
ABSTRACT

Title of dissertation: THEORETICAL AND COMPUTATIONAL
STUDIES OF HUMAN INTERPHASE
CHROMOSOMES

Guang Shi
Doctor of Philosophy, 2019

Dissertation directed by: Professor Devarajan Thirumalai
Biophysics Program,
Institute for Physical Science and Technology

In this thesis, various aspects of dynamical and structural properties of human

interphase chromosomes are studied using both theoretical and computational tools.
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chromosomes as a copolymer. I first showed that the model is consistent with

current experimental data. Using the CCM, I further investigated the dynamics

of human interphase chromosomes. The model suggested that human interphase

chromosome exhibit glassy-like dynamics characterized by sluggish movement, large

loci-to-loci variations, and dynamical heterogeneity.

Furthermore, I predicted that human interphase chromosomes also display

extensive structural heterogeneity. Using a theoretical framework I developed based

on polymer physics, I am able to identify that the existence of subpopulations is the



reason for the Hi-C-FISH paradox. As an application of the theory, the information

of subpopulations of cells can be readily extracted from experimental FISH data.

The results suggest that heterogeneity is pervasive in genome organization at all
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Chapter 1: Introduction

1.1 Genome organization in a nutshell

The history of the study of chromosomes begun with its discovery in the mid-

to-late 19th century by numerous scientists [1]. Under the microscope, rod-shaped

structures were identified during cell division. The observed structures, given the

name “chromosomes”, are correctly recognized as essential components of heredity,

long before the structure of the basic unit, DNA, was discovered. Nowadays, it is

well known that chromosomes are complex molecules formed by DNA and proteins,

which adopt a variety of structures during different stages of the cell cycle. Although

our understandings of chromosomes (sometimes called chromatin if it is referred as

the chromosomes during the interphase stage) has advanced considerably since the

19th century [2, 3]. However, much remains unknown regarding their structures,

dynamics, and biological functions.

We now know that the DNA in a mammalian cell is wrapped around the 10-

nm sized nucleosomes and packaged in the micron-sized cell nucleus. At the length

scale of about 10 nm, whether the chromatin fiber forms an ordered or disordered

structure has been in debate for several decades. The main feature of chromatin on

this length scale, which has been extensively studied using the bead-on-string model,
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views it as nucleosomes that are regularly spaced along the DNA connected by linker

DNA of 50 bps length. In the 1970s, the first transmission electron microscopy image

of chromatin fiber showed that, in vitro under certain salt concentration, it adopts

disordered 10-nm fiber conformation [4]. Later on, the 10-nm fiber was found to

have the capability to fold into a higher-ordered structure with a diameter of roughly

30 nm in the presence of linker histone H1 or Mg2+ ions [4–6]. Several models have

been proposed to explain the observation of 30-nm fiber [7,8]. However, it has been

consistently debated (see [9] for detailed reviews) whether chromatin fiber adopts

the 30-nm ordered structure in vivo. Cryo-EM and its variations were used to

visualize the interphase chromosomes and no ordered structure was observed [10].

In a recent experiment [11], using a novel fluorescent dye, the authors overcome the

difficulty of efficiently marking the interphase chromatin and found no evidence of

ordered package of nucleosomes of any kind. Instead, it seems that the nucleosomes

are dispersed randomly in the cell nucleus with large density fluctuations [11]. It

was suggested that 30-nm chromatin fiber may be an artifact that might exist only

under certain in vitro salt condition [9] and is absent in vivo.

On the other hand, the folding of the chromatin fiber on the length scales be-

tween several kilobase pairs (kbps) and hundreds of millions of base pairs has drawn

increasing attention in the last decade, owing to the advances in the experimen-

tal techniques. These new instrumentations, such as the new imaging techniques

with high throughput [12–14] and spatiotemporal resolution [15–17] and Chromo-

some Conformation Capture (3C) - based techniques [18–21], have provided many

insights into our understanding of chromosome organization on both small and large
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length scales (see [22], [23], and [24] for thorough reviews). Through the remark-

able Hi-C experiments [21,22,25–28], glimpses of how the genome is organized in a

number of species start to emerge. The power of Hi-C lies in its ability to detect

the pairwise contacts between loci throughout the whole genome at a resolution as

high as kbps. In spite of the loss of information by projecting 3D structure into

a two-dimensional representation, Hi-C experiments, for the first time, provide a

bird’s eye view of the genome architecture, which lead to several significant findings

such as CTCF loops, Topologically Associating Domains (TADs) and compartments

(discussed below).

A complementary and more direct way to determine genome organization is

to assess the spatial coordinates of the chromosome loci. The Fluorescence In Situ

Hybridization (FISH) technique, although suffers from many limitations, can be

used to visualize individual loci by labeling specific DNA sequences. By painting

the whole chromosomes using multiple probes along the DNA chains, the global

view of the distribution of chromosomes inside the cell nucleus is achieved [2]. More

recently, a combination of super-resolution imaging with multiplex FISH allowed

direct visualization of targeted chromatin segments [14, 29–31]. However, FISH-

based methods cannot be used to probe dynamic information since it is performed

on fixed cells. Instead, single-molecule tracking [17,32] is used to assay the dynamic

behavior of loci in real time, which revealed that the dynamics of chromatin loci can

be largely described as subdiffusive [17, 33–37] with large heterogeneity [17, 34, 35,

38, 39], and can also be protein dependent [40]. In addition, the results from more

recent experiments [41–44], in which the bulk dynamics across entire nucleus were
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probed, suggested that the chromatin loci move coordinately over the length scale

of hundreds of nanometers and the time scale of seconds. However, no experimental

method is currently available for monitoring the dynamics of a large number of loci

simultaneously with their genomic identification.

Physicists and chemists have a rich history of using ideas rooted in physics

to understand various biological systems, and the chromosomes are no exception.

It is well known that the properties of a polymer on a long length scale, measured

in terms of the basic building block, do not depend on the chemical details [45].

Thus, it is natural to tackle the problems related to the structure and dynamics of

chromosomes using polymer physics. The early work of this kind [46–51] dates back

to early-1990 when the random walk model was used to explain the experimentally

measured R(s), which is the averaged spatial distance between two loci separated by

a genomic distance s [46]. In the last decade, more focus is placed on explaining the

experimental observation of Hi-C contact maps, and due to the complexity of the

problem, coarse-grained computational polymer models are often used [52–70] when

analytical solutions are not feasible. In spite of simplifying the problem as a poly-

mer, which is necessary to make the problem tractable, computational models are

great tools to provide valuable insights, especially considering the inherent limita-

tions associated with the experimental studies. De novo polymer models have been

developed to explain the compartments, TADs and CTCF loops observed in Hi-C

data [56, 60–62, 66, 67]. The de novo models can provide direct biophysical insights

to the problem. In addition to the de novo approach, numerous algorithms are also

proposed to reconstruct 3D chromosome structure from both ensemble Hi-C [71–78]
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and single-cell Hi-C contact map [79]. These methods are useful and convenient in

practice to help visualizing 3D chromosomes using existing experiment data. For

this particular topic, see [80] for an extensive review.

1.2 From imaging to Hi-C

Using fluorescence in situ hybridization (FISH) techniques, specific DNA se-

quences can be visualized in fixed cells. Chromosome Painting, which is developed

based on FISH to detect the individual whole chromosomes, has shown unambigu-

ously that the individual chromosomes occupy distinct territories instead of mixing

with other chromosomes in single cells [2]. These distinct territories, termed as

Chromosome Territories (CTs), are found to be distributed in the cell nucleus in

a non-random fashion. Larger chromosomes are more likely located in the periph-

ery of the nucleus, whereas the smaller chromosomes preferentially localized in the

interior [2, 79]. At the same time, gene-poor chromosomes are more often found

in the periphery and gene-rich chromosomes with similar sizes situate toward the

center of the nucleus [79]. The CTs generally are not round-shaped domains but

have irregular shapes depending on its gene richness. Gene-poor chromosomes are

more compact and round shaped and gene-rich chromosomes adopt more expanded

shape with protrusion [81]. Such gene content dependence is closely related to the

epigenetic profile rather than the DNA sequence. The most prominent examples are

the active and inactive X chromosome pairs (Xa and Xi). The inactive X chromo-

some is transcriptionally inactive with a round compact structure, and the active X

5



chromosome occupies larger volume with irregularly shaped protrusions [82] in spite

of the similarity in their sequences.

Using the conventional microscope, chromosome staining reveals two types of

form of chromatin. These two forms of chromatin are referred to as heterochromatin

and euchromatin [2], as in heterochromatin referring to dark stained, densely packed

chromatin and euchromatin referring to light stained, loosely packed chromatin. It

is found that heterochromatin is distributed near the periphery of the cell nucleus

and around the nucleolus and the interior of the nucleus is filled with euchromatin.

These two terms were originally coined according to their physical forms and later

were found to differ in their biological functions as well. Heterochromatin is largely

composed of inactive and repressive loci whereas euchromatin comprises active genes

and participate in the transcription activity. The physical separation between the

two forms of chromatin are also manifested in the Hi-C data where the contact map

can be decomposed into A/B compartments [21]. Even though the separation be-

tween these two forms of chromatin can be clearly observed under just conventional

microscope, the finer details of the packaging of the chromatin fiber in heterochro-

matin and euchromatin still remain ambiguous. The 30-nm fiber model has long

been suggested as the folding principle of the chromosome, especially in heterochro-

matin. In this model, the nucleosomes and linker DNAs package into an ordered

structure with a diameter of about 30 nm and the resulting fiber further folds into

heterochromatin or euchromatin. This scenario was supported in numerous in vitro

experiments. However, it is becoming clear that such ordered 30-nm fiber is ab-

sent in vivo. A recent Cryo-EM experimental study using a novel high-efficiency
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dye showed no evidence of 30-nm fiber but instead supports the picture of irregular

packing of nucleosomes inside the cell nucleus [11]. The volume fraction (a similar

quantity as mass density) is estimated to be around 40% to 50% for heterochro-

matin region and 10% to 20% for euchromatin region. However, the boundaries

between the high- and low-density chromatin are not as clear as expected, but there

are intermediate regions with a volume fraction covering the range from 20% to

40%. In the same experiment, mitotic chromosomes are found to be much more

homogeneous and without any ordered structural units beyond a single nucleosome.

The volume fraction of chromatin in mitotic chromosomes is found to be similar to

that of heterochromatin, suggesting that chromatin folding may be similar between

heterochromatin and mitotic chromosome.

The merit of imaging technique lies in its ability to directly measure the three-

dimensional coordinates of the genomic loci. However, the power of imaging methods

currently is largely limited due to low-throughput. How to determine the spatial

and genomic coordinates of a large number of loci at the same time with genomic

identification is an ongoing research area. About two decades ago, a very powerful

non-imaging technique was proposed, called Chromosome Conformation Capture

(3C) [18], which can detect the contact frequency between chromatin loci. The ba-

sic principle of the 3C technique is that when two chromatin loci are in physical

proximity, their contact can be fixed using cross linking agents. Subsequently, the

cross-linked chromatin loci pair is identified through sequencing. This procedure

allows one, in principle, to measure the contact probability between any two loci.

But it was not until a decade ago, Hi-C, which combines the high-throughput se-
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quencing and 3C technique, was invented to map the contact map of the entire

genome [21]. The fundamental logic of Hi-C experiment is that the organization

of the genome can be inferred from the pattern of contacts (map). Such an idea

is very important in protein folding where the native contact map is a direct mea-

surement of protein structure. The Hi-C technique has been used extensively in the

last decade to provide a glimpse of genome organization [21,25–28] (also see [83] for

a comprehensive review). Although the contact map is not a direct measurement

of three-dimensional genome organization but rather a two-dimensional projection,

important and previously unknown structural features are unveiled from Hi-C data.

Three major findings from Hi-C data are 1) Chromosome Loops, 2) Topologically

Associating Domains and 3) Compartments, each revealing a distinct organization

principle for chromosome.

1.2.1 Loops and Topologically Associating Domains

Loops, as the term suggests, are looped structure between two genome loci.

Such a structure, if prominent in cells, can be observed as peaks in 3C/4C/5C

contact profile or as an interaction hotspot in the Hi-C contact map. Obviously,

only the specific looping structure can be detected since any non-specific looping

interactions will be smeared out in the ensemble averaged measurements. It is

tempting to view these loop interaction as analogues of the native contacts in the

protein structure. However, the chromosome loops are much more dynamic and

heterogeneous compared to the native contact in protein folding. Thus, they cannot
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be viewed as stable structures. It is a traditional view that in order for a gene to

be expressed in Eukaryotic species, enhancers need to come into physical proximity

with the promoter of their targeted gene [84, 85]. Such looping interactions are

indeed observed in the 3C/4C/5C/Hi-C data [85,86], supporting the contact model

of transcription.

Contact profile for a specific loci can be measured using 3C. However, it is not

until recently that the more complicated and higher order interaction patterns were

revealed by Hi-C experiment. One important feature discovered are the Topologi-

cally Associating Domains (TADs) [25]. The TADs are the square patterns along

the diagonal of the contact maps in which the probability of two loci being in contact

is more probable than between two loci belonging to distinct TADs.

In their seminal work, Rao et. al. [28] showed that there is an underlying con-

nection between TADs and loops - more specifically, CTCF loops. The CTCF loops,

formed between pairs of CTCF motifs (which are genome segment of specific DNA

sequences), previously unknown, were found to be much more prominent compared

to the looping of the promoter-enhancer pair. They showed that there are thousands

of CTCF loops distributed along each chromosome and that all the CTCF loops form

between the boundary loci of the majority of TADs. The coexistence of the CTCF

loops and TADs raises questions such as whether CTCF loops create TADs or the

other way around. Chip-seq data shows that the boundary of TADs or loop anchors

are enriched with cohesins, a ring-shaped protein from the Structural Maintenance

Complex (SMC) family. Recently, the loop extrusion model was proposed to ac-

count for the formation of both TADs and CTCF loops [62, 87, 88]. According to
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the loop extrusion model, one or multiple cohesins can encircle and move along two

distant chromatin segments, thus enlarge the loops as they translocate along the

DNA. When cohesins collide or encounter the roadblocks, such as CTCF motifs,

they stop and act as boundaries of the TADs. In principle, cohesins can attach and

detach from the chromatin stochastically, making the TADs intrinsically fluctuating

objects rather than stable structures. Recent Hi-C experiments [89, 90] show that

cohesins are indeed essential for the formation of TADs. The acute depletion of

cohesins leads to the almost complete disruption of the TADs.

Whether such an extrusion process is driven by ATP-dependent motor activity

or thermal fluctuation is still under debate [91]. There are numerous studies showing

that condensin, which is also in the SMC family, has the capability to slide [92],

compact DNA [93], and extrude loops along the double helix DNA strand in an ATP-

dependent manner [94]. It has been shown that cohesin does need ATP to load on

DNA [95,96]. However, single molecule experiments showed no evidence of cohesin’s

motor activity but that it slides diffusively along DNA [97, 98]. Currently, it still

remains unclear what is the physical mechanism of the formations of CTCF looping

interaction due to the difficulty of directly visualizing the dynamics of chromatin

segment between two CTCF motifs.

The biological significance of TAD lies in its connections to gene regulation. It

is speculated that the TADs can either up-regulate or down-regulate the transcrip-

tion of genes, by enhancing the contact probability between the promoter-enhancer

pair or by insulating the formation of loops between the promoter and enhancer out-

side the TADs [99–102]. More interestingly, the translocation of RNA polymerase
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along the DNA might be partially responsible for the formation of TADs by pushing

the cohesins, and thus extruding the loops [103], indicating that the transcription

can also affect the formation of TADs. However, Rao et al. [89] found contrary re-

sults, which suggest that disruption of TADs leads to only moderate changes in gene

expressions, meaning that the connection between the TADs and gene regulation

can be minimal. It is important to note that the subtle change in gene expression

sometimes can results in substantial change in the phenotype.

1.2.2 Compartments

I have discussed two important organization principles - loops and TADs -

both of which occur on the length scale smaller than megabase pairs (Mbps). Hi-C

Contact maps also revealed that chromosomes are organized into compartments on

the genomic length scales exceeding Mbps [21,28]. The partitioning of the structure

into compartments are highly correlated with the histone markers in the chromatin

loci [28,89], implying that contacts are enriched within the same compartment and

depleted between different compartments. The loci associated with active histone

markers and those associated with repressive histone markers are localized in differ-

ent compartments. The compartment formation, observed in the Hi-C contact maps,

is likely a manifestation of spatial separation between heterochromatin and euchro-

matin observed using the microscopy. The physical mechanism of such compartment

formation is speculated to be due to microphase separation [56, 63, 66, 68, 104] -

chromatin loci with similar histone markers preferentially interact with each other,
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possibly through direct nucleosome-nucleosome interactions [105–107] or through

histone binding proteins [108]. Interestingly, two recent studies show that HP1a,

which binds to H3K9me markers - a typical heterochromatin marker, form liquid

droplets both in vivo and in vitro [109, 110]. Similarly, Polycomb Repressive Com-

plex 1 (PRC1), which is found to modify histone markers, also forms droplet in

vitro under the physiological conditions [111]. These studies provide evidence for

the model that distant heterochromatic loci form a cluster with heterochromatin

binding proteins acting as bridges between them. As for the euchromatin, although

direct evidence of phase separation type mechanism is lacking, it is possible that

distant euchromatic loci are brought in physical proximity by the transcription hubs

formed from RNA polymerases and coactivators [112–114].

The interplay between the different layers of genome organization is an ongoing

topic. The bulk Hi-C experiments suggest that CTCF loop formation counter plays

the compartmentalization [68, 89]. This can be understood by noting that many

loop pairs are actually located within different compartments. Thus, two loci with

different histone markers, which prefer to be in physical separation, are constrained

in proximity by their direct looping interaction. Such looping interactions increase

the mixing between different compartments. As a result, the disruption of TADs

leads to the enhancement of compartmentalization. However, for Drosophila, the

TADs and compartments are possibly two sides of the same coin, both reflecting the

underlying epigenetic states [115]. It is, hence, intriguing to understand how does

the interplay between TADs and compartments matter? Why are loops needed in

the mammalian world and why do TADs counteract but not assist the formation of
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compartments? These questions clearly request further investigation.

1.2.3 Single-cell genome organization

It is important to understand the distinction between bulk and single-cell ex-

periments. The contact profiles in the bulk Hi-C experiment [21, 28] are measured

from millions of cells. Thus, the results are ensemble/population averaged. In con-

trast, the single-cell Hi-C [79, 116, 117] or FISH experiments [14, 29–31, 118] take

measurements from individual cells. Thus, they can generate snapshots of genome

organization at the single-cell level. Furthermore, the single molecular tracking of

genome loci in principle allows one to obtain both the spatial and temporal infor-

mation of the genomes, in spite of the current limitation of relative low throughput

of the technique. The importance of single-cell experiments is its ability to quanti-

tatively measure the extent of cell-to-cell variations. Such variations seem to be a

prevalent feature observed in essentially all dimensions of biological systems [119],

from the molecular level such as the gene expression profiles [120], to community

level such as tumour heterogeneity [121]. In this thesis, I will discuss that the struc-

tural and dynamical heterogeneity dominates genome organization. The merit of

cellular heterogeneity may be that it provides a mechanism for cells to be more

adaptive to changing environments by allowing a large range of responses, a mech-

anism analogous to how the diverse species are beneficial to an ecosystem. This, of

course, is speculative and requires quantification in the future.

Recent single-cell Hi-C experiments show that the genome organization indeed
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exhibits large variations between cells of different types [116,117] and between cells

in different stages in the cell cycle [122], indicating that chromosomes are dynami-

cal objects that undergo substantial conformational changes through the cell cycle.

More interestingly, genome organization also displays extensive cell-to-cell hetero-

geneity even for the same type at the same stage of the cell cycle as demonstrated

by single Hi-C experiment [79] as well as imaging experiments [14,24,30,118]. Both

Stevens et al. [79] and Bintu et al. [30] showed that the TADs are not conserved

structural units but rather adopt different structures from cell to cell. Bintu [30] fur-

ther show that even with the depletion of cohesins, which are essential in preserving

the TADs at the ensemble level, the TADs-like structures can still be observed at

the single cell, although the preferential location of the boundaries of the TADs ob-

served in the ensemble Hi-C contact maps are obsolete. Wang et al. [14] showed that

the compartments are preserved structures even in an individual cell and confirmed

that the A/B compartments defined from Hi-C contact map are indeed physically

separated, and arranged in a polarized fashion. However, a detailed analysis of their

data [66] reveals that, although the physical separation between the two compart-

ments is observed in every cell, the exact conformations of the chromosome exhibit

a widespread continuous distribution without falling into a small number of sub-

populations. Finn et al. [118], in a high throughput experiment, obtained a large

dataset of measurements of distances for about 200 pairs of loci in human fibroblast

cells. They found that the distributions of distances between any pair of loci are

widespread, indicating an extensive heterogeneity in genome organization on both

small ( 0.1 Mbps) and large length scales ( 100 Mbps). In this thesis, I will provide
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a theory which can be used to analyze such data and extract information about the

distribution of subpopulations of cells.

The complexity of genome organization on the single-cell level can be revealed

by observing snapshots of many cells or by monitoring a small set of cells over a

long time. In the language of statistical mechanics, they correspond to ensemble

average and time average, respectively, and become identical only if the system is

ergodic. However, it is still unclear if the biophysical properties of chromosomes are

ergodic. To resolve this question, the dynamical information is required, a topic I

will explore in the following sections. This question is also addressed in Chapter

3, in which I provide evidence of non-ergodicity in genome dynamics by means of

coarse-grained simulations.

It is also worth noting that the thermal fluctuations may play a non-negligible

role in the observed variations in genome architecture. It is well known that any

polymer has its intrinsic continuous distribution of conformations, which can be

widespread (e.g. an ideal chain or a self-avoiding chain) simply due to the thermal

fluctuations. Hence, it is important for one to be able to discern the variations

caused by fluctuations and those of other origins. Such a question, at the present,

remains largely a mystery and unexplored. In this thesis, I developed a theoretical

framework using polymer physics and hope to provide some insights to this question.
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1.3 Chromosome Dynamics

It is not hard to realize that the dynamics is an essential part of all biolog-

ical functions. A genome where everything is fixed in space cannot perform gene

expressions, DNA repair, and many other functions. Thus it is of paramount to un-

derstand how does the chromosome loci move in the confined space of cell nucleus.

FISH technique and its derivative (e.g. multiplex FISH) as well as Hi-C techinque

can not probe the dynamics of genomes since they are performed on fixed cells.

Live-cell imaging techniques [17,32], mostly relying on labeling chromatin loci with

fluorescence tags, are required to investigate the dynamical aspects of genomes.

1.3.1 Some theoretical concepts in polymer dynamics

Before delving into an overview of key experimentally-observed results regard-

ing the genome dynamics, I will briefly discuss a few key theoretical concepts in

polymer dynamics. The simplest polymer model is an ideal chain or sometimes also

referred to as Gaussian chain. It is a polymer in which all interactions but chain

connectivity are neglected. Rouse model [123] shows that the mean square displace-

ment (MSD) of a monomer in a single ideal chain in a thermal bath behaves as

MSD ∼ Dt1/2 for small t and exhibit normal diffusion (MSD ∼ t1) at long time. In

general, MSD for a monomer can be written as MSD ∼ Dtα where α is the diffusion

exponent and D is the diffusion coefficient. If α < 1, the diffusion process is termed

as sub-diffusive and is referred to super-diffusive if α > 1. Both cases sometimes are

referred as anomalous diffusion.
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1.3.1.1 Connection between structure and dynamics

The dynamics of a polymer is intrinsically connected to its structure [45,123].

This can be illustrated using the following scaling argument. The characteristic time

scale of relaxation of a polymer segment, τr, is given by τr = R2/Dr where R is the

characteristic length scale of the segment and Dr is the diffusion coefficient of the

center of mass (COM) of the segment. The dynamic of monomers is sub-diffusive

for t� τr and exhibits normal diffusion for t� τr. For an ideal chain, all monomers

contribute to the diffusion of the COM. Thus, Dr must scale as N−1 where N is the

number of monomers. Instead, let’s consider a compact globular structure formed

by a single polymer and assume its internal motion is sluggish such that the chain

moves like a rigid body on the time scale of τr. Under these condition, Dr ∼ N−2/3

because only the surface monomers contributes to the diffusion of the whole chain.

In general, we have Dr ∼ N−θ where θ is the characteristic exponent quantifying

how many monomers contribute to the global motion of the COM. Geometrically, θ

can be viewed as a measurement of the surface roughness of the segment. Combined

with the relation R ∼ N2ν where ν is the Flory exponent, we have τr ∼ N2ν+θ. The

length scale of a monomer’s diffusion at time τr must coincide with the length scale

of the chain itself, leading to ταr ∼ R2 ∼ N2ν . Hence, the diffusion exponent of a

monomer for time t < τr is given be α = 2ν/(2ν + θ). For an ideal chain, using

ν = 1/2 and θ = 1, we have α = 1/2 which recovers the predictions from Rouse

model. For the crumpled globule, proposed by Grosberg [48], it can be shown that

α = 0.4 (with ν = 1/3 and θ = 1), which is close to the value measured for human
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interphase chromosome [17,33–37].

1.3.1.2 Dynamics of contact formation

The distribution of distance between two arbitrary monomers along a chain

has a general form P (r) ∼ r2+gexp(−Brδ) where B is some constant depending on

the specific polymer model [124,125], and g is the “correlation hole” exponent, and

δ is related to Flory exponent ν by δ = 1/(1−ν). The exponents g and δ govern the

small and long length scales of polymer conformation, respectively. In the previous

section, I showed that the dynamical property - the diffusion exponent of monomers

on the small time scale - is directly related to its structural property - the Flory

exponent ν. More interestingly, the dynamic of contact formation between two

monomers is connected to both g and ν values. Based on the arguments presented

by Toan and colleagues [126], combined with the scaling argument α = 2ν/(2ν+ θ),

it can be shown that the compactness of the exploration of the space between two

monomers before they come into contact can be assessed by the parameter γ =

(3+g)ν/(2ν+θ) where 3 is the dimensions of space. When γ > 1, the exploration is

non-compact and the mean first passage time of contact formation, τc, is ∼ N ν(3+g).

For γ < 1, the compact exploration of the conformations between two monomers

leads to τc ∼ N2ν+θ. The dynamics of contact formation is particularly interesting

because it is the first step in the gene regulations in which the enhancer and promoter

form contacts [99–102]. Hence, the compactness of the searching process has direct

biological consequences.
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1.3.2 Single loci movements

Early experimental attempts for investigating interphase chromosome dynam-

ics showed that individual loci undergo constrained sub-diffusive motion in living

cells on the time scale as long as a hundred seconds [127, 128]. Such constrained

diffusion is likely a direct result of chromosome territories (CTs). Individual CT is

relatively immobile at its fixed position in the cell nucleus and consequently, chro-

matin loci can only dangle within the territory, move as far as the size of territory

which is sub-micron. The sub-diffusivity can be largely explained by the polymeric

nature of chromosome. More recent experiments show the average diffusion expo-

nent, α, of chromatin loci lies within (0.4, 0.5) [17, 33–37]. However, the difference

between 0.4 and 0.5 is subtle and hence it is hard to conclude a confident value of

α. It is likely that the genome organization does not follow any generic polymer

model such as fractal globule or ideal chain, but rather adopts complex structures

with different folding principles at different length scales. Nevertheless, the fact that

the value of α lies around 0.5 indicates that the chromosome dynamics, to a large

extent, originates from generic polymer effect.

A more biologically significant question arises in regard to the dynamics of pro-

moter and enhancer and their communication in the context of gene transcription.

In two recent experiments, combined live-cell imaging and CRISPR-based technique

was used to address this very issue. Chen and colleagues [129] used multi-color la-

beling to directly monitor the enhancer, its promoter as well as the transcription

activity simultaneously. It provides direct evidence that promoter-enhancer phys-
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ical contact is directly coupled with the transcription of the targeted gene in real

time. More importantly, they showed that the contact is not stable but rather tran-

sient, meaning that the contact breaks and forms dynamically. Gu and colleagues

showed [130] that enhancer and promoters are sub-diffusive, even in the presence

of transcription, and the transcription activity increases the apparent diffusion co-

efficient of enhancer and promoters but hardly affects the diffusion exponent which

was found to be about 0.5. In addition, by directly inhibiting the RNA polymerase

II initiation or elongation, the mobility of enhancer/promoter is decreased. Further-

more, a large variation is observed in the single loci trajectories, which seems not

to be explained by statistical fluctuations. Such dynamical heterogeneity will be

further discussed in the following section.

1.3.3 Global motions of chromosomes

Most of the live-cell imaging experiments monitor a handful of chromatin loci

by tagging them with fluorescence probes. They provide great insights into under-

standing how individual loci move but suffer from the limitation of accessing the

global dynamic view of the chromosomes territories and the cell nucleus. A recently

developed experimental technique based on the correlation spectroscopy of time-

resolved imaging using particle imaging velocimetry (PIV) has been used to tackle

this very question [41]. In their work, the global motions of chromosomes within

an entire cell nucleus can be measured from the displacement vector field which is

inferred from a series of fluorescence images. An important finding in their work is
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that chromatin movement was found to be coherent on the length scale of microns.

The chromatin loci develop dynamical correlation - meaning that the loci close in

space also move along each other in similar directions and with similar magnitudes.

Such coherent motions build up to its maximum around time scale of several sec-

onds and vanished at longer times. Later on, Nozaki and colleagues [43], using

super-resolution live-cell imaging, identified dynamically coherent chromosome do-

mains with an average size of 160nm, which is comparable to the length scale of

an average CTCF loops [28]. In another study, the coherent motions were found

to be transcription-dependent [44], by showing that the long-range dynamical cor-

relation between chromatin loci is diminished in the absence of RNA elongation.

I have shown, using a coarse-grained computational polymer model [66], that the

observed long-range dynamical correlation is a consequence of glass-like dynamics of

the chromosomes. On the contrary, an activity-based mechanism was proposed [131]

according to which the coherent motions are driven by the active force exerted on

the loci, potentially by RNA polymerase II, helicase, and topoisomerase.

1.3.4 Dynamical heterogeneity

With the growing experimental evidence of structural heterogeneity of genomes

[14, 24, 30, 79, 118], it is natural to wonder if the chromosome also show dynamical

heterogeneity. In the light of recent experimental data, the answer to this question

becomes increasingly clear that the chromosome loci indeed exhibit extensive vari-

ations in their dynamics. The large variance in the single loci trajectories has been
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found in both E.coli and human cells [17,34,35,38,39], reflected by the widespread

distribution of apparent diffusion coefficients and exponents of individual loci [40].

The mobility of individual loci can vary from each other by several orders of mag-

nitude, suggesting a coexistence of both fast and slow loci. The heterogeneities in

the loci mobility can be very well captured by the Van Hove function, which is

the distribution of displacements of individual loci at a certain time lag. For an

ideal chain or self-avoiding chain, the Van Hove function is a Gaussian. However,

if there are large variations among loci’s mobilities, the Van Hove function has a

fatter tail. Lampo and colleagues [132] showed that the Van Hove function of the

mRNA molecules in the cytoplasm of both E.coli and Saccharomyces cerevisiae cells

is best fit by a Laplace distribution rather than a Gaussian. Interestingly, in another

work, nucleoid-structuring (H-NS) proteins’ movements are monitored as a proxy

of chromatin loci dynamics due to its ability of binding to DNA [133] and the au-

thors found that the distribution of displacements of H-NS is of Pearson Type VII

which has a power-law tail. Clearly, it is interesting to see future experiment works

reporting similar measurements for chromosome loci.

The physical origin of the observed dynamical heterogeneity of chromatin loci

is of great interest. It should be noted that the variation of chromatin loci dynam-

ics can be a result of multiple effects rather than just one cause. In principle, the

potential origins of dynamical heterogeneity can be classified into two mechanisms.

One is that the differences between individual loci’s dynamics simply is a reflec-

tion of differences in their intrinsic properties. It is intuitive that a euchromatin

loci probably should behave differently from a heterochromatin loci due to the dif-
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ference in their chemical compositions and the macro-environment. This intuition

is indeed supported in experiments that euchromatin loci diffuse faster than the

heterochromatin [42].

The other possibility is that dynamical heterogeneity can emerge near the glass

transition of both passive and active material (see [134–136] for detailed reviews of

glass transition), which is accompanied by slowing down of particles. This can be

understood as a direct result of crowding - due to confinement of cell nucleus -

and/or effective attraction between chromatin loci [105–107, 109, 110]. The distinc-

tion between these two types of dynamical heterogeneity is that in a glassy material,

the fast and slow particles exchange their diffusivities over the time scale longer than

the relaxation time scale of the system. On the contrary, if the differences between

the dynamics of two loci are caused by their underlying intrinsic property, the fast

particle will always be fast and vice versa. Thus, in principle, one can potentially

differentiate between these two mechanisms by monitoring individual loci over a

long time.

