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complexities were not expected in contemporary machine learni@gld they
cause uncertainties and errors when contemporary machine ¢tgdh@aries are

applied for remote sensing?
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1. Introduction

1.1. Remote Sensing for Global Forest Monitoring

There are two major dimensions of global change: land cover chadgeimate
change. The information on forest change is vital in both top©s the Land
cover science side it is important for biodiversity conservati@mijedy et al. 2009),
sustainable forest management (Quincey et al. 2007), regional plakvigrgs(et al.
2009), and international environmental agreements (Noss 2001). On théeclima
change science side it is an important input variable for canjada models (Schimel

1995; Foody et al. 1996; Hese et al. 2005).

But forest change is a very broad concept. The term ‘farastbe dense closed
forest, or open-canopy woodlands. Forest can also be evergreen or decidiralis.
in terms of forest change, forest can become a wide varfi¢aynd use and land cover
types. Natural forest change types include burning, which happenritggunethe
relatively dry climates and the northern forests. Forest use of mankindasclear

cutting, selective logging, and rotational timber management.

Given the importance and diversity, then how can we get religblaations of
Earth’s forest and its temporal changes? There have been #&oo sources of
information: forest inventory statistics from individual governmerdsd the
interpreted results from remotely sensed imagery (Estes et al. 1980n¢al. 1987;

Townshend et al. 1991; Cardille and Foley 2003). The country-based forest



inventory data records have been widely used to conduct regional stuBi@s
example, the historical forest changes in China and United Stetes estimated
respectively to identify the ‘missing carbon’ for carbon cyctedeis (Fang et al. 2001;
Pacala et al. 2001). Satellite remote sensing is anotherovesfiate forest and its
changes. Global tropical forest change along with regicatak of changes were
estimated from AVHRR and Landsat respectively (DeFriesle2002). Forest
inventory data and satellite monitoring were both used in some s{iwlesni et al.
2001). The United Nations Food and Agriculture Organization’s (FAOgSEor
Resource Assessment (FRA) follows another unique path. The FRAES&D (
1981), FRA1990 (FAO 1995), FRA2000 (FAO 2001), and FRA2005 (FAO 2006)
reports provided global estimation of forest inventory based on govetalme
statistics. FAO’s forest change reports of 1996 (FAO 1996p@ad (FAO 2001)
added a 10% stratified random sample of Landsat sensor scerstisriate the global

extent of tropical deforestation from 1980 to 1990, and 1990 to 2000.

Forest inventory data generated by individual countries has variolity (ggues.
FRA2000 and FRA2005 adopted broad expert advices to synchronize the definition of
‘forest’ globally. Yet the two most complained sources obreqpointed out by the
users of FAO2000 estimation, are the low frequency of monitoringhencelatively
less accurate estimation for open woodlands (Matthews and Qra0g2). Some
researchers refer to this problem as the “weak definitionbist (Sasaki and Putz
2009). Not only is the government inventory data prone to uncertaintiefrése

change estimation derived from those datasets are also unayocaff@uted. The

2



situation was as bad as “Consistent data time series do nobeyand the decade

spanned by each report” (Matthews and Grainger 2002).

In light of this, remote sensing had been given high hopes to produce better

estimations for both forest inventory and its change over timetelligaobservation

can reach conventionally inaccessible regions as well (TuckeT@vnshend 2000).
Thus according to the IPCC GPG (Intergovernmental Panel ont€liGtenge, Good
Practice Guidance), remote sensing methods are especiadlplsuibr independent
verification of the national LULUCF (Land Use, Land-Use Change, Famdstry)
carbon pool estimates, particularly the aboveground biomass (IPCC 200®. T
importance of satellite monitoring of global forest changelgs dlustrated in the
recent NASA initiative of “Earth System Data Records” (E3Dof which global

forest change is an aspect. (NASA 2006; Chuvieco and Justice 2008)

In some sense, the research community and the international otigaisizxpect

remote sensing to offer us reliable forest data to help us understand bleaogéd c

1.2. Current Problems

1.2.1. Reliability of Classification Algorithms

As we have seen in the previous section, the science community put high hopes in
remote sensing because the other approach, based on nationatssta@stilots of
weaknesses. But is the remote sensing approach largely ree®r-fThe use of
remote sensing in global forest change is actually far fsparational. A number of

controversies exist in the specification of consistent reliable methods.
3



The previously mentioned FAO report series of world’s forest in years 1980, 1990,
1995, and 2000 did not see much use of remote sensing. The forest iEpte
incorporated the use of satellite images with a 10% random sampling schémvas |
criticized for only sampling 10% randomly (Tucker and Townshend 200()ey T
argued that such a low sampling rate is insufficient giverhitje spatial variability
of forest change. Forest change is not likely to be spat@hdom event. Their
suggestion of a wall-to-wall mapping was countered by FAO. “F#@®not have

sufficient funding or staffing to accomplish this immense task” (CzapleRk2).

This discussion showed us two important issues: 1. Global forestecihasga
high spatial heterogeneity that can only be reliably estonatth a census instead of
limited sampling. 2. The very high cost and the need for big staff necessary to

achieve that purpose only imply that automated algorithms are not fullyetledg

Apart from these two issues, there are controversies around awibdhéheme:
the accuracy of remote sensing analysis. In the same papdudker and
Townshend, they gave an optimistic evaluation to this topic. They were pleidised w
the approximately 85% accuracy achievable by combining unsupenéssification,
human interpretation, and expert inputs. However, this approach is too

labor-intensive that it is not suitable for global studies.

What Tucker and Townshend did not mention, is the capability of fully automated
analysis. Another study, around the same time, outlined the majeriacrof
nearly-automated approaches (DeFries and Chan 2000). They listedrifetia

namely total accuracy, computation resources, stability, andtr@sssto error in data.
4



Basically these four criteria is one fundamental issue: robsstof automated
algorithms. They applied these criteria to different variantieofsion tree (Quinlan
1986) and achieved mixed results ranging from low to high pedfioce in each
criteria. Worth noticing is that, they found no variant of Decisioge Twhich has
been widely applied in MODIS applications, achieved high performamedl! ithe

judging criteria for Landsat imagery.

DeFries and Chan recognized two other important issues: 1. Erronngamdl
important. 2. Fine-resolution imagery such as Landsat seems difficelt to

analyze automatically than coarser resolution imagery such as MODIS.

If we combine the contribution of the two papers above, we can getircle

picture of what remote sensing can and cannot offer at the turn of the century.

First, remote sensing data analyzed using unsupervised clat$sifi together
with human modifications can give ~85% overall accuracy. Howeves, litghly

time-consuming.

Second, automated supervised classification of fine-resolution ignpgeduces
lower accuracy for global studies compared to local studies. rddmson of this
suboptimal performance has not been identified but can be reasaeahiged. In
local studies, manual editing is widely used and does not take mueh tHowever,

manual editing in global studies will be an unthinkably costly operation.

Third, the high spatial heterogeneity of forest change meansefiable global

forest change monitoring has to be done preferably wall-to-wall with a fiokities.



One can immediately see that these three “status quo” leadsdiemma

between quality and cost. How do we solve this?

1.2.2. Error Propagation within the Designs of Change Detection

Another problem the remote sensing community faces is what theepbhasge
detection” actually means in practice. Forest change deteastilamgely based on
classification, but it also involves more designs to model the chsiggal. Three
major methodology approaches are prevalent in contemporary studies. The

following figure shows their basic designs. There are well-known flaws 1. the

Approach A. Separate Classification

Change Matrix

Time 1 Spectral Data Time 1 Classification >

Time 2 Spectral Data Time 2 Classification

Approach B. Stacked Classification

Time 1 Spectral Data .
! P Stacked Bi-temporal Stacked
Time 2 Spectral Data Spectral Data Classification
Approach C. Direct Differencing
Time 1 Spectral Data [~ Spectral Differencing or Threshold
Modelin Tunin
Time 2 Spectral Data 7 Ing uning

Figure 1.1 Popular methodologies of contemporary change detection
Figure 1.1 is a synthesis from two papers. The methodologiesdABawere

discussed in 1990s (Townshend et al. 1992). Methodology B was considered to have
less error propagation and was thus preferred more than methpddlog
Approaches A and C are the most popular methodology in contemporargsstudi
(Kennedy et al. 2009). In contemporary studies, the majority useambpro(Yuan

et al. 2005; Liu et al. 2008; Kuemmerle et al. 2009; Wang et al. 200@yproach B
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has also been used recently (Song et al. 2005; Huang et al). 2008 the
experiments in this dissertation have also been done using Approachpproagh C

saw some usages (Zhan et al. 2002; Masek et al. 2008; Xian et al. 2009).

These three approaches all showed signs of problem for diffeeasbns.
Approach A is more sensitive to error propagation than Approach BnEfemd et
al. 1992). Error propagation is a fundamental concept in the scieneaginéering
world (Taylor 1997). Basically, the more multi-stage optim@asteps involved in
a study, the more likely it is inferior to a one-step overallroittion. By stacking
the images of multiple dates, Approach B has less error propapaibaise it only

performs classification once.

However, our experiments, which adopted Approach B, are conductethuatin
better training data than practically available in realitQur training data in the
change class was easily available because we had wadiftehange map in the first
place. In reality, this is not the case. In the change detettased on the
classification of stacked bi-temporal images, the training datthé change class is
the most difficult to acquire. That is the main reason the¢arehers prefer the
methodology approach A described in figure 1.1. Despite strengthspagbpB is
hard to implement in reality because the researcher needsleot dohining data
specifically on land parcels that went through actual chandeshaustive search of

those land parcels can be challenging.

Approach C is based on differencing and thresholding, which are alim@stsa

parametric operators and very often simple linear operatotse cbmplexity in
7



spectral signature can overwhelm the over-simplified paramepgrators. In
addition, there is a heavy reliance on tuning in Approach C. Thsisitavoidably
and heavily influenced by individual researchers. It should be avoidddcatts in
continental or global studies, unless it can be automated without hatearention
at local scales. TDA (Training Data Automation) (Huangalet2008) is such an

effort to collect training data automatically at local scales.

1.3. A Framework of Uncertainty-Oriented Methodology

Many contemporary studies of forest change have tried stdbe-@frt machine
learning methods side-by-side to find out which one produces the bmsb@ac
(Collins and Woodcock 1996; Desclée et al. 2006; Rogan et al. 2008). Whtile
approach is productive in individual study sites, this dissertatidmutlfollow that
research paradigm. New machine learning methods are designgdyeag if not
every month. Comparing performances with the ever-newer @gmiin a local
test site shows us the accuracies but not the causes of thossceet Besides, the
world outside our own small test site is what really mattef®. actively seek out and

learn from the failures, we need another path.

We will instead try to locate the error sources and then imptloeavailable
machine learning algorithms. In particular we will focus loese questions: “What
are the errors and uncertainties in the classification of edynsensed imagery?
Where do they come from? How do we eliminate them?”

This kind of research paradigm is not completely new. In fact, maglevey
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methodology is built on the analysis of error origins. For exejtpe origins of
survey errors have been well studied and put into categories sseimating error,
interviewer error, measurement error, and nonresponsive omissionefGi989).
Remote sensing can be seen as a special type of survey. TBhés datquired
through optical sensors, analyzed by machine learning algorithmsaametitby one
or more arbitrary human arbitrator. Thus, error origins in rersetesing analysis
are arguably more complex. Yet, this complex situation does rmatnnit is
insolvable. It only suggests more possible sources of errorithantraditional

survey.

In the field of remote sensing, pioneering efforts on the originermair were
made in the 1960s and 1970s. As put by Landgrebe (Landgrebe ITR89xcene is
the portion of the (remote sensing) system which provides us wtlyréatest
challenge. It is the only portion not under design or operational control, andrby f
the most dynamic and complex portion of the sySteie cited an early work
(Hughes 1968) illustrating the decreasing performance of Maxirhikalihood
classifiers with increasing dimensionality. = What they discaleschoes a
statistician’s term The curse of dimensionalityBellman 1961), but the remote

sensing world at that time did not link this to their peers on the statistics side

However, these efforts were largely left forgotten until tivegre picked up a
decade ago (DeFries and Chan 2000). They faced up to the fachéhagining
data in practical work is generally not 100% correct. Ermordd be caused by bad

geo-referencing, interpretation mistakes, or severely mixed slasse
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We adopt this idea and extend it into a framework— a framewouk@értainty
handling. This framework treats global automated forest chaatgrtobn as an
information retrieval process, during which a number of known and unknown
uncertainties reduce the accuracy significantly from the theakexpectation. The
image analyst is also a possible source of errors. This natloreg with survey

methodology.

Although training data error is the only widely explored type obrem the
analysis of satellite imagery, there are in fact manyenpmssible causes of errors.
We understand very little about why the accuracy of forestgehaetection is still
only around ~85% even after integrating modern machine learninigodsetand
human interpretation. We do not have a theoretical explanation fatifteeence
between automated algorithms and human interpretation either. Welalsot
understand well why accuracy varies a lot from one image to anotNeither do we
understand why the forest change class, among all classes, is usuddgsheith the
lowest accuracy. However, these observations do shed a light ohidtien

uncertainties: its magnitude and variability.

Landgrebe sensed some of these problems 30 years ago, but he c@iNe @ot
thorough theoretical explanation. However, his intuition, that the eersensed
imagery is not ‘under design or control’, is a good start. Carasd geographical

designs and controls into the machine learning theories?

Here is the plan for our hunt for the uncertainties. Differenthimaclearning

methods were designed with different philosophies, often in plartdledifferent
10



situations in the real world. Hence they may have different dépebito tackle
different uncertainties. They may also have redundancy or evea designs that
can backfire for remote sensing applications, because theyraretg designed for
image classification at all. If we dissect machine legyralgorithms and examine
their components, we might be able to identify those that areneaty effective in
handling uncertainties in satellite monitoring. If we can intiegthe more useful
components, we may be able to create a more successful ajdgoiithm out of

parent algorithms, without reinventing the wheels again.

In chapter two, we will thoroughly examine the most popular and ipnogn
machine learning algorithms. We will try to figure out which aspect(s) of
uncertainties every algorithm were designed to overcome. Themapter three we
will conduct a test of these algorithms for different typearafertainties. If there is
an algorithm that excels in all aspects, then we do not need toumreny new
algorithm. But if no algorithm can tackle all aspects of uncenrs, our further
chapters will be on the combining of building blocks from differenthimeclearning
algorithms until we come to a universal solution. As we wil ipethe chapters, the
situation is far more complicated than we anticipated. Weakygtidentified a
previously unreported error source in remote sensing. This erroreswilicbe
explained and resolved in chapter four. A side effect of this ewarce is our
conceptual definition of classes. It will be explained and deit i chapter five.

Then we will make a summary of the findings in chapter six.
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2. Candidate Classifiers for Forest Change Detection

2.1. Introduction

Various machine learning algorithms have been applied to retfi@est change
information by the remote sensing community. These algoritathsfo two basic

categories: unsupervised learning and supervised learning.

It has been found that unsupervised learning such as ISODATAraolgstdten
produces lower accuracy than combining ISODATA and maximum likelihood
classification, which is a supervised method (Justice and Townshend 1982).
Moreover, they found that clustering takes more time in the compatidgnanual
labeling processes. The computing power has been dramaticgdhpvied since
then, but the time needed for manual labeling of unsupervised clasigensot and
possibly will not be substantially improved. Automating the labelifg o
unsupervised clusters had been shown to be impractical (Song et al. Z¥®ral
other studies also favors supervised over unsupervised learning (Roglar2@@2;
Keuchel et al. 2003). Supervised algorithms are even reported to hgver hi
accuracies than visual interpretation on SPOT imagery (MartirHamearth 1989).

Thus our current change detection study will focus on supervised change detection.

It is the goal of this chapter to examine contemporary supenlesating
algorithms, and find out whether or not their designs can tackleseand
uncertainties in the process of retrieving forest changenmdoon from Landsat

imagery. We will outline the theoretical backgrounds and the umsiiaegths of the
12



designs. Five algorithm candidates were chosen representiegediffschools of
machine learning philosophy. These are the Maximum Likelihood ClagsffieC),
Decision Tree (DT), Fuzzy ARTMAP Neural Network (ARTMARupport Vector
Machine (SVM), and Kernel Perceptron (KP) algorithms. The redsoriheir
selection will be detailed in section 2.2. Another algorithm, thé@glanizing

Maps Neural net (SOM) will be briefly used in only one experiment.

2.2. Major Families of Machine Learning Algorithms Used in

Change Detection

Supervised change detection algorithms used in the remote sensingicityn
were first developed in the machine learning community since the {8&0sv 1957,
Rosenblatt 1958), approximately the same time of Sputnik and Explor&atellite
remote sensing has since consistently benefited from the develbpmeomputers

and machine learning.

These classifiers have different theoretical origins and makeous
mathematical assumptions, which may or may not fit remote seagiplications.
Some algorithms were developed from probability theories sucheaBdyes rule.
Some were constructed from pure guesses on how the human braiorfsintr
example, the Perceptron neural network model. Others were basedbiwarya
criteria of how an ‘optimal’ classification should be executed. example, the DT
algorithm was developed from the entropy minimization criterionlevtie SVM
algorithm was developed from the class distance maximization criterion

13



It is impractical for one to assess each and every algorithra fiven remote
sensing application. However, the hundreds of supervised change detection
algorithms now available can be categorized into a handful of grodj® approach
of this study is to limit our study to a handful of representalgerithms with good
prospects. In figure 2.1 we propose a typology of modern mackemming
algorithms for effective cross-comparison. Each branch of thes’ ‘represents a

school of thought from the machine-learning society.

The Bayes classifiers, the neural networks, the Entropy-miatioiz classifiers,
and the max-margin classifiers are four prominent schools of nedearning
theories. In addition, the method of boosting is a meta-algorithm wieetms it can

be applied onto one or several classifiers. It is also known as Ensemble Learning

With the same given set of raw data, these four prominent schbatachine
learning theories each extracts information in its own uniq®nale. They
analyze the data set in very fundamentally different ways trrdate the class label
of each data point. We could see how different they reallytraiceigh a simple

walkthrough of the core philosophies.

The Bayes’ classifiers are rooted in the Bayes rule of prhiediand give a
Bayes Optimakolution in which the average error is lowest. Neural networks, on
the other hand, are based on the thought that there are one or mairengeof
algebraic equations which stand between the raw data and thdatlelss Those
iterations of algebraic equations were named ‘hidden layersie making of those

algebraic equations leads to different subtypes of neural networkshe
14



entropy-minimization classifiers are formed on the assumptioin hibirogeneous
data should be sub-divided into purer classes. The iteration of thidivsding

process becomes the classifier itself. And for the max-maigssifiers, they are
based on the philosophy that different classes are best sdpatag there is a big

enough buffer zone between each other.

Each of the above philosophies is quite convincing but their choice ieihyer
subjective. They are methods designed by individual researchensi¢ostand the
data and observations in scientific and engineering fields. Treeyc solely based
on axioms of mathematics or rules of physics. They are veguenand thus might
be more or less suitable in different research fields. It is worth mergitmat many
machine learning ideas were developed not by computer scientisis example, the
Bayes rule was first formulated by Pierre-Simon Laplacee than a century before
the age of computers. A landmark paper (Perrone and Cooper 1993)gcthatin
field of Ensemble learning involved a Nobel Laureate in Phydiesn Cooper,
whose major contributions lie in the distant field of superconductivifapnik, who
invented SVM, has been heavily influenced by the Russian traditioonpfarametric
probability theory carried on by Andrei Kolmogorov. Therefore, whenuwravel
contemporary machine learning, it is necessary to understand ntdtgusames and

equations, but also the rationales and philosophies at their cores.

Dozens of algorithms have been developed in each family of maaanang
theories.  From this tree typology we choose one typical digorirom each

branch. Our choices (Figure 2.1) are: the maximum likelihood fiteenBayes’
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classifier family as a classic benchmark, the fuzzy ARRV&gorithm from the
neural network family, the soft-boundary SVM and the Kernel Pemeatigorithm
from the max-margin classifier family, and the decision t&essifier from the
entropy minimization family. This is the first time that tip@werful Kernel
Perceptron algorithmic approach has been applied in remote sehsiigss In
recent years, the max-margin philosophy has been used to modifyamereore
traditional methods, such as principal component analysis and muleveagaession.
Kernel Perceptron combined the designs of neural network, kernel maahihe,
ensemble learning. For these reasons, in this study we usedgovithans in this

machine learning family. The light blue boxes show the algorithms we will us

A Family Typology of Machine
Learning Theories

Boosting

v
Entropy

Bayes classifiers
Neural networks Max-Margin Minimization

v Classifier

Maximum
o Feec forward -only Recurrent
Likelihood
Support

v

Back-propag | ARTMAP
ation

Decision Tree
Vector

Perceptron

Fuzzy ARTMAP
Soft-boundary SVM

> Kernel <

Figure 2.1 A family tree of supervised classifiers.

In this chapter, we will discuss in detail the background and thealrstrengths

of these candidate algorithms. Then in the following chapter, we wilkfigut their
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possible advantages and disadvantages in the face of practical uncedaihiesors,
in change detection applications using remote sensing. Howeverstitom pointed
out, that these possible advantages and disadvantages are formed thvitimatiaal
reasoning and past literature in the field of remote sensing wilV use another

chapter to assess these claims.

2.3. Maximum Likelihood Classification (MLC)

The Maximum Likelihood Classifier was developed gradually (Maabis
1936; Chow 1957; Chow 1962; Haralick 1969; Swain and Davis 1978; Strahler 1980).
The equations in this sub-section are cited from Swain and &9¥%3). MLC
classifies a pattern X in n-feature imagery into classsihg the Bayes Optimal

criteria:
p(X @) p(w) = p(X |@) p(CUj) For allj=1, 2, ..., n (Equation 2.1)

Where ?i s the i-th class andp(a)i) is the prior probability of the i-th class.

The probability function p(X |wi) has to be estimated from the data set. In
remote sensing applications, two hidden assumptions were made. $he fir
assumption is Bayes optimal, which means to minimize the averageover the

entire set of classification. And the second assumption is Gaudmstribution in

each class.

From Bayes optimal, the total error is defined as a loss function:

Ly (i) = Zl(i | 1) p(@; | X) (Equation 2.2)
=
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Where A1) is called the loss function, defined as the loss or cost caused by

mistakenly classifying a data point into class i but actually belongads fl

The Bayes Optimal rule defines the relationship between joint piiilesband

conditional probabilities:

P(X,@;) = p(X [®;) p(w;) = p(o; | X) p(X) (Equation 2.3)

Combining forms 2.2 and 2.3, we have the average error formulated as:

Ly (1) = ii(i | 1) p(X | ;) p(w;)/ p(X) (Equation 2.4)

The remote sensing community tends to simplify the loss function into 0 and 1.:

A(]))=0i=]
(. | J) o .J (Equation 2.5)
A J)=2i# ]

Assuming that the data set follows multivariate normal distabutie. Gaussian

distribution N (“«, 1),

: 1 1 -
Ly (i) =-log, p(®) +_|0ge‘zk‘ +=(X =) 2 (X = 14) _
2 2 (Equation 2.6)
Where:

Ly (1) is the loss function to be minimized, according to the Bayes aptim

strategy.

n: number of features, or bands in the imagery

X: image data of n features

Hx: mean vector of class k
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zk: Variance-covariance matrix of class k

|z"| : Determinant of thgk matrix

The remote sensing community also tends to simplify the prior probabilitie)s, P(X

of all classes to be equal. Laplace, who first formulated tlyeBaule, also favors
using equal prior probabilities. The pioneers of MLC also warnedprair
probability. Chow’s initial form of MLC does not include prior probajil Swain
and Davis warned that the use of prior probability will berdisoating against the
naturally rare classes (Swain and Davis 1978). Laplace himsedfy wary about
using prior probability. He even coined a teqminciple of insufficient reasorand

chose to use equal prior probabilities for all classes.

Also it was proposed that, after the first classification, thegmtage of each
class can be used as prior probabilities (Strahler 1980). Buapghi®ach does not
bring significant accuracy improvements. Strahler also explarsibjective use of
prior probability. The researcher’s own belief can be usediasgrobability. He
admitted in the same paper that this does not generate verytacasalts. The
controversy in the use of objective and subjective prior probabilitynmote sensing
reflects the controversy of this subject even in the field of SageStatistics itself.

As put by the influential statistician William Feller ongeal114 of his book:

“Unfortunately, Bayes’ rule has been somewhat discredited by metaphysical

applications...... In routine practice this kind of argument can be dangér@igler
1957) This echoes with Laplace’s concerns. But in the remoténgewsrld,

researchers have been much less wary than these statisticians.
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Researchers also integrated neighborhood information into prior prdieakaind
called them contextual classifiers (Settle 1987), which inifatlie same idea of the
MLC inventor in the 1960s (Chow 1962). Recently researchers hawuetrye® to
iteratively adjust the prior probabilities towards the outcome resultboand slightly

better results in some cases (Hagner and Reese 2007).

The Maximum Likelihood classifier had been applied in remote isgretudies
since the 1970s. It enabled researchers to explore early pedtral satellite data,
which is often noisy and with little calibration, such as AVHB&a (Parikh 1977),
MSS data (Fraser et al. 1977), and even the very early APOLb@sSon data
(Anuta and MacDonald 1971-1973). The Gaussian assumption of MLC turns out
often to be quite well suited for land cover mapping and change detegiihin

relatively small to medium areas.

MLC has yielded quite some good results in single-scene studieanafat,
SPOT, ASTER imagery and even hyperspectral imagery. lregpasted to achieve
even better results than back-propagating neural networks on Landsand SAR
data (Michelson et al. 2000). It was concluded to work well on yiperkpectral
AVIRIS data within a small study site (Hoffbeck and Landgrel996). MLC
achieved results comparable to Decision Tree classification ndsha ETM+ data

and performed better than Decision Tree on hyperspectral data (Pal and 208@)e

On the other hand, it is relatively less successful in multipése studies and
studies on large-swath imagery such as the AVHRR data (FnedBeodley 1997;

Gopal et al. 1999). Some studies suggest that the Gaussian assusnpétsuited
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for small areas but not for large areas (Small 2004). Howsueh conclusions
have not been strongly supported theoretically. It remains somethanmystery as
to why such an ‘outdated’ classifier has been reported in sty stadies to have

comparable performances to its modern competitors.

On yet another hand, it had been shown through simulated data gae&HL068)
and local experiments (Lillesand and Kiefer 1979) that the solvingpoivMLC
will decrease with the amount of data dimensions. That echaleshei statistical
term of “The Curse of Dimensionality” (Bellman 1961). However the exypari he

designed used simulated datasets and thus has limited persuasion power.

