Representing and Querying Correlated Tuples in
Probabilistic Databases

Prithviraj Sen Amol Deshpande
Dept. of Computer Science, Dept. of Computer Science,
University of Maryland, University of Maryland,
College Park, MD 20742. College Park, MD 20742.
sen@cs.umd.edu amol@cs.umd.edu
Abstract

Probabilistic databases have received considerable attention recently
due to the need for storing uncertain data produced by many real world
applications. The widespread use of probabilistic databases is hampered
by two limitations: (1) current probabilistic databases make simplistic
assumptions about the data (e.g., complete independence among tuples)
that make it difficult to use them in applications that naturally produce
correlated data, and (2) most probabilistic databases can only answer a re-
stricted subset of the queries that can be expressed using traditional query
languages. We address both these limitations by proposing a framework
that can represent not only probabilistic tuples, but also correlations that
may be present among them. Our proposed framework naturally lends
itself to the possible world semantics thus preserving the precise query
semantics extant in current probabilistic databases. We develop an effi-
cient strategy for query evaluation over such probabilistic databases by
casting the query processing problem as an inference problem in an ap-
propriately constructed probabilistic graphical model. We present several
optimizations specific to probabilistic databases that enable efficient query
evaluation. We validate our approach by presenting an experimental eval-
uation that illustrates the effectiveness of our techniques at answering
various queries using real and synthetic datasets.

1 Introduction

Database research has primarily concentrated on how to store and query ezxact
data. This has led to the development of techniques that allow the user to
express and efficiently process complex queries in a declarative fashion over
large collections of data. Unfortunately, many real-world applications produce
large amounts of uncertain data. In such cases, databases need to do more than
simply store and retrieve, they have to help the user sift through the uncertainty
and find the results most likely to be the answer.

Numerous approaches have been proposed to handle uncertainty in databases
[2, 5, 14, 4, 15, 17, 10, 27]. Among these, tuple-level uncertainty models [4,
15, 17, 10, 27], that associate existence probabilities with tuples, are considered
more attractive for various reasons: (a) they typically result in relations that are
in INF, (b) they provide simple and intuitive querying semantics, and (c) they
are easier to store and operate on. However, these models often make simplistic
and highly restrictive assumptions about the data (e.g., complete independence
among base tuples [17, 10]). In particular, they cannot easily model or handle
dependencies/correlations' among tuples. The ability to do so is critical for two
reasons:

Natural dependencies in the data: Many application domains naturally
produce correlated data. For instance, data integration may result in relations
containing duplicate tuples that refer to the same entity; such tuples must be
modeled as mutually exclusive [4, 1]. Real-world datasets such as the Christmas
Bird Count [34, 12] naturally contain complex correlations among tuples. Data
generated by sensor networks is typically highly correlated, both in time and
space [14]. Data produced through use of machine learning techniques (e.g.
classification labels) typically exhibits complex correlation patterns.

Dependencies during query evaluation: The problem of handling depen-
dencies among tuples arises naturally during query evaluation even when one
assumes that the base data tuples are independent (Section 2.1). In other words,
the independent tuples assumption is not closed under the relational operators,
specifically join [17, 10].

Past work on tuple-level uncertainty models has addressed this problem by either
restricting the set of queries that can be evaluated against such a database (e.g.
safe plans [10]), or by restricting the dependencies that can be modeled (e.g.
ProbView [27]). Neither of these approaches, however, is satisfactory for a large
class of real-world applications.

In this paper, we propose a tuple-level uncertainty model built on the foun-
dations of statistical modeling techniques that allows us to uniformly handle
dependencies in the data, while keeping the basic probabilistic framework sim-
ple and intuitive. The salient features of our proposed approach, and our main
contributions are as follows:

e We propose a uniform framework for expressing uncertainties and depen-
dencies through use of random variables and joint probability distribution.
Unlike prior approaches, our proposed model is closed under relational al-
gebra operations.

e We cast query evaluation on probabilistic databases as an inference prob-
lem in probabilistic graphical models, and develop techniques for efficiently
constructing such models during query processing. This allows us to
choose from various inference algorithms (exact or approximate) for query
evaluation, depending on our requirements of accuracy and speed.

LFrom here onwards, we use the terms “dependencies” and “correlations” interchangeably.