1.3.5 The role of active forces

Unlike the protein folding which is usually governed by equilibrium thermo-

dynamics, the non-equilibrium effect may play an important role in both genome

organization and dynamics. The active force has been argued to be the cause of the

observed super-diffusive motion in E.coli [38]. However, it is hard to approach this

question in an experimental set up since the elimination of ATP-activity can lead

23



to disruption of various biological functions. Thus, the direct causation between the

active force and genome dynamics and organization is difficult to be established.

Theoretical and computational models in this context is thus of great use and can

provide valuable insights. A recent computational study [137] showed that a sin-

gle polymer undergoes a coil-to-globule transition when an active force parallel to

the backbone of the chain is injected into the system. This is a surprising result

since the active forces are usually considered to increase the effective temperature of

the system, which should cause the chain to expand not the other way around. In

a more chromosome-specific context, Weber and colleagues [138] argued that ran-

dom motions of chromatin loci, to a large extent, are driven by the ATP-dependent

activity, which leads to an Arrhenius dependence of diffusion coefficient on temper-

ature. I and others showed that by including isotropic active noise on euchromatin

chromatin loci, the phase separation between heterochromatin and euchromatin can

be further enhanced [67], which is in coordinance with the activity-induced phase

separation observed in various computational studies [139–141]. In addition, David

et al. [131] showed that anisotropic active force along the chromatin fiber can give

rise to the observed coherent motions of chromatin loci on micron length scale.

1.4 Theoretical and computational models for chromosomes

1.4.1 Early theoretical models

With its polymeric nature being a potential determinant of the biophysical

property of chromosomes, many theoretical and computational models for chromo-
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somes have been developed using the concepts in polymer physics [46–70]. The first

attempt in the field is to model the interphase chromosomes using a simple Gaussian

chain [46], in which the volume exclusions are neglected. The study found that the

distributions of distances between probed loci pairs, within reasonable accuracy, can

be fit by the theoretical formula for a Gaussian chain. Presented in this pioneering

work, an important quantity used to describe the chromosome organization is the

mean spatial distance as a function of the genomic distance, R(s), where s is the

genomic distance. The authors found that R(s) scales as s1/2 for small s < 2Mbps

and reaches a plateau for larger s. Later experimental studies with larger data set

showed that R(s) has a finer structure with different scaling regimes at different

length scales [14], and is epigenetic state dependent [29]. To explain the plateau

behavior of R(s), the random-walk/giant-loop model [49] was developed in which

the chromosome segment form fixed loops with an average length 3Mbps. A similar

early study [51] models the interphase chromosome as a micelle-like structure whose

core is consisted of high GC content and the surface is formed by low GC content

chromosome segments. In retrospect, this study provides two valuable insights of

genome organizations. One is the compactness of chromosomes reflected by micelle-

like structure. The other is the copolymeric nature of chromosomes by treating the

low CG and high CG content regions as two different types of chromosome segments.

From a different perspective, Grosberg and colleagues [48] first discussed the

effect of entanglements on genome organization. They correctly recognized crowding

and confinements as two important features of chromosomes. The authors argued

that the interphase chromosomes must be unknotted, at least to some extent, to per-
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form its biological functions properly. One of the scenarios is that the searching of

the targeted promoter by the enhancer will not be hindered if the local organization

is disentangled. Based on this assumption, a theoretical argument of how the chro-

mosomes package is provided and the concept of the “crumpled/fractal” globule - a

non-equilibrium structure - was born. The crumpled globule is a compact structure

which is also self-similar on all length scales. From classical Flory theory, we know

that polymer segments inside a globule tend to adopt ideal chain conformation.

Hence the crumpled globule can only be realized by specific attractive interactions

between chromosome loci, by being in a long-lived non-equilibrium state, or by a

combination of both. One of the distinct features of the “crumpled/fractal” globule

is that R(s) scales as s1/3 and the contact probability P (s) scales as s−1. Here,

P (s) is the contact probability of two loci separated by the genomic distance s.

The scalings are drastically different from those of ideal chain (R(s) ∼ s1/2 and

P (s) ∼ s−3/2) or self-avoiding chain in good solvent (R(s) ∼ s0.6 and P (s) ∼ s−2.17).

Thanks to the Hi-C technique, P (s) can be obtained from the Hi-C contact maps

and it is found indeed behave differently from a simple Gaussian chain [21] and was

found approximately scales as s−1 [21, 22]. Based on this finding it is argued that

P (s) can be explained by the “crumpled/fractal” globule model [142]. However, the

high resolution Hi-C experiment [28] further showed that the P (s) exhibits different

scaling regimes with s−0.75 for s < 0.5Mbps and s−1.25 for s > 0.5Mbps. Multi-

phasic behavior of P (s) indicates that the organization on different length scales

may be governed by different folding principles. This is in line with the growing

experimental evidence that the TADs (small scale organization) and compartment
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(large scale organization) observed in the contact maps have different origins and

can exist independent of each other [89, 90].

1.4.2 Homopolymer model

Due to the complexity of genome organization, the theoretical models for chro-

mosomes have their limitations. That being said, in the past decade, many com-

putational models for chromosomes have been developed [52–70], partially owing to

the increasing amount of data acquired from Hi-C and imaging exeperiments. Rosa

and colleagues [52], using computer simulations of coarse-grained polymer, showed

that many properties of interphase chromosomes originate from its generic polymer

property. In particular, they argued that due to the confinement of cell nucleus

and the topological constraints - polymer chain cannot cross each other - the long

chromosomes are unlikely able to reach to equilibrium within the time scale of one

cell cycle. The story is different for Yeast, whose chromosomes are much shorter and

can be well modeled as polymer chain in equilibrium for both its structures [143,144]

and dynamics [37]. In their first Hi-C experiment work, Lieberman et al. [21] also

demonstrated that the apparent scaling P (s) ∼ s−1 can be obtained in a single

polymer chain by quenching the system into a spherical confinement. Their simula-

tions, for the first time, showed that the “crumpled/fractal” globule can be realized

through a non-equilibrium process. The early coarse-grained models showed that

some of the features in the contact maps, such as the contact probability P (s) or

the mean spatial distance R(s) measured in FISH experiment, can be reproduced
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using a homopolymer model [21, 52] without accounting for the epigenetic states,

whereas fine structures such as TADs and compartments require more complicated

models [55, 56,60–70].

1.4.3 Copolymer/Heteropolymer-based model

In their pioneering work, Jost and colleagues [56] used a heteropolymer model

with four different types of monomers representing active, Polycomb, HP1 and black

chromatin to describe the formation of TADs in Drosophila genome. The underlying

assumption of using heteropolymer to model chromosome is that the genome organi-

zation is largely driven and maintained by the interactions between the loci of similar

epigenetic states. Based on this assumption, there are two kinds of approaches to

tackle the modeling of chromosomes. One is the bottom-up approach, where the

existing data on epigenetic states are used as input to determine the Hamiltonian

of the system [56,60,63,66]. The other one is a reverse-engineering approach, where

Hi-C contact maps are instead used as inputs to determine the Hamiltonian of the

system [24, 61, 104]. As I discussed in the previous section, the interactions be-

tween chromatin loci can come from two origins: the direct nucleosome-nucleosome

interactions [105–107] and the effective interaction due to the various bridging pro-

teins [109, 110]. The strings and binders switch model [55, 60] takes these DNA

binding proteins directly into consideration and models the chromosome as a sys-

tem with both polymer - representing the chromosome itself - and the free particles

- representing the binding proteins. The polymer is set to have different types of
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binding sites which can be bound by their protein counterparts. The difference be-

tween the binders model and the copolymer/heteropolymer model is subtle since the

first can be viewed as an effective heteropolymer with renormalized loci-loci inter-

actions. The differences between these types of models have received little attention

and need further investigation.

1.4.4 Loop extrusion model

The copolymer/heteropolymer models, with the epigenetic states of chromatin

loci being correctly represented, can faithfully reproduce the compartments observed

in Hi-C contact maps [56, 61, 66]. The accuracy of such models is particular good

for human interphase chromosome organization on the length scale beyond 10Mbps.

They are also good enough to model the Drosophila where the fine TADs structures

seem to be mostly driven by the underlying epigenetic states [145]. However, the

finer structure such as TADs and sub-TADs in mammalian cells cannot be fully

reproduced by just epigenetic markers. The fact that the TADs structure in mam-

malian cells exhibit complicated pattern such as nested loops/domains suggests that

a parallel mechanism is responsible for the chromosome organization on the length

scale below Mbps. The loop extrusion model (introduced above) [62, 87, 88, 146]

has been used to simulate the human TADs structure and is able to reproduce the

experimental measured TADs pattern to great accuracy. The extrusion is assumed

to be an active process in the original model [87], where the cohesin translocates

along the chromatin by consuming ATPs. Other types of loop extrusion models
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have been proposed, including the transcription-driven model in which the cohesin

is pushed by the supercoiling as a result of RNA Polymerase II translocation [103]

and ATP-independent model in which the extrusion process is driven by osmotic

pressure [147, 148]. In addition, to explain the formation of TADs in mammalian

cells, loop extrusion model was also proposed to be the main mechanism of com-

paction of chromosomes before cells enter the mitosis [149], the segregation between

chromosomes during the mitosis [150], and the disentanglement of genome orga-

nization [151]. Currently, the molecular mechanism of extrusion process remains

largely unknown. Marko and colleagues [152] propose a rachet-like kinetic model

for coehsin (and other SMC family proteins). According to the model, the cohesin’s

motor activity is coupled with the random DNA looping driven by thermal fluctu-

ation and thus its kinetics depends strongly on the looping probability of DNA. As

a result, the extruding velocity strongly depends on the tension of the DNA which

is supported by experiments [94]. A different mechanism, called tether-inchworm

model [153], was also proposed. In this model, the cohesin is thought to perform

inchworm-like motion by opening and closing its ring. It is important to bear in

mind that an appropriate model for cohesin/condensin should account for its abili-

ties both to translocate along a tethered DNA [92], to drive DNA compaction [93],

and to extrude the loops from a flexible DNA [94]. It is difficult to explain these

observations in one model using the conventional picture of other molecular motors

such as Kinesins, Myosins or Dynes.
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1.5 Outline of Thesis

In Chapters 2 and 3, I present the chromosome copolymer model (CCM)

by representing chromosomes as a copolymer with two epigenetic loci types corre-

sponding to euchromatin and heterochromatin. Using novel clustering techniques,

I establish quantitatively that the simulated contact maps and topologically asso-

ciating domains (TADs) for chromosomes 5 and 10 and those inferred from Hi-C

experiments are in very good agreement. Chromatin exhibits glassy dynamics with

coherent motion on micron scale. The broad distribution of the diffusion exponents

of the individual loci, which quantitatively agrees with experiments, is suggestive

of highly heterogeneous dynamics. This is reflected in the cell-to-cell variations in

the contact maps. Chromosome organization is hierarchical, involving the forma-

tion of chromosome droplets (CDs) on genomic scale, coinciding with the TAD size,

followed by coalescence of the CDs, reminiscent of Ostwald ripening.

In Chapter 4, I propose a theoretical framework based on Generalized Rouse

Model to solve the FISH-Hi-C paradox and provide the insights of understanding

the heterogeneity of genome organization. Hi-C experiments are used to infer the

contact probabilities between loci separated by varying genome lengths. Contact

probability should decrease as the spatial distance between two loci increases. How-

ever, studies comparing Hi-C and FISH data show that in some cases the distance

between one pair of loci, with larger Hi-C readout, is paradoxically larger compared

to another pair with a smaller value of the contact probability. The FISH-Hi-C para-

dox arises because the cell population is highly heterogeneous, which means that
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a given contact is present in only a fraction of cells. Insights from the GRMC is

used to construct a theory, without any adjustable parameters, to extract the distri-

bution of subpopulations from the FISH data, which quantitatively reproduces the

Hi-C data. Heterogeneity is pervasive in genome organization at all length scales,

reflecting large cell-to-cell variations.

In Chapter 5, based on the theory proposed in Chapter 4, I prove that there

exist a theoretical lower bound to connect both quantities by a simple power law

relation. Hence the inverse engineering problem - inferring spatial organization from

Hi-C map - can be solved approximately in spite of the presence of heterogeneity.

Using simulations, I show that the overall organization can be captured by construct-

ing distance map from contact map justifying the use of the lower bound. Finally,

by applying our method combined with various manifold embedding methods to

experimental Hi-C data, I am able to visualize the averaged global 3D organization

of single chromosome, and also local structures such as Topological Associated Do-

mains (TADs). In the end, discussion on the limitation of Hi-C map as an ensemble

average measurement is provided.

In Chapter 6, on a side project, I present a kinetic model for coupled motor

system. The simplicity of the model allows me to investigate the effect of mechani-

cal coupling between multiple motors on their velocity and force-velocity behavior.

Reduction of velocity are observed for coupled motor system especially when the

coupling strength is strong. I found that the velocity in the absence of load only

weakly depends on the number of motors n and reaches to limiting value when

n → ∞. Stall force is shown to be given by Fs = nF 0
s but velocity vanishes at a
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smaller apparent stall force Fa. In addition, I found that multi-motors system is

more efficient for transporting large cargo but less efficient for transporting small

cargo compared to the single motor. The model presented in this study is general

and could be extended to study cooperation and tug-of-war between motors.

Chapter 7 provides the conclusion and future aspects of the studies presented

in the thesis.
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Chapter 2: Chromosome Copolymer Model

2.1 Introduction

The work presented in Chapter 2 and Chapter 3 was published [66] and the

copyright was obtained to reuse the content in [66] in this thesis.

Contact maps [21, 28] of interphase chromosomes show that they are parti-

tioned into genome-wide compartments, displaying plaid (checkerboard) patterns.

If two loci belong to the same compartment they have a higher probability to be

in contact than if they are in different compartments. Although finer classifications

are possible, compartments [21] can be categorized broadly into two (open (A) and

closed (B)) classes associated with distinct histone markers. The open compartment

is enriched with transcriptional activity-related histone markers, such as H3K36me3,

whereas the closed compartment is enriched with repressive histone markers, such

as H3K9me3. Chromatin segments with repressive histone markers have effective

attractive interactions, which models HP1 protein-regulated interactions between

heterochromatin regions [109, 110, 154, 155]. In CCM, I assume that chromatin

fiber, with active histone markers, also has such a similar attraction. From these

considerations, it follows that the minimal model for human chromosome should be

a copolymer where the two types of monomers represent active and repressive chro-
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matin states. To account for the two states, I introduce the Chromosome Copolymer

Model (CCM) as a self-avoiding polymer with two kinds of beads. A similar genre

of models have been proposed in several recent studies [56,60,61,63] to successfully

decipher the organization of genomes.

In this chapter, I will describe the details of the construction of the Chromo-

some Copolymer Model (CCM). The simulation results of the CCM will be presented

and discussed in Chapter 3.

2.2 The construction of the model

2.2.1 The Hamiltonian of the model

For reasons explained in both Chapter 1 and the introduction section in this

chapter, the interphase chromosome is modeled as a self-avoiding AB-copolymer

with A (B) type beads representing the active (repressive) chromatin (Fig. 2.1).

Note that in many of the polymer models developed to reproduce Hi-C contact

maps, self-avoidance is not strictly enforced, which is partially justified because

Topoisomerase facilitates chain crossing. I do not find it necessary to impose this

restriction. The chromosome copolymer model (CCM) potential energy is,

U(r1, ..., rN) =
N−1∑
i=1

US
i +

N−1∑
i=1

N∑
j=i+1

UP
i,j +

∑
{p,q}

UL
{p,q} (2.1)

For the bond stretch potential, U s
i , I use the FENE (Finite Extensible Non-
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linear Elastic) potential given by,

US
i = −1

2
KSR

2
0ln
[
1−

( |ri+1 − ri|
R0

)2]
(2.2)

where R0 is the equilibrium bond length, and KS is the spring constant.

The interaction between beads accounting for steric repulsion and attraction

is given by the Lennard-Jones potential with different parameters for the distinct

bead types. The potential between the active locus and repressive locus is,

UP
i,j ≡ Uαβ(r = |ri − rj|) = 4εαβ

[(σ
r

)12

−
(σ
r

)6]
(2.3)

where α and β can be either A (active/euchromatin) or B (repressive/heterochromatin).

For simplicity, I assume that the σ value for the active state (A) and the repressive

state (B) is identical.

The interaction between the loop anchors is modeled using a harmonic poten-

tial,

UL
{p,q} = KL(|rp − rq| − a)2 (2.4)

where {p, q} is the index of the loop, and a is the equilibrium bond length between

the loop pairs. The indices of loop anchors, modeling the role of CTCF motifs, taken

from the Hi-C data [28], are listed in Table 2.1. The values of all the parameters in

the CCM model of the chromosome are given in Table 2.2.

36



2.2.2 Setting the length scale

In CCM, each monomer represents 1,200 base pairs (bps), with six nucleosomes

connected by six linker DNA segments. The size of each monomer, σ, is estimated

by considering two limiting cases. If it is assumed that nucleosomes are compact

then the value of σ may be obtained by equating the volume of the monomer to 6v

where v is the volume of a single nucleosome. This leads to σ ≈ 61/3RN ≈ 20 nm

where RN ≈ 10 nm is the size of each nucleosome [156]. Another limiting case

may be considered by treating the six nucleosome array as a worm-like chain. The

persistence length of the chromatin fiber is estimated to be ∼ 1,000 bps [88], which is

about the size of one monomer. The mean end-to-end distance of a worm like chain

whose persistence length is comparable to the contour length L is R ≈ L
√

2/e. The

value of L for a six nucleosome array is 6(16.5 +RN)nm where the length of a single

linker DNA is 16.5 nm. This gives us the upper bound of σ to be 130 nm. Thus,

the two limiting values of σ are 20 nm and 130 nm. I assume that the value of σ is

an approximate mean, yielding σ = 70 nm.

2.2.3 Identification of the monomer type and loop anchors from ex-

perimental data

The epigenetic state of each bead is determined using the Broad ChromHMM

track [157–159]. There are a total of 15 chromatin states in the track. For sim-

plicity, I assign states 1-11 to be in the active state (A) and states 12-15 to be
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Loop

Repressive loci

Active loci

Loop anchor

Figure 2.1: The sketch of the Chromosome Copolymer Model (CCM). Each bead
represents 1, 200 basepairs (representing roughly six nucleosomes (orange circles)
connected by linker DNAs). Red (Blue) corresponds to repressive (active) chro-
matin. The three pairs of loop anchors (in this cartoon) are marked by beads with
black boundaries. A crucial aspect of the model, based on the experimental obser-
vation [28] is that the loops are consecutive and do not overlap with each other.
The CCM accounts for two epigenetic states and the locations of the loop anchors.
These two criteria are sufficient to reproduce all the subtle structural features noted
in the Hi-C and super-resolution experiment.
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43(B),396(B) 43(B),582(B) 143(B),396(B) 948(B),1110(B)

1407(B),1570(B) 1628(A),2120(B) 2355(B),2562(A) 2409(B),2562(A)

2622(A),2917(B) 3059(A),3106(B) 3307(A),3378(A) 3307(A),3630(B)

3307(A),3471(B) 4131(B),4175(A) 4131(B),4307(A) 4445(A),5012(B)

4445(A),4710(B) 5058(B),5548(B) 6318(B),6766(B) 6318(B),6408(B)

6318(B),6595(A) 6408(B),6595(A) 6647(B),6766(B) 7605(B),8907(A)

7917(B),8644(B) 7917(B),8743(A) 7917(B),8907(A) 8743(A),8907(A)

8921(B),9008(B) 9157(B),9396(A) 9481(A),9562(A) 9510(A),9562(A)

Table 2.1: Loop anchor indices for Chromosome 5 (Chr 5) derived from the ex-
perimental data [28] for use in the CCM. Each pair of numbers represents single
loop corresponding to the locations of the loop anchors along the backbone of the
copolymer. The letter A (B) after each number indicates the type of the loop an-
chor. The number of loops in the simulation using the CCM is thirty-two. Fifteen
out of thirty-two pairs have loop anchors formed from loci of the same type.

in the repressive state (B). This is reasonable since all the states between 1 and

11 are related to gene transcription, and hence can be modeled as euchromatin.

States 12 to 15 are polycomb repressed, heterochromatin or repetitive region, which

I modeled as heterochromatin. ChromHMM track has a resolution of 200bps which

is smaller than 1,200bps representing one monomer in the CCM. I first count

the number of basepairs of state A and B within the 1,200 basepairs segment

KS/kBTσ
−2 R0/σ KL/kBTσ

−2 εAA/kBT εBB/kBT εAB/kBT a/σ

30 1.5 300 1.0 1.0 0.82 1.13

30 1.5 300 2.0 2.0 1.64 1.13

30 1.5 300 2.4 2.4 1.96 1.13

30 1.5 300 2.7 2.7 2.21 1.13

Table 2.2: Parameters values in the CCM for Chr5 and 10. Energy is in the unit
of kBT (kB is the Boltzmann constant and T is the room temperature 300K), bead
diameter σ is used as a measure of length. Without loss of generality, I choose
εAA = εBB = ε.
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represented by each monomer. Then the type of each monomer is assigned as

the state with a larger number of basepairs. Such a coarse-graining procedure

may not be appropriate when the number of bps of the two types has a simi-

lar value in the 1,200bps segment. Although this is a possible outcome, I found

that most of the 1,200bps long segments are overwhelmingly occupied by only one

state, corresponding to either active or repressive state. For loop anchors, I di-

rectly used the Hi-C data [28]. The locations of loops are provided in the file

GSE63525 GM12878 primary+replicate HiCCUPS looplist with motifs.txt.gz under

the GEO accession number GSE63525. I only selected the loops with CTCF motifs

“uniquely” called at both anchors (see Section VI.e.7 of the Extended Experimen-

tal Procedures of [28]). For each pair of CTCF loop anchors, I assign a harmonic

constraint (Eq. 2.4) between the two corresponding loci.

2.2.4 Simulation details

I use both low friction Langevin Dynamics (LD) and Brownian dynamics (BD)

to simulate the equilibrium and dynamical properties of the chromosome. The

equation of motion for the ith locus is given by,

mir̈i = Fi − ξṙi + Ri(t), (2.5)

where ξ is the friction coefficient, Fi is the systematic force − ∂U
∂ri

experienced by

each bead, and Ri(t) is the random force mimicking the thermal fluctuation of
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the surrounding environment. In Eq. 2.6, Ri(t) is the Gaussian random force

that satifies the fluctuation-dissipation theorem 〈Ri〉 = 0 and 〈Ri(t) · Rj(t
′
)〉 =

6kBTξδ(t− t
′
)δij. The LD simulations are performed using the Molecular Dynamics

software LAMMPS [160] in which the equation of motion are integrated using the

velocity-Verlet algorithm. The sampling of the conformations are accelerated in

LD, as was shown previously [161], and hence, I use LD simulations to generate

well-equilibrated conformations.

The equation of motion for BD, derived by neglecting the inertial term in Eq.

2.6, is,

ṙi =
1

ξ
Fi +

1

ξ
Ri(t). (2.6)

I modified the LAMMPS software to perform the BD simulations, thus allowing

us to obtain a realistic description of the dynamics. The use of BD also allows

us to calculate the timescales for the chromosome dynamics, which can be directly

compared to experiments. I employed the Euler algorithm to integrate the equation

of motion in Eq. 2.6.

For BD, the relevant time scale is τB = σ2/D where D = kT/ξ, and ξ =

6πησ/2. I choose our integration time step to be ∆tB = 0.0001τB. With the choice

of σ = 70nm, I obtain D = kT
6πησ/2

≈ 7.0µm2/s with η = 0.89 × 10−3Pa · s. Thus,

the value of τB ≈ 0.0007s. For the LD simulations, I use the time step ∆tL = 0.01τL

where τL =
√
mσ2/kT .
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2.2.5 Generation of the initial conformations and production runs

The copolymer is initially prepared as a rod. After determining the positions

of the loop anchors, I performed simulations using LD with temperature T = 1.0

(measured in the unit of kBT ) using the WCA potential with the same parameter

values regardless of the bead type. I used the WCA potential,

Uαβ(r = |ri − rj|) =


4ε
[(

σ
r

)12

−
(
σ
r

)6]
+ ε, if 0 < r < 21/6σ.

0, otherwise.

(2.7)

with ε = 1.0kBT and σ = 1. Since all the loop anchor pairs initially are spatially

well-separated, I first performed simulations using a small time step (∆tL = 10−6τL)

to avoid numerical instabilities. After a certain number of time steps, all the loop

pair beads are in proximity fluctuating around their equilibrium bond distance. At

this stage, I increased the value of the time step to ∆tL = 0.01τL, and turned on the

attractive pairwise interaction (Eq. 2.3), and continued the simulations for an addi-

tional 108∆tL. I monitored the radius of gyration, Rg, to ensure that Rg fluctuates

around a mean value as one indication of thermalization (Fig. 2.2a). In addition,

the potential energy (Fig. 2.2b) has reached plateau values, which is a necessary

condition indicating that the copolymer has adequately sampled a large number

of distinct conformations. I also computed the evolution of P (s) during the pre-

production run (Fig. 2.3). The negligible change in P (s) also suggest convergence
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a b

Figure 2.2: Preparation of the initial conformations. (a) The ensemble average
radius of gyration 〈Rg(t)〉 as function of time step t after the attractive interactions

are turned on. 〈Rg(t)〉 = (1/M)
∑M

i=1R
(i)
g (t) where i is the ith trajectory, and

M is total number of independent trajectories. R
(i)
g (t) is the radius of gyration of

trajectory i at time t. In our simulations, M = 90. (b) The average potential energy
per bead as a function of the number of time steps t after the attractive interactions
are turned on. The average is over the 90 independent trajectories. The plateau in
(a) and (b) suggest that the polymer conformations are well sampled.

of our simulations from the perspective of structural measures. I then performed

LD simulations for an additional 108∆tL to compute the static structural properties.

The final chain conformations obtained at the end of production runs are used as

initial conformations in the subsequent BD simulations.

2.3 Discussion

The virtue of the CCM is that it has essentially only one energy scale ε given

that I have assumed that εAA = εBB. Explicit simulations show that this is sufficient

to capture not only the compartments and TADs in the contact map reasonably well

but also the chromosome dynamics (results presented in Chapter 3). The inclusion
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Figure 2.3: The top panel shows typical structures of the simulated folded Chr5 for
ε = (1.0, 2.0, 2.4, 2.7)kBT from left to right. The color indicates the index of the
locus, from the 5′ to 3′-end. The spatial distance map and the corresponding Ward
Linkage Matrices (WLMs) are shown in the middle and bottom panels, respectively.
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of other epigenetic states identified in experiments may produce better agreement

with the contact map inferred from Hi-C experiment but comes at the expense of

introducing additional parameters. It is unlikely that such a model would alter the

chromosome dynamics, which is the focus of the study here. I should also note that

by independently tuning three parameters εAA, εBB and εAB separately, the model

could be further optimized in the comparison with experiment Hi-C data. For the

simplicity and because the errors in Hi-C data are hard to quantify, I make the

assumption that εAA = εBB ≡ ε and fix the ratio εAB/ε. In practice, I varied ε while

keeping the ratio εAB/ε a constant. The results in Chapter 3 suggest that even with

this simplification, CCM produces near quantitative agreement with Hi-C data.

With the assumption that εAA = εBB = ε, the only free parameter in the CCM

is εAB. The only physical requirement for choosing a specific value of εAB is that loci

with distinct epigenetic state should segregate in order to capture the compartment

feature that is prominent in the Hi-C maps. For the interaction parameter values

listed in the third row of Table 2.2 which is most appropriate for interphase chromo-

somes 5 and 10, loci A and B do not mix. In other words they phase separate. This

can be rationalized by adopting a Flory-Huggins type argument, which involves cal-

culating the second virial coefficient, B2,αβ = 2π
∫

drr2[1− e−Uαβ/(kBT )]. I find that

for the parameters in the third row of Table 2.2, |B2,AB| < |B2AA|, which implies

that A and B loci tend not to mix. Note that B2AA = B2BB in the CCM. This ar-

gument shows that for any value of εAB for which the inequality |B2,AB| < |B2AA| is

satisfied, the copolymer would exhibit micro-phase separation. However, the extent

of segregation will depend on the precise numerical values. For our energy function,

45



the values listed in third row of Table 2.2 is optimal, because simulations using them

provide the best agreement with the measured Hi-C contact maps.

I have made references to copolymer models [56, 60, 61, 63], which have been

previously used to study chromatin organization. The one that is most similar

to CCM is the block copolymer model used to describe the architecture of the

roughly one Mbps Drosophila genome [56]. In their model micro-phase separation

results by adjusting a non-specific energy scale between all loci pairs to induce

global chain compaction and specific interaction (the analog of εAA, εBB and εAB

in the CCM) between identical epigenetic states. A related minimal model, with

three epigenetic states, was recently introduced in [63] that accounts for active,

inactive, and unmarked states. These models, along with CCM, show that many

aspects of chromosome organization can be captured using a minimum number of

free parameters.

The folding of chromatin is simulated starting from extended conformations

(see section 2.2.5). Due to the slow relaxation process, theoretically predicted in a

previous study [58], and topological constraints [52], long polymers such as human

interphase chromosomes are unlikely to come to equilibrium even on the time scale

of a single cell cycle. Thus, the initial conformations could in principle affect the

organization of genomes. Although the folding from an extended conformation is

unlikely to occur for chromosome as a whole in vivo, I believe that the folding process

investigated in this work provides insights into gene activation because it involves

only local folding or unfolding [162–164].
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2.4 Conclusions

Here, I present a copolymer model to describe both the structure and dynamics

of human interphase chromosomes based on the assumption that the large-scale

organization of human interphase chromosome is largely driven and maintained

by the interactions between the loci of similar epigenetic states. Similar models,

that differ greatly in details, have been developed to model the 3D structure of

Drosophila chromosomes [56, 60]. Jost et al. [56] used a heteropolymer model with

four different types of monomers representing active, Polycomb, HP-1 and black

chromatin to describe the formation of TADs in Drosophila genome. Michieletto

et al. [63] constructed a heteropolymer with three epigenetic states (acetylated,

methylated, and unmarked) to probe how the epigenetic states are maintained. A

very different reverse-engineering approach, with Hi-C contact maps as inputs, was

used to construct an energy function with twenty-seven parameters [61]. I take a

“bottom-up” approach to incorporate the epigenetic states into the polymer model

similar in spirit to the previous studies [56,60].

I performed simulations using both Langevin Dynamics (low friction) and

Brownian Dynamics (high friction) using a custom modified version of the molec-

ular dynamics package LAMMPS. The use of Langevin Dynamics accelerates the

sampling of the conformational space [161], needed for reliable computation of static

properties. Realistic value of the friction coefficient is used in Brownian Dynamics

simulations to investigate chromosome dynamics, thus allowing us to make direct

comparisons with experiments.
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The results using CCM described here are presented in Chapter 3.
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Chapter 3: Structures and dynamics of human interphase chromo-

some: a study using Chromosome Copolymer Model

3.1 Overview

The work presented in Chapter 2 and Chapter 3 was published [66] and the

copyright was obtained to reuse the content in [66] in this thesis.

