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This study aims at improving the reliability of automatic forest change detection.  

Forest change detection is of vital importance for understanding global land cover as 

well as the carbon cycle.  Remote sensing and machine learning have been widely 

adopted for such studies with increasing degrees of success.  However, 

contemporary global studies still suffer from lower-than-satisfactory accuracies and 

robustness problems whose causes were largely unknown.  

Global geographical observations are complex, as a result of the hidden 

interweaving geographical processes.  Is it possible that some geographical 

complexities were not expected in contemporary machine learning?  Could they 

cause uncertainties and errors when contemporary machine learning theories are 

applied for remote sensing? 



This dissertation adopts the philosophy of error elimination.  We start by 

explaining the mathematical origins of possible geographic uncertainties and errors in 

chapter two.  Uncertainties are unavoidable but might be mitigated.  Errors are 

hidden but might be found and corrected.  Then in chapter three, experiments are 

specifically designed to assess whether or not the contemporary machine learning 

theories can handle these geographic uncertainties and errors.  In chapter four, we 

identify an unreported systemic error source: the proportion distribution of classes in 

the training set.  A subsequent Bayesian Optimal solution is designed to combine 

Support Vector Machine and Maximum Likelihood.  Finally, in chapter five, we 

demonstrate how this type of error is widespread not just in classification algorithms, 

but also embedded in the conceptual definition of geographic classes before 

classification.  In chapter six, the sources of errors and uncertainties and their 

solutions are summarized, with theoretical implications for future studies.  

The most important finding is, how we design a classification largely 

pre-determines the “scientific conclusions” we eventually get from the classification 

of geographical observations.  This happened to many contemporary popular 

classifiers including various neural nets, decision tree, and support vector machine.  

This is a cause of the so-called overfitting problem in contemporary machine learning.  

Therefore, we propose that the emphasis of classification work be shifted to the 

planning stage before the actual classification.  Geography should not just be the 

analysis of collected observations, but also about the planning of observation 

collection.  This is where geography, machine learning, and survey statistics meet. 
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1. Introduction 

1.1.  Remote Sensing for Global Forest Monitoring 

There are two major dimensions of global change: land cover change and climate 

change.  The information on forest change is vital in both topics.  On the Land 

cover science side it is important for biodiversity conservation (Kennedy et al. 2009), 

sustainable forest management (Quincey et al. 2007), regional planning (Wiens et al. 

2009), and international environmental agreements (Noss 2001).  On the climate 

change science side it is an important input variable for carbon cycle models (Schimel 

1995; Foody et al. 1996; Hese et al. 2005).  

But forest change is a very broad concept.  The term ‘forest’ can be dense closed 

forest, or open-canopy woodlands.  Forest can also be evergreen or deciduous.  And 

in terms of forest change, forest can become a wide variety of land use and land cover 

types.  Natural forest change types include burning, which happen frequently in the 

relatively dry climates and the northern forests.  Forest use of mankind includes clear 

cutting, selective logging, and rotational timber management.   

Given the importance and diversity, then how can we get reliable estimations of 

Earth’s forest and its temporal changes?  There have been two major sources of 

information: forest inventory statistics from individual governments, and the 

interpreted results from remotely sensed imagery (Estes et al. 1980; Nelson et al. 1987; 

Townshend et al. 1991; Cardille and Foley 2003).  The country-based forest 



 

2 
 

inventory data records have been widely used to conduct regional studies.  For 

example, the historical forest changes in China and United States were estimated 

respectively to identify the ‘missing carbon’ for carbon cycle models (Fang et al. 2001; 

Pacala et al. 2001).  Satellite remote sensing is another way to estimate forest and its 

changes.  Global tropical forest change along with regional rates of changes were 

estimated from AVHRR and Landsat respectively (DeFries et al. 2002).  Forest 

inventory data and satellite monitoring were both used in some studies (Myneni et al. 

2001).  The United Nations Food and Agriculture Organization’s (FAO) Forest 

Resource Assessment (FRA) follows another unique path.  The FRA1980 (FAO 

1981), FRA1990 (FAO 1995), FRA2000 (FAO 2001), and FRA2005 (FAO 2006) 

reports provided global estimation of forest inventory based on governmental 

statistics.    FAO’s forest change reports of 1996 (FAO 1996) and 2001 (FAO 2001) 

added a 10% stratified random sample of Landsat sensor scenes to estimate the global 

extent of tropical deforestation from 1980 to 1990, and 1990 to 2000. 

Forest inventory data generated by individual countries has various quality issues.  

FRA2000 and FRA2005 adopted broad expert advices to synchronize the definition of 

‘forest’ globally.  Yet the two most complained sources of error, pointed out by the 

users of FAO2000 estimation, are the low frequency of monitoring and the relatively 

less accurate estimation for open woodlands (Matthews and Grainger 2002).  Some 

researchers refer to this problem as the “weak definition” of forest (Sasaki and Putz 

2009).  Not only is the government inventory data prone to uncertainties, the forest 

change estimation derived from those datasets are also unavoidably affected.  The 
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situation was as bad as “Consistent data time series do not exist beyond the decade 

spanned by each report” (Matthews and Grainger 2002). 

In light of this, remote sensing had been given high hopes to produce better 

estimations for both forest inventory and its change over time.  Satellite observation 

can reach conventionally inaccessible regions as well (Tucker and Townshend 2000).  

Thus according to the IPCC GPG (Intergovernmental Panel on Climate Change, Good 

Practice Guidance), remote sensing methods are especially suitable for independent 

verification of the national LULUCF (Land Use, Land-Use Change,  and Forestry) 

carbon pool estimates, particularly the aboveground biomass (IPCC 2003).  The 

importance of satellite monitoring of global forest change is also illustrated in the 

recent NASA initiative of “Earth System Data Records” (ESDR), of which global 

forest change is an aspect. (NASA 2006; Chuvieco and Justice 2008) 

In some sense, the research community and the international organizations expect 

remote sensing to offer us reliable forest data to help us understand global change. 

1.2.  Current Problems 

1.2.1. Reliability of Classification Algorithms 

As we have seen in the previous section, the science community put high hopes in 

remote sensing because the other approach, based on national statistics, has lots of 

weaknesses.  But is the remote sensing approach largely error-free?  The use of 

remote sensing in global forest change is actually far from operational.  A number of 

controversies exist in the specification of consistent reliable methods. 
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The previously mentioned FAO report series of world’s forest in years 1980, 1990, 

1995, and 2000 did not see much use of remote sensing.  The forest change reports 

incorporated the use of satellite images with a 10% random sampling scheme.  It was 

criticized for only sampling 10% randomly (Tucker and Townshend 2000).  They 

argued that such a low sampling rate is insufficient given the high spatial variability 

of forest change.  Forest change is not likely to be spatially random event.  Their 

suggestion of a wall-to-wall mapping was countered by FAO.  “FAO did not have 

sufficient funding or staffing to accomplish this immense task” (Czaplewski 2002).   

This discussion showed us two important issues: 1. Global forest change has a 

high spatial heterogeneity that can only be reliably estimated with a census instead of 

limited sampling.  2. The very high cost and the need for big staff cited necessary to 

achieve that purpose only imply that automated algorithms are not fully-fledged. 

Apart from these two issues, there are controversies around another vital theme: 

the accuracy of remote sensing analysis.  In the same paper by Tucker and 

Townshend, they gave an optimistic evaluation to this topic.  They were pleased with 

the approximately 85% accuracy achievable by combining unsupervised classification, 

human interpretation, and expert inputs.  However, this approach is too 

labor-intensive that it is not suitable for global studies. 

What Tucker and Townshend did not mention, is the capability of fully automated 

analysis.  Another study, around the same time, outlined the major criteria of 

nearly-automated approaches (DeFries and Chan 2000).  They listed four criteria 

namely total accuracy, computation resources, stability, and robustness to error in data.  
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Basically these four criteria is one fundamental issue: robustness of automated 

algorithms.  They applied these criteria to different variants of decision tree (Quinlan 

1986) and achieved mixed results ranging from low to high performance in each 

criteria.  Worth noticing is that, they found no variant of Decision Tree, which has 

been widely applied in MODIS applications, achieved high performance in all the 

judging criteria for Landsat imagery. 

DeFries and Chan recognized two other important issues: 1. Error handling is 

important.  2. Fine-resolution imagery such as Landsat seems more difficult to 

analyze automatically than coarser resolution imagery such as MODIS. 

If we combine the contribution of the two papers above, we can get a clearer 

picture of what remote sensing can and cannot offer at the turn of the century. 

First, remote sensing data analyzed using unsupervised classification together 

with human modifications can give ~85% overall accuracy.  However, it is highly 

time-consuming. 

Second, automated supervised classification of fine-resolution imagery produces 

lower accuracy for global studies compared to local studies.  The reason of this 

suboptimal performance has not been identified but can be reasonably deduced.  In 

local studies, manual editing is widely used and does not take much time.  However, 

manual editing in global studies will be an unthinkably costly operation. 

Third, the high spatial heterogeneity of forest change means that reliable global 

forest change monitoring has to be done preferably wall-to-wall with a fine resolution. 
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One can immediately see that these three “status quo” leads to a dilemma 

between quality and cost.  How do we solve this?  

1.2.2. Error Propagation within the Designs of Change Detection 

Another problem the remote sensing community faces is what the phrase “change 

detection” actually means in practice.  Forest change detection is largely based on 

classification, but it also involves more designs to model the change signal.  Three 

major methodology approaches are prevalent in contemporary studies.  The 

following figure shows their basic designs.  There are well-known flaws in them. 

 

Figure 1.1 is a synthesis from two papers. The methodologies A and B were 

discussed in 1990s (Townshend et al. 1992).  Methodology B was considered to have 

less error propagation and was thus preferred more than methodology A.  

Approaches A and C are the most popular methodology in contemporary studies 

(Kennedy et al. 2009).  In contemporary studies, the majority use approach A (Yuan 

et al. 2005; Liu et al. 2008; Kuemmerle et al. 2009; Wang et al. 2009).  Approach B 

Time 1 Spectral Data 

Time 2 Spectral Data 

Time 1 Classification 

Time 2 Classification 
Change Matrix 

Time 1 Spectral Data 

Time 2 Spectral Data 

Stacked Bi-temporal 

Spectral Data 
Stacked 

Classification 

Time 1 Spectral Data 

Time 2 Spectral Data 

Spectral Differencing or 

Modeling 
Threshold 

Tuning 

 Approach A.  Separate Classification 

Approach B.  Stacked Classification 

Approach C.  Direct Differencing 

Figure 1.1 Popular methodologies of contemporary change detection 
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has also been used recently (Song et al. 2005; Huang et al. 2008).  All the 

experiments in this dissertation have also been done using Approach B.  Approach C 

saw some usages (Zhan et al. 2002; Masek et al. 2008; Xian et al. 2009).   

These three approaches all showed signs of problem for different reasons.  

Approach  A is more sensitive to error propagation than Approach B (Townshend et 

al. 1992).  Error propagation is a fundamental concept in the science and engineering 

world (Taylor 1997).  Basically, the more multi-stage optimization steps involved in 

a study, the more likely it is inferior to a one-step overall optimization.  By stacking 

the images of multiple dates, Approach B has less error propagation because it only 

performs classification once. 

However, our experiments, which adopted Approach B, are conducted with much 

better training data than practically available in reality.  Our training data in the 

change class was easily available because we had wall-to-wall change map in the first 

place.  In reality, this is not the case.  In the change detection based on the 

classification of stacked bi-temporal images, the training data for the change class is 

the most difficult to acquire.  That is the main reason that researchers prefer the 

methodology approach A described in figure 1.1.  Despite strengths, Approach B is 

hard to implement in reality because the researcher needs to collect training data 

specifically on land parcels that went through actual changes.  Exhaustive search of 

those land parcels can be challenging. 

Approach C is based on differencing and thresholding, which are almost always 

parametric operators and very often simple linear operators.  The complexity in 
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spectral signature can overwhelm the over-simplified parametric operators.  In 

addition, there is a heavy reliance on tuning in Approach C.  Thus it is unavoidably 

and heavily influenced by individual researchers.  It should be avoided at all costs in 

continental or global studies, unless it can be automated without human intervention 

at local scales.  TDA (Training Data Automation) (Huang et al. 2008) is such an 

effort to collect training data automatically at local scales. 

1.3.  A Framework of Uncertainty-Oriented Methodology 

Many contemporary studies of forest change have tried state-of-the-art machine 

learning methods side-by-side to find out which one produces the best accuracy 

(Collins and Woodcock 1996; Desclée et al. 2006; Rogan et al. 2008).  While that 

approach is productive in individual study sites, this dissertation will not follow that 

research paradigm.  New machine learning methods are designed every year, if not 

every month.  Comparing performances with the ever-newer algorithms in a local 

test site shows us the accuracies but not the causes of those accuracies.  Besides, the 

world outside our own small test site is what really matters.  To actively seek out and 

learn from the failures, we need another path. 

We will instead try to locate the error sources and then improve the available 

machine learning algorithms.  In particular we will focus on these questions: “What 

are the errors and uncertainties in the classification of remotely sensed imagery?  

Where do they come from?  How do we eliminate them?”   

This kind of research paradigm is not completely new.  In fact, modern survey 
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methodology is built on the analysis of error origins.  For example, the origins of 

survey errors have been well studied and put into categories such as sampling error, 

interviewer error, measurement error, and nonresponsive omission (Groves 1989).  

Remote sensing can be seen as a special type of survey.  The data is acquired 

through optical sensors, analyzed by machine learning algorithms, and trained by one 

or more arbitrary human arbitrator.  Thus, error origins in remote sensing analysis 

are arguably more complex.  Yet, this complex situation does not mean it is 

insolvable.  It only suggests more possible sources of error than in a traditional 

survey. 

In the field of remote sensing, pioneering efforts on the origins of error were 

made in the 1960s and 1970s.  As put by Landgrebe (Landgrebe 1980), “The scene is 

the portion of the (remote sensing) system which provides us with the greatest 

challenge.  It is the only portion not under design or operational control, and by far 

the most dynamic and complex portion of the system.”  He cited an early work 

(Hughes 1968) illustrating the decreasing performance of Maximum Likelihood 

classifiers with increasing dimensionality.  What they discovered echoes a 

statistician’s term “The curse of dimensionality” (Bellman 1961), but the remote 

sensing world at that time did not link this to their peers on the statistics side. 

However, these efforts were largely left forgotten until they were picked up a 

decade ago (DeFries and Chan 2000).  They faced up to the fact that, the training 

data in practical work is generally not 100% correct.  Errors could be caused by bad 

geo-referencing, interpretation mistakes, or severely mixed classes.   
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We adopt this idea and extend it into a framework— a framework of uncertainty 

handling.  This framework treats global automated forest change detection as an 

information retrieval process, during which a number of known and unknown 

uncertainties reduce the accuracy significantly from the theoretical expectation.  The 

image analyst is also a possible source of errors.  This notion echoes with survey 

methodology. 

Although training data error is the only widely explored type of error in the 

analysis of satellite imagery, there are in fact many more possible causes of errors.  

We understand very little about why the accuracy of forest change detection is still 

only around ~85% even after integrating modern machine learning methods and 

human interpretation.  We do not have a theoretical explanation for the difference 

between automated algorithms and human interpretation either.  We also do not 

understand well why accuracy varies a lot from one image to another.  Neither do we 

understand why the forest change class, among all classes, is usually the class with the 

lowest accuracy.  However, these observations do shed a light on the hidden 

uncertainties: its magnitude and variability.   

Landgrebe sensed some of these problems 30 years ago, but he could not give a 

thorough theoretical explanation.  However, his intuition, that the remote sensed 

imagery is not ‘under design or control’, is a good start.  Can we add geographical 

designs and controls into the machine learning theories? 

Here is the plan for our hunt for the uncertainties.  Different machine learning 

methods were designed with different philosophies, often in parallel, for different 
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situations in the real world.  Hence they may have different capabilities to tackle 

different uncertainties.  They may also have redundancy or even some designs that 

can backfire for remote sensing applications, because they were rarely designed for 

image classification at all.  If we dissect machine learning algorithms and examine 

their components, we might be able to identify those that are extremely effective in 

handling uncertainties in satellite monitoring.  If we can integrate the more useful 

components, we may be able to create a more successful hybrid algorithm out of 

parent algorithms, without reinventing the wheels again.   

In chapter two, we will thoroughly examine the most popular and promising 

machine learning algorithms.  We will try to figure out in which aspect(s) of 

uncertainties every algorithm were designed to overcome.  Then in chapter three we 

will conduct a test of these algorithms for different types of uncertainties.  If there is 

an algorithm that excels in all aspects, then we do not need to construct any new 

algorithm.  But if no algorithm can tackle all aspects of uncertainties, our further 

chapters will be on the combining of building blocks from different machine learning 

algorithms until we come to a universal solution.  As we will see in the chapters, the 

situation is far more complicated than we anticipated.  We actually identified a 

previously unreported error source in remote sensing.  This error source will be 

explained and resolved in chapter four.  A side effect of this error source is our 

conceptual definition of classes. It will be explained and dealt with in chapter five.  

Then we will make a summary of the findings in chapter six. 
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2. Candidate Classifiers for Forest Change Detection 

2.1.  Introduction 

Various machine learning algorithms have been applied to retrieve forest change 

information by the remote sensing community.  These algorithms fall into two basic 

categories: unsupervised learning and supervised learning.   

It has been found that unsupervised learning such as ISODATA clustering often 

produces lower accuracy than combining ISODATA and maximum likelihood 

classification, which is a supervised method (Justice and Townshend 1982).   

Moreover, they found that clustering takes more time in the computing and manual 

labeling processes.  The computing power has been dramatically improved since 

then, but the time needed for manual labeling of unsupervised clusters has not and 

possibly will not be substantially improved.  Automating the labeling of 

unsupervised clusters had been shown to be impractical (Song et al. 2005)  Several 

other studies also favors supervised over unsupervised learning (Rogan et al. 2002; 

Keuchel et al. 2003).  Supervised algorithms are even reported to have higher 

accuracies than visual interpretation on SPOT imagery (Martin and Howarth 1989).  

Thus our current change detection study will focus on supervised change detection.   

It is the goal of this chapter to examine contemporary supervised learning 

algorithms, and find out whether or not their designs can tackle errors and 

uncertainties in the process of retrieving forest change information from Landsat 

imagery.  We will outline the theoretical backgrounds and the unique strengths of the 
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designs.  Five algorithm candidates were chosen representing different schools of 

machine learning philosophy.  These are the Maximum Likelihood Classifier (MLC), 

Decision Tree (DT), Fuzzy ARTMAP Neural Network (ARTMAP), Support Vector 

Machine (SVM), and Kernel Perceptron (KP) algorithms.  The reason for their 

selection will be detailed in section 2.2.  Another algorithm, the Self-Organizing 

Maps Neural net (SOM) will be briefly used in only one experiment. 

2.2.  Major Families of Machine Learning Algorithms Used in 

Change Detection 

Supervised change detection algorithms used in the remote sensing community 

were first developed in the machine learning community since the 1950s (Chow 1957; 

Rosenblatt 1958), approximately the same time of Sputnik and Explorer 1.  Satellite 

remote sensing has since consistently benefited from the development of computers 

and machine learning. 

These classifiers have different theoretical origins and make various 

mathematical assumptions, which may or may not fit remote sensing applications.  

Some algorithms were developed from probability theories such as the Bayes rule.  

Some were constructed from pure guesses on how the human brain functions, for 

example, the Perceptron neural network model.  Others were based on arbitrary 

criteria of how an ‘optimal’ classification should be executed.  For example, the DT 

algorithm was developed from the entropy minimization criterion while the SVM 

algorithm was developed from the class distance maximization criterion  
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It is impractical for one to assess each and every algorithm for a given remote 

sensing application.  However, the hundreds of supervised change detection 

algorithms now available can be categorized into a handful of groups.  The approach 

of this study is to limit our study to a handful of representative algorithms with good 

prospects.  In figure 2.1 we propose a typology of modern machine learning 

algorithms for effective cross-comparison.  Each branch of this ‘tree’ represents a 

school of thought from the machine-learning society. 

The Bayes classifiers, the neural networks, the Entropy-minimization classifiers, 

and the max-margin classifiers are four prominent schools of machine learning 

theories.  In addition, the method of boosting is a meta-algorithm which means it can 

be applied onto one or several classifiers.  It is also known as Ensemble Learning. 

With the same given set of raw data, these four prominent schools of machine 

learning theories each extracts information in its own unique rationale.  They 

analyze the data set in very fundamentally different ways to determine the class label 

of each data point.  We could see how different they really are through a simple 

walkthrough of the core philosophies. 

The Bayes’ classifiers are rooted in the Bayes rule of probabilities and give a 

Bayes Optimal solution in which the average error is lowest.  Neural networks, on 

the other hand, are based on the thought that there are one or more iterations of 

algebraic equations which stand between the raw data and the class labels.  Those 

iterations of algebraic equations were named ‘hidden layers’.  The making of those 

algebraic equations leads to different subtypes of neural networks.  The 



 

15 
 

entropy-minimization classifiers are formed on the assumption that heterogeneous 

data should be sub-divided into purer classes.  The iteration of this sub-dividing 

process becomes the classifier itself.  And for the max-margin classifiers, they are 

based on the philosophy that different classes are best separated when there is a big 

enough buffer zone between each other. 

Each of the above philosophies is quite convincing but their choice is inherently 

subjective.  They are methods designed by individual researchers to understand the 

data and observations in scientific and engineering fields.  They are not solely based 

on axioms of mathematics or rules of physics.  They are very unique, and thus might 

be more or less suitable in different research fields.  It is worth mentioning that many 

machine learning ideas were developed not by computer scientists.  For example, the 

Bayes rule was first formulated by Pierre-Simon Laplace more than a century before 

the age of computers.  A landmark paper (Perrone and Cooper 1993) creating the 

field of Ensemble learning involved a Nobel Laureate in Physics: Leon Cooper, 

whose major contributions lie in the distant field of superconductivity.  Vapnik, who 

invented SVM, has been heavily influenced by the Russian tradition of nonparametric 

probability theory carried on by Andrei Kolmogorov.  Therefore, when we unravel 

contemporary machine learning, it is necessary to understand not just the names and 

equations, but also the rationales and philosophies at their cores. 

Dozens of algorithms have been developed in each family of machine learning 

theories.   From this tree typology we choose one typical algorithm from each 

branch.  Our choices (Figure 2.1) are: the maximum likelihood from the Bayes’ 
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classifier family as a classic benchmark, the fuzzy ARTMAP algorithm from the 

neural network family, the soft-boundary SVM and the Kernel Perceptron algorithm 

from the max-margin classifier family, and the decision tree classifier from the 

entropy minimization family.  This is the first time that the powerful Kernel 

Perceptron algorithmic approach has been applied in remote sensing studies.  In 

recent years, the max-margin philosophy has been used to modify more and more 

traditional methods, such as principal component analysis and multivariate regression.  

Kernel Perceptron combined the designs of neural network, kernel machine, and 

ensemble learning. For these reasons, in this study we used two algorithms in this 

machine learning family.  The light blue boxes show the algorithms we will use. 

 

In this chapter, we will discuss in detail the background and theoretical strengths 

of these candidate algorithms.  Then in the following chapter, we will figure out their 
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Figure 2.1 A family tree of supervised classifiers. 
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possible advantages and disadvantages in the face of practical uncertainties and errors, 

in change detection applications using remote sensing.  However, it must be pointed 

out, that these possible advantages and disadvantages are formed with mathematical 

reasoning and past literature in the field of remote sensing.  We will use another 

chapter to assess these claims. 

2.3.  Maximum Likelihood Classification (MLC) 

The Maximum Likelihood Classifier was developed gradually (Mahalanobis 

1936; Chow 1957; Chow 1962; Haralick 1969; Swain and Davis 1978; Strahler 1980).  

The equations in this sub-section are cited from Swain and Davis (1978).  MLC 

classifies a pattern X in n-feature imagery into class I using the Bayes Optimal 

criteria: 

)()|()()|( jiii pXppXp ωωωω ≥  For all j=1, 2, …, n  (Equation 2.1) 

Where iω  is the i-th class and 
)( ip ω

is the prior probability of the i-th class. 

The probability function 
)|( iXp ω

 has to be estimated from the data set.  In 

remote sensing applications, two hidden assumptions were made.  The first 

assumption is Bayes optimal, which means to minimize the average error over the 

entire set of classification.  And the second assumption is Gaussian distribution in 

each class. 

From Bayes optimal, the total error is defined as a loss function: 

∑
=

=
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Where )|( jiλ  is called the loss function, defined as the loss or cost caused by 

mistakenly classifying a data point into class i but actually belongs to class j. 

The Bayes Optimal rule defines the relationship between joint probabilities and 

conditional probabilities:  

)()|()()|(),( XpXppXpXp jjjj ωωωω ==          (Equation 2.3) 

Combining forms 2.2 and 2.3, we have the average error formulated as: 

∑
=

=
n

j
jjX XppXpjiiL

1

)(/)()|()|()( ωωλ              (Equation 2.4) 

The remote sensing community tends to simplify the loss function into 0 and 1: 

jiji
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λ

λ
                                    (Equation 2.5) 

Assuming that the data set follows multivariate normal distribution, i.e. Gaussian 

distribution N ( kµ , 1),  
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)(log)( 1
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kkeieX XXpiL µµω −∑−+∑+−= −

 (Equation 2.6) 

Where:  

)(iLX  is the loss function to be minimized, according to the Bayes optimal 

strategy. 

n: number of features, or bands in the imagery 

X: image data of n features 

kµ : mean vector of class k 
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k∑ : Variance-covariance matrix of class k 

k∑ : Determinant of the k∑  matrix 

The remote sensing community also tends to simplify the prior probabilities, P(X), 

of all classes to be equal.  Laplace, who first formulated the Bayes rule, also favors 

using equal prior probabilities.  The pioneers of MLC also warned of prior 

probability.  Chow’s initial form of MLC does not include prior probability.  Swain 

and Davis warned that the use of prior probability will be discriminating against the 

naturally rare classes (Swain and Davis 1978).  Laplace himself is very wary about 

using prior probability.  He even coined a term ‘principle of insufficient reason’ and 

chose to use equal prior probabilities for all classes.   