MLC is still widely used for its simplicity and excellergsults at the local scale.
It also has an desirable property, which is also shared by sonefathiées of
algorithms to be described in this chapter, that pixel level pratyadstimates can be
output and further modeled (Strahler 1980). Thus it is frequently ustx d¢o.1

benchmark algorithm in many research fields including remote sensing.

2.4. Decision Tree Classification (DT)

The Decision Tree (Quinlan 1986) is a classifier in the form binary tree

structure where each node is either a leaf node or a decision node.

The central focus of the decision tree growing algorithm iec8eg which
attribute to test at each node in the tree. For the selectithre déatures with the
most heterogeneous class distribution the algorithm uses the carfc&pitropy.

The entropy of a dataset S is calculated as:
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Entropy(S) = p; In(p,)

= (Equation 2.7)
Where pi is the proportion of S belonging to class i.

The decision tree splits at every decision node with the critérrmaximizing

Gain with an attribute A:

Gain(S, A) = Entropy(S) - Y| %Entropxs,) .
vevaluegA) (Equation 2.8)

where SV refers to the data with value v.

When every attribute has been included in the tree or the trag@ngples
associated with every leaf node all have the same targétutdtvalue (i.e., their
entropy is zero), the tree is complete. However, a completeidreoften very
complicated and unwanted because of elongated computing time. tiftanl tree
is ‘pruned’ to accelerate the classification. It has beeniegrihat a heavily pruned
decision tree does not suffer from significant loss of accumacforest change

detection (Song et al. 2005).

The decision tree, since its introduction into remote sensing, hadregeently
used with the help of boosting. Boosting, as depicted in our typologyachine
learning diagram, is a meta-algorithm that improves upon otherithlgps.  There
are several major types of boosting. The first type of boostingedrom the idea to
combine the results of several different classifiers, includiag of decision tree,
through voting or consensus theory (Benediktsson and Swain 1992; Perrone and

Cooper 1993). Due to the complexity of each algorithm, the resgibnsetimes
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unreliable (Foody et al. 2007).

Another form of ensemble classification is based on a singleihgaalgorithm
while changing the training set. Bagging (Breiman 1996) and Adalderestnd and
Schapire 1996) are the two most popular approaches today. It has been
demonstrated that decision tree enhanced with bagging gets loeiieacy when
applied on both AVHRR and Landsat TM data (DeFries and Chan 2000). Adaboost

will be discussed in detail in section 2.7.1

The decision tree method has enjoyed popularity in the remote sensing
community around year 2000 because people like a classifier with®ubdussian
assumption. Researchers hoped it can be used where this assuspfioiated
(Friedl and Brodley 1997; Gopal et al. 1999). It is also valued by bgvgphers
because Decision Trees explicitly identify what are the dfigfriminating features
are and where the class boundaries are located (Hansen et al. 200Qf also been
widely applied in AVHRR and MODIS data analyses. In summaisgarehers

attributed its performance to its zero assumption on data distributions.

However, the accuracy of decision tree has never significartieeded MLC in
local scale studies. This interesting phenomenon is, however,oviéelooked. It
has been reported that decision tree cannot perform as wedbd@sum likelihood or
neural network classifications on hyperspectral data (Pal aati@vi 2003). This
sounds like the “Curse of Dimensionality” again. Therefore, decisma might
probably have less value in the stacked change detection involhote) aft14 bands

than in single date classification with 7 bands of Landsat's TM and ETM.
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2.5. Fuzzy ARTMAP Neural Network Classification (ARTMAP

NN)

Neural network algorithms enjoyed great popularity from the late 1980s to around
2000. Many studies reported high accuracy given enough trainiagaddat fine
tuning. Most of the studies, such as those described as ‘a newatkngtodel of Z
layers with Z-2 hidden layers’, adopted the feed-forward bacgggation models
(Lippman 1987). This family of models is known to be capable of high amcura
given enough training data and especially easy to use for reemseng applications
(Foody et al. 1995). They are also known to be prone to overfitting (Gopal
Woodcock  1996). Our study will not cover the traditional
feedforward-backpropagation model, because it has been compared tondaeisi
and support vector machine in the past and found to be inferior (Huang 1%98)
will instead look for newer implementations in the neural network family, wiiotvs

some promises in overcoming these deficiencies.

2.5.1. The ART network

Fuzzy ARTMAP is a type of supervised neural network models basetieon t
Adaptive Resonance Theory (ART) (Grossberg 1976; Grossberg 1987). It was
developed from the simplest ART network, which is a clasdifiemulti-dimensional
vector datasets. Each training class consists of many ripstief vectors. The
input data vector is classified into a class which it mostetjoesembles depending

on the stored training pattern. Once a training pattern is faumsl,modified to
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resemble the input data. If the input data does not match aey gtattern within a
certain tolerance range, then the input data is absorbed int@aitiiagrdata as a new
pattern. Resemblance between the training data and the inpdbrdelassification

is measured through the following equation:

xR

Rl
(Equation 2.9)

In this form, R(x,P is the resemblance coefficient; x is the input data vectas; Pi

the ith pattern stored in the training data; andis a bitwise AND operator.

If the resemblance coefficient is larger than a thresholdeyahen the training

pattern Pi is updated through a linear equation:
Pi=(@1-pg)Pi+S(PinX) (Equation 2.10)

In this form,'B is the updating speed coefficient between 0 and 1.

Consequently, no stored pattern is ever modified unlessaithas the input
vector within a certain tolerance. New classes will be formkeen the input data

does not match any of the stored patterns.

The ART network is said to be uniquely designed to havk ipdasticity’ and
‘stability’ (Carpenter 1999). ‘Plasticity’ comes from thesyn that the training data
keeps evolving according to the classification data. ‘Stabiktyhaintained by a
chosen tolerance value. The ART network distinguishes ifemifi most other
contemporary pattern classifiers by integrating ‘plasticity’ itdkadesign. However,

how these theoretical designs work in reality is not very tested.
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2.5.2. The Fuzzy ARTMAP algorithm

ARTMAP was developed by Grossberg and Carpenter gotep et al. 1992;
Carpenter 1999) and was introduced into the land covepingygommunity rapidly
(Carpenter 1999). The original ARTMAP performs binalgssification while the

fuzzy ARTMAP classifies on multi-valued data.

The fuzzy ARTMAP algorithm, along with the decision tree atgm, were the
only two candidates competing for the MODIS land coversdiaation algorithm
(MLCCA). Fuzzy ARTMAP was not chosen for MLCCA besa the algorithm was
“in the early developing stage and could not handle missitybints” (Friedl 2002).
However, this is not very convincing. Handling missing datatp does not seem
to be a major programming obstacle. What Friedl founthat time might be an

artifact that seemed to be caused by missing data handlingreality isn't.

Still, researchers in the land cover community had higlreasgons for fuzzy
ARTMAP because it does not assume any statistical distributitimeirdataset and

might be suitable for global land cover mapping.

The ARTMAP classifier is built upon modules called ART andRMnetworks.
ART1 is the simplest variety of ART networks, accepting orjnary
inputs.(Carpenter et al. 1992) ART2 extends network dlaps to support
continuous inputs. ARTMAP combines two slightly modified AR®r ART-2 units
into a supervised learning structure where the first unit thleesnput data and the

second unit takes the correct output data. The matching afutputs from these
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two ART modules is done through a MAP module. Then tg#ance parameter in
the first unit will be adjusted for the minimum possible amountrdeioto make the

correct classification.

2.6. Support Vector Machine Classification (SVM)

2.6.1. The Max-Margin Idea

The Support Vector Machine has been considered asfahe amost promising
mathematical solver for statistical learning in general. It wasdaoted into the
field of remote sensing a decade ago and has demonsitatpdtentials (Huang

1999). Understanding of its mechanism in geographicalitenot complete yet.

The Support Vector Machine algorithm came from a long. waVe will need
several subsections to explain its origins and developmentdy When we are
thoroughly clear about these, can we possibly predict 88WM might respond to

geographical uncertainties and errors.

A straightforward rationale was suggested for linear biokgsification (Vapnik
and Chervonenkis 1974; Vapnik 1982). The maximum distietween the data of
two classes is determined and called the ‘margin’. Theepilarthe center of the
margin is used as the classifier. This is known as themaagin classifier, or the
optimal-margin classifier. For example, the two outer plgitds and H2) in the
following figure are the maximum margins while the optimal mgfae in the center

separates the two classes.

27



Figure 2.2 The maximizing margin philosophy of SVM (saas Figure 5.2 in Vapnik
1999)

For a 2-D linear feature space of D: (xi, yi), the hyfmre set H1 and H2 is
formulated with slope w and intersection b. The equation®dtios 2.6 are all

adopted from Cortes and Vapnik (1995)

X -W+b=+1
X -w+b=-1 (Equation 2.11)

The maximizing margin solution is derived by minimizing*W while
constrained by:

X -W+b>+1 for y =+1

X-wt+b<-1  for y =-1 (Equation 2.12)

However, Vapnik’s idea in the 1970s was not a practicabiflasyet. It was

more like a philosophy.
2.6.2. From Max-Margin idea to SVM Implementation

The max-margin classification idea has been developed iptawarful pattern
classifier with several mathematical techniques (Boser et &)199
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First, the max-margin training of N-dimensional data x withdhtaset size of p

is expressed as:

D(x) > O,then xe A

N
otherwisethen xe B D(X) =D W (X)+b
i=1

, Where (Equation 2.13)

D(x) is the decision function of the classifier’ and P are the adjustable

parameters for the classifier to tune?’ () are pre-defined functions of the data x

most suitable for the dataset model.

The decision function can also be written in pure vector fmsm

DX¥)=w-0(x)+b  \here w and ?® are N-dimensional vectors.

(Equation 2.14)

Assuming that a full separation between class A and B earsishen the margin

M between the classes can be expressed as:

D
M < ykW(‘Xk) ,where k=1212,...,p (Equation 2.15)

Since we wish to maximize the margin size, we would want themzation of

the nornJJW”. The 2-class max-margin classifier of N-dimensional détaize p

thus becomes:

. 2
min _
w ”W” , under the condition thabf'sD(Xk)Zlk_lZ""’p (Equation 2.16)
This is the optimization goal for the solution of max-margilassifier.
Calculating directly with high-dimensional data is exceedinglypensive or

practically impossible. Only after they incorporated two ingogr mathematical
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techniques was the max-margin classifier named ‘SuppotoMdtachine’ (Boser et

al. 1992).

The first technique is to use symmetric kernels. Instéatirectly calculating
the inner product in Hilbert space, the trick is to use theekenapping. Mercer’s
condition (Vapnik 1998) states that a symmetric kernel idid waner product if and
only if its Gram matrix is always positive semi-definite. Thechnique will
simulate mapping the data into a very high dimensional feapaee. A symmetric
kernel K can be expressed as:

K(X, XI) = Z% (Xo, (X)

(Equation 2.17)

N p
D(x) = Zwi¢i (X)+b= ZakK(Xk’X) +b
With  this new knowledge, i=1 k=1

(Equation 2.18)
The second new technique is solving the optimization of magimay means

of a Langrangian. The prime problem is converted taltiz problem:

1, 2 &
L ’b’ = — — D _1
(w,b, @) ZHWH ;ak[yk (%) —1]  subject to % 20k=12..p

(Equation 2.19)

The optimization problem becomes searching for a saddig¢ pb L(w,b,a)
that minimizes L with respect to w and maximizes L with resfee ¢. This can be

solved via quadratic programming. In short, the solutioB-ofass N-dimensional

max-margin classification using kernels was found in 19%2&¢éBet al. 1992). This
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is known as the 2-class prototype of support vector mach SVM leads to a family

of pattern recognition methods based on kernels with vapgnigrmance.

2.6.3. The Risk Minimization ldeas behind SVM

The development of SVM has been centered on the minimmzaftiexpected

algorithm risks, which is arguably an extension of the Bayeschool.

In the 1970s, Vapnik and Chervonenkis came up with e ¢dlled the Empirical
Risk Minimization (ERM) criterion (Vapnik and Chervonenkis 749  They
mentioned the heavy influence by the idea of algorithmic cottpl@olmogorov
1965) at the time. Basically the Russian statisticians at that tiene trying to
define the complexity of algorithms, and thus by proxy ¢éing the complexity of

real-world data which the algorithms tackle.

The ERM idea suggests that, all statistical learning methods aimmathizing
the risk function, which is defined as the difference betwaapirical observation
and algorithm estimation. In regression, ERM is the legaares method; in
statistical inferencing it is the Kolmogorov-Smirnov test; whilelassification, it is
the maximum likelihood classifier as equation 2.1 (Vapnik @hérvonenkis 1974;

Vapnik 1982; Vapnik 1999).

In the 1970s and 1980s, Vapnik went on to define thenskedsk minimization
criterion which he named as the Structural Risk MinimizationMBR What it
means is that the complexity of the algorithm should not batgrehan the

complexity of the real-world problem to be solved. One itamediately see the
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Russian nonparametric statistics tradition from Kolmogorov. nMapelieves that
the cause of overfitting in statistical learning is that the contglex the algorithm

was uncontrolled. For example, a neural network care tsbitrary amount of
hidden layers. The more complex an algorithm is, the fitotecan achieve with a
given set of observation data. However, that would onlkemi& worse when
generalized to the data population. Therefore, an ideal st&tig@rning algorithm

should be flexible to adjust its own complexity to match thahefobservation data

(Vapnik 1982; Vapnik 1999).

The complexity of each SVM model is determined by the &iracand
parameters of the kernel. This is why the choice of kem@rad the tuning of kernel
parameter are so important. They directly determine wheternot the

classification has overfitting.

In the 1980s, Vapnik went on to define the third risk mininzratule which he
named as the Vicinity Risk Minimization (VRM). It assumes tismoothness”
conditions. The probability function of the data distribution dhe algorithm
function should both be smooth around observed data valdéss VRM rule gives
SVM a new design: the error margins. Vapnik presentedcases: the soft-vicinity
and hard-vicinity SVMs (Vapnik 1999). They are morenomonly referred to as

soft-margin and hard-margin SVMs (Cortes and Vapniks).99

2.6.4. From Hard-Margin SVM to Soft-Margin SVM

SVM was further developed to cope with real-world situatiorgere class
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separation can be difficult. It has been pointed out thamtrgin between the two
classes can be arbitrarily small if the training data canneeparated by hyperplanes
in the Hilbert space (Cortes and Vapnik 1995). Therefoeeclassification can be
useless under that situation. To counter this problem, theyduded the ‘soft
margin’ concept. The soft margin hyperplanes allow a icegmount of training
data to lie between the hyperplanes as outliers. A vectstagk variables’ Sk is
introduced to enable this concept of soft margin hyperplan&he direct form of the

optimization problem now becomes:

p
min(1 <wew>+CF(> &)
w2 =} , under  the conditon  that

YB()21=-8.k=12...p  Equation 2.20)

C is a sufficiently large constant, often differémtdifferent variations of SVM,

used as a penalty coefficient. It acts similadythe loss function in MLC. Sk

should be between the value of 0 and 1. F(n) mamotonic convex function,

chosen from a many options at the discretion algoridevelopers.

It has been proven that the 2-class soft-margin %Nl be solved using kernels
in the same way as in the 2-class hard-margin S\@dsdier (Cortes and Vapnik

1995).
2.6.5. From 2-class SVM to Multi-class SVM

SVM was developed from the classic case of 2-ckegmration. Researchers

have tried different approaches to solve the nuldtss separation case. For a dataset
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with N classes, it was proposed to execute N(N-paR-wise SVM classifiers and

use a voting mechanism to determine the final di@ssl of each data point (Hastie
1996). This algorithm is known as the ‘one-agaorst’ approach. It also has been
proposed to execute N SVM classifiers of each alasthe rest of the classes (Bottou

1994). This is known as the ‘one-against-all’ agyoh.

Lately, the ‘one-against-one’ approach, the ‘onahagj-all’ approach, and a
multi-class simultaneous optimization approach veer@pared sided by side. Their
results showed that the ‘one-against-one’ and ayenst-all’ approaches achieve the
best accuracies, while the ‘one-against-one’ is #ie fastest approach (Hsu 2002).
In light of this, current multi-class SVM implematibns usually adopt the

‘one-against-one’ voting algorithm.

This voting mechanism leads to two important conseqges. The first is that
the probability generated by contemporary SVM atgors is the summary of the
votes. Thus, arguably, it cannot be viewed agssitatl probability. The second
consequence is that, if the SVM algorithm is impdewed by the ‘one-against-one’

approach, the computation time will increase rapidth the number of classes.

2.6.6. Choice of Kernel and Kernel Parameters

The use of symmetric kernels is a key breakthranghe development of SVM.
The structure and parameters of the kernels aat tatavoid overfitting. Several
kernels have been proposed for use with real-wdakdsets. The most commonly
used kernels are the RBF (Radial Basis Functiomektethe polynomial kernel and
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the Sigmoid kernel.

Polynomial Kernel: K(x,x;) = (ax'x; +r)°

RBF Kermel: K(x,x,)=e "™l

1777

Sigmoid Kernel: K(x;, X;) :tanh@xiTxj +r)
(Equation 2.21)

The Sigmoid kernel has been proved to be lessafitithan the RBF kernel (Lin
and Lin 2003). The classification accuracy of poiyial kernel varied a lot with
regard to the polynomial order(Huang et al. 20020nly when high-order
polynomial forms are used can the polynomial keawntlieve similar accuracy as the
RBF kernel. The use of high-order polynomial ké&sngubstantially increases the
time needed for training. A similar study demoat&d that the RBF kernel has
become the most favored kernel for SVM in practiekiang et al. 2002). An
interesting fact is that the RBF kernel is actuallfigh-dimensional Gaussian kernel.
There has been reported (Small 2004) that the @eauassumption of the maximum
likelihood classification negatively affects MLC rffmmance when applied to large
areas. It would be also necessary to assess wthth&aussian kernel of SVM is
also susceptible to this problem. Therefore inrtbgt chapter we will take a look

into this case.

The RBF kernel is controlled by two variables: @ah. The choice of their
values strongly affects the accuracy of SVM outputs practice, a procedure called
K-fold cross validation is used to identify the bsst of parameters (Stone 1974; Lin
and Lin 2003). In each permutation run, a randdkh df the total training data is

used to train the SVM model using a particular covation of parameters. The rest
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of the training data are used for accuracy assegsmeThe parameter set of the
permutation run with highest accuracy will be ugadthe complete training dataset.
In practice, it has been showed that SVM clasdificaaccuracies do not fluctuate
significantly when the size of the training datasétrinks (Song et al. 2005).
Therefore, the K-fold cross validation process @ast use a fraction of the total
training data and still find the optimal parametet. This greatly shortens the time
needed for cross validation. The whole cross wa#heth process, however, is
completely missing or unspecified in the currentegation of ENVI software, which

is the first major remote sensing toolbox to incogte the SVM algorithm.

2.7. Kernel Perceptron (KP): Introducing Neural Network into

SVM

Kernel Perceptron is a recent development of SVM @nd Li 2005; Lin and Li
2005). Itis developed from three theories: a bonggheory called infinite ensemble
learning, the classical neural network model of Beeceptron, and the kernel design
of the support vector machine. It has been sugddsiat KP is should outperform
SVM (Lin and Li 2005). Therefore in our study wecttled to include KP as a more

recent integration of both SVM and Neural Nets.

2.7.1. Adaptive boosting: Infinite Ensemble Learning

Boosting is a meta-algorithm, which means it isdusa top of other learning
algorithms to improve their performance. It hasrbdescribed as “one of the most

important recent developments in classification hodoblogy” (Friedman 2000).
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AdaBoost (Freund and Schapire 1996) refers to adapioosting. It is the most
simple, popular, and successful boosting meta-ndetfmr machine learning.

AdaBoost is adaptive in the sense that subsequassifters built are tweaked in
favor of those instances misclassified by previdassifiers. AdaBoost is sensitive
to noisy data and outliers. Otherwise, it is lessceptible to the overfitting problem
than most learning algorithms. This has been detrated in a remote sensing
study (Chan and Paelinckx 2008). For a given &rtep and a hypothesis set H,

w, >0

AdaBoost iteratively selects T hypothesgise H and weights to construct

an ensemble classifier. The equations in sectiérai all adopted from Lin and Li

(2005).

g(x) =sign(d. wh ()
t=1 (Equation 2.22)

When T goes to infinity, AdaBoost approximatesramite ensemble classifier:

9(x) = sign} ", wh (x)) (Equation 2.23)

2.7.2. Building the Ensemble Kernels for SVM

It has been pointed out that AdaBoost and SVM heath the inner product
(Freund and Schapire 1999). This similarity wdsrla@emonstrated in an effort to
build special kernels for the SVM algorithm suchttthe infinite ensemble algorithm
gets embedded in the kernels (Lin and Li 2005). dddhis, a kernel that embodies
all the hypotheses in H needs to be designed. ,Tihenclassifier obtained from

SVM with this kernel is a linear combination of #@ hypotheses and thus an
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ensemble classifier. In addition, the structur&@M makes it possible for the first
time to construct ensemble classifiers with in@nitypotheses intended against

overfitting (Lin and Li 2005).

Lin’s ensemble kernel thus designed has the foligvgeneral form:

Ky, (%,X) = [ 4, (@), (@)da
c (Equation 2.24)

In this kernel form, H is the set of hypothegleﬁ{ha :“EC}. Cis a
measurement space. The functigm =r(ah, (¥ maps the data x into Hilbert

space. The variabl& is the parameter of an arbitrary hypotheQizs(X). This

general form of an ensemble kernel is thus an ategf inner products. An earlier
technique (Scholkopf 2002) was used to construchéte from an integral inner

product.

Lin’s kernel is used in the soft-margin SVM. Th¥N optimization problem

mvjn(% <Wew> +CF(Zp:§k )

was k=1 under the condition that

YD(%) 21-8:k =12, >0 Now it becomes:

p
minlfC W (a)dar + CF(D_&,))
2 ket under the constraint that

Y, (jcw(oz)r(oz)hw(xi )da+b)>1-¢&:k=12,...,p;& >0 (Equation 2.25)

This SVM model based on the ensemble filter willvadid if and only if the

hypothesis set H is negation complete. Thaths H if and only if (-hyeH

Negation completeness is usually a mild assumtioa reasonable H.
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Lin’s ensemble SVM model will have the solutionsddier g(x):

9(x) = sigr’(L wW(e)r (a)h, (X)de +Db) (Equation 2.26)

With Lagrange multiplersﬂ1 , the final form of Lin’s ensemble SVM classifier i

9(x) = sign>_ y, 4Ky, (%, X) +b)
i=1 (Equation 2.27)

2.7.3. Kernel Perceptron

The Kernel Perceptron is an ensemble kernel mdihdton the Perceptron idea
(Rosenblatt 1958). He designed the Perceptronagathesis on how the human
brain perceives the information from the outsiderldjoand hence the name
‘Perceptron’. Later it was developed into a neuratwork learning method by
assuming the neurons work as Perceptrons. TheReso classifier can simply be

expressed as:

Po.o (X) = Sign(d e x - ) (Equation 2.28)

In this equation, x is the input data of multi dims®ns, ¢ is an array of

coefficients, <®> s the inner product of vectors, arfdl is the threshold value.

Lin embedded infinite amount of Perceptrons imoeasemble classifier (Lin
and Li 2005; Lin and Li 2005), and used a SVM to e optimal solution, which
could not be achieved before the advent of SVM. e Tésulting algorithm, named
the Kernel Perceptron, is equivalent to a neuralvokk with one hidden layer,
infinitely many hidden neurons, and a hard-thredhattivation functions. They

proved that mathematically the Kernel Perceptrojuss the regular form of SVM
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with a special type of kernel.

K, (%, X) = Ap—|x—x]| where AP is a constant. (Equation 2.29)

In other words, Kernel Perceptron is more like & e of SVM with a neural
network kernel. In this we see the integratios®feral of the families of classifiers

described in figure 2.1.

Using several standard machine learning test ds¢gbahe performance of the
Kernel Perceptron was compared to that of SVM \ilidn RBF kernel. The result
shows that KP outperforms SVM-RBF when the sour@ga dcontains 10%
mislabeling error (Lin and Li 2005). This encouragresult suggests that the KP
algorithm might also outperform SVM-RBF in real Wwbdatasets. Therefore the

KP algorithm is also studied in our experiment.

2.8. A Brief Discussion on Self-Organizing Maps NeuraNetwork

(SOM)

Kohonen’s Self-Organizing Map (SOM) neural netwisrla unique type of neural
nets because it takes into consideration the detdibundary of classes (Kohonen
1990). We will mention it briefly here, and usantonly one experiment (section
3.7) in chapter three. It has a special desighithaf interest to us. This method

will not be covered in the other experiments aredtd@fore we will not elaborate on it.

SOM consists of three steps. The first step ifedatoarse tuning, which is
basically an unsupervised clustering based on &emti distance. This step

establishes a fundamental regional organizatiotogalogy) of neuron weights that
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represent the clusters and sub-clusters in thet idgta. The second step is called
labeling. This determines the classes to whichnéwerons belong. The third step
is called the fine tuning, which uses the trainilaga to carve out the detailed borders
among neurons, using an algorithm called Learniegg® Quantization (LVQ). The

refined neurons in the output layer are now comsitiéully trained, and can then be

used to conduct classification.

The unique design caveat of SOM is that it incoapes the underlying clusters of
the input training data. This means that SOM dhdnd very sensitive to the class

proportions in the training set.

2.9. Cross-comparison of Machine Learning Algorithms fo

Remote Sensing

The remote sensing community has adopted changetidet algorithms from the
machine learning community. As new algorithms appevery year, there are
numerous of remote sensing studies that assessi@nkalgorithm against a couple
of ‘standard’ algorithms such as the classic MLCThis approach effectively
demonstrates the virtues of a new algorithm. Esitldy presents us with one
algorithm superior than the MLC algorithm, which svdesigned more than five
decades ago. One would naturally ask: with so maew algorithms at hand, is
there a generally superior algorithm? Or are tHasey new algorithms good for
different situations respectively? A related gioesis whether many users simply
over-tune the classifiers and hence demonstratmare than that for one particular
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example better results can be obtained with noagiee that similar improvements
will be found for other areas. It is obvious that,cross-comparison among the

modern algorithms is more important.