In this chapter, I present the results from Chromosome Copolymer Model

(CCM) described in Chapter 2. I show that in order to capture the structural fea-

tures faithfully, at least two types of beads, representing active and repressive loci

are needed. Simulations of the resulting Chromosome Copolymer Model (CCM) for

human interphase chromosomes 5 and 10 show that the structural characteristics,

such as the scaling of P (s) as a function of s, compartments, and TADs indicated

in the Hi-C contact maps are faithfully reproduced. I use sophisticated clustering

algorithms to quantitatively compare the simulated contact maps and those inferred

from Hi-C experiments. The compartment feature noted in the Hi-C contact map

is due to micro-phase separation between chromosome loci associated with differ-

ent epigenetic states, implying that a copolymer model is needed for characterizing

large-scale genome organization. The TADs emerge by incorporating experimentally
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inferred positions of the loop anchors, whose formation is facilitated by CTCF mo-

tifs. The only free parameter in the CCM, the optimal loci-loci interaction strength

between loci belonging to the same epigenetic states, is adjusted to give a good de-

scription of the Hi-C contact map. Using simulations based on the resulting CCM I

show that chromosome dynamics is highly heterogeneous and exhibits many of the

characteristics of out of equilibrium glassy dynamics, with coherent motion on µm

scale, including stretched exponential decay of the scattering function (Fs(k, t)), a

non-monotonicity behavior in the time dependence of the fourth order susceptiv-

ity associated with fluctuations in Fs(k, t). Of particular note is the remarkable

cell-to-cell and loci-to-loci variation in the time (t) dependence of the mean square

displacement, ∆i(t), of the individual loci. The distribution P (α) of the exponent

associated with the increase in ∆i(t) ∼ tα is broad. The simulated and experimen-

tally measured P (α)s are in excellent agreement. Our work shows that chromosomes

structures are highly dynamic exhibiting large cell-to-cell variations in the contact

maps and dynamics. The rugged chromosome energy landscape, with multiple min-

ima separated by large barriers, is perhaps needed to achieve a balance between

genomic conformational stability and dynamics for the execution of a variety of

biological functions.
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3.2 Results

3.2.1 Choosing the energy scale in the Chromosome Copolymer Model

I fixed N , the size of the copolymer to N = 10, 000, modeling a 12 Mbps

(megabases) chromatin fiber, corresponding to a selected region of the Human Cell

line GM12878 Chromosome 5 (Chr 5) from 145.87 Mbps to 157.87 Mbps. In the

CCM (Fig. 2.1), the only unknown parameter is ε, characterizing the strength of

the interaction between the loci (Table 2.1). I chose a ε value that reproduces the

contact maps that is near quantitative agreement with the Hi-C data. As ε increases

the structures of the chromosome are arranged in such a way that segments with

small genomic distance s are more likely to be in spatial proximity (see the section

Chromosome Structures in terms of Ward Linkage Matrix (WLM) below).

This is also illustrated in Fig. 3.1, which shows that higher values of ε lead to clearer

segregation between the loci with different colors. The colors encode the genomic

locations. The snapshots of the organized chromosome, the good agreement between

the calculated and Hi-C contact maps (see Fig. 3.2d and section 3.2.2), and the

accurate description of the spatial organization as assessed by the Ward Linkage

Matrix (WLM) (see section 3.2.5 and Appendix A.3) confirm that ε = 2.4kBT

produces the closest agreement with experiments. Increasing ε beyond 2.4kBT leads

to a worse description of segregation between loci with distinct epigenetic states.

Furthermore, P (s) as a function of s obtained in simulations with ε = 2.4kBT is

also consistent with experiments (see below). The s-dependent contact probability,
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Figure 3.1: The top panel shows typical structures of the simulated folded Chr5 for
ε = (1.0, 2.0, 2.4, 2.7)kBT from left to right. The color indicates the index of the
locus, from the 5′ to 3′-end. The spatial distance map and the corresponding Ward
Linkage Matrices (WLMs) are shown in the middle and bottom panels, respectively.
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P (s) in Fig. 3.2b, shows that there are two scaling regimes. As ε increases, the

probability of short-range (small s) increases by several folds, while P (s) for large

s decreases by approximately an order of magnitude. In particular, for ε = 1.0kBT ,

P (s), decreases much faster compared to experiments at small s. In contrast, I find

that at ε = 2.4kBT , P (s) ∼ s−0.75 for s < 0.5 Mbps and when s exceeds ∼ 0.5

Mbps, P (s) ∼ s−1.25 (red curve in Fig. 3.2b). Such a behavior, with P (s) exhibiting

two distinct scaling regimes, agrees with experiments (black line in Fig. 3.2b). It

is worth pointing out that the two-scaling regimes in P (s) is a robust feature of all

23 Human interphase chromosomes (Fig. 3.2c). It is clear the two scaling regimes

in P (s) with a crossover from one to another at s ≈ 3 · 105bps ∼ 6 · 105bps is

universally found in all the chromosomes. Interestingly, our simulation suggests

that the crossover scale in P (s) coincides with the size of the chromosome droplets

(see discussion).

3.2.2 Active and repressive loci micro-phase segregate

Comparison of the contact maps between simulations and experiments illus-

trates that compartment formation appearing as plaid or checkerboard patterns in

Fig. 3.2d, shows good agreement with Hi-C data [21, 28]. The dashed rectangles

mark the border of one such compartment enriched predominantly with interactions

between loci of the same type, suggesting that compartments are formed through the

clustering of the chromatin segments with the same epigenetic states. A previous

experimental study also suggests that the chromatin structuring in Topologically
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Associated Domains (TADs) is also driven by the epigenome feature [165]. In or-

der to make the comparison precise, I treated the contact maps as probabilistic

matrices and used a variety of mathematical methods to quantitatively compare

large matrices. First, the checkerboard pattern in the contact map is more promi-

nent when illustrated using the Spearman correlation map (see Appendix A.1 and

Figs. A.1 and A.2). Second, to quantitatively compare the simulated results with

experiments, I use the spectral co-clustering algorithm [166] to bi-cluster the com-

puted Spearman correlation map (see Appendix A.1 and Appendix A.2). Other

methods, such as PCA [21] and k-means [28], have been used to extract the com-

partment features. Finally, the similarity between the simulated and experimental

data is assessed using the Adjusted Mutual Information Score (AMI) (Appendix

A.2). The CCM model, based only on epigenetic information and the locations of

the loop anchors, yields an AMI score that results in correctly reproducing ≈ 81%

of the compartments obtained from the experimental data. In contrast, a pseudo

homopolymer model with εAA = εBB = εAB = ε, which has the same loop anchors

as the CCM, has an absolute AMI score that is 200 times smaller (Fig. A.3), and

does not lead to the formation of compartments (correctly reproducing only ≈ 51%

of the compartments, no better than random assignments). Thus, the CCM is the

minimal model needed to reproduce the essential features found in the contact map.
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Figure 3.2: Comparison between the simulated contact map and the Hi-C contact
map. (a) A sketch of the Chromosome Copolymer Model (CCM). Each bead rep-
resents 1,200 basepairs (representing roughly six nucleosomes connected by linker
DNAs). Blue (Red) corresponds to active (repressive) loci. The examples of three
pairs of loop anchors (in this cartoon) are marked by beads with black bound-
aries. (b) Comparison between experimental data [28] (black) and simulated P (s).
Dashed and solid lines are plots of s−1.25 and s−0.75, respectively. The crossover
point between the two scaling regimes at s∗ ∼ 3 · 105 bps is noticeable in both
the experimental and simulated results. (c) Experimental contact probability P (s)
for the 23 human interphae chromosomes calculated from the Hi-C data in [28].
Each black curve, all of which almost superimpose on each other, corresponds to
one chromosome. Blue and orange lines are guides to the eye showing two scaling
regimes. (d) Comparison of the contact maps inferred from Hi-C experiment [28]
(lower triangle) and obtained from simulations (upper triangle) results. For easier
visualization, the values of the contact probability are converted to a log2 scale.
The bar above the map marks the epigenetic states with blue (red) representing
active (repressive) loci. The dashed black box is an example of a compartment.
Such compartment-like structures emerge due to contacts between loci separated
by large genomic distances, which gives rise to spatial order in the organized chro-
mosome. (e) Illustration of Topologically Associated Domains (TADs). The blue
and green triangles are from experiments and simulations, respectively. The black
circles mark the positions of loops detected from experiment data, which are formed
by two CTCF motifs. (f) The zoom in of the diagonal region for the chromosome
segment between 149.6 Mbps to 152.0 Mbps. The blue circle marks the positions of
CTCF loops found in the experiment [28]. (g) Same as (f) except for 154.4 Mbps
to 156.8 Mbps. (h) and (i). Snapshots of two TADs, marked by the blue triangles
in (f) and (g), respectively.

The inset in Fig. 3.3a, displaying a typical snapshot of the condensed chro-

mosome, reveals that active (A, blue) and repressive (B, red) loci are clustered

together, undergoing micro-phase separation (see Methods for definition of active

and repressive loci). The tendency to segregate is vividly illustrated in the radial

distribution functions g
AA

(r), g
BB

(r) and g
AB

(r), which shows (Fig. 3.3a) that g
AA

(r)

and g
BB

(r) have much higher values than g
AB

(r) implying that active and repressive

loci form the clusters of their own, and do not mix. Such a micro-phase separation

between the A-rich and B-rich regions directly gives rise to compartments in the
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contact map. Interestingly, the normalized radial density (Fig. 3.3b) shows that

active chromatin exhibits a peak at large radial distance, r implying that the ac-

tive loci localize on the periphery of the condensed chromosome whereas repressive

chromatin is more homogeneously distributed. Visual inspection of the simulation

trajectories also suggests that active and repressive chromatins are often separated

in a polarized fashion, in accord with a recent experimental study [14], which shows

that the two compartments are indeed similarly spatially arranged.

3.2.3 Spatial organization of the compact chromosome

In order to illustrate the spatial organization of the chromosome, I introduce

the distance function,

R(s) =

〈 N∑
i<j

(ri − rj)
2δ(s− |i− j|)
N − s

〉1/2

(3.1)

where 〈·〉 denotes both an ensemble and time average. I calculated R(s), the mean

end-to-end distance between the loci, by constraining the genomic distance |i− j| to

s. If the structured chromosome is maximally compact on all length scales, I expect

R(s) ∼ s1/3 for all s. However, the plot of R(s) on a log-log scale shows that in

the range 105 . s . 106 bps, R(s) ∼ s0.2. The plateau at large s arises due to s

reaching the boundary of the compact structure. The inset in Fig. 3.4a, comparing

the simulation result and experimental data [14], both show the same scaling for

R(s) as a function of s. Note that in [14] spatial distances are measured between

centroids of TADs domains rather than individual loci.
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b

a

Figure 3.3: Micro-phase separation between active and repressive loci. (a) Radial
distribution functions, g(r), as a function of r (in the unit of σ) between active-active
loci (gAA(r)), repressive-repressive loci (gBB(r)) and active-repressive loci (gAB(r)).
The inset shows the typical conformation of the compact chromosome. Blue and
red segments correspond to active and repressive loci, respectively. The structure
vividly reveals micro-phase separation between active and repressive loci. (b) The

normalized radial density, ρ
(N)
α (r) = 〈Nα(r)〉/(4πr2∆rNα), where Nα(r) is the num-

ber of loci of given type α found in the spherical shell between r and r + ∆r, Nα

is the total number of loci of that type. The bracket 〈·〉 is the ensemble average, V

is the volume of the globule, given by (4/3)πr3
max where rmax = 17σ; ρ

(N)
α (r) shows

that the active loci are predominantly localized on the periphery of the condensed
chromosome. The repressive loci are more uniformly distributed.
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By a systematic analysis of the FISH data, Wang et al [14] established that the

probability of contact formation between loci i and j, Pij, is inversely proportional

to a power of their mean spatial distance Rij = 〈|ri− rj|〉, with the latter providing

a direct picture of the spatial organization. Similarly, in this work, I explored the

relation between Cij and Rij where Cij(= Pij
∑

i<j Cij ∝ Pij) is the number of

contacts between loci i and j that are recorded in the simulations. The heat map

of (1/Cij, Rij) in Fig. 3.4b shows that the two matrices are proportional to each

other. In accord with the FISH data [14], I find that 1/Cij ∝ Rλ
ij where λ ≈ 4,

suggesting that larger mean spatial distance between loci i and j implies smaller

contact probability, which is the usual assumption when experimental Hi-C data is

used to infer three-dimensional chromosome organization. The decrease of Cij with

increasing Rij with a large value of λ, is unexpected but is an important finding

needed to link contact maps and spatial structures.

The slope of the dashed line in Fig. 3.4b obtained using the data in [14], is

4.1, which coincides with our simulation results. Mean field arguments [167] suggest

that P (s) ∼ R(s)−3, which follows from the observation that the end of the chain

is uniformly distributed over a volume R3(s). This is neither consistent with our

simulations nor with experiments, implying that the distribution of the chain ends

is greatly skewed. Although both the simulated and experimental results establish

a strong correlation between R(s) and P (s), such a correlation is only valid in an

ensemble sense (see Chapter 4 and 5 as well as [168]).
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3.2.4 Topologically Associated Domains and their shapes

Our model reproduces Topologically Associated Domains (TADs), depicted as

triangles along the diagonal in Fig. 3.2e, of an average length of 200 kbps along the

diagonal of the contact map in which the interactions between the loci are greatly

enhanced. It has been noted [28] that in a majority of cases, boundaries of the

TADs are marked by a pair of CTCF motifs with a high probability of interaction

between them. They are visualized as peaks in the Hi-C map (Fig. 3.2e). To

quantitatively detect the boundaries of the TADs, I adopt the procedure described

in [25] to identify the position of each TAD. The boundaries of the TADs, shown in

blue (Hi-C data) and green (simulations) are reproduced by the CCM (Fig. 3.2e).

To investigate the sizes and shapes of each individual TADs (defined as CTCF

loops in the simulations), I calculated the radii of gyration, Rg, the relative shape

anisotropies κ2, as well as the shape parameters, S, for 32 TADs (see Appendix A.4

for details). These TADs are typical representations of all TADs. The genomic size

of the 32 TADs is similar to the genome-wide distribution. The results are shown

in Fig. A.4. The mean Rg for each individual TADs scales as their genomic length

with exponent 0.27, which is an indicator of the compact structures for the TADs.

However, unlike compact globular objects, their shapes are far from being globular

and are much more irregular with smaller TADs adopting more irregular shapes

compared to the larger TADs (see 〈κ2〉 and 〈S〉 as a function of TAD size in Fig.

A.4). Such compact but irregularly shaped nature of TADs are vividly illustrated

by typical snapshots for the two TADs (Figs. 3.2h, i). How can I understand this
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Figure 3.4: Organization and fluctuations of the chromosome structures. (a) The
dependence of the spatial distance R(s) (Eq.1) on the genomic distance, s. Grey
dashed lines, indicating the slopes, are guides to the eye. The red dots are experi-
mental data taken from [14] for s < 1.2×107bps. The inset shows the complete set of
experimental data. Short dashed and long dashed lines are s1/3 and s0.2, respectively.
At small s (s < 105bps), R(s) ∼ s0.5 implying that chromatin behaves as almost an
ideal chain. (b) The heatmap of the 2D histogram of (Rij, 1/Cij). The dashed black
line is the curve with scaling exponent 4.1, which coincides with the value obtained
by fitting the experimental data [14]. (c) Distribution P (〈R2

g〉/〈R2
g〉), where 〈R2

g〉
is the time average value of the squared radius of gyration of a single trajectory
and 〈R2

g〉 is the mean value averaged over all independent trajectories. Different

colors represent P (〈R2
g〉/〈R2

g〉) for the thirty-two individual TADs. The distribution
is surprisingly wide which suggests that TAD structures vary from cell-to-cell. (d)
Coefficient of variation δR(s) = (〈R2(s)〉 − 〈R(s)〉2)1/2/〈R(s)〉, computed from sim-
ulations, shows a non-monotonic dependence on s for ε = 2.4kBT , increasing till
s ∼ 105bps and decreases at larger s.
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non-trivial highly aspherical shapes of the TADs when the chromosome is spherical

on long length scales (several Mbps)? Since TADs are constrained by the CTCF

loops, they may be viewed locally as ring polymers. Ring polymers in a melt are

compact [169] objects but adopt irregular shapes, consistent with our prediction for

TADs.

I then wondered if TADs in each individual cells have similar sizes and shapes.

I computed the dispersion in Rg, κ and S (Fig. 3.4c and Figs. A.4 and A.5) among

different trajectories. Fig. 3.4c shows the P (〈R2
g〉/〈R2

g〉), of the mean square radius

of gyration 〈R2
g〉 for the thirty-two Chr 5 TADs in each trajectory normalized by

the average 〈R2
g〉 of each individual TAD. The bracket (bar) is the time (ensemble)

average. The large dispersion in P (〈R2
g〉/〈R2

g〉) (Fig. 3.4c) as well as P (〈κ〉/〈κ〉)

and P (〈S〉/〈S〉) (Fig. A.5) suggest that TADs are fluctuating objects, which ex-

hibit substantial cell-to-cell variations. Our result supports the recent FISH [170]

and single-cell Hi-C experimental findings [79, 171] and imaging experiments [30],

showing that individual TAD compaction varies widely from highly extended to

compact states among different cells. To decipher how the variation of the structure

of the chromosome changes as a function of s, I calculated the coefficient of vari-

ation, δR(s) = (〈R2
s〉 − 〈Rs〉2)1/2/〈R(s)〉. Interestingly, δR(s) first increases with

s up to s ≈ 105 ∼ 106 bps and then decreases as s further increases (Fig. 3.4d).

Higher resolution experiments are needed to resolve the variance for s < 105 bps.

The predicted non-monotonic dependence of δR(s) on s is amenable to experimental

test.
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3.2.5 Chromosome Structures in terms of the Ward Linkage Matrix

To quantitatively analyze the spatial organization of the compact chromosome,

I use the unsupervised agglomerative clustering algorithm to reveal the hierarchy

organization on the different length scales. A different method, which is also based

on clustering techniques, has recently been applied to Hi-C contact map [172]. I

use the Ward Linkage Matrix (WLM) (see Appendix A.3 for details), which is

directly applicable to the spatial distance matrix, R in which the element, Rij =

〈|ri − rj|〉, is the mean spatial distance between the loci i and j. I also constructed

the experimental WLM by converting the Hi-C contact map to a distance map by

exploiting the approximate relationship between Rij and Pij (∝ R−4.1
ij ) discussed

previously (also see Fig. 3.4b). The advantages of using distance matrices instead

of contact maps are two folds. First, matrix R is a direct depiction of the three-

dimensional organization of the chromosome. The WLM, constructed from R is

a cophenetic matrix, which can be used to reveal the hierarchical nature of the

chromosome organization. Second, the contact map matrix elements do not obey

triangle inequality. Therefore, it is not a good indicator of the actual 3D spatial

arrangement of the loci. I show the WLM for the two ε values (upper panel in Fig.

3.5) and the comparison between WLM computed based on experimental data and

WLM for ε = 2.4kBT (lower panel in Fig. 3.5). Visual inspection of the WLMs for

ε = 2.4kBT shows distinct segregation in the spatial arrangement of the loci. It is

clear from Fig. 3.5 that the experimentally inferred WLM, constructed from Hi-C

data, and simulations result with ε = 2.4kBT are almost identical. From the WLMs
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for both ε = 1.0kBT and ε = 2.0kBT (Fig. 3.1), I surmise that loci with large genomic

separation s are in spatial proximity, which is inconsistent with the experimental

WLM. The Pearson correlation coefficient between experimental result and CCM

using ε = 2.4kBT is 0.96 (0.53 for ε = 1.0kBT , 0.84 for ε = 2.0kBT and 0.75 for

ε = 2.7kBT ). Thus, the poorer agreement between the simulated WLM (Fig. 3.1)

as well as Spearman correlation matrix (Fig. A.1) using ε = (1.0, 2.0, 2.7)kBT and

experiments, compared to ε = 2.4kBT , further justifies the latter as the optimum

value in the CCM. I find it remarkable that the CCM, with only one adjusted energy

scale (ε) is sufficient to produce such a robust agreement with experiments.

3.2.6 Cell-to-cell variations in the WLM

To assess the large structural variations between cells, I calculated the WLM

for individual cells. I obtain the single cell WLM using time averaged distance

map of individual trajectories. Fig. 3.6 shows that there are dramatic differences

between the WLM for individual cells, with the ensemble average deviating greatly

from the patterns in individual cells. Thus, the chromosome structure is highly

heterogeneous. These findings are reflected in the small mean value of Pearson

correlation coefficients ρ between all pairs of cells (Fig. 3.6b). The distribution

P (ρ) has mean ρ̄ = 0.2 with a narrow shape, implying little overlap in the WLMs

between any two cells.

In order to make quantitative comparisons to experimental data, with the goal

of elucidating large-scale variations in the spatial organizations of human interphase
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Figure 3.5: Chromosome structure in terms of Ward Linkage Matrix (WLM). (Left)
Typical conformations of the organized chromosome for ε = 1.0kBT (upper) and
2.4kBT (bottom). The coloring corresponds to genomic distance from one endpoint,
ranging from red to green to blue. (Middle) The ensemble averaged distance maps.
(Right) Comparison between the simulated Ward Linkage Matrices (WLMs) (upper
triangle) and the experiment WLM (lower triangle) inferred from Hi-C contact map.
Ward distance is defined in the Appendix A.3
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chromosomes, I constructed single cell WLMs for Chr 21 using the spatial distance

data provided in [14] and computed the corresponding P (ρ) (Fig. 3.6b). The re-

sults show that the experimentally organization of Chr 21 in vivo also exhibits large

variations manifested by the distribution P (ρ) covering a narrow range of low val-

ues of ρ with a small mean ρ̄ = 0.25. Comparison to simulated result suggest that

Chr 21 shows a slightly lower degree of structural heterogeneity (with a modestly

larger mean ρ̄ = 0.25) compared to Chr 5 investigated using CCM. Nevertheless,

both the simulated and experimental results indicate that human interphase chro-

mosomes do not have any well-defined “native structure”. To investigate whether

Chr 5 has a small number of spatially distinct structures, I show two-dimensional

t-SNE (t-distributed stochastic neighboring embedding) representation of 90 indi-

vidual WLMs of the metric
√

1− ρ (Fig. 3.6c). It is clear that there is no dominant

cluster, indicating that each Chr 5 in single cells is organized differently rather than

belonging to a small subset of conformational states. Such large cell-to-cell varia-

tions in the structures, without a small number of well defined states, is another

hallmark of glasses, which are also revealed in recent experiments [79,118]. The pres-

ence of multiple organized structures has profound consequences on the chromosome

dynamics (see below).

3.2.7 Chromosome dynamics is glassy:

I probe the dynamics of the organized chromosome with ε = 2.4kBT , a value

that yields the best agreement with the experimental Hi-C contact map. I first
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Figure 3.6: Structural heterogeneity in the chromosome. (a) Ward Linkage Matri-
ces of different individual cells. The single cell WLM is the time average result over
a single trajectory. The ensemble average WLM (rightmost) and the experimental
WLM are in clear quantitative agreement (Fig. 3.5). However, the spatial organi-
zation show large variations from cell to cell. Each cell has very different WLM,
implying their structures are distinct. (b) The distribution of ρ, P (ρ), with a mean
ρ̄ = 0.2 (blue curve), where ρ is the pearson correlation coefficient between WLMs
of any two cells. The P (ρ) distribution, spanning the low range of ρ values, is a
further demonstration of structural heterogeneity in individual cells. In yellow I plot
P (ρ) with ρ̄ = 0.25 for 120 individual human interphase Chr 21, computed using
the single cell WLMs constructed from experimental measured spatial distance data
provided in [14]. (c) Two-dimensional t-SNE (t-distributed stochastic neighboring
embedding) visualizations of WLM of simulated individual Chr 5 using the distance
metric

√
1− ρ.

67



calculated the incoherent scattering function, Fs(k, t) = (1/N)
〈∑N

j=1 eik(rj(t)−rj(0))
〉

where rj(t) is the position of jth loci at time t. The decay of Fs(k, t) (orange line in

Fig. 3.7a) for k ∼ 1/rs (rs is the position of the first peak in the radial distribution

function (g
AA

(r) and g
BB

(r)) (Fig. 3.3a)) is best fit using the stretched exponential

function, Fs(k, t) ∼ e−(t/τα)β with a small stretching coefficient, β ≈ 0.27. The

stretched exponential decay with small β is another hallmark of glassy dynamics.

For comparison, Fs(k, t) decays exponentially for ε = 1.0kBT , implying liquid-like

dynamics (blue line in Fig. 3.7a).

In the context of relaxation in supercooled liquids, it has been shown that

the fourth order susceptibility [173], χ4(k, t) = N [〈Fs(k, t)
2〉−〈Fs(k, t)〉2] provides a

unique way of distinguishing between fluctuations in the liquid and frozen states. As

in structural glasses, the value of χ4(k, t) increases with t reaching a peak at t = tM

and decays at longer times. The peak in the χ4(k, t) is an indication of dynamic

heterogeneity, which in the chromosome is manifested as dramatic variations in the

loci dynamics (see below). For ε = 2.4kBT , χ4(k, t) reaches a maximum at tM ≈ 1s

(Fig. 3.7b), which surprisingly, is the same order of magnitude (∼ 5s) in which

chromatin movement was found to be coherent on a length scale of ≈ 1µm [41]. The

dynamics in Fs(k, t) and χ4(k, t) together show that human interphase chromosome

dynamics is glassy [58], and highly heterogeneous.
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Figure 3.7: Chromosomes exhibit glassy dynamics. (a) Intermediate scattering
function obtained for ε = 1.0kBT (blue) and ε = 2.4kBT (orange). The line shows an
exponential function fit, Fs(k, t), for ε = 1.0kBT . For ε = 2.4kBT , Fs(k, t) ∼ e−(t/tα)β

with β = 0.27, for t exceeding a few milliseconds (black curve). (b) The fourth order
susceptibility, χ4(t), used as a function to demonstrate dynamic heterogeneity. The
peak in χ4(t) for ε = 2.4kBT around tM ≈ 1s is a signature of heterogeneity.

3.2.8 Single loci Mean Square Displacements are heterogeneous:

In order to ascertain the consequences of glassy dynamics at the microscopic

level, I plot the MSD, ∆(t) = 1
N
〈
∑N

j=1((rj(t)− rcom(t))− (rj(0)− rcom(0))2〉 in Fig.

3.8 where rcom is the position of center of mass of the whole chromosome, from which

a few conclusions can be drawn.

1. Because of the polymeric nature of the chromosome, the maximum excursion

in ∆(t → ∞) = 2R2
g, where Rg ≈ 0.7 µm is the radius of gyration of Chr 5.

Consequently, for both ε = 1.0kBT (red) and ε = 2.4kBT , ∆(t) in the long time

limit is smaller than 2R2
g. For ε = 2.4kBT (green), ∆(t) shows a crossover at

t ≈ 10−2s from slow to a faster diffusion, another indicator of glassy dynamics

[174]. The slow diffusion is due to caging by neighboring loci, which is similar

69



to what is typically observed in glasses. The plateau in ∆(t) (Fig. 3.8a)

is not pronounced, suggesting that the compact chromosome is likely on the

edge of glassiness. The crossover is more prominent in the time-dependence of

the mean squared displacement of single loci (see below). The slow diffusion

predicted from the CCM is in accord with a number of experiments (Fig. 3.9).

In contrast, diffusion coefficients measured in experiments are one or two orders

of magnitude smaller than the system exhibiting liquid-like behavior, which

further supports the glassy dynamics for mammalian chromosomes predicted

here.

2. The two dashed lines in Fig. 3.8a show ∆(t) ∼ tα with α = 0.45. The value of

s is close to 0.5 for the condensed polymer, which can be understood using the

following arguments. The total friction coefficient experienced by the whole

chain is the sum of contributions from each of the N monomers, ξT = Nξ.

The time for the chain to move a distance ≈ Rg is τR = R2
g/DR ∼ N2ν+1. Let

us assume that the diffusion of each monomer scales as Dtα. If each monomer

moves a distance on the order of Rg then the chain as a whole will diffuse by Rg.

Thus, by equating DταR ∼ R2
g, one get α = 2ν/(2ν+1). For an ideal chain ν =

0.5, which recovers the prediction by Rouse model, α = 0.5. For a self-avoiding

chain, ν ≈ 0.6, one get α ≈ 0.54. For a condensed chain, ν = 1/3, one get α =

0.4, thus rationalizing the findings in the simulations. Similar arguments have

been reported recently for dynamics associated with fractal globule [59] and

for the β−polymer model [175]. Surprisingly, α = 0.45 found in simulations
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is in good agreement with recent experimental findings [42]. I also obtained

a similar result using a different chromosome model [67], when the dynamics

were examined on a longer length scale. The finding that there is no clear

Rouse regime (α = 0.5) is also consistent with several other experimental

results (Fig. 3.9). I should note that distinguishing between the difference,

0.4 and 0.5, in the diffusion exponent is subtle. Additional experiments are

needed to determine the accurate values of the diffusion exponents of Human

interphase chromatin loci in different time regimes.

3. I also calculated the diffusion of a single locus (sMSD) defined as ∆i(t) =

〈(ri(t0 + t) − ri(t0))2〉t0 , where 〈·〉t0 is the average over the initial time t0.

Distinct differences are found between the polymer exhibiting liquid-like and

glassy-like dynamics. The variance in single loci MSD is large for ε = 2.4kBT ,

illustrated in Fig. 3.8b, which shows 10 typical trajectories for ε = 1.0kBT

and ε = 2.4kBT each. For glassy dynamics, I found that the loci exhibiting

high and low mobilities coexist in the chromosome, with orders of magnitude

difference in the values of the effective diffusion coefficients, obtained by fitting

∆i(t) = Dαt
αi . Caging effects are also evident on the timescale as long as

seconds. Some loci are found to exhibit caging-hopping diffusion, which is

a hallmark in glass-forming systems [176, 177]. Interestingly, such caging-

hopping process has been observed in Human cell some time ago [33].

4. The large variance in sMSD has been found in the motion of chromatin loci

in both E.coli and Human cells [17, 34, 35, 38, 39]. To further quantify het-
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erogeneities in the loci mobilities, I calculated the Van Hove function P (∆x),

P (∆x|∆t) = 〈(1/N)
∑N

i=1 δ(∆x − [xi(∆t) − xi(0)])〉. Figs. 3.8c, d show the

P (∆x|∆t) and normalized P (∆x/σ|∆t) for ε = 2.4kBT at different lag times

∆t. For ε = 1.0kBT , Van Hove function is well fit by a Gaussian at differ-

ent lag times ∆t. In contrast, for chromosome with glassy dynamics, all the

P (∆x|∆t) exhibit fat tail, which is well fit by an exponential function at large

values of ∆x (Figs. 3.8c, d) at all δt values, suggestive of the existence of fast

and slow loci [177].

5. The results in Fig. 3.8 allow us to make direct comparisons with experimental

data to establish signatures of dynamic heterogeneity. I calculated the distri-

bution of effective diffusion exponent αi, P (α), where αi is obtained by fitting

the sMSD to ∼ tαi within some lag time (∆t) range. Fig. 3.8e shows that

P (α) calculated from simulations is in good agreement with experiments [40]

in the same lag time range (0.42 s < ∆t < 10 s). The P (α) distribution in the

range 10−6 s < ∆t < 0.42 s shows two prominent peaks, further validating the

picture of coexisting fast and slow moving loci. The good agreement between

the predictions of the CCM simulations with data, showing large variations

of mobilities among individual loci in vivo, further supports our conclusion

that organized chromosome dynamics is glassy. Interestingly, a recent com-

putational study in which Human interphase chromosomes are modeled as a

generalized Rouse chain suggests that the heterogeneity of the loci dynam-

ics measured in live cell imaging is due to the large variation of cross-linking
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sites from cell to cell [64]. Our model implies a different mechanism that

the heterogeneity observed is a manifesto of the intrinsic glassy dynamics of

chromosomes.
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Figure 3.8: Dynamic heterogeneity of individual loci. (top) (a) Mean Square Dis-
placement, ∆(t), as a function of time, t. The effective diffusion coefficients, D,
computed from the fitted dashed lines are 0.122µm2/t0.45and 0.009µm2/t0.46 for
ε = 1.0kBT and ε = 2.4kBT , respectively. (b) Time dependence of 10 single loci
MSD (sMSD, ∆i(t)) corresponding to 1st, 1000th, ..., 10, 000th loci for ε = 1.0kBT
and ε = 2.4kBT . The insets show ∆i(t) for two trajectories for fast (top) and slow
(bottom) loci. Cyan (Magenta) indicates short (long) lag times. The scale bar is
35 nm(0.07 nm) for fast (slow) loci. Caging effect can be clearly observed as the
plateau in ∆i(t) for ε = 2.4kBT . (c) The Van Hove function P (∆x) for ε = 2.4kBT
at lag times ∆t = (0.0001, 0.1, 10)s. P (∆x) has heavy tail at large ∆x and cannot be
fit by a Gaussian (color dashed lines) except for ∆t = 0.0001s at small ∆x. (d) Same
as (c) except displacement ∆x is normalized by its standard deviation γ. P (∆x/γ)
for different lag times collapse onto a master curve. The black line is an exponen-
tial fit, ∼ e−η(∆x/γ) with η ≈ 1.3. (E) Distribution, P (α), of the effective diffusion
exponent α. Comparison to experimental data [40] are shown. The values of α are
extracted from single loci trajectories by fitting sMSD, ∆i(t) ∼ tα. The lag time
range 0.42s < ∆t < 10s is in the approximate same range probed in the experiment.
Experimental data set 1, 2, 3 are from Fig.2b, 2c, and Fig.S5 of [40], respectively.
The results from our simulation (orange) agree well with experimental data, shown
as orange. The blue bar plot is P (α) for small lag times 10−6 s < ∆t < 0.42 s. It
shows two peaks, indicating the coexistence of two populations of loci with distinct
mobilities.

