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Abstract

We present an observer design for systems with controlled nonlinear dynam-
ics and nonlinear observation. The design is a development of earlier work,
which was motivated by nonlinear filtering asymptotics. The basic design re-
quires that the initial conditions belong to a bounded region determined by the
data and design parameters. However, for a certain class of systems, no such
a priori knowledge is required. To illustrate the utility of our design, several
examples are given.
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1 Introduction

In this paper we present a design for an observer for the nonlinear control system
t = f(z,u), z(0) = zo, (1)
y = h(z)

where z € R*, u &€ R™, |u;/ <1 7=1,...,m and y € IR?. The initial

condition zy is unknown.

The observer problem consists of recursively computing an estimate z(t) of
z(t) for which the error decays to zero as t — oco. That is, to design a system

m = F(m,u,y), m(0) = my, (2)
z = G(m)
such that
Jim [2(t) - #(t)] = 0 3)

for all zo in a suitable class 1. Here I represents a priori knowledge concerning
the initial condition zo.

We prove the following result for our observer design: provided that we have
some knowledge of zo (in the form |zo — 20| < p, where 2z is the initial estimate)
and assuming that (1) satisfles a detectability condition, then the observer es-
timate z(¢) converges exponentially to the system trajectory z(t) as ¢ — oo
(Theorem 2.1). The radius of convergence p depends on the nonlinearities in
the dynamics and observations as well as on certain design parameters. For a
certain class of systems, no knowledge of z, is required (Corollary 2.1).

Our design is a development of the design given in Baras, Bensoussan and
James [1], which treats systems with uncontrolled nonlinear dynamics and linear
observations. The main contributions here are the results for nonlinear obser-
vations and controlled dynamics. We remark that these designs do not involve
coordinate transformations, canonical forms, local linearization, etc, and seem
robust when compared with other designs. However, the designs do involve
solving Riccati equations and computing certain matrices and constants.

In Section 2 we give the observer design and state the main convergence
results. The design involves Riccati differential equations with time-varying co-
efficients, and in Section 3 we obtain bounds on the solutions of these equations
under certain detectability and rank conditions. These bounds are used in Sec-
tion 4 to prove the convergence result. Finally in Section 5 we give several

examples.

2 Observer Design

We assume that f, h are smooth with bounded derivatives of orders 1 and 2. Let
N € L(R", R"), R € L(IR?, IR*) and assume rank N = n and R > 0. Assume
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t — u(t) is continuous.
Write A(z,u) = Df(z,u), H(z) = R~1Dh(z), where D denotes gradient in
the z variable. Set

| 4|l = sup{[|A(z,u) : =€ R", |u;| <1}

and similarly define ||H||, and so on.
Consider the coupled system

m(t) = f(m(t),u(t)) + QE)H(m(t)) B (y(t) — h(m(t)) (4)

m(0) = mg
QM) = A(m(t),u(t))Q() + Q) A(m(t), u(t))’

Q) H(m(t)) H(m(t))Q(t) + NN' 5)
Q(O) = Qo >0.

This is our observer for (1). It is essentially a modification of the deterministic
or minimum energy estimator, as discussed in Baras, Bensoussan and James
[1]. Note in particular that the Riccati differential equation (5) depends on the
control. This is not necessary when f(z,u) = f(z) + Bu : set A(z) = Df(z).

Refering to Section 3, we will assume that the pair (H(z), A(z,u)) is uni-
formly detectable. Since N has rank n and |A| < oo, the pair (A(z,u),N) is
uniformly stabilisable (refer to Section 3), and NN' > roI for some ro > 0. Let
Py = @', P(t) = Q(t)™!, and let p,q be the bounds for || P(t)||, ||Q(t)| (given
in Section 3).

Regard Ao, N, R as design parameters. Define p = p(Qo, N, R) by

To

p=——
2| P’?||

(VA D*fIl + vall R |1* | Dk| | D*AI)) (6)

Our main theorem is the following convergence result, similar to Theorem 8 in

[1].
Theorem 2.1 Assume there exists Qo, N, R such that

IzO - m0| < p(QO’N’ R) (7)

Then the system (4), (5) is an observer for the nonlinear control system (1)
provided that (H(z), A(z,u)) is uniformly detectable and the above assumptions
hold. That is, there exists contants K > 0,7 > 0 such that

|2(t) — m(t)] < Kl|zo — mole™ (8)

for allt > 0.