Dr pwd(D?) Evaluation

instance probability query result
Sp d1 = {51,827t1} 0.12 {p}
A B pTOb dg = {81,82} 0.18 @
S1 m 1 0.6 d3 = {81,t1} 0.12 {p}
S2 n 1 0.5 d4 = {51} 0.18 @
ds = {82,t1} 0.08 {p}
Tp d@ = {82} 0.12 @
C | D | prob d7 = {t1} 0.08 1]
t1 1 P 0.4 ds =10 0.12 1]
(i) (i1 (i)
Result
D prob

p prob(dy) + prob(ds) + prob(ds)= 0.32
0 prob(dz) + prob(ds) + prob(ds) +prob(ds) + prob(ds)= 0.68
(iv)

Figure 1: Example reproduced with minor changes from Dalvi and Suciu [10]: (i)
A probabilistic database with independent tuples; (ii) corresponding possible worlds;
(i) evaluating [[(S? ap=c T?) over pwd(D?); (iv) computing result probabilities.

o We develop several optimizations specific to probabilistic databases result-
ing in efficient query execution in spite of the rich dependency modeling
that we allow.

e We present experimental results from a prototype implementation over
several real and synthetic datasets that demonstrate the need for modeling
and reasoning about dependencies and the efficacy of our techniques at
evaluating various queries including aggregate operators.

We begin with some background on tuple-level uncertainty models and prob-
abilistic graphical models (Section 2). We then present our proposed model
for representing correlated data (Section 3), develop strategies for efficiently
executing arbitrary queries over them (Section 4) and present an experimental
evaluation over a prototype implementation (Section 5). Finally, we discuss
related work in Section 6, and conclude in Section 7.

2 Background
2.1 Independent Tuples Model [17, 10]

One of the most commonly used tuple-level uncertainty models, the independent
tuples model [17, 10], associates existence probabilities with individual tuples
and assumes that the tuples are independent of each other. Figure 1 (i) shows
an example of such a database, DP, with relations S? (containing tuples s;

and sy with probabilities 0.6 and 0.5 resp) and T? (containing tuple ¢; with
probability 0.4).

Such a probabilistic database can be interpreted as a probability distribu-
tion over the set of all possible deterministic database instances, called possible
worlds (denoted by pwd(D)) [22, 17, 10]. Each deterministic instance (world)
contains a subset of the tuples present in the probabilistic database, and the
probability associated with it can be calculated directly using the independence
assumption (by multiplying together the existence probabilities of tuples present
in it and non-existence probabilities of tuples not present in it). Figure 1 (ii)
shows all the possible worlds for DP and their associated probabilities. For ex-
ample, the probability of do = {s1, s2} is computed as 0.6 x0.5x (1—0.4) = 0.18.

This possible worlds interpretation lends highly intuitive and precise seman-
tics for query evaluation over probabilistic databases. Let ¢ be a query issued
on a probabilistic database DP. We evaluate such a query against each possible
world in pwd(DP) separately, thus resulting in another set of (result) possible
worlds (with the same associated probabilities). The final result is obtained by
taking a union of all the result possible worlds, and by associating a probability
with each tuple in them to be the sum of the probabilities of the result possible
worlds that contain it. For instance, Figure 1 (iii) shows the results of execut-
ing [[p(S? xap=c T?) on each possible world of D? and Figure 1 (iv) shows
the final probability computation.

Evaluating a query via the set of possible worlds is clearly intractable as the
number of possible worlds is exponential in the number of tuples contained in
the database. Previous literature [17, 10] has suggested two query evaluation
strategies instead, called eztensional and intensional semantics. Intensional
semantics guarantee results in accordance with possible worlds semantics but
are computationally expensive. Extensional semantics, on the other hand, are
computationally cheaper but do not guarantee results in accordance with the
possible worlds semantics. This is because, even if base tuples are independent of
each other, the intermediate tuples that are generated during query evaluation
are typically correlated. For instance, consider the example query shown in
Figure 1. If the join operation is performed before the projection, the two
intermediate tuples that are generated, s1t; and sst;, are not independent of
each other since they share ;.

2.2 Tuple Correlations

As we discussed in Section 1, tuple correlations also occur naturally in many
application domains, and ignoring such correlations can result in highly inac-
curate and unintuitive query results. Consider the four sets of possible worlds
shown in Figure 2 (i) derived from the same database shown in Figure 1 (i), but
containing different sets of dependencies that we might want to represent:

1. ind.: where s1, so, and t; are independent of each other.

