for a variance gamma process, which is shown in equation (3.3),

together with the convolution of this measure with 1
πx

sin(Mx). Observe that after

convolution, oscillation is introduced into the Lévy measure.

In this section, we have shown that the distribution of a Hunt variance gamma

process is not infinitely divisible, which means that the law given by a Hunt variance

gamma process cannot come from a Lévy process. For additive processes such as the
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Sato process described in the introduction, the distribution is also infinitely divisible

at every time (see [42]). This means that the Hunt variance gamma processes is

also not an additive process. Both Lévy processes and Sato processes are spatially

homogeneous, so this is an expected result.

5.2 Term Structure of Marginal Distributions

In Section 5.1.1, we showed that the scaled moments of the Hunt variance

gamma process are not constant. In this section, we investigate how well these

match the market evolution of risk neutral moments.

It is well known that we can find the risk neutral distribution of a stock from

option prices in the market. Denote the risk neutral density of the stock at time

T by fT (x). Let C(T,K) be the current price of a call option with strike K and

expiration T , which is observable in the market. The relationship between f and C

is given by

C(T,K) =

∫ ∞
K

(S −K)+fT (x)dx.

Dupire showed in [8] that we can recover the risk neutral density fT by setting

fT (K) =
∂2C

∂K2
(K,T ).

We would like to analyze the relationship between the marginal risk neutral

densities observed in the market and the risk neutral densities obtained from the

model. Before looking at these full distributions though, we will start by analyzing

the moments of these distributions, and specifically how they evolve in time.
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To find moments from the market, we use work in [29] and [30]. These papers

develop a method to price European options with any twice-continuously differen-

tiable payoff function, H(ST ). They show that for any terminal value ST ,

H(ST ) = H(S0) + (ST − S0)Hx(S0) +

∫ ∞
S0

Hxx(K)(ST −K)+ dK

+

∫ S0

0

Hxx(K)(K − ST )+ dK.

By taking risk neutral expectations of both sides, we get the risk neutral price of a

hypothetical claim e−rTE[H(ST )] in terms of a portfolio of stock, bonds, and out of

the money put and call options. We see that

e−rTE[H(ST )] = (H(S0)− S0Hx(S0)) e−rT +Hx(S0)S0

+

∫ ∞
S0

Hxx(K)C(T,K) dK +

∫ S0

0

Hxx(K)P (T,K) dK.

We can use these equations to find the price of three contracts, which are

referred to as the volatility contract, the cubic contract, and the quartic contract in

[29]. If we set RT = log(ST )− log(S0), these contracts are given by the function

H(ST ) =



R2
T Volatility Contract

R3
T Cubic Contract

R4
T Quartic Contract

.

Finally, using the prices of these contracts, it is a straightforward to find the

risk neutral return volatility, skewness, and excess kurtosis. As mentioned earlier,

these quantities are computed from the market in a model-free way.

We compare the market evolution of moments to the moments generated by

the Hunt variance gamma process. The model return volatility, skewness, and excess
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kurtosis are computed the same way they were in Section 5.1.1. As we did there,

we will scale volatility by 1√
t
, skewness by

√
t, and kurtosis by t.

A sample plot of the time evolution of volatility, skewness, and kurtosis is

shown in Figure 5.6 for the market moments and Hunt process moments. We recall

that in Section 5.1.1, we showed that the term structure evolution for a Lévy process

is flat, and so a Lévy process will not capture the evolution seen in Figure 5.6. We

can also see in this image that the Hunt variance process does a reasonable job of

fitting the overall shape of this evolution, although the actual values are not an

exact match.

We summarize the shape of the market and model term structure of moments

by finding volatility, skewness, and excess kurtosis at 3 months, 6 months, and 9

months. Using these three points, we compute the first and second derivative with

respect to time of the moment in question. We can then compare market and model

via these derivatives. We do this for all 52 days for which the Hunt variance gamma

process was calibrated (see Section 4.3). A summary of the absolute error is shown

in Figure 5.7.