Remark There is a trade-off between the decay rate v = 4(Qq, N, R) and the
radius of convergence p. The designer can optimize his choice of 4, p by varying
the design parameters. ///

By using different estimates for the nonlinearities, we obtain an observer for
(1) without any contraints on the initial conditions zo, mo for a class of systems.
Included in this class are systems for which A(z,u) is uniformly negative definite

(see the example in Section 5.2).
Define § = 6(Qo, N, R) by

4 -
b= —q% — 4p|| Df|| - 4[|R77|I* | DA, (9)

If D*f or D*h is zero, we omit the corresponding term from (9).

Corollary 2.1 Assume there exist Qo, N, R such that
0 < 6(Qo, N, R). (10)

Then the system (4), (5) is an observer for the control system (1) provided that
(H(z), A(z,u)) is uniformly detectable and the above assumptions hold. That is,
there exists contants K > 0, > 0 such that

|z(t) — m(#)] < K|zo — mole™ (11)

for allt > 0 and all zo,mg € IR".

Remark Our design can readily be extended to time varying systems. ///

3 Riccati Equations

Write X = IR"x[—-1,1]™ and £ = (z,u) € X. If t — & = (z:, ) is a continuous
curve, we write A; = A(§;) = A(z¢, we), etc.
Consider the Riccati differential equations

Q = AQ:+ QA — QHHQ, +NN' (12)
P, = —PA —AP,—PNN'P,+ H'H, (13)

Existence and uniqueness for (12), (13) are standard, and note that P, = Q;*.

3.1 Uniform Detectability and Stabilisability

In this section we present sufficient conditions that ensure boundedness of the
solutions of the Riccati equations (12), (13). The bound for || @; || requires a
detectability condition which we now define.



Definition The pair of matrices (H(¢), A(€)) is uniformly detectable if there
ezist a constant ap > 0 and a bounded continuous matriz valued function A(£)
such that

n' (A(€) + A(OH(E))n < —ao | n | (14)
forallne R", ¢£c X.

This condition is similar to the well known detectability condition for linear
time-invariant systems. The pair of matrices (C, A) is detectable if there exists
a matrix A such that the eigenvalues of A + AC have strictly negative real parts;
uniform detectability implies detectability, but not conversely. A disadvantage
of this condition is that it is in general difficult to check, and A(z,u) may be
hard to compute. No simple rank-type condition exists to date. In the case that
H(z) is uniformly of full rank, that is,

H(z)'H(z) > sol, (15)

for some sq > 0, it is possible to bound || Q: || without using (14).

To obtain a uniform bound for || P, ||, we assume that rank N = n and use the
following uniform stabilisation result, based on Kalman [2]. Let ®5(t,t,) denote
the fundamental transition matrix corresponding to a time varying matrix F;.

Recall NN' > rol.
Lemma 3.1 Assume rankN = n. Consider the control system
% = —Awzg — Nuy, 2(0) = 2, (16)

where Ay = A(&:) for some curve t — &. Then there exists a feedback control
uf = Iz, such that

230600 I /2 exp (~55:0- 1) (17

for t >ty > 0, where ;1, = —A; — NT; and for any 0 > 0,
-1
b

,30(0) — ae—2a||A|| (1 +0'2€20"A" ” N ”2)

Bi(0) = cetelAl (1 LN Hz) ,

ro0

ITe <IN Bale) =l T[] -



Proof Consider the optimal control problem of minimising the cost
e 2
Tuftor2) = [z P+ [ w7 d
[}
over controls u for the system (16). Define the controllability grammian
tot+o
Cltorto+0) = [ B alto,t)NN'D' 4(to,t)dt.
to
Note that || ®_4(t,20) ||?< 4l and

roge M1 < C(to,t0 + o) <|| N |2 oe2l 4l

so that the system (16) is uniformly completely controllable [2].
The value function is given by

1
V(to,2) = Ez'Ztoz,

where Z; solves the Riccati equation
Zi= AZi + ZA + ZLNN'Z, — 1.

The optimal control is

ufz——N'tht.
Now
to+o
Vi(to,2) > / | 2 |I? dt
to
> Bolo) |z |*.

Also, using the control
up = N'®_4(to,t)C(to,t0 + 0) 12,

we obtain
V(to,2) < Bulo) | 2 2.

Finally, note that V (¢, 2) is a Lyapunov function for
ég = —(Ag +NI‘,) zf;

whence (17).



