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Chapter 1IntroductionIntegrated services packet-switched networks, such as ATM (Asynchronous Transfer Mode) net-works [91], are expected to support a wide variety of applications (e.g., multimedia, voice, mail)with heterogeneous quality-of-service (QoS) requirements. To meet these requirements, new algo-rithms have been proposed for controlling routing, admission, and scheduling. Routing provides aselection of routes, based on cost functions associated with the transmission links. Routing can beon a virtual-circuit basis (needed for guaranteed service) or on a datagram basis (suited for best-e�ort service). Admission de�nes the criteria used to accept or reject a new incoming application,based on the service requested and the resources available. Scheduling de�nes how link resources(bandwidth, bu�ers, etc.) are allocated among the di�erent services.The overall end-to-end performance of the network hinges on the algorithms used in the routing,admission, and scheduling components. The algorithms are often adaptive, with parameters beingvaried dynamically according to service class and current or delayed system state information.Arrival and service statistics are often time-dependent. As a result, there is signi�cant interactionamong the three components.The accurate and fast evaluation of such time-dependent systems is critical to their cost-e�ectivedesign. Existing evaluation methods for these systems are inadequate. Analytical methods aretypically too coarse. They usually assume steady-state conditions and do not account for adaptivepolicies and the e�ect of delayed feedback. Incorporating adaptive time-dependent behavior makesthem analytically intractable and computationally expensive to solve numerically due to the largestate space. Simulation approaches are often too expensive. They can handle realistic detail anddynamic situations, but they are invariably computationally prohibitive, especially for evaluatinghigh-speed networks where the number of scheduled events (packets, connections, etc.) is usuallyenormous.The goal of our research is to develop accurate analytical models that exhibit the essentialfeatures of integrated networks, while at the same time being inexpensive or easy to solve.1



1.1 ContributionsTime-Dependent EvaluationIn this dissertation, we present a numerical-analytical method, referred to as the Z-iteration, toevaluate integrated networks rapidly and accurately, taking into account the interaction and time-dependent nature of the control algorithms. The method is applicable to a general time-dependentmultiple-class multiple-resource (MCMR) system, where each class of customers requires a partic-ular set of resources. Customers can be packets, connections, etc., and resources can be bu�ers,transmission capacity, etc. Because the class of a customer can be assigned when the customer ar-rives, it is straightforward to model state-dependent control policies such as assigning connectionsto routes with the least load. The numerical foundation of the Z-iteration provides a modelingpower close to that of simulation at a fraction of the computation expense, typically less expensiveby many orders.The Z-iteration solves for instantaneous performance measures. It approximates the MCMRsystem as a collection of multiple-class single-resource (MCSR) systems. It computes Brc (t), theinstantaneous blocking probability of class c at resource r, together with N rc (t), the instantaneousaverage number of class-c customers waiting or in service at r, and U rc (t), the instantaneous averagenumber of class-c customers in service at r.The Z-iteration depends upon the availability of two steady-state results about each MCSRsystem r assuming that the arrival and service rates �rc(t) and �rc(t) are constants: (1) an expressionfor the steady-state Brc in terms of the steady-state �rc=�rc ; and (2) an expression for the steady-stateU rc in terms of the steady-state N rc , from which we readily obtain an expression for the �rc=�rc interms of the N rc and Brc . These two steady-state results are available in the literature for a varietyof MCSR systems.The method obtains an approximation to the relationship between the Brc (t) and the N rc (t)by replacing in the above expressions Brc by Brc(t), N rc by N rc (t), and �rc=�rc by an instantaneousquantity zrc (t) that we introduce. This yields for every r two \instantaneous" expressions, one forthe Brc(t) in terms of the zrc (t), and one for the zrc (t) in terms of the N rc (t) and Brc (t). Given theN rc (t), we iterate over these two expressions until the Brc(t) and zrc (t) converge. To obtain the timeevolution of these measures, we iterate over a third expression de�ning the N rc (t+�) in terms of theN rc (t), �rc(t), �rc(t), and Brc (t), where � is the time step for computing the instantaneous measures.We use the Z-iteration to study the performance of an integrated network with NSFNET back-bone topology, weighted fair-queueing link scheduling [89], admission control based on \e�ectivebandwidth" [44], and various virtual-circuit routing schemes that adapt to delayed state informationexpressed in terms of link utilizations. 2



Quasi-Static EvaluationThe Z-iteration can be used to solve dynamic models that capture the general time-varying behav-ior of integrated networks o�ering both virtual-circuit and datagram services. More tractable butsomewhat restrictive models, referred to as quasi-static models, are sometimes appropriate to eval-uate datagram (best-e�ort) services. These models assume that steady-state is reached betweentwo successive routing updates. This is justi�able because packet transmission times are smallcompared to the routing update interval, assuming static loading and network topology duringeach update interval. The link costs are iteratively computed from steady-state queueing results,and routes (and hence the system state) are updated accordingly. Because quasi-static modelscapture less detail, they generally allow faster and more tractable evaluation over dynamic models.However quasi-static models do not seem appropriate to evaluate virtual-circuit services becausethe lifetimes of connections are typically larger than the routing update interval.In the last part of the dissertation, we formulate a quasi-static datagram model to evaluate anew approach to providing di�erent type-of-service (TOS) classes of best-e�ort service. Instead ofthe traditional �rst-in-�rst-out (FIFO) link scheduling, our approach uses a class-based round-robindiscipline and exploits this structure when calculating link costs.Our quasi-static assumption makes the model analytically tractable while capturing the impor-tant dynamics and interactions between routing and scheduling. We apply the control-theoreticLiapunov function method to obtain the set of system states that lead to the optimal state, anddemonstrate that this set is larger with our approach than with the traditional FIFO-based ap-proach.1.2 Organization of the DissertationChapter 2 presents the Z-iteration method for a general dynamic MCMR model. In Chapter 3,we apply the Z-iteration to three speci�c systems with time-varying inputs and dynamic control,namely, an integrated network, a parallel database server, and a distributed batch system. Valida-tions against discrete-event simulations are given in Chapter 4. Chapter 5 applies the Z-iterationto a detailed network model, and investigates three routing schemes on the NSFNET backbonetopology. Chapter 6 describes approaches to providing classes of best-e�ort service in a datagramTOS network, and presents a quasi-static model. Analysis of this quasi-static model to comparethe various approaches is given in Chapter 7. Chapter 8 concludes and identi�es future researchdirections. 3



1.3 PublicationsMost of the work presented in Chapters 2, 3 and 4 appears in [77]. The work presented in Chapter 5appears in [74]. The work presented in Chapters 6 and 7 appears in [75, 76].
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Chapter 2Z-Iteration: An Evaluation Method for DynamicModels2.1 IntroductionWe consider a general multiple-class multiple-resource (MCMR) system. We have a set R ofresources and a set C of customer classes. The nature of a resource depends on the system beingmodeled; for example, it may be computer memory, oor space, transmission capacity, etc. Eachresource r has an attribute, denoted by r.max, which is a constant that indicates the maximumnumber of units in terms of which r is quanti�ed.Each class in C represents a class of customers that requires a particular set of resources.Depending on the system being modeled, customers can be user programs, manufactured products,network connections (calls), etc. Speci�cally, each class-c customer requires some subset Rc ofresources, Rc � R. Furthermore, the class-c customer requires some number of units, denoted byc.r.req, of each resource r 2 Rc (e.g. bandwidth, storage space, etc.). For example, a networkconnection would require some transmission and bu�er capacity on each of the links of the pathconnecting its source to its destination.Let �c(t) denote the instantaneous arrival rate of class-c requests, and 1=�rc(t) denote theinstantaneous service (or processing) time of a class-c request at r. Thus we are interested notonly in the steady-state behavior of the MCMR system, but also in its transient or non-stationarybehavior. Transient conditions arise when the statistics of the customer arrival processes or theservice rates of the resources vary with time, due to externally time-varying factors or dynamiccontrol decisions based on current or delayed system state information.An arriving class-c customer is blocked at a resource r 2 Rc i� c.r.req exceeds the amount of theresource that is currently available (additional constraints can be incorporated too). An arrivingclass-c customer is blocked i� it is blocked at any r 2 Rc. A blocked customer is lost or retried later.Among the main performance measures of interest are the instantaneous blocking probabilities (orequivalently the throughputs) of the di�erent classes, instantaneous average number of customers5



at resources, etc.The generality of our model allows us to consider a variety of systems, including those withdelayed feedback between changes in system state information and changes in control decisions.Examples of such systems include database locking systems, inventory systems, distributed batchsystems, manufacturing systems, and communication networks. Because the class of a customercan be assigned when the customer arrives, it is straightforward to model state-dependent controlpolicies such as assigning jobs to processors with the least workload.MCMR systems have often been analyzed under steady-state conditions (e.g. [53, 57, 70, 29,92, 21, 80, 43]). In this chapter, we formulate a dynamic ow model [35] to account for transientconditions as well. We solve our model by an iteration that di�ers from iterations commonly usedin steady-state analysis, which only solve for steady-state measures and ignore the e�ect of delayedfeedback.Our solution methodThe generality and time-dependency of our model seem to preclude analytical closed-form solutions.Our solution method, referred to as Z-iteration is, however, numerical. This has signi�cant compu-tational advantages over the (straightforward) discrete-event simulation approach, which requiresthe averaging of a large number of independent simulation runs to obtain meaningful performanceestimates.The instantaneous blocking probability of a class c, denoted by Bc(t), is de�ned as the instan-taneous probability that a class-c request is blocked at any of the required Rc resources. For this,we decompose our MCMR system into a set of multiple-class single-resource (MCSR) systems byinvoking the resource independence assumption. Denoting by Brc(t) the instantaneous blockingprobability of class c at resource r, we have Bc(t) = 1�Qr2Rc(1� Brc(t)).The Z-iteration computes Brc (t) together with N rc (t), the instantaneous average number of class-c requests waiting or in service at resource r, and U rc (t), the instantaneous average number of class-crequests in service at resource r.Let the index c0 range over the set of classes requiring resource r. The Z-iteration depends uponthe availability of two steady-state results about each MCSR system r 2 R assuming that the �c0(t)and �rc0(t) are constants: (1) an expression for the steady-state blocking probability Brc in terms ofthe steady-state actual o�ered loads �c0=�rc0 ; and (2) an expression for the steady-state utilizationU rc in terms of the steady-state average numbers of customers N rc0 , from which we readily obtainan expression for �c=�rc in terms of the N rc0 and Brc .These two steady-state results are available for a variety of MCSR systems, including self-servicesystems where the customer is also the server, and single- or multiple-server queueing systems[63, 35]. We point out that the expressions do not have to be closed form and can be implicit.We make use of the concept of instantaneous �ctitious o�ered load, originally introduced in [37],6



to obtain instantaneous versions of the above expressions. Speci�cally, we replace Brc by Brc (t), theN rc0 by N rc0(t), and the �c0=�rc0 by instantaneous �ctitious o�ered loads zrc0(t). (Note that �c=�rc isnot replaced by �c(t)=�rc(t).)This yields for every r 2 R two \instantaneous" expressions, one for Brc (t) in terms of the zrc0(t),and one for zrc (t) in terms of the N rc0(t) and Brc (t). A third instantaneous expression is obtainedfrom standard ow balance, de�ning N rc (t + �) in terms of the N rc0(t), �c(t), �rc(t), and Br0c (t) forr0 2 Rc, where � is the time step for computing the instantaneous measures. With these threeinstantaneous expressions we compute the Brc0(t), zrc0(t), and N rc0(t+�) in terms of the N rc0(t), �c0(t)and �rc0(t) for t = 0; �; 2�; � � �. Speci�cally, given the N rc0(t), we iterate over the �rst two expressionsuntil the Brc0(t) and zrc0(t) converge. Then we use the third expression to compute the N rc0(t + �).Section 2.2 presents the Z-iteration method for the general MCMR model. Section 2.3 discussesits convergence. Section 2.4 discusses related work.2.2 The MethodFigure 2.1 outlines our solution method to the general MCMR model introduced in Section 2.1.Recall that the following measures have been introduced:� Brc(t), instantaneous blocking probability of class c at resource r 2 Rc.� N rc (t), instantaneous average number of class-c requests waiting or in service at resource r.� U rc (t), instantaneous utilization of resource r by class-c requests (average number of class-crequests in service at resource r).� zrc (t), instantaneous �ctitious o�ered load of class-c requests at resource r.Let Cr denote the set of classes requesting units of resource r. In the outermost iteration, weobtain fN rc (t+ �); Brc (t) : r 2 R; c 2 Crg for t = 0; �; 2�; � � �. The computation for each time tconsists of two parts. The �rst part (steps 3-9) computes, for every r 2 R, fBrc(t): c 2 Crg in termsof fN rc (t): c 2 Crg. The second part (step 10) computes, for every r 2 R and c 2 Cr, N rc (t+ �) interms of fN rc0(t): c0 2 Crg, �c(t), �rc(t), and fBr0c (t): r0 2 Rcg. The �rst part involves an iterativeprocedure (steps 5-9) on instantaneous versions of two steady-state formulas (steps 7 and 8). Wedescribe these in detail below. The idea here is that the instantaneous relationship between fBrc(t):c 2 Crg and fN rc (t): c 2 Crg is very well approximated by their relationship at steady-state.We de�ne a feasible state of resource r by the number of requests from each class c 2 Cr thatr can simultaneously support, i.e. for which the total number of units requested does not exceedr.max. Let F r denote the set of all feasible states of r.7



