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In this dissertation we propose systolic architectures for several classes of
signal processing computations including schemes based on vector quantization
and high order crossings techniques. The systolic concept is adapted to design
architectures that are simple, regular, and that achieve high concurrency, local
communication, and high throughput. Our tree-structured vector quantization
(TSVQ) architecture is composed of a linear array of processors, each processor
performing the computations required at one level of the binary tree. Encoding
is performed in a pipelined fashion with each processor contributing a portion
of the path decision through the tree until the final processor is reached to get
the complete index. The predictive TSVQ (PTSVQ) architecture for real-time
video coding applications uses pipelined arithmetic components to speed up the
computation and to provide for regularity in design. This high throughput archi-
tecture is suitable for implementing a fully pipelined real-time PTSVQ system.
Data and control flow in both architectures flow in a pipelined fashion and no
global control signals are needed. We also present a class of architectures for
performing signal discrimination and classification based on higher order cross-

ing (HOC) methods. We also present a detailed design of a prototype HOC



PCB system using off-the-shelf components that can be used for non-destructive

testing.
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Chapter 1

Introduction

During the past decades, digital signal processing (DSP) systems have increas-
ingly played a critical role in many application domains. Ever since the intro-
duction of the fast Fourier transform (FFT) by Cooley and Tukey[1], the field
of digital signal processing has progressed rapidly. Different DSP aspects have
been studied and applied to an extensive number of real-world problems, involv-
ing acoustic waves, speech, image, and video signals.

Despite the fact that the designed systems are getting more powerful and
more complex, the capability to handle large amounts of data is still problem-
atic and hence sophisticated algorithms are necessary to provide the desired
performance. While the processing power of general purpose workstations has
increased tremendously, their data throughput rates have only increased mod-
estly to about 10 Mbytes/sec, which is not sufficient for many important signal
processing applications. Consider for example a typical real-time image process-
ing system that has to handle 30 frames/sec, each frame consisting of 1024 x 1024
pixels. The throughput rate is 31.5 Mpixels/sec. It is hard to achieve such high

rate using a general purpose computing system. Many real-time applications



require throughput rates that are much higher. For example, HDTV demands a
rate of about 70 Mbytes/sec of image data. Special purpose VLSI architectures,
tailored for a particular application, can effectively balance the computational
power with throughput to achieve real-time performance. Hence, special purpose
VLSI systems are likely to be heavily used at least in the short run to handle
processing requiring high data throughput.

It has been noticed that the most efficient signal processing algorithms have
some common key properties that include regularity, simple I/O communica-
tions, and large amount of concurrency. Such properties seem to lead an effective

mapping of the algorithm into compact and regular architectures.

1.1 Design Methodology

In this section we describe the design discipline commonly used to build special
purpose systems. Under such discipline, the whole design process can proceed

in an efficient manner. The methodology is divided into the following phases.

1.1.1 Define the problem

For any particular application, the initial phase of the design is to describe the
problem in terms of functional specifications, including I/O, performance re-
quirement etc. Other different factors such as realistic goals, feasibility, resource
requirements, and technical objectives needed to be considered meeting the re-
quirements. A brief analysis of system complexity is necessary to partition the
system into sub-systems for further detailed design. Hence high-level hardware

description languages, such as VHDL, are used to describe the system and to



analyze it before proceeding to implement such a system.

1.1.2 Algorithms

The VLSI circuit technology imposes restrictions on the type of algorithms that
can be implemented efficiently in hardware. An increase in efficiency can be
expected, for example, if the algorithm manages to preserve a balanced distribu-
tion of work load while observing the requirement of locality. These properties
of load distribution and information flow serve as guidelines to the designer of
algorithms for VLSI.

Some of the critical aspects of efficient VLSI algorithms include the following:
e Maximum parallelism.
¢ Maximum pipelining.

Balance among computation, communication and memory.

Good numerical performance and quantization effects.

1.1.3 Hardware Architectures

For general purpose computing, the CPU is the main engine of the processor.
The capability of the conventional computer architecture is limited by the bot-
tleneck due to the shared memory that is used for both instructions and data.
Most applications in DSP require the handling of signals in real time, and most
of the operations in DSP algorithms are multiplications and additions. The con-

ventional processor seems to be incapable to meet the throughput requirements



in many applications. The processing power of these general purpose comput-
ers has increased greatly during the past decade. Another trend is the fact
that pipelining and parallelism, once the exclusive domain of special purpose
VLSI architectures, are now routinely incorporated in general purpose ASICs
and workstations [2, 3].

In addition to providing a mass computational capability, a high perfor-
mance architecture is expected to execute most required primitive operations
at the highest speed, in order to minimize the overhead task, and to maximize
throughput. Interfacing to the processor must be easy, allowing not only the
processor to fit as system element, but also allowing multiple DSPs to cooperate
in solving a particularly demanding task.

As mentioned earlier, the regularity, local communication and concurrency
play an important role in mapping the algorithms into efficient architectures.
There are several topologies, such as the pyramid network, the binary tree net-
work, the hypercube network, and the butterfly network, that have been pro-
posed as general-purpose parallel architectures. For instance, the systolic array
architecture, initially introduced by Kung [4], provides an effective way to solve
many signal processing algorithms, such as filtering, matrix operations, sorting,

convolution, template matching, etc.

1.1.4 Physical Design

After the hardware architecture is specified, the functional blocks need to be
determined. The information concerning performance, power, and size of these
blocks are provided from an existing library. Based on the requirements, we

can evaluate whether a single or a multi-chip solution is necessary. In chip-level



implementations, the conventional ways include random logic, PLA, standard
cell, gate array, FPGA, and high-level synthesis. If multiple chips solution is
suitable, then further floor-planning step can proceed and Printed Circuit Board

(PCB) layout is further considered.

Functional Block

The functional block is defined as a macro of interconnected circuits to perform
a specific logic functions such as Arithmetic Logic Unit (ALU), multiplier, regis-
ter files, multiplexer, Random Access Memory (RAM), and Read Only Memory
(ROM). For regular array of elements, such as RAM and ROM, the best way
is to design the smallest cell. Then the whole memory is expanded by duplica-
tion so that the total area is optimized. For the random logic function, or finite
state machine, the semi-custom design is adapted to implement those functions
where the functional blocks are hierarchically mapped into gate level description
in terms of NOT, NAND, XOR, etc. According to the specified schematic di-
agram, these library cells are placed and routed. There are trade-offs between
manual and automatic routing and placement procedures. For a large number of
gates, it is time consuming to implement it manually. The design by automated
Computer-Aided Design (CAD) tool would save time, while it usually uses more

area.

Verification, Simulation

As the complexity of the system increases, the testing methodology becomes
more and more necessary to assure the functionality of the design. The verifi-

cation and simulation are done in different areas to ensure the validity of the



design. The comparisons of the simulation results from different phases give
the discrepancy between any two different phases. Advances in CAD tools have
assisted in many aspects of the verification and testing of VLSI circuits. Also
test pattern generation is a method to set up the necessary conditions in the
circuit to provoke a fault condition and subsequently propagate the effect of a
fault to an observable output. Other approaches include design for testability
which is built-in test circuitry incorporated in the system so that we can test
components and enhance the testability of the system. Hence, the correction or
improvement can be effectively executed to ensure the correctness of the whole

design process.

Technology

Finally, new technologies include the inventory of the fast device and the more
advanced manufacturing process. The future trends will include the implemen-
tation of low cost, low power consumption, and high density devices to integrate
the maximum system and maximize the throughput of the system. On the other
hand, an advanced tool suite is necessary for software development and system
simulation. The CAD tools will be developed and widely used to speedup the
turnaround time of the system design. For example, the state-of-art technology
can squeeze hundreds of mega bits of RAM into a small area of chips. And in
the current VLSI technology, up to millions of transistors can be integrated into

a single chip.



1.2 Data Compression

The rapidly evolving communication technology will allow the generation of vast
amounts of data that will have to be transmitted, manipulated or stored. The
main goal of data compression schemes is in substantially shrinking the data
involved without any significant loss of information.

There are several factors used to evaluate compression schemes[5]. These

factors include the following.

e Bit Rate: The bit rate of the digital system is defined as the product of
the sample rate and the number of bits per sample. For audio signal, the
sample rate ranges from 8 kHz for telephone speech, 16kHz for teleconfer-
ence, and up to 48kHz for DAT (Digital Audio Tape). Assuming 8 bits
per sample, the bit rate can vary from 64k bits/sec (kps) to 384kps. As
for the video coding, for example HDTV system, the sample rate is about

1280*720*60=55.3 MHz. The bit rate will be 55.3%*8=442.4 Mbps.

e Performance Measurement: In spite of the fact that the signal quality is
quite subjective, the discrepancy between two signals can be measured
quantitatively. A distortion measure d is an assignment of a nonnegative
cost d(x,%) associated when quantizing an input vector x with a repro-
duction vector X. Hence, the performance of a system can be measured in
terms of average distortion when the input vector satisfies a certain statis-
tical distribution. The most widely used method is the Mean-Square-Error
(MSE), defined as

d(x, %) = [[x — x|’

Other distortion measures include Absolute Error and Weighted Square



Error. On the other hand, due to the human perception effect considered
recently, other methods, such as the method using the Mean-Opinion-Score
(MOS) scale in speech quality testing, have been widely introduced in some

particular areas.

e Computation Complexity: The complexity of an algorithm can be mea-
sured in terms of the number of arithmetic operations and storage elements
required to execute the algorithm. There are different issues that can play
a decisive role, such as, hardware or software implementation, cost, power
consumption, and portability etc. In particular, advances in digital sig-
nal processing units provide up to 100 MFLOPs of peak throughput and
can support the increasing demands of complicated and sophisticated al-

gorithms.

e Communication Delay: The communication delay is often associated with
the processing rate of the hardware system, and the complexity of the
algorithms. For those applications such as storage, or TV broadcasting, the
delay is not particularly relevant. But in two-way communication systems
such as teleconferencing, the delay time poses an important restriction on
the implementation of the system. Hence, the compromise is usually made
between the computational complexity of the algorithm, and hence affects

the signal quality.