However, there are too many change detection &lgosi to be tested one by one.
Rather than comparing every new variant of thedasethods our approach is to
carry out a cross-comparison of superior examptes fach of the different families.
Moreover our comparison will not simply be an engair assessment but will attempt
to explain the differences in terms of the mathérahtheories underlying them. To
be more specific, we seek to find which underlyilegigns are effective at handling

uncertainties and errors in practical applicationd/e summarize them into table 2.1.

These promising methods are chosen based on treoretical strengths and
feedbacks from contemporary literature. Some @$é¢ttheoretical strengths are very
desirable for remote sensing studies. All the wwethare tested in the next chapter,

in different scenarios chosen to resemble realdvwgpelographical applications.

Our study is not aimed at touting at performancettd supposedly best
algorithm(s). We are aware that the mathematidsracteristics may have
side-effects as well as strengths. From the tabtve, we can see that the machine

learning algorithms were born with hidden assunmgtio
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Table 2.1 Summary of mathematical characteristicd axpected strengths and

weaknesses of algorithms discussed in Chapter 2

Algorithm | Algorithm | Mathematical Expected Possible
Family Name Characteristics Strengths Weaknesses
Bayes MLC Assumption of Gaussian| High accuracy in| Lower accuracy
Classifiers Distribution; Classes small-scale in complicated
defined from centers studies non-Gaussian
data; Curse of
Dimensionality
Entropy-mi | DT No assumption on data | Good accuracy in Salt-and-pepper
nimization distribution large-scale errors; Curse of
studies dimensionality
Neural ARTMAP | Adaptive training data Training pattern overfitting
Networks can be improved
with incoming
data for
classification
Margin-ma | SVM Classes defined from High accuracy at| The Gaussian
Ximization boundaries; The RBF all scales assumption is
kernel assumes controversial
Multimodal Gaussian
Distribution of data; SVM
assumes smoothness in
both the estimator and
data observation
Kernel KP Classes defined from High accuracy at| overfitting
boundaries; No Gaussian all scales
assumption on the data;
Infinite Boosting

It is also interesting to see that as new algoritbare developed, some of the
controversial hidden assumptions in the older #lgms were adopted again as
building blocks. For example, the Gaussian assimias been used in both MLC
and RBF, which is the most successful kernel fofns'dM. Another example is
that the Perceptron model was used both in traditioeural networks and modern
Kernel Perceptron.

Arguably, the algorithms thadre assumptions might exhibit
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similar performance weakness under certain scenaribhe Gaussian assumption
has long been criticized for being too simple faographical variations. The
Perceptron neural networks model, on the other hhad long been criticized for
being too prone to over-fitting. This also leads Some worries about Kernel

Perceptron. Would it also tend to overfit?

Also in this chapter we identified two interestihgpotheses from contradictory
literature. The first is that the decision tregyhtibe ill-suited for stacked change
detection because it does not handle high dimeakdata as well as some algorithms.
The second is that the Gaussian assumption on @@ugal data over large areas
might not be totally invalid. Since the Gaussiagrnel of SVM is indeed a
simulation of multimodal Gaussian, it might actydlt the geographical phenomena

very well.

These pros and cons have deep roots in the matiahtheory and have to be
assessed in empirical studies. Since these maticainf@atures were built into the
algorithm to handle uncertainties, we will test thkorithm under challenging
classificatory situations. Unlike other studieatthssess algorithms in an arbitrary
scenario, our study simulates special scenariogefsting different aspects of the
algorithms. These different aspects trace backntb are targeted at the theoretical

strengths and suspected weakness we discussed here.

In the next chapter, we will also define the queditof a truly good algorithm.
In DeFries et al. (2000), two general criteria weatsed as key: stability and

robustness. In the past several years we havemataied knowledge on what
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stability and robustness truly mean in the realldvor We will find out in the next
chapter which algorithm best meets these criterfnd if no algorithm can satisfy all

the criteria, we will try to find out the most aptable solution.
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3. Assessing Machine Learning Algorithms  with

Real-World Uncertainties

3.1. Assessments and Comparison Design

In chapter two, we outlined the possible strengthd weaknesses of modern
machine learning methods. We hope to find out unabat conditions will
classifiers be successful and when not. What lzgeiriternal designs that lead to
varying degrees of success? Is there a classsfiecessful enough for most
real-world applications in remote sensing? Thesmstions have not been

systematically addressed in previous studies.

This study tries to attribute the varying degreesotcess to two factors: the
internal designs of classifiers, and the real-waddhplexities in the field of remote
sensing. The designs of classifiers originateelgrdgrom statistical theory, e.g. the
Mahalanobis Distance (Mahalanobis 1936) and agpmitsin computer science, e.g.
the MLC learning of texts (Chow 1957). They werever custom-built for
geographical phenomena. It would be wishful thigkithat existing machine

learning methods can automatically handle geogcaphincertainties perfectly.

Traditionally, when the accuracies of different eyised change detection
algorithms are assessed and compared, the chasacseof the selected training and
validation sets are not quantified. This can idtree biases into the comparison.

Although this source of bias had been brought omftime to time during the past
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four decades, but it had largely been ignored mtexmporary remote sensing.

When addressing the generalization power of madkeraing in general, Vapnik
(Vapnik 1999) stated: “One first has to find thepegpriate structure of the learning
machine which is a result of the tradeoff betweearfitting and poor approximation,
and second find in this machine the function thatimizes the number of errors on
the training data.” Thus, if we put the secondgogl of accuracy maximization as
the top priority, as seen in so many contemporamgate sensing studies claiming
classification accuracies over 95% and regressisgures over 95%, then we lose

sight of the big picture: the tradeoff between ditterg and underfitting.

Therefore, classification accuracy is only meanuhgfthe classifier structure is
right for the data. To figure out that appropriaggucture for geographical
phenomena, we must identify possible weaknessefier that, we can think about

improving the accuracy.

Most previous studies have significant weaknesdesnvapplying training data,
though several investigations have attempted tocomee individual weaknesses with
varying amount of success. Our perspective hete g/stematically outline these
weaknesses and seek solutions accordingly. THisewable us to improve the

classifier structure and then the accuracy itself.

Our approach aims to isolate the effect of eack bsaused by training data sets.
We would estimate how well the change detectionrélyn can do with or without

the biases caused by the training data set. Tkt dienge detection algorithm
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should be able to achieve high accuracy, whilet lisfisenced by adverse biases from
the training data set. If no existing algorithnisfaes these high standards, then we

would need to think why this happens and how tuestiis.

3.1.1. The Tradeoff between Generalization Power and Accuracy

First, most traditional assessments tell how swsfakshe algorithms are when
analyzing study areas of limited range of sizesd leover variation, and atmospheric
conditions. This is a problem. In a pioneeringkvbased on a land cover study
using Landsat-1 imagery, it was shown that wherathespheric turbidity decreases
1.3, the maximum likelihood classification resufincdiffer by a whopping 22%
(Fraser et al. 1977). It was also shown that #grdopmance of the MLC algorithm
starts to drop in complex environments after thadoaumber is more than five
(Lilesand and Kiefer 1979). However this type ofsue was not widely
acknowledged until the last decade, partly becamskispectral remote sensing is

more and more applied to study continental andajlobanges.

Researchers in the last decade started to raisstétdity’ requirement (DeFries
and Chan 2000) and the generalization power aritefiWoodcock et al. 2001). In
the latter paper, the benefit of generalization @ot® Geographers were clearly laid
out: “Methods based on generalization require less tim effort than conventional
methods and as a result may allow monitoring ofyéarareas or more frequent

monitoring at reduced cast(\Woodcock et al. 2001)

Also pointed out was that many data-driven alpong, such as the maximum
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likelihood algorithm, can fail at complex datas@tastie 2001). Also mentioned is
that the principal component analysis would havastitally different results in
different areas while decision tree is reasonablyeb (Scull et al. 2005). ARTMAP
and Decision Tree have been recommended in sugatisits (Rogan et al. 2002).
SVM was recommended above Decision Tree and MLCvéorations over large
areas (Song et al. 2005). In another recent stMagek et al. 2008), the accuracy
assessment for their new algorithm is done in B&sacross the US. This is very

convincing yet also very hard to achieve.

To avoid this methodological weakness, we choosestudy areas to be large
and very complex. Three study areas were choseach area has a distinctive
ecosystem, and a unique landscape pattern. These areas also show a sharp
difference in annual rainfall. The impacts of gequnical variation will be further

discussed in sections 3.2, 3.3, and 3.4.

3.1.2. The Realistic Acknowledgement of Errors in the Source

Second, the traditional assessment routine mos$ tebw successful the
algorithms are when they are fed with 100% cortehing data. Only in the last
decade has researchers started to address therprobht there exists mislabeled
training data in remote sensing applications (Bepdl996). Algorithms thus must
possess the ‘robustness’ property (DeFries and €0@0). It was then reported that
MLC might be susceptible to mislabeled trainingad§6imard 2000; Miller and

Franklin 2002) and is inferior to ARTMAP on errotdérance (Rogan et al. 2008).
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To avoid this methodological weakness, we carrigideaperiments on the impact
of varying amounts of error in the training datd&rrors from 5% to 50% will be used
to see how well the algorithm resists training exro A contemporary study tested
error for three algorithms (Rogan et al. 2008). r Gwdy will test 5 algorithms
instead. And more importantly we need to find wat in the classifier(s) works

mathematically against errors. Section 3.5 cotlersesults on the error tolerance.

3.1.3. The Uncertainty in Class Definition

Third, the traditional assessment routine tells lsmecessful the algorithms are
when they are fed with training data from typicaldapure ground cover types.

There has been no known publication discussingghbige.

To avoid this, we do not choose our training datly drom distinctive and pure
landscapes. Instead, training data will be chasedomly from across the whole
study area. We also assessed using training datairelatively transitional zone
against relatively that in the core zone. Thisasafpon and comparison of training
data from the core zone and the transitional zae rfot been mentioned before.

The results on the transitional training data dldiscussed in section 3.6.

If we bring this topic a little further, we can alask a more fundamental question.
How would the conceptual definition of geographiclasses affect the classification

outcome? Chapter 5 will explore into this question
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3.1.4. The ‘Blind men and the Elephant’ Problem

Fourth, the traditional assessment routine tell8 koccessful the algorithms are,

but the actual sampling process of the training teabften arbitrary or neglected.

This situation is similar to the ancient Asian falf the blind men and the

elephant. It was put into a poem by John Godfreye$4816-1887).

It was six men of Hindustan

To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation

Might satisfy his mind

This ancient fable shows us that our observatiadampling of reality, and that
can induce our partial perception of reality. & wnly observe the tail, we might
conclude that the elephant is like a snake. Alghowe are not blind, we still could

blindly trust a methodology developed not specifycior Geographical phenomena.

Almost all contemporary change detection studies thsee types of sampling
strategy when they choose the training datasete sBmpling may be random, the
systematic, stratified or even purposive (i.e. wicnsen by the analyst). This is
intended to avoid statistical bias in the inferemde‘'population’ accuracy. The
performance of change detection algorithms may fhectad by the choice of
sampling method. There have been no known stuahethe effect of this aspect,
although stratified sampling is often preferred @aese it gives an ‘equal’
representation for all classes. For example, study that discussed the effect of

training data (Rogan et al. 2008), his trainingadatnot selected pure randomly, but
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with equal amounts of training data in each class.

Recently, researchers have been focusing more entdpic of sampling.
Stehman published a series of papers (Stehman Z000et al. 2000; Stehman et al.
2003; Stehman 2005; Stehman 2009) introducing thedél-based sampling’ as
compared to the ‘design-based sampling’ such agoran stratified, and systematic
samplings mentioned before. His major concern thas geographical events are
often not spatial random. Therefore design-basedplkag is not sufficient to
characterize the whole area statistically. Thisimilar to the concerns raised by
Tucker and Townshend (Tucker and Townshend 20G8pwdh expressed with a
different language. However, Stehman’s interess warely in the estimation of
accuracy for end products of remote sensing studiesin the process of remote
sensing analysis. He did not realize that, our waybservation can foul our
analysis process. To study this problem, we usetie class proportions in the
training data. This kind of study has also not rbedone in contemporary

publications. Section 3.7 will cover the resultstbe sampling of training classes.

3.1.5. Minimizing the Cost of Sample Collection

Fifth, the traditional assessment routine tells rmgcessful the algorithms are
when the amount of the training data is often uisieally large for practical
applications. This problem has only been noticedhie past a few years. Our
earlier work mentioned that the accuracies of S\fid Becision Tree do not decrease

as much as MLC does when the available trainingseet was reduced to 1% of
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original set (Song et al. 2005). There have alsenbefforts trying to prove
theoretically that SVM requires far less trainingtad because of its mathematical
designs (Foody et al. 2006). Another study fourat ARTMAP accuracy only lost

10% when the training set size was reduced by Z58g4n et al. 2008).

To avoid the fifth weakness of traditional asses#sjeve use varying amounts of
training data in our assessment. The results @ d@hundance of training
information will be discussed in section 3.8. Antamporary study tested 3
algorithms when the training data is reduced by §B%gan et al. 2008), while our
study compares 5 algorithms when the training dateeduced by 80%. What is
more important than just finding the efficiencidsddferent algorithms is to find out

which internal design makes this happen.

These five approaches in our assessment will tel hell the candidate
algorithms handle geographical uncertainties amdrerin the real world. These
assessments will allow us to assess empiricallytheineghe theoretical strengths and
limitations listed in table 2.1 really exist.  ihis chapter we will also present the
first large-scale testing of the SVM and ARTMAP @ithms in remote sensing, and

the first application of the promising Kernel Pgrtten algorithm in remote sensing.

3.2. Geographical Information of the Assessment Areas
As the first step to avoid overfitting, our expeeints from sections 3.3 ~ 3.8 look
at multiple areas with different ecosystems andmlerland use trajectories.

We chose three areas in the country of Paragutgstdhe algorithm candidates.
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The country of Paraguay has three major ecosystens east to west, namely the
Atlantic Forest, the Humid Chaco, and the Dry Chacbhese three ecosystems have
vastly different appearances and species. Thentitldorest is a closed canopy
forest in humid coastal climate from the Easterastof Brazil (Olson and Dinerstein
2002) to the eastern departments (provinces) iageay. The dry Chaco in inland
Paraguay and Bolivia has wet season and dry seéasogear and is mainly covered
by open-canopy woodland (Olson et al. 2000). Theid Chaco is a transitional
zone between Atlantic forest and dry Chaco, witmasavetlands, grasslands, and
inter-annual floods (Cabrera 1976). All three ardwmve moderate-to-extensive
agriculture developments during the time span &012000. The Dry Chaco area is
dominated by woodland, while the other two areas @gwminated by non-forest.
Each area was chosen to include significant amotlifdrest change. The sizes of

these three test areas are 9076, 9849, and 5878kpectively from east to west.

Table 3.1 Geographical Information of Test Areasdhly et al. 2009)

Landsat path/row 224178 225/77 228/76
Ecosystem Atlantic Forest Humid Chaco Dry Chaco
Forest Percentage 26.7% 23.5% 58.1%
Nonforest Percentage 48.5% 68.1% 34.7%
Forest Change Percentage 24.8% 8.4% 7.2%
Area (sg km) 9076 9876 5878

We have an accurate forest change map of Paragdayeused it as both for the
training and accuracy assessment (Huang et al; 20@%g et al. 2009). Cloud-free
images of Landsat TM (1990) and ETM+ (2000) weredudo develop this
wall-to-wall forest cover change map using an tieeaclustering-supervised labeling

(ICSL) method. Unsupervised clustering using t8®DATA algorithm (Tou and
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Gonzalez 1974) and supervised labeling of clusteirsg training pixels were applied

iteratively to resolve spectral confusions amoregdbncerned classes. This iterative
process is highly reliable and has been assesselB®yaerial photos, as well as
IKONOS and Quickbird imagery covering 64km The overall accuracy is higher
than 95% (Huang et al. 2007; Huang et al. 2009he Tesulting Paraguay forest
change map is thus a good test-bed for training dat testing data as well. We
select training data randomly instead of confirea fieldtrip or an IKONOS image.

We also use the whole area as our testing dathdaccuracy assessment.

In this map and throughout this dissertation, thiercscheme will be: Green for
the Forest-to-Forest class, yellow for the NonfotesNonforest class, and red for the

Forest-to-Nonforest class.
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Figure 3.1Three test areas in Paraguay
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Only three classes were used in these experimepessistent forest,
forest-to-nonforest change, and persistent nonforeQur study did not use the
nonforest-to-forest class. There has been no ldzdand in Paraguay that went

through forest regrowth during the 1990s.

3.3. Assessing the Algorithms in Different GeographicaRegions

In this experiment, we start to look at the basiaracteristics of our algorithms
with a very simple design. 2000 random pixels wased in each test area as the
training data. Each class was given the same anafumnaining pixels. And we
evaluate the algorithms by means of total accurasyyvell as the user and producer
accuracy of the forest change class. The highewracy, the more capable is the

algorithm at adapting to various geographical cotste

In sections 3.4-3.8, our experimental designs etaadly further developed from

the experiment in this section.

Our findings are listed in table 3.2-3.4. The alpons have achieved different
accuracies in the three ecosystems. Generall\kspgdhe algorithms have higher
accuracies in the Dry Chaco region. This mighthesed by both the dry climate,
the limited types of land use in that region, alnel fact that this test area is smaller
than the other two. The forest clearings in thg Dhaco region become ranches
and farms. These large ranches and farms ardargg/ and stand out easily against
other classes. While in the eastern regions tihesfoclearings become farms of

soybean and other crops. The land parcels are smalier and more varied in the
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east. In short, the west area has a simpler ggtagjraphical features.

Table 3.2 Overall Accuracy of different classifiendifferent regions

Classifier Atlantic Forest Humid Chago Dry Chaco
MLC 90.47% 86.69% 93.33%
ARTMAPNN 86.89% 86.96% 88.53%
DT 89.94% 89.62% 91.43%
SVM 91.12% 91.77% 93.68%
KP 92.56% 91.97% 94.12%

Table 3.3 User Accuracy of the Forest Change Qlessuced by different classifiers
in different geographical regions

Classifier Atlantic Foresf Humid Chago Dry Chaco
MLC 80.29% 83.62% 94.32%
ARTMAPNN 76.12% 71.61% 82.71%
DT 81.52% 72.85% 88.43%
SVM 85.32% 76.89% 89.20%
KP 86.29% 76.91% 91.66%

Table 3.4 Producer Accuracy of the Forest Changs<Jbroduced by different
classifiers in different geographical regions

Classifier Atlantic Forest Humid Chacd Dry Chacdg
MLC 90.27% 63.08% 81.52%
ARTMAPNN 80.28% 68.13% 80.63%
DT 86.71% 77.14% 81.10%
SVM 88.39% 81.63% 90.40%
KP 89.76% 82.93% 89.05%

As we compare the algorithms in three geograplsetting, we have several
findings. The first finding is that the ARTMAP maili network is clearly not good

for any geographical setting at all. It almostays achieves the worst performance.

The second finding is that SVM and KP almost alwagfsieve best performance
in overall accuracy as well as the user and pradaceuracies of the forest change

class. More important is that they did well in #ifee ecosystems, showing the

robustness of kernel methods.
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Our third finding is that MLC remains a good altstiae although its
performance does vary from place to place. Fomgik@ MLC made the best
producer accuracy among all five methods in thamit forest test area, but achieved

the worst producer accuracy among all five methodse Humid Chaco test area.

We also produced some images to show the changetidet results from
different algorithms. Throughout this dissertatitime color scheme will be: Green
for the Forest-to-Forest class, yellow for the Nwaét-to-Nonforest class, and red for

the Forest-to-Nonforest class.

Figure 3.2 shows the classification results byedéht algorithms in the eastern
area. We can see that, graphically speaking, SWKP results have a distinctive
look of rounded edges around land cover patchede WWRTMAP and DT results

have a lot more salt-and-pepper noises.

Figure 3.2 Change detection results from diffeedgorithms in Eastern Paraguay



3.4. Assessing the Algorithms over Large Areas

In our earlier work (Song et al. 2005), we foundttthe SVM algorithm have a
unique property. It could use limited training aldtom multiple satellite scenes
blended and still has decent performance at datpétirest change over large area.
In that comparison, MLC and DT were tested agaB¥M. MLC showed poor
performance. The DT algorithm got limited successerms of accuracy but the
resulting change map is virtually unusable due idespread tiny errors of the

salt-and-pepper type.

While forest change detection does not necesshale to be performed at
multiple scenes at once, what is important is M showed a potentially useful
generalization property. The geographical varretiover large areas did not ruin the
change detection. This property can be of goodevat some regions of Earth

where strong local geographical variations exist.

Therefore, we hope to examine all five of our cdaté algorithms. It would be

nice if some of them other than SVM also show pingerty.

This assessment creates a pseudo-image mosaid dire¢ areas together.
There is no atmospheric correction or any radioimetnhancement. On one hand,
the classification of individual satellite imagesed not benefit significantly from
atmospheric correction (Song et al. 2001), on ttheerohand, the classification of
multiple satellite images together is a grill foetclassifier. The five classifiers will

have to deal with much larger spectral variatiorewery land cover change class.
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We also limit the amount of the training data teeay small set of 1000 pixels. If
some algorithm(s) could still achieve good changgection in this manmade extreme
case, then in the real world it can as well harstleng geographical variations with

very limited training information. Our test resulire shown in table 3.5:

Table 3.5 Performance of algorithms over largesarea

Total Accuracy User Accuracy of| Producer Accuracy of
Change Class Change Class
MLC 85.73% 81.26% 62.59%
ARTMAP 82.86% 66.64% 64.54%
DT 88.40% 73.73% 81.31%
SVM 91.72% 73.79% 91.48%
KP 91.93% 76.13% 90.17%

We concluded that, first of all, the ARTMAP Neuhtwork method should be
avoided at all costs. They are quite ineffectiteg@neralization. Second, MLC
and the kernel methods have different strengthsLC Mave higher user accuracy
(100%-commission), while the kernel methods tendhdawe much higher producer
accuracies (100%-omission). This seemingly oddrasthwill be explained using
the findings from section 3.7. Finally, the besem@ll performance still belongs to

the kernel methods.

In addition to the accuracy numbers, we also stutlie change detection images
closely. Figure 3.3 shows a subset image on theebmf three areas. We could
see from the above images that, although the adesraumbers do not vary too
much, we could only find the map outputs from SVRdaKernel Perceptron are
much more clear and meaningful. ARTMAP and DT kssstill have the undesired

salt-and-pepper noises.

60



Paraguay Map MLC ARTMAP NN

ge-area test

3.5. Assessing the ErrorTolerance of Algorithms

In this assessment we blemish the original clalssllaf the training data wit
varying amount of ranim errors. In the realrorld application, there are inevital
errors such as those caused by image misregistraimabiguous land cover type
and different interpretations among analysts. @&tloee our approach of adding
percentage of errors into ¢ideal’ training set is closer to the r-world application

than an ‘ideal’ training set.

We hope to know how the algorithms would perfornthwegard to such errors
the training data. Algorithms without significaatcuracy loss would be conside
as error-toleranénd thus prized in practice. Before developingTB& algorithm,
we already found out by luck that the SVM algoritsihrowed some errcolerance.

In this experiment we will systematically assesdia algorithms in this regard.
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SVM the only algorithm with suclerror tolerance Do other modern algorithn

share this property?

In each test, a total of 1500 training pixels systematically sampled from tl

whole study area. Error starts from 0% to 50%, by 5% increns.

from the eastern areae shown in figure series 3.4.

The results
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Figure 3.4Error Tolerances of different Algorithms in East&aragua

There is a very distinctive pattern error tolerancein SVM. It is truly
exceptional that with ~30% errors in the trainired, she overall accuracy of SV
classification in this tesareastays largely unaffected! Would this be a coinom®
Let us also look at the results from other fareas. The results from le western

area are showm figure series 3:
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Figure 3.5Error Tolerances of Different Algorithms in Westétaragua

We found that in the above two teareas, SVMconsistentlyshowed a unique
tolerance oferror in the training data. Usually SVM can maimta90% accurac
when 0%~30% of the training data is actually wron#ernel Perceptron maintai
about 85% accuracy with up to 20% error in thentrey data. MLC shows a low
error tolerance butdictuates at. DT and ARTMAP are almost not er-tolerant at

all.

However, the user accuracy of KP algorithm drop$ twhen 30% of trainin
data is wrong The change detection map shows that for somaawk reason, th
KP algorithm fails to pick upny forest change. This leads to very high omissi
error and a very low commission error. This shavky we have to look at both tl

user accuracy figure and the producer accuracydi
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L

Figure 3.6 Erro tolerances of Classifiers in Western Paraguay B8i0% errors i
training

The test in the Central Paraguay area also shawgithblem. What's worse is
that some of the SVM change detection results dohawe the change class also.
This brings a possibility: when a class has a strathing dataset with lots of errors,
kernel methods might fail to pick them up at alln this study site, the change class
is a quite minor class. Thus by systematic sargplive are actually only giving the
change class ~ 110 training points. This tellghes ‘bottom line’ of SVM'’s error
tolerance property. We can use SVM when we hatvaiing set of small size but
high reliability (will be explained in section 3,8)r a training set of large size but less
reliability. But we cannot expect SVM to cope witlraining set of small size and

low reliability.

The accuracy results in the central test arealateeg in figure series 3.7.
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Figure 3.7Error Tolerances of Different Algorithms in CentRdragua

3.6. Assessing the Algorithms with Mixe( or Atypical Training

Data

Reliable training data is usually derived fromdi¢tips and image interpretation
Traditionally, when change detection algorithms assessed and compared,
researcher tends to rely on the most reliable itrgilata pixels, which are of r

surprie often from the most promine and mosttypical land cover parcels.

66



Researchers also tend to pick the pixels in théecari land parcels for an important
reason: to avoid misregistration. Pixels there als usually more pure than

transitional or mixed land cover.

Our intention in this experiment is to see how thedidate algorithms handle
mixed land cover as training data in addition te flure land cover as training data.
Our hypothesis in this experiment is that, thoselgiat the hearts of land parcels are
more likely to be pure land cover types, and tixelgiaround the edge of land parcels

are more likely to be transitional land cover types

Our experiment looks at the change detection acgukariation when the
training data pixels were selected from varyingtatises from the land parcel
boundaries. The land parcel boundaries are geeusing the Canny edge detector,

a detector used routinely in image processing.