1. Initialize fN rc (0) : r 2 R; c 2 Crg /* 0 for initially empty system */2. For t = 0; �; 2�; � � �begin3. For every r 2 R /* Obtain fBrc (t) : c 2 Crg in terms of fN rc (t) : c 2 Crg */begin4. Initialize fẑrc (t) : c 2 Crg /* arbitrary value if t = 0 *//* ẑrc (t� �) if t > 0 */5. repeat6. zrc (t) ẑrc (t), for every c 2 Cr7. Obtain fBrc (t) : c 2 Crg in terms of fzrc (t) : c 2 Crgusing an instantaneous version of a steady-state formula (see (2.2))8. Obtain fẑrc (t) : c 2 Crg in terms of fBrc (t); N rc (t) : c 2 Crgusing an instantaneous version of a steady-state formula (see (2.4))9. until j ẑrc (t)� zrc (t) j< �, for every c 2 Crend10. For every r 2 R and c 2 Cr,obtain N rc (t + �) in terms of fN rc0(t) : c0 2 Crg, �c(t), �rc(t), and fBr0c (t) : r0 2 Rcgusing a di�erence equation relating arrivals and departures (see (2.5))end Figure 2.1: Evaluation method.Details of step 7The �rst steady-state formula expresses the steady-state blocking probability Brc of class c atresource r in terms of the steady-state actual o�ered loads f�c0=�rc0 : c0 2 Crg. That is, assumingthe �c0(t) and �rc0(t) are constants for all t, the steady-state transition rate between two statesbelonging to F r is given by some function of �c0 and �rc0 . A class-c request is blocked in a state ofF r if its admittance would lead to a state outside F r. Refer to such states of F r as class-c blockingstates. We solve analytically for the probability of being in a class-c blocking state, yielding aformula Src in terms of the �c0�rc0 :Brc = Src (f�c0�rc0 : c0 2 Crg) for c 2 Cr (2.1)8



To illustrate, consider anM=G=m=m resource used by one class of customers arriving accordingto a Poisson process of rate �c. Let each admitted customer be served by one of the m servers for anaverage duration of 1=�rc . Then Src is the Erlang-B formula, i.e. Src = E(�c�rc ; m) = (�c�rc )m=m!Pmj=0( �c�rc )j=j! [63]:The instantaneous version of (2.1) is obtained by replacing Brc by Brc (t) and �c0�rc0 by zrc0(t),yielding Brc(t) = Src (fzrc0(t) : c0 2 Crg) for c 2 Cr (2.2)Details of step 8The second steady-state formula, which we refer to as T rc , expresses U rc , the steady-state utilizationof resource r by class-c customers, in terms of fN rc0 : c0 2 Crg, the steady-state average numbers ofcustomers at resource r: U rc = T rc (fN rc0 : c0 2 Crg)From this and �rc U rc = �c [1� Brc ], obtained by equating the departure rate to the admissionrate, we have �c�rc = T rc (fN rc0 : c0 2 Crg)[1�Brc ] for c 2 Cr (2.3)T rc is a function that reects the load and service discipline of r. The exact form of T rc isapplication dependent. One approximation to obtain T rc is to assume no blocking and then usesteady-state queueing formulas expressing N rc in terms of the �c0�rc0 . Inverting these formulas, weobtain �c�rc in terms of the N rc0 . Since we are assuming no blocking, from equation (2.3), we haveT rc = �c�rc . Thus, we get T rc in terms of the N rc0 . For example, consider a self-service facility wherethe customer is also the server, as in an M=G=m=m queueing system. Assuming no blocking, weknow that for the M=G=1 system N rc = �c�rc [63]. From this and T rc = �c�rc , which holds assuming noblocking, we have T rc = N rc . Note that the approximation (due to the assumption of no blocking)is correct here for the self-service system where there is no waiting and by de�nition we directlyhave T rc = N rc . (See Sections 2.3 and 3.2.)The instantaneous version of (2.3) yieldszrc (t) = T rc (fN rc0(t) : c0 2 Crg)[1� Brc (t)] for c 2 Cr (2.4)Knowing fN rc (t): c 2 Crg at some �xed t, we can solve equations (2.2) and (2.4) iterativelyfor fBrc(t): c 2 Crg. In particular, starting from an initial estimate fẑrc (t): c 2 Crg, we computefBrc(t): c 2 Crg from equations (2.2). Then, we use equations (2.4) to compute new values forfzrc (t): c 2 Crg. We repeat this process until the values of fzrc (t): c 2 Crg stabilize as illustrated insteps 5-9 of Figure 2.1. 9



Details of step 10At a �xed time t, once we obtain fBrc(t) : r 2 R; c 2 Crg, we obtain fN rc (t + �) : r 2 R; c 2 Crg,where � is the discrete-time step, using the following di�erence equation:N rc (t + �) = N rc (t)� �rc(t) U rc (t) � + �c(t) � Yr0 2Rc[1� Br0c (t)] (2.5)The second term in the right-hand side of equation (2.5) represents the average number ofclass-c requests which �nish using (and depart from) resource r during [t; t + �); the quantityU rc (t) is computed from T rc (fN rc0(t) : c0 2 Crg). The third term represents the average number ofnew class-c requests that are admitted to resource r during [t; t + �). Note that the product termQ reects the assumption made in Section 2.1 that a new class-c request is admitted i� it is notblocked at any of the required Rc resources (this invokes the resource independence assumption).CommentsAssuming that K iterations are needed for convergence of the iterative procedure in steps 5-9 ofFigure 2.1, the computational complexity for each time step is O(jRj jCrj ( (jBrc j+ jzrc j)K + jN rc j )),where jBrc j is the cost of evaluating Brc (:) via (2.2), jzrc j that of evaluating zrc (:) via (2.4), and jN rc jthat of evaluating N rc (:) via (2.5). The Z-iteration requires storage of O(V jRj jCrj), where V is thenumber of instantaneous measures. From Figure 2.1, we have V = 5 since we have 5 instantaneousmeasures de�ned, namely, Brc (:), zrc (:), N rc (:), �c(:) and �rc(:).We note that it might be required to make assumptions about the arrival or service distributionsin order to obtain the Src (:) and T rc (:) formulas.Above we de�ned the feasible state of resource r by a multi-dimension vector representing thenumber of requests from each class c 2 Cr that r can simultaneously support. In fact, we can de�nea feasible state di�erently as long as in this state, the total number of units requested does notexceed r.max. For example, we can de�ne it by a single number representing the total number ofunits of r currently used by customers. Also, other criteria can used to further limit admission ofrequests.The Z-iteration can also be used to directly solve for steady-state, if the �c(t) and �rc(t) areconstants and a solution exists. We simply set Nrc (t+�)�Nrc (t)� = 0 in equations (2.5) and use them inconjunction with equations (2.2) and (2.4) to iteratively solve for steady-state. There is no simpleway to determine whether there exists a solution to such a nonlinear system. Even though thephysical nature of the system usually suggests that a solution exists, the iteration may oscillatebetween di�erent solutions, which can alert one to the instability of the system [21]. Obviously, suchoscillations can also occur under transient conditions arising, for example, from dynamic control.Observe that it is easy to realize parallel implementations of our method by mapping thecomputations for di�erent resources onto di�erent processors, and we would expect almost linearspeedup. 10



2.3 Error and ConvergenceThe accuracy of our method depends on the approximation of the relationship between the Brc (t)and the N rc (t) by its steady-state counterpart, which is the �xed point of the iteration in steps 5-9 ofFigure 2.1. Our experience indicates that our method yields accurate performance measures whencompared to discrete-event simulation and that the iteration converges quickly (see Chapter 4).Analyzing the errors and convergence of this iteration is hard in general. However, it canbe shown in simple situations that the approximation is accurate when compared to the exactinstantaneous solution, and that the iteration is a contractive mapping of [0; 1) into [0; 1) andhence it converges to a unique �xed point [61]. We show this for theM=M=2=2 system with constantarrival and service rates.Accuracy of the approximation for the M=M=2=2 systemFrom [98], we have the following exact instantaneous solution. Consider the M=M=2=2 systeminitially empty with customer arrival rate �(t) = � and service rate �(t) = � for all t. The Laplacetransform Pn(s) of the state probability Pn(t), where n denotes the number of customers in thesystem (n = 0; 1; 2), is given byPn(s) = Z 10 e�stPn(t)dt= 2Xi=n(�1)i�n  in !�i(s)where �i(s) = 1(s+i�) P2j=i  2j ! (s+i�) ��� (s+j�)�j+1�iP2j=0 2j ! s(s+�) ��� (s+j�)�j+1From the above result, we can directly obtain the exact instantaneous expressions for the block-ing probability P2(t), henceforth denoted by Bexact(t), and for the average number of customers inthe system, henceforth denoted by Nexact(t). In particular, we use Mathematica [105] to obtain theinverse Laplace transforms of the following:Bexact(s) = P2(s) = �2(s) = �2�2s + 2�s(s+ �) + s(s+ �)(s+ 2�)Nexact(s) = P1(s) + 2P2(s) = �2(s)�s + 2�+ 2�� �The steady-state relationship between the blocking probability P2, henceforth denoted by Bss,and the average number of customers in the system, henceforth denoted by Nss, is given by:Bss = �2=21 + �+ �2=2 ; where � = �=� (2.6)11



Nss = �+ �21 + �+ �2=2 (2.7)Inverting equation (2.7), we get� = Nss � 1 +p1 + 2Nss �N2ss2�Nss (2.8)Substituting (2.8) in (2.6), we get Bss in terms of Nss.To illustrate the accuracy of approximating the relationship between Bexact(t) and Nexact(t)by the relationship between Bss and Nss, we plot in Figure 2.2 Bexact(t) and Bss jNss=Nexact(t) for� = � = 1 and t 2 [0; 6]. Clearly, this shows that the approximation is quite good.
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Figure 2.2: Accuracy of the approximation for the M=M=2=2 system.Convergence of the iteration for the M=M=2=2 systemThe iteration in steps 5-9 of Figure 2.1 implicitly de�nes the relationship between Bss and Nss.Actually for the M=M=2=2 system we do not need to iterate since we have (2.8), and consequentlywe have an explicit relationship between Bss and Nss. But for blocking systems in general, equation(2.7), from which (2.8) was obtained, is not invertible. So instead of equation (2.8) our method usesequation (2.3), where we obtain the steady-state utilization in terms of Nss assuming a nonblockingsystem (this approximation turns out to be very good in general; see Chapter 4). Thus here weillustrate the convergence of the iteration de�ned by:Bss = �2=21 + �+ �2=2� = Nss[1�Bss]12



These two formulas de�ne an equation of the form Bss = F (Bss). Figure 2.3 shows a graphicalexample of the mapping F . It illustrates that F is a contractive mapping of [0; 1) into [0; 1) andhence it converges to a unique �xed point [61].
0.2 0.4 0.6 0.8 1

B

Output Trajectory

0

0.2

0.4

0.6

0.8

1

F(B)

Figure 2.3: Convergence of the iteration for the M=M=2=2 system starting from Bss = 0:9 forNss = 1.2.4 Related WorkMCMR systems have often been analyzed under steady-state conditions (e.g. [53, 57, 70, 29, 92,21, 80, 43]). In this chapter, we formulated a dynamic ow model [35] to account for transientconditions as well. We solved our model by an iteration that di�ers from iterations commonly usedin steady-state analysis, which only solve for steady-state measures and ignore the e�ect of delayedfeedback.Our model yields the time-varying behavior of a general MCMR system. We use the well-knowndecomposition technique [62, 57] to approximate the system as a collection of MCSR systems. Foreach MCSR system, we describe the evolution of the instantaneous average number of customersof each class by relating its instantaneous admission rate to its instantaneous departure rate. Thecomputation of these instantaneous rates uses a basic concept, that of approximating instantaneousrelationships by their steady-state counterparts.To obtain the instantaneous admission rates, we adapt steady-state queueing formulas to yieldthe instantaneous blocking probability of each class in terms of the instantaneous average numbersof customers waiting and in service. This uses the technique of �ctitious o�ered load. The techniquewas originally introduced in [37], where it was used to obtain steady-state blocking probability andcarried load for a speci�c call routing and network topology.Reference [37] considered a network of source nodes, destination nodes, and intermediate nodes,13



with a link from every source node to every intermediate node, and a link from every intermediatenode to every destination node. Each link can carry a �xed total number of calls. The call arrivalprocess from a source to a destination is Poisson with �xed rate. The call routing is not dynamic;a �xed fraction of the call arrivals is routed through every intermediate node. In addition, overowtra�c (due to blocking links) is routed through alternate available routes. Each call, once admitted,has an exponential holding time of �xed mean that is the same for all calls. The blocking probabilityof a link is given by the Erlang-B formula expressed in terms of �ctitious combined o�ered load.The system is solved for steady-state average number of calls on each link by equating the calldeparture rate to the call admission rate.Our model extends this �ctitious o�ered load technique to general multi-class systems, where, forexample, each class has di�erent resource and service needs, and resources have di�erent schedulingdisciplines. Also, our model can be applied to describe general dynamic routing schemes with thearrival rate of a class changing as a function of the instantaneous system state.To obtain the instantaneous departure rates, we again adapt steady-state queueing formulasto yield the instantaneous utilization of each class in terms of the instantaneous average numbersof customers waiting and in service. The same technique was used in [100], where feedforwardqueueing networks were considered. Each service center is an M=M=1 in�nite FCFS queue withthe same average service time for all classes. The routing of each class is a time-dependent Bernoulliprocess. Compared to our model, this does not model blocking resources, or service centers withcomplicated structure (e.g. service centers consisting of multiple resources with di�erent schedulingdisciplines serving customers with di�erent needs). Though we do not consider here sequentialresource needs by one customer (a customer requests all needed resources simultaneously), ourmodel is easily extended to capture this situation.Our dynamic ow model is quite general, and can be used to study both transient and steady-state performances of various MCMR blocking and non-blocking systems. Our method has advan-tages over other methods that might be used to analyze transient behaviors. One such method isthat of time-dependent queueing models, which involve probability distributions for all events. How-ever, such models are extremely di�cult to solve analytically [101], and computationally expensiveto solve numerically [100]; A second method is that of di�usion models, which utilize averages andvariances [19, 84]. Such models involve partial di�erential equations and are usually intractable. Athird method is that of uid models, which utilize average quantities only [15]. Such models involveordinary di�erential equations and are usually tractable. However, dynamic ow models appearmore accurate since they include detailed probabilistic descriptions manifested in our model in thecomputation of both the instantaneous blocking probabilities and the instantaneous utilizations.14