1.2.1 Basic Strategies

Data compression is a fundamental signal processing task that has been the sub-

ject of extensive studies in theory and practice. In general, a signal compression



procedure operates to remove the redundancy of the signal. This has led to the
development of several important lossy or lossless schemes including predictive
coding, block transform coding, vector quantization, and sub-band coding[6].

We will give a brief discussion on some of the lossy compression schemes.

e Transform coding: The transform coding method linearly transforms a
block of N digitized input samples, called X, into a set of N transform
coefficients, called Y. The transform coding is to convert the statistically
correlated source data into less correlated coefficients in the transform do-
main. The coefficients are then quantized for transmission, and thus the
compression can be done more efficiently. The receiver performs the inverse
transform on the quantized coefficients to obtain the reconstructed signal.
For example, the Fourier transform is the most widely used transform be-
tween time and frequency domain. For picture coding, Discrete Cosine
Transform (DCT), Karhunen-Loéve transform (KLT), and Walsh trans-
form (WT) can compact the energy into only a few coefficients containing
most of the original information. A crucial procedure is the bit-allocation

which is to minimize the mean squared error for the reconstructed signal.

¢ Subband Coding: In Subband coding, the scheme consists of a bank of
M bandpass filters to operate on the input sample and to generate a set
of narrowband signals which represent a subband of the input spectrum.
The narrowband signals are allowed to be subsampled and reduce the bit-
rate to code each sub-band. The receiver performs the inverse stages to
synthesize the original subband signals. Each of the subband signals is
bandpass filtered, and then they are added to reconstruct the original

signal. In this approach, the input signal is divided into a number of



separate frequency components, and each of these component is encoded
separately. This division in the frequency domain removes the redundancy
in input and provides the set of uncorrelated signals to the channel. The
main advantage is that the number of bits used to encode each frequency

component can be variable.

Vector Quantization: A vector quantization (VQ) @ of dimension & and
size N is a mapping from an input vector in k-dimensional Euclidean space,
RE, into a set C, where C contains N reproduction points, called codevec-
tors or codewords. The index is then sent over the channel instead of
the reproduction codevector. The decoder, having the identical codebook,
simply performs the table-lookup in the codebook to generate the repro-
duction codevector. The rate of the quantizer is r = (log N)/k bit/vector.
And VQ provides the best performance among all block structured image

coding schemes for a given blocksize and bit-rate.

Predictive Coding: Prediction is a procedure to statistically estimate
one or more random variables from observations of other random vari-
ables. Suppose a sequence U, is subtracted from the input sequence X,
the difference e, = X,, — U, is quantized for transmission, where U, is a
prediction of X, based on some information from the past of X,. At the
receiver end, the same sequence U, is added into the quantized difference
én = Qle,) to form a signal X, = Q(e,) + U,. The idea is to code the
difference ( or error ) between the current value and the value predicted
based on previous sampled values. The difference value contains less re-
dundant information. The predictive coding is one of the most promising

method for bit-rate reduction. For example, differential pulse-code modu-

10



lation (DPCM) is one of the commonly used predictive coding schemes.

1.3 Vector Quantization

Vector quantization is one of the most powerful data compression techniques.
This has led to its adoption in several standards such as the JPEG (Joint Pho-
tographic Expert Group) standard for still image compression, the MPEG ( Mov-
ing Pictures Experts Group ) standard for audio/video compression for storage
applications. While a significant amount of work has been done in the develop-
ment and implementation of data compression algorithms in software , not much
has been done in terms of real-time hardware implementation of these algorithms
[7, 8]. In this thesis, we consider and develop efficient VLSI architectures for the
real-time implementation of Tree-Structured VQ (TSVQ) and Predictive TSVQ
(PTSVQ). We give a brief introduction here and leave the details of the schemes
for the rest of the thesis{7].

As defined earlier, VQ can be defined as a mapping Q : R¥ — Y where
Y ={Y;i=1,2,---, N} is the set of reproduction vectors, called codebook, Y;
is called codevector, and N is the number of codevectors in the codebook. Only
the index ¢ of the resulting codevector is sent over the channel to the decoder.
The decoder has an identical copy of the codebook as the encoder. The decoding
process can be implemented by a simple table-lookup operation. The rate of
the quantization is R = log, N bit per input vector. The compression rate is
R/k bits per sample pixel.

The performance of a VQ system depends on the composition of the code-

book. There are several criteria that are used to design an optimal codebook.

11



One of the mostly used criteria is to minimize the mean-squared-error (MSE).
The most popular method for generating a codebook was proposed by Lloyd and
extended by Linde, Buzo, and Gray. The method uses the clustering approach,
and is commonly referred to as the generalized Lloyd algorithm or the LBG al-
gorithm. In the LBG algorithm, all the training vectors, representing the typical
signal source to be coded, are clustered around the current candidates for being
codevectors. The centroid of these clusters then become the new preset codevec-
tors at the next iteration. The procedure continues until all the training vectors
are clustered around the codevectors. However, it is likely that the method,
depending upon the initial codebook, yields a local minimum of distortion.

For a codebook of N codevectors, it take O(NN) distance comparisons to find
out a nearest codevector in a full search VQ. For high rate coding, it becomes
infeasible to implement such a VQ. There are other variation of VQ’s which are
developed to reduce the computation complexity at the expense of a reduced
signal to noise ratio, such as Tree-Structured VQ, Multi-Stage VQ, etc. There is
also a variation of VQ’s which exploit the relationship between input vectors to
reduce the transmitted bits or achieve the better performance at the same rate,

such as Predictive VQ, and Finite-State VQ.

1.4 Higher Order Crossings

A time series is a sequence of observations or measurements ordered in time.
Experience suggests that almost all observed time series are oscillatory, dis-
playing the up and down property either locally or globally. This phenomenon

exists in different fields and applications such as fluid mechanics, speech pro-
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cessing, biomedical engineering, optical communications, image processing, etc.
The information contained in the oscillation of a time series can be extracted
and represented by the sequence of zero crossings. It is of great interest to de-
velop useful new techniques to explore this property and try to extract as much
information from it as possible.

The simplest form of time series analysis is to count the number of zero-
crossings. However, with digital signal processing techniques, filters can be ap-
plied to the sequence of the observed time series to change the oscillation and
obtain a different set of counts. It is surprising that such a sequence can provide
extensive information for signal discrimination, classification, and for frequency
estimation in the presence of noise[9]. We refer to such a sequence of zero cross-
ings count as HOC ( Higher Order Crossings ) sequence. This connection gives
useful and interesting properties of zero-crossings, especially for the fast analysis
of random signal.

Frequency estimation is an important problem in time series that has re-
ceived a lot of attention in the literature[10]. There are different approaches to
tackle this problem. They can be roughly classified into two categories, Fourier
Transform and periodogram analysis. Though periodogram analysis can pro-
vide reasonable results in many cases, it requires a large number of iterations
and a certain exhaustive search to obtain high accuracy estimate. The Fourier
Transform is the traditional approach to tackle this problem. The computational
complexity can be greatly reduced at the cost of resolution. However, in [10, 9],
a method is suggested based on HOC sequences which provides very good re-
sults in many cases. The method, called Contraction Mapping (CM) method,

exhibits a simple form that can be easily implemented. It has been shown that

13



the method can surpass the precision of FFT results.

HOC can also be used to perform signal discrimination and classification. For
example, one can apply the HOC technique to ultrasonic classification of adhe-
sive joints in Nondestructive Evaluation (NDE)[11, 12]. The signature between
perfect sample and false one can be measured using the so called 1)? statistic to
measure discrepancy, where the 12 test is related to the statistical test x? and
will be introduced in a later chapter. The idea has been exploited in several
applications such as the discrimination between white noise and stationary au-
toregressive moving average (ARMA) processes, and tracking the vocal sound of
a whale in ambient sea noise[9).

To acquire more useful information, we can use filters, especially linear filters,
to isolate specific parameters. Typically, a family of filters is applied to a time
series to generate sequences of the zero-crossing counts.

In this thesis, we design a flexible special-purpose architecture for implement-

ing a programmable HOC that can be adapted to different applications.

1.5 Main Contributions

In this thesis, we develop efficient VLSI architectures for implementing Tree-
Structured Vector Quantizers (TSVQ) and Predictive Tree-Structured Vector
Quantizers (PTSVQ) for real-time applications. These architectures can be used
in any speech or image compression application based on VQ. We also develop
the architectures for a system that can perform different HOC analysis schemes
efficiently. In this section, we describe the TSVQ, PTSVQ and HOC algorithms,

and give brief presentation of our architectures and their properties.
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Figure 1.1: Traversal of a binary tree of depth 4, and its mapping onto a linear array of
processors.