Only the classifiers of SVM and DT were performedthis experiment. This
experiment was conceived in the very early stagehi dissertation, before the

inclusion of other classifiers. Our result is simaw the following graph:
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Will the location of training pixels affect SVM accuracy?
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Figure 3.8 Location Effects of Training Data

Our experiment did not find significant accuracypmovement when the training
data is selected around the land parcel boundem@pared to when the training data

is selected in the heart of land parcels.

SVM is a boundary classifier in the feature space,it does not seem to benefit
significantly from training pixels of physical bodaries. Therefore, the relative

geolocation of training data for SVM seems to beimportant.

3.7. Assessing the Algorithms with Varying Contents offraining

Data

A training data set contains training samples fromltiple classes. When
designing a change detection study, the amoumtiing pixels for each class has to

be decided.
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Contemporary classification studies have used getyaof different approaches
which impact the relative proportions of trainingets The so-called
availability-based sampling is the most popularrapph in which the researcher feed
all the available training data to the classifiefhis is actually the most common
type in many contemporary studies (Keuchel et@032 Sesnie et al. 2008; Schneider
et al. 2009). Several papers have used equalughlp equal number of points in
each class (Rosenfeld et al. 1982; Rogan et aR;Zafody et al. 2006; Kuemmerle et
al. 2009). Another approach, systematic samploojjects sample points using a
grid (Yuan et al. 2005). This is rather rarely ugbdugh because the cost for
collecting data systematically is quite high. Immy studies the relative sizes of
classes is not even discussed (Keuchel et al. 2003s et al. 2008; Potapov et al.

2008; Brenning 2009).

Generally, classification modules in commerciakwafe such as Idrisi, ENVI, or
ERDAS Imagine leave it to the user to decide onsike and relative proportions of
training data. However Idrisi Andes (version 15d@veloped by Clark University
assigns equal amount of training data for eachsdlasits Multi-layer Perceptron

(MLP) neural net module. The reason for this watsaxplained in IDRISI help file.

Stratified sampling had been widely used not justdose it allows easier
collection of training data compared to random dangp It can also provide
statistical confidence interval for the total fdrebange over the whole area, which
random sampling can also provide. It also ensthias every major geographical

unit has been represented, which random samplimgota
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Different sampling methods lead to different setstraining data. Will the
different amount of training data in each clas®daffthe final performance of the

change detection algorithm? People have not abkeduestion yet.

Will any of our algorithms perform well without siicant differences under

stratified sampling and random sampling?

We designed an experiment to answer these two igaest For each of our
three test areas, we perform 19 runs of changetdmie Each run has a different set

of training data. This is shown in table 3.6

Table 3.6 Experiment on training data contents

Change Detection| Forest Change Unchanged Forest Unchanged Nonforest
Runs pixels in training pixels in training set | pixels in training set (%)
set(%) (%)
No.1 5% (1-5%)/2=47.5% (1-5%)/2=47.5%
No.2 10% (1-10%)/2=45% (1-10%)/2=45%
No.18 90% (1-90%)/2=5% (1-90%)/2=5%
No.19 95% (1-95%)/2=2.5% (1-95%)/2=2.5%

For each run we calculated the user accuracy estahange class, the producer
accuracy of forest change class, and the totalracgwf the whole study area. The

results are plotted in the following figures.

Figure 3.9 shows producer accuracy for the Easeminarea. We can see that,
as the proportion of one class in the trainingrsgtases, the corresponding producer
accuracy of that class generally increases gradaatl approaches 100%. However,
the MLC algorithm is different. It stays almosttsame regardless of the class

proportion in training. We can also see that when proportion of a class in the
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training set is extremely small, omission error dam high, especially for the

Self-Organizing Map Neural Net and ARTMAP.
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Figure 3.9 The Producer accuracy plot of the eatest area

Let us move on to look at the user accuracy resufsgure 3.10 shows that,
most classifiers result in lower user accuracydarass when the proportion of that
class increases in the training set. User acesadiop to around 40% when the
proportion of that class occupies 95% of the tragnset. This indicates substantial

overestimation. MLC is again indifferent to theia#ion in training proportion.
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Figure 3.10 The User accuracy plot of the easesharea
We found that, the overall accuracy almost alwaysges from 80% to 90%+,
overshadowing the fact the accuracy of change tieteis often very poor.
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Figure 3.11 The overall accuracy plot of the eest area

The pattern we found from the first test area macl The performances of
Decision Tree, SVM, KP, ARTMAP, and SOM are allrsfgantly affected by the
class proportions within the training set. If asd is over-represented in the training
set, then it is overestimated in the classificatmutput; and vice versa. This
relationship has apparently eluded the remote sgniseld, probably because the
overall accuracy stays seemingly unaffected. W albserved that the MLC

algorithm stays unaffected.

The following figures show the three accuracy iathes of the other two test

areas. These three figures are from the censthtea (WRS-2 footprint 225/077):

1.0 +—MLC Producer Accuracy
0.8 —=—DT Producer Accuracy
?0'6 ——SVM Producer Accuracy
g 0.4 —<—KP Producer Accuracy

<0.2

—*—ARTMAP Producer
0.0 I 1 | 1 Accuracy
—— SOM Producer Accuracy
0.0 0.2 0.4 0.6 0.8 1.0

Proportion of Change Class in Training

Figure 3.12 The producer accuracy of the centshlarea
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—+—MLC User Accuracy

—=—DT User Accuracy

SVM User Accuracy

——KP User Accuracy

—*—ARTMAP User

Accuracy
0.0 0.2 0.4 0.6 0.8 1.l —e—SOM User Accuracy

Proportion of Change Class in Training

Figure 3.13 The user accuracy of the central test a

—+—MLC Overall Accuracy

—=—DT Overall Accuracy

SVM Overall Accuracy

——KP Overall Accuracy

—*—ARTMAP Overall

Accuracy
—— SOM Overall Accuracy

0.0 I I ‘ I

0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Change Class in Training

Figure 3.14 The overall accuracy of the centraldesa

The following three figures are from the westerst tarea (WRS-2 footprint

228/76):

1.0 W —+—MLC Producer Accuracy
0.8

—=—DT Producer Accuracy

?0'6 —— SVM Producer Accuracy
§ 0.4 ——KP Producer Accuracy
<0.2

—— ARTMAP Producer

0.0 : 1 : 1 Accuracy
—e— SOM Producer Accuracy
0.0 0.2 0.4 0.6 0.8 1.(

Proportion of Change Class in Training

Figure 3.15 The producer accuracy plots of the avadest area
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+—MLC User Accuracy

0.8 -
—&-—DT User Accuracy
> 0.6
g SVM User Accuracy
3 0.4
Q —e—
< 0.2 KP User Accuracy
' —*—ARTMAP User
0.0 .
Accuracy
0.0 0.5 1. —e—SOM User Accuracy

Proportion of Change Class in Training

Figure 3.16 The user accuracy plots of the wedestnarea

1.0 +—MLC Overall Accuracy
0.8 —=—DT Overall Accuracy
SVM Overall Accuracy
> 0.6
© ——KP Overall Accuracy
50.4
§ 0.2 —%—ARTMAP Overall
' Accuracy
0.0 | , ‘ , —e— SOM Overall Accuracy
0.0 0.2 0.4 0.6 0.8 1.0
Proportion of Change Class in Training

Figure 3.17 The overall accuracy plots of the wiestest area

The accuracy trends in all three test areas hawearked similarity. As the
percentage of a class increases in the trainindhsemore appearance it makes in the
classification output; and vice versa. There idifeerence among then, however.
The western and central test areas show consigtagtier producer accuracies than
the eastern areas, while the eastern area shovesstanly higher user accuracies
than the other two areas. This is caused by tfiereit class proportions of three
test areas. The western and central areas havh lowaer proportion of forest
change than the eastern area, as outlined in 3able Therefore, classifiers are more

prone to overestimate forest change in those teasar
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This effect is especially important to change d&tecstudies, because the
change class is almost always a minority clask@wthole satellite image. Popular
practice is to use as big a training set as pass$dil the change class, but this will
lead to the overestimation of this key class. Alsaoce each satellite scene has a
distinctive spatial distribution of classes, we Idomot have a universal optimal

percentage for a class in different satellite ssene

If we plot the trends of the producer accuracy asel accuracy together, we will
see an interesting pattern. The user and prodagmracies of SVM meet at some

midpoint (figure 3.18), while those of MLC stay appimately parallel (figure 3.19).

1.0

0.8 - *

0.6 N —~—SVM Producer
- v Accurac
S04 Y g
=0.

3 —e—SVM User
20_2 Accuracy

0.0 I
0.0

.05 10 |
Proportion of Change Class in Training

Figure 3.18 The user and producer accuracies of $VNkhe eastern study area,
affected by the class proportions in training

1.0
e YW -
0.8 - g
——MLC Producer

§0'6 Accuracy
50'4 —e— MLC User Accuracy
£0.2

0.0 1

0.0 .05 1.0 .
Proportion of Change Class in Training

Figure 3.19 The user and producer accuracies of NMi@he eastern study area,
unaffected by the class proportions in training
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This implies that, the omissi and commission rates of the powerful ni
machine learning algorithms are determined in thaihg stage, directly related
the amount of training pixels in each class. The maxmlikelihood algorithr,

though now often considered inferior by the comrty, is largely unaffected

The trends in the figures of user accuracy andymedaccuracy give the over
picture of this isue. We will also give a more visual examinatidnthe spatia
patterns compared against the ground reference malpis should indicate tF
locations of overestimation and underestimatioorsrr We would also like to fin

out whether overestimati and underestimation are solvabledmg-processing

We will show the results from different algorithrasd training proportions sic
by side in a representative -region of the west test areaThis tesiarea is the most
difficult one for change detection among the thiestareas It has a varied fore
phenology between the two image dates. It also thasinte-annual flooding
phenomenon on the nonforest land surface betweentvib image dates. TI
following figures show the Landsat TN\-4-2 composite image, Landsat ETM-4-2

composite image, and the forest change referengpe

‘F\..; .. !&‘ & r
Figure 3.20Landsat TM -4-2 (Left), ETM+ 7-42 (Center), Change referel map
(Right)
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We have 342 classification results in total andstbauld not show all of the
here. Instead, we will only show 18 classification resylin which six algorithm
are fed with three types of training sets. Thstfiraining set has 5% d. labeled as
forest change. The second training set has 50%oldiatled as forest change.

third training set has 95% data labeled as foreshge

Figures 3.21 to figure 3.26 illustrates how diffe@reupervised classifiers hant

training sets ofame amount yet different class proporti

_o0°® L i _ - 1r N oo P K ir .
Figure 3.2MLC Classification with 5% change training (Leftjith 50% chang:
training (Center), with 95% change training (Ri

s | . Y, R o ir w
Figure 3.22DT Classification with 5% change training (Left),itkv 50% changs
training (Center), with 95% change training (Ri
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Flgure 3. 23SVM Classmcatlon W|th 5% changtraining (Left) with 50% chang
training (Center), with 95% change training (Ri

Figure 3.24KP Classification with 5% change training (Left)jthv50% chang:
training (Center), with 95% change tring (Right)

Flgure 3. 25ARTMAP Cla33|f|cat|on W|th 5% change tralnlng (L)eftW|th 50%
change training (Center), with 95% change trairfRight)

Flgure 3 ZGSOM Classification W|th 5% change trammg (Lefm);th 50% changt
training (Center), with 95% change training (Ri

We have observed thewhen the class proportions in the training set, the
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Maximum Likelihood Classifier is much more robusan the newer and more
popular classifiers. SVM has shown desirable pitgse consistently in previous
experiments, but this experiment identified thatVE$hares the same problem with
neural nets and decision tree in this aspect. duadity of classification results can
be very bad if the proportions of training classes left to be arbitary. This is a

serious source of error.

We also found that, when the producer accuracyecureets the user accuracy,
the percentage of the forest change pixels in rdaihg data is somewhat but not
strictly related to the percentage of the forestnge pixels in the whole study area.

The following table illustrates this vague relasbip.

Table 3.7 Percentage of Forest Change pixelsimngdata when optimal SVM
performances are achieved

Study Area Percentage of Forest ChangePercentage of Forest Change pixels in
pixels in study area training data with optimal performance
Atlantic Forest 24.8% 25%
Humid Chaco 8.4% 15%
Dry Chaco 7.2% 10%

These numbers give us some hopes. Maybe, to @&chievoptimal accuracy,
SVM has to have a carefully-selected training de¢d that has the same class
proportions as the data population? However, th& ghopulation is not known
before the change detection. How can we solve ‘thigken-and-egg’ dilemma?
Let us continue with the experiments, and returrthis question in the summary

section of this chapter.
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3.8. Assessing the Algorithms with Scarce Training Data

Traditional assessments of change detection ahgositare usually based on
ample training data. But it is not practical tavays have ample training data
collected from field trips and high-resolution phiointerpretation everywhere on
Earth. A good algorithm needs to be able to aghreasonably good accuracy when

the available training data is scarce.

Algorithms need to cope with scarce training dabté just because the total
training data might be scarce. If one class oy & small amount of training data
while the other classes have disproportional anvgli@ing data, our experiment in
section 4.7 have demonstrated the effect. Accudegreases sharply when the
training data sampling does not comply with the &gBample Size (ESS) rule.
Therefore, any class with scarce training data \ei#ld to the reduction of total
number of training pixels. Thus it is vital thalig@arithms for large-area forest
change detection must perform well with less-tharfget amount of training data.
This experiment was also conceived in the veryyestdge of this dissertation, and

only SVM and Decision Tree were tested.

Our experiment in this section assesses the acgesarasing different amount of
training data. For the Atlantic Forest study amaich has roughly 10 million pixels,

the result is listed in table 3.8.

Our experiment shows that, SVM and DT do not neéat af training pixels to

achieve good accuracy. And when they use the samoeint of training data, SVM
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consistently out-performs DT. We can also intergite finding in another direction:

There is an intriguing limit of classification acaay irrelevant to training size.

Table 3.8 The effect of training data scarcity oousacy

Training pixel Count SVM Overall Accuracy DT Overall accuracy
12500 0.8823 0.8510
10000 0.8790 0.8433
7500 0.8774 0.8473
5000 0.8833 0.8465
2500 0.8785 0.8454

In the Ph.D Dissertation of Dr. Chengquan Huangafttu1999), he also looked
at this aspect. His observation was that the S\ijprahm at that time needs a
training set 6% of the total data volume. It naems that his evaluation might be
conservative. Apparently, the SVM algorithm doed lose much accuracy even

when the training set is less than one thousarfdtiealata population.

3.9. The Algorithm of Best Overall Performance

Our empirical cross-comparison of change detectalgorithms aims at
comparing the detection power of algorithms on ia basis, and compare them as
close to real-world situations as possible so ash@lenge them with uncertainties.
The influences of less-than-perfect training dataveell considered, in order to find

algorithms that are truly robust and accurate.

Our assessment in section 3.3 show that geogrdpfadations do have impact
on the accuracy of all the algorithms, but SVM atefnel Perceptron consistently
excel. Our experiment in section 3.4 shows thaM$SWKernel Perceptron, and

Decision Tree all have good capabilities in harglllarge-area variation. Our
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experiment in section 3.5 shows that SVM and KeRwiceptron have outstanding
error tolerance. Our experiment in section 3.6aghthat SVM is not significantly
impacted by training data located in the trans@ldand cover. Our experiment in
section 3.7 shows that the modern algorithms aewilyeaffected by the sampling
method of the training data while the old-school ®lls almost not affected. Our
experiment in 3.8 shows that both SVM and Decisitiree can work with

less-than-conventional amount of training data stilidget good results.

When these results are linked with the theoretstaéngths and limitation
outlined in chapter 2, we can see that some ofthieeretical characteristics are

verified, while some are rejected.

SVM and KP do have the theoretical advantages oidlivay geographical
variations and high error-tolerance. SVM doeshate the theoretical disadvantage
of the Gaussian assumption as MLC has, becaus8atssian kernel in SVM is the
more versatile multi-modal Gaussian distributiorHHowever, the generalization

power of KP is not as good as that of SVM.

We conclude that, the machine learning communitydieeady built an excellent
baseline classifier for us. The SVM family canklacmost types of known
uncertainties and errors in remote sensing ap@itst It is much better than
Decision Tree and Neural Nets. To be specific, wh85% of the training data is
reliable, Kernel Perceptron is the best algoritlompérform forest change detection.
When <85% of the training data is reliable, them skandard SVM with RBF kernel

is the solution. However, in real-world applicaiso it is often difficult to know a
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priori the percentage of errors in our observationBherefore, it is safer to use the
SVM with RBF kernel as a baseline algorithm.

Table 3.9 The theoretical strengths and suspectadtvesses revisited

Algorithm Family Algorithm Validated Strengths Validated Weaknessgs
Name
Bayes Classifiers MLC N/A Lower accuracy in
complicated,

high-dimensional features
No error tolerance

Entropy-minimization DT Good accuracy in Salt-and-pepper errors
large-scale studies Mediocre error tolerance
Neural Networks ARTMAP Training pattern can be In developing and varies |a
improved with incoming lot among versions

data for classification

Margin-maximization SVM High accuracy at all scales sampling bias can hurt
High error tolerance

Kernel KP High accuracy at all scale sampling bias can hurt

Medium error tolerance
Boosting without extra
computational time

Meanwhile, we discovered an unreported source ofrefor most of the
contemporary machine learning algorithms. Thetikedaproportions of classes in
the training set exert a powerful hidden influecethe classification results. It is
unlikely that any remote sensing study can constymerfect training set by chance.
We must understand where this error source originfiom, and how to bring it under

control. This effort will be outline in the nextd chapters.
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4. Optimizing Class Proportions in the Training Set

4.1. Class Proportions in Training Data: an OverlookedPitfall

In chapter three we have discovered that, the padonce of most supervised
classifiers are significantly affected by the prdjmms of training data used to
represent each class. Change detection studigsaatieularly heavily affected by
this side effect, given that the change classegjaite unique. The change class is
numerically a minority class in most studies. Tugnber of change pixels is often
highly variable from one satellite scene to anoth@ihe change classes are also often
of highest importance. Therefore, the proportiohshe change classes are small,
variable, and important. This fact makes themntiost susceptible classes under the

newly discovered pitfall.

How do we quantify the severity of this pitfall’?n lemote sensing studies, the
producer accuracy is defined as the detection sacagainst omission error, and the
user accuracy is defined as the detection sucgasssh commission error (Congalton
1991). In section 3.7, we studied empirically ttignamic nature of producer
accuracy and user accuracy as they are influengetlass proportions in training.

They seem able to catch the problem. How ser®u8 i

For the case of Decision Tree, when the propouiforhange class in the training
set is gradually adjusted from 5% to 95%, the pecedwaccuracy increases from 64%
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to 98% while the user accuracy drops from 95% t#%45In addition to Decision
Trees, other popular contemporary algorithms sughSapport Vector Machine,
ARTMAP neural nets, and Self-organizing Maps alalb prey to this pitfall. The
only algorithm that is largely immune to this effas the Maximum Likelihood
Classifier. The user and producer accuracy pratiucg MLC are invariant,

although not always unbiased, when the class ptiopsrin the training data change.

Therefore, we interpret our empirical findings asast nonparametric classifiers
increasingly overestimate any class when the trgimiata proportion of that class
increases in a training set of fixed size. Vicesaethey increasingly underestimate
any class when the training data proportion of tta$s decreases in a training set of
fixed size. In short, the outcome of classificatis highly dependent on the class

proportions in training.

There seems to be a simple internal relationshigvden underestimation and
overestimation in classifiers. This relationshgm e easily pushed in any direction
by increasing or decreasing training data in asclag herefore, this issue likely does
not just exist in change detection studies, but Epresent everywhere in the broader

field of classification of remotely sensed data.

Through our empirical study in chapter three, weeh&éound that, different
geographical regions have different patterns ofr@stemation and underestimation.
This implies that a significant challenge existscontinental-to-global classification
study of remotely sensed data. If we have litdeno control over the balance of

underestimation and overestimation errors, then #@me class might be
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underestimated in one satellite scene yet overattonin another. In addition, the

smaller the satellite footprint is, the more likélys affected.

This effect was well hidden in a sense. In chagbtee, we found that when the
proportion of change class in the training set wedgisted from 5% to 80%, the
overall accuracy always stays above 85%, whichdeaent performance. In most
real-world applications, the overall accuracies aften used as a benchmark for
project success. The overall accuracy hides th&tians in user and producer
accuracies. In remote sensing studies, researehnersften interested in thematic
information of one class, such as forest, wated, @aban, instead of all the classes.
Those studies will suffer the most from this pitfalChange detection studies are
also among the most-affected because a single el@dags such as deforestation is of

highest importance, yet the problem has been hidden

The sufficiency of training is not a new topic ofsclussion. In the past,
researchers have directed their attentions to tifécient quantity of training.
Several contemporary studies have looked at tleetedif the total training set (Foody
et al. 1995; Foody and Mathur 2004; Song et al5260@0dy et al. 2006; Rogan et al.
2008), and the effect of sufficient training daba €ach class (Pal and Mather 2003),
but there has been no study of over- and undanastn caused by class proportions

in the training set.

In this chapter, we will investigate the mathenstmrigin, magnitude of impact,
and the solution to this newly-found pitfall thategtly challenges the reliability of

data products from remote sensing.
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4.2. Why are Modern Classifiers Heavily Influenced by Cass

Proportions in the Training Data?

Modern supervised classification of remotely sendath starts with a training
dataset usually collected either through fieldworky visually-interpreted
high-resolution images. The training process éffety tunes the classifier model
towards the best overall accuracy for a given ingiiset. The tuned classifier model
is then applied to the whole image. The clasdificaresult is then compared to a
set of and reference validation data for accurasgessment. The accuracy
assessment benchmarks the performance of thefidassn, and gives a confidence
interval of accuracy on the whole image. Very woftéhe training data and the

validation data come from the same fieldwork orgeanterpretation process.

This has been a quite standard procedure for thietipeee decades. Past studies

on the general methodology of training procedusaseHocused on two topics:

1. How to collect training data so that the traghdata covers all the features in
the feature space while being minimal in numbemo{fy and Mathur 2004; Foody et

al. 2006).

2. How to choose the sampling scheme for validatiataset in accuracy
assessment so that we can estimate the confidetereal for accuracy on the whole

classified image (Stehman et al. 2003; Stehman;2Z8@hman et al. 2009).

An overlooked aspect is the arrangement of claEnbea inside the training set.

Collecting training data in real-world applicatiois costly and often limited by
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geographical accessibility.

We propose that, the sampling design of the trgiset should not be based on
data availability, or merely for the conveniencestatistical accuracy estimation, but
instead it should be directly targeted for the mjation of a given classifier

algorithm.

In chapter three we demonstrated that the supeérgtassification process is
more complicated than simply building classificatimodels based on an arbitrary
training dataset available. In this section, wk @amine, one by one, how modern

supervised classifiers were designed to use tlss akdormation of the training data.

4.2.1. Maximum Likelihood Classification

The training process of MLC is solely dependent taro basic statistical
measurements: the mean of each class, and theiam@rmatrix among all the
classes (Equation 2.6). These two form an ellgpgor each class in the feature
space. If we introduce more training data pointky dor one class, the mean and
covariance matrix are not easily changed. MLC ukescovariance matrix in the
determination of class boundaries. Thus the clagsndaries are not easily

changeable and the classification result is al$e@asy to be changed.

However, when a class is described by only a vergllsamount of training data,
and that small training set contains some erroesfduexample to misregistration or
misinterpretation of ground features, then the meanter of the class might be

substantially changed. This could explain the saddrop of accuracy at extreme
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ends in graphs in section 3.7

Another known problem regarding classes happensnwiiee ellipsoids
characterizing different classes are not separabliéey can simply overlap with
each other, or go through one another. In tha¢,ce®.C might fail completely.

This is caused by the definition of classes, nased by class proportions in training.
4.2.2. Decision Trees

The training process of DT starts with calculatifrgropy of the training dataset.

Entropy(S) = Y - p; In(p,) (Equation 4.1)

> -
In this equation, jpis the percentage of data points in class i outhefwhole

training set. It is very obvious that if we intra@ more training points into one of

the classes, the calculation of Entropy is now ifgantly affected. Thus the

building of the decision tree will be altered. Téfere, Decision tree might be the

classifier most sensitive to class proportion \tasies in the training set.
4.2.3. ARTMAP Neural net

The training process of ARTMAP is the matching gsxof clusters identified by
two ART modules. One ART module performs clustering ugheg training label,
and the other ART module performs clustering ughey spectral data. Increasing
the amount of training data for an arbitrary classild increase the ‘coverage’ of
clusters of that class in the feature space, aadsléo overestimation. However,

judging from this mechanism, the center of the teltssshould not be changed a lot.
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ARTMARP is expected to be less sensitive to theatam of training data proportions

than Decision Trees.
4.2.4. Support Vector Machine and Kernel Perceptron

The contemporary SVM and KP algorithms are basethersoft-margin SVM

p
design. The internal optimization function 'min(%<w-w> +CF(Z§k)), in
W k=1

which C is the penalty coefficient angl, varies between 0-1, allowing some data
points to exist between the hyperplanes (class dmigs) in Hilbert Space. This
design was first introduced to effectively dealhmihseparable classes. In chapter
three, we found that it also had an unplanned betfuli side-effect of error tolerance.
However, this design also leads to another unpkhramel unwanted side-effect: the
hyperplanes could be pushed to move substantiaWhen a class is given more
training data, the hyperplanes around this cla@ipushed outwards, eroding other

classes. This might be one origin of the problem.

Another hidden mechanism is the cross-validatiovl)(&age (Stone 1974) in the
tuning of classifiers. SVM with a specific kermededs to tune the parameters of the
kernel for the maximum possible accuracy. ThisstAge can achieve best accuracy
for a given training set. However, there has beerdocumented rule on how to
construct the training set for CV. Researcherallysjust take a random sub-sample
of the available training data. This also might @®ther cause of the problem.

Worth noticing is that, this dubious CV procesal&o present in most neural nets.
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4.2.5. Self-Organizing Maps coupled with Learning Vector Quantization

(SOM-LVQ)

Kohonen’s Self-Organizing Map (SOM) neural netwaska special kind of
neural network. It is not a typical feed-forwaretwork, and not a typical recurrent
network. It does not have the popular design dfién layers either. It consists of
two layers: the input layer which contains neurafisthe amount of input data

dimension, and the output layer which contains@dmensional neuron array.

Weights

s II. \11-\.
0 & 0 Input Layer

Figure 4.1 The workflow of Self-Organizing Maps &l from the help file of the
Idrisi software)

In the first step of training stage, known as ttearse tuning’, the neurons in the
output layer are derived in such a way that theoreicorresponds to clusters in the
spectral data, and each neuron is kept at a destaoim other neurons. Neurons are

then labeled into each class.