Chapter 3Simple Applications of the Z-IterationIn Chapter 2, we described the Z-iteration for a general MCMR model. As we pointed out, theexact form of Src (:) and T rc (:) and the values of �rc(:) and �c(:) depend on the particular application.In this chapter, we consider di�erent applications, and show how they �t into the general model andsolution procedure. We consider an integrated network, a parallel database server, and a distributedbatch system. The �rst and third systems are modeled as systems with self-service resources, forwhich validations against discrete-event simulations are given in Section 4.1. The second system ismodeled as a system with single-server resources, for which validations are given in Section 4.2.3.1 Integrated Network ExampleConsider an integrated network carrying various classes of connections. (See Figure 3.1.) A classrepresents connections with the same tra�c and QoS parameters and routed on the same path froma source node to a destination node. The connections of a class c arrive according to a Poissonprocess of rate �c(t). Each connection, once it is successfully setup, has a lifetime of averageduration 1�c(t) .
c1

c2 c3 c4

r1 r2 r3Figure 3.1: A 3-link integrated network.15



Resources in a network include link bandwidths, bu�er spaces, etc. For this example, weassume link bandwidths are the main resources; thus R consists of link ids (where each id denotesthe bandwidth component of the link). We assume a connection requires the reservation of acertain amount of bandwidth on each link along its route that are enough to satisfy its QoS. Thisreservation amount can be thought of as either the peak transmission rate of the connection or its\e�ective bandwidth" [44] varying between its peak and average transmission rates.The set Rc of a class-c connection would thus contain the links along the route of class c. Anarriving class-c connection that �nds insu�cient bandwidth on any r 2 Rc is blocked and lost.Otherwise, the connection is admitted and bandwidths are allocated to it on each r 2 Rc for anaverage duration of 1�rc(t) = 1�c(t) . Note that this is a self-service system.Thus, r.max is the total link bandwidth of r, and c.r.req is the amount of link bandwidth thatmust be allocated (reserved) for a class-c connection on r 2 Rc. Let's assume that the c.r.reqand r.max are integers. Let the state of r indicate the amount of bandwidth allocated. Thus,F r = f0; 1; � � � ; r.maxg. Let Qr(j) denote the steady-state probability of r being in state j. Thenthe Qr(:) satisfy the following recurrence relation [92]:j Qr(j) = Xc02Cr �c0�rc0 c0:r:req Qr(j � c0:r:req)j = 1; : : : ; r.maxwhere Pr.maxj=0 Qr(j) = 1.The steady-state blocking probability for class-c connections at r, Brc , is given byBrc = r.maxXj=r.max�c.r.req+1Qr(j)This steady-state solution, which de�nes Src (:) for this system, is valid for Poisson arrivals andgeneral service times. It can be used in equations (2.2) after replacing the �c0�rc0 by �ctitious o�eredloads zrc0(t).Regarding the function T rc (:) used in equations (2.4), since r is self-service, we haveT rc (:) = N rc (t)In Chapter 5, we consider a detailed integrated network model and illustrate how the Z-iterationcan capture the e�ects of various dynamic control schemes.Systems with self-service resources are validated (against discrete-event simulations) in Sec-tion 4.1. There we consider systems equivalent to single-link network, and multi-link network. Themulti-link network is used by several multi-hop connections representing main tra�c, and severalone-hop connections representing cross-tra�c. 16



3.2 Parallel Database Server ExampleConsider a system of multiple disks on which data is partitioned according to some scheme, e.g.round-robin, range partitioning, etc. [27]. Each disk has a �nite �rst-come-�rst-served (FCFS)queue where queries of di�erent classes wait to be served. A query requests data retrieval from oneor more disks in parallel. (See Figure 3.2.) This parallelism typically leads to reduction in dataaccess time [27, 54]. The collection of disks needed by a query is de�ned by the query's class. Weassume an arriving query requires one unit of space in the queue of each disk it needs to access.
c2 c3 c4

c1

r1 r2 r3Figure 3.2: A 3-disk parallel database server.Thus the resource set Rc of a class-c query contains the queues of disks that are needed by classc, and this is a function of the data partitioning scheme. r.max is the total number of requests thatr can accommodate, and c.r.req = 1 for r 2 R and c 2 Cr. An arriving class-c query that �nds nospace in any r 2 Rc is blocked and lost.Assume class-c queries arrive according to a Poisson process of rate �c(t). Also, assume thatthe service time of any query in r is exponentially distributed with mean 1�r ; thus 1�rc(t) = 1�r for allc 2 Cr.Let the state of r denote the total number of queries waiting or in service in r. Thus, F r =f0; 1; : : : ; r.maxg. The steady-state blocking probability for class-c queries at r is the steady-stateprobability of r being in state r.max. This steady-state solution is well-known for theM=M=1=r.maxqueueing system, in particular, for c 2 Cr:Brc = (Pc02Cr �c0�r )r.maxPr.maxj=0 (Pc02Cr �c0�r )j [63]This steady-state solution can be used in equations (2.2) after replacing Pc02Cr �c0�r byPc02Cr zrc0(t).17



We employ the technique introduced in Section 2.2 to derive the function T rc (:) used in equa-tions (2.4). Assuming steady-state and no blocking, we can treat the M=M=1=r.max system of ras an M=M=1=1 system. At steady-state, we know that [63]N rc = �c�r �Pc02Cr �c0 (3.1)From this and T rc (:) = �c�r , which holds assuming no blocking, we have1T rc (:) = N rc1 +Pc02Cr N rc0Therefore, in the transient regime, we haveT rc (:) = N rc (t)1 +Pc02Cr N rc0(t)The above model can be used to study various data partitioning schemes for high-performanceindexing [27]. Systems with single-server resources are validated (against discrete-event simulations)in Section 4.2.3.3 Distributed Batch System ExampleConsider a distributed batch system such as Condor [69]. Batch jobs (user programs) are submittedto a central manager (CM). Assume batch jobs of type i arrive to the CM according to a Poissonprocess of rate �i. The CM uses its information about the load on the various workstations tochoose for the arriving batch job a potential workstation for its execution. The class of the batchjob is de�ned by the workstation it is routed to by the CM and the job type.Each batch job would typically require resources such as memory, disk space, and CPU process-ing power to execute on a workstation. For this example, we assume all required resources otherthan the CPU are always available. The set Rc of a class-c batch job would thus contain the CPUof the workstation to which the job is routed.We assume only one job can be running on each workstation at a time. Thus, if the owner ofthe workstation executes a job of his/her own, then the batch job currently executing on his/herworkstation, if any, is suspended and its execution resumed later when the owner job �nishesexecution. An arriving class-c batch job that �nds another batch job running or suspended onr 2 Rc is blocked and returned to the CM. Otherwise, it is admitted for processing with mean1 From (3.1), we have (i) Nrc = �c=�r1�Pc02Cr �c0 =�r , and thus (ii) Pc02Cr Nrc0 = Pc02Cr �c0 =�r1�Pc02Cr �c0 =�r . Rearranging thelast equation, we have (iii) Pc02Cr �c0=�r = Pc02Cr Nrc01+Pc02Cr Nrc0 . Substituting (iii) in (i), we get an expression for �c�r ,which together with T rc (:) = �c�r yields the desired result.18



processing time of 1=�rc(t). This processing time includes the time during which the batch jobis suspended due to owner processes [68]. Note that in this application, we do not assume thatblocked jobs are lost, rather they are returned to the CM for retry.The instantaneous arrival rate of class-c batch jobs of type i, �c(t), is a function of �i, the loadbalancing algorithm used by the CM, and the rate of retrials of type i batch jobs. Assume the loadbalancing algorithm regularly assigns to the candidate workstations probabilities according to theirmeasured loads. Arriving batch jobs are routed independently according to these probabilities. Let�c(t) denote the load-dependent probability that the type i batch job belongs to class c, i.e. isrouted to r 2 Rc. Then,�c(t) = [�i + Xclasses c0 of type ir02Rc0 �c0(t� �) Br0c0 (t� �)] �c(t) (3.2)The P term in equation (3.2) represents the total rate of retrials of type i batch jobs, which isa function of their blocking probabilities. In this model, r.max is the maximum number of batchjobs that r handles. r.max = 1 and c.r.req = 1 for r 2 R and c 2 Cr. Let the state of r denote thetotal number of batch jobs running or suspended on r. Then, F r = f0; 1g. This system is similarto the self-service integrated network discussed in Section 3.1, and hence we can use the Src (:) andT rc (:) formulas presented there.Indeed, we are assuming here the arrival processes are Poisson. This is not, in general, truesince the composite tra�c contains blocked batch jobs returned immediately at the next time stepto the system for retry. This assumption is less restrictive if blocked batch jobs are returned tothe system after waiting an independent random period [80, 39]. This waiting e�ect can be easilyincorporated into the above model. This model can be used to study the interactions betweenowner jobs and batch jobs, and examine various load balancing schemes through the 1=�rc(t) and�c(t).
19



Chapter 4Validation of the Z-IterationIn this chapter, we present numerical results to validate the Z-iteration. Section 4.1 containsvalidations against discrete-event simulations for systems with self-service resources. Section 4.2contains validations for systems with single-server resources.4.1 Validation of Systems with Self-Service ResourcesIn this section, we compare the results obtained using our method with those obtained usingdiscrete-event simulation for systems with self-service resources. In our method, we obtain in-stantaneous performance measures through equations (2.2), (2.4), and (2.5), substituting with theappropriate application-dependent parameters and formulas. We take the discrete-time step � tobe 0.1.The simulation model di�ers from our analytical model in that the actual events of arrival andprocessing of requests are simulated according to the speci�ed probability distributions and sys-tem characteristics (i.e. service disciplines, admission policy, etc.). To obtain reliable performanceestimates, a number of independent replications (i.e. simulation runs) must be carried out and av-eraged. In particular, let X(i)(t) denote a generic measure computed at time instant t in replicationi, where t takes on the successive values t1; t2; � � � ; tk; � � �. Then, the mean value of this measure atparticular time instant tk is estimated as PNi=1X(i)(tk)=N , where N is the total number of repli-cations. The larger N is, the more accurate the simulation estimates are [71]. In our simulations,the performance measures are computed for t = 1; 2; 3; � � �.The measures considered are precisely de�ned as they are introduced below. In all experiments,we start with empty systems. For the cases with N = 50, the observed mean of the simulationmeasures at various time instants typically show 95% con�dence interval for a + 10% range. Forthe cases with higher N , 95% con�dence interval is obtained for a + 3% range.We �rst consider a MCSR system with a single resource r1 used by 10 customer classes whoseparameters are shown in Table 4.1.Class-c customers arrive at r1 according to a Poisson process of rate �c. The system is self-20



Class c Rc c.r.req �c 1=�cc1 fr1g 30 0.125 5c2 fr1g 15 0.5 1c3 fr1g 50 0.2 2c4 fr1g 10 0.1 2c5 fr1g 40 0.125 1c6 fr1g 25 0.5 0.5c7 fr1g 30 1.0 0.5c8 fr1g 10 0.0625 10c9 fr1g 5 1.0 0.2c10 fr1g 50 0.25 2Table 4.1: Parameters of 10 classes using r1 with r1.max = 200.service. In particular, an admitted class-c customer holds the acquired c.r1.req resource units foran exponential duration with mean 1=�c before releasing them. This system is similar to a single-link integrated network modeled as in Section 3.1, and hence we use the T rc (:) and Src (:) formulaspresented there to obtain the performance measures by our method.Figures 4.1, 4.2, and 4.3 show the time behavior of the total number of in-service customers,the fraction of resource units allocated, and the total throughput, respectively. The �rst mea-sure denotes the total number of customers currently holding resource units, which is equal toPc02Cr1 N r1c0 (t) in our method. The second measure denotes the fraction of r1.max currently beingheld by customers, which is equal to (Pc02Cr1 N r1c0 (t)� c0:r1:req)=r1:max in our method. The thirdmeasure denotes the total current admission rate, which is equal to Pc02Cr1 �c0(1 � Br1c0 (t)) in ourmethod. Generally, it is equal to Pc02C �c0 Qr02Rc0 [1� Br0c0 (t)] for MCMR systems.In our simulations, the �rst two measures displayed at time instant t (t = 1; 2; 3; � � �) are simplythe values of these measures as observed at t. The last measure, namely the total throughput,displayed at time instant t is de�ned to be the total number of customers admitted in the interval[t� 1; t).Our method yields results very close to the exact values. In addition, we found our method muchless time-consuming than simulation. This is especially because the latter requires the averaging of alarge number of independent simulation runs. To give an idea of the computational savings, for thisexperiment, on a DECstation 5000/133, our method required around 6 seconds of execution timewhile the 50-run and 1000-run simulations required around 25 seconds and 8 minutes, respectively.The number of iterations required at each time step for convergence of the iterative procedure insteps 5-9 of Figure 2.1 is less than 6 iterations for � = 10�5 and ẑrc (0) = �c=�rc .21
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Figure 4.1: Total number of in-service customers versus time. MCSR self-service system.We next validate our resource independence assumption manifested in equation (2.5) by theproduct term Q. We consider a similar self-service system but with 3 resources and 20 customerclasses. Out of the 20 classes, 10 classes require all 3 resources. A class-c customer requires the samenumber of units of each r 2 Rc. Table 4.2 shows the system parameters. Note that this system canbe regarded as a multi-link integrated network modeled as in Section 3.1. See Figure 4.4. Here,classes 1 to 10 represent multi-hop connections modeling main tra�c, while other classes representone-hop connections modeling cross-tra�c.Figure 4.5 shows the instantaneous total throughput. Simulation results, denoted by Exp, arefor Poisson arrivals and exponential holding times. Simulation results, denoted by Det, are forPoisson arrivals and deterministic holding times. The results show the accuracy of our method inboth cases as they satisfy the assumptions required to obtain the T rc (:) and Src (:) formulas usedhere. (Our experiments with deterministic arrivals show large errors as expected.)Next, we consider a similar self-service systemwhose parameters are given in Table 4.3. Here, �c1varies with time. This mimics the e�ect of tra�c control policies such as ow control and routing.We assume �c1 alternates every 20 time units between zero and 0.125, starting with zero. Figures 4.6and 4.7 show the instantaneous total throughput and blocking probability, respectively. Our methodaccurately reproduces the behavior obtained by simulation. We compute the instantaneous blockingprobability B(t) from the throughput (t) using the relation B(t) = 1�(t)=�(t), where �(t) is theinstantaneous total arrival rate of requests. We do this rather than compute B(t) directly from thesimulations because doing that would require averaging over a very large number of replications,because B(t) typically has a very low value and thus a high sample variance.22
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Figure 4.2: Fraction of resource units allocated versus time. MCSR self-service system.4.2 Validation of Systems with Single-Server ResourcesIn this section, we compare the results obtained using our method with those obtained usingdiscrete-event simulation for systems with single-server resources. The performance measures arecomputed as described in Section 4.1. Similar con�dence intervals are also observed for the measuresobtained by simulation.We consider a MCMR system with 3 resources and 4 customer classes. Out of the 4 classes,class c1 requires all 3 resources. A class-c1 customer requires one unit of each resource. Table 4.4shows the system parameters.Class-c customers arrive according to a Poisson process of rate �c. Each resource consists ofa single-server with a �nite waiting room and a FCFS scheduling discipline. An admitted class-ccustomer occupies one unit of space, and requires an exponential service time with unit mean. Thissystem is similar to the parallel database server discussed in Section 3.2, and hence we use the T rc (:)and Src (:) formulas presented there to obtain the performance measures by our method. Figure 4.8shows the instantaneous total throughput. The results obtained by our method agree with thoseobtained by simulation.We next consider the same system but with �c1 varying with time. We assume �c1 alternatesevery 20 time units between zero and 0.2, starting with zero. Figures 4.9 and 4.10 show theinstantaneous total throughput and blocking probability, respectively. Our method accuratelyreproduces the behavior obtained by simulation.23
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Figure 4.3: Total throughput versus time. MCSR self-service system.
c1 ... c10