1.5.1 Tree-Structured Vector Quantizers

In Tree-Structured VQ (TSVQ), the codebooks are typically structured as trees
to reduce the codebook search complexity and simplify hardware implementa-
tion. A TSVQ has an O(log N) codebook search complexity compared to the
O(N) complexity of Full Search VQ. While Full Search VQ results in a bet-
ter signal to noise ratio performance than TSVQ, researchers have found that
variable rate pruned TSVQs outperform Full Search VQs of the same rate [13].

The computations performed by a TSVQ can be viewed as finding a path
from the root to a leaf in a binary tree. While traversing a binary tree, only
one node is encountered at each level. Hence, the computations at each level
can be performed by a single processor. Our architecture for the TSVQ encoder
consists of a linear array of processors [14]. A tree of depth d can be mapped onto
a linear array of d processors as shown in Fig. 1.1. Codebook values associated
with each processor are stored in off-chip memories.

The number of processors required for real-time implementation equals the
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depth of the tree and does not depend on the input vector dimension. In our
architecture all processors are identical and data flow between processors is reg-
ular and simple. Each processor performs the computations at one level of the
binary tree. It then adds its result to the partial index register and transmits
it to the the next processor in the array. The complete path through the tree
is available from the last processor in the array. There is no global communi-
cation between the processors. Variable rate TSVQs can easily be implemented
using this architecture by simply selecting the correct number of index bits at
the output of the last processor.

Several researchers have implemented TSVQs in hardware concurrently with
our work. TSVQ architectures were first proposed by Lookabaugh [15]. The
scheme to exploit binary Hyperplane testing [16] for generating efficient TSVQ
architectures was first proposed by Lookabaugh. Hardware implementations
were proposed by Yan and McCanny {17] and Wai-Chi Fang et.al. [18] which are
similar to our schemes. Yan and McCanny do not implement their architecture.
Wai-Chi Fang et.al. use parallel multipliers to implement a tree of depth 10
on one chip. In their scheme, memory is on chip for the first eight stages.
Additional memory for the last stages are off-chip. Their implementation uses
a comparator in each processor which is not necessary in our scheme. Pipelined
parallel multipliers have fewer logic elements between adjacent latches and are
thus faster than full parallel multipliers. More recently Markas et.al. [19] and
Madisetti et.al. {13, 20] have proposed TSVQ architectures.
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1.5.2 Predictive Tree-Structured Vector Quantizers

A Predictive VQ is a VQ with memory. Predictive VQ (PVQ) makes use of
interblock correlation to predict the current input vector based on past outputs;
it then vector quantizes the difference between the actual input and its pre-
dicted value. As mentioned earlier, TSVQ is a sub-optimal VQ which trades off
computational complexity for performance. It is easily seen that PTSVQ has a
much smaller complexity than PVQ with only a minor performance degradation
[7, 21].

Recently, some researchers have implemented DPCM coding with noise shap-
ing in hardware[22]. Their scheme uses either 1 or -3 as prediction coefficients
which leads to a special case of prediction. The Predictive TSVQ architecture
we presented combines the DPCM and Vector Quantization scheme is suitable
for real-time video coding applications[23]. Pipelined arithmetic components are
used to speed up the computation and to provide for regularity in design. This
high throughput architecture is suitable for implementing a fully pipelined real-
time PTSVQ system. Identical processors are used for both the encoding and
decoding components. Spice simulations indicate correct operation at 40 MHz
using 1.2pum CMOS technology. For a typical real-time image processing system
with 30 frames/sec and 1024 x 1024 pixels/frame, the input pixel rate is 31.5
Mpixels/sec. This architecture is capable of processing 40Mpixels/sec and can
handle the above case in real-time. We fabricated prototype versions of these

chips using 2um CMOS technology. These prototype chips work at 20 MHz.
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1.5.3 Higher Order Crossings

The Higher Order Crossings (HOC) sequence is a set of parameters generated
by first applying a family of filters, and then determining the corresponding zero
crossing counts from the filtered signals. The HOC sequences can be used to
classify signals or to discriminate between two signals. A useful statistic, the so
called 1? statistic, can be used to simply quantify the similarity between two
different signals.

Though a simple schematic HOC processor is mentioned for performing dif-
ference operators and counting operation[24]. Due to the wide applicability of
HOC analysis in different areas, we designed a flexible special-purposed archi-
tecture that can adapt differeent filter operations for different applications and
performs the HOC analysis efficiently. We also present a detailed design of a
prototype HOC-1? PCB system using off-the-shelf components. The designed
board provides flexibility and programmability for various applications. As the
prototype system uses off-the-shelf components, the performance is restricted by
the microprocessor-based controller and the elements used. The microprocessor-
based controller was set to run at the clock rate 11MHz. We believe that the
performance will improve substantially if the system is implemented in a VLSI

circuit.

1.6 Thesis Organization

The rest of this thesis is organized as follows: In Chapter 2, we describe the design
and VLSI implementation of a systolic architecture for TSVQ. In Chapter 3,

we develop an efficient architecture for implementing PTSVQ in real time for
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image compression, whereas in Chapter 4, we develop a systolic architecture
for implementing HOC in real time for signal classification. We summarize our

results in Chapter 5 and give the conclusion.
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Chapter 2

Tree-Structured Vector

Quantizers

A Tree-Structured Vector Quantizer (TSVQ) is a VQ with a structure imposed on
its codebook. This structure reduces the complexity of the encoding operation,
or for the same complexity, achieves a significantly better signal to noise ratio

performance.

2.1 Definition

At each stage of a binary TSVQ, the input vector is compared with two code-
vectors. Based on this comparison, one of the two branches is chosen and the
codebook search space is reduced in half. This process is repeated until a leaf
node is reached.

Let x = (zy,...,2.)7 represent the L-dimensional input vector, and ¢; =
(e11,-.-,e1,0)T, and c2 = (¢, ..., c2,1)7 represent the two vectors in the code-

book of a given node. The processing performed at each node is reduced to
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testing the condition:

d(x,c1) > d(x,c2), (2.1)

where d(x, c1), and d(x, cg) are the distortion measures. For the general case of

the weighted mean-squared error distortion,
dx,c;) = (x—¢;))TWx—-¢), i=12,
where W is the weighting matrix. Equation (2.1) can be expressed as:
(x—c)TW(x—c1) — (x—c2)TW(x—c3) >0 (2.2)

If equation (2.2) is satisfied, the input vector x is closer to codeword cg. Other-

wise x is closer to ¢;. We expand equation (2.2) to obtain [25]:

L
Y Aoz} +8 20 (2.3)
=1
where a = (a1,...,ar) = 2(cz —c1)TW, and 8 = c1TWey — c2”Wes. For the

special case of the mean-squared error distortion measure, W = I, and hence
a; = 2(c; — €13), and f = Ef:l(cij —c5)-

Instead of using the raw codebook online, we can determine these o and 3
coeflicients off-line and store them in memory chips. Some applications use a
weighting matrix W(x) that depends on the input vector x. Equation (2.3) is
still valid in this case, but a preprocessor is needed to compute the o and 3
coefficients in real-time. The same simplification can be derived for the case of
the Itakura-Saito distortion measure as well [17)].

This algorithm is based on Binary Hyperplane Testing [16]. Directly imple-
menting equation (2.1) requires 2(L? + L) multiplications, 2(L? — 1) additions
and L*+ L words of memory storage, while implementing equation (2.3) requires

only L multiplications, L additions, and L + 1 words of memory storage.

21



2.2 Single Node Processor

The Single Node Processor (SNP) performs the computations stated in equa-
tion (2.3). Its output is a ‘0’ if equation (2.3) is satisfied and a ‘1’ otherwise. The
SNP contains of a parallel multiplier [26] pipelined at the bit-level, a pipelined
accumulator, an index register and a counter. We do not need a comparator unit
in the processor. The most significant bit (MSB) of the accumulated products
directly represents the processor’s output.

Fig. 2.1 shows a block diagram of the SNP. Input data is skewed and all
internal operations are performed in a bit-skewed word-parallel mode. The mul-
tiplier takes two b-bit numbers «; and z;, and a 2b-bit number §’, and returns
a 2b-bit number p; = «;z; + . We define f' = /L and add it during each
of the L multiplication steps. This can be done without any additional hard-
ware and eliminates the need for a comparator unit to compare the accumulated
sums with 8. The bits of p; = p;as,Pj2s—1,...,p;1 are available in a skewed
fashion, least significant bit (LSB) first. The latency of the multiplier depends
on the bit position; it is b for the LSB bit p;;, and 3b for the MSB bit p; 2. The

accumulator must have a precision of
n = 2b+ [log L]

bits, to prevent overflow when L 2b-bit numbers are added together. The output
of the multiplier is sign extended by [log L] bits and is directly applied to the
accumulator.

The accumulator consists of a linear array of cells, and operates on skewed
input data as shown in Fig. 2.2. Each cell consists of a full adder and three

latches. Carry is propagated to the neighboring cell and sum is stored within
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Figure 2.1: Detailed block diagram of each processor. Each processor’s READY output must
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to the processor. The least significant b bits are set to zero internally.
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of each cell. Solid circles are unit delay elements.
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the cell. The accumulator computes

L
A=) p;,

j=1
and returns the sign of A. The sign of A is available at the carry output pin
of the last cell in the accumulator array. It is denoted by L/R in Fig. 2.2. A
Reset signal is generated once every L clock cycles. Reset is propagated along
the array and each cell is reset in turn. This allows the next set of L numbers to
be accumulated immediately after the last number of the current set is applied
to the accumulator. The latency of the accumulator is n + L clock cycles. This
is the number of clock cycles between the time p, ; is applied to cell A; and the

time L/R is ready at cell A,. Hence, the latency of each processor is
b+n+L=3b+ [logL]+ L.