Also it was proposed that, after the first classification, the percentage of each 

class can be used as prior probabilities (Strahler 1980).  But this approach does not 

bring significant accuracy improvements.  Strahler also explained a subjective use of 

prior probability.  The researcher’s own belief can be used as prior probability.  He 

admitted in the same paper that this does not generate very accurate results.  The 

controversy in the use of objective and subjective prior probability in remote sensing 

reflects the controversy of this subject even in the field of Bayesian Statistics itself.  

As put by the influential statistician William Feller on page 114 of his book: 

“Unfortunately, Bayes’ rule has been somewhat discredited by metaphysical 

applications……In routine practice this kind of argument can be dangerous.” (Feller 

1957)  This echoes with Laplace’s concerns.  But in the remote sensing world, 

researchers have been much less wary than these statisticians. 
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Researchers also integrated neighborhood information into prior probabilities and 

called them contextual classifiers (Settle 1987), which in fact is the same idea of the 

MLC inventor in the 1960s (Chow 1962).  Recently researchers have been trying to 

iteratively adjust the prior probabilities towards the outcome results and found slightly 

better results in some cases (Hagner and Reese 2007). 

The Maximum Likelihood classifier had been applied in remote sensing studies 

since the 1970s.  It enabled researchers to explore early multi-spectral satellite data, 

which is often noisy and with little calibration, such as AVHRR data (Parikh 1977), 

MSS data (Fraser et al. 1977), and even the very early APOLLO-9 mission data 

(Anuta and MacDonald 1971-1973).  The Gaussian assumption of MLC turns out 

often to be quite well suited for land cover mapping and change detection within 

relatively small to medium areas.   

MLC has yielded quite some good results in single-scene studies of Landsat, 

SPOT, ASTER imagery and even hyperspectral imagery.  It was reported to achieve 

even better results than back-propagating neural networks on Landsat TM and SAR 

data (Michelson et al. 2000).  It was concluded to work well on the hyperspectral 

AVIRIS data within a small study site (Hoffbeck and Landgrebe 1996).  MLC 

achieved results comparable to Decision Tree classification on Landsat ETM+ data 

and performed better than Decision Tree on hyperspectral data (Pal and Mather 2003). 

On the other hand, it is relatively less successful in multiple-scene studies and 

studies on large-swath imagery such as the AVHRR data (Friedl and Brodley 1997; 

Gopal et al. 1999).  Some studies suggest that the Gaussian assumption is well suited 
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for small areas but not for large areas (Small 2004).  However, such conclusions 

have not been strongly supported theoretically.  It remains something of a mystery as 

to why such an ‘outdated’ classifier has been reported in so many studies to have 

comparable performances to its modern competitors.   

On yet another hand, it had been shown through simulated data set (Hughes 1968) 

and local experiments (Lillesand and Kiefer 1979) that the solving power of MLC 

will decrease with the amount of data dimensions.  That echoes with the statistical 

term of “The Curse of Dimensionality” (Bellman 1961).  However the experiment he 

designed used simulated datasets and thus has limited persuasion power. 

MLC is still widely used for its simplicity and excellent results at the local scale.  

It also has an desirable property, which is also shared by some other families of 

algorithms to be described in this chapter, that pixel level probability estimates can be 

output and further modeled (Strahler 1980).  Thus it is frequently used as the No.1 

benchmark algorithm in many research fields including remote sensing. 

2.4.  Decision Tree Classification (DT) 

The Decision Tree (Quinlan 1986) is a classifier in the form of a binary tree 

structure where each node is either a leaf node or a decision node. 

The central focus of the decision tree growing algorithm is selecting which 

attribute to test at each node in the tree.  For the selection of the features with the 

most heterogeneous class distribution the algorithm uses the concept of Entropy.  

The entropy of a dataset S is calculated as: 
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Where pi is the proportion of S belonging to class i. 

The decision tree splits at every decision node with the criteria of maximizing 

Gain with an attribute A: 

∑
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     (Equation 2.8) 

where SV refers to the data with value v. 

When every attribute has been included in the tree or the training samples 

associated with every leaf node all have the same target attribute value (i.e., their 

entropy is zero), the tree is complete.  However, a complete tree is often very 

complicated and unwanted because of elongated computing time.  Often the full tree 

is ‘pruned’ to accelerate the classification.  It has been verified that a heavily pruned 

decision tree does not suffer from significant loss of accuracy in forest change 

detection (Song et al. 2005). 

The decision tree, since its introduction into remote sensing, has been frequently 

used with the help of boosting.  Boosting, as depicted in our typology of machine 

learning diagram, is a meta-algorithm that improves upon other algorithms.  There 

are several major types of boosting.  The first type of boosting came from the idea to 

combine the results of several different classifiers, including that of decision tree, 

through voting or consensus theory (Benediktsson and Swain 1992; Perrone and 

Cooper 1993).  Due to the complexity of each algorithm, the result is sometimes 
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unreliable (Foody et al. 2007). 

Another form of ensemble classification is based on a single learning algorithm 

while changing the training set.  Bagging (Breiman 1996) and Adaboost (Freund and 

Schapire 1996) are the two most popular approaches today.  It has been 

demonstrated that decision tree enhanced with bagging gets better accuracy when 

applied on both AVHRR and Landsat TM data (DeFries and Chan 2000).  Adaboost 

will be discussed in detail in section 2.7.1 

The decision tree method has enjoyed popularity in the remote sensing 

community around year 2000 because people like a classifier without the Gaussian 

assumption.  Researchers hoped it can be used where this assumption is violated 

(Friedl and Brodley 1997; Gopal et al. 1999).  It is also valued by biogeographers 

because Decision Trees explicitly identify what are the chief discriminating features 

are and where the class boundaries are located (Hansen et al. 2000).  It has also been 

widely applied in AVHRR and MODIS data analyses.  In summary, researchers 

attributed its performance to its zero assumption on data distributions.   

However, the accuracy of decision tree has never significantly exceeded MLC in 

local scale studies.  This interesting phenomenon is, however, often overlooked.  It 

has been reported that decision tree cannot perform as well as maximum likelihood or 

neural network classifications on hyperspectral data (Pal and Mather 2003).  This 

sounds like the “Curse of Dimensionality” again.  Therefore, decision tree might 

probably have less value in the stacked change detection involving a total of 14 bands 

than in single date classification with 7 bands of Landsat’s TM and ETM.   
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2.5.  Fuzzy ARTMAP Neural Network Classification (ARTMAP 

NN) 

Neural network algorithms enjoyed great popularity from the late 1980s to around 

2000.  Many studies reported high accuracy given enough training data and fine 

tuning.  Most of the studies, such as those described as ‘a neural network model of Z 

layers with Z-2 hidden layers’, adopted the feed-forward back-propagation models 

(Lippman 1987).  This family of models is known to be capable of high accuracy 

given enough training data and especially easy to use for remote sensing applications 

(Foody et al. 1995).  They are also known to be prone to overfitting (Gopal and 

Woodcock 1996).  Our study will not cover the traditional 

feedforward-backpropagation model, because it has been compared to decision tree 

and support vector machine in the past and found to be inferior (Huang 1999).  We 

will instead look for newer implementations in the neural network family, which show 

some promises in overcoming these deficiencies. 

2.5.1. The ART network 

Fuzzy ARTMAP is a type of supervised neural network models based on the 

Adaptive Resonance Theory (ART) (Grossberg 1976; Grossberg 1987).  It was 

developed from the simplest ART network, which is a classifier for multi-dimensional 

vector datasets.  Each training class consists of many ‘patterns’ of vectors.  The 

input data vector is classified into a class which it most closely resembles depending 

on the stored training pattern.  Once a training pattern is found, it is modified to 
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resemble the input data.  If the input data does not match any stored pattern within a 

certain tolerance range, then the input data is absorbed into the training data as a new 

pattern.  Resemblance between the training data and the input data for classification 

is measured through the following equation: 

x

Px
PxR i

i

∩
=),(

              (Equation 2.9) 

In this form, R(x,Pi) is the resemblance coefficient; x is the input data vector; Pi is 

the ith pattern stored in the training data; and ∩ is a bitwise AND operator. 

If the resemblance coefficient is larger than a threshold value, then the training 

pattern Pi is updated through a linear equation: 

)()1( xPiPiPi ∩+−= ββ                  (Equation 2.10) 

In this form,β  is the updating speed coefficient between 0 and 1. 

Consequently, no stored pattern is ever modified unless it matches the input 

vector within a certain tolerance.  New classes will be formed when the input data 

does not match any of the stored patterns.   

The ART network is said to be uniquely designed to have both ‘plasticity’ and 

‘stability’ (Carpenter 1999).  ‘Plasticity’ comes from the design that the training data 

keeps evolving according to the classification data.  ‘Stability’ is maintained by a 

chosen tolerance value.  The ART network distinguishes itself from most other 

contemporary pattern classifiers by integrating ‘plasticity’ into its design.  However, 

how these theoretical designs work in reality is not very well tested. 
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2.5.2. The Fuzzy ARTMAP algorithm 

ARTMAP was developed by Grossberg and Carpenter (Carpenter et al. 1992; 

Carpenter 1999) and was introduced into the land cover mapping community rapidly 

(Carpenter 1999).  The original ARTMAP performs binary classification while the 

fuzzy ARTMAP classifies on multi-valued data.   

The fuzzy ARTMAP algorithm, along with the decision tree algorithm, were the 

only two candidates competing for the MODIS land cover classification algorithm 

(MLCCA).  Fuzzy ARTMAP was not chosen for MLCCA because the algorithm was 

“in the early developing stage and could not handle missing data points” (Friedl 2002).  

However, this is not very convincing.  Handling missing data points does not seem 

to be a major programming obstacle.  What Friedl found at that time might be an 

artifact that seemed to be caused by missing data handling but in reality isn’t.   

Still, researchers in the land cover community had high expectations for fuzzy 

ARTMAP because it does not assume any statistical distribution in the dataset and 

might be suitable for global land cover mapping.   

The ARTMAP classifier is built upon modules called ART and MAP networks.  

ART1 is the simplest variety of ART networks, accepting only binary 

inputs.(Carpenter et al. 1992)  ART2 extends network capabilities to support 

continuous inputs.  ARTMAP combines two slightly modified ART-1 or ART-2 units 

into a supervised learning structure where the first unit takes the input data and the 

second unit takes the correct output data.  The matching of the outputs from these 
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two ART modules is done through a MAP module.  Then the vigilance parameter in 

the first unit will be adjusted for the minimum possible amount in order to make the 

correct classification. 

2.6.  Support Vector Machine Classification (SVM) 

2.6.1. The Max-Margin Idea 

The Support Vector Machine has been considered as one of the most promising 

mathematical solver for statistical learning in general.  It was introduced into the 

field of remote sensing a decade ago and has demonstrated its potentials (Huang 

1999).  Understanding of its mechanism in geographical term is not complete yet. 

The Support Vector Machine algorithm came from a long way.  We will need 

several subsections to explain its origins and developments.  Only when we are 

thoroughly clear about these, can we possibly predict how SVM might respond to 

geographical uncertainties and errors. 

A straightforward rationale was suggested for linear binary classification (Vapnik 

and Chervonenkis 1974; Vapnik 1982).  The maximum distance between the data of 

two classes is determined and called the ‘margin’.  The plane in the center of the 

margin is used as the classifier.  This is known as the max-margin classifier, or the 

optimal-margin classifier.  For example, the two outer planes (H1 and H2) in the 

following figure are the maximum margins while the optimal hyperplane in the center 

separates the two classes. 
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Figure 2.2 The maximizing margin philosophy of SVM (same as Figure 5.2 in Vapnik 
1999) 

For a 2-D linear feature space of D: (xi, yi), the hyperplane set H1 and H2 is 

formulated with slope w and intersection b.  The equations in section 2.6 are all 

adopted from Cortes and Vapnik (1995) 
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The maximizing margin solution is derived by minimizing ww⋅  while 

constrained by: 

11

11

−=−≤+⋅

+=+≥+⋅

ii

ii

yforbwx

yforbwx

                  (Equation 2.12) 

However, Vapnik’s idea in the 1970s was not a practical classifier yet.  It was 

more like a philosophy. 

2.6.2. From Max-Margin idea to SVM Implementation 

The max-margin classification idea has been developed into a powerful pattern 

classifier with several mathematical techniques (Boser et al. 1992). 
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First, the max-margin training of N-dimensional data x with the dataset size of p 

is expressed as: 
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D(x) is the decision function of the classifier.  iw  and b  are the adjustable 

parameters for the classifier to tune.  )(xiϕ  are pre-defined functions of the data x 

most suitable for the dataset model. 

The decision function can also be written in pure vector form as: 

bxwxD +⋅= )()( ϕ , where w and )(xϕ are N-dimensional vectors.       

(Equation 2.14) 

Assuming that a full separation between class A and B exists, and then the margin 

M between the classes can be expressed as:  

pkwhere
w
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M kk ,...,2,1,

)(
=≤                 (Equation 2.15) 

Since we wish to maximize the margin size, we would want the minimization of 

the norm
w

.  The 2-class max-margin classifier of N-dimensional data of size p 

thus becomes: 

2
min w

w , under the condition that: pkxDy kk ,...,2,1,1)( =≥    (Equation 2.16) 

This is the optimization goal for the solution of max-margin classifier.  

Calculating directly with high-dimensional data is exceedingly expensive or 

practically impossible.  Only after they incorporated two important mathematical 
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techniques was the max-margin classifier named ‘Support Vector Machine’ (Boser et 

al. 1992). 

The first technique is to use symmetric kernels.  Instead of directly calculating 

the inner product in Hilbert space, the trick is to use the kernel mapping.  Mercer’s 

condition (Vapnik 1998) states that a symmetric kernel is a valid inner product if and 

only if its Gram matrix is always positive semi-definite.  This technique will 

simulate mapping the data into a very high dimensional feature space.  A symmetric 

kernel K can be expressed as: 
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The second new technique is solving the optimization of max-margin by means 

of a Langrangian.  The prime problem is converted to the dual problem: 
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(Equation 2.19) 

The optimization problem becomes searching for a saddle point of ),,( αbwL  

that minimizes L with respect to w and maximizes L with respect to α .  This can be 

solved via quadratic programming.  In short, the solution of 2-class N-dimensional 

max-margin classification using kernels was found in 1992 (Boser et al. 1992).  This 
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is known as the 2-class prototype of support vector machine.  SVM leads to a family 

of pattern recognition methods based on kernels with varying performance. 

2.6.3. The Risk Minimization Ideas behind SVM 

The development of SVM has been centered on the minimization of expected 

algorithm risks, which is arguably an extension of the Bayesian school. 

In the 1970s, Vapnik and Chervonenkis came up with an idea called the Empirical 

Risk Minimization (ERM) criterion (Vapnik and Chervonenkis 1974).  They 

mentioned the heavy influence by the idea of algorithmic complexity (Kolmogorov 

1965) at the time.  Basically the Russian statisticians at that time were trying to 

define the complexity of algorithms, and thus by proxy to define the complexity of 

real-world data which the algorithms tackle.   

The ERM idea suggests that, all statistical learning methods aim at minimizing 

the risk function, which is defined as the difference between empirical observation 

and algorithm estimation.  In regression, ERM is the least squares method; in 

statistical inferencing it is the Kolmogorov-Smirnov test; while in classification, it is 

the maximum likelihood classifier as equation 2.1 (Vapnik and Chervonenkis 1974; 

Vapnik 1982; Vapnik 1999).  

In the 1970s and 1980s, Vapnik went on to define the second risk minimization 

criterion which he named as the Structural Risk Minimization (SRM).  What it 

means is that the complexity of the algorithm should not be greater than the 

complexity of the real-world problem to be solved.  One can immediately see the 
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Russian nonparametric statistics tradition from Kolmogorov.  Vapnik believes that 

the cause of overfitting in statistical learning is that the complexity of the algorithm 

was uncontrolled.  For example, a neural network can have arbitrary amount of 

hidden layers.  The more complex an algorithm is, the more fit it can achieve with a 

given set of observation data.  However, that would only make it worse when 

generalized to the data population.  Therefore, an ideal statistical learning algorithm 

should be flexible to adjust its own complexity to match that of the observation data 

(Vapnik 1982; Vapnik 1999). 

The complexity of each SVM model is determined by the structure and 

parameters of the kernel.  This is why the choice of kernels and the tuning of kernel 

parameter are so important.  They directly determine whether or not the 

classification has overfitting.  

In the 1980s, Vapnik went on to define the third risk minimization rule which he 

named as the Vicinity Risk Minimization (VRM).  It assumes two “smoothness” 

conditions.  The probability function of the data distribution and the algorithm 

function should both be smooth around observed data values.  This VRM rule gives 

SVM a new design: the error margins.  Vapnik presented two cases: the soft-vicinity 

and hard-vicinity SVMs (Vapnik 1999).  They are more commonly referred to as 

soft-margin and hard-margin SVMs (Cortes and Vapnik 1995). 

2.6.4. From Hard-Margin SVM to Soft-Margin SVM 

SVM was further developed to cope with real-world situations where class 
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separation can be difficult.  It has been pointed out that the margin between the two 

classes can be arbitrarily small if the training data cannot be separated by hyperplanes 

in the Hilbert space (Cortes and Vapnik 1995).  Therefore the classification can be 

useless under that situation.  To counter this problem, they introduced the ‘soft 

margin’ concept.  The soft margin hyperplanes allow a certain amount of training 

data to lie between the hyperplanes as outliers.  A vector of ‘slack variables’ kξ  is 

introduced to enable this concept of soft margin hyperplanes.  The direct form of the 

optimization problem now becomes: 
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C is a sufficiently large constant, often different in different variations of SVM, 

used as a penalty coefficient.  It acts similarly to the loss function in MLC.  kξ  

should be between the value of 0 and 1.  F(n) is a monotonic convex function, 

chosen from a many options at the discretion algorithm developers.   

It has been proven that the 2-class soft-margin SVM can be solved using kernels 

in the same way as in the 2-class hard-margin SVM classifier (Cortes and Vapnik 

1995). 

2.6.5. From 2-class SVM to Multi-class SVM 

SVM was developed from the classic case of 2-class separation.  Researchers 

have tried different approaches to solve the multi-class separation case.  For a dataset 
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with N classes, it was proposed to execute N(N-1)/2 pair-wise SVM classifiers and 

use a voting mechanism to determine the final class label of each data point (Hastie 

1996).  This algorithm is known as the ‘one-against-one’ approach.  It also has been 

proposed to execute N SVM classifiers of each class vs. the rest of the classes (Bottou 

1994).  This is known as the ‘one-against-all’ approach.   

Lately, the ‘one-against-one’ approach, the ‘one-against-all’ approach, and a 

multi-class simultaneous optimization approach were compared sided by side.  Their 

results showed that the ‘one-against-one’ and ‘one-against-all’ approaches achieve the 

best accuracies, while the ‘one-against-one’ is also the fastest approach (Hsu 2002).  

In light of this, current multi-class SVM implementations usually adopt the 

‘one-against-one’ voting algorithm. 

This voting mechanism leads to two important consequences.  The first is that 

the probability generated by contemporary SVM algorithms is the summary of the 

votes.  Thus, arguably, it cannot be viewed as statistical probability.  The second 

consequence is that, if the SVM algorithm is implemented by the ‘one-against-one’ 

approach, the computation time will increase rapidly with the number of classes. 

2.6.6. Choice of Kernel and Kernel Parameters 

The use of symmetric kernels is a key breakthrough in the development of SVM.  

The structure and parameters of the kernels are vital to avoid overfitting.  Several 

kernels have been proposed for use with real-world datasets.  The most commonly 

used kernels are the RBF (Radial Basis Function) kernel, the polynomial kernel and 
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the Sigmoid kernel.   
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The Sigmoid kernel has been proved to be less efficient than the RBF kernel (Lin 

and Lin 2003).  The classification accuracy of polynomial kernel varied a lot with 

regard to the polynomial order(Huang et al. 2002).  Only when high-order 

polynomial forms are used can the polynomial kernel achieve similar accuracy as the 

RBF kernel.  The use of high-order polynomial kernels substantially increases the 

time needed for training.  A similar study demonstrated that the RBF kernel has 

become the most favored kernel for SVM in practice (Huang et al. 2002).  An 

interesting fact is that the RBF kernel is actually a high-dimensional Gaussian kernel.  

There has been reported (Small 2004) that the Gaussian assumption of the maximum 

likelihood classification negatively affects MLC performance when applied to large 

areas.  It would be also necessary to assess whether the Gaussian kernel of SVM is 

also susceptible to this problem.  Therefore in the next chapter we will take a look 

into this case. 

The RBF kernel is controlled by two variables: C and γ .  The choice of their 

values strongly affects the accuracy of SVM outputs.  In practice, a procedure called 

K-fold cross validation is used to identify the best set of parameters (Stone 1974; Lin 

and Lin 2003).  In each permutation run, a random 1/K of the total training data is 

used to train the SVM model using a particular combination of parameters.  The rest 
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of the training data are used for accuracy assessments.  The parameter set of the 

permutation run with highest accuracy will be used for the complete training dataset.  

In practice, it has been showed that SVM classification accuracies do not fluctuate 

significantly when the size of the training dataset shrinks (Song et al. 2005).  

Therefore, the K-fold cross validation process can just use a fraction of the total 

training data and still find the optimal parameter set.  This greatly shortens the time 

needed for cross validation.  The whole cross validation process, however, is 

completely missing or unspecified in the current generation of ENVI software, which 

is the first major remote sensing toolbox to incorporate the SVM algorithm. 

2.7.  Kernel Perceptron (KP): Introducing Neural Network into 

SVM 

Kernel Perceptron is a recent development of SVM (Lin and Li 2005; Lin and Li 

2005).  It is developed from three theories: a boosting theory called infinite ensemble 

learning, the classical neural network model of the Perceptron, and the kernel design 

of the support vector machine.  It has been suggested that KP is should outperform 

SVM (Lin and Li 2005).  Therefore in our study we decided to include KP as a more 

recent integration of both SVM and Neural Nets.   

2.7.1. Adaptive boosting: Infinite Ensemble Learning 

Boosting is a meta-algorithm, which means it is used on top of other learning 

algorithms to improve their performance.  It has been described as ‘‘one of the most 

important recent developments in classification methodology’’ (Friedman 2000).  
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AdaBoost (Freund and Schapire 1996) refers to adaptive boosting.  It is the most 

simple, popular, and successful boosting meta-method for machine learning.  

AdaBoost is adaptive in the sense that subsequent classifiers built are tweaked in 

favor of those instances misclassified by previous classifiers.  AdaBoost is sensitive 

to noisy data and outliers.  Otherwise, it is less susceptible to the overfitting problem 

than most learning algorithms.  This has been demonstrated in a remote sensing 

study (Chan and Paelinckx 2008).  For a given integer T and a hypothesis set H, 

AdaBoost iteratively selects T hypotheses Hht ∈ and weights 0≥tw  to construct 

an ensemble classifier.  The equations in section 2.7 are all adopted from Lin and Li 

(2005). 
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When T goes to infinity, AdaBoost approximates an infinite ensemble classifier: 

))(()(
1∑

∞

=
=

t tt xhwsignxg
                            (Equation 2.23) 

2.7.2. Building the Ensemble Kernels for SVM 

It has been pointed out that AdaBoost and SVM both use the inner product 

(Freund and Schapire 1999).  This similarity was later demonstrated in an effort to 

build special kernels for the SVM algorithm such that the infinite ensemble algorithm 

gets embedded in the kernels (Lin and Li 2005).  To do this, a kernel that embodies 

all the hypotheses in H needs to be designed.  Then, the classifier obtained from 

SVM with this kernel is a linear combination of those hypotheses and thus an 
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ensemble classifier.  In addition, the structure of SVM makes it possible for the first 

time to construct ensemble classifiers with infinite hypotheses intended against 

overfitting (Lin and Li 2005). 

Lin’s ensemble kernel thus designed has the following general form: 
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                          (Equation 2.24) 

In this kernel form, H is the set of hypotheses }:{ ChH ∈= αα .  C is a 

measurement space.  The function )()()( xhrx ααφ =  maps the data x into Hilbert 

space.  The variable α  is the parameter of an arbitrary hypothesis )(xhα .  This 

general form of an ensemble kernel is thus an integral of inner products.  An earlier 

technique (Scholkopf 2002) was used to construct kernels from an integral inner 

product.   

Lin’s kernel is used in the soft-margin SVM.  The SVM optimization problem 

was 
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This SVM model based on the ensemble filter will be valid if and only if the 

hypothesis set H is negation complete.  That is, Hh∈ if and only if Hh ∈− )( .  

Negation completeness is usually a mild assumption for a reasonable H. 
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Lin’s ensemble SVM model will have the solution classifier g(x): 
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With Lagrange multiplers iλ , the final form of Lin’s ensemble SVM classifier is 
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                      (Equation 2.27) 

2.7.3. Kernel Perceptron 

The Kernel Perceptron is an ensemble kernel method built on the Perceptron idea 

(Rosenblatt 1958).  He designed the Perceptron as a hypothesis on how the human 

brain perceives the information from the outside world, and hence the name 

‘Perceptron’.  Later it was developed into a neural network learning method by 

assuming the neurons work as Perceptrons.  The Perceptron classifier can simply be 

expressed as: 

)()(, αθαθ −•= xsignxp                           (Equation 2.28) 

In this equation, x is the input data of multi dimensions, θ  is an array of 

coefficients, >•<  is the inner product of vectors, and α  is the threshold value. 