3.2 BQHnds

Theorem 3.1  Assume that £ — A(€),H(£) are continuous and bounded,
(H(&), A(&)) is uniformly detectable, and rankN = n. Then we have

N 2 2
forl < (ot + L) < g <o, (19)
H|? |2
iPel < (Sgpyg+ BEEAUE) < 5 o (19

These bounds are tndependent of T > 0.

Note The bound ¢ depends on the choice of A, while p depends on o. To
obtain the best bound, one can optimise over these parameters. For linear
time—invariant detectable systems, one can also obtain a bound for || Q; ||. ///

Proof We modify an argument in [1]. To prove (18), consider the following
linear optimal control problem with time-varying coefficients:

- 7.7! = A:nt + Ht'vb nr = h: (20)

where h € IR"™ is given and v is the control. The cost functional is

T
J1(v, T) = 77('3Q0770 +/0 (v: v + fl:NN'flt)dt- (21)
Define a value function
Vi(h,T) = inf{J1(v,T) : n7 = h}

The Hamilton-Jacobi-Bellman (HJIB) equation is

2 Va+ max| D, Va(~ 4} ~ Hiv) — v — n'NNy| =0

Let Q; be the solution of (12). Then
V(ﬂ’t) = ﬂ'Qm

is the unique (viscosity) solution of (13) with V'(n,0) = n'Qon.
Consider the (suboptimal) feedback control law

v(t) = Aine.

Then by (20),
— e = (A} + HiAne, nr = h. (22)
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Then we have
T
V(n,T) = h'Qrh < noQono +/; Ne(NN' + A A)n.dt (23)
Now using (22),
T
mof? 2 [ mi( Ay + H A)medt = |h[?

Hence using uniform detectability (14), |no|* < |h|* and

T |h|?
/0 meffdt < oo

Qg
Combining this with (23) we obtain

N||* A2
N+ 1AL,

KQrh < K (HQOH SR
0

which proves (18).
Similarly, to prove (19), consider the optimal control problem

)'\tzAt/\t+Nv¢, ATzh (24)

with cost r
J(0,T) = My Pod+ [ (vhve+ 2 HL Hy M),
0

Define the value function
Va(h,T) = inf{J2(v,T) : Az = h}.

Then the HJB equation

aiTvz + max|Dy Va( A\ + Nv) —oF — X H) H, X] =0,

with V3(},0) = X' Py A and solution V3(A,t) = X' Py A, where P, is the solution of
(13). By Lemma 3.1, set

‘U(t) = Ft At,
then by (24) _
Ag = (Ag + NI‘;), AT = h. (25)
Thus .
h'Pph < M, Py Xo + /0 M (T\T, + H! Hy)\ dt (26)
Now

At = @A(“—t, —T)h,



and hence | Ao |2< /;L‘: | h|? and

T |h|?
X 2dt < .
/o Al < 280

This together with (26) yields (19).

Corollary 3.1 Assume that ¢ — A(&), H(&) are bounded and continuous,
and that H (&) is uniformly of full rank. Then

[N+ 1Al
2a0

I < (2200 + | S

for all T > 0, where for any 7 > 0,

ao(r) = re—2rliall (1 + r2elrliAl “ N ”2)—1 ,

2
ar(r) = retrlAl (1 + ”_JVL) ,

| A i<l H [} ea(r) =[I T ] -

Proof Consider the control system
3 = Ajz + Hjuy, 2(0) = 2, (28)

where A; = A(&;) for some curve t — §. Define the grammian

to+r
O(to,to+ 1) :/to ® 4 (to,t) H H D (20, t)dt.
0
Now || ® (2, t0) ||2< ¥4l and
sore ML < O(to,to +7) <|| H || re?l4l1

so that the system (28) is uniformly completely controllable [2]. Now proceed
as in the proof of Lemma 3.1.



4 Asymptotic Convergence

Using the bounds (18), (19) we prove Theorem 2.1, and Corollary 2.1.