3.2.9 Active loci has higher mobility:

Fig. 3.10a shows MSD for active and repressive loci. For ε = 1.0kBT , there is

no difference between active and repressive loci in their mobilities. However, in the

glassy state active loci diffuses faster than the repressive loci. The ratio between

the effective diffusion coefficients (the slope of the dashed line) of the active and

repressive loci is 0.0116/0.008 ' 1.45, in good agreement with experimental esti-

mate 0.018/0.013 ' 1.38 [42]. These variations are surprising since the parameters

characterizing the A-A and B-B interactions are identical. To investigate the origin

of the differences between the dynamics of A and B loci, I plot the displacement
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Figure 3.9: Chromosomes exhibit glassy dynamics.]MSD(t) experimental data col-
lected from a number of works for human interphase cells. The simulation data
for ε = 1.0kBT and CCM is also plotted for comparison. The experimental data
are taken from Bronstein et al., 2009 [34], Levi et al., 2005 [33], Shinkai et al.,
2016 [42], Lucas et al., 2014 [39], Zidovska et al., 2013 [41], Chen et al., 2013 [17]
and Bronshtein et al., 2015 [40]
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vectors of the loci across the cross-section of the condensed chromosome (Fig. 3.10b)

for a time window ∆t = 0.1s. The loci on the periphery have much greater mo-

bility compared to the ones in the interior. In sharp contrast, the fluid-like state

exhibits no such difference in the mobilities of A and B (Fig. 3.10d). To quantify

the dependence of the mobility on the radial position of the loci, I computed the

amplitude of the displacement normalized by its mean, as a function of the radial

position of the loci, r (Fig. 3.10c). For the chromosome exhibiting glass-like be-

havior, the mobility increases sharply around r ≈ 0.7 µm whereas it hardly changes

over the entire range of r in the fluid-like system. Because the active loci are mostly

localized on the periphery and the repressive loci are in the interior (Fig. 3.3b), the

results in Fig. 3.10 suggest that the differences in the mobilities of the loci with

different epigenetic states are due to their preferred locations in the chromosome. It

is intriguing that glassy behavior is accompanied by a position-dependent mobility,

which can be understood by noting that the loci in the interior are more caged by

the neighbors, thus restricting their movement. In a fluid-like system, the cages are

so short-lived that the apparent differences in the environments the loci experience

are averaged out on short timescales. Note that in the experimental result [42]

comparison is made between the loci in the periphery and interior of the nucleus.

It is well known that the nucleus periphery is enriched with heterochromatin (re-

pressive loci) and the interior is enriched with euchromatin (active loci). However,

for an individual chromosome, single cell Hi-C study [79] and other experimental

studies [2, 81, 82, 178] suggest that the active loci are preferentially localized at the

surface of the chromosome territory.
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Figure 3.10: Mobility of active and repressive loci. (a) The Mean Square Displace-
ment for active loci and repressive loci. The equation shown in the inset is the
fit using Dtα, where D is the diffusion coefficient and α is the diffusion exponent.
(b) The displacement vectors of the loci within the equator cross-section of the
structured chromosome for ε = 2.4kBT . The displacements are computed for time
window ∆t = 0.1 s. The color bars on the right show the magnitudes of the displace-
ments. (c) Displacement ∆d normalized by its mean as a function of radial position,
r, of the loci.(d) Same as (b) except the results are obtained using ε = 1.0kBT .
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3.3 Discussion

In order to demonstrate the transferability of the CCM, I simulated Chr 10

using exactly the same parameters as for Chr 5 (Appendix A.5). Fig. A.6 compares

the WLM obtained from simulations for different ε values and the computed WLM

using the Hi-C contact map. The contact map is translated to the distance Rij by

assuming that Pij ∝ R−4.1
ij holds for Chr 10 as well. It is evident that the CCM nearly

quantitatively reproduces the spatial organization of Chr 10 (Fig. A.6). Thus, it

appears that the CCM could be used for simulating the structures and dynamics of

other chromosomes as well.

Two scaling regimes in P (s) is suggestive of scale-dependent folding of genome.

In order to reveal how chromosome organizes itself and to link these processes to

the experimentally measurable P (s), I calculated the time-dependent change in

P (s) as a function of t. At scales less (above) than s∗ ≈ 5× 105bps, P (s) decreases

(increases) as the chromosome becomes compact. The P (s) ∼ s−0.75 scaling for

s < s∗ (see also Fig. 3.2b) is the result of organization on the small genomic scale

during the early stage of chromosome condensation (Fig. 3.11a). In the initial stages

compaction starts by forming ≈ s∗ sized chromosome droplets (CDs) as illustrated

in Fig. 3.11a. In the second scaling regime, P (s) ∼ s−1.25, global organization occurs

by coalescence of the CDs (Fig. 3.11a). Thus, our CCM model, which suggests a

hierarchical chromosome organization on two distinct scales, also explains the two

scaling in P (s).

The pictorial view of chromosome organization (Fig. 3.11a) shows that chro-
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mosome structuring occurs hierarchically with the formation of CDs and subsequent

growth of the large CDs at the expense of smaller ones. I quantitively monitored

the growth of CDs during the condensation process and found that the size of CD

grows linearly with time during the intermediate stage (Fig. 3.11b). Such a conden-

sation process is reminiscent of the Lifshitz-Slazov mechanism [179] used to describe

Ostwald ripening.

Our simulations show that the average TAD size and the crossover scale (s∗)

the dependence of P (s) on s coincide. In addition, the size of the CDs is also on the

order of s∗, which is nearly the same for all the chromosomes (Fig. 3.2c). I believe

that this is a major result. The coincidence of these scales suggests that both from

the structural and dynamical perspective, chromosome organization takes place by

formation of TADs, which subsequently arrange to form structures on larger length

scales. Because gene regulation is likely controlled by the TADs, it makes sense that

they are highly dynamic. I hasten to add that the casual connection between TAD

size and s∗ as well as the CDs size has to be studied further. If this picture is correct

then chromosome organization, at length scales exceeding about 100 kbps, may be

easy to describe.
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Figure 3.11: Dynamics of chromosome organization. (a) Typical conformations
sampled during the chromosome organization process. After the short initial folding
process (Stage 1, t1 and t2), the chromosome droplets (CDs) connected by “tension
strings” begin to form (stage 2, t3). The average size of CDs at the onset of CD
formation is about s ∼ 4 · 105 bps, which coincides with approximate value of s∗,
the typical size of TADs (Fig. 3.2b). At the later stage (stage 3, conformation not
shown here), CDs merge to form larger cluster, eventuall form the final condensed
structure (stage 4, t4 and t5). Red (Blue) represents represive (active) loci. (b) The
time-dependent growth of CDs, n(t), which is the average number of base pairs in
a CD at t. The dashed line is a fit in the time window indicated by the shaded
area, yielding n(t) ∼ t1. The roughly linear increase of n(t), over a range of times,
is consistent with the Lifshitz-Slazov growth mechanism [179].

In summary, I developed the Chromosome Copolymer Model (CCM), a self-

avoiding polymer with two epigenetic states and with fixed loop anchors whose

locations are obtained from experiment to describe chromosome dynamics. The use

of rigorous clustering techniques allowed us to demonstrate that the CCM nearly

quantitatively reproduces Hi-C contact maps, and the spatial organization gleaned

from super-resolution imaging experiments. It should be borne in mind that contact

maps are probabilistic matrices that are a low dimensional representation of the

three-dimensional organization of genomes. Consequently, many distinct copolymer

models are likely to reproduce the probability maps encoded in the Hi-C data. In

other words, solving the inverse problem of going from contact maps to an energy

function is not unique (see [180])

Chromosome dynamics is glassy, with correlated dynamics on scale ≈ 1µm,

implying that the free energy landscape has multiple equivalent minima. Conse-

quently, it is likely that in genomes only the probability of realizing these minima is

meaningful, which is the case in structural glasses. The presence of multiple minima
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also leads to cell-to-cell heterogeneity with each cell exploring different local mini-

mum in the free energy landscape. I speculate that the glass-like landscape might

also be beneficial in chromosome functions because only a region on size ∼ s∗ needs

to be accessed to carry out a specific function, which minimizes large-scale struc-

tural fluctuations. In this sense, chromosome glassiness provides a balance between

genomic conformational stability and mobility.
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Chapter 4: Solution of the FISH-Hi-C paradox for Human Interphase

Chromosomes

4.1 Introduction

Because chromosome lengths are extremely large, ranging from tens of million

base pairs in yeast to billion base pairs in human cells, they have to fold into highly

compact structures in order to be accommodated in the cell nucleus. This requires

that loci that are well separated along the one-dimensional genome sequence be close

in three-dimensional (3D) space, which is made possible by forming a large number

of loops. The high throughput Hi-C technique and its variants are used to infer the

probability of genome-wide contact formation between loci. In order to determine

the contact probabilities between various loci in a genome, Hi-C experiments are

performed in an ensemble of millions of cells. The readout of the Hi-C experiment

are contact frequencies between a large number of loci from instantaneous snapshots

of each cell, which are then used to construct the contact maps (Hi-C maps). The

contact map is a matrix (2D representation) in which the elements represent the

probability of contact between two loci that are separated by a specified genomic

distance. A high contact count between two loci means that they interact with each
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other more frequently compared to ones with low contact count.

A complementary and potentially a more direct way to determine genome

organization is to measure spatial distances between loci using a low throughput

Fluorescence In Situ Hybridization (FISH) technique [14, 30]. In addition to pro-

viding 3D distances in fixed cells, recently developed CRISPR–dCas9 FISH can be

used to assay the dynamic behavior of loci in real time [17,181,182]. However, due

to the limitation of number of distinct color probes, currently this method provides

distance distribution information for only a small number of loci.

FISH and Hi-C, which are entirely different experimental techniques, provide

data on different aspects of genome organization. As noted in recent reviews [183,

184], there are problems associated with each method. It is difficult to reconcile Hi-

C and FISH data for the following reasons. In interpreting the Hi-C contact map,

one makes the intuitive assumption that loci with high probability contact must

also be spatially close. However, it has been demonstrated using Hi-C and FISH

data on the same chromosome that high contact frequency does not always imply

proximity in space [168, 183, 185, 186]. It should be noted that in most cases, the

Hi-C and FISH measurements agree very well [14,24,30,118]. However from a purely

theoretical perspective even a single contradiction is intriguing if the experimental

errors can be ruled out. An outcome of our theory is that the discordance between

FISH and Hi-C data arises because of extensive heterogeneity, which is embodied

by the presence of a variety of conformations adopted by chromosomes in each cell.

There are a variety of reasons, including differing fixation conditions and presence

of two or more subpopulation of cells in which the chromosomes are present in
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distinct conformations, which could give rise to the discordance between FISH and

Hi-C data, as lucidly described recently [183, 184]. Contact between two loci could

be a rare event, not present in all cells, which is captured in Hi-C experiment by

performing an ensemble average. I show using a precisely solvable model that due

to the absence of a contact between two specific loci in a number of cells, those with

higher contact frequency could be spatially farther on an average than two others

with lower contact frequency. In contrast, the probability of contact formation using

the FISH method can only be obtained if the tail (small distance) of the distance

distribution between locus i and j can be accurately measured. For a variety of

reasons, including the size of the probe and the signal strength, this not altogether

straightforward using FISH technique. Thus, in order to combine the data from the

two powerful techniques, it is crucial to establish a theoretical basis with potential

practical link, between the contact probability and average spatial distance.

Setting aside the conditions under which FISH and Hi-C are performed (see

recommendations for comparing the results from the two techniques with minimum

bias which are described elsewhere [183]) insights into the discordance between the

two methods, when they occur, can be obtained using polymer physics concepts. Re-

cently, Fudenberg and Imakaev [168] performed polymer simulations using a strong

attractive energy between two labelled loci and a ten fold weaker interaction be-

tween two other loci that are separated by a similar genomic distance. In addition,

they also reported simulations based on the loop extrusion model. Both these types

of simulations showed there could be discordance between FISH and Hi-C, which I

refer to as the FISH-Hi-C paradox. However, they did not provide any solution to
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the paradox, which is the principle goal of this work.

Here, I develop a new and fully theoretical approach, which allows us to provide

quantitative insights into the extent of heterogeneity in chromosome organization.

From our theory, it follows that the resolution of the FISH-Hi-C paradox requires

invoking the notion of heterogeneity, which implies multiple populations of chromo-

somes coexist. By using the concepts that emerge from the study of the Generalized

Rouse Chromosome Model (GRMC), I demonstrate that the information of cell

subpopulations can be extracted by fitting the experimental FISH data using our

theory, thus allowing us to calculate the Hi-C contact probabilities from the the-

oretically calculated cumulative distribution function of spatial distance (CDF) -

a quantity that can be measured using FISH and super resolution imaging meth-

ods. Our approach provides a theoretically based method to combine the available

FISH and Hi-C data to produce a more refined characterization of the heteroge-

neous chromosome organization than is possible by using data from just one of the

techniques. In other words, sparse data from both the experimental methods can

be simultaneously harnessed to predict the 3D organization of chromosomes.

4.2 Methods

4.2.1 Generalized Rouse Model For Chromosoems (GRMC)

In order to derive an approximate relationship connecting contact probabilities

between loci and the three dimensional distances, I use a variant of the random

loop model [65, 180]. I first consider a minimal cross-linked phantom chain model,
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which incorporates the presence of CTCF/cohein mediated loops [28]. The model,

originally introduced for describing physical gels [180], and more recently used for

chromosome dynamics in a number of insightful studies [64, 65], could be viewed

as a Generalized Rouse Chromosome Model (GRMC) [187, 188]. The cross-links

modeling the CTCF/cohein mediated loops here are not random. Their locations

are predetermined by the Hi-C data [28].

The equations of motion for the GRMC is [123],

ξ
dR

dt
= AR + F (4.1)

where ξ is the friction coefficient, R = [r1, r2, ..., rN ]T with ri being the position

of the ith locus. The vector F = [f 1,f 2, ...,fN ]T (T is the transpose), where f i is

the Gaussian random force acting on the ith locus, characterized by 〈fn(t)〉=0 and

〈fnα(t)fmβ(t′)〉 = 2ξkBTδnmδαβδ(t−t′); A is the N×N connectivity matrix, embed-

ding the information of chain connectivity and the location of the loops connecting

two loci (Fig. 1(a));

Amn =



−2κ− |Σm|ω, if m = n 6= 1 or N

−κ− |Σm|ω, if m = n = 1 or N

κ, if |m− n| = 1

ω, if |m− n| > 1, and connected in Σ

0, if otherwise

(4.2)

where Σ is the set of indices representing the loci pairs specifying the CTCF facil-

87



itated loop anchors, and |Σm| is the number of loops connected to the mth locus.

The spring constant κ enforces chain connectivity, and ω is the associated spring

constant for a CTCF pair. Note that the GRMC model does not account for ex-

cluded volume interactions, which in the modeling of chromatin is often justified by

noting that topoisomerases enable chain crossing. Our purpose is to use GRMC to

first illustrate concretely the challenges in going from the measured average contact

map to spatial organization, precisely. More importantly, using the insights from

the study of the GRMC, I solve the FISH-Hi-C paradox.

Since A in Eq. 4.2 is a real symmetric matrix, it can be diagonalized using

the orthonormal matrix V ,

V AV T = Λ = diag(λ0, λ1, ..., λN−1) (4.3)

where λ0, λ1, ..., λN−1 are the eigenvalues of A. By defining X = V R and using R =

V TX and V V T = I, I obtain the equations of motion of the normal coordinates

X,

ξ
dX

dt
= ΛX + f . (4.4)

Because Λ is a diagonal matrix, the normal coordinates of the GRMC Xp are

decoupled. Using the normal modes, X, the physical quantities associated with the

polymer can be readily calculated. Therefore, for GRMC with a predetermined set

of CTCF/cohein mediated loops, I can solve for the eigenvalues of the connectivity

matrix A, and the orthonormal matrix V numerically, and thus calculate the contact
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probability and spatial distance precisely.

4.2.2 Relation between contact probability and mean spatial distance

for GRMC

The vector between the positions of the mth and the nth loci may be written

as,

Rm −Rn =
N−1∑
p=0

(Vpm − Vpn)Xp (4.5)

where Vpm and Vpn are the elements of orthonormal matrix V . The equilibrium

solution of Eq. 4.4 yields, limt→∞Xp,α(t) ∼ N (0,−kBT
λp

), where α = x, y, z, N is

Gaussian distribution. Therefore,

lim
t→∞

Rmn,α(t) ∼ N (0,−
N−1∑
p=0

(Vpm − Vpn)2kBT

λp
) ≡ N (0, σ2

mn,α). (4.6)

where σmn,α = −
∑N−1

p=0 (Vpm−Vpn)2(kBT/λp). Since the model is isotropic, it follows

that σ2
mn,x = σ2

mn,y = σ2
mn,z ≡ σ2

mn. The mean distance 〈Rmn〉 is related to σmn

through 〈Rmn〉 = 2
√

2/πσmn. The distribution of distance between the mth and the

nth loci, limt→∞ |Rmn(t)| = limt→∞

√∑
αR

2
mn,α(t) is a non-central chi distribution

(I will neglect the notation limt→∞ from now on),

P (Rmn = r) =

√
2

π

1

σmn
e−r

2/(2σ2
mn) r

2

σ2
mn

. (4.7)

The contact probability Pmn, for a given threshold rc (contact exists if r ≤ rc),
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computed using Eq. 4.7 yields,

Pmn =

∫ rc

0

dr

√
2

π

1

σmn
e−r

2/(2σ2
mn) r

2

σ2
mn

= Erf

(
rc√
2σmn

)
−
√

2

π
e
− r2c

2σ2mn
rc
σmn

.

(4.8)

The mean spatial distance 〈Rmn〉 is given by,

〈Rmn〉 =

∫ ∞
0

drr

√
2

π

1

σmn
e−r

2/(2σ2
mn) r

2

σ2
mn

= 2

√
2

π
σmn. (4.9)

Using Eqs.4.8 and 4.9, the desired relation between Pmn and 〈Rmn〉 becomes,

Pmn = erf

(
2rc√
π〈Rmn〉

)
− 4

π

rc
〈Rmn〉

e
− 4r2c
π〈Rmn〉2 ≡ R0(〈Rmn〉). (4.10)

4.2.3 Generalized power law realtion between contact probability and

mean spatial distance

A key goal in our theory is to theoretically establish a useful relationship

between the contact probabilities and the mean spatial distances between the loci.

I have shown in the section 4.2.2 that the contact probability is connected to mean

spatial distance by a powerlaw for GRMC. In this section, I seek to generalize the

power-law relation to real chromatin. Because long chromosomes are modeled as

polymers, I look to rigorous results in polymer theory for the distance distribution

function, P (r|〈R〉) between two loci separated by r with a mean distance 〈R〉.
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Knowledge of P (r|〈R〉) is needed to construct the Cumulative Distribution Function,

CDF(R|〈R〉). There are only few polymer models for which analytic results for P (r)

are known.

A particularly useful result for our purposes is P (r|〈R〉) for a self-avoiding

homopolymer in a good solvent. In this case, the Redner- desCloizeaux [124, 125]

distribution is given by,

P (r|〈R〉) = A(r/〈R〉)2+gexp(−B(r/〈R〉)δ), (4.11)

where 〈R〉 is the mean distance between two loci, and g is the “correlation hole”

exponent, and δ is related to the Flory exponent ν by δ = 1/(1−ν). In good solvents,

ν ≈ 0.588. The constants A and B can be calculated using the normalization

condition,
∫

drP (r|〈R〉) = 1. Given the value of rc, the threshold distance for

contact formation, the contact probability Pc between the two loci is,

Pc =

∫ rc

0

P (r|〈R〉)dr. (4.12)

When the contact threshold is small compared to the size of the chain or the loop

r � 〈R〉, the integral can be approximately evaluated using,

Pc = lim
rc→0

∫ rc

0

P (r)dr

= lim
rc→0

∫ rc

0

A(r/〈R〉)2+gexp(−B(r/〈R〉)δ)dr,

∼ 〈R〉−(3+g).

(4.13)
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Thus, the contact probability between two monomers, P , is related to the mean end-

to-end distance 〈R〉 only through the scaling exponent −(3 + g). For ideal chain,

g = 0, and thus I recover the asymptotically exact relation P ∼ 〈R〉−3. Note that

〈R〉 does depend on the genomic distance separating the two loci.

For a single polymer chain, there are three ways a contact between loci may

be established [189]: i) the contact between two ends of the chain (Fig. 4.1a). ii)

the contact between one end and a locus in the interior (Fig. 4.1b). iii) the contact

between two loci in the interior of the chain (Fig. 4.1c). The correlation hole expo-

nents corresponding to the three cases are g1 = 0.273, g2 = 0.46 and g3 = 0.71 [189].

Thus, I have P = 〈R〉−3.273, P = 〈R〉−3.46 and P = 〈R〉−3.71 for three cases. These

rigorous values provide a bound for g, and should be viewed as a guide when con-

sidering the complicated case of chromosomes.

4.2.4 Simulations details

The energy function for the GRMC is,

U(r1, ..., rN) =
N−1∑
i=1

US
i +

∑
{p,q}

UL
{p,q}. (4.14)

For the bonded stretch potential, US
i , I use,

US
i =

κ

2
(|ri+1 − ri| − a)2, (4.15)
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Figure 4.1: Three possibilities for contact formation between two loci in a polymer.
(a) Contact formation between the two ends. (b) Contact formation between one
end and a locus in the interior. (c) Contact formation between two loci located in
the interior of a polymer. Although the relation between P and 〈R〉 decreases as
power law the value of the exponent is different in the three scenarios (see the SI
text for the precise values of a polymer in good solvent.

where a is the equilibrium bond length. The interaction between the loop anchors

is also modeled using a harmonic potential,

UL
{p,q} =

ω

2
(|rp − rq| − a)2 (4.16)

where the spring constant is associated with the CTCF facilitated loops, and {p, q}

represent the indices of the loop anchors, which are taken from the Hi-C data [28]

(see section 2.2.3). I simulate the chromosome segment from 146 Mbps to 158 Mbps

of Chromosome 5. Each monomer represents 1200 bps, resulting total number of

coarse-grained loci N = 10, 000.

In order to accelerate conformational sampling, I performed Langevin Dynam-

ics simulations at low friction [161]. The value of friction coefficient is 0.01 in LJ

unit with mass of monomer set to be m = 1 and the equilibrium bond length a = 1.
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I simulated each trajectory for 108 time steps, and saved the snapshots every 10, 000

time steps. I generated ten independent trajectories, which are sufficient to obtain

reliable statistics.

4.3 Results

4.3.1 Relating contact probability to mean spatial distance for GRMC:

The exact relationship between Pmn (contact probability between mth and nth

locus) and the corresponding mean spatial distance, 〈Rmn〉 for GRMC (see 4.2.1 for

details of the derivation) is,

Pmn = erf

(
2rc√
π〈Rmn〉

)
− 4

π

rc
〈Rmn〉

e
− 4r2c
π〈Rmn〉2 ≡ R0(〈Rmn〉). (4.17)

The inverse of R0(〈Rmn〉), the solution to Eq. 4.17, gives the mean spatial distance

〈Rmn〉 as a function of the contact probability Pmn. Note that m and n are arbitrary

locations of any two loci, and thus Eq. 4.17 is general for any pair of loci.

A couple of conclusions, relevant to the application to the chromosomes, follow

from Eq. 4.17. (i) Note that Eq. 4.17 is an exact one-to-one relation between the

mean distance 〈Rmn〉 and the contact probability Pmn provided rc is known, and

if the contacts are present in all the cells, which is not the case in experiments.

For small Pmn, it is easy to show from Eq. 4.17 that 〈Rmn〉 ≈ rcP
−1/3
mn . For the

ideal GRMC, this implies that for any m,n, k, l, if Pmn < Pkl then 〈Rmn〉 > 〈Rkl〉,
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a consequence anticipated on intuitive grounds. (ii) If the value of the contact

probability P and the threshold distance rc are known precisely, then the distribution

of the spatial distance can be readily computed by solving Eq. 4.17 numerically.

In Fig. 1(b), I show the comparison between theory (Eq. 4.17) and simulations.

The simulated curves are computed as follows: first collect (Pmn, 〈Rmn〉) for every

pair labeled (m,n) where Pmn and 〈Rmn〉 are computed. The total number of pairs

is N(N − 1)/2. I then binned the points over the values of Pmn. Finally, the

mean value of 〈Rmn〉 for each bin, 〈R〉 = E[〈Rmn〉], is computed where E[· · · ] is

the binned average, which is computed using (1/Ni)
∑Ni

j=1〈Rmn〉j where Ni is the

number of points in the ith bin. The bin size, ∆, is centered at Pmn, spanning

Pmn − ∆/2 ≤ Pmn ≤ Pmn + ∆/2. Using this procedure, I find (Fig. 1) that the

theory and simulations are in perfect agreement, which validates the theoretical

result.

4.3.2 Contact distance rc affects the inferred value of the spatial dis-

tance:

However, in practice, the elements Pmn are measured with (unknown) statis-

tical errors, and the value of the contact threshold rc is only estimated. In the Hi-C

experiments, contact probabilities and rc by implication, are determined by a se-

ries of steps that start with cross-linking spatially adjacent loci using formaldehyde,

chopping the chromatin into fragments using restriction enzymes, ligating the frag-

ments with biotin, followed by sequence matching using deep sequencing methods
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Figure 4.2: Simulations demonstrate the power law relation between contact proba-
bility and mean spatial distance and the effect of rc on the inferred spatial distances.
(a) A sketch of the Generalized Rouse Model for Chromosome (GRMC). Each bead
represents a loci with a given resolution. Dashed lines represents harmonic bond
between loop anchors. (b) Mean spatial distance 〈R〉 as a function of the contact
probability P . The solid lines are obtained using Eq. 4.10 for different values of
rc (shown in the figure), the threshold distance for contact formation. The dots
are simulation results. The agreement between simulations and theory is excellent.
Asymptotically 〈R〉 approaches rcP

−1/3 (dashed lines). The threshold for contact
is expressed in terms of a which is the equilibrium bond length in Eq. 4.15. (c)
Illustration of the sensitivity of rc in determining the mean spatial distance 〈R〉.
Blue and yellow curves are computed by solving 〈R〉 (Eq. 4.17) for a given contact
probability Pmn = 10−3, and rc. The calculated 〈Rmn〉 is used in Eq. 4.7 to obtain
the distribution of the spatial distance P (Rmn). Blue and yellow curves are for the
same value of P but different rc values.
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(see [22] for a review). Because of the inherent stochasticity associated with the

overall Hi-C scheme, as well as the unavoidable heterogeneity (only a fraction of

cells has a specific contact and the contact could be dynamic) in the cell population

the relationship Pmn and 〈Rmn〉 is not straightforward.

To illustrate how the uncertainty in rc affects the determination of the spatial

distance in GRMC even when population is homogeneous (all cells have a specific

contact), I plot the distributions of distance for rc = 0.02, 0.03 µm in Fig. 4.2c. A

small change in rc (from 0.02 µm to 0.03 µm) completely alters the distance distri-

bution P (R), and hence the mean spatial distance (from ≈ 0.2µm to ≈ 0.3µm). For

the exactly solvable GRMC, this can be explained by noting that 〈Rmn〉 ≈ rcP
−1/3
mn

for small Pmn. Because Pmn appears in the denominator, any uncertainty in rc is

amplified by Pmn, especially when Pmn is small.

Heterogeneity causes Fish-Hi-C “Paradox”: The expectation that the con-

tact probability should decrease as the mean distance between the loci increases,

which is the case in the exactly solvable ideal GRMC (Pmn ≈ rc〈Rmn〉−3), is some-

times violated when the experimental data [28] is analyzed [168,183]. The paradox

is a consequence of heterogeneity due to the existence of more than one population

of cells, which implies that in some fraction of cells, contact between two loci exist

while in others it is absent. Each distinct population has its own statistics. For in-

stance, the probability distribution of spatial distance between the mth and the nth

loci, Pi,mn(r), for one population of cells could be different from another population

of cells Pj,mn(r) where i and j are the indices for the two different populations (Fig.
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4.3(a)). The Hi-C experiments yield only an average value of the contact probabil-

ity. Let us illustrate the consequence of the inevitable heterogeneous mixture of cell

populations by considering the simplest case in which only two distinct populations,

one with probability η and the other 1−η, are present (a generalization is presented

below). For instance, in one population of cells, there is a CTCF loop between m

and n, and it is absent in the other population. The probability distribution of

spatial distance between the mth and the nth loci is a superposition of distributions

for each population. Using Eq. 4.17, the mixed distribution can be written as,

P (Rmn = r) =

√
2

π

(
η

r2

σ3
1,mn

e
− r2

2σ21,mn + (1− η)
r2

σ3
2,mn

e
− r2

2σ22,mn

)
(4.18)

where σ1,mn and σ2,mn are the parameters with different values characterizing the two

populations. In the GRMC, σ1,mn and σ2,mn are related to the mean spatial distances

in the two populations by 〈R1,mn〉 = 2
√

2/πσ1,mn and 〈R2,mn〉 = 2
√

2/πσ2,mn.

The mean spatial distance is, 〈Rmn〉 = η〈R1,mn〉 + (1 − η)〈R2,mn〉, and the contact

probability is Pmn = ηP1,mn + (1 − η)P2,mn where P1,mn and P2,mn are the contact

probabilities for each population, given by Eq. 4.17, which depends on the values

of 〈R1,mn〉 and 〈R2,mn〉 as well as rc.

If the values of 〈R1,mn〉 and 〈R2,mn〉 are unkown (as is the case in Hi-C ex-

periments), and only the value of the contact probability between the two loci is

provided, one can not uniquely determine the values of the mean spatial distances.

This is the origin of the Hi-C and FISH data paradox. In Figs. 4.3b-e I show an
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example of the paradox for a particular set of parameters (η, σ1,mn, σ2,mn). Pair #1

has a larger contact probability than pair #2, while also exhibiting a larger mean

spatial distance. The GRMC explains in simple terms the origin of the paradox.
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Figure 4.3: Illustrating the FISH-Hi-C ([Pmn, 〈Rmn〉]) paradox. (a) Schematic illus-
tration of the populations of two cells. There are two pairs of loci, pair 1 and pair
2. Cells 1 and 2 belong to two distinct populations such that pair 1 and pair 2 have
different distributions of distances in the two cells. Pair 1 is always in proximity
(contact is formed) in cell 1, whereas it is spatially separated (mean distance > rc)
in cell 2. Pair 2 on the other hand has similar distributions of spatial distance in cells
1 and 2. Cell with two different populations gives rise to the paradoxical behavior,
which is illustrated by choosing η1 = 0.4 and η2 = 1 − η1 = 0.6. These are the
probabilities for a cell belonging to population 1 and 2, respectively. The pair 1 has
parameters σ1 = 0.3µm and σ2 = 0.8µm. The pair 2 has parameters σ1 = 0.4µm
and σ2 = 0.5µm. See Eq. 4.18 for the definition of σ1 and σ2. (b) The distribution
of distance for pair 1 (thick blue) and pair 2 (thick orange), respectively. The dis-
tributions for the two different populations are shown separately for pair 1 (dashed
lines) and pair 2 (dotted lines). (c) Cumulative distribution of the spatial distance.
The horizontal dashed line indicates the median distance. (d) Mean distances for
pair 1 is larger than for pair 2. (e) Pair 1 has larger contact probability than 2,
which is paradoxical since the distance between the loci in pair 1 is larger than in
2. The threshold for determining contact is rc = 20 nm.

To systematically explore the parameter space, I display 〈Rmn〉 and Pmn as

heat maps showing 〈R〉1,mn versus 〈R〉2,mn for different values of η (Fig. 4.4). When

there is a single homogenous population (η = 0.0), the mean spatial distance 〈Rmn〉

and contact probability Pmn depend only on the value of 〈R2,mn〉 (upper panel in Fig.

4.4). In this case, there is a precise one-to-one mapping between 〈Rmn〉 and Pmn.