Lin  embedded infinite amount of Perceptrons into an ensemble classifier (Lin 

and Li 2005; Lin and Li 2005), and used a SVM to get the optimal solution, which 

could not be achieved before the advent of SVM.  The resulting algorithm, named 

the Kernel Perceptron, is equivalent to a neural network with one hidden layer, 

infinitely many hidden neurons, and a hard-threshold activation functions.  They 

proved that mathematically the Kernel Perceptron is just the regular form of SVM 
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with a special type of kernel. 

')',( xxpxxK p −−∆=
 , where p∆  is a constant.        (Equation 2.29) 

In other words, Kernel Perceptron is more like a new type of SVM with a neural 

network kernel.  In this we see the integration of several of the families of classifiers 

described in figure 2.1. 

Using several standard machine learning test databases, the performance of the 

Kernel Perceptron was compared to that of SVM with the RBF kernel.  The result 

shows that KP outperforms SVM-RBF when the source data contains 10% 

mislabeling error (Lin and Li 2005).  This encouraging result suggests that the KP 

algorithm might also outperform SVM-RBF in real world datasets.  Therefore the 

KP algorithm is also studied in our experiment. 

2.8.  A Brief Discussion on Self-Organizing Maps Neural Network 

(SOM) 

Kohonen’s Self-Organizing Map (SOM) neural network is a unique type of neural 

nets because it takes into consideration the detailed boundary of classes (Kohonen 

1990).  We will mention it briefly here, and use it in only one experiment (section 

3.7) in chapter three.  It has a special design that is of interest to us.  This method 

will not be covered in the other experiments and therefore we will not elaborate on it. 

SOM consists of three steps.  The first step is called coarse tuning, which is 

basically an unsupervised clustering based on Euclidean distance.  This step 

establishes a fundamental regional organization (a topology) of neuron weights that 
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represent the clusters and sub-clusters in the input data.  The second step is called 

labeling.  This determines the classes to which the neurons belong.  The third step 

is called the fine tuning, which uses the training data to carve out the detailed borders 

among neurons, using an algorithm called Learning Vector Quantization (LVQ).  The 

refined neurons in the output layer are now considered fully trained, and can then be 

used to conduct classification. 

The unique design caveat of SOM is that it incorporates the underlying clusters of 

the input training data.  This means that SOM should be very sensitive to the class 

proportions in the training set.   

2.9.  Cross-comparison of Machine Learning Algorithms for 

Remote Sensing 

The remote sensing community has adopted change detection algorithms from the 

machine learning community.  As new algorithms appear every year, there are 

numerous of remote sensing studies that assess one ‘new’ algorithm against a couple 

of ‘standard’ algorithms such as the classic MLC.  This approach effectively 

demonstrates the virtues of a new algorithm.  Each study presents us with one 

algorithm superior than the MLC algorithm, which was designed more than five 

decades ago.  One would naturally ask: with so many new algorithms at hand, is 

there a generally superior algorithm?  Or are these fancy new algorithms good for 

different situations respectively?  A related question is whether many users simply 

over-tune the classifiers and hence demonstrate no more than that for one particular 
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example better results can be obtained with no guarantee that similar improvements 

will be found for other areas.  It is obvious that, a cross-comparison among the 

modern algorithms is more important.   

However, there are too many change detection algorithms to be tested one by one.  

Rather than comparing every new variant of the basic methods our approach is to 

carry out a cross-comparison of superior examples from each of the different families.  

Moreover our comparison will not simply be an empirical assessment but will attempt 

to explain the differences in terms of the mathematical theories underlying them.  To 

be more specific, we seek to find which underlying designs are effective at handling 

uncertainties and errors in practical applications.  We summarize them into table 2.1. 

These promising methods are chosen based on their theoretical strengths and 

feedbacks from contemporary literature.  Some of these theoretical strengths are very 

desirable for remote sensing studies.  All the methods are tested in the next chapter, 

in different scenarios chosen to resemble real-world geographical applications.   

Our study is not aimed at touting at performance of the supposedly best 

algorithm(s).  We are aware that the mathematical characteristics may have 

side-effects as well as strengths.  From the table above, we can see that the machine 

learning algorithms were born with hidden assumptions.   
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Table 2.1 Summary of mathematical characteristics and expected strengths and 
weaknesses of algorithms discussed in Chapter 2 

Algorithm 

Family 

Algorithm 

Name 

Mathematical 

Characteristics 

Expected 

Strengths 

Possible 

Weaknesses 

Bayes 

Classifiers 

MLC Assumption of Gaussian 

Distribution; Classes 

defined from centers 

High accuracy in 

small-scale 

studies 

Lower accuracy 

in complicated 

non-Gaussian 

data; Curse of 

Dimensionality 

Entropy-mi

nimization 

DT No assumption on data 

distribution 

Good accuracy in 

large-scale 

studies 

Salt-and-pepper 

errors; Curse of 

dimensionality 

Neural 

Networks 

ARTMAP Adaptive training data Training pattern 

can be improved 

with incoming 

data for 

classification 

overfitting 

Margin-ma

ximization 

SVM Classes defined from 

boundaries; The RBF 

kernel assumes 

Multimodal Gaussian 

Distribution of data; SVM 

assumes smoothness in 

both the estimator and 

data observation 

High accuracy at 

all scales 

The Gaussian 

assumption is 

controversial 

Kernel KP Classes defined from 

boundaries; No Gaussian 

assumption on the data; 

Infinite Boosting 

High accuracy at 

all scales 

overfitting 

It is also interesting to see that as new algorithms are developed, some of the 

controversial hidden assumptions in the older algorithms were adopted again as 

building blocks.  For example, the Gaussian assumption has been used in both MLC 

and RBF, which is the most successful kernel form of SVM.  Another example is 

that the Perceptron model was used both in traditional neural networks and modern 

Kernel Perceptron.  Arguably, the algorithms that share assumptions might exhibit 
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similar performance weakness under certain scenarios.  The Gaussian assumption 

has long been criticized for being too simple for geographical variations.  The 

Perceptron neural networks model, on the other hand, has long been criticized for 

being too prone to over-fitting.  This also leads to some worries about Kernel 

Perceptron.  Would it also tend to overfit? 

Also in this chapter we identified two interesting hypotheses from contradictory 

literature.  The first is that the decision tree might be ill-suited for stacked change 

detection because it does not handle high dimensional data as well as some algorithms.  

The second is that the Gaussian assumption on geographical data over large areas 

might not be totally invalid.  Since the Gaussian kernel of SVM is indeed a 

simulation of multimodal Gaussian, it might actually fit the geographical phenomena 

very well. 

These pros and cons have deep roots in the mathematical theory and have to be 

assessed in empirical studies.  Since these mathematical features were built into the 

algorithm to handle uncertainties, we will test the algorithm under challenging 

classificatory situations.  Unlike other studies that assess algorithms in an arbitrary 

scenario, our study simulates special scenarios for testing different aspects of the 

algorithms.  These different aspects trace back to and are targeted at the theoretical 

strengths and suspected weakness we discussed here. 

In the next chapter, we will also define the qualities of a truly good algorithm.  

In DeFries et al. (2000), two general criteria were raised as key: stability and 

robustness.  In the past several years we have accumulated knowledge on what 
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stability and robustness truly mean in the real world.  We will find out in the next 

chapter which algorithm best meets these criteria.  And if no algorithm can satisfy all 

the criteria, we will try to find out the most acceptable solution. 
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3. Assessing Machine Learning Algorithms with 

Real-World Uncertainties 

3.1.  Assessments and Comparison Design 

In chapter two, we outlined the possible strengths and weaknesses of modern 

machine learning methods.  We hope to find out under what conditions will 

classifiers be successful and when not.  What are the internal designs that lead to 

varying degrees of success?  Is there a classifier successful enough for most 

real-world applications in remote sensing?  These questions have not been 

systematically addressed in previous studies. 

This study tries to attribute the varying degree of success to two factors: the 

internal designs of classifiers, and the real-world complexities in the field of remote 

sensing.  The designs of classifiers originate largely from statistical theory, e.g. the 

Mahalanobis Distance (Mahalanobis 1936) and applications in computer science, e.g. 

the MLC learning of texts (Chow 1957).  They were never custom-built for 

geographical phenomena.  It would be wishful thinking that existing machine 

learning methods can automatically handle geographical uncertainties perfectly.   

Traditionally, when the accuracies of different supervised change detection 

algorithms are assessed and compared, the characteristics of the selected training and 

validation sets are not quantified.  This can introduce biases into the comparison.  

Although this source of bias had been brought up from time to time during the past 
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four decades, but it had largely been ignored in contemporary remote sensing. 

When addressing the generalization power of machine learning in general, Vapnik 

(Vapnik 1999) stated: “One first has to find the appropriate structure of the learning 

machine which is a result of the tradeoff between overfitting and poor approximation, 

and second find in this machine the function that minimizes the number of errors on 

the training data.”  Thus, if we put the secondary goal of accuracy maximization as 

the top priority, as seen in so many contemporary remote sensing studies claiming 

classification accuracies over 95% and regression R-squares over 95%, then we lose 

sight of the big picture: the tradeoff between overfitting and underfitting. 

Therefore, classification accuracy is only meaningful if the classifier structure is 

right for the data.  To figure out that appropriate structure for geographical 

phenomena, we must identify possible weaknesses.  After that, we can think about 

improving the accuracy. 

Most previous studies have significant weaknesses when applying training data, 

though several investigations have attempted to overcome individual weaknesses with 

varying amount of success.  Our perspective here is to systematically outline these 

weaknesses and seek solutions accordingly.  This will enable us to improve the 

classifier structure and then the accuracy itself. 

Our approach aims to isolate the effect of each bias caused by training data sets.  

We would estimate how well the change detection algorithm can do with or without 

the biases caused by the training data set.  The best change detection algorithm 
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should be able to achieve high accuracy, while least influenced by adverse biases from 

the training data set.  If no existing algorithm satisfies these high standards, then we 

would need to think why this happens and how to solve this. 

3.1.1. The Tradeoff between Generalization Power and Accuracy 

First, most traditional assessments tell how successful the algorithms are when 

analyzing study areas of limited range of sizes, land cover variation, and atmospheric 

conditions.  This is a problem.  In a pioneering work based on a land cover study 

using Landsat-1 imagery, it was shown that when the atmospheric turbidity decreases 

1.3, the maximum likelihood classification result can differ by a whopping 22% 

(Fraser et al. 1977).  It was also shown that the performance of the MLC algorithm 

starts to drop in complex environments after the band number is more than five 

(Lillesand and Kiefer 1979). However this type of issue was not widely 

acknowledged until the last decade, partly because multispectral remote sensing is 

more and more applied to study continental and global changes.   

Researchers in the last decade started to raise the ‘stability’ requirement (DeFries 

and Chan 2000) and the generalization power criterion (Woodcock et al. 2001).  In 

the latter paper, the benefit of generalization power to Geographers were clearly laid 

out: “Methods based on generalization require less time and effort than conventional 

methods and as a result may allow monitoring of larger areas or more frequent 

monitoring at reduced cost.” (Woodcock et al. 2001) 

 Also pointed out was that many data-driven algorithms, such as the maximum 
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likelihood algorithm, can fail at complex datasets (Hastie 2001).  Also mentioned is 

that the principal component analysis would have drastically different results in 

different areas while decision tree is reasonably better (Scull et al. 2005).  ARTMAP 

and Decision Tree have been recommended in such situations (Rogan et al. 2002).  

SVM was recommended above Decision Tree and MLC for variations over large 

areas (Song et al. 2005).  In another recent study (Masek et al. 2008), the accuracy 

assessment for their new algorithm is done in 23 sites across the US.  This is very 

convincing yet also very hard to achieve. 

To avoid this methodological weakness, we choose our study areas to be large 

and very complex.  Three study areas were chosen.  Each area has a distinctive 

ecosystem, and a unique landscape pattern.  These three areas also show a sharp 

difference in annual rainfall.  The impacts of geographical variation will be further 

discussed in sections 3.2, 3.3, and 3.4.  

3.1.2. The Realistic Acknowledgement of Errors in the Source 

Second, the traditional assessment routine most tells how successful the 

algorithms are when they are fed with 100% correct training data.  Only in the last 

decade has researchers started to address the problem that there exists mislabeled 

training data in remote sensing applications (Brodley 1996).  Algorithms thus must 

possess the ‘robustness’ property (DeFries and Chan 2000).  It was then reported that 

MLC might be susceptible to mislabeled training data (Simard 2000; Miller and 

Franklin 2002) and is inferior to ARTMAP on error tolerance (Rogan et al. 2008). 
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To avoid this methodological weakness, we carried out experiments on the impact 

of varying amounts of error in the training data.  Errors from 5% to 50% will be used 

to see how well the algorithm resists training errors.  A contemporary study tested 

error for three algorithms (Rogan et al. 2008).  Our study will test 5 algorithms 

instead.  And more importantly we need to find out what in the classifier(s) works 

mathematically against errors.  Section 3.5 covers the results on the error tolerance. 

3.1.3. The Uncertainty in Class Definition 

Third, the traditional assessment routine tells how successful the algorithms are 

when they are fed with training data from typical and pure ground cover types.  

There has been no known publication discussing this issue. 

To avoid this, we do not choose our training data only from distinctive and pure 

landscapes.  Instead, training data will be chosen randomly from across the whole 

study area.  We also assessed using training data in the relatively transitional zone 

against relatively that in the core zone.  This separation and comparison of training 

data from the core zone and the transitional zone has not been mentioned before.  

The results on the transitional training data will be discussed in section 3.6. 

If we bring this topic a little further, we can also ask a more fundamental question.  

How would the conceptual definition of geographical classes affect the classification 

outcome?  Chapter 5 will explore into this question. 
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3.1.4. The ‘Blind men and the Elephant’ Problem 

Fourth, the traditional assessment routine tells how successful the algorithms are, 

but the actual sampling process of the training data is often arbitrary or neglected.   

This situation is similar to the ancient Asian fable of the blind men and the 

elephant. It was put into a poem by John Godfrey Saxe (1816-1887). 

It was six men of Hindustan 
To learning much inclined, 
Who went to see the Elephant 
(Though all of them were blind), 
That each by observation 
Might satisfy his mind 

This ancient fable shows us that our observation is a sampling of reality, and that 

can induce our partial perception of reality.  If we only observe the tail, we might 

conclude that the elephant is like a snake.  Although we are not blind, we still could 

blindly trust a methodology developed not specifically for Geographical phenomena. 

Almost all contemporary change detection studies use three types of sampling 

strategy when they choose the training dataset.  The sampling may be random, the 

systematic, stratified or even purposive (i.e. when chosen by the analyst).  This is 

intended to avoid statistical bias in the inference of ‘population’ accuracy.  The 

performance of change detection algorithms may be affected by the choice of 

sampling method.  There have been no known studies on the effect of this aspect, 

although stratified sampling is often preferred because it gives an ‘equal’ 

representation for all classes.  For example, in a study that discussed the effect of 

training data (Rogan et al. 2008), his training data is not selected pure randomly, but 
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with equal amounts of training data in each class.   

Recently, researchers have been focusing more on the topic of sampling.  

Stehman published a series of papers (Stehman 2000; Zhu et al. 2000; Stehman et al. 

2003; Stehman 2005; Stehman 2009) introducing the ‘model-based sampling’ as 

compared to the ‘design-based sampling’ such as random, stratified, and systematic 

samplings mentioned before.  His major concern was that geographical events are 

often not spatial random. Therefore design-based sampling is not sufficient to 

characterize the whole area statistically.  This is similar to the concerns raised by 

Tucker and Townshend (Tucker and Townshend 2000) although expressed with a 

different language.  However, Stehman’s interest was purely in the estimation of 

accuracy for end products of remote sensing studies, not in the process of remote 

sensing analysis.  He did not realize that, our way of observation can foul our 

analysis process.  To study this problem, we used variable class proportions in the 

training data.  This kind of study has also not been done in contemporary 

publications.  Section 3.7 will cover the results on the sampling of training classes. 

3.1.5. Minimizing the Cost of Sample Collection 

Fifth, the traditional assessment routine tells how successful the algorithms are 

when the amount of the training data is often unrealistically large for practical 

applications.  This problem has only been noticed in the past a few years.  Our 

earlier work mentioned that the accuracies of SVM and Decision Tree do not decrease 

as much as MLC does when the available training set size was reduced to 1% of 
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original set (Song et al. 2005).  There have also been efforts trying to prove 

theoretically that SVM requires far less training data because of its mathematical 

designs (Foody et al. 2006).  Another study found that ARTMAP accuracy only lost 

10% when the training set size was reduced by 25% (Rogan et al. 2008). 

To avoid the fifth weakness of traditional assessments, we use varying amounts of 

training data in our assessment.  The results on the abundance of training 

information will be discussed in section 3.8.  A contemporary study tested 3 

algorithms when the training data is reduced by 50% (Rogan et al. 2008), while our 

study compares 5 algorithms when the training data is reduced by 80%.  What is 

more important than just finding the efficiencies of different algorithms is to find out 

which internal design makes this happen. 

These five approaches in our assessment will tell how well the candidate 

algorithms handle geographical uncertainties and errors in the real world.  These 

assessments will allow us to assess empirically whether the theoretical strengths and 

limitations listed in table 2.1 really exist.   In this chapter we will also present the 

first large-scale testing of the SVM and ARTMAP algorithms in remote sensing, and 

the first application of the promising Kernel Perceptron algorithm in remote sensing. 

3.2.  Geographical Information of the Assessment Areas 

As the first step to avoid overfitting, our experiments from sections 3.3 ~ 3.8 look 

at multiple areas with different ecosystems and complex land use trajectories.   

We chose three areas in the country of Paraguay to test the algorithm candidates.  
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The country of Paraguay has three major ecosystems from east to west, namely the 

Atlantic Forest, the Humid Chaco, and the Dry Chaco.  These three ecosystems have 

vastly different appearances and species.  The Atlantic forest is a closed canopy 

forest in humid coastal climate from the Eastern coast of Brazil (Olson and Dinerstein 

2002) to the eastern departments (provinces) in Paraguay.  The dry Chaco in inland 

Paraguay and Bolivia has wet season and dry season in a year and is mainly covered 

by open-canopy woodland (Olson et al. 2000).  The humid Chaco is a transitional 

zone between Atlantic forest and dry Chaco, with some wetlands, grasslands, and 

inter-annual floods (Cabrera 1976).  All three areas have moderate-to-extensive 

agriculture developments during the time span of 1990-2000.  The Dry Chaco area is 

dominated by woodland, while the other two areas are dominated by non-forest.  

Each area was chosen to include significant amount of forest change.  The sizes of 

these three test areas are 9076, 9849, and 5878 km2 respectively from east to west. 

Table 3.1 Geographical Information of Test Areas (Huang et al. 2009) 

Landsat path/row 224/78 225/77 228/76 

Ecosystem Atlantic Forest Humid Chaco Dry Chaco 

Forest Percentage 26.7% 23.5% 58.1% 

Nonforest Percentage 48.5% 68.1% 34.7% 

Forest Change Percentage 24.8% 8.4% 7.2% 

Area (sq km) 9076 9876 5878 

We have an accurate forest change map of Paraguay and we used it as both for the 

training and accuracy assessment (Huang et al. 2007; Huang et al. 2009).  Cloud-free 

images of Landsat TM (1990) and ETM+ (2000) were used to develop this 

wall-to-wall forest cover change map using an iterative clustering-supervised labeling 

(ICSL) method.  Unsupervised clustering using the ISODATA algorithm (Tou and 
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Gonzalez 1974) and supervised labeling of clusters using training pixels were applied 

iteratively to resolve spectral confusions among the concerned classes.  This iterative 

process is highly reliable and has been assessed by 136 aerial photos, as well as 

IKONOS and Quickbird imagery covering 64km2.  The overall accuracy is higher 

than 95% (Huang et al. 2007; Huang et al. 2009).  The resulting Paraguay forest 

change map is thus a good test-bed for training data and testing data as well.  We 

select training data randomly instead of confined to a fieldtrip or an IKONOS image.  

We also use the whole area as our testing data for the accuracy assessment. 

In this map and throughout this dissertation, the color scheme will be: Green for 

the Forest-to-Forest class, yellow for the Nonforest-to-Nonforest class, and red for the 

Forest-to-Nonforest class. 

 

Figure 3.1Three test areas in Paraguay 
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Only three classes were used in these experiments: persistent forest, 

forest-to-nonforest change, and persistent nonforest.  Our study did not use the 

nonforest-to-forest class.  There has been no sizeable land in Paraguay that went 

through forest regrowth during the 1990s. 

3.3.  Assessing the Algorithms in Different Geographical Regions 

In this experiment, we start to look at the basic characteristics of our algorithms 

with a very simple design.  2000 random pixels were used in each test area as the 

training data.  Each class was given the same amount of training pixels.  And we 

evaluate the algorithms by means of total accuracy, as well as the user and producer 

accuracy of the forest change class.  The higher accuracy, the more capable is the 

algorithm at adapting to various geographical contents. 

In sections 3.4-3.8, our experimental designs are actually further developed from 

the experiment in this section. 

Our findings are listed in table 3.2-3.4.  The algorithms have achieved different 

accuracies in the three ecosystems.  Generally speaking, the algorithms have higher 

accuracies in the Dry Chaco region.  This might be caused by both the dry climate, 

the limited types of land use in that region, and the fact that this test area is smaller 

than the other two.  The forest clearings in the Dry Chaco region become ranches 

and farms.  These large ranches and farms are very large and stand out easily against 

other classes.  While in the eastern regions the forest clearings become farms of 

soybean and other crops.  The land parcels are much smaller and more varied in the 
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east.  In short, the west area has a simpler set of geographical features. 

Table 3.2 Overall Accuracy of different classifiers in different regions 

Classifier Atlantic Forest Humid Chaco Dry Chaco 

MLC 90.47% 86.69% 93.33% 

ARTMAPNN 86.89% 86.96% 88.53% 

DT 89.94% 89.62% 91.43% 

SVM 91.12% 91.77% 93.68% 

KP 92.56% 91.97% 94.12% 

Table 3.3 User Accuracy of the Forest Change Class produced by different classifiers 
in different geographical regions 

Classifier Atlantic Forest Humid Chaco Dry Chaco 

MLC 80.29% 83.62% 94.32% 

ARTMAPNN 76.12% 71.61% 82.71% 

DT 81.52% 72.85% 88.43% 

SVM 85.32% 76.89% 89.20% 

KP 86.29% 76.91% 91.66% 

 

Table 3.4 Producer Accuracy of the Forest Change Class produced by different 
classifiers in different geographical regions 

Classifier Atlantic Forest Humid Chaco Dry Chaco 

MLC 90.27% 63.08% 81.52% 

ARTMAPNN 80.28% 68.13% 80.63% 

DT 86.71% 77.14% 81.10% 

SVM 88.39% 81.63% 90.40% 

KP 89.76% 82.93% 89.05% 

As we compare the algorithms in three geographical setting, we have several 

findings.  The first finding is that the ARTMAP neural network is clearly not good 

for any geographical setting at all.  It almost always achieves the worst performance.   

The second finding is that SVM and KP almost always achieve best performance 

in overall accuracy as well as the user and producer accuracies of the forest change 

class.  More important is that they did well in all three ecosystems, showing the 

robustness of kernel methods.  
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Our third finding is that MLC remains a good alternative although its 

performance does vary from place to place.  For example, MLC made the best 

producer accuracy among all five methods in the Atlantic forest test area, but achieved 

the worst producer accuracy among all five methods in the Humid Chaco test area.   

We also produced some images to show the change detection results from 

different algorithms.  Throughout this dissertation, the color scheme will be: Green 

for the Forest-to-Forest class, yellow for the Nonforest-to-Nonforest class, and red for 

the Forest-to-Nonforest class. 

Figure 3.2 shows the classification results by different algorithms in the eastern 

area.  We can see that, graphically speaking, SVM and KP results have a distinctive 

look of rounded edges around land cover patches, while ARTMAP and DT results 

have a lot more salt-and-pepper noises.  

 

      Paraguay Map           MLC               ARTMAP NN 

        DT                 SVM                   KP 

Figure 3.2 Change detection results from different algorithms in Eastern Paraguay 
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3.4. Assessing the Algorithms over Large Areas 

In our earlier work (Song et al. 2005), we found that the SVM algorithm have a 

unique property.  It could use limited training data from multiple satellite scenes 

blended and still has decent performance at detecting forest change over large area.  

In that comparison, MLC and DT were tested against SVM.  MLC showed poor 

performance.  The DT algorithm got limited success in terms of accuracy but the 

resulting change map is virtually unusable due to widespread tiny errors of the 

salt-and-pepper type. 

While forest change detection does not necessarily have to be performed at 

multiple scenes at once, what is important is that SVM showed a potentially useful 

generalization property.  The geographical variations over large areas did not ruin the 

change detection.  This property can be of good value at some regions of Earth 

where strong local geographical variations exist.   

Therefore, we hope to examine all five of our candidate algorithms.  It would be 

nice if some of them other than SVM also show this property. 

This assessment creates a pseudo-image mosaic of all three areas together.  

There is no atmospheric correction or any radiometric enhancement.  On one hand, 

the classification of individual satellite images does not benefit significantly from 

atmospheric correction (Song et al. 2001), on the other hand, the classification of 

multiple satellite images together is a grill for the classifier.  The five classifiers will 

have to deal with much larger spectral variation in every land cover change class.  
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We also limit the amount of the training data to a very small set of 1000 pixels.  If 

some algorithm(s) could still achieve good change detection in this manmade extreme 

case, then in the real world it can as well handle strong geographical variations with 

very limited training information.  Our test results are shown in table 3.5: 

Table 3.5 Performance of algorithms over large areas 

 Total Accuracy User Accuracy of 

Change Class 

Producer Accuracy of 

Change Class 

MLC 85.73% 81.26% 62.59% 

ARTMAP 82.86% 66.64% 64.54% 

DT 88.40% 73.73% 81.31% 

SVM 91.72% 73.79% 91.48% 

KP 91.93% 76.13% 90.17% 

We concluded that, first of all, the ARTMAP Neural Network method should be 

avoided at all costs.  They are quite ineffective at generalization.  Second, MLC 

and the kernel methods have different strengths.  MLC have higher user accuracy 

(100%-commission), while the kernel methods tend to have much higher producer 

accuracies (100%-omission).  This seemingly odd contrast will be explained using 

the findings from section 3.7.  Finally, the best overall performance still belongs to 

the kernel methods.   