In the second step of training stage, known asfite tuning’, Learning Vector
Quantization (SOM-LVQ) creates a topology of newgrom the output layer.
Neurons that are similar in the feature space wake the class boundary expanding

outward.
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The design of SOM-LVQ is somewhat controversial tbe issue of class
proportions in training data. The ‘course tunipgrt will not provide a very high
accuracy in the training area, but might be effectiagainst the pitfall
overestimation-underestimation. The ‘fine tunipgit will provide a high accuracy
in the training area, but is susceptible to th&pibf overestimation-underestimation.
In summary, SOM might be of some value without‘fime tuning’ phase, but it is to
be examined in real-world cases. SOM-LVQ was dised only briefly in chapter
two. It was not used in chapter three. It isadtrced here simply because of its

potential to help overcome the pitfall of over amtlerestimation.

4.3. Prioritized Training Proportions (PTP): Reducing the

uncertainties in classification and change detectioof satellite data

In the previous discussion, we have outlined theettainties and the possible
causes of a previously hidden issue for all clasgibn-based change detections.
Empirical studies in chapter three showed thatradbern supervised classifiers but
MLC are strongly affected by variations in trainisgt proportions, and that past

studies in the methodology of machine learning hrentadentified this issue yet.

Remote sensing studies, especially those aimingprtinental-to-global scales,
need a way to minimize this uncertainty. In thest®n, two candidate solutions are
proposed by going to the source mechanisms of gisper classifiers, and by
combining the strengths of different hard classsfi®m make a joint classifier. This
is expected to reduce the uncertainties in theestenation-underestimation dilemma.
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This joint classifier will be based on a new optiation goal, and make use of SVM

and MLC together.
4.3.1. ATale of Two Optimization Rules

With the exception of MLC, all modern supervisedassifiers described
previously have the same optimization rule: maxatian of overall accuracy in the
dataset used for cross validation. The dataset imsecross validation, however, is
usually only a random subset of the training sdtus Bayes Optimal was aimed for
the data population but actually achieved for tlaengle. Therefore, the first
optimization rule we propose, is to indeed achiBayes Optimal for the data

population

Another optimization rule we propose here is th@imization of the absolute
difference between the estimated omission datagaimd commission data points for

aKey class. Let us call this tigayes Optimal for a Key Class

Assume there are M classes in the dataset, angrdpertion of each class in the
training set is written asP, i=1 ..., K,... M. The Kth class is chosen as the imos

important class.

E ., 1<K<M

The proposed optimization rule is to feed a superviclassifier with training
datasets designed to ha\®, enumerated from 0~1, and find out the optinigl so

that:
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Argmin |[NQ — N |
P (Equation 4.2)

where N7 is the pixel count oOmission errorsn the K(ey) class, andNg is

the pixel count o€Commission errors the K(ey) class.

NS and NS are the direct results of a chosen scenario sbgiaoportions in a

training dataset with a fixed total amount of dabnts.

This optimization rule defines the optimal classifion as when the magnitude of
omission errors is closest to that of commissiororer for theKey class. It is
designed this way because in the general clagstircapplications, not all the classes
are of equal importance. Especially in change diiete applications, the change
class is always of the highest importance. Th&opation rule prioritizes the Key

class, and thus we call it PTP (Prioritized TragnRroportions).

Geographers are more familiar with the confusiortrima Let us use it to
illustrate our ideas. For a 3-class classificatmin Persistent Forest, Persistent

Nonforest, and Forest Change, we have the followorgusion matrix:

Table 4.1 A standard confusion matrix for a 3-cladassification

Classification
Assessment Persistent Forgst  Persistent Nonforest ForegteCha
Persistent Forest Al A2 A3
Persistent Nonforest Bl B2 B3
Forest Change C1 C2 C3

The Bayes Optimal for the data populatiagpal maximizes the sum of the

diagonal items (A1+B2+C3).

The Bayes Optimal for a Key Claggal, when we treat the Forest Change class

as the key class, minimizes the absolute differem¢@3+B3) - (C1+C2)]
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Another perspective to interpret tBayes Optimal for a Key Clag®al is rather
important in reality. For example, a carbon maustds an unbiased estimation of
the forest change inventory statistics in the Ammazmut it does not need a quality
map. The total amount of forest change found leyclassifier is A3+B3+C3, while
the total amount of forest change found by the sssent is C1+C2+C3. The
carbon model wants these two numbers to be as ag®ssible, which means the
minimization of the absolute difference in [(A3+B33) - (C+C1+C2)], which is

equal to [(A3+B3) - (C1+C2)]. This is tligayes Optimal for a Key Clag®al.

Other researchers have already outlined similatsggast without a working
solution. In R. M. Lark’s milestone paper (Lark95) he listed a large number of
possible optimization goals, and this was listetliagoal No. B1. He tried to give a
solution using prior probability modeling in the I@Lframework. We will discuss
more in the next chapter and show why the solusomrong. The so-called ‘Pareto
Boundary’ of omission-commission errors (Boschetttal. 2004) is basically the same
thing but with an unnecessarily complicated matheralmodel, which gives an
ambiguous zone of possible solution. Another statgo concentrated on this
guestion and tried to extend Lark’s work. It wdsritified (Boyd et al. 2006) that
‘statistically significantly increases in accuraesere achieved through the use of
simple binary classifications by DT and SVM thamead to separate the class of

interest from all others.” But how this worked was understood.

These two optimization rules are actually veryightiorward both in theory and

in implementation. It only takes three simple stepimplement them.
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The first step is to construct a cross validatiatadetV, ., using a subset of all
the available training data. This validation datasill have approximately the same
class proportions as in the whole study area. dlagss proportions should be
estimated without full prior knowledge of the dgapulation. In the next section
we will discuss in details how to do this. Bothiopzation rules will need this step,

but only the PTP rule needs the next two steps.

The second step is to create many training datasatg the available training
data points. These different training datasets$ lvél denoted asl,, because they
enumerate all the possiblg, values from 0 to 1. These different training data

will be used to train classifiers and find out whid¢raining dataset produces

Argmin [N2 - NS |.  The optimal P, is denoted asP; .
P

The third step is to create the largest possitdnitng datasetT, with the
optimal P,. This training dataset will be used to build tptimal classifier that is

used for the change detection analysis.

These three steps will be discussed in detailseslantly in three subsections.
4.3.2. Redefining Cross Validation

Contemporary supervised classification algorithregksthe maximization of
overall accuracy in cross validation (CV). For mxxde, the RBF kernel used in
SVM requires the parameters C and gamma (explamselction 4.2.4) that produces
the best overall accuracy. Contemporary crosslaudin is the so-called “N-fold

Cross Validation” (Stone 1974), in which all theadable training data points are
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evenly partitioned into complementary subsets,queting the analysis on one subset
(called thetraining sej, and validating the analysis on the other suksaited the
validation setor testing set This CV approach uses a validation set with
approximately the same class proportions as irtrtieing set. This is, however, a

hidden link between the training set and the véilideset.

The validation set used in our algorithm must hineesame class proportions of
the whole study area. In this way, cross validatwill generate the optimal
parameter set not just for the validation set, &lsb for the whole population.
However, before the change detection, we do nowkiin@ true class proportions in
the whole study area. Even after conventional siged change detection, the
estimated class proportions in the whole study areanot reliable because of the
overestimation-underestimation problem among theassds. This is a

chicken-and-egg dilemma.

Fortunately, we discovered in chapter three thatCMias the rare property of
being largely resistant to the overestimation-ueskmation problem among the
classes. Thus we can perform an initial roundhainge detection using MLC with a
training set with equal amount of training dataach class. This does not give us a
classification result of fabulous quality, but ivgs us an unbiased estimation of the
class proportions in the whole data population. isTihformation is called “class
prior” in hundreds of papers published from 1980s1990s (Strahler 1980; Lark
1995). We will discuss more about it in sectiob.d. Those studies use this “class

prior” information in the posterior probability melihg of classification results. In
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Lark’s study, he outlined different classificatioptimization goals, and varied the
class prior probability among the classes to aehitvose goals. Our approach, on

the other hand, varies the class proportions irtrtieing and validation sets.

Let us use a concrete example to illustrate hoereéate a standardized validation
set. Assume that we are studying three classes #study area of 500 square
kilometers. We have 1000 known data points aviglab500 data points belong to
class A, 410 points belong to class B, and 90 pdietong to class C. Class C is the
key class, i.e. the class of highest practical ingyece. We will perform a MLC
change detection using 90 training points in eaessc Then we find out the
approximate class proportions in the study area%®, 32%, and 13%. Then we
retrieve the largest possible subset within thiso§&000 points:V,,, =min(500/0.55,
410/0.32,90/0.13)=692, of which 380 points comesnfrclass A, 221 points come

from class B, and 90 points come from class C.

4.3.3. Enumeration of Key Class Proportion in the Training Dataset

After we have a standardized validation set, wd wdle it to find what the
optimal class proportions in the training set reate. The goal is to achieve the
minimization of difference between commission emod omission error for a given
key class. This is performed through the enumamnadi key class proportion in the

training set.

Let us use a concrete example to lay out this idéasume we have 1000 data

points collected from the study area. Three ckag8e B, and C) are used in the
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study. The enumeration of class proportions vélshown in table 4.2:

Table 4.2 An example for enumeration of key clasggrtion in training data

Enumeration of Key | Percentage of training Percentage of training Percentage of training
points in class C points in class B points in class A
Class ProportionI?K )

10% 10 45 45
20% 20 40 40
30% 30 35 35
40% 40 30 30
50% 50 25 25
60% 60 20 20
70% 70 15 15
80% 80 10 10
90% 90 5 5

Although we have 1000 ground data points availalvkedo not use all of them
together. In the enumeration of key class proportive need to make sure the total
number of training points stays invariant. In otlerds, we want to isolate the

effect of class proportions from the effect oftrag dataset size.

Each training set is used to construct a classificanodel, and is then applied to
the standardized validation s®t,,,. Omission error Kl) and commission error

(NZ) are then calculated. Table 4.3 shows the detailecedure for optimization.

In this table, we find that the balance between ra@sion error and omission
error is reached somewhere whéy is between 10% and 30%. We repeat this
step using finer stepping of 1% increment in thegeaof 10% and 30% to seek for the

optimal balance pointP,. For example, we might find it at 17%.
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Table 4.3 An illustration of possible omission-comssion dynamics due to
enumeration of key class proportion in the trairseg

Enumeration of Key | Commission error in| Omission error in | N,? B NE |
Class Proportion F(K ) key class {\IE ) key class t\lf )

10% 0 45 45
20% 2 10 8

30% 10 0 10
40% 17 0 17
50% 50 0 50
60% 120 0 120
70% 340 0 340
80% 560 0 560
90% 650 0 650

4.3.4. Constructing the Largest Possible Training Dataset and the Optimal

Classifier Model

With the optimal balance poinP; located for the key class, we will construct
the largest possible training datasgt out of the 1000 available data points. It is
min(550/((1-0.17)/2),410/((1-0.17)/2),90/0.17)=528,which 220 points come from
class A, 220 points come from class B, and 89 pamsime from class C. In this
training set T, , every class that is not the key class shares| equaunt of training
points.  Strictly speaking, this is still not thaeal solution for the non-vital classes.
An improvement would be to rank the class in ordeimportance, and optimize

them class after class recursively. However,ittesa is left for future development.

T, is then used to derive the best classifier mod#. doing so, it is very
important that we need to bypass the cross vatiddiuilt in those classifiers. The
reason is that we already achieve a better crdskatian described in 4.3.2 and 4.3.3.

If we allow the classifiers to use the built-in @xbcedure, it would not be optimal.
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However, the classifiers still need some paramegersh as C and gamma in the
case of SVM with RBF kernel. These are usuallyveerthrough CV. When we
bypass the CV procedure in the final training stage can directly use those

parameters derived in the process of identifyiRg.

With these three steps, we have improved the cquigarny cross validation
notion in the field of machine learning, and we tanld a joint classifier by linking
MLC to any classifier of SVM, DT, or ARTMAP neurakts. In chapter three we
have identified that SVM and KP have some uniquengiths compared to others, and

thus the soft-classifier is implemented in thissdrsation in the form of MLC-SVM.

In the next section, we will illustrate the perf@ante of the joint classifier

MLC-SVM constructed using the method describedis $ection.

4.4, Assessment of the Joint Classifier MLC-SVM

4.4.1. Assessment Design

In this section, we will assess the practical usevo new approaches against a
widely-used contemporary practice, which consistst@tified sampling of training
data. The first new approach is to gain tB&yes Optimalfor the whole data
population, and the second new approach is to Bayes Optimafor a key class in

the whole data population. These two goals weseudised in section 4.3.1.

The data we used in this assessment consist ot aigighboring Landsat

scene-pairs in Paraguay and also the correspofmiest change map. These scenes
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contain very different deforestation patterns. stme scenes, about 20% of the total
land area was deforested in the time span of 16syednereas in other scenes, only
2%-3% of the total land area was deforested. Wieipated that, the variation of
class proportions in different areas will cause sovariations in accuracy. This

offers us a good opportunity to study the differ&sponse of the three approaches.

In every Landsat scene, only the central 100km-{@kin region will be used.
This is a carefully calculated region ensuring merap with neighboring Landsat
scenes. This criterion for data selection willyamgt unnecessary confusion due to

some areas being included twice.

For every Landsat scene, 2000 points collected fiteenforest change map are
assumed to be accurate and used as the training dahe methods of sampling o
will be described in the next section. The maptlé whole 100km square
(3200-by-3200 pixel region) is used in the accurasgessment after the change

detection.

Similar to the experiments in chapter two and three define three classes in
this multi-temporal assessment. They are foreftiest, nonforest-to-nonforest,
and forest change. Among the, the class of fareahge is of highest importance
and is treated as the key class. There has beeotimeable land cover change of

nonforest-to-forest in the region. Thus we dohmente this class in the experiments.

4.4.2. Approaches in Comparison

Three approaches are designed, with significaferéifices in the training stage.
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The first one, namely the ‘Stratified’ approachthie most popular approach used in
contemporary and past studies on remotely-sensejemi and other machine
learning applications alike. The training set &0Q points is chosen with equal

amounts from three classes. This is a stratitdlom sampling.

The second approach, namely ‘PTP’ approach, wasrided in section 4.3.1.
The training set of 2000 points is chosen withdp@amal class proportions identified
as:

Argmin [N — N |
P (Equation 4.2)

The technical steps were discussed in 4.3.2~4.3.4.

The third approach, namely the ‘Adaptive approashhe simpler optimization
rule of the two discussed in section 4.3.1. itasy similar to the PTP approach, but
much simpler. Basically we construct the trainanmgd the validation sets with the
class proportions estimated using MLC. It neeéstéichnical steps of 4.3.2, but not

the steps in 4.3.3 and 4.3.4. For its simple cangon, we call it ‘Adaptive’.

Let us visualize how the modern classifiers workVith given classes A, B, and
C, the classifier tries to delineate the boundanpiag them. As we pointed out in
this chapter, the configuration of class proposiam the training data is the hidden
driving force behind the delineation of class baanwk. In the following drawing
(Figure 4.2), the three vertices are the centedases A, B, and C and the red dot is
the ideal place where the class boundaries shoakt.m The green lines meet at the

location where the class boundaries meet together.
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Figure 4.2 Class boundary illustrations in threprapches

The “Stratified” approach uses the same amountaafihg data from each class,
and thus will overestimate the classes whose trapgption in the study area is less
than 1/3, and will underestimate the classes whrogeproportion in the study area is

more than 1/3.

The “PTP” approach optimizes to find the optimaldbon for key class C, but in
the current version of PTP algorithm, we have nonapation between classes A and

B. Therefore, our solution is close to the ideahkion, but not perfect.

The “Adaptive” approach uses the same proportidnsaming data as in the
whole study area, and thus should be quite closéhéoideal solution of class
separation. However, the optimization rule in thi®nario is the maximization of
overall accuracy, not emphasizing the key clasg. stiidies with more classes, the
class boundary in the feature space will be mormpticated. This adaptive

approach might be less effective in studies invavnore classes.

In the next section, we will present the outcoméheke three approaches. The
actual pictorial outcome will be also illustrated show the obvious effect of

underestimation-overestimation.
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4.4.3. OQutcomes

The following table shows the overall accuracyhs eight Landsat scenes under

three different approaches.

between the “Stratified” approach and the “PTP”rapph.

increase of accuracy from the “Stratified” approack the “Adaptive” approach.

Table 4.4 Overall accuracy in 8 study areas off8@gches

We can see that, tisereally not much difference

But there is a significant

Study Area (WRS-2| Overall Accuracy in | Overall Accuracy in| Overall Accuracy in
Path/Row) “Stratified” approach| “PTP” approach “Adaptive” approach
Area 1 (225/77) 89.8 89.7 91.2
Area 2 (225/78) 88.5 89.7 93.6
Area 3 (226/76) 87.5 89.6 92.4
Area 4 (226/77) 87.3 91 96.0
Area 5 (227/75) 91.9 934 94.1
Area 6 (227/76) 87.6 88.8 89.6
Area 7 (228/75) 85.6 86.4 Failed
Area 8 (228/76) 89.6 90.4 89.6

These results are better illustrated in the follm\echart.

< 0o~ c oo >

Area 1l Area 2 Area 3 Area4 Area 5 Area 6 Area 7 Are:

m Overall Accuracy with the Stratified Training Set
m Overall Accuracy with the Adaptive Training Set
= Overall Accuracy with the PTP Training Set

Figure 4.3 Overall accuracy in eight study areathigfe approaches
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The “Adaptive” approach was designed because weigatied it to have better
performance than the “Stratified” approach. Itdulee class proportions estimated
by MLC to construct a training set for SVM. Thergastep is used as the first step

in PTP algorithm.

What surprised us is that this adaptive approa@mseto have even better
performance than the “PTP” approach, in which wkaeditra optimization on the key
class. There are two possible reasons for thigpewted finding. The first reason
is that this version of the PTP algorithm only apies one key class, while ignoring
the other two classes. The PTP algorithm shouldfusther developed into a
recursive optimization of classes ranking from miosportant to least important.
Then it should outperform the adaptive approachhe $econd reason is that our
change detection is basically a 3-class supenakessification. We have illustrated
in the previous section that, such a simple caser$ahe adaptive approach. As the
number of classes increase, the class boundarkeirfeature space will be more
distant from the adaptive estimation. The rec@&dMP approach might be more

successful at that time.

We also found that, the adaptive approach failedpdetely in test area seven. 7%
of the total land area in scene 7 is forest chaagé,the land cover patterns are very
complex. What happened in the adaptive approadiat the class abstraction
power of MLC failed almost entirely to identify tlelange signal and estimated that
only 0.1% of the land area is forest change. Trhaeihg set fed to the SVM

procedure thus only contains very few change pixeBue to the soft-boundary
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nature of SVM, the change class is completed igharehe output. The resultir

change map carries no change at all, and is tinsidered a total failur

Let us also look at the user accuracy and prodamarracy of the most importe
class: the forest change class. The followingréguiell the real story hidden behi

the seemingly identical numbers of total accuracfygure 4.3.
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Figure 4.4The User Accuracies and Producer Accuracies aftatifged Training

We can see from Figure 4.4 that, user and prochmairacies are really unequa
The difference between them can be huge in stest areas In the “Stratified”
scenario, the producer accuracy is always muchehititan the user accuracy. T
indicates gross overestimation of the change class. WiIdy idihappen? In
stratified 3elass supervised classification, training data fech class are of eqt
amount. However, we know that the forest changsscuisually only take up a sm
percentage, s as 1%~10% of the land surface. The change idadmost alway
the minority class in any thematic change detectinalysis. Therefore, assigni

equal amount of training data to each class al@ostys will lead to ove-estimation.
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Let us check ithe PTP and Adaptive approaches can do the joér!
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Figure 4.5The User Accuracies and Producer Accuracies afiérRaining

The balance between user accuracy and produceraagcs much better, bin

some cases still far from ide
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Figure 4.6The User Accuracies and Producer Accuracies affapfive Trainin

The “PTP” scenario and “Adaptive” Scenario bothdle» more balanced

producer accuracgnc user accuracy. In half of the areas (a&& 4, 6), those tw
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scenarios improved the user accuracy very sigmifigg20%~70%).

This shed light on one of the oldest mysteries ldnge detection: while the
overall accuracy is quite decent, why do we havey d\ew user and producer
accuracies of the change class in some studies? ar@wer is that, the hidden flaw
in the design of the training stage causes the pser and producer accuracies in the

change class. This is completely avoidable.

Another purpose for the PTP algorithm is to give ttosest estimation for the
total amount of the key class. This was discussadction 4. 3.1. Did we achieve
that goal? Let us evaluate the ratio between theuat of change pixels detected

and the amount of change pixels in reality.

Table 4.5 The amount of detected change normaliyetat of real change

Area (WRS-2 Stratified Training PTP Training Adaptive Training
Path/Row)
Area 1 1.27 1.15 1.05
Area 2 2.97 1. 34 1.19
Area 3 2.63 1.45 1.03
Area 4 16.85 5. 87 2.15
Area 5 1.23 1.02 1.00
Area 6 1.99 1. 36 1.04
Area 7 0.84 0. 69 0.66
Area 8 1.28 0.99 0.99

We found that, the PTP algorithm only partially seds design goals. Its
performance is a lot better than Stratified tragnset. However, in six out of all
eight test areas, its estimations were worse tiaset using the much simpler
algorithm: the Adaptive training set. Thereforésinot an unbiased estimator of the

magnitude of a key class as we expected.

109



A by-product of this experiment is tl we found ahuge amount of uncertainti
brought bystratified training, which is the most popular aggh in contemporar
studies. If such results of forest change were uas inputsin a carbon model,
would be the*Garbage in, Garbage o situation. We need to prevent this fro

happening.

Now, let us have a look at the actual change mapslting from the thre
scenarios. By comparing these maps, we will searlgl the oveestimation of

small classes in the conventional apprc

Landsat TM 1990 4-2  Landsat ETM+ 2000 7-4-2  Reference Forest Change |
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Figure 4.7Comparison of class overestimat-underestimation in area c

Area oneconsists mostly of clo-canopy forest, mechanized agriculture,
major deforestation. In the images above, we clasearea that went throus

selecive logging to full clee-cut. It is quite hard to distinguish the differer
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between selective loggings and c-cut s spectrally. The reference ndefined the
area which had been selectively logged as-forest. The three scenarios h:
different estimates of forest change. The “Stratified” scen#éreated aboul/4 of
the selective logging area as forest change, whée“PTP” scenario treated abc
1/10 of the selective logging area as forest change, tard“Adaptive” scenari
treated everiewer pixel: in the selective logging area as forest change. Tdrer;
the “Stratified” scenario overestimated the forelstnge clas while the other tw
approaches put the errors under co. When all other parameters are the same
class proporons in the training set made a significant differe, especially &

ambiguous places.

Figure 4.8Comparison of class overestimat-underestimation in area t

Area two is characterized by the agricultural practice ofmifg-sized
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encroachment around a hilly forest. The tiny sofi land patches shows hc
important automated change detection is. Our tilsnarios showed a striki
difference among them. The “Stratified” scenariver@stimated forest chan
severely. The “PTP” scenario and the *” scenanthimade excellent emation of
forest change, compared to the reference ground midpwever, we have seen
obvious overestimation of forest area in the “PBP&nario. In this Landsat sce
forest is actually a minority class. Most of thed has been cultivated. OIPTP”
scenario gave equal amount of training data tddrest class and the nonforest cle
and then ends up with overestimation in forest. is ®hows us the importance

recursive optimization of the PTP algoritt

Landsat TM 1990 7-2- LandsaETM+ 2000 7-42  Reference Forest Change |

Figure 4.9Comparison of class overestimat-underestimation in area th

In area threewe observe both selective logging and severadsygf agricultura
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land use, some of which are similar to woodlandcsp#ly. Again, we observed tt
similar pattern shown in previous stuarea The stratified scenario overestima
the change class, which by nature is almost always m@orty class. The PT

scenario and Adaptive scenario perform be

Area fourhas a very complex int-annual change of land cover types becau
goes through seasonal flooding. The pictures alstow a dry river bed, which i
some years are flooded. The different water cdrdeastically changes the spect
signature of the nonforest land. Under such aasdn, the “Stratified” scenari
overestimated a lot of forest change in the drerrive.  The “PTP” scenario hi
some sporadic pixels misclassified in the river,bstile the “Adaptive” scenari

performed best.

Landsat TM 1990 7-2- Landsat ETM+ 2000 7-4-2  Reference Forest Change |
TS TR TR -

Figure 4.10Comparison of class overestimal-underestimation in Area fo

113



Area five located in the open woodland of Chaco, and igattarized by bot
the inter-anndavariation of flooding and local variation in wdadd structure.
Also special about this Landsat scene is that rabshe land area is cover fthe
open-canopywoodland. Again, the “PTP” scenario and “Adaptivetenaric

performed consistently bett

Landsat TM 1990 7-2- Landsat ETM+ 2000 7-4-2  Reference Forest Change N

“PTP” Scenario

Figure 4.11Comparison of clasoverestimationinderestimation in Area fi

In our theory, the “Stratified” scenario should #ihthe overestimation of fore
change and the underestimation of forest. Howewe, only observed th
overestimation of forest change, but not underestimation of forest. This leads
to conclude that at least for SVM, the rule of slaverestimatic-underestimation
due to class proportions in training set appliesano the conceptual classes that
diverse in the feature space, and ap less to the conceptual classes that
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congregated in the feature space. This inferem@asy to understand. The ot
class boundaries (hyf-planes) are pushed by the proportions of classesiming
set. But for classes that are “compact” ire feature space, even when

proportion of training data in this class is lesart it should be, it would still be he

for the hypermplane to shrink into the compact “cot

The subset of Landsat imagesarea sixshows how challenging it is to cond
change detection here. The open forest canopyi,irte-annual flooding, an
selective logging all have occurred here. Yet“®EP” scenario and the “Adaptive
scenario consistently excelled. The “Stratifiedésario showed moderate amo

of overestimation in the forest change class, as expe

Landsat TM 1990 7-2- Landsat ETM+ 200C-4-2  Reference Forest Change |
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Figure 4.12Comparison of class overestimal-underestimation in Area ¢

Area severtonsists mostly of Chaco woodland of various cartbpknesses du

115



to different water availability at the local scaleMennonites colonized this regir
and deeloped some ranches. Our three scenarios all $@we problems to deri
the change map. The “Stratified” scenario ~estimates the forest change clas
The “PTP” scenario overestimates the nonforessclag\nd the “Adaptive” scenar
failed compléely because the complexity of class signaturewelelmed the MLC

algorithm used to estimate the class proportiorteerwhole regiol

Landsat TM 1990 7-2- Landsat ETM+ 200C-4-2  Reference Forest Change |
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“Stratified” Scenario “PTP” Scenario “Adaptive” Scena

Figure 4.13Comparison of class overestimal-underestimation in Area se\

However, these problems actually showed that ceworthis correct. The “PTF
scenario would have solved all the problems, ifatl been implemented recursiv
to optimize all the classes instead of only theesbrchange class. The reason \
the “PTP scenario overestimated nonforest is because nesifts a minority class i
this region, but irour immatur PTP algorithm we gave it as many training pixel:
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for the forest class. Therefore, the complete temiuto the class proportion iss
calls for the improvement of the PTP algorithm. With tharent version of PT
algorithm, we do see errors in forest and nonfoesimations in this scene, but
forest change class has been estimated with ganday (90.8% user accuracy &

62.9% produaer accuracy

Failure of the “Adaptive” scenario in thareashowed us that, in areas wh
class features are very complicated and where pn®ce classes are significantly
minority, the adaptive can fail completelylts heavy reliance on MLC, wch

assumes Gaussian distribution, leads to its failuseich situation

Landsat TM 1990 7-2- Landsat ETM+ 200C-4-2  Reference Forest Change |
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Figure 4.14Comparison of class overestimal-underestimation in Area ei¢

In Area eight we observed that the variation of forest canopgstdy is well

tackled by all three scenarios. Overestimationnad signiicant even for th
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“Stratified” scenario. The reason is probably ttieg proportion of forest change in
the whole area is quite close to 1/3, which ispha&portion of change pixels in the

training set in “Stratified” scenario.