However, if η 6= 0 (η = 0.3, lower pannel in Fig. 4.4) then the relation between Pmn

and 〈Rmn〉 is complicated. The contour lines for Pmn cross the contour lines of 〈Rmn〉,

which implies that for a given value of Pmn, one cannot infer the value of 〈Rmn〉

without knowing the value of η, 〈R1,mn〉 and 〈R2,mn〉. For instance, the triangle and

circle shown for η = 0.3 in Fig. 4.4 demonstrate an example of the paradox in which

〈R(H)〉(= 57a) > 〈R(•)〉(= 40a) whereas P (H)(≈ 7.7×10−4) > P (•)(≈ 3.9×10−4).
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Figure 4.4: Plots of mean distance 〈Rmn〉 and the contact probability Pmn as
heatmaps computed using rc = 2a. The colorbars on the right show the values
of 〈Rmn〉 and Pmn. The results for η = 0(6= 0) is shown on top (bottom). Two
specific pairs are marked as triangle and circle in the lower left panel These loci
pairs illustrate the [Pmn, 〈Rmn〉] paradox.
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4.3.3 Extracting cell subpopulation information from FISH data:

Can one extract the information about subpopulations from experimental data

so that the result from two vastly different techniques can be reconciled? To answer

this question, I first generalize the theory derived from GRMC to real chromatins.

The generalization of Eq. 4.18 is,

P (Rmn = r) = ηP (r|〈R1,mn〉) + (1− η)P (r|〈R2,mn〉) (4.19)

where P (r|〈R1,mn〉) and P (r|〈R2,mn〉) are the Redner-des Cloizeaux distribution of

distances for polymers [124, 125] (section 4.2.3). The distribution P (r|〈Rmn〉) is

rigorously known for self-avoiding homopolymer in good solvent, generalized Rouse

model (Eq. 4.11 in section 4.2.3), and a semi-flexible polymer [190, 191]. However,

a simple analytic expression for chromosomes is not known. By assuming that

the Redner-des Cloizeaux form for P (r|〈Rmn〉) also holds for chromosomes (see Eq.

4.11 for details), I find that g = 1 and δ = 5/4 in Eq. 4.11. These parameters were

previously extracted using experimental data [14], and the Chromosome Copolymer

Model (CCM) for chromosomes [66]. The value of g is inferred from the scaling

relationship between mean spatial distance 〈R〉 and contact probability P , P ∼

〈R〉3+g. The value of δ is computed as δ = 1/(1 − ν). ν is inferred from scaling

〈R(s)〉 ∼ sν where s is the genomic distance.

The integral of Eq. 4.19 up to R, which is the cumulative distribution function

CDF(R), can be used to fit the FISH data. Thus, the probability of contact forma-
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tion can be computed as,
∫ rc

0
P (r|〈R〉)dr where rc is the contact threshold. Using

the data in [28], the CDF(R) for two pairs of loci are shown in Fig. 4.6(a). By fitting

the two experimentally measured curves to the theoretical prediction (see Appendix

B.1), I obtain η ≈ 0.42 for peak4-loop and η ≈ 0.97 for peak3-control. The param-

eters obtained can then be used to compute the contact probability. Since the Hi-C

experiments measure the number of contact events instead of contact probability

and the value of rc is unknown, I compared the relative contact frequency, which is

computed as Pi/〈P 〉 where Pi is the contact probability computed using the model

or the contact number measured in Hi-C for the ith pair and 〈P 〉 is the mean value

for all the pairs considered. First, I fit all the eight CDF(R) curves in [28]. The

excellent agreement between theory and experiments is vividly illustrated in the

Fig. 4.5 and also manifested by the Kolmogorov-Smirnov statistics (Table B.1).

Second, I calculated their corresponding relative contact frequency (Fig. 4.6(b)).

Comparison of the theoretical calculations with Hi-C measurements shows excellent

agreement (Fig. 4.6(b)) with the Pearson correlation coefficient being 0.87. The

contact probability is computed using rc = 10 nm. It is important to note that fit-

ting the FISH data with the assumption that cell population is homogeneous leads

to unphysical values of g and δ and the Kolmogorov-Smirnov statistics are inferior

(see Appendix B.2 and Table B.3).

Interestingly, the values of 〈R1〉 obtained from fitting the four CTCF/cohesin

mediated loops (peak(1,2,3,4)-loop) are all about 0.25 − 0.35µm (R1,peak1−loop ≈

0.24µm, R1,peak2−loop ≈ 0.33µm, R1,peak3−loop ≈ 0.35µm,R1,peak4−loop ≈ 0.30µm) re-

gardless of their genomic separation (see Table B.1), suggesting that the mechanism

103



of looping between CTCF motifs are similar with a mean spatial distance ≈ 0.3 µm.

The physically reasonable value of 〈Rmn〉 ≈ 0.3νm for all peak-loop pairs shows that

these CTCF-mediated contacts describe molecular interactions between loci that are

separated by a few hundred kilo base pairs. It has been shown that these contacts,

referred to as “peaks” [28] are significantly closer in space than others that are sepa-

rated by similar genomic distance. The peak-loop contacts correspond to chromatin

loops with the loci in the peaks being the anchor points between a specific loop.

In sharp contrast, the distances between peaki-control (i goes from 1 to 4), which

are greater than the distances between peak loci, vary ranging from ≈ 0.47 µm to

≈ 0.67 µm (see Table B.1). It is likely that these contacts are more dynamic because

they are not be anchored by CTCF binding proteins.

4.3.4 Fitting FISH data when heterogeneity is extensive

In the results presented in Figs. 4.5 and 4.6, I assumed that chromosomes

with or without CTCF loops may be categorized into two subpopulations, each

with a characteristic mean distance. Here, I generalize the theory using a continuous

distribution of subpopulations, which is required in light of recent study [118]. Let

us denote P (〈R〉) as the probability distribution of mean distance 〈R〉 characterizing

a subpopulation. In Eq. 4.19, P (〈R〉) is assumed to be a linear combination of two

Delta functions. This assumption, which is reasonable in the context of CTCF loops,

may not hold in cases where cooperative interactions between loops are prominent
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Figure 4.5: Fits of the CDF(R) (using Eq. 4.19 with values of g = 1 and δ = 5/4)
to the experimental data (blue dots) [28]. Orange lines are the fits. The parameters
obtained from the fits for the eight loci pair are summarized in Table B.1. The
probability density distribution (PDF) obtained using the fit parameters are also
plotted along with experimental PDF. The excellent agreement between theory and
experiments is self-evident.
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experiments shows the usefulness of the relationship between Pmn and Rmn obtained
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0
P (r)dr (the needed expressions are in Eq. 4.19). The best fit parameters
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Relative Contact Frequency computed from the fits of CDF(R) for eight pairs of
loci investigate experimentally [28] (orange bars). For each pair of loci, the contact
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0
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contact number from Hi-C measurements in [28]. The relative contact frequency is
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all the pairs considered. “p1-loop/p1-control/...” are the ones referred to “peak1-
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or when there is extensive conformational heterogeneity. Here, I discuss how to

analyze the FISH data without making any prior assumption about P (〈R〉). The

generalization of Eq. B.2 is,

CDF(R) =

∫ ∞
0

d〈R〉P (〈R〉)CDF(R|〈R〉). (4.20)

If P (〈R〉) = ηδ(〈R〉 − 〈R1〉) + (1 − η)δ(〈R〉 − 〈R2〉), then one obtain Eq. B.2.

However, extensive heterogeneity in chromosome organization implies that 〈R〉 could

take arbitrary values with a distribution, P (〈R〉). The left side of Eq. 4.20 is the

experimentally measured cumulative distribution function and CDF(R|〈R〉) on the

right hand side is given by Eq. B.4. The goal is to solve for P (〈R〉) in Eq. 4.20,

which is Fredholm integral equation of the first kind. In this work, I solve Eq. 4.20

using a discretization scheme on grid points (Rj, 〈R〉i). Eq. 4.20 is replaced by a

summation approximately,

CDF(Rj) =
∑
i

ωiP (〈R〉i)CDF(Rj|〈R〉i) (4.21)

where ωi are the weight coefficients for a quadrature formula. If one use small and

equal grid size ∆〈R〉 → 0, one can replace ωi with ∆〈R〉. Eq. 4.21 can be solved

as a system of linear equations using non-negative Tikhonov regularization (see

Appendix B.3).
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4.3.5 Accounting for massive heterogeneity in chromosome organiza-

tion:

In a recent study [118], which combined Hi-C and high-throughput optical

imaging to map contacts within single chromosomes in human fibroblasts, revealed

massive heterogeneity. Such extensive existence of a large number of conformations,

leading to multiple or nearly continuous distribution of subpopulations, was much

greater than previously anticipated. Although, the results in Figs. 4.5 and 4.6

quantitatively reveal heterogeneity associated with CTCF loops by considering only

two dominant subpopulations, the most recent experiment requires a generalization

of the theory. In principle, our theory also applies to interactions of any nature, not

only the CTCF loops. In doing so, it may be more reasonable to assume a continuous

distribution of subpopulations, P (〈R〉), (see section 4.3.4 for generalization) instead

of two discrete subpopulations, 〈R1〉 and 〈R2〉, which of course is much simpler

and may suffice in many cases as the results in Fig. 4.5 illustrate. To show that

our theory has a broader range of applicability, I used the FISH data from the

recent study [118], which reports spatial distance measurements for 212 pairs of

loci. I obtained the raw data from the 4D Nucleome data repository [192]. Using

non-negative Tikhonov regularization (Appendix B.3), P (〈R〉) is solved for each of

a total of 212 pairs of loci. To illustrate our results, I compare in Fig. 4.7 the

predicted CDF(r) and the experimentally measured CDF(r), as well as the P (〈R〉)

obtained by fitting for six pairs of loci as examples in Fig. 4.7. The results show

substantial variations in 〈R〉, manifested by the multiple peaks and wide spread
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variations in P (〈R〉). Remarkably, the calculated CDF(r) (without any adjustable

parameters) and the measured CDF(r) are in excellent agreement for the six loci

pairs, which were arbitrarily chosen for illustration purposes. The residual errors

between the two, shown as insets in Fig. 4.7, are extremely small.

In Fig. 4.8 I show the calculated the normalized distributions P (〈R〉/µ(〈R〉))

for each of the 212 pairs of loci. I expect that P (〈R〉/µ(〈R〉)) should be nar-

rowly distributed around value 1 if there is only one population. However, many

P (〈R〉/µ(〈R〉)) show multiple peaks with large variations. To further quantify the

extent of heterogeneity, I calculated the coefficient of variation, CV = σ(〈R〉)/µ(〈R〉)

where σ(〈R〉) and µ(〈R〉) are the standard deviation and the mean of 〈R〉, respec-

tively. If there is only one population associated with 〈R〉, CV should have a value

of around zero. Fig. 4.8b shows the histogram of CV for all 212 pairs of loci. The

CV values are widely distributed, suggesting that 3D structural heterogeneity is

common and is associated with many pairs of loci rather than a few. Thus, the

analyses of experimental data is not possible without taking heterogeneity into ac-

count. The theory presented here is sufficiently general and simple that it can be

used to calculate the measurable quantities readily.

4.3.6 Loop extrusion as a possible physical mechanism for chromo-

some heterogeneity:

What is the origin of heterogeneity in the individual cell populations? There

are two possibilities. The first one is “static heterogeneity”: each subpopulation
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Figure 4.7: Exampled fits of CDF(r) using Eq. 4.20 to the experimental data
[118]. The six exampled pairs of loci are indicated above each subfigure. Orange
lines, showing the fits using our theory, is indistinguishable from experiment (the
differences between fitted and experimental curve are shown in the insets). The
distribution P (〈R〉) given in the integral equation (Eq. 4.20) is solved using non-
negative Tikhonov Regularization (Appendix B.3). As shown here, P (〈R〉) have
multi-peaks and are widespread, which is a manifestation of heterogeneity. I set
g = 1 and δ = 5/4.
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explores a distinct region of the genomic folding landscape (GFL) (Fig. 4.9a). The

second is “dynamic heterogeneity”. Each cell explores a local minimum of the GFL

before transiting to another local minimum (Fig. 4.9b). The only assumption in

the application of our theory to genome organization is that there must be more

than one population of cells, which does not violate the observation that the Hi-

C experiment report only the average contact probability over millions of cells.

Dynamic looping would be an example of the dynamic heterogeneity where the

CTCF/cohein mediated loops are formed and broken dynamically on a fast time

scale compared to the life time of a cell. Such a picture is supported by recent single-

cell molecule experiment [193, 194]. The average residence time of CTCF/cohesin

complex is shown to be in the range of a few to tens of minutes, which is much

smaller compared to the time scale of cell cycle (15-30 hours). Loop extrusion

model [62, 87, 88] is another possible origin of dynamic heterogeneity. In the loop

extrusion model, it is thought that cohesins extrude loops along the chromsome

fiber, which could detach stochastically. At any given time, there would be many

subpopulations, each characterized by a distinct set of loops in the chromosome.

Indeed, our analyses of the most recent high throughput optical imaging data lends

credence to the notion that mutiple subpopulations in chromosomes arise because

of massive dynamic heterogeneity. Our theory also gives an indirect theoretical

justification for the work in [168] in which the authors found the loop extrusion

model could lead to the [Pmn, 〈Rmn〉] paradox.

Single-cell temporal information is necessary to determine whether the loops

are static or dynamic or a combination of the two (Fig. 4.9c). Hence, the combi-
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Figure 4.8: (a) Normalized distribution P (〈R〉/µ(〈R〉)) (µ(〈R〉) is the mean of 〈R〉)
for all the 212 pairs of loci reported in [118]. For almost every pair of loci, the
associated P (〈R〉/µ(〈R〉)) has multiple peaks and is widespread. (b) Histogram
of the coefficient of variations CV for all 212 pairs of loci probed in [118]. The
CV values are calculated for each pair of loci, using CV = σ(〈R〉)/µ(〈R〉) where
σ(〈R〉) is the standard deviation of 〈R〉. For a large number of loci pairs, CV
exceeds 0.5, which is a quantitative measure of the extensive heterogeneity noted in
experiment [118]

nation of the dynamic FISH technique such as CRISPR-dCas9 FISH and single-cell

Hi-C would be crucial for us to fully understand the organization of genomes. Our

theory provides a theoretically rigorous method based on polymer physics to connect

the results from measurements using the two vastly different techniques.

4.4 Discussion

From polymer physics for single chains it follows that in a homogeneous sys-

tem, the contact probability and mean 3D distances are linked, resulting in a power

law relation connecting the two quantities that can be measured using Hi-C and

FISH techniques. However, the one-to-one mapping does not hold in Hi-C exper-

iments because of the presence of a mixture of distinct cell subpopulations each
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characterized by its own statistics leads to heterogeneity, which in turn gives rise to

the [Pmn,〈Rmn〉] parodox. I have shown that the theory based on precisely solvable

GRMC could be used to solve the paradox in practice. The theory can be readily

used to analyze data from experiments, provided the FISH and Hi-C experiments

are done under similar conditions [28]. The central result of the theory in Eq. 4.19

can be used to analyze the available sparse FISH data. I showed that the fraction

of cell subpopulations (η in Eq. 4.19) and the generalization derived in section 4.3.4

can be extracted by fitting the FISH data using our theory. From Eq. 4.19 I calcu-

lated the Hi-C contact probabilities, thus establishing that the theory resolves the

[Pmn,〈Rmn〉] paradox.

In this work, I confined ourselves to two-point interactions, which allows us to

consider one pair of loci at a time. However, recent experiments probing multi-point

interactions have suggested that formations of loops are likely to be cooperative

[30, 195], such that the formation of one loop could facilitate the formation of a

nearby loop. Such cooperative loop formation was previously shown in an entirely

different context involving folding of proteins directed by disulfide bond formation

[196]. It can be shown within our framework that the formation of one loop can

certainly increase the probability of formation of another loop.

The reconciliation of the FISH and Hi-C data using polymer physics concepts

is the first key step in integrating the data from these experimental techniques to

construct the 3D structures of chromosomes. The work described here provides a

theoretical basis for accomplishing this important task. Finally, our results suggest

that heterogeneity in contact formation is an intrinsic property of genome organiza-
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tion, and hence acquisition of single-cell experimental data is crucial to further our

understanding of both the dynamics and the heterogeneous structural organization

of chromosomes.

4.5 Summary

Here, I first establish a relationship between the contact probability and the

mean spatial distance using an analytically solvable Generalized Rouse Chromosome

Model (GRMC), which incorporates the presence of CTCF/cohein mediated loops.

The GRMC may be thought of as an ideal chromosome model, very much in the

spirit of the Rouse model for polymers, in which conceptual issues such as the origin

of the FISH-Hi-C paradox can be rigorously established. I first consider the solvable

homogeneous limit in which contacts are present in all the cells. In this case, precise

numerical and analytical results show that there is a simple relation between the

contact probability, P , and the ensemble mean 3D distance 〈R〉. However, the

unavoidable heterogeneity in the cell populations in Hi-C experiments, results in

contacts between loci only in a fraction of cells. I first show that a direct consequence

of the heterogeneity in both GRMC and chromosomes is that two loci (m and n)

that have higher probability (Pmn) of being in contact relative to another two loci

(k and l) does not imply a direct spatial correlation, a finding that has already

been qualitatively established in previous studies [168, 183]. In other words, the

average spatial distance between m and n (〈Rmn〉) could be larger than 〈Rkl〉, the

distance between loci k and l, even if Pmn > Pkl. These results provide a basis for
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understanding the origin of FISH-Hi-C paradox.

By building on the GRMC results, I show that heterogeneity is the dominant

feature of chromosome organization. Indeed, recent single-cell Hi-C [79, 116, 117]

and imaging experiments [14, 24, 30, 118] have revealed that there are substantial

cell-to-cell variations on genome organization. However, how to utilize the data

reported in these experiments to enhance our understanding of 3D genome structural

heterogeneity has not been unexplored. One approach is to create an appropriate

polymer model based on Hi-C and imaging data, which would readily allow us to

probe the structural variability using simulations [64,66,67,197]. Indeed, it has been

shown, using Hi-C and FISH data as well simulations [197], that if the conformation

of the chromatin fiber is taken to be homogeneous then trends observed in the FISH

data could not be predicted. However, using simulations and including two levels

chromatin organization (open and compact) qualitative trends observed in the FISH

data could be recovered [197].
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Figure 4.9: Schematic of the Genomic Folding Landscape (GFL). (a) Static hetero-
geneity: Cell subpopulation occupies distinct local minima in the GFL, with each
minimum representing a stable organization. The energy barrier is too large for
transition between different local minima on a biological time scale (one cell cy-
cle). (b) Dynamical heterogenentiy: The energy barrier between local minima on
the langscape is small enough which allows the dynamic transition between differ-
ent subpopulations. (c) Combination of two different types of heterogeneity. In
all three scenarios, the [Pmn, 〈Rmn〉] paradox arises. The loci contacts are in or-
ange. The polymer conformation sketches are not shown in this scenarios due to
insufficient space.
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Chapter 5: Reconstruction of three-dimensional chromosomes orga-

nization from Hi-C contact map

5.1 Introduction

Hi-C data describes the chromosome structures in statistical terms expressed

approximately in terms of a matrix the element of which indicates the probability

that two loci separated by a specific genomic distance are in contact. How can I go

beyond the genomic contact information to 3D distances between loci, and eventu-

ally the spatial location of each locus is an important problem that has to be solved

in order to exploit the available data quantitatively. Imaging techniques, such as

Fluorescence In Situ Hybridization (FISH) and its variations, are the most direct

way to measure the spatial distance and coordinates of genomic loci. But currently

these techniques are limited in that they provide information on only a small num-

ber of loci in one experiment set up. Is it possible to harness the power of the

two methods to construct, at least approximately, 3D structures of chromosomes?

Here, I answer this question in the affirmative by building on the precise results for

Generalized Rouse Chromosome Model and by using certain universal principles of

polymer.
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A number of data-driven approaches have been developed in order to go from

Hi-C to 3D structure of genomes [71–78] (see the summary in [80] for additional

related studies). However, no attention is paid to the theoretical aspects relating

contact probability and 3D spatial distances from a polymer physics perspective.

As I have shown in Chapter 4, the apparent difficulties in reconciling Hi-C (contact

probability) and FISH data (spatial distances) is caused by the fact that the cell

population is heterogeneous even though they are synchronized in the Hi-C experi-

ment. As a result, a given contact is not present with a fixed probability in all the

cells.

The purposes of the chapter 5 are two folds. (1) I first establish that there is

a lower theoretical bound connecting the contact probability and the 3D distance.

I test this concept by using the GRMC polymer for which accurate simulations can

be performed. (2) However, distances, Rijs, between the loci do not give the needed

coordinates of each locus. In order to solve this problem, I rely on the lessons from

GRMC and polymer physics concept and used them to obtain the individual 3D

coordinates of the loci. The method allows us to go from the Hi-C contact map to

the three-dimensional coordinates, Ri (i = 1, 2, 3, · · · , Nc), where Nc is the length

of the chromosome) may be summarized as follows. First, I construct the average

distances 〈Rmn〉 between all m and n using a power-law relation Pmn, the probability

m and n are in contact measured in Hi-C experiments, and 〈Rmn〉. The justification

for the power law is established using GRMC and polymer physics concepts. I

obtain, Ri, the 3D coordinates for all the loci from 〈Rmn〉 using Multidimensional

Scaling. The application of our theory to decipher the 3D structure of chromosomes
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from any species is limited only by experimental resolution of the Hi-C technique.

Comparison with experimental data are made to validate our theory.

5.2 Results

5.2.1 Inferring distance map (DM) from contact map (CM) in a ho-

mogeneous system:

In GRMC, the relation between the contact probability and mean spatial dis-

tance is given by (see section 4.2.1 for derivation),

Pmn = erf

(
2rc√
π〈Rmn〉

)
− 4

π

rc
〈Rmn〉

e
− 4r2c
π〈Rmn〉2 ≡ R0(〈Rmn〉). (5.1)

where erf(x) is the error function. The equation above provides a way to infer the

distance map (DM) directly from the contact map (CM), which is a matrix whose

elements, Pmn, specifies the contact probability between loci m and n. The CM can

be inferred approximately using Hi-C experiments. However, there are uncertainties

in determining both rc due to systematic uncertainties and Pmn due to inadequate

sampling, thus restricting the use of Eq.5.1 in practice. In light of this, I address

the following questions, which I answer using a precisely solvable model. (a) How

accurately can one solve the inverse problem of going from the contact map to the

distance map? (b) Does the inferred distance map faithfully reproduce the topology

of the spatial organization of a model for chromosomes?

To answer these two questions, I first constructed the distance map by solving
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Eq.5.1 for 〈Rmn〉 for every pair with contact probability Pmn. The CM is determined

using simulations of the GRMC, as described in the Methods. For such a large

polymer, some contacts are almost never formed even in long simulations, resulting

in Pmn ≈ 0 for some loci. This would erroneously suggest that 〈R〉 → ∞, as a

solution to Eq.5.1. Indeed, this situation arises often in the Hi-C experimental

contact maps where Pmn ≈ 0 for many m,n. To overcome this practical problem

of dealing with Pmn ≈ 0 for several pairs, I apply the block average (a coarse

graining procedure) to the CM, which decreases the size of the CM. The procedure

decreases the problem of having to deal with the vanishingly small values of Pmn

while preserving the information needed to solve the inverse problem using Eq.5.1.

The simulated and constructed distance maps are shown in the lower and up-

per triangle, respectively, for the purpose of better visual comparison (Fig. 5.1a). I

surmise from Fig. 5.1(a) that the constructed and simulated distance maps are in

excellent agreement. There is a degree of uncertainty for the loci pairs with large

mean spatial distance (elements far away from the diagonal in Fig. 5.1(a)) due to

the unavoidable noise in the CM. To assess the quality of the constructed distance

map, I found that the Spearman correlation coefficient between the simulated and

theoretically constructed maps is 0.97. However, a single correlation coefficient is

not sufficient to capture the topological structure embedded in the distance map.

To assess the global similarity between the DMs from theory and simulations, I used

the Ward Linkage Matrix (see Appendix A.3). Fig. 5.1b shows that the constructed

DM indeed reproduces the hierarchical structural information correctly. The results

in Fig. 5.1 show that the DM, in which the elements represent the mean distance
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between the loci can be calculated accurately, as long as the CM is determined un-

ambiguously.

5.2.2 A bound for the spatial distance inferred from contact proba-

bility:

The results in Fig. 5.1 show that for a homogeneous system (specific con-

tacts are presented in all realization), the mean 3D distance map can be faithfully

inferred/reconstructed solely from the contact map. However, the discrepancies be-

tween FISH and Hi-C data suggests that the cell population are hetergenous, which

means that contact between m and n loci are present in only a fraction of cells. In

this case, which one has to contend with in practice, the one-to-one mapping be-

tween contact probability and mean 3D distances (Eq.5.1) does not hold. This leads

to the paradox described in Chapter 4, which means that higher contact probability

does not imply closer distance. This implies that given the contact probability, one

can no longer determine the mean 3D distance uniquely, which implies that for cer-

tain loci the results of Hi-C and FISH must be discordant. For a mixed population

of cells, the contact probability Pmn and mean spatial distance 〈Rmn〉 between two

loci m and n, are given by,
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Figure 5.1: Comparison of the distance matrices (DMs) for GRMC. (a) The simu-
lated DM (lower triangle) and constructed DM (upper triangle) are compared side
by side. The colorbar indicates the value of the mean spatial distance, 〈Rmn〉. The
constructed DM is obtained by solving Eq.5.1 using the CM. The value of rc = 2.0a.
The location of loop anchors are derived from experimental data [28] over the range
from 146 Mbps to 158 Mbps for Chromosome 5 in the Human GM12878 cell. (b)
Relative error δ as a map. The relative error is calculated as, δ = (dinferred−dsim)/dsim

where dinferred and dsim are inferred and simulated distance, respectively; δ increases
for loci with large genomic distance indicating tendency to overestimate the dis-
tances. (c) The distribution of the relative error, PDF(δ). The mean value of
absolute relative error is 0.08 suggesting that on an average the inferred distance
deviates from simulation by only 8% due to the statistical errors. (c) Ward Linkage
Matrices (WLMs) from simulation and theoretical prediction, are shown in the lower
and upper triangle, respectively, are in excellent agreement with each other.
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〈Rmn〉 =
S∑
i

ηi,mn〈Ri,mn〉 (5.2)

Pmn =
S∑
i

ηi,mnPi,mn (5.3)

where 〈Ri,mn〉 and Pi,mn are the mean spatial distance and contact probability be-

tween m and n in ith subpopulation, respectively. S is total number of distinct

subpopulations and ηi,mn is the fraction of the subpopulation i in the total popula-

tion which satisfies the constraint
∑S

i ηi,mn = 1. Although there exists a one-to-one

relation between Pi,mn and 〈Ri,mn〉 in each subpopulation i. It is no longer possible

to determine Pmn solely from Rmn without knowing values of each ηi,mn and vice

versa.

In Chapter 4, I show that paradox arises precisely because of the mixing of

different subpopulations. The value ηi,mn in principle can be extracted from dis-

tribution of Ri,mn which can be measured using FISH technique. However this is

usually unavailable which leads us to the question: despite of the lack of knowledge

of the composition of cell populations, can I provide an approximate relation be-

tween Pmn and 〈Rmn〉? In other words, rather than answer question (a) precisely,

as I did for the homogeneous GRMC, I are seeking an approximate solution. The

GRMC calculations provide the needed insight to construct the approximate rela-

tion to calculate DM from CM. Here I demonstrate that there exists a theoretical

lower bound of 〈Rmn〉 given the value of Pmn no matter what are the compositions
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of the whole cell population. I demonstrate this by considering the case S = 2 in

which 〈Rmn〉 = η〈Rmn〉 + (1 − η)〈R2,mn〉 and Pmn = ηP1,mn + (1 − η)P2,mn. When

the value of the contact probability Pmn is known but the value of η is unknown,

the possible values of 〈R1,mn〉 and 〈R2,mn〉 follows the contour lines (dashed line)

in Fig. 5.2. There exists a contour line for 〈Rmn〉 which is tangent to the contour

line for Pmn (green curve in Fig. 5.2) for all m and n. The tangent point (star in

Fig. 5.2) corresponds to the minimum possible value for 〈Rmn〉. Thus, although one

cannot precisely determine the mean spatial distance from the contact probability,

the GRMC result suggests a precise lower bound to 〈Rmn〉, which can be calculated

from Pmn. Detailed calculations (Appendix C.1) show that such tangent points are

on the linear line 〈R1,mn〉 = 〈R2,mn〉 (solid black line in Fig. 5.2). Remarkably, the

lower bound is exactly the value of 〈Rmn〉 as if there is only a single homogenous

population. It is important to emphasize that this lower bound holds generally

for any number of subpopulations and any function form of R0 as long as R0 is

a monotonic function of Rmn (Appendix C.1). This finding, which I proved here

using precise numerical solution for the GRMC, is remarkably useful in predicting

the approximate spatial organization of chromosomes from Hi-C contact map, as I

demonstrated below. For the GRMC, I have 〈Rmn〉 ≥ R0(Pmn). Thus, the precisely

solvable model suggests that the approximate power law relating Pmn and Rmn could

be used as a starting point in constructing spatial distance matrices using only the

Hi-C contact map for chromosomes.
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Figure 5.2: Lower Bound illustrated graphically. The colored lines are the contour
lines of 〈Rmn〉 with their values marked. The dotted curve is the contour with
constant Pmn = 10−3.2. The line with 〈Rmn〉 = 23.5a is tangent to the constant Pmn
are at the intersection marked by (∗), which gives the lower bound for 〈Rmn〉. The
black line has slope 1. Several other contour lines are shown to illustreate that all
the tangent points lie on this line (Appendix C.1).
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5.2.3 Validating the lower bound between Pmn and Rmn when het-

erogeneity matters:

In order to investigate the effect of heterogeneity (contact between m and n for

all (m,n) pairs does not exist in all the cells) on the quality of the constructed DM

from CM, I simulated a model system where there are two distinct populations, one

with all CTCF mediated loops present (fraction η), and the other being the polymer

chain without any loop constraints (fraction 1−η). I used the lower bound R−1
0 (Pmn)

to infer 〈Rmn〉 from Pmn. The results, shown in Fig. 5.3(a), provide a numerical

verification of the theoretical lower bound linking contact probability and mean

spatial distance. Using the R0(Pmn), the DMs shown in Fig. 5.3(b) are calculated

from the the simulated CMs. Note that η = 0.0 and η = 1.0 correspond to the

Rouse chain (no CTCF mediated loops) and the GRMC (all CTCF mediated loops

are present), respectively. Interestingly, η = 0.3 results in variations in the simulated

CM but has hardly any effect on the simulated DM (second column in Fig. 5.3(b)).

The difference matrices between constructed and the simulated DMs are shown in

the third column in Fig. 5.3(b). For η = 0.3, the difference between the constructed

and simulated DMs is largest near the loops resulting in an underestimate of the

spatial distances in the proximity of loops (Fig. 5.3(b)). This occurs because the

constructed DM is computed from the simulated CM, which is sensitive to the

heterogeneity of cell population. For the system with large η = 0.7, the constructed

DM agrees better with the the simulated DM (see the difference matrix in the third

column in Fig. 5.3(b)), suggesting that the accuracy of inferring the mean spatial
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distance is less affected when the majority of the cells have CTCF mediated loops

present during the measurement. The difference matrices for η = 0.3 and 0.7 show

that although the constructed DMs underestimated the spatial distances around the

loops most of pairwise distances are hardly affected, thus justifying the use of the

lower bound as a practical way to construct DM.
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Figure 5.3: (a) Mean spatial distance 〈R〉 as a function of the contact
probability P . Red solid curve is given by R−1

0 (P ), which is the lower
bound. Dots are computed from simulation using the binned average method
described previously. Different colors represents different values of η =
(0.0, 0.005, 0.02, 0.04, 0.06, 0.08, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0). On an average, the sim-
ulated data is well described by the theoretical lower bound. The inset shows the
mean spatial distance versus contact probability for each pairs at η = 0.3. Each
blue dot represents one pair (Pmn, 〈Rmn〉), and the red curve is R0(P ). The sim-
ulated data is only slightly above the theoretical lower bound. (b) Simulated CM
(left column), simulated DM and constructed DM side by side (middle column) and
relative error δ (right column) for different values of η = (0.0, 0.3, 0.7) for GRMC.
The CMs are shown on log10 scale with darker red representing higher contact prob-
ability. In both the simulated and constructed DMs, darker red represents higher
mean spatial distance. The constructed DM is obtained using 〈Rmn〉 = R−1

0 (Pmn).
Colorbars mark the value of δ in which the blue and red represents negative and pos-
itive values of δ. Negative values of δ indicates inferred spatial distance is smaller
than the actual distance. The red circle in the δ matrix for η = 0.3 marks one
loop. (c) Plots of 〈R(s)〉 as a function of the genomic distance, s, for η = 0.3
and 0.7. The inset shows the same data on a log-log scale; 〈R(s)〉 is calculated

using 〈R(s)〉 = (1/TM)
∑M

a=1

∑T
t=1

(
|r(a)
i (t) − r

(a)
j (t)|δ(s − |i − j|)/(N − s)

)
. The

theoretical predictions are in agreement with simulations.