We see from this table that the Hunt variance gamma process fits the general

shape of the market moments in a reasonable way, although the fit itself is far from

perfect. A better way of summarizing this information is to compare the sign of

each model derivative with its corresponding market derivative. There are six total

derivatives to compare (two each for volatility, skewness, and kurtosis), and if the

signs for all six match up than we have correctly approximated the shape of the term

structure of the moments. A summary of the 52 calibrated days is given below.
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Figure 5.6: This figure shows the scaled volatility, skewness, and kurtosis
calculated from the market and compares it to the same scaled moments
taken from a calibrated Hunt variance gamma process. The market data
and calibration come from January 29, 2007.
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Absolute Error

∂
∂t

vol ∂2

∂t2
vol ∂

∂t
skew ∂2

∂t2
skew ∂

∂t
kurt ∂2

∂t2
kurt

Mean 0.031 0.142 0.647 2.913 2.741 8.671

St Dev 0.034 0.143 0.403 2.715 1.652 7.494

5 pctl 0.002 0.014 0.080 0.056 0.263 1.035

10 pctl 0.004 0.021 0.156 0.246 0.406 1.208

25 pctl 0.010 0.046 0.375 0.748 1.176 3.222

50 pctl 0.018 0.089 0.606 1.800 2.556 6.060

75 pctl 0.038 0.189 0.811 4.053 3.953 13.640

90 pctl 0.065 0.294 1.146 7.260 4.813 19.768

95 pctl 0.086 0.390 1.337 7.941 5.377 23.022

Figure 5.7: This table shows the average absolute error between the
derivatives of the market and model scaled moments. As a reference, the
market absolute average for each of the columns above is ∂

∂t
vol = 0.058,

∂2

∂t2
vol = 0.161, ∂

∂t
skew = 1.62, ∂2

∂t2
skew = 3.66, ∂

∂t
kurt = 2.65, and

∂2

∂t2
skew = 8.94.
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We observe that the Hunt variance gamma calibration correctly gets the sign

of the derivative for the term structure of all 3 moments on just less than 40% of

the days. There are two or less errors on more than 90% of the calibrated days.

This means that in general, the Hunt variance gamma process accurately reflects

the general shape of the market term structure of volatility, skewness, and kurtosis.

5.3 Mean Reversion in Conditional Jump Probabilities

One of the important purposes in constructing the Hunt variance gamma pro-

cess was to develop a process which was truly Markovian instead of just having

independent increments. In this section, we investigate how changes to the state

of the process affect the risk-neutral distributions. We do this by comparing the

probability of large jumps to the probability of a large jump conditional on a large

jump already occurring.

Questions of this nature are relevant in the context of financial markets. Large

jumps are observed to happen frequently, and so it is of interest to see what the risk

neutral probability distribution is conditioning on the occurrence of such an event.

Spatially in-homogeneous processes such as the Hunt variance gamma process are

one way in which we can investigate these problems.

We first make some simple observations for stock prices driven by processes

with independent increments, such as Lévy processes or Brownian motion. Let the
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stock price St be given by the standard model St = S0e
Xt where Xt has independent

increments. Assume that there is immediately a 10% jump up from S0, so that

Sε = 1.10S0. Then we calculate the probability of a second jump upwards of 10%

to be

P (St > 1.10Sε|Sε = 1.10S0) = P
(
eXt−Xε > 1.10|Sε = 1.10S0

)
= P

(
eXt−Xε > 1.10

)
≈ P(St > 1.10S0).

We see that for processes having independent increments, the ratio

P (St > 1.10Sε|Sε = 1.10S0)

P(St > 1.10S0)

is constant and equal to 1. This is true regardless of the size of the move under

consideration.

In Figure 5.8, we show a plot of this ratio over time for the Hunt variance

gamma process. We also consider

P (St < 0.90Sε|Sε = 0.90S0)

P(St < 0.90S0)
,

the risk-neutral probability of a large downward jump conditional on a large down-

ward jump.

We make several observations about these results. The first observation is

that the ratio plotted in Figure 5.8 is not unity. The probability of a large move

conditional on a large move is different from the equivalent probability of a large

move. We also can note that the ratio changes in time, reflecting changes to the

risk neutral probability distribution.
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Figure 5.8: This figure shows the probability of a 10% jump in each
direction conditional on a previous 10% jump in the same direction,
normalized by the probability of a 10% jump. This is done for 52 days
between 2006 and 2012.
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Another observation is that the ratio in Figure 5.8 is generally less than 1.