In addition to the accuracy numbers, we also studied the change detection images 

closely.  Figure 3.3 shows a subset image on the border of three areas.  We could 

see from the above images that, although the accuracies numbers do not vary too 

much, we could only find the map outputs from SVM and Kernel Perceptron are 

much more clear and meaningful.  ARTMAP and DT results still have the undesired 

salt-and-pepper noises. 
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the training data.  Algorithms without significant accuracy loss would be considered

as error-tolerant and thus prized in practice.  Before developing the TDA algorithm, 
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Assessing the Error Tolerance of Algorithms   

In this assessment we blemish the original class label of the training data with 

varying amount of random errors.  In the real-world application, there are inevitable 

errors such as those caused by image misregistration, ambiguous land cover types, 

and different interpretations among analysts.  Therefore our approach of adding a 

percentage of errors into an ‘ideal’ training set is closer to the real

than an ‘ideal’ training set.   
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the training data.  Algorithms without significant accuracy loss would be considered

and thus prized in practice.  Before developing the TDA algorithm, 
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SVM the only algorithm with such error tolerance?  Do other modern algorithms 
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Figure 3.4 Error Tolerances of different Algorithms in Eastern Paraguay
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Error Tolerances of different Algorithms in Eastern Paraguay

There is a very distinctive pattern of error tolerance in SVM.  It i

exceptional that with ~30% errors in the training set, the overall accuracy of SVM 

classification in this test area stays largely unaffected!  Would this be a coincidence?  

Let us also look at the results from other test areas.  The results from th

in figure series 3.5: 
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Figure 3.5 Error Tolerances of Different Algorithms in Western Paraguay
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error tolerance but fluctuates a lo

all. 
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user accuracy figure and the producer accuracy figure.
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Error Tolerances of Different Algorithms in Western Paraguay

We found that in the above two test areas, SVM consistently 

error in the training data.  Usually SVM can maintain >90% accuracy 

when 0%~30% of the training data is actually wrong.  Kernel Perceptron maintains 

about 85% accuracy with up to 20% error in the training data.  MLC shows a lower 

uctuates a lot.  DT and ARTMAP are almost not error

However, the user accuracy of KP algorithm drops to 0 when 30% of training 

.  The change detection map shows that for some unknown reason, the 

KP algorithm fails to pick up any forest change.  This leads to very high omission 

error and a very low commission error.  This shows why we have to look at both the 

user accuracy figure and the producer accuracy figure. 
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The test in the Central Paraguay area also shows this problem.  What’s worse is 

that some of the SVM change detection results do not have the change class also.  

This brings a possibility: when a class has a small training dataset with lots of errors, 

kernel methods might fail to pick them up at all.  In this study site, the change class 

is a quite minor class.  Thus by systematic sampling, we are actually only giving the 

change class ~ 110 training points.  This tells us the ‘bottom line’ of SVM’s error 

tolerance property.  We can use SVM when we have a training set of small size but 

high reliability (will be explained in section 3.8), or a training set of large size but less 

reliability.  But we cannot expect SVM to cope with a training set of small size and 

low reliability. 

The accuracy results in the central test area are plotted in figure series 3.7.   

    Paraguay Map               MLC                ARTMAP NN 

    DT                    SVM                      KP 

Figure 3.6 Error tolerances of Classifiers in Western Paraguay with 30% errors in 
training 



 

 

Figure 3.7 Error Tolerances of Different Algorithms in Central Paraguay

3.6.  Assessing the Algorithms with Mixed

Data 

Reliable training data is usually derived from field trips and image interpretation.  

Traditionally, when change detection algorithms are assessed and compared, the 

researcher tends to rely on the most reliable training data pixels, which are of no 

surprise often from the most prominent
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Error Tolerances of Different Algorithms in Central Paraguay

Assessing the Algorithms with Mixed or Atypical Training 

Reliable training data is usually derived from field trips and image interpretation.  

Traditionally, when change detection algorithms are assessed and compared, the 

researcher tends to rely on the most reliable training data pixels, which are of no 

e often from the most prominent and most typical land cover parcels.  

 

 

Error Tolerances of Different Algorithms in Central Paraguay 

Atypical Training 

Reliable training data is usually derived from field trips and image interpretation.  

Traditionally, when change detection algorithms are assessed and compared, the 

researcher tends to rely on the most reliable training data pixels, which are of no 

typical land cover parcels.  
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Researchers also tend to pick the pixels in the center of land parcels for an important 

reason: to avoid misregistration.  Pixels there are also usually more pure than 

transitional or mixed land cover.   

Our intention in this experiment is to see how the candidate algorithms handle 

mixed land cover as training data in addition to the pure land cover as training data.  

Our hypothesis in this experiment is that, those pixels at the hearts of land parcels are 

more likely to be pure land cover types, and the pixels around the edge of land parcels 

are more likely to be transitional land cover types.   

Our experiment looks at the change detection accuracy variation when the 

training data pixels were selected from varying distances from the land parcel 

boundaries.  The land parcel boundaries are generated using the Canny edge detector, 

a detector used routinely in image processing.   

Only the classifiers of SVM and DT were performed in this experiment.  This 

experiment was conceived in the very early stage of this dissertation, before the 

inclusion of other classifiers.  Our result is shown in the following graph: 
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Figure 3.8 Location Effects of Training Data 

Our experiment did not find significant accuracy improvement when the training 

data is selected around the land parcel boundaries compared to when the training data 

is selected in the heart of land parcels.   

SVM is a boundary classifier in the feature space, but it does not seem to benefit 

significantly from training pixels of physical boundaries.  Therefore, the relative 

geolocation of training data for SVM seems to be not important. 

3.7.  Assessing the Algorithms with Varying Contents of Training 

Data 

A training data set contains training samples from multiple classes.  When 

designing a change detection study, the amount of training pixels for each class has to 

be decided.   

1 2 3 4 5 6 7 8 9 10
0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

0.94

The distance of training data from nearest land cover patch boundary (in pixels)

O
ve

ra
ll 

A
cc

u
ra

cy
 f

o
r 

C
h

an
g

e 
D

et
ec

ti
o

n
 (

%
)

Will the location of training pixels affect SVM accuracy?

 

 

SVM Contextual Result Accuracy
SVM Result Accuracy
DT Result Accuracy



 

69 
 

Contemporary classification studies have used a variety of different approaches 

which impact the relative proportions of training sets.  The so-called 

availability-based sampling is the most popular approach in which the researcher feed 

all the available training data to the classifier.  This is actually the most common 

type in many contemporary studies (Keuchel et al. 2003; Sesnie et al. 2008; Schneider 

et al. 2009).  Several papers have used equal or roughly equal number of points in 

each class (Rosenfeld et al. 1982; Rogan et al. 2002; Foody et al. 2006; Kuemmerle et 

al. 2009).  Another approach, systematic sampling, collects sample points using a 

grid (Yuan et al. 2005). This is rather rarely used though because the cost for 

collecting data systematically is quite high.  In many studies the relative sizes of 

classes is not even discussed (Keuchel et al. 2003; Lucas et al. 2008; Potapov et al. 

2008; Brenning 2009). 

Generally, classification modules in commercial software such as Idrisi, ENVI, or 

ERDAS Imagine leave it to the user to decide on the size and relative proportions of 

training data.  However Idrisi Andes (version 15.0) developed by Clark University 

assigns equal amount of training data for each class in its Multi-layer Perceptron 

(MLP) neural net module.  The reason for this was not explained in IDRISI help file. 

Stratified sampling had been widely used not just because it allows easier 

collection of training data compared to random sampling.  It can also provide 

statistical confidence interval for the total forest change over the whole area, which 

random sampling can also provide.  It also ensures that every major geographical 

unit has been represented, which random sampling cannot.   
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Different sampling methods lead to different sets of training data.  Will the 

different amount of training data in each class affect the final performance of the 

change detection algorithm?  People have not asked this question yet. 

Will any of our algorithms perform well without significant differences under 

stratified sampling and random sampling? 

We designed an experiment to answer these two questions.  For each of our 

three test areas, we perform 19 runs of change detection.  Each run has a different set 

of training data.  This is shown in table 3.6 

Table 3.6 Experiment on training data contents 

Change Detection 

Runs 

Forest Change 

pixels in training 

set(%) 

Unchanged Forest 

pixels in training set 

(%) 

Unchanged Nonforest 

pixels in training set (%) 

No.1 5% (1-5%)/2=47.5% (1-5%)/2=47.5% 

No.2 10% (1-10%)/2=45% (1-10%)/2=45% 

… … … … 

No.18 90% (1-90%)/2=5% (1-90%)/2=5% 

No.19 95% (1-95%)/2=2.5% (1-95%)/2=2.5% 

For each run we calculated the user accuracy of forest change class, the producer 

accuracy of forest change class, and the total accuracy of the whole study area.  The 

results are plotted in the following figures. 

Figure 3.9 shows producer accuracy for the Eastern test area.  We can see that, 

as the proportion of one class in the training set increases, the corresponding producer 

accuracy of that class generally increases gradually and approaches 100%.  However, 

the MLC algorithm is different.  It stays almost the same regardless of the class 

proportion in training.  We can also see that when the proportion of a class in the 
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training set is extremely small, omission error can be high, especially for the 

Self-Organizing Map Neural Net and ARTMAP. 

 
Figure 3.9 The Producer accuracy plot of the eastern test area 

Let us move on to look at the user accuracy results.  Figure 3.10 shows that, 

most classifiers result in lower user accuracy for a class when the proportion of that 

class increases in the training set.  User accuracies drop to around 40% when the 

proportion of that class occupies 95% of the training set.  This indicates substantial 

overestimation.  MLC is again indifferent to the variation in training proportion. 

 

Figure 3.10 The User accuracy plot of the eastern test area 

We found that, the overall accuracy almost always ranges from 80% to 90%+, 

overshadowing the fact the accuracy of change detection is often very poor. 
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Figure 3.11 The overall accuracy plot of the east test area 

The pattern we found from the first test area is clear.  The performances of 

Decision Tree, SVM, KP, ARTMAP, and SOM are all significantly affected by the 

class proportions within the training set.  If a class is over-represented in the training 

set, then it is overestimated in the classification output; and vice versa.  This 

relationship has apparently eluded the remote sensing field, probably because the 

overall accuracy stays seemingly unaffected.  We also observed that the MLC 

algorithm stays unaffected. 

The following figures show the three accuracy indicators of the other two test 

areas.  These three figures are from the central test area (WRS-2 footprint 225/077): 

 
Figure 3.12 The producer accuracy of the central test area 
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Figure 3.13 The user accuracy of the central test area 

 

Figure 3.14 The overall accuracy of the central test area 

The following three figures are from the western test area (WRS-2 footprint 

228/76): 

 
Figure 3.15 The producer accuracy plots of the western test area 

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.0 0.2 0.4 0.6 0.8 1.0 

A
cc

ur
ac

y

Proportion of Change Class in Training

MLC User Accuracy

DT User Accuracy

SVM User Accuracy

KP User Accuracy

ARTMAP User 
Accuracy
SOM User Accuracy

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.0 0.2 0.4 0.6 0.8 1.0 

A
cc

ur
ac

y

Proportion of Change Class in Training

MLC Overall Accuracy

DT Overall Accuracy

SVM Overall Accuracy

KP Overall Accuracy

ARTMAP Overall 
Accuracy
SOM Overall Accuracy

0.0 

0.2 

0.4 

0.6 

0.8 

1.0 

0.0 0.2 0.4 0.6 0.8 1.0 

A
cc

ur
ac

y

Proportion of Change Class in Training

MLC Producer Accuracy

DT Producer Accuracy

SVM Producer Accuracy

KP Producer Accuracy

ARTMAP Producer 
Accuracy
SOM Producer Accuracy



 

74 
 

 

Figure 3.16 The user accuracy plots of the western test area 

 

Figure 3.17 The overall accuracy plots of the western test area 

The accuracy trends in all three test areas have a marked similarity.  As the 

percentage of a class increases in the training set, the more appearance it makes in the 

classification output; and vice versa.  There is a difference among then, however.  

The western and central test areas show consistently higher producer accuracies than 

the eastern areas, while the eastern area shows consistently higher user accuracies 

than the other two areas.  This is caused by the different class proportions of three 

test areas.  The western and central areas have much lower proportion of forest 

change than the eastern area, as outlined in table 3.1.  Therefore, classifiers are more 

prone to overestimate forest change in those two areas. 
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This effect is especially important to change detection studies, because the 

change class is almost always a minority class in the whole satellite image.  Popular 

practice is to use as big a training set as possible for the change class, but this will 

lead to the overestimation of this key class.  Also, since each satellite scene has a 

distinctive spatial distribution of classes, we could not have a universal optimal 

percentage for a class in different satellite scenes.   

If we plot the trends of the producer accuracy and user accuracy together, we will 

see an interesting pattern.  The user and producer accuracies of SVM meet at some 

midpoint (figure 3.18), while those of MLC stay approximately parallel (figure 3.19).   

 

Figure 3.18 The user and producer accuracies of SVM in the eastern study area, 
affected by the class proportions in training 

 

Figure 3.19 The user and producer accuracies of MLC in the eastern study area, 
unaffected by the class proportions in training 
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This implies that, the omission

machine learning algorithms are determined in the training stage, directly related to 

the amount of training pixels in each class.  The maximum likelihood algorithm

though now often considered inferior by the community,

The trends in the figures of user accuracy and producer accuracy give the overall 

picture of this issue.  We will also give a more visual examination of the spatial 

patterns compared against the ground reference map.  This should indicate the 

locations of overestimation and underestimation errors.  We would also like to find 

out whether overestimation

We will show the results from different algorithms and training proportions side 

by side in a representative sub

difficult one for change detection among the three test 

phenology between the two image dates.  It also has the inter

phenomenon on the nonforest land surface between the two image dates.  The 

following figures show the Landsat TM 7

composite image, and the forest change reference map.

Figure 3.20 Landsat TM 7
(Right) 
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This implies that, the omission and commission rates of the powerful new 

machine learning algorithms are determined in the training stage, directly related to 

amount of training pixels in each class.  The maximum likelihood algorithm

though now often considered inferior by the community, is largely unaffected. 

The trends in the figures of user accuracy and producer accuracy give the overall 

sue.  We will also give a more visual examination of the spatial 

patterns compared against the ground reference map.  This should indicate the 

locations of overestimation and underestimation errors.  We would also like to find 

out whether overestimation and underestimation are solvable by post

We will show the results from different algorithms and training proportions side 

by side in a representative sub-region of the west test area.  This test 

difficult one for change detection among the three test areas.  It has a varied forest 

phenology between the two image dates.  It also has the inter

phenomenon on the nonforest land surface between the two image dates.  The 

owing figures show the Landsat TM 7-4-2 composite image, Landsat ETM+ 7

composite image, and the forest change reference map. 

Landsat TM 7-4-2 (Left), ETM+ 7-4-2 (Center), Change reference

commission rates of the powerful new 

machine learning algorithms are determined in the training stage, directly related to 

amount of training pixels in each class.  The maximum likelihood algorithm, 

is largely unaffected.  

The trends in the figures of user accuracy and producer accuracy give the overall 

sue.  We will also give a more visual examination of the spatial 

patterns compared against the ground reference map.  This should indicate the 

locations of overestimation and underestimation errors.  We would also like to find 

post-processing 

We will show the results from different algorithms and training proportions side 

.  This test area is the most 

.  It has a varied forest 

phenology between the two image dates.  It also has the inter-annual flooding 

phenomenon on the nonforest land surface between the two image dates.  The 

2 composite image, Landsat ETM+ 7-4-2 

 
2 (Center), Change reference map 



 

 

We have 342 classification results in total and thus could not show all of them 

here.  Instead, we will only show 18 classification results, in which six algorithms 

are fed with three types of training sets.  The first training set has 5% data

forest change.  The second training set has 50% data labeled as forest change.  The 

third training set has 95% data labeled as forest change.

Figures 3.21 to figure 3.26 illustrates how different supervised classifiers handle 

training sets of same amount yet different class proportions.

Figure 3.21MLC Classification with 5% change training (Left), with 50% change 
training (Center), with 95% change training (Right)

Figure 3.22 DT Classification with 5% change training (Left), with 50% change 
training (Center), with 95% change training (Right)
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We have 342 classification results in total and thus could not show all of them 

Instead, we will only show 18 classification results, in which six algorithms 

are fed with three types of training sets.  The first training set has 5% data

forest change.  The second training set has 50% data labeled as forest change.  The 

third training set has 95% data labeled as forest change. 

Figures 3.21 to figure 3.26 illustrates how different supervised classifiers handle 

ame amount yet different class proportions. 

MLC Classification with 5% change training (Left), with 50% change 
training (Center), with 95% change training (Right) 

DT Classification with 5% change training (Left), with 50% change 
training (Center), with 95% change training (Right) 

We have 342 classification results in total and thus could not show all of them 

Instead, we will only show 18 classification results, in which six algorithms 

are fed with three types of training sets.  The first training set has 5% data labeled as 

forest change.  The second training set has 50% data labeled as forest change.  The 

Figures 3.21 to figure 3.26 illustrates how different supervised classifiers handle 

 
MLC Classification with 5% change training (Left), with 50% change 

 
DT Classification with 5% change training (Left), with 50% change 



 

 

Figure 3.23 SVM Classification with 5% change 
training (Center), with 95% change training (Right)

Figure 3.24 KP Classification with 5% change training (Left), with 50% change 
training (Center), with 95% change traini

Figure 3.25 ARTMAP Classification with 5% change training (Left), with 50% 
change training (Center), with 95% change training (Right)

Figure 3.26 SOM Classification with 5% change training (Left), with 50% change 
training (Center), with 95% change training (Right)

We have observed that, 
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SVM Classification with 5% change training (Left), with 50% change 
training (Center), with 95% change training (Right) 

KP Classification with 5% change training (Left), with 50% change 
training (Center), with 95% change training (Right) 

ARTMAP Classification with 5% change training (Left), with 50% 
change training (Center), with 95% change training (Right) 

SOM Classification with 5% change training (Left), with 50% change 
training (Center), with 95% change training (Right) 

We have observed that, when the class proportions in the training set vary

 
training (Left), with 50% change 

 
KP Classification with 5% change training (Left), with 50% change 

 
ARTMAP Classification with 5% change training (Left), with 50% 

 
SOM Classification with 5% change training (Left), with 50% change 

when the class proportions in the training set vary, the 
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Maximum Likelihood Classifier is much more robust than the newer and more 

popular classifiers.  SVM has shown desirable properties consistently in previous 

experiments, but this experiment identified that SVM shares the same problem with 

neural nets and decision tree in this aspect.  The quality of classification results can 

be very bad if the proportions of training classes are left to be arbitary.  This is a 

serious source of error.   

We also found that, when the producer accuracy curve meets the user accuracy, 

the percentage of the forest change pixels in the training data is somewhat but not 

strictly related to the percentage of the forest change pixels in the whole study area.  

The following table illustrates this vague relationship. 

Table 3.7 Percentage of Forest Change pixels in training data when optimal SVM 
performances are achieved 

Study Area Percentage of Forest Change 

pixels in study area 

Percentage of Forest Change pixels in 

training data with optimal performance 

Atlantic Forest 24.8% 25% 

Humid Chaco 8.4% 15% 

Dry Chaco 7.2% 10% 

These numbers give us some hopes.  Maybe, to achieve the optimal accuracy, 

SVM has to have a carefully-selected training data set that has the same class 

proportions as the data population?  However, the data population is not known 

before the change detection.  How can we solve this ‘chicken-and-egg’ dilemma?  

Let us continue with the experiments, and return to this question in the summary 

section of this chapter. 
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3.8.  Assessing the Algorithms with Scarce Training Data 

Traditional assessments of change detection algorithms are usually based on 

ample training data.  But it is not practical to always have ample training data 

collected from field trips and high-resolution photo interpretation everywhere on 

Earth.  A good algorithm needs to be able to achieve reasonably good accuracy when 

the available training data is scarce.   

Algorithms need to cope with scarce training data not just because the total 

training data might be scarce.  If one class only has a small amount of training data 

while the other classes have disproportional ample training data, our experiment in 

section 4.7 have demonstrated the effect.  Accuracy decreases sharply when the 

training data sampling does not comply with the Equal Sample Size (ESS) rule.  

Therefore, any class with scarce training data will lead to the reduction of total 

number of training pixels.  Thus it is vital that algorithms for large-area forest 

change detection must perform well with less-than-perfect amount of training data.  

This experiment was also conceived in the very early stage of this dissertation, and 

only SVM and Decision Tree were tested.   

Our experiment in this section assesses the accuracies using different amount of 

training data.  For the Atlantic Forest study area, which has roughly 10 million pixels, 

the result is listed in table 3.8. 

Our experiment shows that, SVM and DT do not need a lot of training pixels to 

achieve good accuracy.  And when they use the same amount of training data, SVM 
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consistently out-performs DT.  We can also interpret the finding in another direction: 

There is an intriguing limit of classification accuracy irrelevant to training size.   

Table 3.8 The effect of training data scarcity on accuracy 

Training pixel Count SVM Overall Accuracy DT Overall accuracy 

12500 0.8823 0.8510 

10000 0.8790 0.8433 

7500 0.8774 0.8473 

5000 0.8833 0.8465 

2500 0.8785 0.8454 

In the Ph.D Dissertation of Dr. Chengquan Huang (Huang 1999), he also looked 

at this aspect.  His observation was that the SVM algorithm at that time needs a 

training set 6% of the total data volume.  It now seems that his evaluation might be 

conservative.  Apparently, the SVM algorithm does not lose much accuracy even 

when the training set is less than one thousandth of the data population.  

3.9.  The Algorithm of Best Overall Performance 

Our empirical cross-comparison of change detection algorithms aims at 

comparing the detection power of algorithms on a fair basis, and compare them as 

close to real-world situations as possible so as to challenge them with uncertainties.  

The influences of less-than-perfect training data are well considered, in order to find 

algorithms that are truly robust and accurate.   

Our assessment in section 3.3 show that geographical variations do have impact 

on the accuracy of all the algorithms, but SVM and Kernel Perceptron consistently 

excel.  Our experiment in section 3.4 shows that SVM, Kernel Perceptron, and 

Decision Tree all have good capabilities in handling large-area variation.  Our 
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experiment in section 3.5 shows that SVM and Kernel Perceptron have outstanding 

error tolerance.  Our experiment in section 3.6 shows that SVM is not significantly 

impacted by training data located in the transitional land cover.  Our experiment in 

section 3.7 shows that the modern algorithms are heavily affected by the sampling 

method of the training data while the old-school MLC is almost not affected.  Our 

experiment in 3.8 shows that both SVM and Decision Tree can work with 

less-than-conventional amount of training data and still get good results.   

When these results are linked with the theoretical strengths and limitation 

outlined in chapter 2, we can see that some of the theoretical characteristics are 

verified, while some are rejected.   

SVM and KP do have the theoretical advantages of handling geographical 

variations and high error-tolerance.  SVM does not have the theoretical disadvantage 

of the Gaussian assumption as MLC has, because the Gaussian kernel in SVM is the 

more versatile multi-modal Gaussian distribution.  However, the generalization 

power of KP is not as good as that of SVM.  

We conclude that, the machine learning community has already built an excellent 

baseline classifier for us.  The SVM family can tackle most types of known 

uncertainties and errors in remote sensing applications.  It is much better than 

Decision Tree and Neural Nets.  To be specific, when >85% of the training data is 

reliable, Kernel Perceptron is the best algorithm to perform forest change detection.  

When <85% of the training data is reliable, then the standard SVM with RBF kernel 

is the solution.  However, in real-world applications, it is often difficult to know a 
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priori the percentage of errors in our observations.  Therefore, it is safer to use the 

SVM with RBF kernel as a baseline algorithm. 

Table 3.9 The theoretical strengths and suspected weaknesses revisited  

Algorithm Family Algorithm 

Name 

Validated Strengths Validated Weaknesses 

Bayes Classifiers MLC N/A Lower accuracy in 

complicated, 

high-dimensional features 

No error tolerance 

Entropy-minimization DT Good accuracy in 

large-scale studies 

Salt-and-pepper errors 

Mediocre error tolerance 

Neural Networks ARTMAP Training pattern can be 

improved with incoming 

data for classification 

In developing and varies a 

lot among versions 

Margin-maximization SVM High accuracy at all scales 

High error tolerance 

sampling bias can hurt 

Kernel KP High accuracy at all scale 

Medium error tolerance 

Boosting without extra 

computational time 

sampling bias can hurt 

Meanwhile, we discovered an unreported source of error for most of the 

contemporary machine learning algorithms.  The relative proportions of classes in 

the training set exert a powerful hidden influence on the classification results.  It is 

unlikely that any remote sensing study can construct a perfect training set by chance.  

We must understand where this error source originates from, and how to bring it under 

control.  This effort will be outline in the next two chapters.  
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4. Optimizing Class Proportions in the Training Set 

4.1.  Class Proportions in Training Data: an Overlooked Pitfall 

In chapter three we have discovered that, the performance of most supervised 

classifiers are significantly affected by the proportions of training data used to 

represent each class.  Change detection studies are particularly heavily affected by 

this side effect, given that the change classes are quite unique.  The change class is 

numerically a minority class in most studies.  The number of change pixels is often 

highly variable from one satellite scene to another.  The change classes are also often 

of highest importance.  Therefore, the proportions of the change classes are small, 

variable, and important.  This fact makes them the most susceptible classes under the 

newly discovered pitfall. 