For example, if the word size b = 8, and the vector dimension L = 64, we have

a latency of 94 clock cycles.

2.3 TSVQ Architecture

The computations performed by a TSVQ can be viewed as finding a path from
the root to a leaf in a binary tree. While traversing a binary tree, only one
node is encountered at each level. Hence, the computations at each level can be
performed by a single processor. A tree of depth d can be mapped onto a linear
array of d processors as shown in Fig. 1.1.

Fig. 2.3 shows the architecture of a TSVQ using d Single Node Processors
(SNPs). The coefficients necessary for each SNP’s computations are stored in
memories and will in general depend on the distortion measure used. Proces-

sor SNF; adds the results of its computations to a partial index datapath and
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Figure 2.3: Systolic architecture for computing TSVQ. Each SNP adds its partial index to the
index data-path, and generates a control signal to initiate processing by its neighbor down the
tree. No global control signals are needed.

generates a Go signal to initiate processing by processor SN P ;. This Go sig-
nal is used to reset the accumulator in processor SNP,,;. The final processor,
SNPy_1, returns the complete index u. The size of the memory is different for
different processors. The first processor needs a memory of L + 1 words to store
B’ and the L components of a;. Processor SN P, needs twice as much memory
as processor SNFP,. The last processor needs a memory of 2¢°1(L + 1) words.
The throughput of this scheme is one L-dimensional vector per L clock cycles.
A TSVQ can also be built by using one SNP and recirculating the input data d
times as shown in Fig. 2.4. In this case, the RAM must have an additional [log d]
address bits to identify the level of the tree that is currently being processed.

Adjacent input vectors must be separated by the latency of the TSVQ,
LTSVQ = dLSNP = d(b +n+ L) (24)

The throughput in this case is one L-dimensional vector per Lrsyq clock cycles.
For a tree of depth d = 8, and a vector dimension of L = 16 (which corresponds

to a bit rate of 0.5 bpp), we have Lrgyo = 352 clock cycles.
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Figure 2.4: TSVQ architecture using one SNP and recirculating registers. Input vector x must
be recirculated d times, once for each level of the binary tree.

2.4 VLSI Implementation

The detailed block diagram of each processor is shown in Fig. 2.1. Each pro-
cessor consists of a pipelined parallel multiplier, a bit-level accumulator, a data
vector register, a partial index register, and a local control unit. The multi-
plier computes a X b + ¢, and can process a different set of inputs each clock
cycle. The products are output in skewed fashion, LSB first, every clock cycle.
A bit-level accumulator adds these partial products in bit-serial fashion. The
MSB of the accumulated partial products represents the processor’s partial in-
dex. One of the advantages of this architecture is the absence of any comparator
unit. We don’t need a comparator because the multiplier can perform addition
without any extra hardware. Hence We,can directly implement equation (2.3) in
hardware. It is not necessary to add any correction terms to the accumulator’s
output. The control unit keeps track of each input block of size k x k pixels

and sends a reset signal to the accumulator once every k? clock cycles. The
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reset signal propagates through the accumulator and each of its cells resets in
succeeding clock cycles. This scheme allows for the next block of skewed partial
products to be accumulated immediately after the last block is applied to the
accumulator. Input block sizes of 4 x 4 or 8 x 8 pixels can be quantized by this
processor. An external control signal is used to select between these two modes.

A separate datapath is used to propagate the partial index through the
pipeline. Each block of input vectors has a partial index tag associated with
it. This partial index moves along with the input synchronously. An address
for the off-chip RAM is generated from this partial index and the output of the
on-chip counter. There are 8 pins in the index data path. This allows for trees of
depth up to 8 to be easily constructed using these processors. These processors
can also be used, together with some external logic, to build trees of depth larger

than 8.

2.5 Simulations

This TSVQ implementation consists of one processor for each level of the
tree. Interconnection and data flow between processors is simple and requires no
global control signals. Fig. 2.5 illustrates the timing of all local signals between
processors for the case when the block size is 8 x 8. The system requires a two
phase non-overlapping clock. Two phase clocks avoid race conditions and permit
simple logic level design. The latency time of each processor is 100 clock cycles.
This includes the 64 cycles needed to read each block. If the block size is 4 x 4,
the latency per processor is 52. Each processor generates a READY signal when

its computation is completed. This READY signal also indicates the start of the
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delayed input vector and its partial index. This signal is used by the neighboring
processor to reset its control unit. The partial index is also used as an address

for the coefficient memory.

2.6 Fabrication and Testing

We have implemented a Single Node Processor using MOSIS’ 2um N-well process
on a 7.9mm X 9.2mm die [14]. Each processor contains 25,000 transistors and
has 84 pins. The processors have been tested at 20 MHz. These processors can
operate on either 4 X 4 or 8 x 8 blocksizes. Fig. 2.6 shows a plot of the fabricated
chip.

This chip was tested using a IMS HS 1000 tester using 500 randomly gener-
ated test vectors. It was found to be fully functional at a frequency of 20 MHz.
This chip has been designed using scalable ground rules. Fabricating at 0.8um

will result in an operating speed of 50 MHz.
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Figure 2.6: Plot of the TSVQ processor chip. Die size is 7.9mm x 9.2mm.
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Chapter 3

Predictive Tree-Structured

Vector Quantizers

A Predictive VQ is a VQ with memory which has been extensively studied in
recent years [27, 28, 29, 30, 21, 31, 32]. Predictive VQ (PVQ) makes use of in-
terblock correlation to predict the current input vector based on past outputs; it
then vector quantizes the difference between the actual input and its predicted
value. We concentrate here on the case where the difference is quantized us-
ing a TSVQ. The resulting system is called a Predictive TSVQ (PTSVQ). As
mentioned earlier, TSVQ is a sub-optimal VQ which trades off computational
complexity for performance. It is easily seen that PTSVQ has a much smaller

complexity than PVQ with only a minor performance degradation [7, 21].

3.1 Definition

A block diagram of the PVQ system is shown in Fig. 1. Predictive VQ (PVQ)

can be viewed as a straightforward vector extension of the traditional scalar pre-
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dictive quantization or Delta Pulse Code Modulation (DPCM). In the encoder,
a predicted vector is formed from the past reconstructed vectors, &,_1, £p_2, - -
An error vector, e,, is generated based on the difference between the predicted
vector &,, and the actual input vector x,,. This error vector is quantized using a
memoryless VQ. Then, the index is transmitted over a channel.

In the decoder, this error vector is recovered from the received channel index
by table lookup. The original vector is reconstructed by adding this error vector
to its corresponding predicted vector. A PVQ system [27] can be formally defined

as follows:

1. An encoder y which is a memoryless VQ that assigns to each error vector,
e, = , — T,, an index symbol u, from an index set M to identify the

closest codeword in codebook B.

2. A decoder 8 which is a mapping that assigns to each index u, a vector in

a reproduction codebook B.

3. A prediction function f which predicts the input vector &, based on the
previous reconstructed inputs, and hence &, = f(&,_1, Zn_2, ). Typi-
cally, only finite order, say p, of prediction is assumed to be used, i.e. the

above expression can be simplified as &, = f(@n_1, Zn-2,"**, Tn—p)-

Given a sequence of input vectors and an initial prediction &, the index
sequence u,, reproduction sequence &,, and prediction sequence &, for n =

1,2, are defined recursively as follows:

Un = v(en) =v(Tn — &)
r, = é’:n + /B(U'n)a

in+1 d f(i%n, {cn—h o )

34



For a linear prediction function of finite order p, &, can be expressed as
P
Tp = Z AiLn_i,
i=1

where A; is an L x L predictor matrix for an L-dimensional vector.

3.2 Overall Architecture

In this section, we describe the mapping of PTSV(Q onto a VLSI architecture for

real-time image coding. This system consists of:

1. TSVQ for encoding the difference between the predicted vector and the

input vector into a channel index,

2. Inverse TSVQ (ITSVQ) for decoding the channel index into its correspond-

ing codevector, and

3. Predictor Processor (PP) which computes the residual vector, and executes

the prediction process.

The overall architecture of the PTSVQ is shown in Fig. 3.2. This architecture
consists of a Predictor Processor, a linear array of SNP processors which realize
a binary TSVQ, and an Inverse TSVQ (ITSVQ). There are three types of basic
building blocks in the system, namely the Predictor Processor (PP), the Single
Node Processor (SNP) used for realizing TSVQ, and the ITSVQ processor. The
ITSVQ chip can be implemented as a table lookup, using either a ROM or a
PLA. The Predictor Processor subtracts the predicted vector from the input
vector, buffers the past vectors, and generates the predicted vector according to

the specified prediction function. Due to the similarity between the encoding
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Figure 3.3: Block diagram of the Predictor Processor.

and decoding parts of the PTSVQ, the PP can be used either as an encoder
or as a decoder without additional circuitry. The SNP performs the distortion
computation corresponding to a node of a binary TSVQ. We now describe each

of these blocks in detail.