To show that the constructed DMs using the lower bound give good global

description of the system, I also calculated the often-used quantity 〈R(s)〉, mean

spatial distance as a function of the genomic distance s, as an indicator of average

structure (Fig. 5.3(c)). The constructed 〈R(s)〉 differs only slightly from the sim-

ulation results. Notably the scaling of 〈R(s)〉 versus s is not significantly changed

(inset in Fig. 5.3(c)), strongly suggesting that constructing the DMs using the lower

bound gives a fairly good estimate of the average size of the chromosome segment.
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5.2.4 Inferring 3D organization of interphase chromosomes from ex-

perimental Hi-C contact map:

To apply the insights from the study of GRMC to obtain 3D organization

of chromosomes, I use the generalized power law relation relating P and 〈R〉 for

chromatin. It is,

〈Rmn〉 = ΛP−1/α
mn (5.4)

where α and Λ are unknown coefficients. For the GRMC, Λ = rc and α = 3.0.

For a self-avoiding polymer, α ≈ 3.71 for two interior loci that are in contact (see

section 4.2.3). Based on experiments [14] and CCM results (see Fig. 3.4) a tentative

suggestion could be made that α ≈ 4.0. I show below that the power law relation

Eq.5.4 provides a way to infer the approximate 3D organization of chromosomes

from experimental Hi-C contact map.

I first ask if the value of α could be determined from Hi-C contact map? To

answer this question, I use the Multidimensional scaling (MDS) [198,199], which is

used to generate the coordinates of objects in such manner that the between-object

distances (〈Rmn〉 is our case) are preserved as precisely as possible. Recently, MDS

has been specifically applied to reconstruct 3D chromosome structure [76, 77, 200].

When only the Euclidean distances among objects are known, it can be used to solve

for the exact configurations from which these distances can be calculated using the

methods described elsewhere [199]. Thus, it is reasonable to assume that the distance

130



map inferred using the correct α should give the most reasonable conformation, in

the sense it would have the smallest Normalized Root Mean Square Error (nRMSE),

(
∑

i<j(Rij −RMDS
ij )2/

∑
i<j R

2
ij)

1/2. Here, Rij is the distance between the ith and jth

loci in the inferred distance map calculated using Eq.5.4 and Hi-C contact map of

100 kbps resolution [28] and RMDS
ij is the corresponding distance in the reconstructed

3D conformation using MDS.

Fig. 5.4(a) shows the nRMSE as a function of α for Human GM12878 Inter-

phase Chromosome 1. The smallest nRMSE is obtained in the range α ≈ 3.5− 4.0,

with a minimum around α ≈ 3.5 − 4.0 for almost all the 23 chromosomes (Fig.

C.1). Interestingly, the value of α inferred from MDS coincides with experimental

data [14, 201] as well as the simulations based on the CCM (Fig. 3.4). Thus, I

arrive at the important conclusion that the Human Interphase chromosome is best

described by an exponent α ≈ 3.5 − 4.0. Without loss of generality, I use α = 4.0

to reconstruct the 3D organization of all 23 human interphase chromosome. Fig.

5.4(b) shows the comparison between the inferred distance map and distance map

from reconstructed configuration of Chromosome 1 (Chr1) using MDS. The Pearson

correlation coefficient between R and RMDS is 0.87 (Fig. 5.4(c)), a highly significant

value.
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Figure 5.4: (a) Normalized Root Mean Squared Error (nRMSE) as a function α
for Chromosome 1 (Chr1) in Human GM12878 cell; nRMSE is computed using,

(
∑

i<j(Rij − RMDS
ij )2/

∑
i<j R

2
ij)

1/2, where Rij = ΛP
−1/4
ij . I calculated RMDS

ij using
the coordinates Ri obtained from the distances Rij using MDS. Note that nRMSE
is a dimensionless quantity, thus the value of Λ has no effect on nRMSE. Here, I
use Λ = 1. The Hi-C contact map of 100 kbps resolution is used [28]. (b) Side-
by-side comparison between inferred distance matrix (upper triangle) and distance
matrix of reconstructed structure using MDS (lower triangle). The white blank area
corresponds to the missing data of the centromere in the Hi-C contact map [28].
Thus, the spatial distances for the centromere are not determined. (c) Scatter plot
of (Rij, R

MDS
ij ). The Pearson correlation coefficient between the two is 0.87. The

dashed line is the linear fit with slope 1.08.

5.2.5 3D structure constructed using MDS:

The 3D configuration Ri (i = 1, 2, 3, · · · , Nc where Nc is the number of loci at

a given resolution (the centromeres are discarded due to lack of information in Hi-C

contact map). The values of Nc are given in Table.S1) of the 23 Human interphase

chromosomes generated using MDS (with Λ = 117 nm; see below) are shown in Fig.

5.5. Color represents the genomic location of loci in which purple and red indicate

the 5’ and 3’ ends, respectively. Fig. 5.6(a) and Fig. 5.5(b) shows the 3D and 2D

MDS embedding reconstructed structrure of Chr1, respectively. These figures show

that Chr1 folds hierarchically where the loci with small genomic distance (similar

color) are also close in space. The long range intermingling between loci with large

genomic distances (different color) is avoided. Such picture is remarkably consis-

tent with the notion of crumpled globule [21,48], and also the recent single-cell Hi-C

data [79]. Similar structural features are found for all 23 Human interphase chromo-

somes (Fig. 5.5). In addition, the reconstructed structure of Chr1 also shows clear
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A/B compartments (Figs.5.6(c),(d)). Two compartments are spatially separated,

suggesting the microphase separation between euchromatin and heterochromatin.

Note that the arrangement of A/B compartments in a polarized manner is highly

consistent with multiplexed FISH data [14] and single-cell Hi-C [79].

5.3 Experimental support

In order to further quantify the properties of the inferred 3D structure of chro-

mosomes, I calculated the square of the radius of gyration of all 23 chromosomes

using R2
g = (1/2N2

c )
∑

i,j R
2
ij. The dashed line in Fig. 5.7(a) is a fit of R2

g as a

function of chromosome size, which yields Rg ∼ N0.27
c where Nc is the length of

the chromosome. For a collapsed polymer, R2
g ∼ N

2/3
c and for an ideal polymer to

be R2
g ∼ Nc. To ascertain if the unusual value of 0.27 is reasonable, I computed

the volume of each chromosome using (4/3)πR3
g and compared the results with ex-

perimental data [202]. The scaling of chromosome volumes versus Nc of inferred

3D chromosome structures are also in excellent agreement with the experimental

data (Fig. 5.7(b)). The exponent of 0.27 . 1/3 suggests the chromosomes overall

adopt compact, space-filling structure, which is also vivdly illustrated in Fig. 5.5.

Since the value of Λ (Eq.5.4) is unknown, I estimate it by minimizing the error be-

tween our inferred chromosome volumes and experimental measurements. I find that

Λ = 117 nm, which gives an approximate size of locus of 100 kbps (the resolution

of Hi-C map used in the analysis). It is noteworthy that genome density computed
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Figure 5.5: 3D reconstructed structure for all 23 Human interphase chromosomes
using MDS with the inferred DM which is obtained using Eq.5.4 with with Λ =
117 nm and α = 4.0. The colors encode the genomic position of the loci. The
resolution of loci is 100 kbps. Red and purple represents 5’ and 3’ ends, respectively.
The structures are rendered using VMD with bead radius of Λ = 117 nm.
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using the value of Λ ((100∗103/(4/3)πΛ3)bps ·nm−3 = 0.015bps ·nm−3) is consistent

with the typical average genome density of Human cell nucleus 0.012bps ·nm−3 [52].

The value of Λ does not change the scaling but only the distances between the loci.

Topologically Associated Domains: It should be emphasized that the inferred

distance is a metric but not Euclidean (see Appendix C.2 for details). One can

only interpret the generated structures using MDS as average structures, which

captures the global topology of chromosome organization. It is hard to infer the

local structures like TADs in the MDS reconstructed structure. I find that the t-

SNE embedding [203], which is known to preserve local structural variation [204]

better than MDS, captures the polymer nature of the chromosome. The t-SNE

embedding shows that the connected loci are constrained to form the backbone of

the whole chromosome (Fig. 5.7(c)). In such a representation, TADs emerge as

local structures represented by the small curls along the curve (Fig. 5.7(d)). To

justify that these curls are indeed representations of TADs, which are maintained

by CTCF/cohesin mediated loops, I apply two dimensional t-SNE embedding on

GRMC simulations. With increasing η, the prominence of loops also increases. Fig.

C.2 clearly shows that t-SNE embedding is able to capture the loops in the system.

Thus, I conclude that the curls observed in Fig. 5.7(d) are actual representations of

the TADs.
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Figure 5.6: (a) 3D reconstructed structure for Chr1. Same as Fig. 5, but with point
representation. The colors encode the genomic position of the loci. The resolution
of loci is 100 kbps. Red and purple represents 5’ and 3’ ends, respectively. (b) Two-
dimensional MDS embedded conformation. (c) A/B compartments of reconstructed
Chr1 structure. Phase separation between two compartments are visually clear.
A/B compartments are determined using spectral biclustering (Appendix A.2). (d)
A/B compartments shown in two-dimensional MDS embedded structure.
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Figure 5.7: (a) Squared radius of gyration R2
g as a function of chromosome size.

The dashed line is the fit to the data with the slope 0.54. (b) Volume of each
chromosome versus the length in bps unit. Experimental values (black squares) are
computed using the data in [202]. Dashed line is the fit to the experimental data
with slope 0.8. Volume of each chromosome is calculated using λVnuc where λ is
the percentage of volume of nucleus volume Vnuc. The values of λ are provided
in Fig. S5 in [202], and Vnuc = (4/3)πr3

nuc where rnuc = 3.5µm is the radius of
Human lymphocyte cell nucleus [202]. Volumes of the reconstructed Chromosome
using theory and computation are calculated using (4/3)πR3

g (color circles). The
predicted and experimental values have a Pearson correlation coefficient 0.79. The
excellent agreement validates the procedure to construct 3D organization. (c) tSNE
2D embedding from inferred DMs. (d) Local structures of TADs are preserved and
illustrated as small curls along the backbone of the chromosome (shown in the
figure).
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5.4 Discussion and conclusion

Using the theoretical results and precise numerical simulations of a non-trivial

model, I have provided an approximate solution to the problem of how to construct

the three-dimensional coordinates of each locus from the measured probabilities

(Pmns) that two loci are in contact. The key finding that Pmn is related to 〈Rmn〉

through a power law, which is in accord with experiments as well as accurate models

for interphase chromosomes. The distance measures are then used to obtain the

coordinates of the loci using multidimensional scaling. This physically motivated

procedure is self-consistently accurate for the precisely solvable GRMC, and was

used to construct the 3D organization of the twenty three human chromosomes

solely from Hi-C contact maps. I believe that our theory with sparse data from Hi-

C and FISH experiment may be combined to produce 3D structure of chromosomes

for any species.

The limitation of our current theoretical framework and many other ensemble-

based approach is the inability to decipher the single-cell information. Due to the

apparent heterogeneity present in the cell population (cite the other paper), Hi-C

map as an ensemble average quantity has limited information regarding the orga-

nization of genomes, even though the experiments are remarkable. The Hi-C map

and the derived DMs only characterize the average structure. In other words, there

may not be a typical single cell genome that can be described by the Hi-C map and

the DMs derived from it. Consider our simple mixture model system as an example.

Each single trajectory can be described by either GRMC (CTCF mediated loops

139



present) or a chain devoid of loops. Therefore, averaging over an ensemble of cells

may not be meaningful from an in vivo perspective. Nevertheless, the theoretical

lower bound provides a way forward to obtain 3D organization from contact map

alone, perhaps even from single cell data.
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Chapter 6: Kinetic Model For Elastic Coupled Motors System

6.1 Introduction

Molecular motors are proteins which consume ATP to perform work in the cell.

They play important roles in many biological processes, such as RNA polymerase

in translocating along DNA to transcribe gene, Kinesins or dyneins in carrying a

vesicle along the microtube, Myosins in generating a muscle contraction. Using

single-molecule technique, how does a single motor, Kinesin in particular, move and

transport cargo has been extensively studied [205–209] (also see [210] for a recent

review). Meanwhile, due to the current limitation of the experiment technique, many

details of mechanochemical cycles of motors are unclear. Theoretical models have

proven very useful in our understanding of molecule motors (see [211] for an extensive

review). Molecular motors are machines on the microscopic level, governed by the

competition between thermal fluctuation and energy flux. The general theoretical

aspects of such a system were reviewed in [212].

As much as what we know for a single motor, how do multiple motors work as

a team is unclear. In fact, motors in vivo almost always work as teams, i,e a cargo

is shared by multiple motors of the same kind or even different kind [213–215].

Such a system has been studied in vitro by attaching multiple motors to a soft
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fluidlike vesicle [213] or to an elastic DNA origami [216]. It has been shown that

the multi-motor system increases the run length significantly [216–220], which can

be understood that it needs all motors to detach in order for the run stops [221].

Contradicting results regarding the velocity of the multi-motor system have been

reported. It was reported that the velocity of the multi-motor system is similar to

that of single motor [216, 218, 219]. Shubeita and colleagues [222] showed that an

increased number of motors actually decrease the velocity in vivo. On the other

hand, it has been reported that the velocity of cargo increases with the increase of

the number of Myosin motor [214,223,224]. In addition, experimental studies have

shown that multi-motors system exhibit fractional stepping [225] and coordinated

stepping [226,227] and coupling induced detachment [228,229].

Numerous theoretical models have been proposed for the coupled motor sys-

tem. Most of these models rely on the assumption of an equal share of load among

motors [221, 230, 231] or are mean-field description rather than stochastic kinetic

model [232–234].

Here I present a simple kinetic model for studying elastically coupled motor

system. In this model, the chemical kinetic scheme for a single motor is a simple

one-state model [235], allowing an analytical solution to the model. In addition,

no assumption of an equal share of loading is made. This model is relevant to the

chromosomes since it was suggested [92] (through private communications) that con-

densins also exhibit potential cooperative motor behavior. Thus the model presented

here provide a basis for further investigation regarding condensin’s loop extruding

mechanism.
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6.2 Model

6.2.1 Overview

In the Elastic Coupled Motor Model (ECMM), motors are mechanically cou-

pled together. Mechanical coupling can be achieved either by sharing a cargo or

attaching to a DNA origami scaffold (Fig. 6.1a). The latter has been used to study

the multi-motors system in vitro [216, 227]. In the model, I assume the coupling

between different motors is only mechanical, not affecting the chemical cycles of

individual motors but only affecting the associated rates in appearance of external

force. In principle, multiple motors can also be coupled by directly forming multi-

merization state. However, in such case, coupling is likely to be both mechanical

and chemical. In order to provide insights to the problem in a way the system is

analytical tractable and conceptually simple, I employ the one state model of single

motor to study the system of n number of coupled motors. In a one state model,

each individual motor, i, is characterized by its forward stepping rate k+
i , backward

stepping rate k−i and detachment rate γi. The mechanical coupling between motors

results in the elastic tension energy Ei of the motor i and leads to external force

exerted on each motor by other motors through the coupling. The elastic tension

of the system is generated due to the deviation of the system from its relaxed state

(Fig. 6.1b). In general, the elastic tension can be any function of the deviation.

For simplicity, I assume the quadratic dependence of tension on the deviation ∆xi

of the motor i, Ei = (1/2)κi∆x
2
i with coupling strength κi. Another relevant choice
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would be a Finite Extensible Nonlinear Elastic (FENE) potential which limits the

maximum deviation.

It is clear that the deviation from each motor’s relaxed position is due to the

stepping of motors in the system. To illustrate this, I turn to the simplest case of

two identical motors attached to a cargo separated a certain distance at their relaxed

state (Fig. 6.1b). When the system is in a relaxed state, both motors experience

zero force and the total elastic tension energy of the system is zero. At time t, the

leading motor steps forward with the step size d. Due to the reposition of the cargo,

it is straightforward to observe that its deviation from the relaxed position, ∆x,

equals d/2. Hence it experiences a resistant force. At the same time, the trailing

motor also deviates from its relaxed position with ∆x = −d/2. This leads to a

assistant force exerted on the trailing motor. It should be noted that in the above

picture, I assume that the cargo relaxes to the equilibrium position much faster than

the stepping of the motors.

In addition to stepping, each motor can also detach from the track in a state

dependent manner. For simplicity, I first consider the system with no detachment

events. I reason that the system with detachment can be viewed as a system with-

out detachment of a effective number of attached motors, neff < n. Within the

framework of the model, I ask the following questions: how do the characteristics of

the coupled motor system such as velocity, stall force depends on the characteristics

of single motor and their coupling strength? I tackle this question using both ana-

lytical calculation and numerical simulations. The simulations are performed using

Gillespie algorithm.
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Figure 6.1: (a). The sketch of the coupled motor system studied in this work. The
system shown specially resemble the DNA origami experiments. (b). The stepping
of coupled motor system with two motors. The relaxed configuration is shown in
the center. Neglecting the detachments, there are total number of four possible
transitions from the relaxed state. The internal stress is created when the system
deviates from its relaxed state. In the framework of the model, I assume internal
stress depends on deformation linearly, satisfying Hooke’s law. (c). The n coupled
motors system can be represented as a hopping process on a hypercubic lattice.
From left to right, n = 1, n = 2 and n = 3 systems are shown. i, j, k quantifies the
deviation of each motor from its initial relaxed position.
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6.2.2 Derivation of mechanical coupling

In the ECMM, the mechanic coupling between motors is assumed to be elastic

which originates from either the deformation of motors or it of cargo or a combination

of two effects. The total effect is described by Hooke’s law with coupling strength

κ and deformation ∆x. I now derive the equation to compute ∆x. At time 0, let’s

assume that the coupled motor system is in relaxed state. Denote x0
i as the initial

positions where ith motor attaches to the track in its relaxed state. After some time

t, the system is in a new state. Denote xi as the position where ith motor attaches

to the track at time t. Denote x′i as the relaxed position at time t. x′i would be the

position of ith motor if it is released from the track under the condition that the

position of the cargo remain fixed. Obviously, the relaxed position, x′i, are simply a

translation transform from the initial relaxed position x0
i . I write this as,

x′i = x0
i + ∆, ∆ is some constant for any i. (6.1)

It is important to point out that ∆ is also the displacement of the mean position of

the system.

In the model, I make the assumption that the cargo relaxes to mechanical

equilibrium before the system takes the next step. It is equivalent to say that the

force experienced by the cargo is always zero (force balanced condition). The force

exerted by ith motor on the cargo is κi(xi − x′i) where κi is the coupling strength

for ith motor. In the most general form, κi can be different for different motors.
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The question now is that, given xi and x0
i , what is the solution of x′i satisfying the

force balanced condition
∑n

i=1 κi(xi−x′i) = 0? Plug Eq. 6.1 into the force balanced

condition equation, one have
∑n

i=1 κi(xi − (x0
i + ∆)) = 0. This yields x′i = x0

i + ∆

where ∆ =
∑

i κi(xi − x0
i )/
∑

i κi. The deformation of ith motor, ∆xi is given by,

∆xi = xi − x′i = xi − x0
i −∆ (6.2)

Note that Eq. 6.2 indicates that once the current positions and relaxed positions of

all the motors are known, the deformation of each motor can be computed and the

rates associated with the stepping can be then evaluated. This gives the backbone

of the simulation.

6.2.3 Coupled motor system can be represented as a hyper-cubic

lattice random walk

It is convenient to define a new normalized position variable for motors, x̃i =

(xi−x0
i )/di where di is the step size of ith motor. Since the motor only takes discrete

steps, x̃i can only take integer values. x̃i quantifies how many steps the ith motor is

from its initial (equilibrium) position. The system can be fully described by discrete

states x̃ ≡ (x̃1, x̃2, · · · , x̃n) where x̃i = 0,±1,±2, · · · ,±∞ for i ∈ (0, 1, · · · , n) and

the associated transition rates between states. Now the displacement of the mean

position of the system, ∆, can be expressed in terms of the new variable,
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∆ =
n∑
i=1

αix̃i (6.3)

where αi = κidi/
∑

i κi.

For n = 2, one have x̃ ≡ (x̃L, x̃T ) where subscript L and T represent leading

motor and trailing motor, respectively. Suppose at some time t, the system is

in state x̃ = (i, j). It then can takes one of four possible transitions i) leading

motor steps forward (L+), (i, j)→ (i+ 1, j); ii) trailing motor steps forward (T+),

(i, j) → (i, j + 1); iii) leading motor steps backward (L-), (i, j) → (i − 1, j) and

iv) trailing motor steps backward (T-), (i, j) → (i, j − 1). Now I make another

assumption regarding these transitions. I assume that the stepping of each motor

is poisson point process and independent with each other. Thus the evolution of

the system is Markovian that the transition to the next state only depends on the

current state but not the path before. The rates characterizing these four transitions

are k+
L , k+

T , k−L and k−T , respectively. For n = 3, there are six possible transitions

(i, j, k) → (i + 1, j, k), (i, j, k) → (i − 1, j, k), (i, j, k) → (i, j + 1, k), (i, j, k) →

(i, j− 1, k), (i, j, k)→ (i, j, k+ 1), (i, j, k)→ (i, j, k− 1). It is useful to consider the

evolution of coupled motor system as a general random walk on a lattice in which

transition rates are site dependent. For n = 2, it is a random walk on a square

lattice (Fig. 6.1c) and for n = 3, it is a random walk on a cubic lattice (Fig. 6.1c).

For n > 3, it is a random walk on hyper-cubic lattice. Let’s denote P(x̃, t|x̃0, 0) as

the probability that the system is at site x̃ at time t given that it starts from site x̃0

at time 0. In general, the master equation for coupled motor system can be written
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as,

∂P(x̃, t|x̃0, 0)

∂t
=
∑

ỹ∈Γ(x̃)

Λỹx̃P(ỹ, t|x̃0, 0)− Λx̃ỹP(x̃, t|x̃0, 0) (6.4)

where Γ(x̃) denotes the set of the nearest neighbors of site x̃ and Λx̃ỹ is the transition

rate from site x̃ to site ỹ which is site dependent in our case. Since each motor in the

coupled motor system has two possible transitions (step forward and step backward).

Then the number of nearest neighbors of any site is |Γ(x̃)| = 2n where n is the total

number of coupled motors.

What would be the site dependent rates associated with each transitions,

Λx̃ỹ? The elastic energy of coupling associated with each state (site) is E(∆x) =

(1/2)
∑n

i=1 κi∆x
2
i where ∆x represents a specific configurations of the system ∆x =

(∆x1,∆x2, · · · ,∆xn). Every time a motor steps, E(∆x) changes correspondingly.

Let’s denote ∆E+
i (∆x) as the change of E if ith motor steps forward from config-

urations ∆x and ∆E−i (∆x) as the change of E if ith motor steps backward from

configurations ∆x. If ith motor steps forward, the position of ith motor becomes

x+
i = xi + di and the other motors’ positions remain the same. Using Eq. 6.2, I

obtain the new deformation ∆x+
i = ∆xi + (di − αi) where ∆xi is the deformation

before the forward step. For other motors, j 6= i, one have ∆x+
j = ∆xj − αi. Hence

one have,
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∆E+
i (∆x) =

1

2

∑
i

κi∆x
+2

i −
1

2

∑
i

κi∆x
2
i

= κi∆xidi +
1

2
κi(d

2
i − diαi)

= κidi(dix̃i −∆) +
1

2
κi(d

2
i − diαi)

(6.5)

The last equality uses the relation ∆xi = dix̃i −∆. Similarly, I obtain,

∆E−i (∆x) = −κi∆xidi +
1

2
κi(d

2
i − diαi)

= −κidi(dix̃i −∆) +
1

2
κi(d

2
i − diαi)

(6.6)

Given the changes of the coupling energy associated with the transitions, it

is not unreasonable to set forward step and backward step rates of ith motor to be

∆E dependent, given by,

k+
i = k+

0 e
−βθ+i ∆E+

i (6.7)

k−i = k−0 e
−βθ−i ∆E−i (6.8)

where θ+
i , θ

−
i are the usual distribution factors of ith motor and k+

0 and k−0 are the for-

ward and backward rate under zero load. In this work, I employ the Local-Detailed

Balance (LDB) principle [212] which constrains θ+
i + θ−i = 1. This constraint guar-

antee the thermodynamic consistency which I will discuss later. Such constraint
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is also employed in [236] which the authors argued should hold in the vicinity of

the equilibrium. In principle, the distribution factors can also be state dependent,

θ+
i = θ+

i (∆x) and θ−i = θ−i (∆x). For simplicity, I assume in this work θ+
i and θ−i

are independent of the state ∆x.

6.2.4 Coupled motor system in the presence of external force

Now I will consider the system with external force F exerted on the cargo.

I again make the assumption that the system is always in mechanical equilibrium.

Denote δ as the change of cargo’s position due to the presence of the external force

F . The motor’s deformation is ∆xi− δ where ∆xi is the deformation in the absence

of the external force. The force balanced condition states,

F +
n∑
i=1

κi(∆xi − δ) = 0. (6.9)

This yields δ = F/
∑

i κi. Note that negative sign of F simply means it is a resisting

force. The elastic energy in the presence of the external force E(F ) is obtained by,

E(F ) =
1

2

n∑
i=1

κi(∆xi − δ)2

=
1

2

n∑
i=1

κi∆x
2
i +

F 2

2
∑

i κi
= E(0) +

F 2

2
∑

i κi
.

(6.10)

Hence the elastic energy in the presence of the external force is simply the energy

in the absence of the external force plus a constant which only depends on F and
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κi but not the micro-state of the system.

Denote the mechanical work done by the motors as Wmech. To obtain Wmech,

one need to compute the displacement of the cargo due to a single step of a motor.

From Eq. 6.3, one obtain the displacement due to forward and backward step of ith

motor are simply αi and −αi, respectively. Therefore, W+
mech = −Fαi if ith motor

steps forward and W−
mech = Fαi if ith motor steps backward. Finally, one obtain the

rates in the presence of external force F ,

k+
i = k+

0 e
−βθ+i (∆E+

i +W+
mech) = k+

0 e
−βθ+i (∆E+

i −Fαi) (6.11)

k−i = k+
0 e
−βθ−i (∆E−i +W−mech) = k−0 e

−βθ−i (∆E−i +Fαi) (6.12)

6.3 Results

6.3.1 Two identical coupled motor system

Let’s first focus on the case demonstrated in Fig. 6.1b in which only two

identical motors are coupled together. For identical motors, I have only one set

of parameters k±0 , d, θ±. Under the condition the motors are identical, I have

∆ = (d/n)
∑

i x̃i. For n = 2, this leads to ∆ = (d/2)(x̃L + x̃T) where subscripts

represent leading (L) and trailing (T) motor. Suppose at time t = 0, the system is

in relaxed state. The evolution of the system can be represented by a random walk

on square lattice (Fig. 6.1c). The rates associated with each transitions are given

by k+
L = k+

0 e
βκθ+∆E+

L , k+
T = k+

0 e
−βκθ+∆E+

T , k−L = k−0 e
βκθ−∆E−L , and k−T = k−0 e

βκθ−∆E−T
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where the subscripts and superscripts represent i) leading motor steps forward (L+)

ii) trailing motor steps forward (L+) iii) leading motor steps backward (L-) iv)

trailing motor steps backward (T-). ∆E+
L , ∆E+

T , ∆E−L and ∆E−T are the changes of

the elastic energy of due to L+, T+, L- and T- respectively. Like discussed before,

I employ the local-detailed balance principle [212] which constrains θ+ + θ− = 1.

Since the motors are identical, it is more convenient to describe the system using

variable i = x̃T − x̃L and j = x̃T + x̃L where i represents the internal degree of

freedom of the system (the separation between two motors) and j represents the

displacement the system (∆ = (d/2)j). The master equation of variables i and j is

given by,

∂Pt(i, j)

∂t
= −Pt(i, j)

[
k+

L (i) + k−L (i) + k+
T (i) + k−T (i)

]
+ Pt(i− 1, j + 1)k−L (i− 1) + Pt(i+ 1, j − 1)k+

L (i+ 1)

+ Pt(i+ 1, j + 1)k−T (i+ 1) + Pt(i− 1, j − 1)k+
T (i− 1)

(6.13)

Observe that the transition rates in Eq. 6.13 only depends on i which relates the

internal elastic tension of the system by E = (1/4)κd2i. Sum over j on both sides

of Eq. 6.13 leads to the master equation of variable i only.

∂Pt(i)

∂t
=− Pt(i)(ω+

i + ω−i ) + Pt(i− 1)ω+
i−1 + Pt(i+ 1)ω−i+1 (6.14)

where ω+
i = k+

L (i) + k−T (i) and ω−i = k−L (i) + k+
T (i). The stationary distribution for

153



i (if exists) πs
i is given by πs

i = πs
0

∏i−1
j=0 ω

+
j∏i

j=1 ω
−
j

for i > 0 and πs
i = πs

−i for i < 0 and

πs
0 is determined by normalization. Eq. 6.14 gives the master equation of internal

degree of freedom i. The mean velocity of cargo v2 (2 denotes I are considering two

motors) is related to j by v2 = (1/2)d limt→∞〈j(t)〉/t where d is the step size. Sum

over i on both sides of Eq. 6.13 yields,

∂Pt(j)

∂t
=−

∑
i

Pt(i, j)
[
k+

L (i) + k−L (i) + k+
T (i) + k−T (i)

]
+
∑
i

Pt(i− 1, j + 1)k−L (i− 1)

+
∑
i

Pt(i+ 1, j − 1)k+
L (i+ 1)

+
∑
i

Pt(i+ 1, j + 1)k−T (i+ 1)

+
∑
i

Pt(i− 1, j − 1)k+
T (i− 1)

(6.15)

To solve Eq. 6.15, I now make the assumption that Pt(i|j) = πs
i/
∑

i is even π
s
i for

even values of j and Pt(i|j) = πs
i/
∑

i is odd π
s
i for odd values of j. For a even (odd) j,

i can only takes even (odd) values. I argue that this assumption holds true for large

t since i relaxes to stationary distribution when t→∞. Plug Pt(i, j) = Pt(i|j)Pt(j)

into Eq. 6.15 and setting j to be even number, I obtain the master equation of

variable j,

∂Pt(j)

∂t
= −Pt(j)(µ2 + λ1) + Pt(j − 1)λ2 + Pt(j + 1)µ1 (6.16)
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where λ1 = (
∑

i is even π
s
i

(
k+

L (i) + k+
T (i)

)
)/(
∑

i is even π
s
i ), λ2 = (

∑
i is odd π

s
i

(
k+

L (i) +

k+
T (i)

)
)/(
∑

i is odd π
s
i ), µ1 = (

∑
i is odd π

s
i

(
k−L (i) + k−T (i)

)
)/(
∑

i is odd π
s
i ), and µ2 =

(
∑

i is even π
s
i

(
k−L (i) + k−T (i)

)
)/(
∑

i is even π
s
i )

Eq. 6.16 describes a one-dimensional periodic hopping process which was

studied in [237]. The mean velocity and diffusion constant of such system is,

ṽ = lim
t→∞

〈j〉
t

=
2(λ1λ2 − µ1µ2)

λ1 + λ2 + µ1 + µ2

D̃ = lim
t→∞

〈j2〉 − 〈j〉2

2t

=
2(λ1λ1 + µ1µ2)

λ1 + λ2 + µ1 + µ2

− 4(λ1λ2 − µ1µ2)2

(λ1 + λ2 + µ1 + µ2)3

(6.17)

Hence the velocity and diffusion constant of the cargo are given by v = ṽ(d/2) and

D = D̃(d/2)2. The rates λ1,2 and µ1,2 depends on coupling strength κ and single

motor parameters in an complicated way. To the first order approximation, I only

take the first term in the summation when compute λ1,2 and µ1,2. I obtain the

velocity of the cargo (see Appendix D.1 for details),

v̂2 =
v2

v1

=
r + 1

reεθ+ + eεθ−
(6.18)

where ε = βκd2/4 and r = k+
0 /k

−
0 and θ− = 1 − θ+. v0 is the velocity of single

motor under zero load v1 = (k+
0 − k−0 )d where d is the step size of a single motor.

Eq. 6.18 shows that the normalized velocity v̂2 can be expressed in terms of three

dimensionless quantities ε, r and θ+. ε quantifies strength of the coupling of a

single step. r is the ratio between forward and backward rates and directly related
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to the energy released through ATP hydrolysis and θ+ is the distribution factor

characterizing the location of transition state.