How do we quantify the severity of this pitfall?  In remote sensing studies, the 

producer accuracy is defined as the detection success against omission error, and the 

user accuracy is defined as the detection success against commission error (Congalton 

1991).  In section 3.7, we studied empirically the dynamic nature of producer 

accuracy and user accuracy as they are influenced by class proportions in training.  

They seem able to catch the problem.  How serious is it? 

For the case of Decision Tree, when the proportion of change class in the training 

set is gradually adjusted from 5% to 95%, the producer accuracy increases from 64% 
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to 98% while the user accuracy drops from 95% to 45%.  In addition to Decision 

Trees, other popular contemporary algorithms such as Support Vector Machine, 

ARTMAP neural nets, and Self-organizing Maps also fall prey to this pitfall.  The 

only algorithm that is largely immune to this effect is the Maximum Likelihood 

Classifier.  The user and producer accuracy produced by MLC are invariant, 

although not always unbiased, when the class proportions in the training data change. 

Therefore, we interpret our empirical findings as: most nonparametric classifiers 

increasingly overestimate any class when the training data proportion of that class 

increases in a training set of fixed size.  Vice versa, they increasingly underestimate 

any class when the training data proportion of that class decreases in a training set of 

fixed size.  In short, the outcome of classification is highly dependent on the class 

proportions in training.   

There seems to be a simple internal relationship between underestimation and 

overestimation in classifiers.  This relationship can be easily pushed in any direction 

by increasing or decreasing training data in a class.  Therefore, this issue likely does 

not just exist in change detection studies, but also is present everywhere in the broader 

field of classification of remotely sensed data. 

Through our empirical study in chapter three, we have found that, different 

geographical regions have different patterns of overestimation and underestimation.  

This implies that a significant challenge exists in continental-to-global classification 

study of remotely sensed data.  If we have little or no control over the balance of 

underestimation and overestimation errors, then the same class might be 
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underestimated in one satellite scene yet overestimated in another.  In addition, the 

smaller the satellite footprint is, the more likely it is affected. 

This effect was well hidden in a sense.  In chapter three, we found that when the 

proportion of change class in the training set was adjusted from 5% to 80%, the 

overall accuracy always stays above 85%, which is a decent performance.  In most 

real-world applications, the overall accuracies are often used as a benchmark for 

project success.  The overall accuracy hides the variations in user and producer 

accuracies.  In remote sensing studies, researchers are often interested in thematic 

information of one class, such as forest, water, and urban, instead of all the classes.  

Those studies will suffer the most from this pitfall.  Change detection studies are 

also among the most-affected because a single change class such as deforestation is of 

highest importance, yet the problem has been hidden. 

The sufficiency of training is not a new topic of discussion.  In the past, 

researchers have directed their attentions to the sufficient quantity of training.  

Several contemporary studies have looked at the effect of the total training set (Foody 

et al. 1995; Foody and Mathur 2004; Song et al. 2005; Foody et al. 2006; Rogan et al. 

2008), and the effect of sufficient training data for each class (Pal and Mather 2003), 

but there has been no study of over- and under-estimation caused by class proportions 

in the training set. 

In this chapter, we will investigate the mathematical origin, magnitude of impact, 

and the solution to this newly-found pitfall that greatly challenges the reliability of 

data products from remote sensing.   
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4.2.  Why are Modern Classifiers Heavily Influenced by Class 

Proportions in the Training Data? 

Modern supervised classification of remotely sensed data starts with a training 

dataset usually collected either through fieldwork, or visually-interpreted 

high-resolution images.  The training process effectively tunes the classifier model 

towards the best overall accuracy for a given training set.  The tuned classifier model 

is then applied to the whole image.  The classification result is then compared to a 

set of and reference validation data for accuracy assessment.  The accuracy 

assessment benchmarks the performance of the classification, and gives a confidence 

interval of accuracy on the whole image.  Very often, the training data and the 

validation data come from the same fieldwork or image interpretation process. 

This has been a quite standard procedure for the past three decades.  Past studies 

on the general methodology of training procedures have focused on two topics:  

1.  How to collect training data so that the training data covers all the features in 

the feature space while being minimal in numbers (Foody and Mathur 2004; Foody et 

al. 2006). 

2.  How to choose the sampling scheme for validation dataset in accuracy 

assessment so that we can estimate the confidence interval for accuracy on the whole 

classified image (Stehman et al. 2003; Stehman 2005; Stehman et al. 2009). 

An overlooked aspect is the arrangement of class balance inside the training set.  

Collecting training data in real-world applications is costly and often limited by 
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geographical accessibility.   

We propose that, the sampling design of the training set should not be based on 

data availability, or merely for the convenience in statistical accuracy estimation, but 

instead it should be directly targeted for the optimization of a given classifier 

algorithm. 

In chapter three we demonstrated that the supervised classification process is 

more complicated than simply building classification models based on an arbitrary 

training dataset available.  In this section, we will examine, one by one, how modern 

supervised classifiers were designed to use the class information of the training data. 

4.2.1. Maximum Likelihood Classification 

The training process of MLC is solely dependent on two basic statistical 

measurements: the mean of each class, and the covariance matrix among all the 

classes (Equation 2.6).  These two form an ellipsoid for each class in the feature 

space.  If we introduce more training data points only for one class, the mean and 

covariance matrix are not easily changed.  MLC uses the covariance matrix in the 

determination of class boundaries.  Thus the class boundaries are not easily 

changeable and the classification result is also not easy to be changed.   

However, when a class is described by only a very small amount of training data, 

and that small training set contains some errors due for example to misregistration or 

misinterpretation of ground features, then the mean center of the class might be 

substantially changed.  This could explain the sudden drop of accuracy at extreme 
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ends in graphs in section 3.7 

Another known problem regarding classes happens when the ellipsoids 

characterizing different classes are not separable.  They can simply overlap with 

each other, or go through one another.  In that case, MLC might fail completely.  

This is caused by the definition of classes, not caused by class proportions in training. 

4.2.2. Decision Trees 

The training process of DT starts with calculating Entropy of the training dataset.   

∑
=

−=
n

i
ii ppSEntropy

1

)ln()(                        (Equation 4.1) 

In this equation, pi is the percentage of data points in class i out of the whole 

training set.  It is very obvious that if we introduce more training points into one of 

the classes, the calculation of Entropy is now significantly affected.  Thus the 

building of the decision tree will be altered.  Therefore, Decision tree might be the 

classifier most sensitive to class proportion variations in the training set. 

4.2.3. ARTMAP Neural net 

The training process of ARTMAP is the matching process of clusters identified by 

two ART modules.  One ART module performs clustering using the training label, 

and the other ART module performs clustering using the spectral data.  Increasing 

the amount of training data for an arbitrary class would increase the ‘coverage’ of 

clusters of that class in the feature space, and leads to overestimation.  However, 

judging from this mechanism, the center of the clusters should not be changed a lot.  
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ARTMAP is expected to be less sensitive to the variation of training data proportions 

than Decision Trees. 

4.2.4. Support Vector Machine and Kernel Perceptron 

The contemporary SVM and KP algorithms are based on the soft-margin SVM 

design.  The internal optimization function is ))(
2

1
(min

1
∑
=

+>•<
p

k
k

w
CFww ξ , in 

which C is the penalty coefficient and kξ  varies between 0-1, allowing some data 

points to exist between the hyperplanes (class boundaries) in Hilbert Space.  This 

design was first introduced to effectively deal with inseparable classes.  In chapter 

three, we found that it also had an unplanned but useful side-effect of error tolerance.  

However, this design also leads to another unplanned and unwanted side-effect: the 

hyperplanes could be pushed to move substantially.  When a class is given more 

training data, the hyperplanes around this class will be pushed outwards, eroding other 

classes.  This might be one origin of the problem. 

Another hidden mechanism is the cross-validation (CV) stage (Stone 1974) in the 

tuning of classifiers.  SVM with a specific kernel needs to tune the parameters of the 

kernel for the maximum possible accuracy.  This CV stage can achieve best accuracy 

for a given training set.  However, there has been no documented rule on how to 

construct the training set for CV.  Researchers usually just take a random sub-sample 

of the available training data.  This also might be another cause of the problem.  

Worth noticing is that, this dubious CV process is also present in most neural nets. 
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4.2.5. Self-Organizing Maps coupled with Learning Vector Quantization 

(SOM-LVQ) 

Kohonen’s Self-Organizing Map (SOM) neural network is a special kind of 

neural network.  It is not a typical feed-forward network, and not a typical recurrent 

network.  It does not have the popular design of hidden layers either.  It consists of 

two layers: the input layer which contains neurons of the amount of input data 

dimension, and the output layer which contains a two-dimensional neuron array.   

 

Figure 4.1 The workflow of Self-Organizing Maps (Cited from the help file of the 
Idrisi software) 

In the first step of training stage, known as the ‘coarse tuning’, the neurons in the 

output layer are derived in such a way that the neurons corresponds to clusters in the 

spectral data, and each neuron is kept at a distance from other neurons.  Neurons are 

then labeled into each class.   

In the second step of training stage, known as the ‘fine tuning’, Learning Vector 

Quantization (SOM-LVQ) creates a topology of neurons in the output layer.  

Neurons that are similar in the feature space will make the class boundary expanding 

outward. 



 

92 
 

The design of SOM-LVQ is somewhat controversial for the issue of class 

proportions in training data.  The ‘course tuning’ part will not provide a very high 

accuracy in the training area, but might be effective against the pitfall 

overestimation-underestimation.  The ‘fine tuning’ part will provide a high accuracy 

in the training area, but is susceptible to the pitfall of overestimation-underestimation.  

In summary, SOM might be of some value without the ‘fine tuning’ phase, but it is to 

be examined in real-world cases.  SOM-LVQ was discussed only briefly in chapter 

two.  It was not used in chapter three.  It is introduced here simply because of its 

potential to help overcome the pitfall of over and underestimation. 

4.3.  Prioritized Training Proportions (PTP): Reducing the 

uncertainties in classification and change detection of satellite data 

In the previous discussion, we have outlined the uncertainties and the possible 

causes of a previously hidden issue for all classification-based change detections.  

Empirical studies in chapter three showed that all modern supervised classifiers but 

MLC are strongly affected by variations in training set proportions, and that past 

studies in the methodology of machine learning have not identified this issue yet. 

Remote sensing studies, especially those aiming at continental-to-global scales, 

need a way to minimize this uncertainty.  In this section, two candidate solutions are 

proposed by going to the source mechanisms of supervised classifiers, and by 

combining the strengths of different hard classifiers to make a joint classifier.  This 

is expected to reduce the uncertainties in the overestimation-underestimation dilemma.  
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This joint classifier will be based on a new optimization goal, and make use of SVM 

and MLC together. 

4.3.1. A Tale of Two Optimization Rules 

With the exception of MLC, all modern supervised classifiers described 

previously have the same optimization rule: maximization of overall accuracy in the 

dataset used for cross validation.  The dataset used for cross validation, however, is 

usually only a random subset of the training set.  Thus Bayes Optimal was aimed for 

the data population but actually achieved for the sample.  Therefore, the first 

optimization rule we propose, is to indeed achieve Bayes Optimal for the data 

population.   

Another optimization rule we propose here is the minimization of the absolute 

difference between the estimated omission data points and commission data points for 

a Key class.  Let us call this the Bayes Optimal for a Key Class. 

Assume there are M classes in the dataset, and the proportion of each class in the 

training set is written as KP , i=1 …, K,… M.  The Kth class is chosen as the most 

important class.   

1
1

=∑
=

M

i
iP

,  1<K≤ M 

The proposed optimization rule is to feed a supervised classifier with training 

datasets designed to have KP  enumerated from 0~1, and find out the optimal KP  so 

that: 
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−
  (Equation 4.2) 

where O
KN  is the pixel count of Omission errors in the K(ey) class, and C

KN  is 

the pixel count of Commission errors in the K(ey) class.         

O
KN  and C

KN  are the direct results of a chosen scenario of class proportions in a 

training dataset with a fixed total amount of data points.   

This optimization rule defines the optimal classification as when the magnitude of 

omission errors is closest to that of commission errors for the Key class.  It is 

designed this way because in the general classification applications, not all the classes 

are of equal importance.  Especially in change detection applications, the change 

class is always of the highest importance.  The optimization rule prioritizes the Key 

class, and thus we call it PTP (Prioritized Training Proportions). 

Geographers are more familiar with the confusion matrix.  Let us use it to 

illustrate our ideas.  For a 3-class classification of Persistent Forest, Persistent 

Nonforest, and Forest Change, we have the following confusion matrix: 

Table 4.1 A standard confusion matrix for a 3-class classification 

 Classification 

Assessment  Persistent Forest Persistent Nonforest Forest Change 

Persistent Forest A1 A2 A3 

Persistent Nonforest B1 B2 B3 

Forest Change C1 C2 C3 

The Bayes Optimal for the data population goal maximizes the sum of the 

diagonal items (A1+B2+C3). 

The Bayes Optimal for a Key Class goal, when we treat the Forest Change class 

as the key class, minimizes the absolute difference in [(A3+B3) - (C1+C2)] 
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Another perspective to interpret the Bayes Optimal for a Key Class goal is rather 

important in reality.  For example, a carbon model needs an unbiased estimation of 

the forest change inventory statistics in the Amazon, but it does not need a quality 

map.  The total amount of forest change found by the classifier is A3+B3+C3, while 

the total amount of forest change found by the assessment is C1+C2+C3.  The 

carbon model wants these two numbers to be as close as possible, which means the 

minimization of the absolute difference in [(A3+B3+C3)_- (C+C1+C2)], which is 

equal to [(A3+B3) - (C1+C2)].  This is the Bayes Optimal for a Key Class goal.   

Other researchers have already outlined similar goals, just without a working 

solution.  In R. M. Lark’s milestone paper (Lark 1995) he listed a large number of 

possible optimization goals, and this was listed as his goal No. B1.  He tried to give a 

solution using prior probability modeling in the MLC framework.  We will discuss 

more in the next chapter and show why the solution is wrong.  The so-called ‘Pareto 

Boundary’ of omission-commission errors (Boschetti et al. 2004) is basically the same 

thing but with an unnecessarily complicated mathematical model, which gives an 

ambiguous zone of possible solution.  Another study also concentrated on this 

question and tried to extend Lark’s work.  It was identified (Boyd et al. 2006) that 

‘statistically significantly increases in accuracy were achieved through the use of 

simple binary classifications by DT and SVM that aimed to separate the class of 

interest from all others.’  But how this worked was not understood. 

These two optimization rules are actually very straightforward both in theory and 

in implementation.  It only takes three simple steps to implement them. 
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The first step is to construct a cross validation dataset maxV  using a subset of all 

the available training data.  This validation dataset will have approximately the same 

class proportions as in the whole study area.  These class proportions should be 

estimated without full prior knowledge of the data population.  In the next section 

we will discuss in details how to do this.  Both optimization rules will need this step, 

but only the PTP rule needs the next two steps. 

The second step is to create many training datasets using the available training 

data points.  These different training datasets will be denoted as KiT  because they 

enumerate all the possible KP  values from 0 to 1.  These different training datasets 

will be used to train classifiers and find out which training dataset produces

||min C
K

O
K

P

NNArg
K

− .  The optimal KP  is denoted as *
KP . 

The third step is to create the largest possible training dataset *
KT  with the 

optimal *
KP .  This training dataset will be used to build the optimal classifier that is 

used for the change detection analysis. 

These three steps will be discussed in details subsequently in three subsections. 

4.3.2. Redefining Cross Validation 

Contemporary supervised classification algorithms seek the maximization of 

overall accuracy in cross validation (CV).  For example, the RBF kernel used in 

SVM requires the parameters C and gamma (explained in section 4.2.4) that produces 

the best overall accuracy.  Contemporary cross validation is the so-called “N-fold 

Cross Validation” (Stone 1974), in which all the available training data points are 
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evenly partitioned into complementary subsets, performing the analysis on one subset 

(called the training set), and validating the analysis on the other subset (called the 

validation set or testing set).  This CV approach uses a validation set with 

approximately the same class proportions as in the training set.  This is, however, a 

hidden link between the training set and the validation set. 

The validation set used in our algorithm must have the same class proportions of 

the whole study area.  In this way, cross validation will generate the optimal 

parameter set not just for the validation set, but also for the whole population.  

However, before the change detection, we do not know the true class proportions in 

the whole study area.  Even after conventional supervised change detection, the 

estimated class proportions in the whole study area are not reliable because of the 

overestimation-underestimation problem among the classes.  This is a 

chicken-and-egg dilemma. 

Fortunately, we discovered in chapter three that MLC has the rare property of 

being largely resistant to the overestimation-underestimation problem among the 

classes.  Thus we can perform an initial round of change detection using MLC with a 

training set with equal amount of training data in each class.  This does not give us a 

classification result of fabulous quality, but it gives us an unbiased estimation of the 

class proportions in the whole data population.  This information is called “class 

prior” in hundreds of papers published from 1980s to 1990s (Strahler 1980; Lark 

1995).  We will discuss more about it in section 4.5.5.  Those studies use this “class 

prior” information in the posterior probability modeling of classification results.  In 
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Lark’s study, he outlined different classification optimization goals, and varied the 

class prior probability among the classes to achieve those goals.  Our approach, on 

the other hand, varies the class proportions in the training and validation sets.   

Let us use a concrete example to illustrate how to create a standardized validation 

set.  Assume that we are studying three classes in a study area of 500 square 

kilometers.  We have 1000 known data points available.  500 data points belong to 

class A, 410 points belong to class B, and 90 points belong to class C.  Class C is the 

key class, i.e. the class of highest practical importance.  We will perform a MLC 

change detection using 90 training points in each class.  Then we find out the 

approximate class proportions in the study area are: 55%, 32%, and 13%.  Then we 

retrieve the largest possible subset within this set of 1000 points: maxV =min(500/0.55, 

410/0.32,90/0.13)=692, of which 380 points comes from class A, 221 points come 

from class B, and 90 points come from class C. 

4.3.3. Enumeration of Key Class Proportion in the Training Dataset 

After we have a standardized validation set, we will use it to find what the 

optimal class proportions in the training set really are.  The goal is to achieve the 

minimization of difference between commission error and omission error for a given 

key class.  This is performed through the enumeration of key class proportion in the 

training set. 

Let us use a concrete example to lay out this idea.  Assume we have 1000 data 

points collected from the study area.  Three classes (A, B, and C) are used in the 
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study.  The enumeration of class proportions will be shown in table 4.2: 

Table 4.2 An example for enumeration of key class proportion in training data 

Enumeration of Key 

Class Proportion ( ) 

Percentage of training 

points in class C 

Percentage of training 

points in class B 

Percentage of training 

points in class A 

10% 10 45 45 

20% 20 40 40 

30% 30 35 35 

40% 40 30 30 

50% 50 25 25 

60% 60 20 20 

70% 70 15 15 

80% 80 10 10 

90% 90 5 5 

Although we have 1000 ground data points available, we do not use all of them 

together.  In the enumeration of key class proportion, we need to make sure the total 

number of training points stays invariant.  In other words, we want to isolate the 

effect of class proportions from the effect of training dataset size. 

Each training set is used to construct a classification model, and is then applied to 

the standardized validation set maxV .  Omission error ( O
KN ) and commission error 

( C
KN ) are then calculated.  Table 4.3 shows the detailed procedure for optimization. 

In this table, we find that the balance between commission error and omission 

error is reached somewhere when KP  is between 10% and 30%.  We repeat this 

step using finer stepping of 1% increment in the range of 10% and 30% to seek for the 

optimal balance point *
KP .  For example, we might find it at 17%. 
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Table 4.3 An illustration of possible omission-commission dynamics due to 
enumeration of key class proportion in the training set 

Enumeration of Key 

Class Proportion ( ) 

Commission error in 

key class ( ) 

Omission error in 

key class ( ) 
 

10% 0 45 45 

20% 2 10 8 

30% 10 0 10 

40% 17 0 17 

50% 50 0 50 

60% 120 0 120 

70% 340 0 340 

80% 560 0 560 

90% 650 0 650 

4.3.4. Constructing the Largest Possible Training Dataset and the Optimal 

Classifier Model 

With the optimal balance point *
KP  located for the key class, we will construct 

the largest possible training dataset *
KT  out of the 1000 available data points.  It is 

min(550/((1-0.17)/2),410/((1-0.17)/2),90/0.17)=529, of which 220 points come from 

class A, 220 points come from class B, and 89 points come from class C.  In this 

training set *
KT , every class that is not the key class shares equal amount of training 

points.  Strictly speaking, this is still not the ideal solution for the non-vital classes.  

An improvement would be to rank the class in order of importance, and optimize 

them class after class recursively.  However, this idea is left for future development. 

*
KT  is then used to derive the best classifier model.  In doing so, it is very 

important that we need to bypass the cross validation built in those classifiers.  The 

reason is that we already achieve a better cross validation described in 4.3.2 and 4.3.3.  

If we allow the classifiers to use the built-in CV procedure, it would not be optimal.   

KP C
KN O

KN
|| C

K
O
K NN −
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However, the classifiers still need some parameters, such as C and gamma in the 

case of SVM with RBF kernel.  These are usually derived through CV.  When we 

bypass the CV procedure in the final training stage, we can directly use those 

parameters derived in the process of identifying *
KP . 

With these three steps, we have improved the contemporary cross validation 

notion in the field of machine learning, and we can build a joint classifier by linking 

MLC to any classifier of SVM, DT, or ARTMAP neural nets.  In chapter three we 

have identified that SVM and KP have some unique strengths compared to others, and 

thus the soft-classifier is implemented in this dissertation in the form of MLC-SVM. 

In the next section, we will illustrate the performance of the joint classifier 

MLC-SVM constructed using the method described in this section. 

4.4.  Assessment of the Joint Classifier MLC-SVM 

4.4.1. Assessment Design 

In this section, we will assess the practical use of two new approaches against a 

widely-used contemporary practice, which consists of stratified sampling of training 

data.  The first new approach is to gain true Bayes Optimal for the whole data 

population, and the second new approach is to gain Bayes Optimal for a key class in 

the whole data population.  These two goals were discussed in section 4.3.1. 

The data we used in this assessment consist of eight neighboring Landsat 

scene-pairs in Paraguay and also the corresponding forest change map.  These scenes 
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contain very different deforestation patterns.  In some scenes, about 20% of the total 

land area was deforested in the time span of 10 years, whereas in other scenes, only 

2%-3% of the total land area was deforested.  We anticipated that, the variation of 

class proportions in different areas will cause some variations in accuracy.  This 

offers us a good opportunity to study the different response of the three approaches. 

In every Landsat scene, only the central 100km-by-100km region will be used.  

This is a carefully calculated region ensuring no overlap with neighboring Landsat 

scenes.  This criterion for data selection will prevent unnecessary confusion due to 

some areas being included twice. 

For every Landsat scene, 2000 points collected from the forest change map are 

assumed to be accurate and used as the training data.  The methods of sampling o 

will be described in the next section.  The map of the whole 100km square 

(3200-by-3200 pixel region) is used in the accuracy assessment after the change 

detection. 

Similar to the experiments in chapter two and three, we define three classes in 

this multi-temporal assessment.  They are forest-to-forest, nonforest-to-nonforest, 

and forest change.  Among the, the class of forest change is of highest importance 

and is treated as the key class.  There has been no noticeable land cover change of 

nonforest-to-forest in the region.  Thus we do not have this class in the experiments. 

4.4.2. Approaches in Comparison 

Three approaches are designed, with significant differences in the training stage.  
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The first one, namely the ‘Stratified’ approach, is the most popular approach used in 

contemporary and past studies on remotely-sensed imagery and other machine 

learning applications alike.  The training set of 2000 points is chosen with equal 

amounts from three classes.  This is a stratified random sampling. 

The second approach, namely ‘PTP’ approach, was described in section 4.3.1.  

The training set of 2000 points is chosen with the optimal class proportions identified 

as: 
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.          (Equation 4.2) 

The technical steps were discussed in 4.3.2~4.3.4. 

The third approach, namely the ‘Adaptive approach, is the simpler optimization 

rule of the two discussed in section 4.3.1.  It is very similar to the PTP approach, but 

much simpler.  Basically we construct the training and the validation sets with the 

class proportions estimated using MLC.  It needs the technical steps of 4.3.2, but not 

the steps in 4.3.3 and 4.3.4.  For its simple construction, we call it ‘Adaptive’. 

 Let us visualize how the modern classifiers work.  With given classes A, B, and 

C, the classifier tries to delineate the boundary among them.  As we pointed out in 

this chapter, the configuration of class proportions in the training data is the hidden 

driving force behind the delineation of class boundaries.  In the following drawing 

(Figure 4.2), the three vertices are the centers of classes A, B, and C and the red dot is 

the ideal place where the class boundaries should meet.  The green lines meet at the 

location where the class boundaries meet together. 
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Figure 4.2 Class boundary illustrations in three approaches 

The “Stratified” approach uses the same amount of training data from each class, 

and thus will overestimate the classes whose true proportion in the study area is less 

than 1/3, and will underestimate the classes whose true proportion in the study area is 

more than 1/3. 

The “PTP” approach optimizes to find the optimal location for key class C, but in 

the current version of PTP algorithm, we have no optimization between classes A and 

B.  Therefore, our solution is close to the ideal location, but not perfect. 

The “Adaptive” approach uses the same proportions of training data as in the 

whole study area, and thus should be quite close to the ideal solution of class 

separation.  However, the optimization rule in this scenario is the maximization of 

overall accuracy, not emphasizing the key class.  In studies with more classes, the 

class boundary in the feature space will be more complicated.  This adaptive 

approach might be less effective in studies involving more classes. 

In the next section, we will present the outcome of these three approaches.  The 

actual pictorial outcome will be also illustrated to show the obvious effect of 

underestimation-overestimation. 
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4.4.3. Outcomes 

The following table shows the overall accuracy of the eight Landsat scenes under 

three different approaches.  We can see that, there is really not much difference 

between the “Stratified” approach and the “PTP” approach.  But there is a significant 

increase of accuracy from the “Stratified” approach and the “Adaptive” approach.   