3.2.1 PTSVQ architecture

In this section, we describe how the PTSVQ can be built using a TSVQ as a
building block. A detailed block diagram of the Predictor Processor is shown in

Fig. 3.3. A pipelined subtractor is used to subtract the values of the predicted
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vector from the corresponding input vector. The bit-level adder/subtractor,
shown in Fig. 3.4, operates on skewed input data in bit-serial fashion. The
result, i.e. the difference or residue vector, is then deskewed and sent to the
TSVQ to generate the channel index. The predicted vector is delayed by the
latency of the TSVQ and the ITSVQ modules. This delayed vector is added
to the output of the ITSVQ module to generate the reconstructed vector. This
reconstructed vector is then fed into a data buffer unit. The data buffer unit
correctly taps the pixel values from these vectors for the linear prediction module

as explained next.
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Figure 3.5: Block scan of an input image frame of size N x M.
Image Input Format

For image compression, we consider an input image of size N x M pixels
such that each pixel is represented as a b-bit number. The input image frame is
partitioned into small subblocks each of size k x k. Each input frame contains
% X -"ki subblocks and each subblock can be treated as a vector, «, of dimension
L = k*. Typically, the size of the subblock is 4 x 4 or 8 x 8 pixels. A sequence
of vectors is formed by raster scanning along the consecutive rows of subblocks.
Within each subblock, the pixels are scanned from left to right and top to bottom
as shown in Fig. 3.5. This sequence of input subblocks can be treated as a vector-

NM/k?

valued random process {z,},-;
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Linear Predictor Module

For each input vector, , = (1,3, --,21)7, the nearest causal neighbors are
Ty, Ny, Ty N and z,-1. Though different forms of linear prediction are possi-
ble, we choose the following form([21). Each pixel z,;, ¢, j =1, -, k, within the

vector is predicted using a linear function of past pixels as follows:

— ! 1" 1
Tij = Qi Yrj + by Yb-15F Cij* Yoy po1 T dij * Yig—1 T € " Yik—1,

where y;_,; and y; ; are the nearest pixels in the same column from the north
subblock x,,_ X, Vi, and y;, are the nearest pixels in the west subblock z,_;
and yj . is the lower right corner pixel of the north-west subblock x,,_ Ny as
shown in Fig. 3.6. Since Z;; is formed from a linear combination of pixels yy ;,
Yk-1,5, the quantization of subblock x,, cannot be started until subblocks 2, _~_,,

T, x and x,_; are completely quantized. If the correlation between subblocks

n
T, and x,_; is ignored, the PTSVQ system can be pipelined efficiently. The
decrease in performance due to ignoring the west subblock is small over most
rates [21]. Hence, we use a simpler 3-order prediction function which does not
depend on pixels y;;_, and y;; in our PTSVQ architecture. Here, Z; ; is defined
as:

T = Qi - Yhyg + biyj - Yk—1,5 + Ci " Yk (3.1)

The architecture of the 3-order predictor is shown in Fig. 3.7. The three
values of the pixels and their corresponding coefficients enter these multipliers
simultaneously. Input data is skewed and all internal operations are performed
in a bit-skewed word-parallel fashion. The precision of the numbers, ys ;, yk—1,5,
Yk x> is b-bits. The coefficients a; ;, b; ; and ¢; ; have a precision of (b+1) bits. All

the multipliers and accumulators used in this architecture are pipelined at the
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bit-level. It takes b clock cycles for the multipliers to generate the first LSB of
the product. Since multiplier outputs are already in skewed format, they can be
directly fed into bit-level pipelined adders without additional skewing registers.
The products a;,-y,; and b; ;- yk—1,; are added by the first adder, then the partial
sum and ¢;, - Y ; are added by the second adder. To maintain full precision in
all internal computations, the second adder takes a (2b + 1)-bit product and a
(2b + 2)-bit partial sum from the first adder to form a (2b + 3)-bit sum. At the
last stage, skewing registers are used to deskew the predicted value. The total
latency time for the linear predictor module is 3b + 3 clock cycles.

The linear predictor needs a memory of 3L words to store the coefficients

a;;, b; j and ¢; ; in equation (3.1).

Data Buffer and Control Units

From equation (3.1), we see that the inputs to the predictor module, yx j, Yx-1,5,
Yk x> are used repeatedly; both y, and y_y ; are used to compute the different

prediction values in the same column and yj . is used for every pixel in the
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Figure 3.7: Systolic Architecture for third-order linear predictor. It performs the summation
of three inner products.
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subblock. A simple circuit with cyclic shift registers, shown in Fig. 3.8, is used to
handle this task. The last two rows of the image subblock in the input sequence
are latched into buffers. Similarly, the last pixel of the previous subblock is
latched into a single-word buffer. Control signals are used to ensure that these
pixels are applied to the predictor module in the correct sequence.

The control unit consists of a [2log k]-bit counter and simple combinational
circuitry. The counter keeps track of each input vector to indicate the current
pixel position within each incoming vector. Two input control signals are nec-
essary; MODE indicates if the processor is being used in the encoder or the
decoder, and Synch indicates if the current input is a boundary subblock.

Three control signals, ctrll, ctrl2 and ctrl3, are internally generated to switch
the multiplexers to update the content of the cyclic buffer. The counter enables
us to fetch the appropriate coefficients from external memory into the linear
predictor module.

The boundary subblocks in the top row and the left column of the input image
frame are treated differently. In the Predictor Processor, there are two switches.
Once a boundary subblock is indicated by the Synch input, the predicted value
entering the adder/subtractor is set to zero. The corresponding vector will pass
through the adder/subtractor without modification. For better performance,
these boundary subblocks can be coded using a different codebook from the one
used for the residual vectors. However, this results in an increase in the size of
the memory required. In our architecture, the boundary conditions of the image

and the initialization of the system can be easily handled.
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Figure 3.8: Circuit diagram of data buffer unit. It consists of cyclic shift register and multi-
plexers.

Timing and delay elements

Due to the presence of the feedback loop in the system, we have to insert de-
lay elements to synchronize all intermediate computations. For simplicity, we
introduce a notation and then discuss the details about the delay elements.

Let L, L,, L, and Lg be the latency times through a subtractor, an adder, a
VQ encoder, and a VQ decoder respectively. Let Lyp be the latency time of the
linear predictor module and the data buffer unit, and let Lt to be the minimum
time needed to compute the cofresponding predicted value for the subblock in the
next row after a block of pixels are fed in. The term Ly includes the processing
time along the data path including the subtractor, TSVQ, ITSVQ, the adder,

data buffer unit and the linear predictor module, i.e.

LT=L3+L7+L3+LG+LLP.
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Figure 3.9: Space-time diagram of the PTSVQ system. The relative latency is shown at some
interesting points.

Let Lg be the input separation time between two adjacent subblocks in the same
column. The space-time diagram shown in Fig. 3.9 depicts the physical meaning
of the above terms and the relative timing between them.

We notice, from Fig. 3.9, that as long as the latency time Lt is no larger than
the separation time Lg, this architecture will achieve real-time performance. In
order to synchronize the predicted vector and its corresponding input vector, the

delay elements in the feedback loop must satisfy the following timing constraints:
LS+L7+Lﬂ+La+LLP+Ld2 = Lg,

and

Lo+ Ly+ Lg= Ly,

where Lg; and Lg; are the delay times associated with the delay elements in the
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path.

Consider, for example, the case of an image of size 512 x 512 pixels where
each subblock is of size 4 x 4 pixels. Then Lg is 512 x 4 = 2048 cycles. In
a TSVQ of vector dimension 16 and depth 8, Lg and L, are 1 and 384 cycles
respectively; Lpp is 42 cycles and includes three pipelined multiplications, two
additions and a few data skew elements; L, is equal to 9 cycles. Hence, Lq4; and

Ly are 394 and 1601 respectively.

3.3 VLSI Implementation and Testing

In this section, we describe the VLSI implementation of the chips necessary to
build a PTSVQ system using 1.2um CMOS technology. We designed these chips
using Magic, Irsim, Spice and GDT tools. Spice simulations indicate that these
chips can run at frequencies up to 40 MHz. We fabricated prototype version of
these chips using 2pum CMOS N-Well process, and tested these prototype chips
at 20 MHz.

3.3.1 SNP chips

We designed a Single Node Processor using 1.2um CMOS N-Well technology.
The processor contains 25,000 transistors on a 4.8mm x 5.5mm die and has 84
pins. We performed logic and timing simulations at 40 MHz on this chip. A
prototype version of this chip fabricated using 2um CMOS process works at a

frequency of 20 MHz [14).

3.3.2 Predictor Processor
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Figure 3.10: Plot of the front end processor of size 2.2mm X 2.2mm.
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Figure 3.11: Plot of the controller of size 2.8mm x 4.1mm.
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We partitioned the predictor processor into different submodules for ease of

implementation.

1. Front end processor. It consists of a pipelined subtractor with skewing and
deskewing elements. This module contains 1,650 transistors on a 1.3mm X
1.3mm die using 1.2um technology. Figure 3.10 shows a plot of this chip.

A prototype version of this chip using 2um technology worked at 20 MHz.

2. Controller and Buffer. It includes a pipelined adder with skewing and
deskewing elements, the control circuit and the buffer unit. This module
contains 4,000 transistors on a 2.8mm x 4.1mm chip using 1.2um technol-
ogy. Figure 3.11 shows a plot of this chip. A prototype version of this chip

fabricated using 2um process worked at 20 MHz.