4.5, Discussion and Conclusions

4.5.1. Redefining the Designs of Training and Cross Validation

The construction of training set had been largelgrimoked in contemporary
remote sensing studies and other machine learrpplications alike. Researchers
tend to use as much training data as they can tndhey use equal amount of
training data for each class. It also had beegelgroverlooked in contemporary

machine learning studies as well.

To make the situation worse, the cross validatioluldn in the training stage of
many machine learning theories was flawed. It @ameve Bayes Optimal for the
training sample, but not for the data populatiomvented 35 years ago, it was
adopted as a standard technical process insteadnaichine learning theory. When
researchers assess a machine learning algorithey, tisually assess its own
theoretical or practical merits without expectindegacy problem in this technical

process. The problem was thus hidden like a lanemi

Our main argument is: since the proportions amdasgses in the training set lead
to the propensity of overestimation and underegiona then we can achieve
optimization simply by controlling the training datproportions among classes.

Thus we discovered that, contrary to common bedieiipervised classification might
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not be more accurate if more training data is usddactually could be worse.
What matters is not just the total amount of tragndata, but also the proportions

among classes.

But how do we optimize that? In this chapter wierefd two approaches. The
first approach is called PTP (Prioritized ProparsicApproach), designed to balance
the overestimation and underestimation of a kegscla The second approach is an
adaptive one, simplified from PTP. It is desigrtedoptimize for all the classes

without preference.

In both approaches, the class proportions of thelevstudy area are derived
using Maximum Likelihood Classification with equatior probabilities. It is the

only known algorithm largely unaffected by the sl@soportions in the training set.

The PTP algorithm made a new analytical rule ofrojzation: the minimization
of the difference between omission error and comsimiserror. PTP also changed
the contemporary N-fold cross validation rule tangsa standardized CV dataset

whose class proportions approximate those in theentudy area.

4.5.2. Effectiveness of New Approaches

The PTP algorithm tested in this chapter is anyedglelopment in a series. It
optimizes only for one key class. All the othessdes are treated as equals, which

we realized to be a drawback. The future roadni&® will be further outlined.

Even with the current version of PTP, we alreadyhieed significant

improvement when compared to the contemporary agproof assigning equal
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amount of training data for each class. In foutha eight test areas we examined
where the forest change class is less than 15%taifland area, we observed 20%~50%
increase in user accuracy at the cost of 10%~20%&dse in producer accuracy. In
the other four test areas where the forest chalags ¢s around 15%~25% of total
land surface, we observed 5%~15% increase in eseracy at the cost of about 5%

decrease in producer accuracy.

The following chart shows the amount of overestiomatinderestimation in the
first study area. We can see that as we use nmaten@re training data of change
class in a fixed-size training set, the absolutfedince between omission and
commission decreases at first, and then incregsdlya PTP algorithm picks the
lowest saddle point as the optimal solution. Hosvesas we can see from this graph,
the lowest saddle point is not easy to determinefluctuates a lot. This is possibly

one of the reasons why the PTP algorithm is stiliviely to perfection as of now.

The relationship between class proportion and estimation errors, site 1 Paraguay
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Figure 4.15 The omission-commission differencetirdg Area one
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The “Adaptive” approach, which is a simplified viers of PTP, achieved much
better than expected performance. We observedtihatenerally even better than
the current fledgling PTP algorithm in all aspectslowever, in one of the eight areas,

it failed completely when MLC failed to classifyetltomplex feature patterns there.

4.5.3. Future Improvement of Prioritized Training Proportions Approach

The PTP algorithm needs to be improved in threedsp

The first and most important improvement is to it not just for the most
important class, but to optimize for all the classecursively, from the most
important class to the least important one. Tle ofioptimization is still the same,

i.e. the balance between omission error and cosiomrror for each class.

The second aspect of improvement is in the estimaif class proportions in the
whole study area. As we have seen in the testsaen, MLC couldn’t handle the
complex spectral features when the change clasg asdounts for a very small
fraction of the land surface. When that happemscan only get the estimation from

running an SVM classification with equal trainingtd for each class.

The third aspect of improvement is in the sub-oation in big conceptual
classes. We have found that class proportionsaining data affect more on the
classes that have very diverse sub-classes inetiteré space. For example, the
nonforest class is more diverse than the foressscland is more prone to
under-over-estimation problem. Within the nonfoidass itself, there also exists an

under-over estimation problem among the subclass@sr proposed method is to

121



perform the PTP algorithm for the clusters in coemptlasses. The clusters can be
identified using unsupervised classification meteadh as K-means and SOM (SOM

can act both as supervised and unsupervised atasisin).

Another major use of the PTP principle in conceptlesses will be discussed in

the next chapter specifically for change detection.

4.5.4. The Relationship between Training Class Proportions and “Class Pridr

Probability

This is not the first time that researchers looladthe importance of class
proportions. After Maximum Likelihood Classificati was first invented (Chow
1957; Chow 1962), some researchers looked at tpications of class proportions
in the study area for MLC. They named it the “Gl&sior” probability because they
thought it can be used in MAP (Maximum a Posteriorodeling framework (Hughes

1968; Haralick 1969). The result is Equation 2.1.

This framework was introduced in the field of remmsensing (Swain and Davis
1978; Strahler 1980). Strahler reasoned theottighat this “Class Prior”
probability should improve the accuracy of classifions. The MAP framework for

“Class Prior” is as simple as:

Puar = Puic * Fevass
The MAP probability of a pixel is equal to the MipZobability multiplied by the
proportion of this class in the whole study are@his idea dominated the next three

decades in remote sensing. However, Strahler Ifimgported an insignificant
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increase in the overall accuracy of MLC after adapprior probability. Swain and
Davis warned that the use of prior probability niighfairly discriminate against the

rare classes.

This series of research done by Chow, Haralick,igveand Strahler constructed
the framework of the Maximum Likelihood Classifend the use of prior probability.

However, the issue of class prior probability waswithout controversy.

Then in the 1980s and 1990s, dozens of remotergeapiplications claimed to
increase more or less improvement of accuracy usisgframework of MLC with
various prior probabilities. Apart from these apafions, a true pioneer in the
theoretical development of MLC for remote sensimdriM. Lark (Lark 1995). He
pointed out that “no one map will be optimal frohetpoint of view of every user”,
because the confusion matrix is basically a baldmeteveen omission errors and
commission errors. Thus he went on outline seugrpbthetical optimization goals
very similar to the ones we listed in section 4.3.Then, he looked for the prior
probability settings which would enable the MLC aithm to achieve those goals.

He was thus quite against the idea of using equ@i probabilities.

In 2006, G. Foody picked up Lark’s work. In muléippapers(Boyd et al. 2006;
Foody et al. 2006), Foody reasoned that “The gbibt use a small training set is
based mainly on the identification of the most infative training cases prior to the
classification.” Foody’s attention, although clgaoriginated from Lark’s work, was
diverted to the size of total training data. WHhhés is also a good study, he missed

the real target by inches. What really matteredasthe total amount of training
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data, but the relative class proportions of trajrdata.

A recent pioneering paper (Hagner and Reese 20@dp)oped to use the
classification results of MLC to reconstruct a neaining set, to be used iteratively
by MLC. He reported that one out of the three Isadscenes showed
improvements. Our understanding of his work id,tha was right to reconstruct a
new training set proportionate to the first MLC ukésbut applying this training for
MLC would not increase performance. The reasdahasMLC is very insensitive to
the class proportions in training. If he had aggblthe new training set to Neural

nets, Decision Tree, or SVM, he would have foumdilar observation as we have.

Let us have a closer look at this ‘class prior’lgability. Its use in the MLC
idea can be described in layman’s language in eneesce: A feature X should be
classified to a class, when the possible occurresiteeof that class multiplied by the
statistical probability that this feature belongs that class is maximized. This
guarantees the minimization of error expectationhenwhole data population for the
classification of every data point. When the scopéhe data population changes,
the class prior probability also changes, and tassdication results thus changes

with them.

The classification of a feature shouldn’t dependloan environment it is located
in. Afarm is a farm and should be classified darm, be it in the Corn Belt where
its class prior is very high, or in Lapland whetisedlass prior is extremely low. The
Class Prior Probability thus can contain so muctetminty. It can introduce more

errors than improvements into the posteriori ediiona
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An interesting experience happened in the earlyares stage of this dissertation.
Class prior was tried and we achieved 0.58% ovearluracy improvement over the
simple MLC of 1957, and there is virtually no disdble change in the cartographic

aspect either.

In the earlier section 4.2.1, we stated that theortical structure of MLC
without prior probability is not relevant to theask proportions in the training set or
in the whole study area. The empirical study iapthr three also found that version

of MLC is the only classifier largely exempt frohetinfluence of class proportions.

We argue that, the MAP method using “Class PriobRbility” is not effective as
other researchers proposed during the past 30.yeArsl we want to argue that, the
effective use of class proportions is not in the M#&amework as ‘Class Prior
Probability’ proposed in the past, but in how tastouct an optimal training set.

The effort of R. M. Lark (Lark 1995) failed in réglbecause of that.

Contrary to the popular belief in the past 50 yearssuggest that researchers did
not successfully improve Chow’s original MLC withelr various prior probabilities.
It is actually Chow’s simple and timeless MLC thatv can help researchers improve

other modern supervised classifications.

The use of prior information is absolutely necegg&apnik 1999). It should be

used as proportions of training proportions, ingtefin the form of prior probability.

4.5.5. The Relationship between Training Class Proportions and Boosting

In the landmark paper of boosting (Freund 199% atithor wrote:
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“Here the examples that are given to the learnilggradhm are generated by
choosing the instances at random from a distributieer the instance space. This
distribution is arbitrary and unknown to the learneThe central measure of quality
of a learning algorithm in the probabilistic seftiis the accuracy of the hypotheses
that it generates. The accuracy of a hypothediseigrobability that it classifies a

random instance correctly.”

What Freund actually stated is that the distributiof the (population of)
instances is unknown to the learner. The capgbilita classification algorithm
depends on if it can correctly classify a randotosgt of the (population of) instances

given a randomly known training set.

Freund’s approach is to draw random subsets irktimsvn training set, build
classifiers, and classify the data. Then decidethenlabel of the class through
voting by majority.

A decade after Freund's first paper describing bogsthere have been more
than a dozen boosting algorithms. Taking decidiee as an example for base
algorithm, there have been boosting methods sucthedfkandom Decision Tree,

Random Forest, and Disjoint Sample Trees. Thedhads have also been very

successfully applied in the field of remote sengiglver and Friedl 2002)

However, back in the machine learning field aga@ésearchers are still trying to

reason why boosting worked. For example, a pdfar 2005) reported that:

“Randomized decision tree methods have been reptrtbe significantly more
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accurate than widely-accepted single decision traisough the training procedure
of some methods incorporates a surprisingly rantimtor and therefore opposes the
generally accepted idea of employing gain functiotmghoose optimum features at
each node and compute a single tree that fitsdakee d One important question that is

not well understood yet is the reason behind tgh hccuracy.”

Now, what this tells us is that, the machine leagmesearcher are surprised at the
degree of success that boosting has achieved,haydare still trying to figure out
why a simple voting cast by randomized trainingssean achieve accuracy

improvement.

Our conjecture is that, boosting achieves the ampurpose as our PTP

algorithm and our adaptive algorithm, although tigio a different path.

Freund (Freund 1995) stated that the whole digiohuof the instances in the
feature space is unknown. His boosting approath énumerate random subsets of
training data. Our PTP approach and the adapgipeoach, on the other hand, try to
figure out the approximate distribution of instasice the feature space. This

information is achieved with the help of MLC.

Proving this conjecture would be out of my cap#péit this moment. It would

be left as an open question for the machine legringtd to prove correct or wrong.
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5. The Dilution of the Change Signal

5.1. Change as the Class with the Lowest Accuracy

The experiments in earlier chapters were desigadddk for the effect of the
training set. We found the important issue of €lpsoportions in the training set.
However, there is another mystery we have not solet. Why is the overall
accuracy almost always higher than that of the stoirghange class in all our
experiments? This is still the case even aftead@pted new algorithms in chapter

four. Therefore this is another possible sourcenziertainties and errors.

One possible reason is the complex spectral sigggtof land cover change.
Two reasons argue against it. First, we now haemynpowerful nonparametric
classifiers such as the decision tree, supporovestchine, and neural nets. These
classifiers are nonlinear by nature, and make fesumptions on the data distribution.
However, their results all showed the same probléat, the accuracy of the change
class is lower than the overall accuracy of alksés. Second, why is it always the
change class that gets affected the most? Themstfclass is also a very complex
class in the feature space. Thus the geographacadtion in spectral signatures is

not the correct answer.

Our analysis in this chapter will try to solve thmg/stery using a very simple

extension from the theory we developed in chapter. f

128



5.2. A Possible Dilution Effect in the Change TrainingData

Why is it always the change class that almost adwags the lowest accuracy
among all classes? This issue exists for all thesdiers. Thus it might not be
caused by the machine learning algorithm. We siigpere is something wrong in
the designing stage of change detection in genef@dbntemporary methodologies of
change detection mentioned in figure 1.1 can bel tsdind out what might have
gone wrong. The research community knows well tttegse contemporary
methodologies co-exist because we do not haveiaitdefvinner yet. Naturally, the
awkward change detection design might have songetioirdo with the sub-optimal

detection performance for the change class.

In the previous chapter, we formulated a generabryn on most supervised
classification algorithms. The accuracy of anyesuiged classification study is
largely pre-determined by the proportions of eaohceptual class in the training
dataset, regardless of the absolute amount ofiicaitiata, or the complexity of the
classification algorithm. In the previous chapteg have also demonstrated how
supervised classifications can benefit from optingzthese proportions. With the
PTP algorithm and the Adaptive algorithm at harthnge detection approaches A
and B mentioned in Figure 1.1 are expected to Iy accuracies everywhere.
However, the reason why the stacked classificatioaur experiments still showed

more or less the same problem is not known.

Studies using methodology approach B often simuhatege training data from
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stacking training data of two different land cowgpes together (Huang et al. 2008).

This method is described in the following figure.

A Training Pixel for Forest
at Time 1

A Training Pixel for Forest Change
from Time 1 to Time 2

+

A Training Pixel for
NonForest at Time 2

Figure 5.1 Creating the Training Data for the Clea@tpss from Stacking
In this scheme, the training pixel for Forest an&il does not have to be at the

same geographical location as the training pixeNonforest at Time 2. Therefore
the training pixel for Forest Change from Time 1Time 2 is actually a simulated
change signal. This method produces sufficient tath@f training data for the
change class, as long as there are sufficient amufutnaining data for basic land
cover types on the bi-temporal image pair. In 8she paper, Huang also designed
an automated training data acquisition method nahisdlto get sufficient amount of
training data for basic land cover types on théebiporal image pair. In this way,

automated acquisition of sufficient amount of thagndata for every class is achieved.

Let us now imagine doing change detection in tmei-seid region of Africa with
this scheme. A significant portion of the landcmvered by desert and Savannah.
When we simulate the change signal for training, c&a produce a considerable
amount of unrealistic change signals such as fianest to Savannah, and from forest
to desert. These change signals could occur rigtimahundreds or thousands of

years, but highly unlikely within five or ten yearssatellite monitoring.

These unrealistic change signals thus become ‘durdaty in the training set.
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Will they do any harm to the classification algbnits? Or will they just be harmless

redundant information that the classifiers intehgy ignore?

In chapter four, we have discovered that any clase underestimated if it is
underrepresented in the training dataset. Therefbe dummy training data in the
change class might ‘dilute’ the actual change dignd causes a net underestimation

of forest change. As Economists puts it: Bad mairéxes out good.

Here we make a hypothesis that, the ‘dilution’ ire ttraining data for the

simulated stacked change class would lead to lohange class accuracies.

If this hypothesis is true, then its solution isgle. Bi-temporal forest change
detection studies are recommended to distinguish groups of nonforest pixels:

change-relevant and change-irrelevant nonforestiuatrated in figure 5.2.

A Training Pixel for Forest at Time 1

A Training Pixel for Forest |_ T
Change from Time 1 to Time 2 |

A Training Pixel for Change-Relevant
Non-Forest at Time 2

A Training Pixel for
NonForest at Time 1

+

A Training Pixel for
NonForest at Time 2

A Training Pixel for NonForest from
Time 1 to Time 2

Figure 5.2 Creating the Training Data for the R&ahnge Class from Stacking

Only the change-relevant nonforest should be usesimulation of the training
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data for the change class. Realistic change sigeath as forest-to-agriculture,
forest-to-urban, and forest-to-water can thus hearsged from unrealistic change

signals such as forest-to-desert, forest-to-savgrineest-to-cloud, etc.

5.3. An Experiment on the Separation of the Change-Relant

and Change-lrrelevant Nonforest

5.3.1. Experiment Settings

Five experiments are designed to test whether brchange detection results
benefit from separating the change-relevant andngd@rrelevant nonforest
subclasses. It is an assessment of the ‘Dilutio@h@ange Signal’ hypothesis raised

in the previous sections.

The first two experiments use the training datauaedq by TDA (Training Data
Automation) algorithm (Huang et al. 2008). These experiments show us what is
achievable in a more automated way. The trainiai dvent through a selection,
which can be viewed as a sampling process. Oneriexpnt used Adaptive
sampling and the other one used PTP. Both sam@mpgoaches have been

described in chapter four.

The third and fourth experiments use the referanep as training data, in a
similar way as we discussed in chapter four. Theseexperiments show us what
are the achievable performances if we have ampliga knowledge. The training
data also went through a sampling process. Oneriexent used Adaptive sampling

and the other one used PTP. Both sampling appesda@we been described before.
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The last experiment is the new approach we desigmedidress “Training Data
Dilution” Hypothesis. The only difference in itsaining design, compared to
contemporary approaches, is the separation of tliange-relevant and
change-irrelevant nonforest subclasses. This ¢d®done using the TDA program
because the dilution problem was not realized wi@&A was designed. This
information is also not available in the referentap. So it has to be done via visual

interpretation of the images. PTP sampling has lag®n applied to the training set.

The design of these five experiments is outlinethiie 5.1.

Table 5.1 Assessment Plan of the ‘Dilution of CreBggnal’ Hypothesis

Experiments Source of Training Data Selective Criterion for Trainigig D
TDA Simulated from TDA Adaptive and Post-hoc
TDAPTP Simulated from TDA PTP and Post-hoc
Reference Real from Reference Map Adaptive and Post-hoc
Reference PTP Real from Reference Map PTP and Post-hoc
Anti-Dilution Experiment Visual Interpretation for PTP and Post-hoc
change-relevant and
change-irrelevant nonforest

If the change detection result in the fifth expesm outperforms those of the

other four experiments, then our hypothesis is @dov

The ‘Post-hoc’ method mentioned in the table walldescribed in details next.

5.3.2. The Post-hoc Change Detection Algorithm

The Post-hoc algorithm is a way to simulate tragnitata set for 2-date change
detection, using training information only on thestf date. It is built upon the
statistical concept of Canonical Correlation (CCAnd its natural extension

algorithm of Correspondence Analysis (CA). It wigsigned for two reasons. The
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first reason is that, for some unknown reason, dineent TDA algorithm fails to
analyze Landsat ETM+ data. We could only get Téining data from Landsat
TM imagery. The second reason is that, we do tkeimplify the collection of
training data. If we could conduct change detectidile only collect training data

on the image of Time 1, then we could save hatheftime in training data collection.

A Training Pixel for

NonForest at Time
A Training Pixel for Unchanged |= ¥

NonForest from Time 1 to Time :

An Estimated Pixel for
NonForest at Time :

A Training Pixel for

Forest at Time
A Training Pixel for Forest = +

Chanae (Loss) from Time 1 tc

An Estimated Pixel for
NonForest at Time -

A Training Pixel for

Forest at Time 1
A Training Pixel for Unchanged |= +

Forest from Time 1 to Time =

An Estimated Pixel for
Forest at Time 2

A Training Pixel for

Nonforest at Time ]
A Training Pixel for Forest = ¥

Rearowth from Time 1 to Time =

An Estimated Pixel for
Forest at Time 2

Figure 5.3 Training Data Construction using thetfhag Change Detection
Take the case of bi-temporal forest change detedm® the simplest example.

We start with a set of forest pixels and anothéro$aonforest at Time 1. Then we

estimate the most possible forest pixels and nesfqrixels at Time 2. The training
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data is created by stacking randomly pixels fror tlates, as shown in the figure 5.3.

The key technique used to estimate the possibést@ixels and nonforest pixels
at Time 2 is Canonical Correlation Analysis (CCAJhis technique was invented by
statisticians to describe the hidden linear sintylabetween two sets of variables.
When it is used to describe data outliers afteroneng the hidden linear similarity
between two sets of variables, it becomes know @seSpondence Analysis (CA).
In short, CCA describes the first statistical moimaiha hidden relationship between

two sets of variables, while CA finds the secoradistical moment.

For remote sensing imagery, it can be readily usedescribe the relationship
between the radiometric channels of two satellgéassrs. It has been used for
change detection of bi-temporal Landsat TM image (Mielsen 2002; Zhang et al.
2007). These studies, however, aimed at findihthal changes happening over the
satellite footprint. CCA is very good at doingshi Our post-hoc framework will
use it to derive the most possible forest pixelJiate 2, given the forest pixels at

Time 1.

The following are the rationales used in the ediingorocess.

Forest pixels at Time-1 will become partly convdrte nonforest use, while the
rest remains as forest with a different phenologye conduct a CCA analysis
between the 7 bands of Landsat TM image at TimadLthe 7 bands of Landsat
ETM+ image at Time 2. The pixels that fall closetlhe canonical correlation line

are usually the pixels without change. From thmgels we can derive the signature
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of forest pixels at Time-2.

The nonforest pixels at Time-1 will mostly remais @onforest use at Time-2.
Therefore, we derive the signature of nonforesglgiat Time-2 using the same pixels
location as on the Tim-1 image. We do expect allsinzation of forest regrowth.
We also expect the error-tolerant property of SVah tiandle this small fraction of

error easily.

With the forest and nonforest signatures at Timedhdsat ETM+ image
available, we will now create the training data floe four classes along the change
paths:  Forest-to-Forest,  Forest-to-Nonforest, = N@#Bto-Nonforest, and
Nonforest-to-Forest. The last class has negligbégnitude in the study area and

thus has been omitted.

The training data is simulated from stacking togethlthe corresponding

signatures at two times. This process is desciibbéidure 5.3.
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5.4.

Assessment Result

5.4.1. Accuracy Assessment

The accuracies of the five experiments are listethe following tables. All
units are percentages.
Table 5.2 Accuracy Assessment of Experiment One
Overall Accuracy User Accuracy Producer Accuracy|
Area one 80.5 86.6 54.6
Area two 60 20.6 46.7
Area three 65.3 36.4 37.3
Area four 62.4 5 28.1
Area five 80 35.6 12
Area six 64.4 38.7 25.8
Area seven 78.6 39.3 0
Area eight 82.7 52.6 29.8
We can see that the accuracies are really low.
Table 5.3 Accuracy Assessment of Experiment Two
Overall Accuracy User Accuracy Producer Accuraky
Area one 80.1 71.6 60.5
Area two 61.2 21.1 57.4
Area three 67.3 37.5 57.9
Area four 61.1 3.3 515
Area five 78.5 11.6 7.2
Area six 65.9 26.5 41
Area seven 78.6 18.7 0
Area eight 84.9 67.3 35.1
With

The accuracies are systematically better than tirose experiment one.

the training proportions adjusted, TDA is reasopaisiable.
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Table 5.4 Accuracy Assessment of Experiment Three

Overall Accuracy User Accuracy Producer Accuracy
Area one 87.8 80.4 48.9
Area two 92.3 49.3 43.4
Area three 91.1 62.4 34.1
Area four 95 25.1 51.7
Area five 87.6 43.3 14.8
Area six 85 46.4 10.4
Area seven 78.9 14.3 0
Area eight 85.9 43.1 5.1

With the reference data of time 1 as training didt@,accuracies is not great.

Table 5.5 Accuracy Assessment of Experiment Four

Overall Accuracy User Accuracy Producer Accuracy

Area one 85.8 86.4 31.8
Area two 92.8 54 52.6

Area three 91.2 58.1 53.9
Area four 95 22.1 66.2
Area five 92.7 76.3 87.4
Area six 87.4 64.6 64.5
Area seven 89.7 90 61
Area eight 84.3 66 13.6

With the help of PTP, training with 1 date yieldsce@ptable results.
much more improved than the previous scenario.
Table 5.6 Accuracy Assessment of Experiment Five
Overall Accuracy User Accuracy Producer Accuracy

Area one 85.9 75 47.3
Area two 89.8 30.8 59.4
Area three 91.3 51.6 58.7
Area four 92.8 8.6 45.7
Area five 91 67.6 71.7
Area six 87 47.5 82.7
Area seven 88.5 91.9 52
Area eight 88.3 76.2 89.2

Here we achieved a higher accuracy than any pre\d@oenario.
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When we examine these tables together, the firsg thve can see that experiment
two is more successful than experiment one, anerexpnt four more successful
than experiment three. The reason is that the &gétithm is used in experiment

two and four.