This indicates that a large jump conditional on a large jump in the same direction

is less likely to occur than a large jump in general. We call this mean-reversion,

although we remind the reader that Xt is a martingale and so mean-reversion is

not possible in its true sense. However in the sense described above, the market is

almost always seen to be mean-reverting, particularly when it comes to movemente

downward.

We also note that the ratio is much lower for a jump in the downward direction.

Further investigation reveals that the denominator for down jumps, P(St < 0.90S0),

is much larger than the denominator of the up jumps, P(St > 1.10S0), while the

numerators are similar in magnitude.

One final item to notice in Figure 5.8 is the large jump in the ratio of 10%

downward jumps in late 2008. This period of time was marked by unrest in the

global financial markets because of the subprime meltdown. This period started

on September 7, 2008 when Fannie Mae and Freddie Mac were taken over by the

federal government, and culminated with the bankruptcy of Lehman Brothers on

September 15, 2008. The Troubled Asset Relief Program (TARP) was signed into

law on October 3, although volatility and large movements in the stock market

persisted for weeks and months afterwards. Figure 5.8 shows that the ratio of large

downward jumps reached its highest point during this time, and stayed there into

early 2009. We assume that the financial crisis changed the behavior of investors

for a time, and this is one result.
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5.4 Conclusions and Further Work

In this dissertation, we have defined a spatially inhomogeneous Markov process

which can be used to model stock prices. We shown how to compute probabilities

and price options using this process. Using market data, we calibrated this process to

the S&P 500 futures prices over five year. We showed that the resulting stochastic

process is distinct from both Lévy and Sato processes. Finally, we investigated

several characteristics of this process, showing that it more accurately fits the market

evolution of moments and investigating the question of conditional probabilities after

large jumps.

In the future, we wish to better characterize the impact of each parameter

on the process. We currently have very little understanding as to what happens

when a parameter gets changed, and because of this, it is difficult to calibrate the

process and to draw conclusions once the process has been calibrated. One way of

investigating this to consider how the moments change as parameters are changed.

Another approach that we are investigating is to compute the reverse conditional

expectation function, which for fixed u < t is given by

f(S) = E[Su|St = S].

More generally, another avenue that could be explored are different Hunt pro-

cesses. In this dissertation we have worked exclusively with a Hunt variance gamma

process, but the results in Chapter 3 can easily be generalized to create different

Hunt processes. For example, we could use more complicated functions for σ, ν, and

θ, or even create an entirely new process based on a different Lévy measure.
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This creates another question, namely what is the optimal Hunt process for

use. In this setting, the optimal process will depend on its desired use. However,

before we can tailor Hunt processes for their intended uses, we need to better un-

derstand how spatial inhomogeneity affects the process. A first step would be to

understand how each parameter in the Hunt variance gamma process influences the

overall process, or at least specific aspects of it. For example, if we understood

how changing parameters impact the time evolution of moments, we could choose

parameter functions so that they fit the market time evolution of moments.

Finally, we can use the Hunt variance gamma process to gain insight into how

the market is pricing different events. We have already investigated the risk-neutral

probabilities of large jumps conditioned on large jumps, but this is just an example

of what can be done. Economists and empirical financial researchers could use

this or similar processes to answer a variety of questions which require a spatially

inhomogeneous model.
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gales. Stochastic Models, 14(1-2):335–349, 1998.

[24] Alexey Kuznetsov. Wiener Hopf factorization and distribution of extrema for a
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[76] Aleksandar Mijatović and Martijn Pistorius. Continuously monitored barrier
options under markov processes. Mathematical Finance, 2011.

[77] Stephen Figlewski and Bin Gao. The Adaptive Mesh Model : a New Approach
to Efficient Option Pricing. Journal of Financial Economics, 53:313–351, 1999.

[78] Domingo Tavella and Curt Randall. Pricing Financial Instruments: The Finite
Difference Method. Wiley, 2000.

[79] Nicholas J. Higham. The Scaling and Squaring Method for the Matrix Exponen-
tial Revisited. SIAM Journal on Matrix Analysis and Applications, 26(4):1179–
1193, 2005.

100



[80] Rama Cont and Ekaterina Voltchkova. Integro-differential equations for option
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