c11 ... c13 c14 ... c16 c17 ... c20

r1 r2 r3Figure 4.4: Multi-link network.24



Class c Rc c.r.req �c 1=�cc1 fr1, r2, r3g 30 0.125 5c2 fr1, r2, r3g 15 0.5 1c3 fr1, r2, r3g 50 0.2 2c4 fr1, r2, r3g 10 0.1 2c5 fr1, r2, r3g 40 0.125 1c6 fr1, r2, r3g 25 0.5 0.5c7 fr1, r2, r3g 30 1.0 0.5c8 fr1, r2, r3g 10 0.0625 10c9 fr1, r2, r3g 5 1.0 0.2c10 fr1, r2, r3g 50 0.25 2c11 fr1g 30 0.125 5c12 fr1g 15 0.5 1c13 fr1g 50 0.2 2c14 fr2g 10 0.1 2c15 fr2g 40 0.125 1c16 fr2g 25 0.5 0.5c17 fr3g 30 1.0 0.5c18 fr3g 10 0.0625 10c19 fr3g 5 1.0 0.2c20 fr3g 50 0.25 2Table 4.2: Parameters of 20 classes using 3 resources r1, r2, and r3 with r1.max = 150, r2.max =200, and r3.max = 250. Class c Rc c.r.req �c 1=�cc1 fr1, r2, r3g 30 0 $ 0.125 5c2 fr1g 30 0.125 5c3 fr2g 10 0.1 2c4 fr3g 50 0.25 2Table 4.3: Parameters of 4 classes using 3 resources r1, r2, and r3 with r1.max = 50, r2.max =100, and r3.max = 150. 25
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Figure 4.5: Total throughput versus time. MCMR system with self-service resources.
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Figure 4.6: Total throughput versus time. MCMR system with self-service resources. Time-varyingarrivals. 26
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Figure 4.7: Blocking probability versus time. MCMR system with self-service resources. Time-varying arrivals.
Class c Rc c.r.req �c 1=�cc1 fr1, r2, r3g 1 0.2 1c2 fr1g 1 0.5 1c3 fr2g 1 0.8 1c4 fr3g 1 0.4 1Table 4.4: Parameters of 4 classes using 3 resources with r:max = 5 each.27
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Figure 4.8: Total throughput versus time. MCMR system with single-server resources.
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Figure 4.9: Total throughput versus time. MCMR system with single-server resources. Time-varying arrivals. 28
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Chapter 5Application of the Z-Iteration to Detailed NetworkModelsIn this chapter, we apply the Z-iteration to a detailed network model. We formulate the modelin Section 5.1. Sections 5.2 and 5.3 illustrate how our method can capture the e�ects of variouscontrol schemes. Section 5.2 discusses scheduling and admission. Section 5.3 discusses routing.Section 5.4 investigates three routing schemes on the NSFNET backbone topology.5.1 Network ModelWe consider networks of arbitrary topology supporting real-time communication using a connection-oriented reservation scheme. That is, before a real-time application (e.g., voice, video) can starttransmitting its packets at the requested end-to-end QoS (e.g., delay), a connection has to be �rstestablished along a �xed physical route from the source node to the destination node. For this, thesource node uses its routing information to choose a potential route to the destination node.A connection setup message is then sent over this route, requesting a local QoS from each of itslinks such that the aggregate of these local QoS satis�es the connection's end-to-end QoS. If therequest fails at any link due to lack of resources (or any other admission constraints), the connectionis blocked and lost; it is assumed that it is not attempted on another (alternate) route. Otherwise,the connection is established and resources are allocated to it. At the end of transmission, thisconnection is torn down and resources are released. We assume that a connection setup (andteardown) request on a multi-link route reaches all links of the route simultaneously.Routing can be static or dynamic. For dynamic routing, we assume routing information is up-dated by periodic broadcasts by nodes of the status of their outgoing links during the last period.This periodic collection of status information is often used in routing algorithms proposed for inte-grated services networks (e.g., [1, 8, 24]). We assume that broadcasts of all nodes are synchronized;we can easily model unsynchronized broadcasts. We also assume that these broadcasts reach othernodes instantaneously; this is justi�able because the time to propagate routing information is small30



compared to the routing update period.After each update, a node uses its new routing information to compute new routes to be usedfor incoming connections until the next broadcast. The routes are thus updated at discrete timeinstants nT; n = 1; 2; � � �, where T is the routing update period.ServicesWe think of the network as providing real-time services. A service represents connections with thesame source-destination node pair and the same tra�c and QoS parameters. The parameters of aservice s include the following:� Arrival rate of requests for a connection setup, �s(t).� Average lifetime of a connection from the time it is successfully established until it ends,1=�s(t).� QoS requirements of a connection, for example, the end-to-end statistical delay bound (Ds; "s)denoting that probability[ end-to-end packet delay > Ds ] < "s.� Packet (or cell) generation characteristics of a connection, such as its mean transmission ratems and peak transmission rate Ms.ClassesA connection of a service can potentially be established along any of the possible routes betweenthe service's source node and the service's destination node. The class of a connection is de�nedby its service and the route it takes.Figure 5.1 shows a network o�ering two services: service s1 from node 0 to node 4, and services2 from node 1 to node 3. Each service has two possible routes for connection setup. Hence thenetwork has four classes: classes c1 and c2 for s1 connections using route h 0, 1, 2, 3, 4 i andh 0, 5, 4 i respectively, and classes c3 and c4 for s2 connections using h 1, 0, 5, 4, 3 i and h 1, 2, 3 irespectively.The instantaneous arrival rate of class-c connections of service s, denoted by �c(t), is a functionof �s(t) and the routing algorithm. Note that with dynamic routing, class arrivals have time-varyingstatistics irrespective of whether the service arrivals have time-varying statistics.Because a class is de�ned by the pair h service, route i, we can have a large number of classes,which may cause a computational bottleneck. To avoid this, we can restrict the set of possibleroutes, for example, to the shortest (in number of hops) and close to shortest paths.1 This is1 Experiences with circuit-switched networks show that this restriction results in simple and e�cient routingschemes [7, 79]. 31
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Figure 5.1: A network example.acceptable because using a longer path for a connection ties up resources at more intermediatenodes, thereby decreasing network throughput. Furthermore, it also ties up more resources at eachintermediate node because satisfying the end-to-end QoS requirement would require more stringentlocal QoS requirements. Section 5.3 addresses the selection of routes in more detail.Obtaining class parameters at a linkEach link in the network is used by a subset of the classes. For example, in Figure 5.1, link h5, 4i isused by two classes, namely c2 and c3. The parameters of a class at a link on its route are obtainedfrom the parameters of its service. To do this, we make the following assumptions; some of theseassumptions can be relaxed, possibly at additional computational cost:� Connection setup requests arrive according to Poisson processes.� The routing is probabilistic. That is, probabilities are assigned to the candidate paths andarriving connections are routed independently according to these path probabilities. Withdynamic routing, the probabilities are periodically updated according to dynamic status in-formation (e.g. measured load). Note that these probabilities could take the values 0 and 1for single-path routing.� For a connection setup request on a multi-link route, the requested end-to-end QoS is dividedequally among the links. This is the so-called \equal allocation" policy. For example, if aconnection of service s requesting an end-to-end QoS (Ds; "s) is to be established on anh-link route, then we require that each link on the route guarantees a local requirement of(Dsh ; "sh ) [85, 87].� The packet generation characteristics of a connection established on a multi-link route do notchange from link to link, i.e. remain the same as the given external characteristics.32



The �rst assumption is often made and is reasonable in practice [41, 40, 90]. The secondassumption uses a type of routing proposed in many studies (e.g., [8, 35]). The third assumptionuses an end-to-end QoS allocation policy studied in [85, 45, 87].The last assumption is valid in practice if the network admission control makes the same as-sumption, as for example, in the e�ective bandwidth approach by Gu�erin et al: [44]. It is also validif the network uses a tightly-controlled approach that uses a non-work-conserving link schedulingdiscipline to reconstruct the tra�c pattern at each link. An example of such approach is the Rate-Controlled-Static-Priority approach by Zhang and Ferrari [106]. Otherwise, the tra�c pattern hasto be characterized at each link as in [89, 25].Given the above assumptions, it is straightforward to obtain the parameters of a class at a link.Consider, for example, the parameters of class c2 at link r 2 Rc2 = fh0; 5i; h5; 4ig. Connectionsetup requests arrive according to a Poisson process with rate �c2(t) = �s1;c2(t) �s1(t), where�s1;c2(t) is the (possibly dynamic) probability of a connection of service s1 being routed on class-c2route. The average lifetime of a connection 1�c2(t) = 1�s1(t) . For an end-to-end QoS (Ds1; "s1), thelocal QoS requirement (Drc2; "rc2) = (Ds12 ; "s12 ), because the route of class c2 is two-hop long. Thepacket generation characteristics (Mc2, mc2, � � �) = (Ms1, ms1, � � �).The above model can be solved using the Z-iteration. The end-to-end measures of each serviceare easily obtained once the end-to-end measures of each of the service's classes are computed.5.2 Scheduling and AdmissionThe Z-iteration accounts for scheduling at a link r through the set of feasible states F r. Recallthat we de�ne a state (�1; �2; � � � ; �jCrj) in F r by the number of connections �c of each class c 2 Crthat can be established simultaneously on link r, i.e. for which the local QoS is satis�ed for everyconnection.F r can be determined using a packet-level analysis [44, 23] knowing the parameters of eachclass at link r (obtained as shown in Section 5.1) and the link scheduling algorithm. Note thatF r would typically be di�erent for every link r because links have di�erent capacities, are used bydi�erent sets of classes, etc. It is also di�erent for di�erent scheduling disciplines because disciplinesresulting in looser performance bounds would typically have a smaller set of feasible states.In the following, we illustrate the computation of F r for a \per-connection" link schedulingalgorithm of the weighted round-robin type. An example of this type of scheduling algorithms isweighted fair-queueing [89]. Here, each class-c connection is allocated (and guaranteed) a certainamount of bandwidth on link r 2 Rc that is enough to satisfy its local QoS requirement. Thisrequired bandwidth depends of course on the local QoS and the packet generation characteristicsof the connection.Henceforth we assume that a connection of service s requests an end-to-end statistical delaybound (Ds; "s), where the delay does not include the propagation delay. This QoS requirement is33



also referred to as packet jitter [33, 103]. This is typically required by applications such as voicesince they can tolerate some packet loss (a packet is considered lost if its delay exceeds Ds) [32, 33].If the connection is described by a two-state model where it is either in a busy state send-ing packets back-to-back at peak rate or in an idle state sending no packets at all, the requiredbandwidth2, denoted by Rrc , can be obtained from the following approximation derived in [6, 44, 31]:Rrc =Mc �rc �Xrc +p[�rc �Xrc ]2 + 4 Xrc �c �rc2 �rc (5.1)where� Mc is the peak rate of the connection.� mc is the mean rate of the connection.� bc is the average duration of the busy period.� �rc = ln( 1"rc ) bc (1� �c)Mc.� �c = mcMc is the probability that the connection is active (in busy state).� Xrc = Drc � Rrc is the bu�er space required by the connection.Rrc can be computed from equation (5.1) iteratively. For each class c 2 Cr, we can then determineits requirements Rrc and Xrc . From this, we can determine whether a state (�1; �2; � � � ; �jCrj) belongsto F r; it must satisfy the following two conditions:� Pc2Cr �c Rrc is no greater than the total capacity of link r, denoted by Capr.� Pc2Cr �c Xrc is no greater than the total available bu�er space of the link.For ease of presentation, we assume that there is enough link bu�er space such that the secondcondition is always satis�ed. Then for a state to be feasible it su�ces to only satisfy the �rstcondition. Thus, Capr de�nes r.max, and Rrc de�nes c.r.req.We obtain Src (:) by solving the Markov chain over F r. In particular, denoting by P (�) theprobability of being in a state � = (�1; �2; � � � ; �jCrj) 2 F r, we haveP (�) = P (0) jCrjYc0=1 (�c0=�c0)�c0�c0 ! (5.2)where P (0) = [P�2F rQjCr jc0=1 (�c0=�c0)�c0�c0 ! ]�1 is the normalization constant. This solution is validnot only for exponentially distributed connection lifetimes [53], but also for generally-distributedlifetimes [55].2 Often referred to as e�ective or equivalent capacity [31, 59, 6, 44, 1].34