3. Predictor. It consists of the Linear Predictor Module (LPM). This module
contains 36,000 transistors on a 4.7mm x 5.5mm die. Figure 3.12 shows
a plot of this chip. A prototype version of this chip fabricated using 2um

process worked at 20 MHz.

3.4 Discussion

A new Predictive TSVQ architecture is presented for real-time video coding ap-
plications. Pipelined arithmetic components are used to speed up the computa-
tion and to provide for regularity in design. This high throughput architecture is
suitable for implementing a fully pipelined real-time PTSVQ system. This archi-
tecture has been implemented as a VLSI chip set using 1.2um CMOS technology.

Identical processors are used for both the encoding and decoding components.
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Spice simulations indicate correct operation at 40 MHz. For a typical real-time
image processing system with 30 frames/sec and 1024 x 1024 pixels/frame, the
input pixel rate is 31.5 Mpixels/sec. This architecture is capable of processing
40Mpixels/sec and can handle the above case in real-time. We fabricated pro-
totype versions of these chips using 2um CMOS technology. These prototype
chips work at 20 MHz. Our architecture can be extended easily to handle other

classes of VQ with memory such as Trellis VQ.
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Chapter 4

Higher Order Crossings

4.1 Introduction

Time series are sequences of observations or measurements ordered in time. Time
series occur everywhere and anytime, in the natural sciences, engineering and
even in the social sciences. Time series analysis provides an important tool for
a wide variety of applications, such as tidal fluctuation, traffic flow, or electrical
noise, etc. Experience shows that almost all observed time series are oscillatory,
displaying the up and down property either locally or globally. Based on this
basic observation, a considerable amount of work has been established {33, 9].
The information contained in the oscillation of a time series can be extracted
and represented by the sequence of zero crossings. To acquire a more useful
information, we can use filters, especially linear filtering, to isolate specific pa-
rameters. We follow the approach described in [9]. Typically, a family of filters
is applied to a time series to generate sequences of the zero-crossing counts. It
is surprising that such a sequence can provide extensive information for signal

discrimination, classification, and for frequency estimation in the presence of
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noise[9]. We refer to such a sequence of zero crossings count as a HOC ( Higher
Order Crossings ) sequence. Because HOC have an advantage due to their sim-
plicity, data reduction and compression capabilities, they provide a useful tool
that for certain applications they can be more effective than the conventional
methods based on spectral analysis.

By applying different types of filters, we can have have different HOC se-
quences. We will examine two filtering techniques that have been successfully
used in several applications including non-destructive evaluation and signal dis-
crimination. The first is the differential filtering, and the second is the a-filtering
(AR(1) filter) to be introduced later. There are still many other useful filters
that can be designed and investigated for different types of applications, but we
restrict ourselves to these two filters in this chapter.

Discrimination or classification is one aspect of HOC that has been quite suc-
cessful. One simple example is to decide the frequencies from the superposition
of two sinusoids. With proper use of the differential filtering, the frequencies can
be detected in a simple and an accurate fashion. In addition, signal classification
between noise and signal can be achieved using a similar process. Other specific
applications of HOC include the the ultrasonic classification of adhesive joints.
HOC analysis has been shown to be quite successful in the Non-destructive evalu-
ation (NDE) analysis for characterizing adhesive joints though commercial bond
testers exists under certain restrictions [12, 34, 35, 11]. Moreover, further analysis
of the HOC sequence using the similarity test, that is based on a new measure-
ment called 1/? statistic, can quantify the resulting HOC sequence[36, 37]. It
gives the discrepancy between a set of HOC parameters drawn from an acquired

test signatures and that from a reliable one.
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Frequency estimation in the presence of noise has been one of the well-studied
problems in both the engineering and the scientific literature[38]. The novel it-
erative method for frequency estimation, introduced in [39], is based on HOC
with sophisticated a-filtering, and is referred as the contracting mapping (CM)
method. This novel method provides a mechanism that yields very precise fre-
quency estimates at very low computational costs compared to the conventional
methods, such as the Fourier transform, the periodogram analysis[40, 41, 42],
the non-linear least squares method[41, 43, 44], etc.

Though a simple schematic of the HOC processor was mentioned in [24],
due to the wide applicability of HOC analysis in different areas, we designed a
flexible special-purposed architecture that can adapt different filter operations
for different applications. In this chapter, we present VLSI architectures for
performing HOC analysis. The system consists of 1) a preprocessor, 2) a a-
filter, 3) a HOC processor, and 4) a postprocessor. The architecture of two
important filters are discussed in some detail. The proposed architectures have
the following features: 1) they are simple and modular, 2) they can operate in
real time, 3) they are flexible in the sense that they can be adapted to handle
different HOC analysis techniques, and 4) they have simple I/O requirements.

This chapter is organized as follows. In the following section, we describe the
basic definitions and the corresponding algorithms, and in Section 3, we describe
the architectures for a system to perform HOC analysis. In Section 4, an generic
system to performing HOC analysis and the corresponding implementation issues

are described in Section 5.
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4.2 Definitions

Let X(t) be a continuous-time random signal. A sampled series x(i), 1 =1,---, N
is the digitized sequence of X(t). The mean is computed and removed from x(i)
to form a zero mean sequence Z(z). The number of zero crossing, denoted by
D,, is detected and counted. A family of different filters can be further applied
to Z(z). A family of time series is generated which yields a corresponding zero
crossing count determined by the filters used. The resulting sequence of zero
crossing counts corresponding to Z(7) and its filtered sequences is referred to as
the higher order crossings (HOC) sequence [9, 12].

Of these filters, the difference ( differential ) filter and the a-filter are two of
the important filters used in many applications. Next, we define the difference
operator, followed by a definition of the «a-filter.

A first-order Backward Difference Operator ( BDO ) is defined by

A second application of the difference operator yields

Vi) = VIVig,]] = Vie; - 2;-4]

= T;— 2%, + T 2.
And the k—th application of the difference operator can be expressed as
VElz;] = V[V )], (4.2)
It can also be shown that

VHa) = YOV (4.3
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kK
where C,L = k=9

We define D¢ as the number of zero crossing of the series Vi[Z,] for j =
1,2,---,N.

The o-filter of order p for a sequence is defined as
LP(2)e = 2 + @y + &Py g+ -+ + P2y, @€ R (4.4)

We refer to the corresponding family of higher order crossings {D;’}, a €
R, as the HOC sequence from the a-filter of order p. Under some conditions,
the sequences {F(D¢)}2, and {E(D{?)}2, determine the spectrum up to a
constant[9]. Consider the case p = 1 and a = —1, the o-filter becomes the
difference operator as described in equation (4.1), i.e. L1, = V.

The terms classification or discrimination between two signals mean to de-
termine from HOC sequences the degree of similarity between two time series, or
between a given time series and a hypothesized one, or between different sections
from the same signal. For the sake of clarity, we simply use {D;} which omits
the superscript in the HOC sequences corresponding to different filtering opera-
tions. Consider the observed HOC sequence {Dy}. A general form for similarity

or distance measures can expressed as
(D — E[D))'C™Y(D - E[D) (4.5)

where D = (D, D,, -+, Dg), and C is a K x K weight matrix. It is known
for reasonably large time series the simple HOC tends to increase monotonically

with a high probability,
Di<Dy< oo <Dy---

A useful statistic that simply quantifies the similarity between two different

processes is the so called ¢? statistic which is defined next. For the given HOC
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sequences {Dy}, we define the increments as

Ak = Dl, k =1 (46)
= Dy—=Dyy, k=2, K-1 (4.7)
= (N - 1) - .D](~1, k=K (48)

where Y¥=X A, = N — 1. When N is large enough (eg. N > 200), then with a
high probability 0 < Ay < N — 1, and TF=K Ay = N — 1. Let my, = E[Ay]. A
general similarity measurement is defined as follows:

E=IC(A L — my)?

yrey ST (4.9)

where the parameter K refers to the number of “classes” or “categories”. The
1? statistic can be used as a distance measure from a process with prescribed pa-
rameters my’s. Experience indicates that very few D,’s are needed for successful
discrimination.

Assume that we are given an input sequence x(i) for ¢ = 1,2,---, N with a
mean 0. To summarize, we have the following simplified algorithm describing the
procedure to compute the D;’s from the input sequence and its corresponding

¥? statistic from the predefined process with prescribed parameters my’s.

1. Compute the mean of the sequence as follows:

1
N &

i=

0= z(3). (4.10)

2. Form the new sequence, £, with mean removed from each of the input
sample. Hence,

(i) = x(i) — 0 (4.11)

where ¢ =1,2,-++, N.
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3. Compute the corresponding HOC sequence, Dy, D,, - - -, Dy, for the zero-

meaned sequence ;.
4. Compute the vector of increments, Ay, for k =1,2,---, K.

5. Compute the corresponding 1? statistic.

We observe that the input sequence can be independently processed before
the original HOC is computed. Hence, we will design efficient architectures for

either filtered or unfiltered input sequence based on HOC analysis.

4.3 Architectures

In this section, we give the overall architecture for the entire system including
the removal of the mean, the a-filtering operations, the computation of the zero-
crossing, and the evaluation of the 1? statistic. We first present an architecture
of the preprocessor and show how it is used to compute the mean and then
remove it from the input sequence. Then, we describe systolic architectures for
the «-filtering in detail. Next, we show how a linear systolic architecture can
be used to compute the HOC sequence. Finally, an architecture designed to

compute the ¢? statistic from the previously computed zero-crossings, {Dy} is

described.