Eq. 6.18 shows that velocity of two coupling motors under zero load is reduced

compared to the single motor and monotonically decreases with increasing of cou-

pling strength κ. At small κ, the motor hardly affect each other resulting the similar

velocity of that of single motor. At large κ, the velocity vanishes. I reason that this

is because that the internal tension is built when the system moves. With larger cou-

pling strength κ, the energy associated with internal tension increases which makes

the motor harder to step. At the limit of very large κ, although λ2 increases λ1

vanishes faster leading to vanishing of v̂2. It has been reported experimentally [223]

that coupled motors system under zero load can exhibit larger velocity than the

single motor under zero load. I surmise that this is possible when asymmetry be-

havior of the motor under assistant and resistant force is introduced to the model.

In addition, it has been shown that the increase of velocity can also arises from

attractive interaction between motors [234]. However such attractive interaction

must involves the chemical binding between motors which is out of the scope of this

work in which only mechanical coupling is considered. Under the framework of the

model, additional interaction other than elastic coupling can be easily included.

According to Eq. 6.18, dimensionless quantities r and θ+ also affect both the

velocity and diffusion constant of the cargo. I compute exact v̂2 and D̂2 using Eq.

6.17 numerically to investigate the effect of these parameters. Fig. 6.2a shows the

contourplot of v̂2 as a function of both ε and θ+ for r = 100. Fig. 6.2a shows that

there exists a θ+ value at which the velocity of the cargo is maximized at a given
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ε. This optimal θ+ value also depends on r. The choice of θ+ does not change the

fact the velocity of two motors system monotonically decreases with increasing of

coupling strength ε (κ). At large ε, the velocity vanishes for all values of r and θ+.

However the diffusion constant can exhibit non-trivial behavior as a function

of r, θ+ and ε. Fig. 6.2b shows the D̂2 for r = 100 as a function of ε and θ+. For

weak coupling, it is expected the D̂2 = 1/2 since the variance is reduced exactly

by half from adding a second motors. However Fig. 6.2b shows that there exists

parameters space of (ε, θ+) in which D̂2 > 1/2. The position of such parameter

space does depends on value of r as well. Fig. 6.2b shows that the vanishing of the

velocity is not because that the system becomes diffusive. The diffusion constant

also vanishes at large κ (also refer to Eq. 6.17). This indicates that the system is

“frozen” rather than becomes diffusive with large coupling strength.
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Figure 6.2: (a). The normalized velocity of coupled motor system with two identical
motors. The colorbar shows the value of v2/v1. The choice of parameters are
k+

0 = 100.0, k−0 = 1.0. The dimensionless coupling strength ε is given by βκd2/4.
Here I investigate the range 0.1 ≤ ε ≤ 10. This is a reasonable biological relevant
range. For a realistic model, I have d ≈ 8 ∼ 30nm, κ = 0.05 ∼ 1pN/nm. This leads
to ε in the range between 0.2 and 50. (b). The normalized diffusion coefficient for
coupled motor system with two identical motors. The colorbar shows the value of
D2/D1. If the motors operate independently, one would expect D2/D1 = 1/2.

6.3.2 Multi-motor system with n > 2

I show that for coupled motor system with two identical motors, the cargo

undergoes a periodic one-dimensional hopping process of period two. It turns out

that this can be generalized to the system with more than two identical motors

(n > 2). For n = 3, see Appendix D.2 for the generalization. Generally speaking,

the cargo of the coupled motor system with n number of identical motors undergoes

a periodic one-dimensional hopping process of period of n. Let’s denote the forward

and backward rates of such a periodic random walk process are {λi} and {µi} with

i ∈ (1, 2, · · · , n), respectively. The solution for mean velocity is given by [237],

ṽn =
n∑n
i=1 ri

[
1−

n∏
i=1

(
µi
λi

)]
(6.19)

where ri is given by ri = 1
λi

[
1 +

∑n−1
j=1

∏j
k=1

(
µi+k
λi+k

)]
. The solution for diffusion

constant D̃n is not shown here, but is given in Derrida [237]. However the values of

the rates {λi} and {µi} depends on ε, r and θ+ and are complicated to compute.

Here I use Monte-Carlo kinetic simulation to study the system with n > 2.

159



The velocity of multi-motor system as a function number of motors n is shown

in Fig. 6.2c. In general, the velocity vn decreases with increasing of n and reaches

to some values for n→∞. The saturating value of v∞ depends on ε, r and θ+. Fig.

6.2c also shows that with increasing of coupling strength ε, the velocity decreases

which is consistent with case where n = 2. To understand the results in Fig. 6.2c,

I turn to Eq. 6.18 which shows that the velocity of two motor system depends

on three dimensionless parameters. I reason that r and θ+ weakly depends on the

number of motors n. However ε quantifies the increases of elastic tension associated

with one step of a motor. For n identical motors, when one motor steps with a step

size d. The cargo makes a displacement d/n. It can be obtained that the change of

elastic tension energy E is εg(n) where g(n) = 2(n− 1)/n and ε = (1/4)βκd2. Then

I can simply replace the ε in Eq. 6.18 by εg(n) which yields,

vn
v1

=
r + 1

reg(n)εθ+ + eg(n)εθ−
(6.20)

Since g(n) has limit 2, I obtain limn→∞ vn/v1 = r+1

re2εθ++e2εθ−
. Note Eq. 6.20 is just an

approximation which only gives the correct qualitative but not quantitative behavior

of vn. Eq. 6.20 can also be used to fit the simulated results with r, ε and θ+ as free

parameters whose fitted values represent “effective” values for different values of n.

6.3.3 Stall force of the multi-motors system

The definition of the stall force, Fs(n), here is the value of external force at

which the velocity strictly equals zero. According to Eq. 6.19, the velocity becomes
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zero only when
∏

i λi(Fs) =
∏

i µi(Fs). The question is that at what values of Fs,

the equality holds. It is convenient to consider the process of translocation of the

cargo on a circular track with a large number of sites M . Following the arguments

presented in Qian [238] as well as Seifert [212], the mean entropy production rate

for a circular Markovian chain with steady state can be written as,

lim
t→∞

〈S(t)〉
t

= σ = kBT (j+ − j−) ln

(
j+

j−

)
(6.21)

where j+ and j− are the clockwise (forward translocation) and counter clockwise

(backward translocation) probability fluxes in the steady state. S(t) are the total

mean entropy production up to time t and σ is the mean entropy production rate. At

stall force Fs, the system’s velocity vanishes, thus I have σ = 0. This becomes true

only when j+/j− =
∏

i λi/
∏

i µi = 1, which gives the same condition by observing

Eq. 6.19. By thermodynamic consistency, one also have the equality [212],

∏
i

λi(F )

µi(F )
= e∆S = eβ(Fd−n∆µ). (6.22)

where ∆µ is the chemical energy associated with one forward step of the motor.

Since for n identical motors, the cargo’s position changes by d/n when one motor

steps. Fd is the work done by the motors along one cycle of n steps, and n∆µ is the

energy consumed by motors during these n steps. Note ∆µ should not be confused

with the energy associated with ATP hydrolysis. ∆µ here is an “effective” chemical

energy which relates to stall force of a single motor by F 0
s = ∆µ/d = ln r/(βd).

From Eq. 6.22, it is easy to observe that Fs(n) = nF 0
s which shows that the stall

161



force of n coupled motors is simply n times the stall force of a single motor (provided

the motors are identical). Note that such equality can be reasoned when one assume

the motor share the same load under external force. However such condition can be

violated in the model which nevertheless gives the same result.

6.3.4 Force-velocity curve of multi-motors system

Using the framework given in the previous section, I am able to investigate the

force-velocity curve of multi-motors sytem. First, I look at the case of two identical

motors (n = 2). For this case, I can compute the force-velocity curves using Eq.

6.11 and Eq. 6.17. The general behavior of v2(F ) is shown in Fig. 6.3a. v2(F )

intersect with v1(F ) at some critical force Fc (asterisk in Fig. 6.2a), below which

v2(F ) < v1(F ) and beyond which v2(F ) > v1(F ). The value of Fc depends on all

three dimensionless quantities r, θ+ and ε. It is easy to see that Fc ≤ F 0
s . Fig.

6.2b shows the dependence of Fc/F
0
s on coupling strength ε and distribution factor

θ+. Fc increases with increasing of ε at any fixed θ+ and approaches single motor’s

stall force F 0
s at large ε. For a fixed ε, Fc can exhibits non-monotonic behavior as

function θ+ depending on the value of ε. Maximizing Fc for a fixed ε requires θ+

takes value between 0 and 1. The same qualitative behavior is observed for different

values of r. Fig. 6.3a shows that multi-motors system can move the cargo faster at

large load compared to single motor but surprisingly move cargo at smaller velocity

at small load. If I make the assumption that the friction the cargo experiences is

given by Stokes-Einstein relation Ffriction = γv where γ is the friction coefficient of
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Figure 6.3: (a).The normalized force-velocity curves for coupled motor system with
n = 2. v1(0) is the velocity of the single motor in the absence of load. F 0

s is the
stall force of the single motor. The choice of parameters are k+

0 = 100, k−0 = 1,
θ= = 0.0. The dashed line is force-velocity curve for the single motor. Asterisk
marks the interceptions between v2(F ) and v1(F ) which corresponds to the critical
force Fc. When F > (<)Fc, v2(F ) > (<)v1(F ). The dotted and solid lines are given
by Ffriction = γv, representing small and large cargo, respectively. The interception
between the force-velocity curves gives the terminal velocity of the cargo transported
by the coupled motor system. The velocity of cargo transported by two motors is
faster than the velocity of the single motor for all three different values of ε. Whereas
for small cargo (dotted line), two motor system transport the cargo slower than the
single motor for ε = 1.0, 2.4. (b). The normalized critical force Fc/F

0
s as a function

of ε and θ+. Fc increases with increasing of ε and exhibit non-monotonic dependence
on θ+.

the cargo. Assuming that γ is proportional to the size of the cargo, the results in

Fig. 6.3a suggests that two-motor system translocate large cargo at higher velocity

compared to single motor but at smaller velocity for small cargo compared to single

motor.

I then turn to the cases with n > 2. For a one state model for a single motor,

the force-velocity curve can be expressed in dimensionless quantities,

v̂ =
r−θ

+F̂ (r − rF̂ )

r − 1
(6.23)
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where v̂ = v(F )/v(0) and F̂ = F/F 0
s .

For weak coupling strength, I find that this relation still holds for n coupled

motor system by replacing v(0) with vn(0, ε) and rescaling F 0
s by Fs = nF 0

s . Fig. 6.4a

show one example where the force-velocity curves for different values of n collapse

on a master curve given by Eq. 6.23. However, for strong coupling, vn(F ) do not

collapse on a master curve. In fact, the shape of vn(F ) changes for different values

of n at large ε. Interestingly, I find that vn(F ) with different values of n intercept

approximately at the same point (Fig. 6.4a). This means that Fc only weakly

depends on n.

In the previous section, I show that the stall force of n coupled motor system

is simply Fs = nF 0
s . However, I find that multi-motors system with relatively

strong coupling actually exhibits a much lower apparent stall force, Fa < Fs. When

Fa < F < Fs, velocity vanishes, vn(F ) ≈ 0. Fig. 6.4b shows the normalized force-

velocity curves for different values of n at ε = 4.0. It clearly shows that v̂ decreases

very close to zero at some value F̂ < 1 for large n ≤ 10. However for weak coupling,

Fig. 6.4a shows that the velocity vanishes exactly at stall force Fs. I set Fa to be the

force at which the velocity is less than 1 (1% of the single motor’s velocity without

load). Fig. 6.4c shows the comparison for Fa between strong and weak coupling.

For weak coupling ε = 1.0, Fa = Fs = nF 0
s . Whereas Fa first coincidence with stall

force for n ≤ 5 and scales as n0.55 for large n resulting a much lower apparent stall

force.
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Figure 6.4: (a). Force-velocity curves for different values of n. Choice of parameters
are k+

0 = 100, k−0 = 1, ε = 1.0 and θ= = 0.0. The asterisk marks the interception
between force-velocity curves. The inset shows that the normalized force-velocity
curves collapse on a master curve. The solid line is the fit using the Eq. 6.23 with
fitted parameters r ≈ 73 and θ+ ≈ 0.085. (b). vn(F ) for the coupled motor system
with strong coupling, ε = 4.0. The values of other parameters are the same as
(a). The inset shows the normalized velocity v̂n as the function of the normalized
force F̂ . The curves for different values of n do not collapse. The apparent stall
force Fa and stall force Fs are marked by the arrows. The velocity vn vanished for
Fa ≤ F ≤ Fs. (c). The apparent stall force Fa as a function of number of motors
n. For weak coupling, Fa = Fs = nF 0

s and Fa � Fs for strong coupling.

6.3.5 Step Coordination of multi-motors system

It has been suggested experimentally that multiple motors working together

coordinate their stepping in such a way that the stepping of multiple motors are

synchronized [214, 227, 229]. This leads to experimental observation of step size

of multiple motors to be the same as the step size of a single motor. From the

framework of the model, the step size of the cargo transported by n identical motors

is d/n where d is the step size of a single motor. This gives a fractional step size of

multi-motor system which is also observed experimentally [225,228]. I then ask the

question that can I observe step coordination in the framework of the model? Fig.

6.5a shows three trajectories of n = 30 system for a set of parameter choice. The

step size of a single motor is set to be 1. The apparent stepping of size 1 in Fig. 6.5a

suggests that the motors indeed synchronize their stepping. Such coordination of

stepping among motors is only observed for strong coupling strength but not weak

coupling (Fig. 6.5b). As a consequence, the velocity of system is reduced by a large

amount when the synchronization of stepping is achieved.
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Figure 6.5: (a). Three typical trajectories which show the coordina-
tion/synchronization of stepping of motors. The parameters are n = 30, k+

0 = 3.0,
k−0 = 1.0, d = 1.0, θ+ = 1.0 and ε = 2.0. (b). Three typical trajectories which show
no coordination/synchronization. The system is in the weak coupling regime with
ε = 0.1. Other paraemters have the same value as (a).

Consider the coupled motor system with n = 2 is at relaxed state at time

0. At some time t, either the leading or trailing motor steps forward leading to

an elastic internal stress in the system. When such stress is strong enough, the

rate of forward stepping of the second motor dominates all the other transitions

(λ2 � µ1). Hence whenever a motor steps forward, a second stepping of the other

motor immediately follows giving rise to the synchronization. On the other hand,

the strong coupling will reduce the rates of stepping from the relaxed state (λ1 is

reduced). This decrease of rates of stepping from the relaxed state counteract the

synchronization, leading to an overall reduced velocity.
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6.4 Discussion and Conclusion

I develop a kinetic model for elastic coupled multi-motor system to investigate

its velocity as well as force-velocity relation. In this work, I neglect the detachment

of motors from track. I reason that a coupled motor system with detachment can be

effectively viewed as a system (no detachment) with an effective number of attached

motor neff < n. Thus the velocity and velocity-force relations studied in the present

study are still relevant for the system with detachment. Furthermore, the framework

of the model is general and easy to extend to include the detachment which will be

studied in the following works.

I show that the coupled motor system can be represented as a hopping process

on a hypercubic lattice whose dimension is simply the number of coupled motors. In

the model presented here, I assume the Markovian nature of such hopping process.

Analytical solution of the case with n = 2 is provided. In principle the cases with

n > 2 can also be analytically solved, but I do not find solutions of simple forms.

Approximated solutions are given in this work to provide insights and physical

arguments. For n > 2, I use Monte-Carlo simulation (Gillespie’s algorithm) to

simulate the trajectories of the system.

Furthermore, the results show that velocity of coupled motors largely depends

on three dimensionless quantities, the ratio between forward and backward step

rates of a single motor r, the distribution factor under force θ+ and elastic coupling

strength ε. I find that the velocity of coupled motors system is always smaller than

the single motor velocity under zero load. The vn decreases monotonically with
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increasing of coupling strength ε and eventually the system becomes frozen at high

ε. Such dependence of velocity on stiffness is reported experimentally for Myosins

transporting actin filaments [226]. I do not find an increase of velocity compared

to single motor velocity in the model. Future studies involving the force-dependent

distribution factors and asymmetrical response of detachment under assistant and

resistant force will be pursued. Consistent with experiment [226], I also find the

velocity depends on n when n is small but only weakly depends on n when n is

large, converging to a limit values v∞ at n→∞ for a given set of r, θ+ and ε.

I then show that the stall force of n coupled motor system is simply n times the

stall force of a single motor, Fs = nF 0
s , regardless of choice of parameters. However

behavior of the force-velocity curves highly depends on r, θ+ and ε. Although

the velocity of coupled motors system at zero load is reduced compared to single

motor velocity, I find that the coupled motor system have higher velocity at high

load. I show that there is a critical force Fc. When F < Fc, vn(F ) < v1(F ) and

vn(F ) > v1(F ) for F > Fc. This result suggests that the multi-motor system is

more efficient at transporting large cargo whereas single motor is more efficient at

transporting smaller cargo. In addition, I find that in the strong coupling regime,

the velocity of coupled motors system vanishes at force smaller than its stall force,

leading to a smaller apparent stall force. Fa ≈ Fs = nF 0
s for small values of ε. When

ε is large, I find Fa ∼ n0.55 leading to a much weaker dependence on n.

Since the model is based on stochastic stepping of motors. I am able to

investigate the translocating of coupled motor system on the level of single steps.

At strong coupling strength ε, the coordination/synchronization of steps among
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motors are observed. However, such coordination does not lead to an enhancement

of velocity. The decrease of rates of stepping from relaxed state due to elastic

coupling counteract the coordination and results in a overall reduced velocity.

The stiffness of the coupled motor system depends on both the stiffness of

motor and the stiffness of the cargo. the model set a single coupling strength ε. By

first order approximation, the ε in the model corresponds to the stiffness of the softer

one between motor and cargo. For very stiff cargo, the system is determined by the

stiffness of the motor itself. On the other hand, if the stiffness of the motor is higher

than the cargo, I predict that experimentally tuning the stiffness of the cargo will

affect the behavior of the system. Interestingly, one study shows that the velocity

of coupled motors is enhanced compared to unloaded single motor when the cargo

is soft [223]. The model proposed here predicts that the velocity of multi-motors

system can be higher than the velocity of a single motor transporting the identical

cargo when the coupling is weak and cargo is large. However, the velocity is always

lower than the unloaded single motor. An interesting model is suggested in [223]

that the enhancement of velocity is due to the detachment of trailing motor and

recentering of the cargo due to mechanical equilibrium. Such model can be easily

included in the model by introducing asymmetric force dependent detachment rate

of motors [239]. The results of such model will be studied in the following works.
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Chapter 7: Conclusions and Future Perspectives

In this thesis, I first provided an introduction to several key aspects of genome

organization discovered by both imaging and Hi-C experiments. The strengths and

usages of different experimental techniques are discussed. The dynamics of the

chromosomes are examined based on current literature as well as from theoretical

arguments using polymer physics. In addition, an overview of computational studies

on genome organization is presented.

In Chapter 2 and Chapter 3, I presented a copolymer model for human inter-

phase chromosomes (CCM). I demonstrate that CCM is consistent with Hi-C data

in terms of genome organization. Using the CCM, I am able to investigate various

dynamical properties of human interphase chromosomes which are found to exhibit

glassy-like dynamics.

The minimal model CCM allows further improvements and integration with

additional components. No active force is considered in CCM. The inclusion of active

force can be integrated with the CCM and it would be interesting to investigate how

does the active force affect the structure and dynamics of the chromosomes. As I

have introduced in Chapter 1, it has been suggested that the active force may be

responsible for the observed super-diffusive chromatin loci [38] and the coherent
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motions [131]. The force generated through the translocation of RNA polymerase

may be modeled as forces parallel to the backbone of the chromosome. It would

be worth investigating the difference between the passive CCM and active CCM by

changing the directions and magnitudes of the active forces.

Since the CCM suggests that human interphase chromosomes have glassy-like

dynamics, it is hence natural to ask that do chromosomes resemble soft glassy ma-

terial? The response of chromosome segment [240] and nucleus [241] to mechanical

stress has been studied by aspiration experiments. The results suggested that the

nucleus has an elastic response at timescale below 10 seconds and behaves like a

fluid at longer times. However, direct measurements of the mechanical response of

individual chromosome have not yet been conducted experimentally. Thus, it would

be interesting to investigate the mechanical properties of interphase chromosomes

using CCM. The micro-dynamics - mean square displacements of chromatin loci

can be related to macro-rheology - stress relaxation modulus through a Laplace

transforms [242]. In addition, the force-extension curve can be computed using

simulations in which an external force is applied to the chromosomes generated by

CCM.

Although I want to keep CCM minimal by using only one controlled parameter

ε, it is certainly important to investigate the dependence of the model on other

effects. It has been suggested [58] confinement can induce glassy dynamics in the

genome organization. In CCM, the glassy-like dynamics originate from the loci-

loci interactions. Hence, it would be interesting to study the interplay between

these two effects. Furthermore, in this thesis, a single chromosome is considered

172



in the simulation. Two or more chromosomes can be considered to study inter-

chromosome interactions. In particular, it would be interesting to see whether two

individual chromosomes segregate to occupy their own territories in the simulations

using CCM.

In Chapter 4, I developed a theoretical framework to extract the distribution

of subpopulations of cells using FISH data. As proof of concept, I demonstrate this

method using two datasets. I demonstrate that heterogeneity of genome organiza-

tion is extensive in human fibroblast cells. In the future, it is important to extend

this method to different species other than human to investigate the extent of het-

erogeneity across the spectrum of species. In Chapter 5, a non-simulation method

was proposed to reconstruct three-dimensional chromosome organization using Hi-C

data. However, the reconstructed structure is an average one in which heterogeneity

is neglected. It is possible to use single-cell Hi-C data as constraints to generate an

ensemble of single-cell genome organization using Generalized Rouse model.

A more general question regarding the heterogeneity of genome organization

is a biological one - does it matter? To be more specific, does heterogeneity play a

direct role in gene regulation or it has little or none function significance? Of course,

to answer this question requires further understanding of the cause of heterogeneity

and data of correlations between structural measurements of chromosome and the

gene expression profile on the level of single-cell.

In Chapter 6, a simple kinetic model is developed to study the force-velocity

curve and stall force of coupled motors system. I found that the stall force of the

multi-motor system is simply the summation of single motor stall forces. I also
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found that two identical motors are more efficient at transporting large cargo but

less efficient at transporting small cargo compared to a single motor. A crucial

simplification - detachment of motors from the track is neglected - is made to make

the model analytical tractable. I argued that the coupled motors system with de-

tachment and reattachment can be viewed as a system with an effective number of

always attaching motors. However, it would be important to directly incorporate the

detachment and reattachment into the model to investigate what effect it has on the

properties of the force-velocity curve and stall force. It has been suggested that the

reattachment of motors play a dominant role in multi-motors cargo transport [243].

In particular, the asymmetrical dependence of detachment on the force exerted on

the motor could be investigated, which has been observed in experiment [239].
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Appendix A: Supplementary Information for Chapter 3

A.1 Spearman correlation map

In order to quantitatively assess the closeness of the simulated and experimen-

tal contact maps, we first calculated the Spearman correlation maps. When comput-

ing the Spearman correlation map, the contact map obtained from our simulations

or the Hi-C data is first transformed to a log scale. For each entry, cij, in the trans-

formed log scale contact map, we calculated the Z-Score using zij = (cij − 〈cs〉)/σs

where 〈cs〉 = (1/(N − s))
∑

i<j δ(s − (j − i))cij, and σs is the standard deviation

of cs. The Spearman correlation coefficient, ρij, is calculated between the ith row,

Xi, and the jth column, Yj, of the matrix Z whose elements are zij. The Spearman

correlation coefficient is defined as the Pearson correlation coefficient between the

ranked variables. First, the raw vector Xi and Yj are converted to rank variable

RXi and RYj by assigning a rank of 1 to the lowest value in the RXi and RYj

vectors, and 2 to the next lowest and so on. The Spearman correlation coefficient

is the Pearson correlation coefficient between two rank variable vectors RXi and

RYj , computed using ρij = cov(RXi ,RYj)/(σRXi
σRYj

) where cov(RXi ,RYj) is the

covariance between RXi and RYj and σRXi
,σRYj

are the standard deviation of RXi

and RYj . The elements in the Spearman correlation matrix, ρij, are the Spearman

175



correlation coefficients between Xi and Yj.

A.2 Comparison of the Correlation Maps

We use quantitative measures to assess if the simulated and experimentally

inferred contact and correlation maps are similar. In particular, we compare as

precisely as possible, the compartment patterns suggested in the Hi-C map and

the simulation results from the CCM. For a fixed genomic distance, the contact

probability between two loci of the same type is greater than between two loci of

different types. The task is to partition the loci based on the contact map such that

each partition corresponds to one distinct loci type while being consistent with the

observed checkerboard pattern. This relationship allows us to extract additional

information about TAD organization than is possible from experiment alone [14].

It is carried out in two steps. (1) Since the contact probability is a function of both

s and their epigenetic states, it is necessary to minimize the effect of the genomic

separation in order to highlight the enrichment of contacts between loci of the same

epigenetic state in the compartments. The correlation between the same type of loci

is more transparent if the Spearman correlation matrix is used because it is based

on the rank order (see above). (2) We treat the Spearman correlation matrix, A, as

an Adjacency matrix, where the vertices are the loci and the edge weight between

the ith and jth loci is the Spearman correlation coefficient, ρij.

With these two steps, our clustering problem can be solved by finding the
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Figure A.1: Spearman correlation map computed for ε = (1.0, 2.0, 2.4, 2.7)kBT . For
each figure, left lower triangle is the Spearman correlation map computed from the
Hi-C data, and the upper right triangle is the simulated map. The color bar shows
the value of the Spearman correlation coefficient with the value of 1 (-1) indicating
perfect correlation anti-correlation; 0 implies no correlation. When the copolymer
goes from displaying liquid-like behavior (ε < 2.4kBT ) to exhibiting glassy dynam-
ics (ε > 2.4kBT ), the distinction between anti-correlation (blue) and correlation
(red) becomes less transparent. Note that the agreement between simulation and
experiment is best for ε = 2.4kBT .
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Figure A.2: Comparison of the histograms of the Spearman correlation coefficient,
ρ, from simulations and experiment. We plot the distribution of ρij for every pair
of (i, j). The black line is from the Hi-C experiment. The bimodal shape of the
distribution is a result of two different compartment patterns in the Hi-C map. The
inset shows the distribution for ε = 1.0kBT (cyan) and ε = 2.0kBT (orange). As the
dynamics becomes increasingly glassy, the extent of bimodality becomes weaker and
exhibits only one peak for ε = 2.7kBT . The closest agreement between simulations
and the experiment data occurs when ε = 2.4kBT , thus justifying this value in
simulating Chr 5 and 10.
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minimum cut vertex in a bipartite graph between the loci. This problem was solved

by Dhillon using a spectral co-clustering algorithm [166] in a different context (clus-

tering of documents and words). It is noteworthy that the underlying assumption of

this method for our problem is that a pair of loci with positive Spearman correlation

coefficient should be the same type. Similarly, a pair of loci with negative Spearman

correlation coefficient should be distinct.

The Dhillon spectral biclustering algorithm is implemented as follows [166]:

1. Given the Spearman correlation map, A, construct

An = D−1/2AD−1/2. (F1)

2. Compute the left and right second singular vectors of An, u2 and v2 and form

the vector z2 using,

z2 =

D−1/2u2

D−1/2v2

 . (F2)

3. Perform the k-means algorithm on the 1-dimensional data z2 to obtain the needed

clustering.

The matrix D where Dii =
∑

j Aij and Dij = 0 for i 6= j is the degree

matrix of the graph. Note that by definition A and An are symmetric matrices.

The left and right second singular vectors u2 and v2 would be the same. Thus,

the simpler algorithm is to construct z2 = D−1/2u2 in step 2, and run step 3.

The reason for using k-means clustering is that the values in u2 and v2 should

have a bi-modal distribution, which is an approximation of the optimal two-valued

179



partition vector [166]. The use of k-means algorithm allows us to find the two

clusters corresponding to the bi-modal distribution.

Using the Dhillon’s method, the Spearman correlation map A is bi-clustered

into two clusters, with labeling vector L, where Li = 1 if the ith loci belongs to one

cluster and Li = 0 if the ith loci belongs to the other cluster. Note that swapping 0

and 1 in the labeling does not change the meaning.

The second step is to compare the cluster labeling between experiment and

the prediction of the CCM. We denote the label assignment of the experimental

data as Lexp and that extracted from the simulations as Lsim. To measure the

similarity between Lexp and Lsim, we use the Adjusted Mutual Information score

(AMI) measure. The Mutual Information score (MI) is,

MI(Lexp,Lsim) =
2∑
i=1

2∑
j=1

P (i, j)log
( P (i, j)

P (i)P ′(j)

)
. (F3)

where P (i) = |Liexp|/N is the probability that a loci (monomer) picked at random

from Lexp falls into type i, Liexp is the set of loci (monomers) of type i, and N is

the total number of loci (monomers). Similarly, P ′(j) = |Ljsim|/N . In the above

equation, P (i, j) = |Liexp ∩L
j
sim|/N is the probability that a locus picked at random

belongs to both set Liexp and Ljsim. Since the expected value of mutual information

is non-zero, it is preferable to define the normalized AMI,

AMI(Lexp,Lsim) =
MI(Lexp,Lsim)− E[MI(Lexp,Lsim)]

max{H(Lexp), H(Lsim)} − E[MI(Lexp,Lsim)]
(F4)
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where H(Lexp) = −
∑2

i=1 P (i)log
(
P (i)

)
and H(Lsim) = −

∑2
j=1 P

′(j)log
(
P ′(j)

)
. In

the above equation, E[MI(Lexp,Lsim)] is the expected value of the mutual informa-

tion, which can be calculated using the following equation [244],

2∑
i=1

2∑
j=1

min(ai,bj)∑
nij=(ai+bj−N)+

nij
N

log

(
Nnij
aibj

)
ai!bj!(N − ai)!(N − bj)!

N !nij!(ai − nij)!(bj − nij)!(N − ai − bj + nij)!

(F5)

where ai = |Liexp| and bj = |Ljsim|, and (ai + bj −N)+ denotes max (1, ai + bj −N).

Fig. A.3 compares the AMI between experimental data and results from sim-

ulations. The AMI scores for the CCM model are significantly higher than those

for the homopolymer model. Thus the long-range compartment pattern can only be

obtained using the minimal CCM or other copolymer model.

A.3 Ward Linkage Matrix

The method described in the previous section allows for a quantitative com-

parison of simulated and measured contact maps. However, it cannot be used as

a measure to compare 3D structures (spatial patterns obtained in super-resolution

experiments, for example) of chromosomes. In order to achieve this goal, we first re-

late the information contained in the contact maps to spatial distances. As shown in

Fig. 3.4b, the contact probability is inversely proportional to a power of the spatial

distance, P (s) ∝ R(s)−4.1 which provides a way to convert a Hi-C contact matrix to

the spatial distance matrix, differing from the physical spatial distance matrix by

181



Figure A.3: Percentage of correctly predicted compartments based Adjusted Mutual
Information score (AMI) for the CCM and homopolymer models. CCM correctly
reproduces ≈ 83%, 82%, 81%, 80% of the compartments found in experiments for
ε = (1.0, 2.0, 2.4, 2.7)kBT , respectively. The values for the homopolymer are very
low, which implies that it cannot capture the structures of the chromosomes. The
inset shows the AMI score for different cases. Note that AMI score is more sensitive
compared to the percentage of compartments reproduced.
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only a constant prefactor. We then compare the “pseudo” spatial distance matrix

with our simulated spatial distance matrix. Needless to say that in simulations Rij

can be directly computed.

Matrix norm is often used to measure the distance between two matrices.

However, it has severe drawbacks in the context of chromosome organization for

two reasons. First, the element-wise differences cannot capture the similarities of

higher order structure embedded in the matrix. Second, it suffers from “curse of

dimensionality” [245], i.e. there is little difference in the distances between different

pairs of matrices, which makes it impossible to differentiate between the experimen-

tally inferred spatial distance matrix and the matrices obtained in the simulations

with different parameters. To overcome these difficulties, we adopted the method

described recently [246], which suggests treating the original matrix as a graph where

the matrix element is a measure of the distance (which is naturally satisfied in our

context), and transform it to a cophenetic matrix. In the process, the topological

structure of the information embedded in the matrix is preserved. By adopting this

method, we can compare the simulated structures of the folded chromosomes with

that inferred from Hi-C data.