2. implies: presence of t; implies absence of s; and sy (t; = —s1 A —89).

pwd(DP) probability

instance ind. | implies | mut. ex. | nxor
dl = {Sl,SQ,tl} 0.12 0 0 0.2
d2 = {81782} 0.18 0.5 0.3 0.1
ds = {s1,t1} 0.12 0 0 0.2
d4 = {81} 0.18 0.1 0.3 0.1
d5 = {Sg,tl} 0.08 0 0.2 0
d7 = {t1} 0.08 0.4 0.2 0
ds =10 0.12 0 0 0.2

(i)

D ind. | implies | mut. ex. | nxor
p 0.32 0.00 0.20 0.40

(i)

Figure 2: (i) pwd(DP) for various dependencies and the (ii) corresponding query re-
sults.

3. mutual exclusivity (mut. ex.): t; = —s; and s; = —ity.

4. nzor: high positive correlation between t; and s;, presence (absence) of
one almost certainly implies the presence (absence) of the other.

Figure 2 (ii) shows the result of applying the example query from Figure 1
to these four possible worlds. As we can see, although the tuple probabilities
associated with s1, so and t; are identical, the query results are drastically
different across these four databases. Note that, since both the approaches
(intensional and extensional semantics) discussed in the previous section assume
base tuple independence, neither can be directly used to do query evaluation in
such cases.

2.3 Probabilistic Graphical Models and Factored Repre-
sentations

Probabilistic graphical models form a powerful class of approaches that can com-
pactly represent and reason about complex dependency patterns involving large
numbers of correlated random variables [30, 8]. The key idea underlying these
approaches is the use of factored representations for modeling the correlations.

Let X denote a random variable with a domain dom(X) and let Pr(X)
denote a probability distribution over it. Similarly, let X = {X7, X5, X3..., X, }
denote a set of n random variables each with its own associated domain dom(X;),
and Pr(X) denote the join probability distribution over them.

Pr(Xy=z1,Xp=z2,X3=23)= z1 @2 @3 Pr
f1(X1==z1) fr2(X1=z1,X2=23) fo3(X2=22,X3=23) 0 0 0} 0.378

0 0 1 | 0.162

T ‘ f1 z1 w2 | fi2 2 w3 | fag 0 1 0 | 0.018
0.6 0 0|09 0 0 | 0.7 0 1 1] 0.042
11]04 0 1101 0 1103 1 0 0 | 0.028
1 0]o0.1 1 0103 r 0 1]0.012

1 1]09 1 107 L1 0]0108

1 1 1 | 0.252

(i)

()= ()

(iii)

—
—
i

~

Figure 3: Example involving three dependent random variables each with a binary
domain: (i) factored representation (ii) resulting joint probability distribution (iii)
graphical model representation.

Definition 2.1. A factor® f(X) is a function of a (small) set of random vari-
ables X = {X1,...,Xn} such that 0 < f(X =x) < 1Vx € dom(Xy) X ... X
dom(X,,).

A factored representation of Pr(X) allows the distribution to be represented
compactly as a product of factors:

PT(XZX):Hfz‘(XiZXi) (1)

where X; C X is the set of random variables restricted to factor f; and x; is
the corresponding assignment. Figure 3 shows a small example of a factored
representation of a joint probability distribution over three random variables.

Computing marginal probabilities is a common operation when dealing with
such joint probability distributions. It falls under the general class of opera-
tions known as inference. Given a random variable X € X and an assignment
x € dom(X), the marginal probability computation problem from the joint
distribution Pr(X) is:

Pr(X =z)=)» Pr(X=x) (2)

where x ~ = denotes an assignment to X that agrees with X = x and x is a
valid assignment to X. We will discuss inference techniques in Section 4.1.

2Factors can be seen as a generalization of Conditional probability tables in Bayesian net-
works [30].

Pr(Xpe)= 4 (X o) S0 (Xey Xy)

) i %3
Pr(Xpp)=fir*(Xey) f{ 00 (X ey, Xop)
mutex

o x X, Fmu
fZI'}fllwb(th,Xsl) (;1 01 ‘ f‘l!(')l
implies O 1 06
T Tl ne 10 | 04
0 0 0 1 1 0
0 1 1
1 0 1 (ii)
1 1 0
o Pr(Xpp)=fir (X)) F15 00 (Xey X o)
Xty Xsg ftl:f;es
0 0 1/6 X, X ‘ fozer
0 1 5/6 0 0 | 04
Lo 1 o 1 | 02
L. 0 1 0 0
1 1 0.4

(i)
(i)

Figure 4: Representing probabilistic databases with dependencies (examples from Fig-
ure 2): (i) “implies” dependency; (ii) “mut. ex.” dependencys; (iii) “nxor” dependency.
fird(X,,) and fi"¢(X,,) refer to the independent tuple factors for ¢; and so.