Table 4.4 Overall accuracy in 8 study areas of 3 approaches 

Study Area (WRS-2 

Path/Row) 

Overall Accuracy in 

“Stratified” approach 

Overall Accuracy in 

“PTP” approach 

Overall Accuracy in 

“Adaptive” approach 

Area 1 (225/77) 89.8 89.7 91.2 

Area 2 (225/78) 88.5 89.7 93.6 

Area 3 (226/76) 87.5 89.6 92.4 

Area 4 (226/77) 87.3 91 96.0 

Area 5 (227/75) 91.9 93.4 94.1 

Area 6 (227/76) 87.6 88.8 89.6 

Area 7 (228/75) 85.6 86.4 Failed 

Area 8 (228/76) 89.6 90.4 89.6 

These results are better illustrated in the following chart. 

 

Figure 4.3 Overall accuracy in eight study areas of three approaches 
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The “Adaptive” approach was designed because we anticipated it to have better 

performance than the “Stratified” approach.  It used the class proportions estimated 

by MLC to construct a training set for SVM.  The same step is used as the first step 

in PTP algorithm. 

What surprised us is that this adaptive approach seems to have even better 

performance than the “PTP” approach, in which we did extra optimization on the key 

class.  There are two possible reasons for this unexpected finding.  The first reason 

is that this version of the PTP algorithm only optimizes one key class, while ignoring 

the other two classes.  The PTP algorithm should be further developed into a 

recursive optimization of classes ranking from most important to least important.  

Then it should outperform the adaptive approach.  The second reason is that our 

change detection is basically a 3-class supervised classification.  We have illustrated 

in the previous section that, such a simple case favors the adaptive approach.  As the 

number of classes increase, the class boundary in the feature space will be more 

distant from the adaptive estimation.  The recursive PTP approach might be more 

successful at that time. 

We also found that, the adaptive approach failed completely in test area seven.  7% 

of the total land area in scene 7 is forest change, and the land cover patterns are very 

complex.  What happened in the adaptive approach is that, the class abstraction 

power of MLC failed almost entirely to identify the change signal and estimated that 

only 0.1% of the land area is forest change.  The training set fed to the SVM 

procedure thus only contains very few change pixels.  Due to the soft-boundary 



 

 

nature of SVM, the change class is completed ignored in the output.  The resulting 

change map carries no change at all, and is thus co

Let us also look at the user accuracy and producer accuracy of the most important 

class: the forest change class.  The following figures tell the real story hidden behind 

the seemingly identical numbers of total accuracy in figure

Figure 4.4 The User Accuracies and Producer Accuracies after Stratified Training

We can see from Figure 4.4 that, user and producer accuracies are really unequal.  

The difference between them can be huge in some 

scenario, the producer accuracy is always much higher than the user accuracy.  This 

indicates gross overestimation of the change class.  Why did it happen? In a 

stratified 3-class supervised classification, training data from each class are of equal 

amount.  However, we know that the forest change class usually only take up a small 

percentage, such as 1%~10% of the land surface.  The change class is almost always 

the minority class in any thematic change detection analysis.  Therefore, assigning 

equal amount of training data to each class almost always will lead to over
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nature of SVM, the change class is completed ignored in the output.  The resulting 

change map carries no change at all, and is thus considered a total failure.

Let us also look at the user accuracy and producer accuracy of the most important 

class: the forest change class.  The following figures tell the real story hidden behind 

the seemingly identical numbers of total accuracy in figure 4.3. 

The User Accuracies and Producer Accuracies after Stratified Training

We can see from Figure 4.4 that, user and producer accuracies are really unequal.  

The difference between them can be huge in some test areas.  In the “Stratified” 

scenario, the producer accuracy is always much higher than the user accuracy.  This 

s gross overestimation of the change class.  Why did it happen? In a 

class supervised classification, training data from each class are of equal 

amount.  However, we know that the forest change class usually only take up a small 

ch as 1%~10% of the land surface.  The change class is almost always 

the minority class in any thematic change detection analysis.  Therefore, assigning 

equal amount of training data to each class almost always will lead to over

nature of SVM, the change class is completed ignored in the output.  The resulting 

nsidered a total failure. 

Let us also look at the user accuracy and producer accuracy of the most important 

class: the forest change class.  The following figures tell the real story hidden behind 
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We can see from Figure 4.4 that, user and producer accuracies are really unequal.  

.  In the “Stratified” 

scenario, the producer accuracy is always much higher than the user accuracy.  This 

s gross overestimation of the change class.  Why did it happen? In a 

class supervised classification, training data from each class are of equal 

amount.  However, we know that the forest change class usually only take up a small 

ch as 1%~10% of the land surface.  The change class is almost always 

the minority class in any thematic change detection analysis.  Therefore, assigning 

equal amount of training data to each class almost always will lead to over-estimation. 



 

 

Let us check if the PTP and Adaptive approaches can do the job better.

Figure 4.5 The User Accuracies and Producer Accuracies after PTP Training

The balance between user accuracy and producer accuracy is much better, but 

some cases still far from ideal.

Figure 4.6 The User Accuracies and Producer Accuracies after Adaptive Training

The “PTP” scenario and “Adaptive” Scenario both lead to 

producer accuracy and
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the PTP and Adaptive approaches can do the job better.

The User Accuracies and Producer Accuracies after PTP Training

The balance between user accuracy and producer accuracy is much better, but 

some cases still far from ideal. 

The User Accuracies and Producer Accuracies after Adaptive Training

The “PTP” scenario and “Adaptive” Scenario both lead to 

and user accuracy.  In half of the areas (areas 2, 3, 4, 6), those two 

the PTP and Adaptive approaches can do the job better. 

 

The User Accuracies and Producer Accuracies after PTP Training 

The balance between user accuracy and producer accuracy is much better, but in 

 

The User Accuracies and Producer Accuracies after Adaptive Training 

The “PTP” scenario and “Adaptive” Scenario both lead to more balanced 

2, 3, 4, 6), those two 
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scenarios improved the user accuracy very significantly (20%~70%).   

This shed light on one of the oldest mysteries of change detection: while the 

overall accuracy is quite decent, why do we have very low user and producer 

accuracies of the change class in some studies?  Our answer is that, the hidden flaw 

in the design of the training stage causes the poor user and producer accuracies in the 

change class.  This is completely avoidable. 

Another purpose for the PTP algorithm is to give the closest estimation for the 

total amount of the key class.  This was discussed in section 4. 3.1.  Did we achieve 

that goal?  Let us evaluate the ratio between the amount of change pixels detected 

and the amount of change pixels in reality. 

Table 4.5 The amount of detected change normalized by that of real change 

Area (WRS-2 

Path/Row) 

Stratified Training PTP Training Adaptive Training 

Area 1 1.27 1.15 1.05 
Area 2 2.97 1.34 1.19 
Area 3 2.63 1.45 1.03 
Area 4 16.85 5.87 2.15 
Area 5 1.23 1.02 1.00 
Area 6 1.99 1.36 1.04 
Area 7 0.84 0.69 0.66 
Area 8 1.28 0.99 0.99 

We found that, the PTP algorithm only partially meets its design goals.  Its 

performance is a lot better than Stratified training set.  However, in six out of all 

eight test areas, its estimations were worse than those using the much simpler 

algorithm: the Adaptive training set.  Therefore it is not an unbiased estimator of the 

magnitude of a key class as we expected.   



 

 

A by-product of this experiment is that

brought by stratified training, which is the most popular approach in contemporary 

studies.  If such results of forest change were used 

would be the “Garbage in, Garbage out”

happening.   

Now, let us have a look at the actual change maps resulting from the three 

scenarios.  By comparing these maps, we will see clearly, the over

small classes in the conventional approach.

   Landsat TM 1990 7-4

       “Stratified” Scenario      

Figure 4.7 Comparison of class overestimation

Area one consists mostly of close

major deforestation.  In the images above, we chose an area that went through 

selective logging to full clear
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product of this experiment is that we found a huge amount of uncertainties 

stratified training, which is the most popular approach in contemporary 

If such results of forest change were used as inputs in a carbon model, it 

“Garbage in, Garbage out” situation.  We need to prevent this from 

Now, let us have a look at the actual change maps resulting from the three 

scenarios.  By comparing these maps, we will see clearly, the over

small classes in the conventional approach. 

4-2   Landsat ETM+ 2000 7-4-2     Reference Forest Change Map
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Comparison of class overestimation-underestimation in area one

consists mostly of close-canopy forest, mechanized agriculture, and 

major deforestation.  In the images above, we chose an area that went through 

ive logging to full clear-cut.  It is quite hard to distinguish the difference 

huge amount of uncertainties 

stratified training, which is the most popular approach in contemporary 

in a carbon model, it 

We need to prevent this from 

Now, let us have a look at the actual change maps resulting from the three 

scenarios.  By comparing these maps, we will see clearly, the overestimation of 
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underestimation in area one 

canopy forest, mechanized agriculture, and 

major deforestation.  In the images above, we chose an area that went through 

cut.  It is quite hard to distinguish the difference 



 

 

between selective loggings and clear

area which had been selectively logged as non

different estimates of forest change.  The “Stratified” scenario treated about 

the selective logging area as forest change, while the “PTP” scenario treated about 

1/10 of the selective logging area as forest change, and the “Adaptive” scenario 

treated even fewer pixels

the “Stratified” scenario overestimated the forest change class

approaches put the errors under control

class proportions in the training set made a significant difference, especially at 

ambiguous places. 

  Landsat TM 1990 7-4-2 

     “Stratified” Scenario  

Figure 4.8 Comparison of class overestimation

Area two is characterized by the agricultural practice of family
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between selective loggings and clear-cut s spectrally.  The reference map 

area which had been selectively logged as non-forest.  The three scenarios have 

stimates of forest change.  The “Stratified” scenario treated about 

the selective logging area as forest change, while the “PTP” scenario treated about 

of the selective logging area as forest change, and the “Adaptive” scenario 

fewer pixels in the selective logging area as forest change.  Therefore, 

the “Stratified” scenario overestimated the forest change class while the other two 

approaches put the errors under control.  When all other parameters are the same, the 

ions in the training set made a significant difference, especially at 
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Comparison of class overestimation-underestimation in area two

is characterized by the agricultural practice of family

cut s spectrally.  The reference map defined the 

forest.  The three scenarios have 

stimates of forest change.  The “Stratified” scenario treated about 1/4 of 

the selective logging area as forest change, while the “PTP” scenario treated about 

of the selective logging area as forest change, and the “Adaptive” scenario 

the selective logging area as forest change.  Therefore, 

while the other two 

.  When all other parameters are the same, the 

ions in the training set made a significant difference, especially at 
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is characterized by the agricultural practice of family-sized 



 

 

encroachment around a hilly forest.  The tiny size of

important automated change detection is.  Our three scenarios showed a striking 

difference among them.  The “Stratified” scenario overestimated forest change 

severely.  The “PTP” scenario and the “” scenario both made excellent esti

forest change, compared to the reference ground map.  However, we have seen an 

obvious overestimation of forest area in the “PTP” scenario.  In this Landsat scene, 

forest is actually a minority class.  Most of the land has been cultivated.  Our “

scenario gave equal amount of training data to the forest class and the nonforest class, 

and then ends up with overestimation in forest.  This shows us the importance of 

recursive optimization of the PTP algorithm.

  Landsat TM 1990 7-4-2     Landsat 

  “Stratified” Scenario         “PTP” Scenario             “Adaptive” Scenario

Figure 4.9 Comparison of class overestimation

In area three, we observe both selective logging and several types of agricultural 
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encroachment around a hilly forest.  The tiny size of land patches shows how 

important automated change detection is.  Our three scenarios showed a striking 

difference among them.  The “Stratified” scenario overestimated forest change 

severely.  The “PTP” scenario and the “” scenario both made excellent esti

forest change, compared to the reference ground map.  However, we have seen an 

obvious overestimation of forest area in the “PTP” scenario.  In this Landsat scene, 

forest is actually a minority class.  Most of the land has been cultivated.  Our “

scenario gave equal amount of training data to the forest class and the nonforest class, 

and then ends up with overestimation in forest.  This shows us the importance of 

recursive optimization of the PTP algorithm. 
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Comparison of class overestimation-underestimation in area three

, we observe both selective logging and several types of agricultural 

land patches shows how 

important automated change detection is.  Our three scenarios showed a striking 

difference among them.  The “Stratified” scenario overestimated forest change 

severely.  The “PTP” scenario and the “” scenario both made excellent estimation of 

forest change, compared to the reference ground map.  However, we have seen an 

obvious overestimation of forest area in the “PTP” scenario.  In this Landsat scene, 

forest is actually a minority class.  Most of the land has been cultivated.  Our “PTP” 

scenario gave equal amount of training data to the forest class and the nonforest class, 

and then ends up with overestimation in forest.  This shows us the importance of 
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, we observe both selective logging and several types of agricultural 



 

 

land use, some of which are similar to woodland spectrally.  Again, we observed the 

similar pattern shown in previous study 

the change class, which by nature is almost always a minority class.  The PTP 

scenario and Adaptive scenario perform better.

Area four has a very complex inter

goes through seasonal flooding.  The pictures above sh

some years are flooded.  The different water content drastically changes the spectral 

signature of the nonforest land.  Under such a situation, the “Stratified” scenario 

overestimated a lot of forest change in the dry river bed

some sporadic pixels misclassified in the river bed, while the “Adaptive” scenario 

performed best. 

Landsat TM 1990 7-4-2    

  “Stratified” Scenario      

Figure 4.10 Comparison of class overestimation
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land use, some of which are similar to woodland spectrally.  Again, we observed the 

similar pattern shown in previous study area.  The stratified scenario overestimates 

change class, which by nature is almost always a minority class.  The PTP 

scenario and Adaptive scenario perform better. 

has a very complex inter-annual change of land cover types because it 

goes through seasonal flooding.  The pictures above show a dry river bed, which in 

some years are flooded.  The different water content drastically changes the spectral 

signature of the nonforest land.  Under such a situation, the “Stratified” scenario 

overestimated a lot of forest change in the dry river bed.  The “PTP” scenario has 

some sporadic pixels misclassified in the river bed, while the “Adaptive” scenario 
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Comparison of class overestimation-underestimation in Area four

land use, some of which are similar to woodland spectrally.  Again, we observed the 

.  The stratified scenario overestimates 

change class, which by nature is almost always a minority class.  The PTP 

annual change of land cover types because it 

ow a dry river bed, which in 

some years are flooded.  The different water content drastically changes the spectral 

signature of the nonforest land.  Under such a situation, the “Stratified” scenario 

.  The “PTP” scenario has 

some sporadic pixels misclassified in the river bed, while the “Adaptive” scenario 
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Area five, located in the open woodland of Chaco, and is characterized by both 

the inter-annual variation of flooding and local variation in woodland structure.  

Also special about this Landsat scene is that most of the land area is cover by 

open-canopy woodland.  Again, the “PTP” scenario and “Adaptive” scenario 

performed consistently better.

Landsat TM 1990 7-4-2  

“Stratified” Scenario        

Figure 4.11 Comparison of class 

In our theory, the “Stratified” scenario should exhibit the overestimation of forest 

change and the underestimation of forest.  However, we only observed the 

overestimation of forest change, but not the 

to conclude that at least for SVM, the rule of class overestimation

due to class proportions in training set applies more to the conceptual classes that are 

diverse in the feature space, and applies
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, located in the open woodland of Chaco, and is characterized by both 

l variation of flooding and local variation in woodland structure.  

Also special about this Landsat scene is that most of the land area is cover by 

woodland.  Again, the “PTP” scenario and “Adaptive” scenario 

performed consistently better. 
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Comparison of class overestimation-underestimation in Area five

In our theory, the “Stratified” scenario should exhibit the overestimation of forest 

change and the underestimation of forest.  However, we only observed the 

overestimation of forest change, but not the underestimation of forest.  This leads us 

to conclude that at least for SVM, the rule of class overestimation

due to class proportions in training set applies more to the conceptual classes that are 

diverse in the feature space, and applies less to the conceptual classes that are 

, located in the open woodland of Chaco, and is characterized by both 

l variation of flooding and local variation in woodland structure.  

Also special about this Landsat scene is that most of the land area is cover by the 

woodland.  Again, the “PTP” scenario and “Adaptive” scenario 
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underestimation in Area five 

In our theory, the “Stratified” scenario should exhibit the overestimation of forest 

change and the underestimation of forest.  However, we only observed the 

underestimation of forest.  This leads us 

to conclude that at least for SVM, the rule of class overestimation-underestimation 

due to class proportions in training set applies more to the conceptual classes that are 

less to the conceptual classes that are 



 

 

congregated in the feature space.  This inference is easy to understand.  The outer 

class boundaries (hyper

set.  But for classes that are “compact” in th

proportion of training data in this class is less than it should be, it would still be hard 

for the hyper-plane to shrink into the compact “core”.

The subset of Landsat images in 

change detection here.  The open forest canopy, the inter

selective logging all have occurred here.  Yet the “PTP” scenario and the “Adaptive” 

scenario consistently excelled.  The “Stratified” scenario showed moderate amount 

of overestimation in the forest change class, as expected.

Landsat TM 1990 7-4-2     Landsat ETM+ 2000 7

“Stratified” Scenario       

Figure 4.12 Comparison of class overestimation

Area seven consists mostly of Chaco woodland of various canopy thicknesses due 
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congregated in the feature space.  This inference is easy to understand.  The outer 

class boundaries (hyper-planes) are pushed by the proportions of classes in training 

set.  But for classes that are “compact” in the feature space, even when the 

proportion of training data in this class is less than it should be, it would still be hard 

plane to shrink into the compact “core”. 

The subset of Landsat images in area six shows how challenging it is to conduc

change detection here.  The open forest canopy, the inter-annual flooding, and 

selective logging all have occurred here.  Yet the “PTP” scenario and the “Adaptive” 

scenario consistently excelled.  The “Stratified” scenario showed moderate amount 

stimation in the forest change class, as expected. 
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Comparison of class overestimation-underestimation in Area six

consists mostly of Chaco woodland of various canopy thicknesses due 

congregated in the feature space.  This inference is easy to understand.  The outer 

planes) are pushed by the proportions of classes in training 

e feature space, even when the 

proportion of training data in this class is less than it should be, it would still be hard 

shows how challenging it is to conduct 

annual flooding, and 

selective logging all have occurred here.  Yet the “PTP” scenario and the “Adaptive” 

scenario consistently excelled.  The “Stratified” scenario showed moderate amount 
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underestimation in Area six 

consists mostly of Chaco woodland of various canopy thicknesses due 



 

 

to different water availability at the local scale.  Mennonites colonized this region 

and developed some ranches.  Our three scenarios all have some problems to derive 

the change map.  The “Stratified” scenario over

The “PTP” scenario overestimates the nonforest class.  And the “Adaptive” scenario 

failed completely because the complexity of class signature overwhelmed the MLC 

algorithm used to estimate the class proportions in the whole region.

 Landsat TM 1990 7-4-2     Landsat ETM+ 2000 7

     “Stratified” Scenario        

Figure 4.13 Comparison of class overestimation

However, these problems actually showed that our theory is correct.  The “PTP” 

scenario would have solved all the problems, if it had been implemented recursively 

to optimize all the classes instead of only the forest change class.  The reason why 

the “PTP” scenario overestimated nonforest is because nonforest is a minority class in 

this region, but in our immature
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to different water availability at the local scale.  Mennonites colonized this region 

veloped some ranches.  Our three scenarios all have some problems to derive 

the change map.  The “Stratified” scenario over-estimates the forest change class.  

The “PTP” scenario overestimates the nonforest class.  And the “Adaptive” scenario 

tely because the complexity of class signature overwhelmed the MLC 

algorithm used to estimate the class proportions in the whole region.
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Comparison of class overestimation-underestimation in Area seven

However, these problems actually showed that our theory is correct.  The “PTP” 

scenario would have solved all the problems, if it had been implemented recursively 

to optimize all the classes instead of only the forest change class.  The reason why 

” scenario overestimated nonforest is because nonforest is a minority class in 

our immature PTP algorithm we gave it as many training pixels as 

to different water availability at the local scale.  Mennonites colonized this region 

veloped some ranches.  Our three scenarios all have some problems to derive 

estimates the forest change class.  

The “PTP” scenario overestimates the nonforest class.  And the “Adaptive” scenario 

tely because the complexity of class signature overwhelmed the MLC 

algorithm used to estimate the class proportions in the whole region. 
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However, these problems actually showed that our theory is correct.  The “PTP” 

scenario would have solved all the problems, if it had been implemented recursively 

to optimize all the classes instead of only the forest change class.  The reason why 

” scenario overestimated nonforest is because nonforest is a minority class in 

PTP algorithm we gave it as many training pixels as 



 

 

for the forest class.  Therefore, the complete solution to the class proportion issue 

calls for the improvement of the PTP algorithm.  With the current version of PTP 

algorithm, we do see errors in forest and nonforest estimations in this scene, but the 

forest change class has been estimated with good accuracy (90.8% user accuracy and 

62.9% producer accuracy).

Failure of the “Adaptive” scenario in this 

class features are very complicated and where one or more classes are significantly in 

minority, the adaptive can fail completely.  

assumes Gaussian distribution, leads to its failure in such situations.

Landsat TM 1990 7-4-2     Landsat ETM+ 2000 7

   “Stratified” Scenario         “PTP” Scenario             “Adaptive” Scenario

Figure 4.14 Comparison of class overestimation

In Area eight, we observed that the variation of forest canopy density is well 

tackled by all three scenarios.  Overestimation is not signif

117 

for the forest class.  Therefore, the complete solution to the class proportion issue 

for the improvement of the PTP algorithm.  With the current version of PTP 

algorithm, we do see errors in forest and nonforest estimations in this scene, but the 

forest change class has been estimated with good accuracy (90.8% user accuracy and 

cer accuracy). 

Failure of the “Adaptive” scenario in this area showed us that, in areas where 

class features are very complicated and where one or more classes are significantly in 

minority, the adaptive can fail completely.  Its heavy reliance on MLC, whi

assumes Gaussian distribution, leads to its failure in such situations.
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Comparison of class overestimation-underestimation in Area eight

, we observed that the variation of forest canopy density is well 

tackled by all three scenarios.  Overestimation is not significant even for the 

for the forest class.  Therefore, the complete solution to the class proportion issue 

for the improvement of the PTP algorithm.  With the current version of PTP 

algorithm, we do see errors in forest and nonforest estimations in this scene, but the 

forest change class has been estimated with good accuracy (90.8% user accuracy and 

showed us that, in areas where 

class features are very complicated and where one or more classes are significantly in 

Its heavy reliance on MLC, which 

assumes Gaussian distribution, leads to its failure in such situations. 

2   Reference Forest Change Map 

 

“Stratified” Scenario         “PTP” Scenario             “Adaptive” Scenario 

 

underestimation in Area eight 

, we observed that the variation of forest canopy density is well 

icant even for the 
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“Stratified” scenario.  The reason is probably that the proportion of forest change in 

the whole area is quite close to 1/3, which is the proportion of change pixels in the 

training set in “Stratified” scenario. 

4.5.  Discussion and Conclusions    

4.5.1. Redefining the Designs of Training and Cross Validation 

The construction of training set had been largely overlooked in contemporary 

remote sensing studies and other machine learning applications alike.  Researchers 

tend to use as much training data as they can find, or they use equal amount of 

training data for each class.  It also had been largely overlooked in contemporary 

machine learning studies as well.   

To make the situation worse, the cross validation hidden in the training stage of 

many machine learning theories was flawed.  It can achieve Bayes Optimal for the 

training sample, but not for the data population.  Invented 35 years ago, it was 

adopted as a standard technical process instead of a machine learning theory.  When 

researchers assess a machine learning algorithm, they usually assess its own 

theoretical or practical merits without expecting a legacy problem in this technical 

process.  The problem was thus hidden like a landmine.   

Our main argument is: since the proportions among classes in the training set lead 

to the propensity of overestimation and underestimation, then we can achieve 

optimization simply by controlling the training data proportions among classes.  

Thus we discovered that, contrary to common belief, a supervised classification might 
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not be more accurate if more training data is used.  It actually could be worse.  

What matters is not just the total amount of training data, but also the proportions 

among classes. 

But how do we optimize that?  In this chapter we offered two approaches.  The 

first approach is called PTP (Prioritized Proportions Approach), designed to balance 

the overestimation and underestimation of a key class.   The second approach is an 

adaptive one, simplified from PTP.  It is designed to optimize for all the classes 

without preference. 

In both approaches, the class proportions of the whole study area are derived 

using Maximum Likelihood Classification with equal prior probabilities.  It is the 

only known algorithm largely unaffected by the class proportions in the training set. 

The PTP algorithm made a new analytical rule of optimization: the minimization 

of the difference between omission error and commission error.  PTP also changed 

the contemporary N-fold cross validation rule to using a standardized CV dataset 

whose class proportions approximate those in the whole study area.   

4.5.2. Effectiveness of New Approaches 

The PTP algorithm tested in this chapter is an early development in a series.  It 

optimizes only for one key class.  All the other classes are treated as equals, which 

we realized to be a drawback.  The future roadmap of PTP will be further outlined. 

Even with the current version of PTP, we already achieved significant 

improvement when compared to the contemporary approach of assigning equal 
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amount of training data for each class.  In four of the eight test areas we examined 

where the forest change class is less than 15% of total land area, we observed 20%~50% 

increase in user accuracy at the cost of 10%~20% decrease in producer accuracy.  In 

the other four test areas where the forest change class is around 15%~25% of total 

land surface, we observed 5%~15% increase in user accuracy at the cost of about 5% 

decrease in producer accuracy. 