4.3.1 System overview

The overall architecture consists of four functional blocks, as was shown in
Fig 4.1. The four major functional blocks consist of (1) the preprocessor, (2)

the a-filter, (3) the HOC Processor, and (4) the Postprocessor. Each of these
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Figure 4.1: HOC overall architecture
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and Truncation Latch R

Figure 4.2: Block diagram of the Preprocessor that computes and removes the mean from a
sequence of NV inputs.

blocks are locally connected so that no global control is required. For detailed

operations of their blocks, we describe each of them in the following sections.

4.3.2 Preprocessor

A preprocessor is designed to perform the computation in equations (4.10) and
(4.11), i.e. compute the mean of the input sequence and subtract the mean from
each of the inputs. The length of the input sequence is restricted to be of the form
N = 27, The division can be implemented by right-shifting the p least significant
bits (LSB) without compromising the accuracy. Hence, internal precision is well
maintained and the circuit complexity is reduced. The input is buffered in an
First-In-First-Out buffer until the mean is generated. Then, the subtraction is
applied to each buffered input sequence as stated in equation (4.11). This yields
an zero-mean sequence to apply to the next Higher-Order Crossing Processor.

The architecture is shown in Fig. 4.2.
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Figure 4.3: Block diagram of the TYPE I realization.

4.3.3 The o-filter

The a-filter defined in equation (4.4) can be implemented directly; however,
the corresponding hardware cost is unnecessarily high. We propose two types
of architectures for implementing the a-filter resulting in simple and regular

circuits.

Type 1

Note that the direct implementation of equation (4.4) requires p different coef-

ficient and input values. From equation (4.4), one can obtain

LP(z) = x4 azeq+ 3o+ + Py

= o+ oz +o(Tee+ -+ (Tpp2 + a(fct_p_l + oz:nt_,i)) <))
\ PP )
P‘Igz

~

PP,

Therefore, each PP; term can be expressed as follows:

PP, =a PF_1+ x;.
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Figure 4.4: Block diagram of a single processor for TYPE I realization.

The above algorithm can be easily mapped into a linear array of systolic pro-
cessors as shown in Fig. 4.3. Each processor PE;, as shown in Fig. 4.4 performs
only multiply/add operations, as indicated by PP, = « - PP,_; + z;. The input
z; is fed into each processor simultaneously. There is feedback path where the
filtering operation can be applied to the inputs repeatedly to generate the family
of HOC sequences. Hence, the I/O requirement is greatly simplified so that only

one coefficient « and the current input z; is sufficient to compute the output.
Type 11
A simple implementation can be derived by the following relationship:

Lo(z)y = Tp+az)+PT y+ 0+ Py,
- _,1 1
= I+ a(.’I,'t_l + QLo+ o+ ap mt—p + apa:t-—p_l) . O{p+ Tep

= I+ aﬁﬁ(x)t_l - a”+1:ct_,,_1 (412)

We can map and realize the above recurrence equation into the following

architecture as shown in Fig. 4.5. Similarly, the feedback path in the realizations
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Figure 4.5: Block diagram of the Type II realization.

is to buffer the filtered outputs so that the filtering operation can be applied to

the sequence repeatedly to generate the family of HOC sequences.

Note

As we can see that when the order p tends to be infinitive, the last term in equa-
tion (4.12) vanishes. As the I/O requirement is considered, the type I realization
needs only one coefficient and the data input, while it needs p multiplications
totally. For the type II realization, the number of multiplications can be greatly

reduced to 2, while it needs two coefficients and the data input.

4.3.4 Zero Crossing Processor

The processor that detects the sign difference between two consecutive inputs
and triggers the counter to accumulate the total number of zero-crossing from
the input sequence. The sign detection mechanism is built using an exclusive-

or gate and a delay element to compare the MSB bits between the consecutive
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Figure 4.7: Block diagram of the Postprocessor which performs the 1? statistic as described
in equation (4.9).

D

numbers from the filter outputs. The sign discrepancy could trigger the counter

to record the number of zero crossings correctly.

4.3.5 Postprocessor

A Postprocessor is designed to perform the computation in equation (4.9), i.e.
compute the 9? statistic. The inputs Dy, D5, - -+, Dg, are the corresponding zero-
crossing counts after performing the filtering operations on the input sequence
repeatedly from last stage. The proposed architecture, as shown in Fig. 4.7, can
perform the computation described in equation (4.9) in a systolic fashion. The

quantities le',; can be precomputed and no division is required.

4.4 Design Methodology

We present an overall system architecture for HOC analysis based on the basic

building blocks examined earlier. In general, there are two approaches for imple-
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menting the proposed system. The first uses a high-performance general purpose
signal processor, and the second uses ASICs. Compared to ASICs, the major
advantage of using a general purpose DSP is that it is programmable and hence
quite flexible. On the other hand, the ASIC implementation would be the most
efficient approach because it is dedicated to one specific application. We believe
that the HOC analysis is a powerful tool that can be used in many applications.
Hence, we propose a suitable architecture with off-the-shelf chips with the aim
of achieving the dual goals of high performance and maximum flexibility.

The previously defined blocks can be mapped onto a generic system as shown
in Fig. 4.8, which is referred to as the HOC-¢? system. The HOC-¢? system
is not only capable of executing the function of each of the above architectures,

but also provides the computational capability to perform many variations of

HOC analysis.

4.4.1 Scheme for data computation and transfer

Conceptually, the operations can be modeled as data movement between
storage elements where the appropriate data processing is done in between such
transfer. The simplest example is the data transfer between two registers where
none of any computation operation is done here. A complete example is the
multiplication of two numbers, where the two input registers release their data
to the input ports of the multiplier, then the multiplication operation is executed,
and finally the result is latched into its internal storage element.

Based on the above model, the controller can easily generate all the timing
and control signals for the entire system. A detailed timing diagram is shown in

Fig. 4.9. Whenever such a transfer is initiated, the controller asserts an active
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signal to release data from the source device during the consecutive ¢, phases,
so that the data is assured valid for computation elements during this period of
time. After the results coming out from the computation elements become valid,
the controller then asserts the signal, ¢;, to activate the storage elements to latch
the valid data. For instance, when executing the multiplication of two numbers
held in registers A and B, the registers are acting as the source devices and the
internal multiplier-accumulator is acting as the destination storage device. While
storing the product from accumulator into the register, the internal accumulator
is acting as source device and the register is acting as a destination device. In
such a manner, the transfer can be synchronized and flow smoothly to enhance

the throughput of the system.

4.4.2 Data Path Architecture

Most of the data transfer and operations occur via the 16-bit internal buses, the
A_bus(15:0) and B_bus(15:0), as shown in Fig. 4.8. Another 35 bit data path,
P_bus(34:0), is designed on which the computed results from the multiplier-
accumulate (MAC) unit can be appropriately loaded into register 0-3 and then

transferred into its destination.

4.5 Design and Implementation

The HOC-1)? system is composed of one multiplier-accumulator, the FIFO stor-
age components, a set of registers, and a counter. In addition, a finite state
machine controller is designed to handle the timing and data flow in the system.

The functions of these elements are described as follows:
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4.5.1 Components
Multiplier and Accumulator

The computation core of the whole system consists of a 16 x 16-bit parallel
multiplier-accumulator. The two multiplier inputs are fed into two ports via two
internal buses from selected data sources. Because the bottleneck of the whole
processing depends on the multiplier, the multiplier and accumulator must be
performed at each cycle without idling. The chip we used provides attractive fea-
tures, including high-speed, low-power, 16 x 16-bit multiplication, 35-bit internal
precision, and also easy to interface. Either a multiply or a multiply-accumulate
function can be performed as specified so that the content of the accumulator

can be added or subtracted from the subsequent result.

Storage Elements

There are mainly two types of storage elements, FIFO and registers. As to the
computation schemes used in the HOC, the data is used in the first-come-first-
serve manner. In each step of processing, the consecutive data is processed in
sequential order. Though random access memory provides more flexibility, it is
not a necessary feature in our applications. The FIFO is sufficient to satisfy
the function to store the input and intermediate data, and hence the address
decoding mechanism to fetch the memory is simplified. The length of FIFO is
determined by the maximum length of the input data sequence.

Two types of registers are used in this design. One is the simple register
where data transfer is made possible between components. The other is pipelined
register where the date can be organized effectively so that different points of

input data can be tapped for use in the filter design.
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The internal registers are designed to store intermediate results. Some reg-
isters are used either as a temporary buffer or in specific application to save in
the hardware complexity. For example, Ry, Ry, and R; can truncate 11, 1, 6
Least Significant Bits (LSB) to be used as divider or preserve the precision. R4
is used as sign recorder to keep track of the sign bit of the data sequence. Thus
the counter will count up properly. R,. mainly stores the zero-crossing count
from the data sequence. R4 and Rp can be used either for multiplication or for

initial values. R;, and R,y are used as I/O buffers.

Counter

The zero-crossing detection mechanism is formed by tapping the Most Significant
Bit (MSB) of the stream of data to the counter. The transition between zero
and one, i.e. sign change, of the consecutive data will trigger the counter to

count up. Hence, the effective number of zero-crossings is kept in the counter.