Assuming a simple admission control where the arrival of a new class-c connection is blocked ifits admission would lead to a nonfeasible state, we haveBrc = X�2F r If(�1; � � � ; �c + 1; � � � ; �jCrj) 62 F rg P (�) (5.3)where If(�1; � � � ; �c + 1; � � � ; �jCrj) 62 F rg = 8<: 1 if (�1; � � � ; �c + 1; � � � ; �jCrj) 62 F r0 otherwiseThis is often referred to as \complete-sharing" admission control [50]. Note that If:g de�nes theset of blocking states. Other admission control schemes can be modeled by alternative de�nitionsof If:g.The computation of F r is typically expensive as it requires determining the j Cr j-dimensionfeasible states [74, 70]. In addition, given the admission control policy, we need to determine foreach class which of the feasible states are blocking. This computational complexity is reduced ifwe assume fRrc : c 2 Crg and Capr are integers and view the link state as belonging to the setf0; 1; 2; : : : ; Capr � 1; Caprg, where the state indicates the amount of bandwidth reserved. Thisone-dimensional link model has a simple steady-state solution in the multi-rate circuit switchingliterature [92], and was given in Section 3.1.3 Note that here F r is implicitly de�ned by theconstraint on state j satisfying 0 � j � Capr. This link model is usually referred to as thestochastic Knapsack model [20, 21]. The function T rc (:) is de�ned by N rc as in Section 3.1.5.3 RoutingThe Z-iteration accounts for routing through the time-dependent class arrival rates �c(t). Theseare a�ected in our model by the route selection probabilities �s;c(t). We assume the �s;c(t) areperiodically computed based on the network topology and load averaged over the last period. Theload information consists of link/path measurements, which may include quantities such as reservedlink capacity and path blocking probability. Obviously these quantities should be measurable inpractice; indeed a node can measure the reserved capacity for each of its outgoing links from theconnection setup/teardown procedure. Also, a source node can measure the blocking probabilityof a path if we assume that when a setup fails at an intermediate node, this node sends a \reject"message back to the source.These quantities should also be obtainable from our model. We can obtain the average reservedlink capacity from the average number of established connections and the e�ective capacity of each3 In a multi-rate circuit-switched network, each call may request a di�erent number of channels. This numberis however the same on every link along any route the call might take. This is not the case in the networks we areconsidering where the bandwidth required by a connection on a link depends on the number of links along the routetaken by the connection. 35



of the link's classes, which we compute in our model. We can also obtain a path blocking probabilityfrom the classes' blocking probabilities, which we also compute in our model.We are interested in route selection algorithms for networks of arbitrary topologies and o�er-ing heterogeneous services. We want algorithms that result in low blocking probabilities (a highsuccessful setup rate) and hence high network throughput. Our model can capture several designchoices when developing such algorithm. One design choice is related to the set of candidate pathsthe source node would consider for connection routing. This determines the number of classesde�ned for each service. We do not want the source node to consider paths that are too long sincethis would result in increased utilization and hence reduced throughput. So the set of candidatepaths could consist of only minimum-hop paths, or it could consist of both minimum-hop pathsand next-to-minimum-hop paths. (By a next-to-minimum-hop path, we mean a minimum-hop + ipath for the smallest i 2 f1; 2; � � �g such that a path exists.)Routing schemes designed for circuit-switched networks [40] and recently proposed for ATMnetworks [45, 48, 46, 47] consider one-hop and two-hop paths only. Routing schemes that considerpaths of arbitrary hop length are often proposed for the Internet [96, 17]. Our model can evaluateboth types of schemes.From the set of candidate paths, we should determine which path to use for routing the setuprequest message for a new incoming connection. A path p could be selected probabilistically atrandom or using path weights Wp where4Wp / FpHp � Lp (5.4)where Hp is the number of hops of path p (this gives preference to shortest paths), Lp is a measureof the load on path p averaged over the last update period (discussed below), and Fp is either 1 or0 depending on whether the path p is feasible or not; a path p is said to be feasible if the source\expects" a successful setup on p [1].5 The �s;c(t) can then be computed according to (5.4).Another design issue is related to how Lp is de�ned. For example, Lp could be (i) the blockingprobability of path p, (ii) the sum of the utilizations of the links on path p, where the utilizationof a link is the fraction of the link capacity reserved, (iii) the maximum link utilization of the linkson path p, or (iv) the sum of the delays of the links on path p, where the delay of a link r canbe estimated as 1Capr�CapResr where CapResr is the average reserved link capacity (note that thisdelay estimation uses the M=M=1 delay formula [63]).4 Wp may depend on other factors. We use here the ones that were considered in previous works (e.g., [8, 1, 17])when selecting routes for connections.5 The source would take into account the requirements of the new connection in addition to the current load onthe path (assuming it is accurate) to test the feasibility of the path. This is in fact an admission control function.36



5.4 Numerical Results for NSFNETIn this section, we use our model to compare three route selection algorithms. We assume the use ofthe \per-connection" link scheduling and complete-sharing admission described in Section 5.2. Therequired bandwidths Rrc are computed using equation (5.1); if the computed value is not integer,it is rounded to the smallest integer greater than this value. We assume adequate bu�er space.We consider the performance of the routing algorithms on the topology of the NSFNET back-bone shown in Figure 5.2. All links have capacities of 600. The time step � equals 0.1. The routingupdate period T equals 5. We consider 52 services using the NSFNET backbone, with parametersas shown in Figure 5.1. Services with the same tra�c and end-to-end QoS parameters, but withdi�erent source/destination pairs, are grouped in the same row.
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(SRCs; DESTs) (Ms; ms; bs; Ds; "s) (�s; �s)(0, 13),(1, 13),(2, 13),(3, 13),(4, 13),(5, 13) (30, 20, 0.1, 0.05, 10�4) (2, 1)(0, 13),(1, 13),(2, 13),(3, 13),(4, 13),(5, 13) (30, 20, 0.1, 0.05, 10�4) (2, 1)(6, 13) (30, 10, 0.1, 0.05, 10�4) (2, 2)(6, 13) (30, 10, 0.1, 0.05, 10�4) (2, 2)(7, 13),(8, 13),(9, 13),(10, 13),(11, 13) (30, 10, 0.1, 0.05, 10�4) (1.8, 2)(7, 13),(8, 13),(9, 13),(10, 13),(11, 13) (30, 10, 0.1, 0.05, 10�4) (1.8, 2)(12, 13) (60, 20, 0.1, 0.05, 10�4) (0.3, 0.2)(12, 13) (60, 20, 0.1, 0.05, 10�4) (0.3, 0.2)(0, 1) (30, 20, 0.1, 0.05, 10�4) (2, 1)(2, 1),(3, 1),(4, 1),(5, 1),(6, 1) (30, 20, 0.1, 0.05, 10�4) (2, 1)(7, 1),(8, 1),(9, 1),(10, 1),(11, 1),(12, 1),(13, 1) (30, 10, 0.1, 0.05, 10�4) (1.8, 2)(0, 1) (30, 20, 0.1, 0.05, 10�4) (2, 1)(2, 1),(3, 1),(4, 1),(5, 1),(6, 1) (30, 20, 0.1, 0.05, 10�4) (2, 1)(7, 1),(8, 1),(9, 1),(10, 1),(11, 1),(12, 1),(13, 1) (30, 10, 0.1, 0.05, 10�4) (1.8, 2)Table 5.1: Parameters of the 52 services using the NSFNET backbone.
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Figure 5.3: Total throughput versus time for the NSFNET backbone.38
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Chapter 6Quasi-Static Evaluation of a Type-of-ServiceDatagram Network6.1 IntroductionWith the increasing diversity of network applications, it has become crucial for networks, such asthe Internet, to o�er various services, including best-e�ort services and guaranteed services. Aguaranteed service provides bounds on performance. A best-e�ort service can provide qualitativelybetter service, but without the quantitative bounds of a guaranteed service [93]. The InternetProtocol (IP) currently provides only best-e�ort services. Extensive e�ort is underway to extendIP to support other services [16, 22, 93].The focus of this and the next chapter is the provision of di�erent type-of-service (TOS) classesof best-e�ort service. To o�er various TOS requirements, e.g. low delay or high throughput, anetwork's routing protocol should be able to determine appropriate routes for each TOS class. Weare concerned here with next-hop (or datagram) routing, because it has proved to be a simple androbust way to do adaptive routing of best-e�ort tra�c [78, 60]. Source (or virtual-circuit) routingon the other hand is often used for guaranteed services.Next-hop TOS routing is done as follows. Each node maintains for each destination node andTOS class, a neighboring node id, referred to as the next-hop. Every data packet header containsits destination id and the TOS class of the application. When a node receives a data packet, itforwards the packet to the next-hop for the packet's destination and TOS class. The objective ofthe routing protocol is to choose next-hops so that the resulting routes satisfy the requested typeof service. The quality of service o�ered by a route depends on the tra�c through its links, whichdepends on the time-varying external load. Consequently, a routing protocol must monitor linktra�c changes and adapt its next-hops. To do this, each node maintains for each outgoing link andTOS class, a dynamic link cost, which is updated regularly according to the tra�c owing throughthe link. This link cost information is regularly disseminated to nodes of the network. Based onreceived link cost information, each node maintains and regularly updates its next-hop for each40



destination and TOS class.The IP layer of the Internet Protocol suite speci�es di�erent TOS classes [5]. Among themare the minimum delay service required for example by interactive tra�c or real-time tra�c, andthe maximum throughput service required for example by bulk transfers such as network mail orFTP. Routing protocols such as the Internet OSPF [83] and the OSI IS-IS [18] provide separatenext-hops for each TOS class. However, the TOS mechanism has been so far of little use, and littleis known on how well it would work in practice. In addition, many current routing protocols usestatic link costs, typically con�gured by the network administrator and responding only to failuresand recoveries.To our knowledge, only one approach to adaptive TOS routing has been proposed [38]. Thisapproach, henceforth called TOS1, considers two TOS classes: low delay and high throughput. Werefer to tra�c of the former class as delay-sensitive tra�c, and of the latter class as throughput-sensitive tra�c. TOS1 uses measured link delays as the link costs for the delay-sensitive tra�c(delay-based routing). It uses link utilizations, or equivalently available link capacities, as the linkcosts for the throughput-sensitive tra�c (utilization-based routing). In TOS1, each node maintainsfor each outgoing link, a single FCFS queue of data packets; that is, packets of every TOS classshare this queue. Reference [38] refers to simulation studies but does not present any quantitativeresults.Traditionally, link queueing has been the FCFS discipline. It appears desirable to use a morestructured queueing discipline that helps \isolate" the di�erent TOS classes, for example, by usinga separate queue for each TOS class. This concept of isolating tra�c classes using structuredqueueing disciplines has been used recently in ow control studies, e.g. [26, 58, 14, 89, 34]. Here,we investigate the use of a structured queueing discipline with adaptive next-hop TOS routing.Our approachWe consider the following simple link scheduling discipline, henceforth referred to as TOS queue-ing. We consider two TOS classes: low delay and high throughput. Each node maintains twoFCFS queues for each outgoing link, one for each TOS class. The link bandwidth is allocatedequally between the two queues in a round-robin fashion. (This is similar to the fair-queueingdiscipline [26], except that the link bandwidth is divided equally amongst the TOS classes ratherthan the connections using the link.)For any link, the link cost for delay-sensitive tra�c is obtained by exponentially averaging themeasured delay that is experienced by delay-sensitive packets only. The link cost for throughput-sensitive tra�c is obtained by exponentially averaging the measured utilization of the link, i.e.accounting for both delay-sensitive and throughput-sensitive packets. Henceforth, we refer to ourapproach as TOS2.Our discrete-event simulations on a subset of the NSFNET-T1-Backbone topology show that41



TOS2 performs signi�cantly better than TOS1 in a typical situation [52] where the proportion ofdelay-sensitive tra�c is small compared to the throughput-sensitive tra�c. As expected, TOS2achieves a lower end-to-end delay for delay-sensitive packets since it e�ectively gives them higherpriority. Unexpectedly, TOS2 also yields a lower overall end-to-end delay.We argue that this is because TOS2 achieves signi�cantly improved routing by exploiting thescheduling structure of TOS queueing when calculating link costs. In particular, the routes of thetwo tra�c classes can be isolated with the delay-sensitive tra�c taking the low delay routes, andthe throughput-sensitive tra�c taking the under-utilized routes. This results in a better overallnetwork performance.In fact, we �nd that a non-TOS scheme, which does not distinguish between the two types oftra�c and applies utilization link cost to both, referred to as UTIL, performs signi�cantly betterthan TOS1 at high load.To gain more insight into the system behaviors of TOS1 and TOS2, we analyze a simple quasi-static model of a single source-destination node pair connected by two parallel paths, the �rst pathrepresenting low delay routes and the second path representing high capacity routes. We view thissystem as a dynamical system [10]. We represent isolation by a stable state where all delay-sensitivetra�c stays on the �rst path and all throughput-sensitive tra�c stays on the second path. We applythe Liapunov function method to derive stability theorems. We show that for certain parametervalues, the isolation state provides the best delay performance for both tra�c classes. We alsoshow that TOS2 has a larger stability region corresponding to isolation than TOS1. Starting ata state outside this stability region would lead to simultaneous route oscillations for both tra�cclasses resulting in a bad delay performance.Section 6.2 describes our discrete-event simulation model and results. Section 6.3 gives ourquasi-static model. The stability analysis of this model is presented in Chapter 7. Appendix Adescribes details of the simulations, including performance measures, scenarios, and plots. Ap-pendix B contains details of a derivation.6.2 Discrete-Event SimulationsOur simulation studies were done with a discrete-event simulator, MaRS [3], which has been usedfor other studies of routing algorithms [95, 94]. Subsection 6.2.1 describes the simulation model.Subsection 6.2.2 presents general observations about the results.6.2.1 ModelRegarding the physical network, we consider the \East coast" subset of the NSFNET-T1-Backbone.Figure 6.1 illustrates the topology. Link propagation delays in milliseconds are indicated.We have two versions: a low-speed version (with NSFNET-T1 parameters) and a high-speed42
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Figure 6.1: The \East coast" subset of the NSFNET-T1-Backbone (7 nodes, 9 bidirectional links).version. There are no link or node failures. All nodes have adequate bu�er space for bu�eringpackets awaiting processing and forwarding.Regarding link scheduling, we consider two disciplines for the scheduling of data packets overthe links: FCFS and TOS queueing. Both TOS1 and UTIL use FCFS queueing. TOS2 uses TOSqueueing. In all schemes, routing packets have priority over data packets; i.e. data packets can bescheduled for transmission only if there are no routing packets present.Regarding routing, we consider a link-state algorithm like SPF (Shortest Path First) used inthe ARPANET [78] and OSPF (Open SPF) used in the Internet [83]. Each node maintains a time-varying cost (explained below) for each outgoing link and TOS class. Each node also maintainsa view of the network topology, with a cost for each TOS class and link in the network. Tokeep these views up-to-date, each node regularly broadcasts the link costs of its outgoing linksto all other nodes using ooding. As a node receives this information, it updates its view of thenetwork topology and applies Dijkstra's shortest path algorithm [28] to choose its next-hop for eachdestination and TOS class. (Using a more scalable mechanism to disseminate link costs would nota�ect our conclusions.)The method used to compute link costs for each TOS class depends on the link schedulingdiscipline. In all cases, each node's outgoing link costs are updated regularly. A link cost is alwaysa simple moving average of a \raw cost", which is some measure of current link tra�c.In TOS1 and TOS2, each node maintains the following two raw-costs for each outgoing link:� RawUtilization: percentage of time the communication channel is busy transmitting apacket; and� RawDelay: In TOS1, this is the average packet delay (queueing, transmission, and propaga-tion) in milliseconds as experienced by all data packets. In TOS2, this is the average delay43