We converted the Hi-C contact matrix to a “pseudo” spatial distance matrix

Rexp, using the relation Rij = P
−1/4.1
ij (|i − j| ∝ s). We constructed the Ward

Linkage Matrix (WLM), W, from Rexp and the simulated spatial distance matrices

Rsim. The algorithm to construct a WLM is the following. First, start with each

locus in a cluster of its own. Second, find the pair of clusters with the smallest

Ward distance (see below) and merge them. Third, repeat the second step until
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there is only one cluster. Finally, the WLM is constructed as follows. Suppose i and

j belong to two disjoint clusters S and T and are joined by a direct parent cluster.

The entry of the WLM, wij, is the Ward distance between clusters S and T , given

by,

d(S, T ) =

( ∑
i∈S∪T

||xi−cS∪T ||2−
∑
i∈S

||xi−cS||2−
∑
i∈T

||xi−cT ||2
)1/2

=

(
nSnT
nS + nT

||cS−cT ||2
)1/2

(G1)

where cS and cT are the centers of S and T , respectively; nS (nT ) is the number of

monomers in S (T ), and xi is the position of point i. The initial clustering occurs

between singleton clusters (cluster on its own). The distance between two singleton

clusters, i and j, is,

d(i, j) = ||xi − xj|| = (xi − xj)
1/2 (G2)

which in our case is simply Rij, the spatial distance between the ith and jth loci.

In practice, we used the Lance-Williams recursive algorithms [247] to compute

the Ward distance. Suppose we have three clusters Ci, Cj and Ck, and the Ward

distances between them, d(Ci, Ck), d(Cj, Ck) and d(Ci, Cj), are known. The Ward

distance between the union of clusters i and j, Ci ∪ Cj and Ck, is obtained using

the recursive equation,

d(Ci∪Cj, Ck) =

(
ni + nk

ni + nj + nk
d2(Ci, Ck)+

nj + nk
ni + nj + nk

d2(Cj, Ck)−
nk + nk

ni + nj + nk
d2(Ci, Cj)

)1/2

(G3)

where Ci, Cj and Ck are disjoint clusters with sizes ni, nj and nk.
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A.4 Shape of TADs

We use shape parameters, to investigate the shape of the 32 TADs in Chr

5 (Table I) formed by loop anchors. We calculated three metrics to quantify the

shapes, radius of gyration Rg, relative shape anisotropy, κ2 and shape parameter,

S. The value of R2
g is,

R2
g = λ1 + λ2 + λ3, (H1)

where λi are the eigenvalues of the gyration tensor; κ2 is defined as,

κ2 =
3

2

λ2
1 + λ2

2 + λ2
3

(λ1 + λ2 + λ3)2
− 1

2
. (H2)

The shape parameter, S, is,

S = 27
∏

i=1,2,3

(λi − λ̄)/λ̄ (H3)

where λ̄ = (λ1 +λ2 +λ3)/3. The bounds for κ2 is 0 ≤ κ2 ≤ 1, where 0 is for a highly

symmetric conformation and 1 corresponds to a rod, S satisfies −1/4 ≤ S ≤ 2. If

−0.25 < S < 0, then the shape is predominantly oblate and is prolate for 0 < S < 2

[248,249]. The results in the Fig. A.4 (Left panel) show R2
g, κ

2 and S measurements

for the CCM for ε = 2.4kBT . The top figure shows that Rg increases as the size

of the TAD increases. Both the middle and bottom figures show that small TADs

deviate from spherical shape (large value of κ2 and S) but adopt a more spherical

185



shape as the size of TAD increases.

We also calculated the dispersion in the three measurements for each TAD

among trajectories (right column in Fig. A.4). For instance, dispersion of the ra-

dius of gyration is defined as σR2
g
/µR2

g
, where σR2

g
and µR2

g
are the standard deviation

and mean value of R2
g over trajectories and the bar denotes the time average. The

histograms of R2
g, κ

2 and S normalized by their mean values are shown in Fig. A.5.

A.5 Chromsome 10

In order to check the transferability of the CCM, we obtained the contact

maps of Chr 10 with the same set of parameters (Table 2.1) used for simulating

Chr5. The locations of loop anchors used in Chr 10 simulation are summarized in

Appendix Table A.1. The chromatin segments selected is from 70 to 82 Mbps. The

types of monomers (chromatin loci) are determined using the Broad ChromHMM

track, as described earlier. The numbers of active and repressive monomers are 3980

and 6020, respectively. About 80% of compartments inferred from experiment Hi-C

contact map are correctly predicted by the CCM.

For precise comparison between the prediction of the CCM and experiment,

we computed the Ward Linkage Matrices. Fig. A.6 shows the WLM inferred from

experiment and computed directly from simulations. Just as for Chr 5, visual in-

spection suggests that ε = 2.4kBT and ε = 2.7kBT agrees best with experiments.

To quantitatively compare the WLMs, we compute the Pearson correlation coef-
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Figure A.4: (Left panel) 〈R2
g〉(top) (Eq.H1), 〈κ2〉(middle) (eq.H2) and 〈S〉(bottom)

(eq.H3) for each TAD, where 〈·〉 denotes both ensemble and time average. The
black line in the top figure is the fit to the data, 〈R(g)〉 ∼ l0.27, where l is the
TAD size. (Right panel) Distribution P (σR2

g
/µR2

g
)(top), P (σκ2/µκ2)(middle) and

P (σS/µS)(bottom) over all TADs. σR2
g

=
[〈
R2
g

2〉
−
〈
R2
g

〉2]1/2
, σκ2 =

[〈
κ2

2〉
−〈

κ2
〉2]1/2

and σS2 =
[〈
S2

2〉
−
〈
S2
〉2]1/2

where · denotes time average over single
trajectory and 〈·〉 denotes ensemble average over different trajectories.
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Figure A.5: The distribution of R2
g/
〈
R2
g

〉
for the thirty-two TADs in Chr5 where

R2
g is the time average value of the squared radius of gyration of single trajectory

and
〈
R2
g

〉
is its mean value averaged over all independent trajectories. TADs are

represented by different colors. Distribution of κ2/
〈
κ2
〉

and S2/
〈
S2
〉

are shown in
the middle and bottom panels, respectively.
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637(A),818(B) 637(A),960(A) 637(A),711(A) 831(B),960(A)

1924(A),2099(B) 1924(A),2199(A) 2146(B),2199(A) 2238(B),2474(B)

2620(B),2774(B) 2620(B),2890(B) 3096(B),3173(B) 3436(B),3828(A)

4186(B),4503(A) 4407(B),4503(A) 4674(A),4704(B) 4674(A),4750(B)

4704(B),4867(A) 4704(B),4750(B) 6922(B),7287(B) 9278(B),9356(B)

9435(A),9741(B) 9919(B),9985(A) 9940(A),9985(A)

Table A.1: Loop anchor indices derived from the experimental data [28] for use in
the CCM for Chr 10. Each pair of numbers represents single loop corresponding to
the locations of the loop anchors along the backbone of the copolymer. The letter
A (B) after each number indicates the type of the loop anchor.

ficient between experimental WLM and simulated WLMs. The values of Pearson

correlation coefficients are 0.58, 0.75, 0.92 and 0.92 for ε = (1.0, 2.0, 2.4, 2.7)kBT ,

respectively, suggesting that ε = 2.4kBT and ε = 2.7kBT give excellent agreement

with experiments. This is consistent with our detailed study on Chr 5. These re-

sults show that the minimal CCM is sufficient to capture the features of the folded

chromosomes. Applications of the CCM to other chromosomes are planned.
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70 Mbps 82 Mbps 70 Mbps 82 Mbps 70 Mbps 82 Mbps 70 Mbps 82 Mbps

Chr10 Chr10 Chr10 Chr10

Experiment Experiment Experiment Experiment

ε=1.0kBT ε=2.0kBT ε=2.4kBT ε=2.7kBT

ε=1.0kBT ε=2.0kBT ε=2.4kBT ε=2.7kBT

Figure A.6: Structural organization of Chromosome 10. (Upper panel) Distance
maps of Chr10 for ε = (1.0, 2.0, 2.4, 2.7)kBT . (Lower panel) Comparison between
the experimental WLM (lower triangle) and the simulated Ward Linkage Matrix
(WLMs) (upper triangle). Just as we found in Chr5, ε = 2.4kBT provides the best
comparison with experiment, implying that the CCM is transferable.
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Appendix B: Supplementary Information for Chapter 4

B.1 Procedure of fitting the FISH data

We use Eq. 4.11 to fit to the FISH data. The integration of Eq. 4.11 gives

the CDF(R|〈R〉),

CDF(R|〈R〉) =

∫ R

0

P (r|〈R〉)dr

= 1− A〈R〉
δ

B−
3+g
δ Γ

(
3 + g

δ
, B

(
R

〈R〉

)δ)
,

(B.1)

where Γ(s, x) is the lower incomplete gamma function. Thus, the integral of Eq.

4.19 with respect to r may be written as,

CDF(R) = ηCDF(R|〈R1,mn〉) + (1− η)CDF(R|〈R2,mn〉). (B.2)

Given the values of g, δ and 〈R〉, the two constants A and B are determined

using the conditions: (1) The distribution Eq.4.11 is normalized,
∫∞

0
drP (r|〈R〉) =

1. (2) The calculated value of the second moment 〈R〉2,
∫∞

0
drrP (r|〈R〉) = 〈R〉

should equal the measured value. With these two constraints, we obtain
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A =
δ

〈R〉
Γ3+g((4 + g)/δ)

Γ4+g((3 + g)/δ)
,

B =
Γδ((4 + g)/δ)

Γδ((3 + g)/δ)
,

(B.3)

where Γ(z) is the gamma function.

Using Eq. B.3, Eq. B.1 can be further simplified as,

CDF(R|〈R〉) = 1−
Γ
(
(3 + g)/δ, B(R/〈R〉)δ

)
Γ((3 + g)/δ)

. (B.4)

Using Eq. B.2 and B.4, we minimize the square of the difference between the

calculated and the measured values of the CDFs. Using this procedure we calcu-

lated the values of η, 〈R1,mn〉 and 〈R2,mn〉 for all eight loci pairs for which FISH data

were reported [28]. The best fit values of the three parameters are given in Table

B.1. The goodness of the fits for different values of g and δ, corresponding to three

different polymer models, are reported in Table B.2.
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η 〈R1,mn〉(µm) 〈R2,mn〉(µm) Kolmogorov-Smirnov statistics p-value

peak1-control 0.55 0.63 1.06 0.0350 0.999

peak1-loop 0.36 0.24 0.56 0.0619 0.834

peak2-control 0.63 0.47 1.04 0.0522 0.977

peak2-loop 0.75 0.33 1.07 0.110 0.248

peak3-control 0.97 0.67 4.08 0.0561 0.902

peak3-loop 0.91 0.35 1.64 0.0507 0.954

peak4-control 0.27 0.48 1.25 0.0633 0.988

peak4-loop 0.42 0.30 1.21 0.0657 0.982

Table B.1: Values of the optimal parameters obtained by fitting the FISH data using
our theory, given by Eq.4.19. The parameters η, 〈R1,mn〉(µm), and 〈R2,mn〉(µm) are
defined in the main text. It is interesting that the values of 〈R1,mn〉 for the peak-loop
positions are similar (≈ 0.3µm). Kolmogorov-Smirnov statistics and their p-values
are also reported.
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g δ RE

1 5/4 0.00392

0 2 0.00397

0.71 5/2 0.00762

Table B.2: Residual error (RE) for fits of theory to the FISH data using three

different sets of g and δ (Eq. 4.11). We define RE as RE =
∑

j(1/Nj)
∑Nj

i (yi −

f(xi))
2 where yi is the ith value of the measured data, f(xi) is the fit value for yi.

The sum is over all the data points from all the eight curves marked by index j

(j = 1, 2, · · · , 8). Nj is the number of data points of jth curve. The values of g and

δ in the first row corresponds to chromosomes, while those in the second and third

rows are for the Rouse model and a polymer in a good solvent, respectively. The

smallest error is for the exponents describing the chromosome model. Surprisingly,

the RE value for the unphysical Rouse model is also low.
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B.2 Fitting FISH data by assuming homogenous cell population

To assess the quality of fits of the FISH data that assuming that the cell

population is homogeneous, we use Eq.B.4 with g and δ as free parameters. Since

for a homogenous population, the distribution of spatial distance can be normalized

by dividing the spatial distance by the mean, which eliminates the parameter 〈R〉,

leaving g and δ as the only free parameters. Table B.3 show the result of the fits and

the values of g and δ. First, the Kolmogorov-Smirnov statistics are poorer than for

for fits obtained using two subpopulations. Second, the values the extracted values

of g and δ are unphysical. We, therefore, surmise that the FISH data cannot be

reasonably fitted assuming the cell population is homogeneous.

g δ Kolmogorov-Smirnov statistics p-value

peak1-control 8.68 0.30 0.0346 0.999

peak1-loop 115.37 0.017 0.0716 0.678

peak2-control 111.38 0.017 0.0923 0.458

peak2-loop 108.70 0.012 0.118 0.180

peak3-control 204.82 0.015 0.113 0.132

peak3-loop 180.84 0.010 0.148 0.019

peak4-control -0.99 1.42 0.0558 0.997

peak4-loop -1.76 1.26 0.0863 0.850

Table B.3: Values of the optimal g and δ obtained by fitting the FISH data assuming

that the cell population is homogenous (Eq.B.4). The best fit values of g and δ are

unphysical. The results of the Kolmogorov-Smirnov test are are inferior to the

results reported in Table B.1.
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B.3 Non-negative Tikhonov regularization Method

In this section, we show how to solve P (〈R〉i) in Eq.4.21 numerically. In

order to simplify the notation, we denote CDF(Rj|〈R〉i) ≡ A, CDF(Rj) ≡ b and

∆〈R〉P (〈R〉i) ≡ x. Then, Eq.4.21 is written as,

Ax− b = 0 (B.5)

Since Eq.4.20 is an integral equation for which solutions may not be unique.

For such an ill-posed problem, Eq.4.21 (or Eq.4.20) is usually solved using the

Tikhonov regularization method, which is to solve,

min(||Ax− b||22 + α2||x||22), (B.6)

where α is a tuned parameter controlling the smoothness of solution x. For our

problem, we also need an additional non-negative constraint on x since x is a prob-

ability density function. Thus, we want to solve Eq.B.6 subject to x ≥ 0. Let us

construct the matrix,

C =

A
αI

 (B.7)

and the vector,
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d =

b
0

 (B.8)

where I is the identity matrix. Solving Eq.B.6 subject to x ≥ 0 is equivalent to

solving,

min||Cx− d||22, subject to x ≥ 0. (B.9)

The above equation is a non-negative least square (NNLS) problem, which can be

solved using an active set algorithm [250]. To solve the Eq.B.9, the value of α, which

is a controlled parameter, needs to be provided. From a graphical perspective, α

controls the smoothness of the solution, with x being smoother for larger α. The

statistical significance of α lies in its ability to control the trade-off between the

goodness of fit and the extent of over-fitting. To choose the value of α in a systematic

way, we follow the procedure demonstrated in [251]. The goodness of fits is measured

by the residue norm ||Ax − b||22 and the solution norm ||x||22 is used as a proxy to

the extent of over-fitting. The L-curve is the function between ||Ax− b||22 and ||x||22

for different values of α. The optimal value of α is located where the L-curve has

largest curvature. We solve Eq.B.9 using the optimal value of α. In practice, we use

the function provided in PYTHON scipy package to solve Eq.B.9.

197



Appendix C: Supplementary Information for Chapter 5

C.1 Derivation of a lower bound of spatial distance

In this appendix, we prove the theoretical lower bound of 〈Rmn〉 given Pmn.

We demonstrate this by considering the case there are two subpopulations, S = 2.

In this case, we 〈Rmn〉 = η〈R1,mn〉+(1−η)〈R2,mn〉 and Pmn = ηP1,mn+(1−η)P2,mn.

Note that 〈R1,mn〉 = R0(P1,mn) and 〈R2,mn〉 = R0(P2,mn). For simplicity, we denote

P1,mn = x and P2,mn = y. Given the value of the contact probability Pmn, we show

that the lower bound for 〈Rmn〉 = R0(Pmn). This is equivalent to the optimization

problem,

maximize f(x, y)

subject to g(x, y) = 0

(C.1)

where f(x, y) = −ηR0(x) − (1 − η)R0(y) and g(x, y) = ηx + (1 − η)y − Pmn. The

Lagrange multiplier is L(x, y, φ) = f(x, y) − φg(x, y). Using the condition that

∇x,y,φL(x, y, φ) = 0, it can be shown that f(x, y) is maximized when x = y. Thus

we proved that Rmn is minimized when P1,mn = P2,mn and the its minimum is

R0(Pmn). It is important to point out that the proof shown here can be easily gen-

eralized for any form of function R0 and any number of subpopulations S.
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C.2 Mean spatial distances are metric but not Euclidean in 3D space

A metric must satifies the following condition: i) non-negativity ii) identiy of

indiscernibles iii) symmetry iv) triangle inequality. It is clear that the mean spatial

distance in a polymer systems satisfies the first three conditions. i) 〈Rmn〉 ≥ 0 for

any m,n. ii) If 〈Rmn〉 = 0, m and n loci has the same coordinates. And iii) 〈Rmn〉 =

〈Rnm〉. Now I show that the triangle inequality is also satisfied, 〈Rmn〉 + 〈Rnl〉 ≥

〈Rml〉. I can write 〈Rmn〉 as integral 〈Rmn〉 =
∫

dRmndRnldRmlP (Rmn, Rnl, Rml)Rmn

where P (Rmn, Rnl, Rml) is the joint probability distribution for distance Rmn, Rnl

andRml. Similarly I have 〈Rnl〉 =
∫

dRmndRnldRmlP (Rmn, Rnl, Rml)Rnl and 〈Rml〉 =∫
dRmndRnldRmlP (Rmn, Rnl, Rml)Rml. I have

∫
dRmndRnldRmlP (Rmn, Rnl, Rml)(Rmn +Rnl)

=

∫
dRmndRnldRmlP (Rmn, Rnl, Rml)Rmn+∫
dRmndRnldRmlP (Rmn, Rnl, Rml)Rnl = 〈Rmn〉+ 〈Rnl〉

(C.2)

Since Rmn, Rnl and Rml are the spatial distances which satisfies the triangle in-

equality, Rmn+Rnl ≥ Rml. Thus I have 〈Rml〉 =
∫

dRmndRnldRmlP (Rmn, Rnl, Rml)Rml ≤∫
dRmndRnldRmlP (Rmn, Rnl, Rml)(Rmn+Rnl) which leads to the triangle inequality,

〈Rml〉 ≤ 〈Rmn〉+ 〈Rnl〉 (C.3)
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However mean spatial distances 〈R〉 are not Euclidean in 3D space. This can

be illustrated by considering the ideal chain in which the mean spatial distance

〈Rmn〉 = |m− n|1/2 for any m,n. Hence the mean spatial distance matrix DM for a

ideal chain is,



0 1
√

2 . . .
√
N

1 0 1 . . .
√
N

...
...

...
. . .

...

√
N
√
N − 1

√
N − 2 . . . 0


(C.4)

where N+1 is the number of monomers. A distance matrix D with dimension n×n

is Euclidean if there exists a configuration of set of n points in a Euclidean space

of dimension p whose between-points distances exactly match D. Schoenberg [252]

showed that D is Euclidean iff

F ≡ −(I − esT )(D ◦D)(I − seT ) (C.5)

is positive semi-definite. ◦ is Hadamard product. I is the identity matrix. e is vector

all of whose values are one and s is any vector such that sTe = 1 and (D ◦D)s 6= 0.

It can be shown that Eq.C.4 satisfies to condition (Eq.C.5) hence it is Euclidean in

dimension p where p is unknown. It has been shown [253] that when the distance

matrix D is Euclidean, its Euclidean dimension p = rank(D) − 1. The rank of

matrix in Eq.C.4 is N + 1. Thus for N ≥ 4, the mean spatial distance of a ideal

chain is no longer Euclidean in three dimensional space. Thus there does not exist a
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realization of conformation of monomers whose distances are the values in the mean

spatial distance matrices.

It is noteworthy that from Eq.C.3 one can observe that the inverse of the

contact probablity does not satisfy the triangle inequality and hence is not a metric.

The inverse of contact probability is 1/Pmn ∼ 〈Rmn〉α where α = 3 for GRMC and

≈ 4.0 for Human Interphase Chromosome in vivo. It is easy to observe that the

inequality 1/Pml ≤ 1/Pmn + 1/Pnl does not hold in general.
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Figure C.1: (a) nRMSE as a function of α for all 23 Chromosomes of Human
Interphase GM12878 Cell. (b) shows the histogram of values of α which minimizes
the nRMSE for all 23 chromosomes.
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Figure C.2: 2D t-SNE embedding for DMs of mixture system with η =
(0.0, 0.1, 0.5, 0.9, 1.0). Examples of loops are marked for η = 0.5, 1.0. It is clear
that t-SNE 2D embedding is able to represent the loops present in the system and
also is sensitive to the values of η. Note that the extent of loops for η = 0.5 is similar
to what is observed for Human interphase chromosomes (Fig.5.7(f)). For η = 1.0,
loops are present in all the cells, thus the anchors of loops are connected to each
other in the tSNE representation. However in a mixture system, η = 0.5, loops are
not present in all the cells, they are then represented by “open” curls/loops in the
2D t-SNE embedding.
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Appendix D: Supplementary Information for Chapter 6

D.1 Limiting conditions with κ→ 0 and κ→∞

In this section, we return to the case n = 2 of identical motors. We have

shown that the position of the system undergoes a one-dimensional periodic random

walk with period of two. The forward and backward rates appear in Eq.6.16 as

complicated summations. It is difficult to reduce the form in Eq.6.16 in simpler terms

for arbitrary values of parameters. However the limiting cases of weak coupling (κ�

1) and strong coupling (κ � 1) can be investigated. First we look at what would

be form of stationary distribution πs
i at these two limiting cases. The stationary

distribution πs
i is given by,

πs
i = πs

0

∏i−1
j=0 ω

+
j∏i

j=1 ω
−
j

for i > 0 (D.1)

πs
i = πs

−i for i < 0 (D.2)

and the ratio ω+
i /ω

−
i+1 is given by,
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ω+
i

ω−i+1

=
k+

L (i) + k−T (i)

k−L (i+ 1) + k+
T (i+ 1)

(D.3)

=
e−βθ

+∆Ei + e−βθ
−∆Ei

eβθ+∆Ei + eβθ−∆Ei
(D.4)

1) Strong coupling, κ� 1. The cases θ+ < θ−, θ+ = θ− and θ+ > θ− needed

to discussed separately.

i) θ+ > θ−. In this case, for κ � 1, we have k+
0 e
−βθ+∆Ei � k−0 e

−βθ−∆Ei and

k+
0 e

βθ+∆Ei � k−0 e
βθ−∆Ei . Eq.D.3 reduces to,

ω+
i

ω−i+1

≈ k+
0 e
−βθ+∆Ei

k−0 e
βθ−∆Ei

=
k+

0

k−0
e−β∆Ei (D.5)

The last equate uses the fact θ+ + θ− = 1. Then we obtain πs
i ,

πs
i = πs

0

∏i−1
j=0 ω

+
j∏i

j=1 ω
−
j

= πs
0

(
k+

0

k−0

)i
e−

βκd2i2

4 (D.6)

ii) θ+ < θ−. In this case, we have,

πs
i = πs

0

(
k−0
k+

0

)i
e−

βκd2i2

4 (D.7)

iii) θ+ = θ− = 1/2. In this case,

πs
i = πs

0e
−βκd

2i2

4 (D.8)

2) Weak coupling, κ� 1. In this case, we can use taylor expansion on Eq.D.3
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yielding,

ω+
i

ω−i+1

≈ k+
0 (1− βθ+∆Ei) + k−0 (1− βθ−∆Ei)

k+
0 (1 + βθ+∆Ei) + k−0 (1 + βθ−∆Ei)

= e−2η∆Ei (D.9)

where η = rβθ++βθ−

r+1
and r = k+

0 /k
−
0 . Finally, the stationary distribution πs

i is

obtained,

πs
i = πs

0e
− 2(rθ++θ−)

r+1
βκd2i2

4 (D.10)

Note that the factor rθ+ + θ− can be smaller than zero which means πs
i diverges

with increasing of i. This indicates that there is no stationary distribution when

θ+ ≤ −1/(r − 1). For large r (Kinesin), this practically menas that θ+ > 0. For

relative small r (Dynein), in principle θ+ can take negative values.

For both cases, we show that the stationary distribution πs
i decay exponentially

fast with square of i. Then in computing rates λ1, λ2, µ1 and µ2, we can only consider

first term, which leads to

λ1 = 2k+
0 e
−βθ

+κd2

4 (D.11)

λ2 = 2k+
0 e
−βθ

+κd2

4 cosh

(
βθ+κd2

2

)
(D.12)

µ1 = 2k−0 e
−βθ

−κd2
4 cosh

(
βθ−κd2

2

)
(D.13)

µ2 = 2k−0 e
−βθ

−κd2
4 (D.14)
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Plugging Eq.D.11 into Eq.6.17 yields,

〈v〉
v0

=
r + 1

reεθ+ + eεθ−
(D.15)

where ε = βκd2/4 and r = k+
0 /k

−
0 and θ− = 1−θ+. v0 is the velocity of single motor

under zero load v0 = (k+
0 − k−0 )d where d is the step size of a single motor. Eq.D.15

shows that the reduced velocity can be expressed in terms of three dimensionless

quantities ε, r and θ+. ε quantifies the energy associated with coupling. r is the ratio

between forward and backward rates and directly related to the energy consumed

through ATP hydrolysis and θ+ is the distribution factor characterizing the location

of transition state.

Eq.D.15 shows that velocity of two coupling motors is reduced compared to

the single motor and monotonically decreases with increasing of coupling strength κ.

At small κ, the motor hardly affect each other resulting the similar velocity of that

of single motor. At large κ, the velocity vanishes. We reason that this is because

that the internal tension is built when the system moves. With larger coupling

strength κ, the energy associated with internal tension increases which makes the

motor harder to step. At the limit of very large κ, it takes so much energy for either

of the two motors to step that the velocity of the system vanishes.

The vanishing of the velocity is not because that the system becomes diffusive.

The diffusion constant also vanishes at large κ (Eq.6.17). This indicates that the

system is “frozen” rather than becomes diffusive with large coupling strength. At

small κ, the diffusion constant of two coupled motors is simply half of that of a
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single motor.

D.2 Coupled Motor System of identical motors with n > 2

In section 6.3.1, I showed that the coupled motor system of two identical

motors can be mapped to a periodic one-dimensional random walk of period of two.

The same argument can be extended to more number of motors n > 2 if they are

identical.

For n = 3, using Eq.6.5, 6.6 and 6.7, we obtain that the rates,

k+
1 = k+

0 e
−(1/3)βθ+κd2(2x̃1−x̃2−x̃3+1) (D.16)

k−1 = k−0 e
−(1/3)βθ−κd2(−(2x̃1−x̃2−x̃3)+1) (D.17)

k+
2 = k+

0 e
−(1/3)βθ+κd2(2x̃2−x̃1−x̃3+1) (D.18)

k−2 = k−0 e
−(1/3)βθ−κd2(−(2x̃2−x̃1−x̃3)+1) (D.19)

k+
3 = k+

0 e
−(1/3)βθ+κd2(2x̃3−x̃1−x̃2+1) (D.20)

k−3 = k−0 e
−(1/3)βθ−κd2(−(2x̃3−x̃1−x̃2)+1) (D.21)

Like in the case with n = 2, it is useful to define new variables s̃1 = 2x̃1 − x̃2 − x̃3

and s̃2 = 2x̃2 − x̃1 − x̃3 and s̃3 = x̃1 + x̃2 + x̃3. The rates only depends on s̃1

and s̃2 explicitly but not s̃3. Similarly, summing the master equation over variables

s̃1 and s̃2 leads to the master equation with only one variable s̃3 which measures

the displacement of the system. The system can be mapped to an equivalent pe-
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riodic random walk with period of 3 (Fig.D.1). The three layers are marked by

Blue, Magenta and Red colors. Without loss of generality, set blue layer con-

tains the initial relaxed state (s̃1, s̃2, s̃3) = (0, 0, 0). s̃3 are orthogonal to other

two variables s̃1 and s̃2. Ignoring the variable s̃3, the blue layer contains sites

(s̃1, s̃2) ∈ Γ1 = {(0, 0), (0, 3), (3, 0), (0,−3), (−3, 0), · · · } which are the sites of square

lattice with lattice constant 3 with . Similarly, the magenta layer contains sites of

(s̃1, s̃2) ∈ Γ2 = {(−1, 2), (−1,−1), (2, 2), (2,−1), · · · } and red layer contains sites of

(s̃1, s̃2) ∈ Γ3 = {(−2, 1), (1, 1), (−2,−2), (1,−2), · · · }. Provided that the stationary

distribution πs(s̃1, s̃2) are known. The alternating rates associated with periodic

one-dimensional random walk are given by,

λ1 =

∑
(s̃1,s̃2)∈Γ1

πs(s̃1, s̃2)(k+
1 (s̃1, s̃2) + k+

2 (s̃1, s̃2) + k+
3 (s̃1, s̃2))∑

(s̃1,s̃2)∈Γ1
πs(s̃1, s̃2)

(D.22)

λ2 =

∑
(s̃1,s̃2)∈Γ2

πs(s̃1, s̃2)(k+
1 (s̃1, s̃2) + k+

2 (s̃1, s̃2) + k+
3 (s̃1, s̃2))∑

(s̃1,s̃2)∈Γ2
πs(s̃1, s̃2)

(D.23)

λ3 =

∑
(s̃1,s̃2)∈Γ3

πs(s̃1, s̃2)(k+
1 (s̃1, s̃2) + k+

2 (s̃1, s̃2) + k+
3 (s̃1, s̃2))∑

(s̃1,s̃2)∈Γ3
πs(s̃1, s̃2)

(D.24)

µ1 =

∑
(s̃1,s̃2)∈Γ1

πs(s̃1, s̃2)(k−1 (s̃1, s̃2) + k−2 (s̃1, s̃2) + k−3 (s̃1, s̃2))∑
(s̃1,s̃2)∈Γ1

πs(s̃1, s̃2)
(D.25)

µ2 =

∑
(s̃1,s̃2)∈Γ2

πs(s̃1, s̃2)(k−1 (s̃1, s̃2) + k−2 (s̃1, s̃2) + k−3 (s̃1, s̃2))∑
(s̃1,s̃2)∈Γ2

πs(s̃1, s̃2)
(D.26)

µ3 =

∑
(s̃1,s̃2)∈Γ3

πs(s̃1, s̃2)(k−1 (s̃1, s̃2) + k−2 (s̃1, s̃2) + k−3 (s̃1, s̃2))∑
(s̃1,s̃2)∈Γ3

πs(s̃1, s̃2)
(D.27)

Generally speaking, coupled motor system with n number of identical motors

can be mapped to a periodic random walk of period of n. Let’s denote the forward
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and backward rates of such a periodic random walk process are {λi} and {µi} with

i ∈ (1, 2, · · · , n), respectively. They are given by,

λi =

∑
s̃∈Γi

πs(s̃)
∑n

j=1 k
+
j (s̃)∑

s̃∈Γi
πs(s̃)

(D.28)

µi =

∑
s̃∈Γi

πs(s̃)
∑n

j=1 k
−
j (s̃)∑

s̃∈Γi
πs(s̃)

(D.29)

(D.30)

where Γi is the set of sites on the layer of indices i and s̃ = (s̃1, s̃2, · · · , s̃n) and

s̃i = (n−1)x̃i−
∑

j 6=i x̃j for i 6= n and s̃n =
∑

i x̃i. π
s(s̃) is the stationary distribution

for variables (s̃1, s̃2, · · · , s̃n−1)

The solution for mean velocity is given by [237],

〈ṽn〉 =
n∑n
i=1 ri

[
1−

n∏
i=1

(
µi
λi

)]
(D.31)

where ri is given by,

ri =
1

λi

[
1 +

n−1∑
j=1

j∏
k=1

(
µi+k
λi+k

)]
(D.32)

The solution for diffusion constant D̃n is not shown here, but is given in

Derrida [237].
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Figure D.1: The coupled motor system of 3 identical motors can be mapped to a
one-dimensional random walk of period of 3. The variable s̃3 is orthogonal to s̃1 and
s̃2. This figure shows the projection of (s̃1, s̃2, s̃3) on to (s̃1, s̃2) plane. The arrows
marks transitions: (s̃1, s̃2, s̃3)→ (s̃1 − 1, s̃2 + 2, s̃3 + 1)→ (s̃1 + 1, s̃2 + 1, s̃3 + 2)→
(s̃1, s̃2, s̃3 + 3). Note that s̃1 and s̃2 repeat themselves every three steps. The states
with the same “phase” are marked with the same color.
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