4.5.2 Finite State Machine Controller

The Controller mainly consists of a finite state machine which can produce the
control signals to activate or deactivate each of the devices at the appropriate
time. The control signals, can be categorized into four groups. They include the
signals which are used to monitor the operation of the MAC unit, read/write
FIFO elements, latch/output registers, and device reset respectively. The con-
troller can easily be set to map the algorithm into the hardware. The detailed
timing is appropriately handled in such a way that all data transfers between
components are assured to be performed correctly.

The controller can be implemented using either a microprocessor with flexible
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I/O port structure such as Intel 87C51 or with a Field Programmable Gate Array
(FPGA). In our implementation, the 87C51 plus a simple decoder and a circuit of
latches have been used to generate the 0 signals to meet the timing requirement.
In addition, the flexibility in programming the microprocessor provides the extra

dimension to adapt HOC to other applications.

4.5.3 1I/0 interface

In performing the HOC analysis, the I/O requirements are modest. An RS-232
interface is sufficient to communicate with the external world. The number of
I/O pins is greatly reduced to a minimum. The serial communication capability
is a built-in function in the 87C51 microprocessor which makes that processor
more attractive for our requirement. With the built-in serial input and out-
put mechanisms, the serial-to-parallel or parallel-to-serial conversion is handled

automatically inside the microprocessor.

4.5.4 Control Sequence

In the following, we state the control sequences at the register-transfer level in
order to explain all the operations. We will present the program of the control
sequence and show how to map the HOC algorithms into the HOC-1)? system

efficiently. Also, the a-filter is implemented on the above architecture.

System initialization and computing mean

As described in Section 3.2, the first part of the operations is to compute the
mean of the input sequence and remove the mean from each input. Before any

further processing, the system is first initialized with the instructions as shown
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Step Operation

1 counter < reset

2 FIFO <« reset
3 Ri'n B < K
4 R/inA — ,O,

5 ACC Rina % R’inB

Table 4.1: Instructions to initialize the system.

in Table 4.1.

After the system is initialized, we start to compute the mean of the input
sequence where the input z;, 1 = 1,2,---,2048, is sequentially fed into R;, 4.
For each input z;, it is buffered into FIFOy,, also z;, multiplied by 1, is added
into ACC. The Steps 1 to 3 are iterated as many as 2048 times. Then, the
sum is computed in the accumulator. To reduce the hardware complexity in
our application, the division of the sum is simply executed by right-shifting the
11 LSB, which are held in the register Ry. Hence, when the data transfer from
ACC into Ry causes the division of the sum in ACC by 2048, 7.e. the mean of
the whole input sequence, to be computed. The corresponding instructions are

shown in Table 4.2.

Removing the mean

To subtract the mean from each of the inputs, the program listed in Table 4.3
is sufficient. The basic idea is to fetch the mean, with dummy multiplication by

1, into ACC, then perform the multiplication-and-subtraction on the z; which
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Step Operation

1 Rina ¢« input z;
2 ACC R/inA X R’inB
3 FIFO <+ Rina

4 | Ro(mean) + ACC(11:26)

Table 4.2: Instruction to compute the mean from the input sequence.

is fetched from the FIFO. The result is stored back into the FIFO for later
processing. Simultaneously, the sign bit is latched into Ry to trigger the counter.
Steps 1 to 4 are repeated 2048 times until the mean is removed from each of the
inputs and the number of zero crossings is counted. Finally, the zero-crossing
count is stored for later use as shown in steps 5 and 6. Hence, the FIFO is used

as a ring of data buffer where the data is maintained in the right order.

a~filter

We demonstrate how to implement the difference operator which is the special
case of the a-filter, = —1. To perform the equation (4.1), subtraction is
performed for each of the z; as shown in step 3 where the z;_; is buffered in
the temporary register R4. Next, the result is stored into the FIFO for the next
filtering operation and its sign-bit is used to trigger the counter. The instruction
is listed in Table 4.4. The general case of the a-filter can be extended from the
above example with the use of the pipeline register to tap any of the previous

data.
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Step Operation
1 ACC +« Ry(=mean) x R;,5(=1)
2 ACC <« FIFO(z;) x Riunp(=1) - ACC(=mean)
3 Ry « ACC
4 FIFO + R,
Ry « Ry
5 Rze ¢« Counter
6 |FIFOp < Rgze

Table 4.3: Instructions to perform the mean removal from each of the input

sequence.

Step Operation
1 R4 ¢« Rina(=0)
2 ACC + Ru(=zi-1) x Rinp (=1)
3 R4 « FIFO(=x;)
ACC <« FIFO x Rinp(=1) - ACC(=2;-1)

4 Ry + ACC(1:16)
5 FIFO + Ry

Ry, « R
7 Rzc < Counter
8 |FIFOp <+ Rgzc

Table 4.4: Instructions to perform the filter operation on the sequence of data.
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Step Operation
1 Ra < Rius
2 |ACC,R4y ¢ FIFO x Ryp - ACC
3 R, « ACC
4 FIFO +«+ R;

Table 4.5: Instructions to compute A;

Computing the 9? statistic

Up to now, we have collect the important values D;’s. We use the above architec-
ture to compute the 9?2 statistic for signal discrimination purposes as expressed
in equation (4.9). In table 4.5, the A; is computed according to equations (4.7)-

(4.8). Finally, the 1? statistic is computed as described in Table 4.6.

4.5.5 Simulation and Board Layout

We have used the PCB layout tools provided by Mentor Graphics to design and
simulate our board. A top-down design methodology was adopted for our design.
Each of the components not existing in the component library can be treated
as black boxes and further described in high level description language. The
behavior model of the components in the system was described using VHDL.
There are well-defined elements from the component library as well as user-
defined function boxes. The timing can be specified and verified with the data
sheets. Then extensive simulation of these modules was done separately. The
HOC-9? system is further assembled and simulated using QuickSim tool. The

schematic is shown in Figure 4.10 and the corresponding board layout is shown

73



Step Operation
1 Rs < input my
2 ACC « Riua X Rus
3 ACC « FIFO x Ry,p - ACC
R, « ACC
5 Rsi « Ry
6 Rg +« Ry
7 ACC + Ry xRp
R, « ACC
9 Ra « R,
10 Ri,a < input ;1;
12 Rgp < Riua
13 | ACC « Ry xRp
14 Ry, + ACC
15 | FIFO + R»

Table 4.6: Instructions to compute 2.
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in Figure 4.11.

4.6 Discussion

In this chapter, we presented the architectures for a system that can perform
the HOC analysis efficiently. We also presented a detailed design of a proto-
type HOC-? PCB system using off-the-shelf components. The designed board
provides flexibility and programmability for various applications. As the pro-
totype system uses off-the-shelf components, the performance is restricted by
the microprocessor-based controller and the elements used. The microprocessor-
based controller was set to run at the clock rate 11MHz. We believe that the
performance will improve greatly if the system is implemented in VLSI circuitry.
The decision of whether or not to use ASICs depends on the ultimate use of the

circuit and the required specifications.
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Figure 4.10: Plot of the schematic for HOC.
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Chapter 5

Conclusions

In this dissertation several systolic architectures are proposed for some real-time
signal processing applications and implementations, namely, Tree-Structured
Vector Quantizer, Predictive Tree-Structured Vector Quantizer, and High Or-
der Crossings System. The systolic concept is mainly adapted in designing these
architectures for their simplicity, regularity, high concurrency, local communica-
tion, and high throughput.

We presented an architecture and VLSI implementation of a TSVQ. The
Tree-Structured Vector Quantizer is mapped into a linear array of identical
processor elements. The TSVQ architecture uses identical processors at each
level of the binary tree. The architecture is fully pipelined, and latency is 100
clock cycles per processor when the block size is 8 x 8 pixels. These processors
have been fabricated using 2um N-well process through MOSIS. The die size is
7.9mm x 9.2mm. The processor chips have been thoroughly tested and found
to be fully functional at a frequency of 20 MHz. Using these TSVQ processors,
the VQ-DCT-SQ system can process 1 pixel/clock or 160 Mbits/sec. Using two

such systems in parallel, we can achieve a data rate of 320 Mbits/sec.
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A new Predictive TSVQ architecture is presented for real-time video coding
applications. Pipelined arithmetic components are used to speed up the com-
putation and to provide for regularity in design. This high throughput archi-
tecture is suitable for implementing a fully pipelined real-time PTSVQ system.
This architecture has been implemented as a VLSI chip set using 1.2um CMOS
technology. Identical processors are used for both the encoding and decoding
components. Spice simulations indicate correct operation at 40 MHz. For a
typical real-time image processing system with 30 frames/sec and 1024 x 1024
pixels/frame, the input pixel rate is 31.5 Mpixels/sec. This architecture is ca-
pable of processing 40Mpixels/sec and can handle the above case in real-time.
We fabricated prototype versions of these chips using 2um CMOS technology.
These prototype chips work at 20 MHz. Our architecture can be extended easily
to handle other classes of VQ with memory such as Trellis VQ.

We presented the architectures for a system that can perform the HOC anal-
ysis efficiently. We also presented a detailed design of a prototype HOC-4? PCB
system using off-the-shelf components. The designed board provides flexibility
and programmability for various applications. As the prototype system uses off-
the-shelf components, the performance is restricted by the microprocessor-based
controller and the elements used. The microprocessor-based controller was set
to run at the clock rate 11MHz. We believe that the performance will improve

greatly if the system is implemented in VLSI circuitry.
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