The second observation is that, experiment five equeriment four produce the
best results. Experiment four is expected to predihe best results because it
employs the training data it uses is the groundregice data and is more complete
than real-world situations. Experiment five is ghsignificant because it produces

comparable accuracy based on a small visually ssdégaining set.

The third observation from the above tables is, ttire are test areas where the
first four experiments did better than the fifthpexment. Those are the areas in
east Paraguay, where not much change-irrelevarforest exist in the landscape.
The study areas where the fifth experiment outperéathe peer are located in central
and west Paraguay, where a lot of change-irrelenantorest such as grassland and

bare land exists. These observations agree withypothesis.

5.4.2. Error Patterns

In addition to the accuracy numbers, we would tiketudy the error patterns on
the map. We can find out which features got urstenmated, and which ones got

overestimated. We can then understand more ocatlee and effect of errors.

Figure 5.4 shows the experiment conducted in area oLandsat TM-ETM+

image pair in band combination 7-4-2 shows the mstation due to agriculture.
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The results of all five experiments are not idedurprisingly, experiments three &

four which use the reference data for their tragrsets did not achieve a good result.

Landsat TM Landsat ETM+ Reference Experimentll

—

<

e

Exément 2

kT

Figure 5.4 Experiment result at test area one

Figure 5.5 shows the experiment conducted in test avo. All five scenarios

again have different issues. Experiment five setenaghieve the best result.

Landsat TM Landsat ETM+ Reference Experiment
i ._‘?'_ 5y 238 . T : B PO . : R . 2|

w0

Experiment 2

Experiment 3
A e

Experiment 4 Experient 5

Figure 5.5 Experiment result at test area two
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Figure 5.6 shows the experiment conducted in test three. Experiments three

to five achieved good results.

Landsat ETM+ Reference

Figure 5.6 Experiment result at test area three

Figure 5.7 shows the experiment conducted in test four. Experiments three
to five again all achieved good results.

LandsatTM  Landsat ETM+ _Reference Experiment

Figure 5.7 Experiment result at test area four
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Figure 5.8 shows the experiment conducted in test dive. The five

experiments showed different estimation errors.

‘Landsat TM

B

Landsat ETM+

- i o

Reference Experiment 1
A d e

i i

Experiment 2

Experiment 3 Experiment 4 Experient 5
A e

Figure 5.8 Experiment result at test area five

In Figure 5.9, experiments four and five showedtbst performances.

e
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Figure 5.9 Experiment result of test area six
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In figure 5.10, only experiment four ends up witgad performance. All other
experiments have problems.
Landsat TM

Landsat ETM+ Reference Experimnt 1

Experiment 2 Experiment 3 Experiment 4 Experimg 5

Figure 5.10 Experiment result of test area seven

In figure 5.11, only experiment five achieved ressae performance.
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Figure 5.11 Experiment result of test area eight
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55. Conclusions

The numbers and maps in the previous section aejdimt result of three
methodological designs. First there is the PTRddarment two, four, and five) vs.
non-PTP (experiment one and three) optimizatiomgdes Then there is the Post-hoc
algorithm, which deduces the change path using th@ytime-1 training data. And
finally there is the "Anti-dilution” design which isually distinguishes between
change-relevant nonforest and change-irrelevantonest. This design only exists

in experiment Five.

Multiple methodological designs made the intergretadifficult. Let us go

through them one by one.

First of all, The PTP experiments (two and fourg dretter than non-PTP
experiments (one and three) respectively. The &periment five is almost always

the best. This observation echoed the findinghapter 4.

Second, the experiments we did in this chapter rgélgeproduce lower
accuracies than the experiments we conducted ipteh#our. We used the same
test areas. Experiments three and four used thee simaining data source.
However, their accuracies are lower than corresipgneixperiments in chapter four.
The direct reason is the post-hoc change detedteamework we used here. It
facilitates change detection using only time-1niray data, but has a negative impact
on accuracy. Therefore, the post-hoc frameworkireg further improvements.

The post-hoc change detection framework worked wih training data either
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from visual interpretation or from reference dat&8ut it does not work well with
TDA. One possible reason is that this post-homé&aork is not very tolerant to the
errors in the training set. The CCA algorithm & core is an adaptive linear
algorithm. It needs to be further improved befpegring with TDA. A possible

improvement is to use the nonparametric versicG@A: kernel CCA.

Thirdly and most important for this chapter, is #iféectiveness of experiment
five. We can see that, in most areas it is béttan TDA experiments. In some
areas, experiment five is even better than expetinieur which employed the
reference data for training. This shows that, loypothesis that the unreal change
signal used in training data exists more or lesmast satellite scenes is validated.
Satellite scenes with a lot of change-irrelevamfaest are significantly affected,

while satellite scenes with little change-irrelevaanforest are minimally affected.

Our solution is to simply distinguish two types mdnforest: change-relevant
nonforest and change-irrelevant nonforest. Cusetitis is done using visual
interpretation. It was recommended that the TDgoathm should incorporate this
finding and automatically distinguish between thwrgge-irrelevant nonforest and

change-relevant nonforest.

However, another initial guess was a net underesiom of the real change class
exists due to this “Change Training Dilution” prebi. This is not entirely true.
TDA did show some underestimation of the changescleompared to our fifth
experiment. Our fifth experiment, which relied @small set of visually interpreted

training data, also showed some underestimatidheothange class probably due to
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the insufficiency of training data.

This shows that, the completeness of training featand the effectiveness of
training features are both important. Incompledning features will surely lead to
underestimation, while ineffective training featitead to more complicated pattern
of errors. TDA is good at the aspect of completespewhile the aspect of
effectiveness can be improved simply by distingmigtbetween change-relevant and
change-irrelevant nonforest subclasses. If TDA ¢&n complemented by the
findings in this chapter, the forest change classeirtain regions of the world can be
much better estimated. However, the automatedisoldior TDA with undiluted

change signals is beyond the capability of thisetlistion.
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6. Conclusions and Recommendations

6.1. Sources of Uncertainties and Errors

The use of remote sensing for global studies was@rd to greatly improve our
understanding of important environmental concernslowever, the analysis of
remotely sensed data, especially when with a glpbatpective, is still not free of

major uncertainties and errors.

This dissertation is more concerned as to why tlabad classification of
remotely sensed data has yet to achieve the gdaleing automatic, objective,
accurate, and reliable. It has been more than deeades since the invention of
computers, the emergence of machine learning asearch field, and the launch of
the first satellites. Why are we still unable &trieve land cover information from

satellite images fully automatic, objectively, aately, and reliably?

The hypothesis of this dissertation is that theseanf sub-optimal performance
might be some essential difference(s) between tdithematic models of the machine
learning theories and the underlying geographiaeloirs in satellite remote sensing.
In this dissertation, these essential differenaesraferred to as uncertainties and
errors, although in some other fields people carsidem ‘systemic errors’ (Taylor
1997). The uncertainties described in this dissiert consist of three broad types:
inevitable errors during observation, variabiliyabass definition, and observational

sufficiency. These three broad types will be sumred in the following sections.
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6.1.1. Inevitable Errors

Inevitable errors from observations can come frém instrument and image
analysts. This has been well known since the dafvmemote sensing. Early
Landsat sensors had significant radiometric andng&dc anomalies. Researchers
can also make mistakes during field trips. Imagalysts can mislabel classes.

GPS accuracy fluctuation can lead to geo-regismagrror of the images.

Therefore, the classification of remotely senseth deas to be able to tolerate
imperfections and errors. This idea has been adedasince the turn of this century.
The decision tree algorithm was reported by earieearchers that it has some error
tolerance compared to maximum likelihood (DeFriewl &han 2000). Similar
finding was reported for ARTMAP neural net (Rogdralke 2008). This dissertation
performed an error tolerance experiment in chajpere. We contributed two new
findings by linking error tolerance with the intatndesign features of machine

learning algorithms.

First, the error tolerance in decision tree or ARIRMis not significant. The
performances of decision tree, neural nets, andirmamn likelihood all deteriorate
rapidly. With a 10% random error in the trainirapéls, the classification results
would be unusable. Support vector machine usiagalial basis function as kernel
has a much higher error tolerance. Its overaligperance is retained even if 30% of
the training data label is randomly wrong. Howeweith very limited amount of

training data, in which a lot of errors are hidd8NM can also fail.
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Second, this dissertation elaborated on the matteahaause of the strong error
tolerance of SVM. It has been found that, modevWMSalgorithms adopted the
soft-boundary design originally for solving inseglale classes. This design had an
unintentional yet easy-to-understand effect. Bnaall percentage of training data
points carries wrong labels, they would fall betwélee soft class boundaries. This
design gave SVM an outstanding merit. Howevers #ilobne cannot explain the
outstanding error tolerance. We found that, SVNhgisa neural net kernel and
built-in boosting would have a lesser error toleean Therefore, we conclude that
the RBF kernel is also a contributing factor. Thelti-modal Gaussian assumption
in the RBF kernel not only describes remotely sérd&ta well, but also is robust

against error.

In summary, to tackle the inevitable errors in r&meensing, there are two
machine learning features that are quite effecsoét-boundaries among classes, and
assuming multi-modal Gaussian distribution withi@sses. It is also worth noticing

that, these two features were initially not destjteeachieve error tolerance.

6.1.2. Variability in Class Definition

The classification of remotely sensed imagery &dadly the simplification from
images to thematic information. Researchers hdiseed set of concepts regarding
the classes. However, these classes would ingyi@aik quite different from place
to place, and from time to time. For forest chadggection, this variability of class

definition is significant. We thus realize thahete is significant spatial and
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temporal variability in the way we define our cless Can contemporary machine

learning tackle them?

Our studies in chapter three performed three exyaris on this subject. Our
first experiment examined the performance of cfessiwith remotely sensed images
from different dates, geographic regions, and estesys. Our second experiment
examined the performance of classifiers when thea di@mm different scenes are
merged together. Our third experiment examined ggormance of classifiers

when atypical training data is used.

We have found that, SVM significantly outperformt @her classifiers in the
above three experiments. We conclude that, whamacterizing complex classes,
the assumption of multi-modal Gaussian distribui®ietter than a single Gaussian
distribution. This is well expected. However, whee did not expect is that the
other nonparametric classifiers, the neural netd #me decision tree, cannot
characterize complex classes as good as SVM cane cWwclude that, the
assumption of multi-modal Gaussian is superioh®Entropy assumption in decision

tree and the linear propagation assumption in Newta

The accurate definition of classes does not meanskald define broad,
all-encompassing classes. In chapter five, we edsonined the effect of ‘Dilution
of Change Signal’. This is caused by the overniidin of the class. If simulated
training data from multiple dates are used, arttieftraining data contains ‘dummy’
data points, then a class can get underestimafBaerefore, a clear definition of the

conceptual classes is important.
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6.1.3. Observational Sufficiency

While there is ample availability of remotely sethsmagery, the ground truth
observations that accompany satellite flyoversuastelly limited. The latter is used
as the training sample. The classification is tthesway to determine a vast data
population with a limited training sample. The feuéncy of training samples is
naturally questioned. The contemporary remoteisgrstudies use as much training
data as possible. Often, the only concern in tegths is the project budget. And

thus, recent studies have raised a question osuffieient quantity of training.

This dissertation looks into this topic on two adpe First, the quantity of
training sample is examined. We aim at findingachine learning design that most
effectively uses the training sample. And secome,investigate the effect on the
class distribution in the training sample. We wamtknow whether or not the
classifiers are affected by this factor. We woliké to find a classifier that is least

biased by what we feed to it.

Our finding on the quantity aspect is that, SVMm®st efficient at utilizing
training data. Its performance does not substéntdeteriorate with decreasing

training samples, at least for the case of foreahge detection.

Our finding on the class distribution aspect is encomplicated. First of all, all
the nonparametric classifiers including our stgoathm: SVM, are severely biased
by training samples with biased class distributionEhe oldest classifier, MLC, is

unexpectedly not affected.
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We looked into the origin of this bias, and fouhattthe cross validation stage
used in the machine learning community is actuallyy Bayes Optimal for the

training set, but not necessarily for the data pettjan.

Our additional work on this aspect leads to chafater and five. Chapter four
outlines a new algorithm combining the strengthvitfC and SVM to make SVM

immune from biased training sets. This will bebelated in the next section.

Chapter five investigates further on the implicataf biased training sets. We
found that the definition of classes is also a seuwsf uncertainty. If a class is
conceptually designed more than it actually woutdun in the feature space in the
real world, and that these ‘padding’ features auded in the training set, then it
will cause an underestimation of the real classadig This is quite similar to an
everyday case in Economy: counterfeit productsstakesr the market of authentic
ones, and bad money drive out good ones, simplgusecthe fixed total market size.
In light of this, global forest change studies seommended to distinguish between

the change-relevant and change-irrelevant nonftaedtcover types.

6.2. Integrated Solution for Uncertainties

The current generation of machine learning offaredyreat hopes to monitor the
land surface of Earth. The Support Vector Machmexcellent in dealing with
inevitable observational errors. It is also adaptio variability in class definition.
It is also very efficient at using limited trainingformation. These merits make

SVM the ideal candidate baseline algorithm. Thechree learning community
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already paved the way for Geographers. We onlg teeefine it.

This dissertation has addressed the importanckas$ proportions in the training
set. SVM, as well as most others, is susceptikhis pitfall. In some sense, this
is the Geography aspect of machine learning. Taerdwo stages that were largely
overlooked in the past by both the remote sensmmgneunity and the machine

learning community.

The first overlooked stage is the constructionhef training set. We cannot use
as many training points as possible. Instead, we them selectively. The
proportions of training are more important than tjuantity of training. The class
proportions in the training set should match thasethe whole population of
observations. The latter is unknown, but can lienated most of the times using
MLC. When MLC fails, SVM can also be used to geediased but second-best

estimation.

The second overlooked stage is the definition assts. We need to be aware
that, dummy training data for a class would leadinderestimation of the real class
signal. This issue is most prone when simulatedsckignatures are used, such as

the case of TDA (Training Data Automation) algamtiiHuang et al. 2008).

With the integrated design of an adaptive trairstage, the improved SVM is our

champion for tackling the uncertainties and erhisted in this dissertation.
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6.3. The Overfitting Problem: From Structural to Geographical

Risk Minimization

What we have discovered in this dissertation alstuethoed some thoughts in
the machine learning community 30 years ago ontdpee of overtuning. Yet we

have looked at this topic in another perspective.

In section 2.6.3 we described how Vapnik and Cheew&is jointly developed
the VC theory (Vapnik and Chervonenkis 1974). dst Iseveral parts. One part is
the well-known development of the Support Vectorchlae, while a lesser-known
part of this theory is called the Structural Risknivhization Theory (SRM). It
states that, as the structural complexity of a nmeckearning model increases, the
training error goes down, while the test error gaps Therefore, there exists a
tipping point for the best model. A figure (Vapn&nd Chervonenkis 1974)

illustrated this idea.

‘ underfiting bestmodel overTHRE
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bound on test error

capacity ferm

training error

SIFucture

Figure 6.1 The Structural Risk Minimization Thed8RM) by Vapnik
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In SVM, a vital step is to determine the complexifythe model in the cross
validation stage. The SRM theory is no doubt atirre However, it still cannot cure
overfitting. We have demonstrated in previous ok that, the reason is the
training error and test error in the VC theory hanat been defined very clearly.
Those errors rely on how we construct the setriining, and how we perceive the
set for testing. In other words, ‘overfitting’ l@@ns not just because we over-fit
machine learning models to a training set, but bistause we often got a training set
so poorly constructed that it does not reflect ribedity well. Therefore, we would

like to draw a new figure to complement Vapnik'sNsRgure.

A
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representativeneass of truining design

Figure 6.2 Another interpretation of the overfittiproblem

Since we discovered this issue from the side ofgGmahy, we can name it as
‘Geographical Structural Risk Minimization’ as axtension of Vapnik’s Structural
risk Minimization Theory. It is a natural extensiof Vapnik’s philosophy. Vapnik

himself repeatedly states that the philosophylgfased problems as the turning point
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in the understanding of statistical inference (\aph999; Vapnik 2006). That

philosophy states:

(1) The general problem of inference — obtaining tinknown reasons from the

unknown consequences — is ill-posed.

(2) To solve it one has to use very rich prior mation about the desired
solution. However, even if one has this informatibis impossible to guarantee that
the number of observations that one has is enowgloltain a reasonable

approximation to the solution.

If we interpret the findings of this dissertatiosing the above philosophy of
ill-posed problems, we can see an interesting echitie ‘rich prior information’ it
states is not the commonly understood prior prdibgbibut is actually the

representativeness of training set in our study.

In the history of remote sensing, there have beanymimes that researchers
came close to our finding here. Strahler’'s sempagler (Strahler 1980) was named
‘The use of prior probabilities in maximum likelibd classification of remotely
sensed data’ because he intended to improve tf@mpance of Chow’s MLC (Chow
1957) using prior probabilities. Although he goixed results in experiments, he
did not realize the true role of prior informationit is not just simply for deriving
posterior probabilities, but to refine and restouet the experiment namely the

training process.

Lark’s work (Lark 1995) is a milestone because dedized the balance between
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omission error and commission error, and that rassification is perfect for all
practical uses. However, he was still limited ne tMLC framework and was still
using prior probabilities. Boyd and Foody (Boydaet2006; Foody et al. 2006) was
impressed by Lark’s work and stated that ‘morentregy data on a key class will
improve its accuracy’. This is partially true, buill also cause overestimation for

the key class, which he did not realize.

Hagner and Reese (Hagner and Reese 2007) reaheetmportance of the
training set and tried to modify the class promorsi of the training set for MLC.
Although their guess was correct, they were limligdhe MLC framework yet again.
Unfortunately, the class proportion idea works @mparametric classifiers but not

MLC.

Stehman’s series of papers on the model-based s@meichnique (Stehman
2000; Stehman et al. 2003; Stehman 2005; Stehm@f; Zktehman et al. 2009),
together with Tucker and Townshend’s idea on thetdition of random sampling in
geography (Tucker and Townshend 2000), shed lighbha~ important sampling is
for geographical observation. However, their ies¢érwas in the estimation of
accuracy. They did not notice that sampling of epbation directly affects

classification, from which the accuracy figures svderived.

The exploration of error budgeting using the comcep Pareto boundary
(Boschetti et al. 2004) also is interesting. Tlagproach, however, is unnecessarily
complicated. And they were limited by the Maximuokelihood framework.

Thus their reasoning was very similar to that oMRLark’s (Lark 1995).
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However, these pioneering efforts, together withghilosophical criteria of error
tolerance (DeFries and Chan 2000) and generalizataver (Woodcock et al. 2001),
still deserve our kudos. They showed a graduatifolding picture of why we
should minimize analyses risks geographically atadissically. These continuous
efforts remind us that the discovery of knowledgas mo limits. After we
discovered here the real importance of class ptmparin training, there is still a lot

more to be explored on the theoretical side. Téw section will outline them.

6.4. Future Explorations

This most important finding of this dissertatiorthst, the relative amount of the
training is more important than the absolute amairitaining. It is, however, not
the end of the story. There are two categoridsrekeeable implications. The first
category will be the possible existence of othéateel uncertainties. The second

category will be the ‘budgeting’ of uncertainty nmmzation in complex settings.

Instead of searching for errors and manually cdngc them in the
post-processing stage, we could optimize classificastudies automatically in the
planning stage. | hope to explore these topies afty Ph. D, and expand this study

into a new interdisciplinary subfield across maehigarning and geography.

6.4.1. Predictions on Further Uncertainties

We have shown that, the optimization rule of modelassifiers is Bayes

Optimality for the training sample. However, we kalow that, the training sample
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is a very limited sampling of the population. Wifahe detailed distribution within
the class in the training sample is different tattin the population? Would the
proportions within a class be a source of uncegtdior classification? The more
easily observed features might dominate a clasie Wie features difficult to study in

fieldwork and the features unfamiliar to the eyethe analyst might be neglected.

A possible solution is to use Gaussian clusterimggét an estimation of the
proportions of clusters within every class. Th#re training set is reconstructed

using these proportions.

A second source of uncertainty is also relatechéodass proportion issue. Let
us ask a question: if we make sure that the clagsoptions in the training are equal
to those in the data population, and that the ptapt of clusters in every class are

equal to those found in the population, will thesthe ultimate solution?

We still have one degree of freedom here: the saupéhe ‘population’ is
undefined. In remote sensing, the scope of thpufation’ is usually the size of one
satellite picture, taken systematically along Loartk Orbit (LEO). The size of the
satellite footprint is usually determined by theheology available at the time of
design. In other words, the study scope of rersetesing classification has always

been unknowingly determined by an ‘invisible hand'.

How would this arbitrary study scope impact clasaifon results? Starting

from the class proportions theory, there wouldvbe ¢ffects.

The first effect is that, by summing up the clasation results from individual
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satellite photos, the overall statistics will na Bayes Optimal for the globe. The
second effect is that, Non-Bayes Optimal for thebgl actually might not be a bad

thing. Why would these two effects seem contraatjctach other?

The spatial distribution of land cover types on ta&rth is not homogenous.
However, homogenous distribution of land coverssdoecur locally. An arbitrary
satellite footprint consists of several locally hmgenous sub-zones such as
agriculture zones, urban zones, and fragmentedstfozenes. If we perform
classification on the whole satellite footprintasvhole ‘population’, then the theory
of class proportions predicts that the resultingorsr would be geographically
congregated. The reason is that, the local claspoptions are different to the
population class proportions. Thus Bayes Optiraltifie population might not be
Bayes Optimal for each zone. Unfortunately, thisthe contemporary way of

classifying satellite images.

What if we perform classification within each locadne? If we segment an
image into zones that are ‘self-organized’, whiakams they have an almost constant
class proportions throughout the zone, then thal tassification errors over the
whole image would be higher than those found inemporary work. However, the
spatial distribution of errors would not be congregl. Instead it would be closer to
spatially random. Therefore, what might be morgontant than the minimization
of total classification errors is the spatial ramization of those errors. In other

words, somewhat higher error rate can be a good thi

Thus, from the global perspective, it might be img@ot to conduct global
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classification studies not based on arbitrary Bedotprints, but on homogenous
zones. Accuracy, when measured from different @spdnas different meanings.
Different studies might have conflicting goals. W one map satisfy all needs?
In the MLC framework it has already been pointet uyears ago that “no one map
will be optimal from the point of view of every us¢Lark 1995). Today we echo

this idea, but for a different reason.

6.4.2. Budgeting Uncertainty

The PTP algorithm designed in chapter four is netrfqet. It needs
improvements for optimizing multiple classes. disrent performance is even lower

than the much simpler ‘Adaptive’ algorithm.

However, the PTP algorithm offers something morantlthe above simple
method. By constructing the training set using ghme proportions as of the data
population, we are going after Bayes Optimal, whish trying to balance
overestimation and underestimation. Let us askuastipn: what if in some
applications, underestimation is more severe tharestimation? For example, a
forest ecosystem is near extinction and researchvarg to find the last island
ecosystem of its kind. If our classification owsmmates it, we can always correct
the results via field validation. But if our clé#gsation underestimates it, we do not
even have a chance to do field validation. The RIgorithm is based on the
modeling of overestimation and underestimation.cah assign different weights on

either side, depending on practical needs.
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6.4.3. Publishing Data Products with Training Data Sets

A core idea of this dissertation is that the ‘vahtEled’ data products derived
from remote sensing depend heavily on their trgirdata sets. The reliance is so
heavy that, the quality of a classification worlaieeady determined when the training

strategy is decided, well before the actual macl@aming algorithm is performed.

This leads us to an awkward situation. In the,pasearchers tended to publish
their data products only, with the machine learrafgprithm mentioned by name, the
training strategy virtually arbitrary or even nors&nt, and the training data set

eventually lost in time.

In other research fields such as Physics, Chemastdy Biology, for example,
experiments can almost always be repeated to vedfier findings with the exact
same settings. While in Geography and global chasiydies, rarely would a
classification study be repeated to verify theifngd. We have been relying on good
faith that any classification performed on an adbit satellite data source is good

enough to describe the environment.

We propose that, for a classification of remotedpised data, the most important
value-added product is the training set gatheredualified analysts. Researchers
with different expertise can come up with differ&ainclusions on the training set.
Current generation of machine learning algorithras be applied to generate data
products to satisfy the need today. Future macleaming algorithms can achieve

better understandings gradually as time goes bye dccumulation of training data
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over time will lead to the accumulation of our kredge in Earth Science.

In addition, geographers have long been aware dhat classification cannot
satisfy all needs (Lark 1995). Different applicas have different optimization
goals. It would be important for the user to htheetraining set so that he or she can

generate the classification scheme best for indalidpplications.

Thus, we deem it important to convince the reseamhmunity to release the

training data sets when the conventional data mtsdare published in the future.

6.5. Geographical Machine Learning

This dissertation studied the classification of gyaphical observations.
Real-world events we observe occur at some locaifioa given time period for some
reasons. For estimation purposes, we might na¢ kaknow what those reasons are.

What is really important for classification is theographical distribution of classes.

To be specific, we need to know the distributiortlasses in the given study area.
To avoid overfitting, we need this information testgn our classification. We call
this the geographical factor in machine learninty.is highly variable, elusive, and
important. We conclude that it can be estimateduhately. We expect it to be a
complement to both the rule of Bayes Optimal ard\thpnik-Chervonenkis machine

learning theory. It is not only useful for clagsation, but also for regression.

Let’s revisit the ancient fable of ‘the blind mendathe elephant’ mentioned in
section 3.1.4. When each of the blind men fefed#int parts of the elephant’s body,

it would only be natural to combine their findingend piece together the
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characteristics of elephant. The crown jewel &f thssertation is as simple as this.

How useful is this ancient wisdom today? Any pbgkior social phenomenon
involves space and time. Researchers observe eangilenomena selectively,
though often unknowingly. A famous case is Elldwufchill Semple’s selective use
of evidence to support her idea of EnvironmentaeBeinism. The public receives
the information from researchers, on the other hatsb often selectively. The
Third Reich favored Semple’s work and further ateit subjectively. We have to
realize this subjective tendency of our observataom reasoning before we can
approach objectivity. Geography has a unique piaa@achine learning. Global
satellite monitoring, with appropriate mathematittgjs can potentially achieve the

complete and unbiased observation and understaonélithg globe.