The following chart shows the amount of overestimation-underestimation in the 

first study area.  We can see that as we use more and more training data of change 

class in a fixed-size training set, the absolute difference between omission and 

commission decreases at first, and then increase rapidly.  PTP algorithm picks the 

lowest saddle point as the optimal solution.  However, as we can see from this graph, 

the lowest saddle point is not easy to determine.  It fluctuates a lot.  This is possibly 

one of the reasons why the PTP algorithm is still halfway to perfection as of now. 

 

Figure 4.15 The omission-commission difference in study Area one 
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The “Adaptive” approach, which is a simplified version of PTP, achieved much 

better than expected performance.  We observed that it’s generally even better than 

the current fledgling PTP algorithm in all aspects.  However, in one of the eight areas, 

it failed completely when MLC failed to classify the complex feature patterns there. 

4.5.3. Future Improvement of Prioritized Training Proportions Approach 

The PTP algorithm needs to be improved in three aspects. 

The first and most important improvement is to optimize not just for the most 

important class, but to optimize for all the classes recursively, from the most 

important class to the least important one.  The rule of optimization is still the same, 

i.e.  the balance between omission error and commission error for each class. 

The second aspect of improvement is in the estimation of class proportions in the 

whole study area.  As we have seen in the test area seven, MLC couldn’t handle the 

complex spectral features when the change class only accounts for a very small 

fraction of the land surface.  When that happens, we can only get the estimation from 

running an SVM classification with equal training data for each class. 

The third aspect of improvement is in the sub-optimization in big conceptual 

classes.  We have found that class proportions in training data affect more on the 

classes that have very diverse sub-classes in the feature space.  For example, the 

nonforest class is more diverse than the forest class, and is more prone to 

under-over-estimation problem.  Within the nonforest class itself, there also exists an 

under-over estimation problem among the subclasses.  Our proposed method is to 
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perform the PTP algorithm for the clusters in complex classes.  The clusters can be 

identified using unsupervised classification method such as K-means and SOM (SOM 

can act both as supervised and unsupervised classification). 

Another major use of the PTP principle in conceptual classes will be discussed in 

the next chapter specifically for change detection..   

4.5.4. The Relationship between Training Class Proportions and “Class Prior” 

Probability 

This is not the first time that researchers looked at the importance of class 

proportions.  After Maximum Likelihood Classification was first invented (Chow 

1957; Chow 1962), some researchers looked at the implications of class proportions 

in the study area for MLC.  They named it the “Class Prior” probability because they 

thought it can be used in MAP (Maximum a Posteriori) modeling framework (Hughes 

1968; Haralick 1969).  The result is Equation 2.1. 

This framework was introduced in the field of remote sensing (Swain and Davis 

1978; Strahler 1980).  Strahler reasoned theoretically that this “Class Prior” 

probability should improve the accuracy of classifications.  The MAP framework for 

“Class Prior” is as simple as: 

CLASSMLCMAP PPP *=  

The MAP probability of a pixel is equal to the MLC probability multiplied by the 

proportion of this class in the whole study area.  This idea dominated the next three 

decades in remote sensing.  However, Strahler himself reported an insignificant 
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increase in the overall accuracy of MLC after adopting prior probability.  Swain and 

Davis warned that the use of prior probability might unfairly discriminate against the 

rare classes. 

This series of research done by Chow, Haralick, Swain, and Strahler constructed 

the framework of the Maximum Likelihood Classifier and the use of prior probability.  

However, the issue of class prior probability was not without controversy. 

Then in the 1980s and 1990s, dozens of remote sensing applications claimed to 

increase more or less improvement of accuracy using this framework of MLC with 

various prior probabilities.  Apart from these applications, a true pioneer in the 

theoretical development of MLC for remote sensing is R.M. Lark (Lark 1995).  He 

pointed out that “no one map will be optimal from the point of view of every user”, 

because the confusion matrix is basically a balance between omission errors and 

commission errors.  Thus he went on outline several hypothetical optimization goals 

very similar to the ones we listed in section 4.3.1.  Then, he looked for the prior 

probability settings which would enable the MLC algorithm to achieve those goals.  

He was thus quite against the idea of using equal prior probabilities. 

In 2006, G. Foody picked up Lark’s work.  In multiple papers(Boyd et al. 2006; 

Foody et al. 2006), Foody reasoned that “The ability to use a small training set is 

based mainly on the identification of the most informative training cases prior to the 

classification.”  Foody’s attention, although clearly originated from Lark’s work, was 

diverted to the size of total training data.  While this is also a good study, he missed 

the real target by inches.  What really mattered is not the total amount of training 
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data, but the relative class proportions of training data. 

A recent pioneering paper (Hagner and Reese 2007) proposed to use the 

classification results of MLC to reconstruct a new training set, to be used iteratively 

by MLC.  He reported that one out of the three Landsat scenes showed 

improvements.  Our understanding of his work is that, he was right to reconstruct a 

new training set proportionate to the first MLC result, but applying this training for 

MLC would not increase performance.  The reason is that MLC is very insensitive to 

the class proportions in training.  If he had applied the new training set to Neural 

nets, Decision Tree, or SVM, he would have found similar observation as we have. 

Let us have a closer look at this ‘class prior’ probability.  Its use in the MLC 

idea can be described in layman’s language in one sentence: A feature X should be 

classified to a class, when the possible occurrence rate of that class multiplied by the 

statistical probability that this feature belongs to that class is maximized.  This 

guarantees the minimization of error expectation on the whole data population for the 

classification of every data point.  When the scope of the data population changes, 

the class prior probability also changes, and the classification results thus changes 

with them.   

The classification of a feature shouldn’t depend on the environment it is located 

in.  A farm is a farm and should be classified as a farm, be it in the Corn Belt where 

its class prior is very high, or in Lapland where its class prior is extremely low.  The 

Class Prior Probability thus can contain so much uncertainty.  It can introduce more 

errors than improvements into the posteriori estimation. 
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An interesting experience happened in the early research stage of this dissertation.  

Class prior was tried and we achieved 0.58% overall accuracy improvement over the 

simple MLC of 1957, and there is virtually no discernible change in the cartographic 

aspect either.   

In the earlier section 4.2.1, we stated that the theoretical structure of MLC 

without prior probability is not relevant to the class proportions in the training set or 

in the whole study area.  The empirical study in chapter three also found that version 

of MLC is the only classifier largely exempt from the influence of class proportions.   

We argue that, the MAP method using “Class Prior Probability” is not effective as 

other researchers proposed during the past 30 years.  And we want to argue that, the 

effective use of class proportions is not in the MAP framework as ‘Class Prior 

Probability’ proposed in the past, but in how to construct an optimal training set.  

The effort of R. M. Lark (Lark 1995) failed in reality because of that.   

Contrary to the popular belief in the past 50 years, we suggest that researchers did 

not successfully improve Chow’s original MLC with their various prior probabilities.  

It is actually Chow’s simple and timeless MLC that now can help researchers improve 

other modern supervised classifications.  

The use of prior information is absolutely necessary (Vapnik 1999). It should be 

used as proportions of training proportions, instead of in the form of prior probability.   

4.5.5. The Relationship between Training Class Proportions and Boosting 

In the landmark paper of boosting (Freund 1995), the author wrote: 
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“Here the examples that are given to the learning algorithm are generated by 

choosing the instances at random from a distribution over the instance space.  This 

distribution is arbitrary and unknown to the learner.  The central measure of quality 

of a learning algorithm in the probabilistic setting is the accuracy of the hypotheses 

that it generates.  The accuracy of a hypothesis is the probability that it classifies a 

random instance correctly.” 

What Freund actually stated is that the distribution of the (population of) 

instances is unknown to the learner.  The capability of a classification algorithm 

depends on if it can correctly classify a random subset of the (population of) instances 

given a randomly known training set. 

Freund’s approach is to draw random subsets in the known training set, build 

classifiers, and classify the data.  Then decide on the label of the class through 

voting by majority.   

A decade after Freund’s first paper describing boosting, there have been more 

than a dozen boosting algorithms.  Taking decision tree as an example for base 

algorithm, there have been boosting methods such as the Random Decision Tree, 

Random Forest, and Disjoint Sample Trees.  These methods have also been very 

successfully applied in the field of remote sensing.(Mclver and Friedl 2002) 

However, back in the machine learning field again, researchers are still trying to 

reason why boosting worked.  For example, a paper (Fan 2005) reported that: 

“Randomized decision tree methods have been reported to be significantly more 
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accurate than widely-accepted single decision trees, although the training procedure 

of some methods incorporates a surprisingly random factor and therefore opposes the 

generally accepted idea of employing gain functions to choose optimum features at 

each node and compute a single tree that fits the data.  One important question that is 

not well understood yet is the reason behind the high accuracy.” 

Now, what this tells us is that, the machine learning researcher are surprised at the 

degree of success that boosting has achieved, and they are still trying to figure out 

why a simple voting cast by randomized training sets can achieve accuracy 

improvement. 

Our conjecture is that, boosting achieves the similar purpose as our PTP 

algorithm and our adaptive algorithm, although through a different path.   

Freund (Freund 1995) stated that the whole distribution of the instances in the 

feature space is unknown.  His boosting approach is to enumerate random subsets of 

training data.  Our PTP approach and the adaptive approach, on the other hand, try to 

figure out the approximate distribution of instances in the feature space.  This 

information is achieved with the help of MLC. 

Proving this conjecture would be out of my capability at this moment.  It would 

be left as an open question for the machine learning field to prove correct or wrong. 
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5. The Dilution of the Change Signal 

5.1.  Change as the Class with the Lowest Accuracy 

The experiments in earlier chapters were designed to look for the effect of the 

training set.  We found the important issue of class proportions in the training set.  

However, there is another mystery we have not solved yet.  Why is the overall 

accuracy almost always higher than that of the forest change class in all our 

experiments?  This is still the case even after we adopted new algorithms in chapter 

four.  Therefore this is another possible source of uncertainties and errors. 

One possible reason is the complex spectral signatures of land cover change.  

Two reasons argue against it.  First, we now have many powerful nonparametric 

classifiers such as the decision tree, support vector machine, and neural nets.  These 

classifiers are nonlinear by nature, and make few assumptions on the data distribution.  

However, their results all showed the same problem, that the accuracy of the change 

class is lower than the overall accuracy of all classes.  Second, why is it always the 

change class that gets affected the most?  The nonforest class is also a very complex 

class in the feature space.  Thus the geographical variation in spectral signatures is 

not the correct answer. 

Our analysis in this chapter will try to solve this mystery using a very simple 

extension from the theory we developed in chapter four. 
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5.2.  A Possible Dilution Effect in the Change Training Data 

Why is it always the change class that almost always has the lowest accuracy 

among all classes?  This issue exists for all the classifiers.  Thus it might not be 

caused by the machine learning algorithm.  We suspect there is something wrong in 

the designing stage of change detection in general.  Contemporary methodologies of 

change detection mentioned in figure 1.1 can be used to find out what might have 

gone wrong.  The research community knows well that these contemporary 

methodologies co-exist because we do not have a definite winner yet.  Naturally, the 

awkward change detection design might have something to do with the sub-optimal 

detection performance for the change class. 

In the previous chapter, we formulated a general theory on most supervised 

classification algorithms.  The accuracy of any supervised classification study is 

largely pre-determined by the proportions of each conceptual class in the training 

dataset, regardless of the absolute amount of training data, or the complexity of the 

classification algorithm.  In the previous chapter, we have also demonstrated how 

supervised classifications can benefit from optimizing these proportions.  With the 

PTP algorithm and the Adaptive algorithm at hand, change detection approaches A 

and B mentioned in Figure 1.1 are expected to have good accuracies everywhere.  

However, the reason why the stacked classification in our experiments still showed 

more or less the same problem is not known.   

Studies using methodology approach B often simulate change training data from 



 

130 
 

stacking training data of two different land cover types together (Huang et al. 2008).  

This method is described in the following figure. 

 

In this scheme, the training pixel for Forest at Time 1 does not have to be at the 

same geographical location as the training pixel for Nonforest at Time 2.  Therefore 

the training pixel for Forest Change from Time 1 to Time 2 is actually a simulated 

change signal.  This method produces sufficient amount of training data for the 

change class, as long as there are sufficient amount of training data for basic land 

cover types on the bi-temporal image pair.  In that same paper, Huang also designed 

an automated training data acquisition method named TDA to get sufficient amount of 

training data for basic land cover types on the bi-temporal image pair.  In this way, 

automated acquisition of sufficient amount of training data for every class is achieved. 

Let us now imagine doing change detection in the semi-arid region of Africa with 

this scheme.  A significant portion of the land is covered by desert and Savannah.  

When we simulate the change signal for training, we can produce a considerable 

amount of unrealistic change signals such as from forest to Savannah, and from forest 

to desert.  These change signals could occur naturally in hundreds or thousands of 

years, but highly unlikely within five or ten years of satellite monitoring. 

These unrealistic change signals thus become ‘dummy’ data in the training set.  

A Training Pixel for Forest Change 
from Time 1 to Time 2 

A Training Pixel for Forest 
at Time 1 

A Training Pixel for 
NonForest at Time 2 

= + 

Figure 5.1 Creating the Training Data for the Change Class from Stacking 
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Will they do any harm to the classification algorithms? Or will they just be harmless 

redundant information that the classifiers intelligently ignore? 

In chapter four, we have discovered that any class will be underestimated if it is 

underrepresented in the training dataset.  Therefore, the dummy training data in the 

change class might ‘dilute’ the actual change signal and causes a net underestimation 

of forest change.  As Economists puts it: Bad money drives out good.   

Here we make a hypothesis that, the ‘dilution’ in the training data for the 

simulated stacked change class would lead to lower change class accuracies. 

If this hypothesis is true, then its solution is simple.  Bi-temporal forest change 

detection studies are recommended to distinguish two groups of nonforest pixels: 

change-relevant and change-irrelevant nonforest, as illustrated in figure 5.2.  

 

 

 

Only the change-relevant nonforest should be used in simulation of the training 

A Training Pixel for NonForest from 
Time 1 to Time 2 

A Training Pixel for 
NonForest at Time 1 

A Training Pixel for 
NonForest at Time 2 

= + 

A Training Pixel for Forest 
Change from Time 1 to Time 2 

A Training Pixel for Forest at Time 1 

A Training Pixel for Change-Relevant 
Non-Forest at Time 2 

= + 

Figure 5.2 Creating the Training Data for the Real Change Class from Stacking 
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data for the change class.  Realistic change signals such as forest-to-agriculture, 

forest-to-urban, and forest-to-water can thus be separated from unrealistic change 

signals such as forest-to-desert, forest-to-savannah, forest-to-cloud, etc.   

5.3.  An Experiment on the Separation of the Change-Relevant 

and Change-Irrelevant Nonforest 

5.3.1. Experiment Settings 

Five experiments are designed to test whether or not change detection results 

benefit from separating the change-relevant and change-irrelevant nonforest 

subclasses.  It is an assessment of the ‘Dilution of Change Signal’ hypothesis raised 

in the previous sections.   

The first two experiments use the training data acquired by TDA (Training Data 

Automation) algorithm (Huang et al. 2008).  These two experiments show us what is 

achievable in a more automated way.  The training data went through a selection, 

which can be viewed as a sampling process.  One experiment used Adaptive 

sampling and the other one used PTP.  Both sampling approaches have been 

described in chapter four. 

The third and fourth experiments use the reference map as training data, in a 

similar way as we discussed in chapter four.  These two experiments show us what 

are the achievable performances if we have ample a priori knowledge.  The training 

data also went through a sampling process.  One experiment used Adaptive sampling 

and the other one used PTP.  Both sampling approaches have been described before. 
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The last experiment is the new approach we designed to address “Training Data 

Dilution” Hypothesis.  The only difference in its training design, compared to 

contemporary approaches, is the separation of the change-relevant and 

change-irrelevant nonforest subclasses.  This cannot be done using the TDA program 

because the dilution problem was not realized when TDA was designed.  This 

information is also not available in the reference map.  So it has to be done via visual 

interpretation of the images.  PTP sampling has also been applied to the training set. 

The design of these five experiments is outlined in table 5.1. 

Table 5.1 Assessment Plan of the ‘Dilution of Change Signal’ Hypothesis 

Experiments Source of Training Data Selective Criterion for Training Data 

TDA Simulated from TDA Adaptive and Post-hoc 

TDA PTP Simulated from TDA PTP and Post-hoc 

Reference Real from Reference Map Adaptive and Post-hoc 

Reference PTP Real from Reference Map PTP and Post-hoc 

Anti-Dilution Experiment Visual Interpretation for 

change-relevant and 

change-irrelevant nonforest 

PTP and Post-hoc 

If the change detection result in the fifth experiment outperforms those of the 

other four experiments, then our hypothesis is proved. 

The ‘Post-hoc’ method mentioned in the table will be described in details next. 

5.3.2. The Post-hoc Change Detection Algorithm 

The Post-hoc algorithm is a way to simulate training data set for 2-date change 

detection, using training information only on the first date.  It is built upon the 

statistical concept of Canonical Correlation (CCA), and its natural extension 

algorithm of Correspondence Analysis (CA).  It was designed for two reasons.  The 
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first reason is that, for some unknown reason, the current TDA algorithm fails to 

analyze Landsat ETM+ data.  We could only get TDA training data from Landsat 

TM imagery.  The second reason is that, we do like to simplify the collection of 

training data.  If we could conduct change detection while only collect training data 

on the image of Time 1, then we could save half of the time in training data collection. 

 

Take the case of bi-temporal forest change detection as the simplest example.  

We start with a set of forest pixels and another set of nonforest at Time 1. Then we 

estimate the most possible forest pixels and nonforest pixels at Time 2.  The training 

A Training Pixel for Unchanged 
NonForest from Time 1 to Time 2 

A Training Pixel for 
NonForest at Time 1 

An Estimated Pixel for 
NonForest at Time 2 

= + 

A Training Pixel for Forest 
Change (Loss) from Time 1 to 

A Training Pixel for 
Forest at Time 1 

An Estimated Pixel for 
NonForest at Time 2 

= + 

A Training Pixel for Unchanged 
Forest from Time 1 to Time 2 

A Training Pixel for 
Forest at Time 1 

An Estimated Pixel for 
Forest at Time 2 

= + 

A Training Pixel for Forest 
Regrowth from Time 1 to Time 2 

A Training Pixel for 
Nonforest at Time 1 

An Estimated Pixel for 
Forest at Time 2 

= + 

Figure 5.3 Training Data Construction using the Post-hoc Change Detection 
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data is created by stacking randomly pixels from two dates, as shown in the figure 5.3. 

The key technique used to estimate the possible forest pixels and nonforest pixels 

at Time 2 is Canonical Correlation Analysis (CCA).  This technique was invented by 

statisticians to describe the hidden linear similarity between two sets of variables.  

When it is used to describe data outliers after removing the hidden linear similarity 

between two sets of variables, it becomes know as Correspondence Analysis (CA).  

In short, CCA describes the first statistical moment of a hidden relationship between 

two sets of variables, while CA finds the second statistical moment.   

For remote sensing imagery, it can be readily used to describe the relationship 

between the radiometric channels of two satellite sensors.  It has been used for 

change detection of bi-temporal Landsat TM image pair (Nielsen 2002; Zhang et al. 

2007).  These studies, however, aimed at finding all the changes happening over the 

satellite footprint.  CCA is very good at doing this.  Our post-hoc framework will 

use it to derive the most possible forest pixels at Time 2, given the forest pixels at 

Time 1.   

The following are the rationales used in the estimation process. 

Forest pixels at Time-1 will become partly converted to nonforest use, while the 

rest remains as forest with a different phenology.  We conduct a CCA analysis 

between the 7 bands of Landsat TM image at Time 1 and the 7 bands of Landsat 

ETM+ image at Time 2.  The pixels that fall close to the canonical correlation line 

are usually the pixels without change.  From those pixels we can derive the signature 
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of forest pixels at Time-2. 

The nonforest pixels at Time-1 will mostly remain as nonforest use at Time-2.  

Therefore, we derive the signature of nonforest pixels at Time-2 using the same pixels 

location as on the Tim-1 image.  We do expect a small fraction of forest regrowth.  

We also expect the error-tolerant property of SVM can handle this small fraction of 

error easily. 

With the forest and nonforest signatures at Time-2 Landsat ETM+ image 

available, we will now create the training data for the four classes along the change 

paths: Forest-to-Forest, Forest-to-Nonforest, Nonforest-to-Nonforest, and 

Nonforest-to-Forest.  The last class has negligible magnitude in the study area and 

thus has been omitted.   

The training data is simulated from stacking together the corresponding 

signatures at two times.  This process is described in figure 5.3.  
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5.4.  Assessment Result 

5.4.1. Accuracy Assessment 

The accuracies of the five experiments are listed in the following tables.  All 

units are percentages. 

Table 5.2 Accuracy Assessment of Experiment One 

 Overall Accuracy User Accuracy Producer Accuracy 

Area one 80.5 86.6 54.6 

Area two 60 20.6 46.7 

Area three 65.3 36.4 37.3 

Area four 62.4 5 28.1 

Area five 80 35.6 12 

Area six 64.4 38.7 25.8 

Area seven 78.6 39.3 0 

Area eight 82.7 52.6 29.8 

We can see that the accuracies are really low. 

Table 5.3 Accuracy Assessment of Experiment Two 

 Overall Accuracy User Accuracy Producer Accuracy 

Area one 80.1 71.6 60.5 

Area two 61.2 21.1 57.4 

Area three 67.3 37.5 57.9 

Area four 61.1 3.3 51.5 

Area five 78.5 11.6 7.2 

Area six 65.9 26.5 41 

Area seven 78.6 18.7 0 

Area eight 84.9 67.3 35.1 

The accuracies are systematically better than those from experiment one.  With 

the training proportions adjusted, TDA is reasonably usable. 
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Table 5.4 Accuracy Assessment of Experiment Three 

 Overall Accuracy User Accuracy Producer Accuracy 

Area one 87.8 80.4 48.9 

Area two 92.3 49.3 43.4 

Area three 91.1 62.4 34.1 

Area four 95 25.1 51.7 

Area five 87.6 43.3 14.8 

Area six 85 46.4 10.4 

Area seven 78.9 14.3 0 

Area eight 85.9 43.1 5.1 

With the reference data of time 1 as training data, the accuracies is not great. 

Table 5.5 Accuracy Assessment of Experiment Four 

 Overall Accuracy User Accuracy Producer Accuracy 

Area one 85.8 86.4 31.8 

Area two 92.8 54 52.6 

Area three 91.2 58.1 53.9 

Area four 95 22.1 66.2 

Area five 92.7 76.3 87.4 

Area six 87.4 64.6 64.5 

Area seven 89.7 90 61 

Area eight 84.3 66 13.6 

With the help of PTP, training with 1 date yields acceptable results.  They are 

much more improved than the previous scenario. 

Table 5.6 Accuracy Assessment of Experiment Five 

 Overall Accuracy User Accuracy Producer Accuracy 

Area one 85.9 75 47.3 

Area two 89.8 30.8 59.4 

Area three 91.3 51.6 58.7 

Area four 92.8 8.6 45.7 

Area five 91 67.6 71.7 

Area six 87 47.5 82.7 

Area seven 88.5 91.9 52 

Area eight 88.3 76.2 89.2 

Here we achieved a higher accuracy than any previous scenario. 
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When we examine these tables together, the first thing we can see that experiment 

two is more successful than experiment one, and experiment four more successful 

than experiment three.  The reason is that the PTP algorithm is used in experiment 

two and four.  

The second observation is that, experiment five and experiment four produce the 

best results.  Experiment four is expected to produce the best results because it 

employs the training data it uses is the ground reference data and is more complete 

than real-world situations.  Experiment five is thus significant because it produces 

comparable accuracy based on a small visually assessed training set. 

The third observation from the above tables is that, there are test areas where the 

first four experiments did better than the fifth experiment.  Those are the areas in 

east Paraguay, where not much change-irrelevant nonforest exist in the landscape.  

The study areas where the fifth experiment outperforms the peer are located in central 

and west Paraguay, where a lot of change-irrelevant nonforest such as grassland and 

bare land exists.  These observations agree with our hypothesis. 

5.4.2. Error Patterns 

In addition to the accuracy numbers, we would like to study the error patterns on 

the map.  We can find out which features got underestimated, and which ones got 

overestimated.  We can then understand more on the cause and effect of errors. 

Figure 5.4 shows the experiment conducted in area one.  Landsat TM-ETM+ 

image pair in band combination 7-4-2 shows the deforestation due to agriculture.  
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The results of all five experiments are not ideal.  Surprisingly, experiments three & 

four which use the reference data for their training sets did not achieve a good result. 

 

Figure 5.4 Experiment result at test area one 

Figure 5.5 shows the experiment conducted in test area two.  All five scenarios 

again have different issues.  Experiment five seems to achieve the best result. 

 

 

Landsat TM       Landsat ETM+      Reference       Experiment 1 

 Experiment 2      Experiment 3     Experiment 4      Experiment 5 

 Experiment 2      Experiment 3      Experiment 4     Experiment 5 

Figure 5.5 Experiment result at test area two 

Landsat TM       Landsat ETM+     Reference        Experiment 1 
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Figure 5.6 shows the experiment conducted in test area three.  Experiments three 

to five achieved good results. 

 
 

 

Figure 5.7 shows the experiment conducted in test area four.  Experiments three 

to five again all achieved good results. 

 

 

Landsat TM       Landsat ETM+     Reference       Experiment 1 

 Experiment 2      Experiment 3     Experiment 4      Experiment 5 

Landsat TM        Landsat ETM+     Reference       Experiment 1 

 Experiment 2      Experiment 3     Experiment 4      Experiment 5 

Figure 5.6 Experiment result at test area three 

Figure 5.7 Experiment result at test area four 
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Figure 5.8 shows the experiment conducted in test area five.  The five 

experiments showed different estimation errors. 

 

 

In Figure 5.9, experiments four and five showed the best performances. 