in milliseconds as experienced by delay-sensitive packets only.Let LinkCost(D) and LinkCost(T ) denote the link cost for delay-sensitive and throughput-sensitive tra�c, respectively. Then at the end of each update interval, they are updated as follows:LinkCost(D) := b�RawDelay + (1� b)� LinkCost(D)LinkCost(T ) := b�RawUtilization+ (1� b)� LinkCost(T )where the constant b satis�es 0 < b < 1.Recall that UTIL does not use any TOS facility. The utilization metric is used to compute onenext-hop for both TOS classes, i.e. LinkCost(T ) is used for all tra�c.With a utilization-based link cost metric, it seems natural to de�ne the cost of a path as theminimum available link bandwidth (or equivalently, highest link utilization) of the links along thepath. However, we found that such a path-cost metric leads to large routing oscillations andinstability even at low workload. Therefore, we set the path-cost metric to the sum of the linkcosts along the path from the source node to the destination node and use Dijkstra's shortest pathalgorithm as in [42]. (For each of these two path-cost metrics, it is easy to come up with staticscenarios where it outperforms the other.)Regarding workload, this is de�ned in terms of hsource node, destination nodei pairs. In eachpair, the source produces data packets to be delivered to the destination. A source produces datapackets according to a packet-train model [51]. The workload consists of two parts, a delay-sensitiveworkload and a throughput-sensitive workload. For both parts, we use a uniform distribution ofsource-destination pairs over the nodes of the network. Let parameter U(D) (U(T )) denote theaverage number of source-destination pairs between every two nodes for delay-sensitive (throughput-sensitive) tra�c. We have also investigated skewed distribution of source-destination pairs andobtained similar results.6.2.2 ObservationsIn this subsection, we present general observations about the simulation results. Detailed de-scriptions of scenarios simulated and plots of the observed performance measures are given inAppendix A.In every scenario, the system behaves in a manner typical of open queueing networks [63]. Thatis, the throughput equals the workload as long as the workload is less than the system capacity; forworkload higher than the system capacity the system is unstable. With increasing workload, thedelay increases at �rst slowly until a point where the system starts becoming saturated; we refer tothis point as the saturation point. Further increase in the workload beyond this point causes thedelay to increase dramatically (with increasing rate) until the system becomes unstable.44



Fixing U(D) and varying U(T ) in a range where the delay-sensitive tra�c constitutes almost25%-30% of the total tra�c, we found that TOS2 performs signi�cantly better than TOS1 withrespect to delays; TOS1 reaches saturation sooner. See Figure 6.2.
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TOS2Figure 6.2: A generic plot. Delay versus U(T ) for a �xed U(D).Our explanation is as follows: It is well known that delay-based routing does not performwell at high load when queueing delay is a signi�cant part of measured link delay, which consistsof queueing, transmission, and propagation delays [60, 42, 13]. This is mainly because from theclassical delay-utilization curve, around saturation, a small increase in utilization corresponds toa large increase in link delay. This dramatic change can result in the link becoming unattractiveand thus being avoided by all delay-sensitive sources. Consequently, at the next routing updatethe link reports a very low cost and becomes attractive again. This leads to oscillatory behavior,which in turn degrades performance [60]. This is the case with TOS1 due to the use of the FCFSlink scheduling discipline.In TOS2, because delay-sensitive packets have a lower queueing delay under type-of-servicequeueing [26], the measured link delay becomes dominated by transmission and propagation delays.Thus, the reported delay link costs do not change dramatically and the delay metric remains a goodindicator of expected link delay after updating the routes [60]. This improves the performance ofdelay-based routing of delay-sensitive packets and results in more stable routes for that tra�c class.Meanwhile, the link utilization metric makes the throughput-sensitive tra�c move away from thedelay-sensitive tra�c, taking the under-utilized routes. This has the e�ect of isolating the twotra�c classes, resulting in a better overall network performance.Intuitively, isolation is desirable since otherwise it becomes more likely that both tra�c classeswill move away from a highly loaded link (i.e. with high delay and utilization) at the same routingupdate. Such simultaneous tra�c shifts degrade the overall performance, and in particular result45



in a higher delay and network under-utilization.Ignoring low values of U(T ), UTIL also provides lower delays than TOS1. However, UTILperforms worse than TOS2 over the whole range of U(T ). This is expected, since the utilization-based metric does not necessarily result in minimum delay routes, especially at light load [60].6.3 Quasi-Static ModelIn this section, we consider a simple network model to gain more insight into the complicatedbehaviors of TOS1 and TOS2. We analyze the model in Chapter 7.We model a network by a source node sending tra�c to a destination node along two paths.Path 1 represents low delay routes, and path 2 represents high capacity routes. Path i (i = 1; 2)has propagation delay Pi time units and average transmission capacity Ci packets/time unit. Thereare N delay-sensitive connections, and M throughput-sensitive connections from the source nodeto the destination node. For every connection, packets originate at the source node according toa Poisson process, and without loss of generality we assume an arrival rate of 1 packet/time unit(alternatively we could think of the x's and y's below as the total arrival rates).At any instant, we describe the state of the network by the tuple (x; y), where x is the numberof delay-sensitive connections on path 1, and y is the number of throughput-sensitive connectionson path 1. To model routing updates, we use a discrete-time ow approach as in [12]. We assumethat (some or all) connections periodically update their routes to the destination node every 4time units, where 4 is long enough for the network to reach steady-state after a routing update.Routes, and hence the network state, are updated at discrete time instants (k+1)4, k = 0; 1; 2; � � �.Let (xk; yk) be the network state immediately after time k4. At an update instant (k + 1)4, weuse steady-stateM=M=1 results [63] to estimate link costs based on (xk; yk). Using these link costs,routes are updated and consequently the new network state (xk+1; yk+1) is obtained.We denote by Ti;k+1 and �i;k+1 the delay and utilization cost of path i, respectively, at time(k+ 1)4. Recall that for an M=M=1 queue with o�ered ow f and service rate � (> f), the delay(queueing + service) equals 1=(�� f) and the utilization equals f=�.For TOS1, with a FCFS discipline at the source node, we can write the delay link costs asfollows: T1;k+1 = 1C1 � (xk + yk) + P1T2;k+1 = 1C2 � (�xk + �yk) + P2 (6.1)where �xk = N � xk and �yk = M � yk denote the number of delay-sensitive connections and thenumber of throughput-sensitive connections, respectively, on path 2.46



The utilization link costs are �1;k+1 = xk + ykC1�2;k+1 = �xk + �ykC2 (6.2)The network state is updated using the costs of the two paths as follows:xk+1 = ( (1� �k) xk if T2;k+1 < T1;k+1xk + �k �xk otherwiseyk+1 = ( (1� �k) yk if �2;k+1 � �1;k+1yk + �k �yk otherwise (6.3)The parameter �k (0 < �k � 1) reects the amount of tra�c rerouted. It can also be thoughtof as the degree of routing update synchronization at di�erent nodes. Unless otherwise indicated,we assume that �k is uniformly distributed over [�MIN ; �MAX ], where �MAX � �MIN = 0:2, and0:1 < �MAX+�MIN2 � 0:9.For TOS2, with TOS queueing at the source node, the two queues at an output link arecorrelated, which makes the analysis di�cult. A number of approximate solutions for such systems,referred to as 1-limited polling systems, have been proposed. (See [99] for a good survey.) Onecommon approach is to approximate the system by two loosely-coupled M=M=1 queues [81, 108].The service rate of each queue depends on the utilization of the other queue.De�ne Ce�i;k as the e�ective capacity available for the delay-sensitive tra�c on path i after timek4. We have Ce�i;k � 0:5Ci (6.4)with the worst case occurring when the other queue is always not empty. Assuming each queue isM=M=1, we obtain the following (details in Appendix B):Ce�1;k = (C1 � 0:5(yk � xk)) +p(C1 � 0:5(yk � xk))2 � 2C1xk2Ce�2;k = (C2 � 0:5(�yk � �xk)) +p(C2 � 0:5(�yk � �xk))2 � 2C2�xk2 (6.5)Thus we have the following delay link costs with type-of-service queueing:T1;k+1 = 1Ce�1;k � xk + P1T2;k+1 = 1Ce�2;k � �xk + P2 (6.6)47



The utilization link costs are as de�ned in (6.2). The network state is updated as in (6.3).We refer to the iteration de�ned in (6.3) as I , i.e. (xk+1; yk+1) = I(xk; yk). I is a mappingfrom a set G into itself, where G = f(x; y) : 0 � x � N ^ 0 � y � Mg. The sequence of points(x1; y1); (x2; y2); : : : is called the trajectory of the system [65, 86]. The trajectory may or maynot converge to a �xed point (x�; y�), i.e. (x�; y�) = I(x�; y�). The convergence to a �xed pointindicates that the system stabilizes into a particular routing pattern, i.e. a particular amount oftra�c routed for each class on each path. On the other hand, non-convergence indicates that thesystem oscillates between di�erent routing patterns (or has chaotic behavior). Note that I is not acontinuous mapping, and well-known theorems for convergence requiring this property cannot bedirectly applied [61].We represent isolation by a stable state where every delay-sensitive connection stays on path 1,and every throughput-sensitive connection stays on path 2. This is equivalent to say that ouriterative method converges to the �xed point (N; 0). In the next chapter, we �rst derive su�cientconditions for the system to reach isolation as a function of the starting state. (In a real network,the starting state would be the result of arrivals of new connections, departures of old connec-tions, failure/recovery of links, etc.) We then obtain less re�ned su�cient conditions for isolation,independent of the starting state.
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Chapter 7Analysis of Quasi-Static ModelIn this chapter, we analyze the quasi-static analytical model presented in Section 6.3. In Section 7.1,we apply the Liapunov function method to derive stability conditions for the routes of the two tra�cclasses under both TOS1 and TOS2. We conclude with some remarks in Section 7.2. Appendix Ccontains details of proofs.7.1 Stability AnalysisWe use the Liapunov function method [86] to obtain su�cient conditions for stability and conver-gence to a �xed point without actually solving the system equations. The basic idea is to �nd apositive-de�nite scalar function V (S), where S is the system state, such that its forward di�erence4V (S) taken along a trajectory is always negative. V (S) is said to be a Liapunov function, and isregarded as a measure of the distance of the state S from the �xed point. As time increases, V (S)decreases and �nally shrinks to zero, i.e. the �xed point is approached.It is more convenient to deal with the �xed point (0; 0) rather than (N; 0). Thus, we de�ne thenetwork state by (�x; y) instead of (x; y). Then, the iteration I de�ned in (6.3) becomes:�xk+1 = ( (1� �k) �xk if T1;k+1 � T2;k+1�xk + �k xk otherwiseyk+1 = ( (1� �k) yk if �2;k+1 � �1;k+1yk + �k �yk otherwise (7.1)Combining (6.1), (6.2), and (7.1), the system behavior with TOS1 is described by the following:�xk+1 = (1� �k) �xk + �k N �kyk+1 = (1� �k) yk + �k M �k (7.2)49



where �k = 8<: 0 1C1�N+(�xk�yk) + P1 � 1C2�M�(�xk�yk) + P21 otherwise�k = ( 0 M+(�xk�yk)C2 � N�(�xk�yk)C11 otherwise (7.3)At the �xed point (which is now the origin), �xk ! 0; �xk+1 ! 0; yk ! 0; and yk+1 ! 0.Consequently, for the equations (7.2) to be satis�ed, �k ! 0 and �k ! 0, which imply the followingnecessary (but not su�cient) conditions for convergence to the origin:1C1 �N + P1 � 1C2 �M + P2MC2 � NC1 (7.4)De�ne D1 = f(�x; y) : 1C1�N+(�x�y) + P1 � 1C2�M�(�x�y) + P2 ^ M+(�x�y)C2 � N�(�x�y)C1 ^ 0 � �x �N ^ 0 � y �Mg. See Figure 7.1.1
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We show that V (�x; y) is a Liapunov function in D1, which implies that starting from any point inD1, the trajectory stays inside D1, and converges to the origin.Lemma 7.1.1 V (�x; y) is a Liapunov function in D1. That is: V (�x; y) is positive de�nite; and forall (�xk; yk) � D1 � f(0; 0)g, 4V (�xk; yk) < 0 and (�xk+1; yk+1) � D1: 2Proof. Since V (�x; y) > 0 for all (�x; y) 6= (0; 0) and V (0; 0) = 0, then V (�x; y) is positive de�nite.The forward di�erence 4V (�xk; yk) is computed as follows.4V (�xk; yk) = V (�xk+1; yk+1)� V (�xk; yk)= ((1� �k) �xk + �k N �k)2 +((1� �k) yk + �k M �k)2 �(�x2k + y2k)= �[1� (1� �k)2] �x2k �[1� (1� �k)2] y2k +(�k N �k)2 + (�k M �k)2 +2(1� �k) �k N �xk �k +2(1� �k) �k M yk �k (7.6)Consider a point (�xk; yk) � D1 � f(0; 0)g. Then �k = �k = 0. From equation (7.6), since 0 <[1 � (1 � �k)2] � 1, we have 4V (�xk; yk) < 0. (This is true regardless of the randomness of �k .)Substituting �k = �k = 0 in equations (7.2), we get �xk+1 � yk+1 = (1� �k)(�xk � yk).Consider the case where �xk � yk < 0. Since 0 � (1��k) < 1, we have 1C1�N+(�xk+1�yk+1) +P1 <1C1�N+(�xk�yk)+P1, and 1C2�M�(�xk�yk)+P2 < 1C2�M�(�xk+1�yk+1)+P2. Hence, since 1C1�N+(�xk�yk)+P1 � 1C2�M�(�xk�yk) + P2, we see that 1C1�N+(�xk+1�yk+1) + P1 � 1C2�M�(�xk+1�yk+1) + P2.Now, consider the case where �xk � yk > 0. We have 1C1�N+(�xk�yk) + P1 < 1C1�N + P1, and1C2�M + P2 < 1C2�M�(�xk�yk) + P2. Since 0 � (1 � �k) < 1, and 1C1�N + P1 � 1C2�M + P2 fromequation (7.4), we see that 1C1�N+(�xk+1�yk+1) + P1 � 1C2�M�(�xk+1�yk+1) + P2.Similarly, we see that M+(�xk+1�yk+1)C2 � N�(�xk+1�yk+1)C1 . Therefore, (�xk+1; yk+1) � D1, and �k+1 =�k+1 = 0. Consequently, starting at any point in D1, the trajectory stays inside D1 approachingthe origin (as shown in Figure 7.1). 2From lemma 7.1.1 and the Liapunov stability theory [86], we have the following theorem:Theorem 7.1.1 For TOS1, any starting state in D1 (the shaded area in Figure 7.1) leads to theorigin, regardless of the values of �k : 2The region D1 is called domain of attraction corresponding to the origin [10, 61] because itconstitutes a set of starting states for which the iteration converges to the origin. In D1, theiteration is said to be a contraction, since V (�xk+1; yk+1) < V (�xk; yk) for all (�xk; yk) 6= (0; 0) along51