In the future, we propose to develop classificatod regression algorithms that
targets heterogeneity in space and time. This xisemely important for the
understanding of global environment. The spati@kecage and temporal history are
so complex and heterogeneous. Whatever hypothesisiight form in mind, no
matter how partial it actually might be, we are ereghort of one-sided supporting

facts as evidences. That could be repeating teaka of Ellen Churchill Semple.

To achieve an unbiased estimation, one can estithatespatial and temporal
distributions through maximum likelihood. That @votal in adjusting the
proportions of “Evidences” for subsequent clasatimn and regression analyses.
Here machine learning is assisted with the useriofr pnformation but not prior

probabilities. We would like to call this approd@eographical Machine Learning'.
164



Bibliography

Anuta, P. E. and R. B. MacDonald (1971-1973). "Csapveys from multiband satellite photography
using digital techniques." Remote Sensing of Emuitent2: 53-67.

Bellman, R. (1961). Adaptive Control Processes:udd&d Tour Princeton University Press.

Benediktsson, J. A. and P. H. Swain (1992). "Cossertheoretic classification methods." Systems,
Man and Cybernetics, IEEE Transaction2@(): 688-704.

Boschetti, L., S. P. Flasse, et al. (2004). "Aniglysg the conflict between omission and commission
low spatial resolution dichotomic thematic producthe Pareto Boundary." Remote Sensing of
Environment91(3-4): 280-292.

Boser, B. E., . Guyon, et al. (1992). A Trainindgérithm for Optimal Margin Classifierghe Fifth
Annual Workshop on Computational Learning TheoiitsBurgh.

Bottou, L., Cortes, C., Denker, J. S., Drucker, Guyon, I., Jackel,L. D., Cun, Y. L., Muller, U. A.
Sackinger, E., Simard, P., and Vapnik, V. (1994mParison of classifier methods: a case study in
handwritten digit recognitianthe 12th IAPR International Conference on PattB®&cognition,
Conference B: Computer Vision & Image Processiiegusalem, IEEE.

Boyd, D. S., C. Sanchez-Hernandez, et al. (200gpping a specific class for priority habitats
monitoring from satellite sensor data." Internagibdfournal of Remote Sensi@g(13): 2631-2644.

Breiman, L. (1996). "Bagging predictors." Machineakning24: 123-140.

Brenning, A. (2009). "Benchmarking classifiers fitimally integrate terrain analysis and multispaictr
remote sensing in automatic rock glacier detectiBemote Sensing of Environmetit3(1): 239-247.

Brodley, C. a. F., M.A. (1996). "ldentifying andirelnating mislabeled training instances. In
Proceedings of Thirteenth National Conference difiéial Intelligence." 799-805.

Cabrera, A. L. (1976). Regiones fitogeogréaficasehtinas Buenos Aires, Argentina.

Cardille, J. A. and J. A. Foley (2003). "Agriculdifand-use change in Brazilian Amazonia between
1980 and 1995: Evidence from integrated satellii® @ensus data." Remote Sensing of Environment
87(4): 551-562.

Carpenter, G. A., Gopal, S., Macomber, S., Marfn%yoodcock, C. E., and Franklin (1999). "A
Neural Network Method for Efficient Vegetation Mapg." J., , Remote Sens. Envir6r0): 326-328.

Carpenter, G. A., S. Grossberg, et al. (1992). ZFuxRTMAP: A Neural Network Architecture for

165



Incremental Supervised Learning of Analog Multidimimnal Maps."” IEEE Transaction on Neural
Networks3(5).

Chan, J. C.-W. and D. Paelinckx (2008). "EvaluatainRandom Forest and Adaboost tree-based
ensemble classification and spectral band sele@tioecotope mapping using airborne hyperspectral
imagery." Remote Sensing of Environmé&h®(6): 2999-3011.

Chow, C. K. (1957). "An Optimum Character RecogmitiSystem Using Decision Functions." IEEE
Transactions on Electronic Comput&G-6(4): 247-254.

Chow, C. K. (1962). "A Recognition Method Using blebor Dependence."” IEEE Transactions on
Electronic ComputergC-11(5): 683-690.

Chuvieco, E. and C. Justice (2008). NASA Earth @lz®n Satellite Missions for Global Change
Research. Earth Observation of Global Cha2@e47.

Collins, J. B. and C. E. Woodcock (1996). "An asss=nt of several linear change detection
techniques for mapping forest mortality using ntettiporal landsat TM data.” Remote Sensing of
Environment56(1): 66-77.

Congalton, R. (1991). "A review of assessing theueacy of classifications of remotely sensed data.”
Remote Sensing of Environmedit: 35-46.

Cortes, C. and V. N. Vapnik (1995). "Support-Vedtlmtworks." Machine Learning0(3): 273-297.

Czaplewski, R. L. (2002). FRA 2000, On sampling éstimating global tropical deforestation. Rome,
Food and Agriculture Organization of the United iNias.

DeFries, R., R. A. Houghton, et al. (2002). "Carleomissions from tropical deforestation and regrowth
based on satellite observations for the 1980s &&fsl" Proceedings of the National Academy of
Science®99(22): 14256-14261.

DeFries, R. S. and J. C.-W. Chan (2000). "Multi@eiteria for Evaluating Machine Learning
Algorithms for Land Cover Classification from Séitel Data.” Remote Sensing of Environm&#(3):
503-515.

Desclée, B., P. Bogaert, et al. (2006). "Foresinghadetection by statistical object-based method."
Remote Sensing of Environmef@2(1-2): 1-11.

Estes, J. E., J. R. Jensen, et al. (1980). "Immdctmote sensing on U.S. geography.” Remote 8gnsi
of Environmentl 0(1): 43-80.

Fan, W. (2005). "Effective Estimation of PosteriBrobabilities: Explaining the Accuracy of
Randomized Decision Tree Approaches." ProceedihdiseoFifth IEEE International Conference on

166



Data Mining (ICDM’'05)

Fang, J., A. Chen, et al. (2001). "Changes in Edd@&mmass Carbon Storage in China between 1949
and 1998." Scienc292(5525): 2320-2322.

FAO (1981). “Tropical Forest Resources Assessmeojeét (in the framework of GEMS)” - FRA
1980. Rome.

FAO (1995). Forest resources assessment 1990. Rome.

FAO (1996). Forest Resources Assessment 1990:soifvigopical forest cover and study of change
processes. F. a. A. O. o. t. U. Nations. Rolrmgestry Paper No. 130

FAO (2001). Global Forest Resources Assessment 2d@éh report, Food and Agriculture
Organization of the United Nations.

FAO (2006). Global Forest Resources Assessment :2606gress towards sustainable forest
management. Rome.

Feller, W. (1957). An Introduction to Probabilityhdory and its ApplicationdViley and Sons, Inc.

Foody, G. M., D. S. Boyd, et al. (2007). "Mappingecific class with an ensemble of classifiers."
International Journal of Remote Sensit®y1733-1746.

Foody, G. M. and A. Mathur (2004). "Toward intedlig training of supervised image classifications:
directing training data acquisition for SVM clagsition.” Remote Sensing of EnvironmeIg(1-2):
107-117.

Foody, G. M., A. Mathur, et al. (2006). "Trainingtssize requirements for the classification of a
specific class " Remote Sensing of Environmidid(1): 1-14.

Foody, G. M., M. B. McCulloch, et al. (1995). "Tledffect of training set size and composition on
artificial neural network classification." Int.femote sensin6: 1707-1723.

Foody, G. M., G. Palubinskas, et al. (1996). "ldfgimg terrestrial carbon sinks: Classification of
successional stages in regenerating tropical foiesh Landsat TM data.” Remote Sensing of
Environments5(3): 205-216.

Fraser, R. S., O. P. Bahethi, et al. (1977). "Tifeceof the atmosphere on the classification o¢lise
observations to identify surface features." RenS@nsing of Environmer(3): 229-249.

Freund, Y. (1995). "Boosting a Weak Learning Algum by Majority.” Information and
Computatio121): 256-285.

167



Freund, Y. and R. E. Schapire (1996). "Experimauitis a new boosting algorithm." Machine Learning:
Proceedings of the Thirteenth International Comfeee148-156.

Freund, Y. and R. E. Schapire (1999). "A shortodtrction to boosting.” Journal of Japanese Society
for Artificial Intelligencg14): 771-780.

Friedl, M. A. and C. E. Brodley (1997). "Decisioreé classification of land cover from remotely
sensed data.” Remote Sensing of Environréa®): 399-409.

Friedl, M. A., Mclver, D. K., Hodges, J. C. F,, 4iftg X. Y., Muchoney, D., Strahler, A. H., Woodcock,
C. E,, Gopal, S., Schneider, A., Cooper, A., Bacéin Gao, F., Schaaf, C. (2002). "Global land &ov
mapping from MODIS: algorithms and early resulBemote Sensing of Environmg@g): 287-302.

Friedman, J., Hastie, T., & Tibshirani, R (2000dtitive logistic regression: a statistical view of
boosting." The Annals of Statist{@8): 337-374.

Gopal, S. and C. Woodcock (1996). "Remote sendifigrest change using artificial neural networks."
Geoscience and Remote Sensing, IEEE Transactio®4(@n 398-404.

Gopal, S., C. E. Woodcock, et al. (1999). "FuzzyitdeNetwork Classification of Global Land Cover
from a 1?7AVHRR Data Set." Remote Sensing of Envitent67(2): 230-243.

Grossberg, S. (1976). "Adaptive pattern classificand universal recoding: I. parallel development
and coding of neural feature detectors." Biolog€ghberneticé3): 121-134.

Grossberg, S. (1987). "Competitive learning: Frameriactive activation to adaptive resonance.”
Cognitive Sciendgd1): 23-63.

Groves, R. M. (1989). Survey Errors and Survey €akthn Wiley and Sons, Inc. Hoboken, New
Jersey.

Hagner, O. and H. Reese (2007). "A method for caitl maximum likelihood classification of forest
types.”" Remote Sensing of Environmé&h@(4): 438-444.

Hansen, M. C., R. S. Defries, et al. (2000). "Gldbad cover classification at 1km spatial resauti
using a classification tree approach.” Internatidoarnal of Remote Sensi2gd: 1331-1364.

Haralick, R. M. (1969). The Bayesian approach tentdication of a remotely sensed environment,
CRES.

Hastie, T., Tibshirani, R., and Friedman, J. (200Ihe elements of statistical learning: Data nnin
inference, and prediction." 536.

Hastie, T. a. T., R (1996). Classification by pagevcoupling._Technical reporStanford University

168



and University of Toronto.

Hese, S., W. Lucht, et al. (2005). "Global biomasspping for an improved understanding of the CO2
balance--the Earth observation mission Carbon-&arhote Sensing of Environmedw(1): 94-104.

Hoffbeck, J. P. and D. A. Landgrebe (1996). "Classion of remote sensing images having high
spectral resolution.” Remote Sensing of Environrd&(®): 119-126.

Hsu, C. W. a. L., C. j. (2002). "A comparison ofthwds for multi-class support vector machines."
IEEE Transactions on Neural Netwofk3): 415-425.

Huang, C. (1999). Improved land cover charactddmafrom satellite remote sensing. Geography
College Park, University of Maryland (College Pavid.). .Ph.D: 228.

Huang, C., L. S. davis, et al. (2002). "An assesgnoé support vector machines for land cover
classification." int. j. remote sensi@§(4): 725-749.

Huang, C., S. Kim, et al. (2007). "Rapid loss ofdgaay's Atlantic forest and the status of protécte
areas -- A Landsat assessment.” Remote SensinovobBment106(4): 460-466.

Huang, C., S. Kim, et al. (2009). "Assessment ofafaay's forest cover change using Landsat
observations.” Global and Planetary Cha6gd-2): 1-12.

Huang, C., K. Song, et al. (2008). "Use of a dabiect concept and support vector machines to
automate forest cover change analysis." Remotdr8poEEnvironmenti12(3): 970-985.

Hughes, G. (1968). "On the mean accuracy of sStalspattern recognizers." Information Theory,
IEEE Transactions ob4(1): 55-63.

IPCC (2003). Good practice guidance for land umsdduse previous termchangenext term and forestry.
Hayama, Japan, IPCC National Greenhouse Gas Imenfrogramme?95.

Justice, C. and J. Townshend (1982). "A comparisbminsupervised classification procedures on
Landsat MSS data for an area of complex surfacelitons in Basilicata, Southern Italy." Remote
Sensing of Environmerit2(5): 407-420.

Kennedy, R. E., P. A. Townsend, et al. (2009). "Bensensing change detection tools for natural
resource managers: Understanding concepts andoffada the design of landscape monitoring
projects.” Remote Sensing of Environm#&h&7): 1382-1396.

Keuchel, J., S. Naumann, et al. (2003). "Automédind cover analysis for Tenerife by supervised
classification using remotely sensed data.” RerSetesing of Environmei@&6(4): 530-541.

Kohonen, T. (1990). "The Self-Organizing Map." Rredings of the IEEE8): 1464-1480.

169



Kolmogorov, A. N. (1965). "Three approaches to dantitative definition of information.” Problems
of Information and Transmissidif1): 1-7.

Kuemmerle, T., O. Chaskovskyy, et al. (2009). "Bbreover change and illegal logging in the
Ukrainian Carpathians in the transition period fr@888 to 2007 " Remote Sensing of Environment
1136): 1194-1207.

Landgrebe, D. A. (1980). Useful Information From Igpectral Image Data: Another Look. Remote
Sensing The Quantitative Approach M. D. Philip H. Swain, McGraw-Hill336-374.

Lark, R. M. (1995). "Components of accuracy of majith special reference to discriminant analysis
on remote sensor data _" International Journalesh@&e Sensin6(8): 1461-1480.

Lillesand, T. M. and R. W. Kiefer (1979). RemotenSieg and Image Interpretatiodohn Wiley &
Sons Inc.

Lin, H. T. and L. Li (2005). Infinite Ensemble Ledmg with Support Vector Machines. Machine
Learning: ECML '05, vol. 3720 of Lecture Notes imtificial Intelligence G. e. al., Springer-Verlag
242-254.

Lin, H. T. and L. Li (2005). "Novel Distance-Bas&¥/M Kernels for Infinite Ensemble Learning."
Proceedings of ICONIP '0561-766.

Lin, H. T. and C. J. Lin (2003). A Study on Sigmd{@rnels for SVM and the Training of non-PSD
Kernels by SMO-type Methods. Technical Repbiational Taiwan University.

Lippman, R. P. (1987). "An Introduction to Neuradts." IEEE ASSP MadApril): 4-22.

Liu, D., K. Song, et al. (2008). "Using local tritien probability models in Markov random fieldsrfo
forest change detection." Remote Sensing of Enmienil1125): 2222-2231.

Lucas, R., P. Bunting, et al. (2008). "Classifioatiext term of Australian forest communities using
aerial photography, CASI and HyMap data " Remotes®®) of Environment125): 2088-2103.

Mahalanobis, P. C. (1936). "On the generalisedadest in statistics.” Proceedings of the National
Institute of Sciences of Ind(1): 49-55.

Martin, L. R. G. and P. J. Howarth (1989). "Chamigg¢ection accuracy assessment using SPOT
multispectral imagery of the rural-urban fringe riote Sensing of Environme3d(1): 55-66.

Masek, J. G., C. Huang, et al. (2008). "North Arceni forest disturbance mapped from a decadal
Landsat record.” Remote Sensing of Environnid6): 2914-2926.

170



Matthews, E. and A. Grainger (2002). Evaluatio-AD’s Global Forest Resources Assessment from
the user perspective. Unasylva 210, Vol BRO.

Mclver, D. K. and M. A. Friedl (2002). "Using prigrobabilities in decision-tree classification of
remotely sensed data.” Remote Sensing of Enviroh&#r2-3): 253-261.

Michelson, D. B., B. M. Liljeberg, et al. (2000)C6mparison of Algorithms for Classifying Swedish
Landcover Using Landsat TM and ERS-1 SAR Data." &ersensing of Environmefi(1): 1-15.

Miller, J. and J. Franklin (2002). "Modeling thesttibution of four vegetation alliances using
generalized linear models and classification treih spatial dependence.” Ecological Modelling
157(2-3): 227-247.

Myneni, R. B., J. Dong, et al. (2001). "A Large Bam Sink in the Woody Biomass of Northern
Forests." Proceedings of the National Academy aérdes of the United States of Ameried(26):
14784-14789.

NASA (2006). ROSES 2006: Making Earth System datards for Use in Research Environments.

Nelson, R., D. Case, et al. (1987). "Continentaldlaover assessment using landsat MSS data."
Remote Sensing of Environme?i(1): 61-81.

Nielsen, A. A. (2002). "Multiset canonical corrétets analysis and multispectral, trulymultitemporal
remote sensing data." Image Processing, IEEE Tedora onl1(3): 293-305.

Noss, R. F. (2001). "Beyond Kyoto: Forest Managdniana Time of Rapid Climate Change."
Conservation Biology 5(3): 578-590.

Olson, D. M. and E. Dinerstein (2002). "The gloB@bD: Priority ecoregions for global conservation."
Annals of the Missouri Botanical Gard8é: 199-224.

Olson, D. M., E. Dinerstein, et al. (2000). TemastEcoregions of the Neotropical Realm Conseci. S
Program. DC, WWF-US.

Pacala, S. W., G. C. Hurtt, et al. (2001). "Comsisi_and- and Atmosphere-Based U.S. Carbon Sink
Estimates." Scienc292(5525): 2316-2320.

Pal, M. and P. M. Mather (2003). "An assessmett@feffectiveness of decision tree methods for land
cover classification.” Remote Sensing of Environh@8@): 554-565.

Parikh, J. (1977). "A comparative study of cloudssification techniques.” Remote Sensing of
Environment5(2): 67-81.

Perrone, M. P. and L. N. Cooper (1993). When nédtwatisagree: ensemble method for neural

171



networks. Neural Networks for speech and imagegssiog R. J. Mammone. London, Chapman-Hall.

Potapov, P., M. C. Hansen, et al. (2008). "ComigiitfODIS and Landsat imagery to estimate and
map boreal forest cover loss.” Remote Sensing wir&mment1129): 3708-3719.

Quincey, D. J., A. Luckman, et al. (2007). "Fineateition remote-sensing and modelling of
Himalayan catchment sustainability.” Remote Seneirignvironmentl07(3): 430-439.

Quinlan, J. R. (1986). "Induction of decision tréédach. Learn.1: 81-106.

Rogan, J., J. Franklin, et al. (2002). "A comparisaf methods for monitoring multitemporal
vegetation change using Thematic Mapper imagemth®&e Sensing of Environmes®(1): 143-156.

Rogan, J., J. Franklin, et al. (2008). "Mappingllmover modifications over large areas: A compariso
of machine learning algorithms." Remote Sensingmfironmentl1X5): 2272-2283.

Rosenblatt, F. (1958). "The Perceptron: A Probstigli Model for Information Storage and
Organization in the Brain." Psychological Revié%{6): 386-408.

Rosenfeld, G. H., K. Fitzpatrick-Lins, et al. (1982Sampling for thematic mapping accuracy testing.
Photogrummetric Engineering and Remote Seng@hd31-137.

Sasaki, N. and F. E. Putz (2009). "Critical needriew definitions of "forest” and "forest degradati
in global climate change agreements." Conservatiiters99999999).

Schimel, D. S. (1995). "Terrestrial biogeochemicgtles: Global estimates with remote sensing.'
Remote Sensing of Environmesi(1): 49-56.

Schneider, J., G. Grosse, et al. (2009). "Land rcolassificationnext term of tundra environments in
the Arctic Lena Delta based on Landsat 7 ETM+ dattd its application for upscaling of methane
emissions.” Remote Sensing of EnvironnEif(2): 380-391.

Scholkopf, B., Smola, A. (2002). Learning with Kels Cambridge, MIT Press.

Scull, P, J. Franklin, et al. (2005). "The apgiima of classification tree analysis to soil typegtiction
in a desert landscape." Ecological Modellir@f(1): 1-15.

Sesnie, S. E., P. E. Gesslera, et al. (2008).ditatsng Landsat TM and SRTM-DEM derived variables
with decision trees for habitat classification amthange detection in complex neotropical
environments."” Remote Sensing of EnvironmE#A5): 2145-2159.

Settle, J. J. (1987). Contextual Classificationinéples and Practice, in Hardy, J.R., Townshend,
J.R.G., Settle, J.J., Drake, N.A., Briggs, S.A.sjedProceedings of workshop on Contextual
Classification of Remotely Sensed Data, UniversftiReading.

172



Simard, M., Saatchi, S. S., and De Grandi, G. (200he use of a decision tree and multiscale textu
for classification of JERS-1 SAR data over tropiftmlest.” IEEE Transactions on Geoscience and
Remote Sensing8(5): 2310-2321.

Small, C. (2004). "The Landsat ETM+ spectral mixisgace."_Remote Sensing of Environment
93(1-2): 1-17.

Song, C., C. E. Woodcock, et al. (2001). "Clasatfan and Change Detection Using Landsat TM Data:
When and How to Correct Atmospheric Effects?" Ren®ensing of Environmeii§(2): 230-244.

Song, K., J. R. G. Townshend, et al. (2005). Imprgp\Automated Detection of Land Cover Change
for Large Areas Using Landsat DaRroceedings of the Third International Workshoptlte Analysis
of Multi-temporal Remote Sensing Images, Biloxi,sslssippi, USA.

Stehman, S. V. (2000). "Practical Implications @&sign-Based Sampling Inference for Thematic Map
Accuracy Assessment.” Remote Sensing of Environ@@{f): 35-45.

Stehman, S. V. (2005). "Comparing estimators ofsgrohange derived from complete coverage
mapping versus statistical sampling of remotelysedrdata.” Remote Sensing of Environn86{8-4):
466-474.

Stehman, S. V. (2009). "Model-assisted estimat®ia anifying framework for estimating the area of
land cover and land-cover change from remote sgrisRemote Sensing of Environmeht3(11):
2455-2462.

Stehman, S. V., T. L. Sohl, et al. (2003). "Stat#dt sampling to characterize recent United States
land-cover change." Remote Sensing of Environr@éf): 517-529.

Stehman, S. V., J. D. Wickham, et al. (2009). 'fating accuracy of land-cover composition from
two-stage cluster sampling.” Remote Sensing of fBnment1136): 1236-1249.

Stone, M. (1974). "Cross-validation and multinongegdiction.” Biometrika1(3): 509-515.

Strahler, A. H. (1980). "The use of prior probat#k in maximum likelihood classification of remigte
sensed data." Remote Sensing of Environrhéf#): 135-163.

Swain, P. H. and S. M. Davis (1978). Remote Sendihg Quantitative ApproactMicGRAW-HILL.

Taylor, J. R. (1997). An Introduction to Error Awsis: The Study of Uncertainties in Physical
Measurements, University Science Books.

Tou, J. T. and R. C. Gonzalez (1974). Pattern Ra&tiog Principles Reading, MA, Addison-Wesley.

173



Townshend, J., C. Justice, et al. (1991). "GlohatIcover classification by remote sensing: present
capabilities and future possibilities.” Remote Semef EnvironmenB85(2-3): 243-255.

Townshend, J. R. G., C. O. Justice, et al. (199)e effect of misregistration on the detection of
vegetation change.” Trans. Inst. of Electronic &fek. Engineers, Geosciences and Remote Sensing
30(5): 1054-1060.

Tucker, C. J. and J. R. G. Townshend (2000). "&gras for Monitoring Tropical Deforestation Using
Satellite Data.” Int. J. Remote Sensii6/7): 1461.

Vapnik, V. (1999). The Nature of Statistical LeaeiTheory Springer.

Vapnik, V. (2006). Estimation of Dependences BamedEmpirical Data: Empirical Inference Science
Springer

Vapnik, V. and A. Chervonenkis (1974). Theory oftBan Recognition (in Russianyloskow, Nauka.

Vapnik, V. N. (1982). Estimation of Dependencesdfiagn Empirical DataSpringer-Verlag.

Vapnik, V. N. (1998). Statistical Learning TheoNew York:, John Wiley & Sons.

Vapnik, V. N. and A. Y. Chervonenkis (1974). TearifRaspoznavaniya Obrazov: Statisticheskie
Problemy Obucheniya. (Russian) [Theory of Patteecd@nition: Statistical Problems of Learning]
Moskow, Nauka.

Wang, Y., B. R. Mitchell, et al. (2009). "Remotesimg of land-cover change and landscape context of
the National Parks: A case study of the Northeasingerate Network." Remote Sensing of
Environment

Wiens, J., R. Sutter, et al. (2009). "Selecting eodserving lands for biodiversity: The role of wm
sensing."” Remote Sensing of Environm&h®(7): 1370-1381.

Woodcock, C. E., S. A. Macomber, et al. (2001). fiaring large areas for forest change using
Landsat: Generalization across space, time and daangkensors.” Remote sensing of environment
78(1-2): 194-203.

Xian, G., C. Homer, et al. (2009). "Updating theD20National Land Cover Database land cover
classification to 2006 by using Landsat imageryngesext term detection methods " Remote Sensing
of Environment1136): 1133-1147.

Yuan, F., K. E. Sawaya, et al. (2005). "Land castassification and change analysis of the TwingGiti
(Minnesota) Metropolitan Area by multitemporal Laatl remote sensing.” Remote Sensing of
Environment98(2-3): 317-328.

174



Yuan, F., K. E. Sawaya, et al. (2005). "Land coslessification and changenext term analysis of the
Twin Cities (Minnesota) Metropolitan Area by mudtihporal Landsat remote sensing " Remote
Sensing of Environme®8(2-3): 317-328.

Zhan, X., R. A. Sohlberg, et al. (2002). "Detectafrland cover changesnext term using MODIS 250
m data " Remote Sensing of Environm88t1-2): 336-350.

Zhang, L., M. Liao, et al. (2007). "Remote Senditange Detection Based on Canonical Correlation
Analysis and Contextual Bayes Decision." Photogratnim Engineering & Remote Sensid@(3):
311-318.

Zhu, Z., Yang, et al. (2000). "Accuracy Assessnienthe U.S. Geological Survey regional land cover
mapping program: New York and New Jersey regiorhbte®grammetric Engineering & Remote
Sensings6: 1425-1438.

175