 

 

Landsat TM       Landsat ETM+      Reference        Experiment 1 

 Experiment 2      Experiment 3     Experiment 4      Experiment 5 

Landsat TM       Landsat ETM+     Reference        Experiment 1 

 Experiment 2      Experiment 3     Experiment 4      Experiment 5 

Figure 5.8 Experiment result at test area five 

Figure 5.9 Experiment result of test area six 
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In figure 5.10, only experiment four ends up with a good performance.  All other 

experiments have problems. 

 

 

In figure 5.11, only experiment five achieved reasonable performance.   

 

 

Landsat TM       Landsat ETM+     Reference       Experiment 1 

 Experiment 2     Experiment 3     Experiment 4       Experiment 5 

Landsat TM       Landsat ETM+     Reference       Experiment 1 

 Experiment 2     Experiment 3     Experiment 4      Experiment 5 

Figure 5.10 Experiment result of test area seven 

Figure 5.11 Experiment result of test area eight 
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5.5.  Conclusions 

The numbers and maps in the previous section are the joint result of three 

methodological designs.  First there is the PTP (experiment two, four, and five) vs. 

non-PTP (experiment one and three) optimization design.  Then there is the Post-hoc 

algorithm, which deduces the change path using only the time-1 training data.  And 

finally there is the “Anti-dilution” design which visually distinguishes between 

change-relevant nonforest and change-irrelevant nonforest.  This design only exists 

in experiment Five.   

Multiple methodological designs made the interpretation difficult.  Let us go 

through them one by one. 

First of all, The PTP experiments (two and four) are better than non-PTP 

experiments (one and three) respectively.  The PTP experiment five is almost always 

the best.  This observation echoed the findings in chapter 4. 

Second, the experiments we did in this chapter generally produce lower 

accuracies than the experiments we conducted in chapter four.  We used the same 

test areas.  Experiments three and four used the same training data source.  

However, their accuracies are lower than corresponding experiments in chapter four.  

The direct reason is the post-hoc change detection framework we used here.  It 

facilitates change detection using only time-1 training data, but has a negative impact 

on accuracy.  Therefore, the post-hoc framework requires further improvements.   

The post-hoc change detection framework worked well with training data either 
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from visual interpretation or from reference data.  But it does not work well with 

TDA.  One possible reason is that this post-hoc framework is not very tolerant to the 

errors in the training set.  The CCA algorithm at its core is an adaptive linear 

algorithm.  It needs to be further improved before pairing with TDA.  A possible 

improvement is to use the nonparametric version of CCA: kernel CCA. 

Thirdly and most important for this chapter, is the effectiveness of experiment 

five.  We can see that, in most areas it is better than TDA experiments.  In some 

areas, experiment five is even better than experiment four which employed the 

reference data for training.  This shows that, our hypothesis that the unreal change 

signal used in training data exists more or less in most satellite scenes is validated.  

Satellite scenes with a lot of change-irrelevant nonforest are significantly affected, 

while satellite scenes with little change-irrelevant nonforest are minimally affected.   

Our solution is to simply distinguish two types of nonforest: change-relevant 

nonforest and change-irrelevant nonforest.  Currently this is done using visual 

interpretation.  It was recommended that the TDA algorithm should incorporate this 

finding and automatically distinguish between the change-irrelevant nonforest and 

change-relevant nonforest. 

However, another initial guess was a net underestimation of the real change class 

exists due to this “Change Training Dilution” problem.  This is not entirely true.  

TDA did show some underestimation of the change class compared to our fifth 

experiment.  Our fifth experiment, which relied on a small set of visually interpreted 

training data, also showed some underestimation of the change class probably due to 
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the insufficiency of training data.   

This shows that, the completeness of training features and the effectiveness of 

training features are both important.  Incomplete training features will surely lead to 

underestimation, while ineffective training features lead to more complicated pattern 

of errors.  TDA is good at the aspect of completeness, while the aspect of 

effectiveness can be improved simply by distinguishing between change-relevant and 

change-irrelevant nonforest subclasses.  If TDA can be complemented by the 

findings in this chapter, the forest change class in certain regions of the world can be 

much better estimated.  However, the automated solution for TDA with undiluted 

change signals is beyond the capability of this dissertation.  
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6. Conclusions and Recommendations 

6.1.  Sources of Uncertainties and Errors 

The use of remote sensing for global studies was expected to greatly improve our 

understanding of important environmental concerns.  However, the analysis of 

remotely sensed data, especially when with a global perspective, is still not free of 

major uncertainties and errors. 

This dissertation is more concerned as to why the global classification of 

remotely sensed data has yet to achieve the goals of being automatic, objective, 

accurate, and reliable.  It has been more than five decades since the invention of 

computers, the emergence of machine learning as a research field, and the launch of 

the first satellites.  Why are we still unable to retrieve land cover information from 

satellite images fully automatic, objectively, accurately, and reliably? 

The hypothesis of this dissertation is that the cause of sub-optimal performance 

might be some essential difference(s) between the mathematic models of the machine 

learning theories and the underlying geographical factors in satellite remote sensing.  

In this dissertation, these essential differences are referred to as uncertainties and 

errors, although in some other fields people consider them ‘systemic errors’ (Taylor 

1997).  The uncertainties described in this dissertation consist of three broad types: 

inevitable errors during observation, variability of class definition, and observational 

sufficiency.  These three broad types will be summarized in the following sections. 
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6.1.1. Inevitable Errors 

Inevitable errors from observations can come from the instrument and image 

analysts.  This has been well known since the dawn of remote sensing.  Early 

Landsat sensors had significant radiometric and geometric anomalies.  Researchers 

can also make mistakes during field trips.  Image analysts can mislabel classes.  

GPS accuracy fluctuation can lead to geo-registration error of the images.   

Therefore, the classification of remotely sensed data has to be able to tolerate 

imperfections and errors.  This idea has been advocated since the turn of this century.  

The decision tree algorithm was reported by earlier researchers that it has some error 

tolerance compared to maximum likelihood (DeFries and Chan 2000).  Similar 

finding was reported for ARTMAP neural net (Rogan et al. 2008).  This dissertation 

performed an error tolerance experiment in chapter three.  We contributed two new 

findings by linking error tolerance with the internal design features of machine 

learning algorithms.  

First, the error tolerance in decision tree or ARTMAP is not significant.  The 

performances of decision tree, neural nets, and maximum likelihood all deteriorate 

rapidly.  With a 10% random error in the training labels, the classification results 

would be unusable.  Support vector machine using the radial basis function as kernel 

has a much higher error tolerance.  Its overall performance is retained even if 30% of 

the training data label is randomly wrong.  However, with very limited amount of 

training data, in which a lot of errors are hidden, SVM can also fail. 
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Second, this dissertation elaborated on the mathematical cause of the strong error 

tolerance of SVM.  It has been found that, modern SVM algorithms adopted the 

soft-boundary design originally for solving inseparable classes.  This design had an 

unintentional yet easy-to-understand effect.  If a small percentage of training data 

points carries wrong labels, they would fall between the soft class boundaries.  This 

design gave SVM an outstanding merit.  However, this alone cannot explain the 

outstanding error tolerance.  We found that, SVM using a neural net kernel and 

built-in boosting would have a lesser error tolerance.  Therefore, we conclude that 

the RBF kernel is also a contributing factor.  The multi-modal Gaussian assumption 

in the RBF kernel not only describes remotely sensed data well, but also is robust 

against error.   

In summary, to tackle the inevitable errors in remote sensing, there are two 

machine learning features that are quite effective: soft-boundaries among classes, and 

assuming multi-modal Gaussian distribution within classes.  It is also worth noticing 

that, these two features were initially not designed to achieve error tolerance. 

6.1.2. Variability in Class Definition 

The classification of remotely sensed imagery is basically the simplification from 

images to thematic information.  Researchers have a fixed set of concepts regarding 

the classes.  However, these classes would inevitably look quite different from place 

to place, and from time to time.  For forest change detection, this variability of class 

definition is significant.  We thus realize that, there is significant spatial and 
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temporal variability in the way we define our classes.  Can contemporary machine 

learning tackle them? 

Our studies in chapter three performed three experiments on this subject.  Our 

first experiment examined the performance of classifiers with remotely sensed images 

from different dates, geographic regions, and ecosystems.  Our second experiment 

examined the performance of classifiers when the data from different scenes are 

merged together.  Our third experiment examined the performance of classifiers 

when atypical training data is used. 

We have found that, SVM significantly outperforms all other classifiers in the 

above three experiments.  We conclude that, when characterizing complex classes, 

the assumption of multi-modal Gaussian distribution is better than a single Gaussian 

distribution.  This is well expected.  However, what we did not expect is that the 

other nonparametric classifiers, the neural nets and the decision tree, cannot 

characterize complex classes as good as SVM can.  We conclude that, the 

assumption of multi-modal Gaussian is superior to the Entropy assumption in decision 

tree and the linear propagation assumption in Neural net. 

The accurate definition of classes does not mean we should define broad, 

all-encompassing classes.  In chapter five, we also examined the effect of ‘Dilution 

of Change Signal’.  This is caused by the over-definition of the class.  If simulated 

training data from multiple dates are used, and if the training data contains ‘dummy’ 

data points, then a class can get underestimated.  Therefore, a clear definition of the 

conceptual classes is important.  
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6.1.3. Observational Sufficiency 

While there is ample availability of remotely sensed imagery, the ground truth 

observations that accompany satellite flyovers are usually limited.  The latter is used 

as the training sample.  The classification is thus the way to determine a vast data 

population with a limited training sample.  The sufficiency of training samples is 

naturally questioned.  The contemporary remote sensing studies use as much training 

data as possible.  Often, the only concern in the designs is the project budget.  And 

thus, recent studies have raised a question on the sufficient quantity of training. 

This dissertation looks into this topic on two aspects.  First, the quantity of 

training sample is examined.  We aim at finding a machine learning design that most 

effectively uses the training sample.  And second, we investigate the effect on the 

class distribution in the training sample.  We want to know whether or not the 

classifiers are affected by this factor.  We would like to find a classifier that is least 

biased by what we feed to it.   

Our finding on the quantity aspect is that, SVM is most efficient at utilizing 

training data.  Its performance does not substantially deteriorate with decreasing 

training samples, at least for the case of forest change detection. 

Our finding on the class distribution aspect is more complicated.  First of all, all 

the nonparametric classifiers including our star algorithm: SVM, are severely biased 

by training samples with biased class distributions.  The oldest classifier, MLC, is 

unexpectedly not affected. 
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We looked into the origin of this bias, and found that the cross validation stage 

used in the machine learning community is actually only Bayes Optimal for the 

training set, but not necessarily for the data population.   

Our additional work on this aspect leads to chapter four and five.  Chapter four 

outlines a new algorithm combining the strength of MLC and SVM to make SVM 

immune from biased training sets.  This will be elaborated in the next section.  

Chapter five investigates further on the implication of biased training sets.  We 

found that the definition of classes is also a source of uncertainty.  If a class is 

conceptually designed more than it actually would occur in the feature space in the 

real world, and that these ‘padding’ features are included in the training set, then it 

will cause an underestimation of the real class signal.  This is quite similar to an 

everyday case in Economy: counterfeit products takes over the market of authentic 

ones, and bad money drive out good ones, simply because the fixed total market size.  

In light of this, global forest change studies are recommended to distinguish between 

the change-relevant and change-irrelevant nonforest land cover types. 

6.2.  Integrated Solution for Uncertainties 

The current generation of machine learning offered us great hopes to monitor the 

land surface of Earth.  The Support Vector Machine is excellent in dealing with 

inevitable observational errors.  It is also adaptive to variability in class definition.  

It is also very efficient at using limited training information.  These merits make 

SVM the ideal candidate baseline algorithm.  The machine learning community 
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already paved the way for Geographers.  We only need to refine it. 

This dissertation has addressed the importance of class proportions in the training 

set.  SVM, as well as most others, is susceptible to this pitfall.  In some sense, this 

is the Geography aspect of machine learning.  There are two stages that were largely 

overlooked in the past by both the remote sensing community and the machine 

learning community.  

The first overlooked stage is the construction of the training set.  We cannot use 

as many training points as possible.  Instead, we use them selectively.  The 

proportions of training are more important than the quantity of training.  The class 

proportions in the training set should match those in the whole population of 

observations.  The latter is unknown, but can be estimated most of the times using 

MLC.  When MLC fails, SVM can also be used to give a biased but second-best 

estimation. 

The second overlooked stage is the definition of classes.  We need to be aware 

that, dummy training data for a class would lead to underestimation of the real class 

signal.  This issue is most prone when simulated class signatures are used, such as 

the case of TDA (Training Data Automation) algorithm (Huang et al. 2008). 

With the integrated design of an adaptive training stage, the improved SVM is our 

champion for tackling the uncertainties and errors listed in this dissertation.   
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6.3.  The Overfitting Problem: From Structural to Geographical 

Risk Minimization 

What we have discovered in this dissertation actually echoed some thoughts in 

the machine learning community 30 years ago on the topic of overtuning.  Yet we 

have looked at this topic in another perspective.  

In section 2.6.3 we described how Vapnik and Chervonenkis jointly developed 

the VC theory (Vapnik and Chervonenkis 1974).  It has several parts.  One part is 

the well-known development of the Support Vector Machine, while a lesser-known 

part of this theory is called the Structural Risk Minimization Theory (SRM).  It 

states that, as the structural complexity of a machine learning model increases, the 

training error goes down, while the test error goes up.  Therefore, there exists a 

tipping point for the best model.  A figure (Vapnik and Chervonenkis 1974) 

illustrated this idea. 

 

Figure 6.1 The Structural Risk Minimization Theory (SRM) by Vapnik 
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In SVM, a vital step is to determine the complexity of the model in the cross 

validation stage.  The SRM theory is no doubt correct.  However, it still cannot cure 

overfitting.  We have demonstrated in previous chapters that, the reason is the 

training error and test error in the VC theory have not been defined very clearly.  

Those errors rely on how we construct the set for training, and how we perceive the 

set for testing.  In other words, ‘overfitting’ happens not just because we over-fit 

machine learning models to a training set, but also because we often got a training set 

so poorly constructed that it does not reflect the reality well.  Therefore, we would 

like to draw a new figure to complement Vapnik’s SRM figure. 

 

Figure 6.2 Another interpretation of the overfitting problem 

Since we discovered this issue from the side of Geography, we can name it as 

‘Geographical Structural Risk Minimization’ as an extension of Vapnik’s Structural 

risk Minimization Theory.  It is a natural extension of Vapnik’s philosophy.  Vapnik 

himself repeatedly states that the philosophy of ill-posed problems as the turning point 
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in the understanding of statistical inference (Vapnik 1999; Vapnik 2006). That 

philosophy states: 

(1) The general problem of inference – obtaining the unknown reasons from the 

unknown consequences – is ill-posed. 

(2) To solve it one has to use very rich prior information about the desired 

solution. However, even if one has this information it is impossible to guarantee that 

the number of observations that one has is enough to obtain a reasonable 

approximation to the solution. 

If we interpret the findings of this dissertation using the above philosophy of 

ill-posed problems, we can see an interesting echo.  The ‘rich prior information’ it 

states is not the commonly understood prior probability, but is actually the 

representativeness of training set in our study.   

In the history of remote sensing, there have been many times that researchers 

came close to our finding here.  Strahler’s seminal paper (Strahler 1980) was named 

‘The use of prior probabilities in maximum likelihood classification of remotely 

sensed data’ because he intended to improve the performance of Chow’s MLC (Chow 

1957) using prior probabilities.  Although he got mixed results in experiments, he 

did not realize the true role of prior information.  It is not just simply for deriving 

posterior probabilities, but to refine and restructure the experiment namely the 

training process. 

Lark’s work (Lark 1995) is a milestone because he realized the balance between 



 

157 
 

omission error and commission error, and that no classification is perfect for all 

practical uses.  However, he was still limited in the MLC framework and was still 

using prior probabilities.  Boyd and Foody (Boyd et al. 2006; Foody et al. 2006) was 

impressed by Lark’s work and stated that ‘more training data on a key class will 

improve its accuracy’.  This is partially true, but will also cause overestimation for 

the key class, which he did not realize.   

Hagner and Reese (Hagner and Reese 2007) realized the importance of the 

training set and tried to modify the class proportions of the training set for MLC.  

Although their guess was correct, they were limited by the MLC framework yet again.  

Unfortunately, the class proportion idea works on nonparametric classifiers but not 

MLC.   

Stehman’s series of papers on the model-based sampling technique (Stehman 

2000; Stehman et al. 2003; Stehman 2005; Stehman 2009; Stehman et al. 2009), 

together with Tucker and Townshend’s idea on the limitation of random sampling in 

geography (Tucker and Townshend 2000), shed light on how important sampling is 

for geographical observation.  However, their interest was in the estimation of 

accuracy.  They did not notice that sampling of observation directly affects 

classification, from which the accuracy figures were derived. 

The exploration of error budgeting using the concept of Pareto boundary 

(Boschetti et al. 2004) also is interesting.  Their approach, however, is unnecessarily 

complicated.  And they were limited by the Maximum Likelihood framework.  

Thus their reasoning was very similar to that of R. M. Lark’s (Lark 1995). 
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However, these pioneering efforts, together with the philosophical criteria of error 

tolerance (DeFries and Chan 2000) and generalization power (Woodcock et al. 2001), 

still deserve our kudos.  They showed a gradually unfolding picture of why we 

should minimize analyses risks geographically and statistically.  These continuous 

efforts remind us that the discovery of knowledge has no limits.  After we 

discovered here the real importance of class proportions in training, there is still a lot 

more to be explored on the theoretical side.  The next section will outline them.   

6.4.  Future Explorations 

This most important finding of this dissertation is that, the relative amount of the 

training is more important than the absolute amount of training.  It is, however, not 

the end of the story.  There are two categories of foreseeable implications.  The first 

category will be the possible existence of other related uncertainties.  The second 

category will be the ‘budgeting’ of uncertainty minimization in complex settings.   

Instead of searching for errors and manually correcting them in the 

post-processing stage, we could optimize classification studies automatically in the 

planning stage.  I hope to explore these topics after my Ph. D, and expand this study 

into a new interdisciplinary subfield across machine learning and geography. 

6.4.1. Predictions on Further Uncertainties 

We have shown that, the optimization rule of modern classifiers is Bayes 

Optimality for the training sample.  However, we all know that, the training sample 
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is a very limited sampling of the population.  What if the detailed distribution within 

the class in the training sample is different to that in the population?  Would the 

proportions within a class be a source of uncertainty for classification?  The more 

easily observed features might dominate a class, while the features difficult to study in 

fieldwork and the features unfamiliar to the eyes of the analyst might be neglected. 

A possible solution is to use Gaussian clustering to get an estimation of the 

proportions of clusters within every class.  Then, the training set is reconstructed 

using these proportions.   

A second source of uncertainty is also related to the class proportion issue.  Let 

us ask a question: if we make sure that the class proportions in the training are equal 

to those in the data population, and that the proportions of clusters in every class are 

equal to those found in the population, will this be the ultimate solution?   

We still have one degree of freedom here: the scope of the ‘population’ is 

undefined.  In remote sensing, the scope of the ‘population’ is usually the size of one 

satellite picture, taken systematically along Low Earth Orbit (LEO).  The size of the 

satellite footprint is usually determined by the technology available at the time of 

design.  In other words, the study scope of remote sensing classification has always 

been unknowingly determined by an ‘invisible hand’.   

How would this arbitrary study scope impact classification results?  Starting 

from the class proportions theory, there would be two effects.   

The first effect is that, by summing up the classification results from individual 
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satellite photos, the overall statistics will not be Bayes Optimal for the globe.  The 

second effect is that, Non-Bayes Optimal for the globe actually might not be a bad 

thing.  Why would these two effects seem contradicting each other? 

The spatial distribution of land cover types on the Earth is not homogenous.  

However, homogenous distribution of land covers does occur locally.  An arbitrary 

satellite footprint consists of several locally homogenous sub-zones such as 

agriculture zones, urban zones, and fragmented forest zones.  If we perform 

classification on the whole satellite footprint as a whole ‘population’, then the theory 

of class proportions predicts that the resulting errors would be geographically 

congregated.  The reason is that, the local class proportions are different to the 

population class proportions.  Thus Bayes Optimal for the population might not be 

Bayes Optimal for each zone.  Unfortunately, this is the contemporary way of 

classifying satellite images.   

What if we perform classification within each local zone?  If we segment an 

image into zones that are ‘self-organized’, which means they have an almost constant 

class proportions throughout the zone, then the total classification errors over the 

whole image would be higher than those found in contemporary work.  However, the 

spatial distribution of errors would not be congregated.  Instead it would be closer to 

spatially random.  Therefore, what might be more important than the minimization 

of total classification errors is the spatial randomization of those errors.  In other 

words, somewhat higher error rate can be a good thing. 

Thus, from the global perspective, it might be important to conduct global 
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classification studies not based on arbitrary satellite footprints, but on homogenous 

zones.  Accuracy, when measured from different aspects, has different meanings.  

Different studies might have conflicting goals.  Would one map satisfy all needs?  

In the MLC framework it has already been pointed out 15 years ago that “no one map 

will be optimal from the point of view of every user” (Lark 1995).  Today we echo 

this idea, but for a different reason. 

6.4.2. Budgeting Uncertainty 

The PTP algorithm designed in chapter four is not perfect.  It needs 

improvements for optimizing multiple classes.  Its current performance is even lower 

than the much simpler ‘Adaptive’ algorithm.  

However, the PTP algorithm offers something more than the above simple 

method.  By constructing the training set using the same proportions as of the data 

population, we are going after Bayes Optimal, which is trying to balance 

overestimation and underestimation.  Let us ask a question: what if in some 

applications, underestimation is more severe than overestimation?  For example, a 

forest ecosystem is near extinction and researchers want to find the last island 

ecosystem of its kind.  If our classification overestimates it, we can always correct 

the results via field validation.  But if our classification underestimates it, we do not 

even have a chance to do field validation.  The PTP algorithm is based on the 

modeling of overestimation and underestimation.  It can assign different weights on 

either side, depending on practical needs. 
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6.4.3. Publishing Data Products with Training Data Sets 

A core idea of this dissertation is that the ‘value-added’ data products derived 

from remote sensing depend heavily on their training data sets.  The reliance is so 

heavy that, the quality of a classification work is already determined when the training 

strategy is decided, well before the actual machine learning algorithm is performed. 

This leads us to an awkward situation.  In the past, researchers tended to publish 

their data products only, with the machine learning algorithm mentioned by name, the 

training strategy virtually arbitrary or even nonexistent, and the training data set 

eventually lost in time.   

In other research fields such as Physics, Chemistry and Biology, for example, 

experiments can almost always be repeated to verify earlier findings with the exact 

same settings.  While in Geography and global change studies, rarely would a 

classification study be repeated to verify the findings.  We have been relying on good 

faith that any classification performed on an arbitrary satellite data source is good 

enough to describe the environment.   

We propose that, for a classification of remotely sensed data, the most important 

value-added product is the training set gathered by qualified analysts.  Researchers 

with different expertise can come up with different conclusions on the training set.  

Current generation of machine learning algorithms can be applied to generate data 

products to satisfy the need today.  Future machine learning algorithms can achieve 

better understandings gradually as time goes by.  The accumulation of training data 
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over time will lead to the accumulation of our knowledge in Earth Science. 

In addition, geographers have long been aware that one classification cannot 

satisfy all needs (Lark 1995).  Different applications have different optimization 

goals.  It would be important for the user to have the training set so that he or she can 

generate the classification scheme best for individual applications. 

Thus, we deem it important to convince the research community to release the 

training data sets when the conventional data products are published in the future. 

6.5.  Geographical Machine Learning 

This dissertation studied the classification of geographical observations.  

Real-world events we observe occur at some locations in a given time period for some 

reasons.  For estimation purposes, we might not have to know what those reasons are.  

What is really important for classification is the geographical distribution of classes.   

To be specific, we need to know the distribution of classes in the given study area.  

To avoid overfitting, we need this information to design our classification.  We call 

this the geographical factor in machine learning.  It is highly variable, elusive, and 

important.  We conclude that it can be estimated, fortunately.  We expect it to be a 

complement to both the rule of Bayes Optimal and the Vapnik-Chervonenkis machine 

learning theory.  It is not only useful for classification, but also for regression. 

Let’s revisit the ancient fable of ‘the blind men and the elephant’ mentioned in 

section 3.1.4.  When each of the blind men felt different parts of the elephant’s body, 

it would only be natural to combine their findings and piece together the 
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characteristics of elephant.  The crown jewel of this dissertation is as simple as this.   

How useful is this ancient wisdom today?  Any physical or social phenomenon 

involves space and time.  Researchers observe complex phenomena selectively, 

though often unknowingly.  A famous case is Ellen Churchill Semple’s selective use 

of evidence to support her idea of Environmental Determinism.  The public receives 

the information from researchers, on the other hand, also often selectively.  The 

Third Reich favored Semple’s work and further altered it subjectively.  We have to 

realize this subjective tendency of our observation and reasoning before we can 

approach objectivity.  Geography has a unique place in machine learning.  Global 

satellite monitoring, with appropriate mathematics, thus can potentially achieve the 

complete and unbiased observation and understanding of the globe.  

In the future, we propose to develop classification and regression algorithms that 

targets heterogeneity in space and time.  This is extremely important for the 

understanding of global environment.  The spatial coverage and temporal history are 

so complex and heterogeneous.  Whatever hypothesis we might form in mind, no 

matter how partial it actually might be, we are never short of one-sided supporting 

facts as evidences.  That could be repeating the mistake of Ellen Churchill Semple.   

To achieve an unbiased estimation, one can estimate the spatial and temporal 

distributions through maximum likelihood.  That is pivotal in adjusting the 

proportions of “Evidences” for subsequent classification and regression analyses.  

Here machine learning is assisted with the use of prior information but not prior 

probabilities.  We would like to call this approach ‘Geographical Machine Learning’.   
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