the trajectory. It is important to observe that the domain of attraction contains all the systemstates for which T1 � T2 and �2 � �1. Also, note that starting at any point in D1, �k = �k = 0 forall (�xk; yk) along the trajectory.With TOS2, the system behavior is described by the same di�erence equations (7.2) except that�k is de�ned as �k = 8<: 0 if 1Ce�1;k �N+�xk + P1 � 1Ce�2;k��xk + P21 otherwiseAt the �xed point, xk ! N; �xk ! 0, yk ! 0; �yk ! M . Then, from equations (6.5), we haveCe�2;k ! C2 � 0:5M , and Ce�1;k ! C1. For equations (7.2) to be satis�ed at the �xed point, �k ! 0and �k ! 0. Then necessary conditions for convergence to the origin are:1C1 �N + P1 � 1C2 � 0:5M + P2MC2 � NC1 (7.7)As we have done with TOS1, we want to show that V (�x; y), de�ned in (7.5), is a Liapunovfunction in some region around the origin. Call this region D2. The goal is to show that startingat any point in D2, �k = �k = 0 for all (�xk; yk) along the trajectory.1Ce�1;k�N+�xk + P1 � 1Ce�2;k��xk + P2 implies �k = 0. M+(�xk�yk)C2 � N�(�xk�yk)C1 implies �k = 0.Because the expressions for Ce�i;k are hard to work with, we try to �nd simpler expressions, sayCsimpi;k , such that 1Ce�1;k�N+�xk + P1 � 1Csimp1;k �N+�xk + P1, and 1Csimp2;k ��xk + P2 � 1Ce�2;k��xk + P2 (then1Csimp1;k �N+�xk+P1 � 1Csimp2;k ��xk+P2 implies �k = 0). We would then de�ne D2 = f(�x; y) : 1Csimp1 �N+�x+P1 � 1Csimp2 ��x + P2 ^ M+(�x�y)C2 � N�(�x�y)C1 ^ 0 � �x � N ^ 0 � y � Mg, and attempt to showthat V (�x; y), de�ned in (7.5), is a Liapunov function in D2.To do this, we need an upper bound on Ce�2;k , and a lower bound on Ce�1;k . From equations (6.5),we see that Ce�2;k � C2 � 0:5(�yk � �xk). We could not �nd an appropriate lower bound on Ce�1;k . Sowe made the approximation Ce�1;k � C1 � 0:5yk (the accuracy of this is discussed below).We thus have D2 = f(�x; y) : 1(C1�0:5y)�N+�x+P1 � 1(C2�0:5(�y��x))��x+P2 ^ M+(�x�y)C2 � N�(�x�y)C1 ^0 � �x � N ^ 0 � y �Mg. Figure 7.2 depicts this region.Lemma 7.1.2 Assuming Ce�1;k � C1 � 0:5yk, V (�x; y) is a Liapunov function in D2: 2The proof of the above lemma is similar to the proof of Lemma 7.1.1, and is given in Appendix C.From lemma 7.1.2 and the Liapunov stability theory [86], we have the following theorem:Theorem 7.1.2 For TOS2, assuming Ce�1;k � C1�0:5yk, any starting state in D2 (the shaded areain Figure 7.2) leads to the origin, regardless of the values of �k: 252
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Figure 7.2: Domain of attraction for TOS2.7.1.1 E�ect of �k on system behaviorThe domains of attraction we have just found (cf. Theorems 7.1.1 and 7.1.2) are not the largest,i.e. there may be points outside the domains which lead to the origin. This depends on the valuesof �k . In particular, the domains are indeed largest for high enough values of �k. On the otherhand, they are not for small values of �k . The following theorem shows this for TOS1. The proofis given in Appendix C.Theorem 7.1.3 For TOS1, starting at any point in area A or area B (Figure 7.1), the followinghold:(i) If �MIN > max(N�L1M+N ; M+L2M+N ) then the iteration does not converge to the origin and locksinto a limit cycle oscillating between states in areas A and B.(ii) If �MAX � min(L2N ; �L1M ) then the iteration converges to the origin.where L1 = H S � 2 +p(H S � 2)2 + 4 H [H (C1 �N) (C2 �M) + S]2HH = P1 � P2S = C2 �M � C1 +NL2 = C2N � C1MC1 + C2 2Theorem 7.1.3 indicates that for high enough values of �k , the system may not converge toisolation, and rather oscillates with both tra�c classes shifting simultaneously at each routing53



update. Such simultaneous tra�c shifts result in a bad performance, i.e. higher delay and networkunder-utilization. This e�ect increases as �k increases. (In practice, �k depend on several factors,and can be quite high [36].)Consider the simple case where �k = 1, for all k. It can be seen that isolation, wheneverpossible2 , provides the optimal performance for both tra�c classes [30]. In this case, we areconstrained to use a single path for each tra�c class. Thus, in order to maximize the throughputof the throughput-sensitive tra�c, we should send its packets over the maximum capacity link, i.e.path 2. Then, in order to minimize the packet delay of the delay-sensitive tra�c, we should sendits packets over the minimum packet delay link, i.e. path 1. Note that routing the delay-sensitivetra�c (also) on path 2 would result in a higher delay compared to the delay of (the unused) path 1.Note that the above result agrees with our argument about the bene�ts of isolation, which wasmade in Section 6.2.2.Referring to Figures 7.1 and 7.2, we can conclude that for high enough �k, TOS2 has a largerdomain of attraction corresponding to isolation than TOS1. This conclusion is not a�ected by ourapproximation Ce�1;k � C1 � 0:5yk, which was made in Theorem 7.1.2 for TOS2. In fact, it can beshown that Ce�1;k � C1� 0:5yk. Regardless of that, we found that our approximation is only slightlyoptimistic. In particular, our monte-carlo simulations [75, 73] show that starting at any point inD2 satisfying 10:5C1�N+�x + P1 � 1(C2+0:5�x)��x + P2, the iteration indeed leads to the origin. Thosepoints also satisfy 1(C1�0:5y)�N+�x +P1 � 1(C2�0:5(�y��x))��x +P2. This is because 1(C1�0:5y)�N+�x +P1 �10:5C1�N+�x+P1 (with equality occurring when y = C1), and 1(C2+0:5�x)��x+P2 � 1(C2�0:5(�y��x))��x+P2.Some points in D2 not satisfying 10:5C1�N+�x + P1 � 1(C2+0:5�x)��x + P2 may not, however, lead to theorigin. Such points constitute a small part of D2, and hence the approximation does not a�ect ourconclusion that TOS2 has a larger domain of attraction corresponding to isolation. In particular,isolation occurs for higher values of y0 with TOS2 than with TOS1.Figures 7.3 and 7.4 show the domains of attraction corresponding to isolation for TOS1 andTOS2, respectively, obtained by monte-carlo simulations for C1 = 30; C2 = 50; P1 = 0:5; P2 =1; N = 20;M = 30; and �k � [0:8; 1].Theorem 7.1.3 also indicates that for small enough values of �k , the system reaches isolation forall starting states and for all system con�gurations satisfying the necessary conditions for isolation.Figure 7.5 depicts the load region, i.e. values of (N;M), de�ned by f(N;M) : 1C1�N + P1 �1C2 + P2 ^ MC2 � NC1 g. In this region, the necessary conditions for isolation, de�ned in (7.4)and (7.7), for both TOS1 and TOS2 are satis�ed. This region thus de�nes su�cient conditions toreach isolation for low enough �k for both TOS1 and TOS2. This is in agreement with our monte-carlo simulations obtained in [75, 73] which also show that in this region, TOS2 gives much better2Which means that the necessary conditions to reach isolation are satis�ed, i.e. the delay of path 1 carrying alldelay-sensitive tra�c is less than or equal the delay of path 2 carrying all throughput-sensitive tra�c, with path 2'sutilization being less than or equal path 1's utilization. 54
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Chapter 8Conclusions and Future Research DirectionsIntegrated services networks have often been analyzed under steady-state conditions. In this dis-sertation, we presented a numerical-analytical method, the Z-iteration, to rapidly evaluate detailedand dynamic models of integrated services networks as well as other MCMR systems. Our resultsindicate that the method gives approximate, yet accurate, instantaneous performance measures andprovides signi�cant computational savings over discrete-event simulation. We applied our methodto compare di�erent adaptive routing algorithms.There are several areas for future work. One area is to examine routing schemes that distinguishbetween di�erent types of tra�c (e.g., low-throughput voice and high-throughput video), computinga di�erent set of routes for each type. For example, for a particular tra�c type with very stringentQoS requirements, we could restrict the set of candidate paths to only minimum-hop paths, whilefor other tra�c types the set could also include next-to-minimum-hop paths. One would examinethe capability of the routing scheme to distribute connections of each type in a way that increasesthe network throughput, and also the responsiveness of the routing scheme to failures and repairs.Another area is to examine admission controls, other than the complete-sharing policy, thatblock some connection setup requests even if their admission is feasible, possibly in order to reducethe chance of future blocking of connections of other types. In this case, blocking would occur atmore feasible states [104, 50].Another area is to investigate policies other than the equal allocation policy for dividing theend-to-end QoS requirement among the links of a route. These policies would take into accountthe current link loads as measured in the last routing update period. Other QoS requirements suchas packet loss can be considered.We plan to extend the numerical-analytical techniques embodied in the Z-iteration. Such tech-niques are much needed in system design phase where a good compromise between accuracy andspeed is crucial. We intend to build evaluation tools for integrated networks and other complexadaptive systems such as distributed operating systems.In the last part of the dissertation, we presented a quasi-static model to analyze the behavior ofTOS schemes in datagram delivery systems. We obtained stability conditions using the Liapunov61



function method. We showed how in an integrated services environment, routing with some formof non-FCFS scheduling support can provide signi�cant performance improvement. We intend toextend our analysis to obtain transient characteristics such as convergence time. Our analysisdemonstrates the interaction between adaptive routing and link scheduling. Future work is alsoneeded to explore the interaction between all components of the congestion control problem, namely,scheduling, ow control, and routing, on more detailed network models with arbitrary topologies.We intend to integrate quasi-static evaluation techniques into our Z-iteration based tools when-ever appropriate. This would further reduce computation times while retaining accuracy.We hope to use our tools to investigate issues in integrated networks that are not yet wellunderstood. We explain some of these issues below.Internet-style versus virtual-path routing: There are two styles of virtual-circuit (VC) routing.In Internet-style routing, VCs are routed over paths in the physical network topology. Admissioncontrol is done on every physical link along the path provided by the routing component. In virtual-path based routing, a virtual-path (VP) is typically speci�ed between every two end-systems andset up over a sequence of physical links. Enough bandwidth is statically allocated to each VP sothat queueing occurs only at the �rst physical link of the VP. Several VPs can share the samephysical link. Thus, the physical network is transformed to a (logically) fully-connected networkof non-interacting VPs. VCs are then routed over one-hop and two-hop VPs, and thus admissioncontrol is done on at most two physical links.Obviously, admission control is much faster with VP based routing than with Internet-stylerouting. However, the network may be under-utilized because of the potential loss of statisticalmultiplexing due to the static allocation of resources to VPs [49]. This has led to attempts todynamically allocate resources to VPs [88]. However, depending on the rate at which the VPresource allocations are varied compared to tra�c demands, this approach may not be e�ective ormay give rise to massive instability because of the strong interaction between VP resource allocationand routing/admission control.It is important to examine both routing styles, evaluating the tradeo�s between admissioncontrol delay and network utilization. Large integrated networks (or internetworks) with non-trivial connectivity introduce scalability issues to the problem. Scalable solutions exist with bothstyles of routing (e.g. [11, 4, 2, 102, 64]). Future work is needed to examine such solutions anddetermine conditions under which each solution is e�ective.Multicast algorithms: Another issue to investigate is multicast algorithms, where the interactionamong the control components is much stronger than in unicast. Many algorithms have beenproposed to construct multicast paths, e.g. core-based algorithms [9]. It is not clear, however, howthey compare under conditions of dynamic workload and topology. Comparisons have often beenmade only in terms of worst-case bounds or under static conditions. Clearly, we also do not knowhow these various algorithms would compare when resource reservations are performed along themulticast path to provide guaranteed services. What policies should we use to allocate resources on62



the di�erent links, etc.? For example, how do these algorithms interact with reservation protocolslike RSVP [82].Integration of wireless and wired networks: Another issue to investigate is the integration ofwireless and wired networks. In particular, it is interesting to investigate ways to extend qualitiesof service over wireless segments. This is a challenging and open problem. Wireless networks haveunique characteristics related to loss, bandwidth, mobility, etc., which adds new dimensions to theproblem of QoS support [56, 66].
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Appendix ASimulation Details for Type-of-Service DatagramNetworkIn this appendix, we describe the simulation parameters, and the performance measures. We alsogive details of simulated scenarios and plots.ParametersAll links have bandwidths of 1.5 Mbit/sec for the low-speed version, and 100 Mbit/sec for thehigh-speed version. Each node's outgoing link costs are updated regularly, with inter-update timeuniformly distributed with mean 10 seconds [78] and standard deviation 1 second.1 The factor b,used in the link cost calculation, is 0.8.2 A data source is represented as a Markov chain withtwo states: a busy state and an idle state. In the busy state, the source produces a (geometricallydistributed) number of data packets with some constant inter-packet generation time. The sourcethen stays idle for an exponentially distributed duration before starting the transmission of thenext train (burst) of packets. (This tra�c model has been used in many studies, e.g. [107].) Unlessotherwise indicated, all sources have the following parameters: for the low-speed case, the datapacket length equals 128 bytes, the inter{packet generation time is 150 msec, the average train sizeis 100 packets, and the average idle duration is 2 seconds (this corresponds to an average packetrate of about 0.006 packet/msec.); for the high-speed case, the data packet length is 5000 bytes,the inter{packet generation time is 50 msec, the average train size is 1000 packets, and the averageidle duration is 2 seconds (this corresponds to an average packet rate of about 0.02 packet/msec.).1Update intervals at di�erent nodes are independent.2We chose the factor 0.8 after experimenting with other values. A small value such as 0.5 makes the routingalgorithm adapt slowly. Whereas a high value such as 1.0 may result in an unstable behavior.64