(
f(2(t),u(®)) — f(m(t),u(t)) - QM) H

e(t) = (me)' B7 (u(t) = h(m(t)))
= [A(m(t),u(®)) — QE)H(m(t)) H(m(t))]e(t)
+Hf(2(),u(t)) = f(m(2),u(t)) — Df(m(t), u(t))e(t)]
—Q(t)H(m(t))' B [h(z(t)) — h(m(t)) — Dh(m(t))e(t)]
Therefore using the Riccati equation (13) for P(t),
%e(t)'P(t) e(t) = —e(t) P()NN'P(t)e(t) — e(t) H(m(t)) H(m(t))e(t)
+2e(t / / rD?f(m(t) + rse(t),u(t))e(t)?drds
—2e(t / / rD*h(m(t) + rse(t))e(t)*drds
LIPOieF < o) (-rofd + IPWR@IVAIDS]  (29)

+Val B | DA | D*h]) e(2)
Let C = (/p||D*fll + /@l R™||* | Dh|| | D*A}}). By hypothesis (7) we have

r 1

—q—‘; +|Pfel|C <O.
Since P(t)3e(t) is continuous, there is an interval [0,2o) such that
—a-z- +|P(t)3e(t)|]C <0 on [0,to).
But then (29) implies
%ua(t)%e(t)v <0 on [0t),

and thus . N
|P(t)ze(t)]| < | Py eol

for t € [0,t0). By continuity this inequality holds for ¢ € [0,t0]. Hence we can
proceed from to on. Thus there exists § > 0 such that

Pl < & (3- - s)



This system is controllable and observable. However, the pair of matrices
(Dh(z), A) is not observable for z; = k%, where k is an odd integer. The system
has eigenvalues —1,—2 and A is symmetric, hence (Dh(z), A) is automatically
uniformly detectable, with ap =1, A(z) = 0. Let R =rI, N = /rol, Qo = +*I.
Here, H(z) = %(cos z,,0). Now

6§ =ro(v* +1ro/2)7F —4r7L,
Set r =3, ro=0.2,7y=0.1. Then § = 7.82.
The observer for (32) is
() = Am()+ Bu(t) + 2Q() Hm(t) (u(®) —sinmy(s)),  (33)
Qt) = AQ(t) +Q(t)A' — Q()H(m(t)) H(m(t)Q(t) +0.21.

By Corollary 2.1, m(t) converges exponentially to z(t) for all zo,mo € IR".
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5 Examples

We now give some simple examples to illustrate the applicability of the above
observer design.

5.1 Bilinear Dynamics, Linear Observation

Consider the general bilinear system

i o= (A + g:lu,-B.-) z,  z(0) = o, (30)

y = Cz.
We assume |u;| < 1, p=1, and here { = u € [-1,1]™ = X. Write

A(u) =A+ Z u; B;.
i=1
Define, for 7 > 0, the observability grammian

t0+‘r

O(to,to + 7) =/ ® 41(to,t)C'C Oy (20, t)dt,
to

where A; = A(u(t)). Assume that (30) is uniformly observable in the sense that

there exists 7 > 0 such that for all ¢, >0

~o(1)I < O(to,to+ 1) < M)

for constants 4o(r), 71(r) > 0, independent of the control. The we can bound

| Q: || as in Corollary 3.1.
Then the following system is an observer for (30), with no contraints on the

initial conditions.

m(t) = Aw()m(0) + QOCW(H) - Cm(), m(0) = mo, (31)
O) = AuE)QE) + QBAMm() - QE)C'CQE) +1, Qo=1.

For simplicity we have taken Qo, N, R to be identity matrices. To improve the
decay rate v, one could try other values for Qo, V, R.
Compare this design with the design for linear time—varying systems in
Willems and Mitter [5], and O’ Reilly [4].
5.2 Linear Dynamics, Nonlinear Observations
Consider the system
Ii:]_ 1 \/5 Ty 1
— : 32
(%) = (»9)(2)-(6)r o

y = sinz;.
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This system is controllable and observable. However, the pair of matrices
(Dh(z), A) is not observable for z; = kZ, where k is an odd integer. The system
has eigenvalues —1,—2 and A is symmetric, hence (Dh(z), A) is automatically
uniformly detectable, with ao = 1, A(z) =0. Let R = rI, N = \/7ol, Qo = +*1I.
Here, H(z) = (cos z,,0). Now

6= To(’72 + 1‘0/2)_2 - 47'_2.

Set r =3, r0=0.2,y=0.1. Then 6 = 7.82.
The observer for (32) is

m(t) = Am(t) + Bu(t) + %Q(t) H(m(t))' (y(t) — sinmy(2)), (33)
Q(t) = AQ(t) + Q(t)A' — Q(t)H(m(t)) H(m(t))Q(t) +0.21.

By Corollary 2.1, m(t) converges exponentially to z(t) for all zo,mo € IR™.
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