Performance MeasuresWe consider average measures of throughput, delay and load. An average measure is based onstatistics collected over a large measurement interval, which is the duration of the simulationexcept for an initial \startup interval" (to eliminate transient e�ects due to empty initial network).Thus:� Throughput. Total number of data bytes received at destinations during the measurementinterval divided by the length of the measurement interval.� Delay. Total delay of all data packets received at destinations during the measurement intervaldivided by the number of those data packets, where delay of a data packet is de�ned to be thetime di�erence between sending a packet and receiving it at the corresponding destination.� Data Load. Fraction of the network capacity, i.e. sum of all link capacities, used by datapackets during the measurement interval.� Throughput(T). Total number of data bytes received at destinations for the throughput-sensitive tra�c during the measurement interval divided by the length of the measurementinterval.� Delay(D). Total delay of all delay-sensitive data packets received at destinations during themeasurement interval divided by the number of those data packets.ResultsHere, we present details of scenarios simulated along with plots of the observed (steady{state)performance measures, namely throughput, delay, throughput(T ), delay(D), and data load. Inour simulations, 95% con�dence intervals were computed using the method of independent replica-tions [67, 97]. In particular, a measure, say x, is obtained as x1+x2+���+xnn , where the x1; x2; : : : ; xnare the measures obtained using the di�erent independent simulation runs. In all cases, the size ofthe con�dence intervals is less than 2% of the mean.We now present our simulation results. Although we show results only for uniform workload, weobtained similar results for the skewed workload we investigated. We also obtained similar resultsfor workload that has di�erent parameters for each tra�c type. In case (C) below, we consider asmaller packet size for the delay-sensitive sources, namely 64 bytes rather than 128 bytes. We havescaled the delay plots for clarity, so delay values higher than 100 milliseconds are not shown.65



(A) Low-speed, varying U(T), �xed U(D), equal packet sizes.Figure A.1 shows delay(D) and delay versus U(T ) in the range 20 to 26, for a �xed U(D) = 8.The delay-sensitive tra�c constitutes almost 25% of the total tra�c. Ignoring di�erences at lowvalues of U(T ), TOS1 performs the worst, becoming saturated around U(T ) = 22 (correspondingto almost 60% data load). Interestingly, UTIL which does not use any TOS facility performs betterthan TOS1. TOS2 performs the best. At U(T ) = 24, UTIL's delay is 53% higher than TOS2's,and TOS1's delay is 1322% higher than TOS2's. Note that UTIL performs worse than TOS2 overthe whole range of U(T ). At low values of U(T ), UTIL performs the worst. At U(T ) = 20, UTILhas about 32% higher delay than both TOS2 and TOS1.Figure A.2 shows data load, throughput(T ), and throughput versus U(T ). Observe that thedata load for TOS1 increases as TOS1 becomes saturated. This indicates the use of longer routes,and consequently higher delay. Both throughput(T ) and throughput increase linearly with theworkload, and they are the same for all schemes. This shows that the system is stable for allschemes.(B) High-speed, varying U(T), �xed U(D), equal packet sizes.Figure A.3 shows delay(D) and delay versus U(T ) in the range 8 to 18, for a �xed U(D) = 4.The delay-sensitive tra�c constitutes almost 25% of the total tra�c. As observed in the low-speedcase (A), ignoring di�erences at low values of U(T ), TOS2 performs the best, followed by UTIL,and then TOS1. TOS1 reaches saturation sooner, around U(T ) = 16 (corresponding to a data loadof almost 61%). TOS1 has about 758% higher delay than TOS2 at U(T ) = 18. Note that for thesame data load, the di�erence in delay is less signi�cant than in case (A). This is due to the factthat in a high-speed network, queueing delay is less signi�cant due to small transmission times.For example, in the high-speed network, transmission time of the 5000-byte data packet on the100Mbit/s link is 0.0004 sec. Whereas in the low-speed network, transmission time of the 128-bytedata packet on the 1.5Mbit/s link is 0.7 sec. This fact reduces the e�ect of bad oscillations inherentin delay-based routing when queueing delays are signi�cant.Figure A.4 shows data load, throughput(T ) and throughput versus U(T ). Again, as in case (A),throughput(T ) and throughput increase linearly with the workload for all schemes. Henceforth, wedo not show plots for throughput. We also do not show plots for UTIL since the utilization-basedmetric, as we have observed, does not necessarily result in minimum delay routes.33We have also studied a non-TOS scheme similar to UTIL except that it uses the delay metric rather than theutilization metric (i.e. LinkCost(D) is used for all tra�c); however we do not show plots for it since it performedbadly at heavy load, as expected. 66



(C) Low-speed, varying U(T), �xed U(D), unequal packet sizes.Figure A.5 shows delay(D) and delay versus U(T ) in the range 16 to 24, for a �xed U(D) = 16.The delay-sensitive tra�c constitutes almost 28% of the total tra�c. As observed in (A), TOS2performs better than TOS1. TOS1 reaches saturation sooner, around U(T ) = 18 (correspondingto a data load of almost 55%). TOS1 has about 1800% higher delay than TOS2 at U(T ) = 20.Figure A.6 shows data load versus U(T ). Observe that TOS1 reaches saturation at a data loadwhich is smaller than in (A). This is because here delay-sensitive tra�c has smaller packet sizes,thus su�ering higher delays with TOS1.
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Figure A.1: Low-speed. Equal packet sizes. Delay(D) and delay vs U(T ) for U(D) = 8.
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Figure A.3: High-speed. Equal packet sizes. Delay(D) and delay vs U(T ) for U(D) = 4.
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Figure A.5: Low-speed. Unequal packet sizes. Delay(D) and delay vs U(T ) for U(D) = 16.68
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Appendix BComputation of E�ective Capacities for Quasi-StaticModelLet's consider two queues QX and QY with arrival rates X and Y , respectively, equally sharing alink with capacity C. De�ne Ce�X and Ce�Y as the e�ective link capacity available for tra�c X andY , respectively. Also, let nX and nY be the number of packets in QX and QY , respectively. Thus,Ce�X = C � Prob[nY = 0] + 0:5C � Prob[nY > 0]Ce�Y = C � Prob[nX = 0] + 0:5C � Prob[nX > 0]Note that Ce�X � 0:5C (Ce�Y � 0:5C), with the worst-case occurring when QY (QX) is alwaysnot empty.Assuming each queue is M=M=1, and substitutingProb[nX = 0] = 1� Prob[nX > 0] = 1�X=Ce�X ;Prob[nY = 0] = 1� Prob[nY > 0] = 1� Y=Ce�Ywe obtain two equations in the two unknowns Ce�X and Ce�Y . Solving them, we getCe�X = (C�0:5(Y�X))+p(C�0:5(Y�X))2�2CX2Ce�Y = Ce�X + 0:5(Y �X)
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Appendix CProofs for Quasi-Static ModelProof of Lemma 7.1.2Consider a point (�xk; yk) � D2 � f(0; 0)g. 1(C1�0:5yk)�N+�xk + P1 � 1(C2�0:5(�yk��xk))��xk + P2 im-plies 1Ce�1;k�N+�xk + P1 � 1Ce�2;k ��xk + P2, and hence �k = 0. Let's rewrite 1(C1�0:5yk)�N+�xk + P1 �1(C2�0:5(�yk��xk))��xk + P2 as 1C1�N+(�xk�0:5yk) + P1 � 1C2�0:5M�0:5(�xk�yk) + P2. Since �k = �k = 0then �xk+1 � 0:5yk+1 = (1� �k)(�xk � 0:5yk), and �xk+1 � yk+1 = (1� �k)(�xk � yk).Consider the case where �xk � 0:5yk < 0. This implies that �xk � yk < 0. Since 0 � (1 ��k) < 1, we have 1C1�N+(�xk+1�0:5yk+1) + P1 < 1C1�N+(�xk�0:5yk) + P1, and 1C2�0:5M�0:5(�xk�yk) + P2 <1C2�0:5M�0:5(�xk+1�yk+1) + P2. Hence, since 1C1�N+(�xk�0:5yk) + P1 � 1C2�0:5M�0:5(�xk�yk) + P2, we seethat 1C1�N+(�xk+1�0:5yk+1) + P1 � 1C2�0:5M�0:5(�xk+1�yk+1) + P2.Now, consider the case where �xk�0:5yk > 0. In this case, either �xk�yk > 0 or �xk�yk < 0. First,consider the case where �xk�0:5yk > 0 and �xk�yk > 0. We have 1C1�N+(�xk�0:5yk)+P1 < 1C1�N +P1,and 1C2�0:5M +P2 < 1C2�0:5M�0:5(�xk�yk)+P2. Since 0 � (1��k) < 1, and 1C1�N +P1 � 1C2�0:5M +P2from equation (7.7), we see that 1C1�N+(�xk+1�0:5yk+1) + P1 � 1C2�0:5M�0:5(�xk+1�yk+1) + P2. We alsosee that the latter inequality also holds for the case where �xk � 0:5yk > 0 and �xk � yk < 0.Therefore, since in all cases, 1(C1�0:5yk+1)�N+�xk+1 + P1 � 1(C2�0:5(�yk+1��xk+1))��xk+1 + P2 then1Ce�1;k+1�N+�xk+1 + P1 � 1Ce�2;k+1��xk+1 + P2. Similarly, we see that M+(�xk+1�yk+1)C2 � N�(�xk+1�yk+1)C1 .Therefore, (�xk+1; yk+1) � D1, and �k+1 = �k+1 = 0. Thus, we see that the iteration is a contractionin D2.Proof of Theorem 7.1.3First, we note that M+(�xk�yk)C2 � N�(�xk�yk)C1 i� �xk � yk � L2. Also, 1C1�N+(�xk�yk) + P1 �1C2�M�(�xk�yk) + P2 i� �xk � yk � L1. L1 � 0 and L2 � 0 are necessary for the domain of at-71



traction D1 to surround the �xed point (0; 0) and thus convergence to be possible.1If �xk � yk < L1 (i.e. �k = 1; �k = 0) then �xk+1 � yk+1 = (1 � �k) (�xk � yk) + �k N ��(1 � �MIN) M + �MIN N . If �xk � yk > L2 (i.e. �k = 0; �k = 1) then �xk+1 � yk+1 =(1��k) (�xk� yk)��k M � (1��MIN) N ��MIN M . Thus, the following conditions cause TOS1to lock into a limit cycle for any (�x0; y0) not in the domain of attraction D1:�(1� �MIN)M + �MIN N > L2(1� �MIN) N � �MIN M < L1This implies �MIN > max(N�L1M+N ; M+L2M+N ), and part (i) is proved.If �xk � yk < L1 then �xk+1 � yk+1 = (1 � �k) (�xk � yk) + �k N � �k N � �MAX N . We alsohave �xk+1 � yk+1 > �xk � yk .If �xk � yk > L2 then �xk+1 � yk+1 = (1� �k) (�xk � yk) � �k M � ��k M � ��MAX M . Wealso have �xk+1 � yk+1 < �xk � yk .Thus, the following conditions force the iteration to eventually enter the domain of attractionD1 and converge to the origin for any (�x0; y0):�MAX N � L2��MAX M � L1This implies �MAX � min(L2N ; �L1M ), and part (ii) is proved.Proof of Theorem 7.1.4Referring to Figure 7.1 for TOS1, if the point (�x; y) = (0;M) is inside the domain of attraction, i.e.(�x; y) = (0;M) satis�es 1C1�(x+y) + P1 � 1C2�(�x+�y) + P2, then we have N +M � C1 � 1( 1C2+P2�P1) .This implies T1;k � T2;k, for every k. This ensures that path 1 is always attractive to delay-sensitivetra�c, and eventually all delay-sensitive tra�c will be on path 1.Given that all delay-sensitive connections remain on path 1, we see from (6.2) and (6.3) thatthe condition MC2 � NC1 is enough for all throughput-sensitive tra�c to eventually move to path 2.This proves part (i).Referring to Figure 7.2 for TOS2, if (�x; y) = (0; 0) is inside the domain of attraction, i.e.(�x; y) = (0; 0) satis�es 10:5C1�x + P1 � 1(C2+0:5�x)��x + P2, then we have N � 0:5C1 � 1( 1C2+P2�P1) .This implies T1;k � T2;k, for every k. Therefore, similar to part (i), we see that the conditionsN � 0:5C1� 1( 1C2+P2�P1) , and MC2 � NC1 are su�cient for isolation. This proves part (ii).1We note that L2 � N since otherwise we get �M > N , which contradicts the fact that N;M � 0. Referring toFigure 7.1, L1 is assumed to be greater than �M . 72
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