1 2

3 Proposed Approach

We now describe how to represent dependencies in probabilistic databases through
the use of factors and random variables. We then consider the query evaluation
problem over such databases, and begin by presenting an example that grounds
the basic ideas underlying our approach. We then follow up with a more detailed
description of the overall query evaluation procedure.

3.1 Representing dependencies

Let t denote a tuple belonging to relation R such that ¢ is a mapping from
attributes in R to constants. In our framework, every tuple ¢ is associated with
a unique boolean valued random variable X; where 0 represents false and 1
represents true.

A probabilistic relation R consists of a set of tuples with their correspond-
ing random variables and a probabilistic database D consists of a collection of
probabilistic relations. We refer to the collection of all the random variables
associated with tuples in the probabilistic database D by the symbol X p.

Each instance in pwd(D) can now be expressed as a complete assignment to
the set of random variables X denoted by xp € {0, 1}|XD|. For example, ds
in Figure 2 (i) corresponds to the assignment X, =1, X, =1, X, =0.

We can now represent dependencies by defining factors on the tuple-based

random variables in the database. The probability of an instance can be com-
puted by computing the joint probability of the assignment to X p which can in
turn be obtained by multiplying all factors defined on the tuple-based random
variables in the database (Eq. (1)).

Example: Representing Independent Tuples.
We illustrate our approach by expressing the probabilistic database in Figure 1
(i) (with three independent tuples) in our formulation. This can be achieved by

defining one factor per independent tuple:
Xs ind Xs ind
1 2

To compute the probability for an instance we multiply these factors. For in-
stance:

P?"(dg :{81,52}) = PT(XSl = 1,X52 = 17Xt1 = 0)
= ind(X31 = 1) ind(‘XSQ = 1)ftllnd(Xt1 = 0)

S1 S2

=0.6 x0.5x0.6=0.18

Figure 4 shows the factored representations for the other three probabilistic
databases in Figure 2 (i).

3.2 Query Evaluation: Example

We begin our discussion on query evaluation by presenting a small example.
Consider the database shown in Figure 2 (i) with the “nxor” dependency (Fig-
ure 4 (iii)). Figure 5 describes the execution of [[5(S? <p—c T%) on this
database.

Consider the intermediate tuples introduced during the execution of this
query. The tuples i1 and iy, produced by the join (Figure 5), are clearly un-
certain tuples since they are not produced in every instance of the database.
Similarly, the result tuple r; is also a probabilistic tuple. Let us take a closer
look at the inter-tuple dependencies:

e i1 is produced by possible world d iff d contains both s; and t; (i.e.,
s1 A\t & il).

e Similarly, sy At; < io.
e Finally, 1 is produced iff either i; or i5 is produced.

Figure 5 shows the factors for these dependencies:

and . and fend |, return 1 when the first argument is the logical-and of
1,51,01 12,52,01

the last two arguments (see Figure 6 (i) for the full definition of f#"4

i17317t1)'

1 i1, Teturns 1 when the first argument is the logical-or of the last two

arguments (Figure 6 (ii)).

AND
Fiistoty (Xig s Xsq:Xt1)

.
g A B fiAzf\izD,tl(Xiz,st,Xf,l)
s1 | m | 1 ATBTC D
s2 | n | 1 i Tm 1 T p

. 2| n | 1| 1/|p
Fird(Xsy) SPrap_cTP
TP, [Ip(SP<=cT?)
C| D
tl 1 P
D
FOEST (Xeq X sq) T | P

FOB iy (X s Xy Xiy)

Figure 5: Solving [[(S? txap=c 17) on D? with “nxor” dependency (Figure 2 (i)).

Consider the factored probability distribution induced by this query, i.e. the
product of all the factors introduced including the factors among the base tuples.
It turns out that the marginal probability of Pr(X,, = 1) returns the correct
answer 0.40 matching the number in Figure 2 (ii).

3.3 Query Evaluation: Details
3.3.1 Generating factors during query evaluation

The query evaluation procedure presented through the example above requires
that we encode dependencies among (intermediate) tuples by introducing fac-
tors. We now redefine the three operators o, [[, x to produce factors expressing
such dependencies. Let us denote the new operators by o, [[”, xP where the
superscript emphasizes that they are operators for probabilistic databases. We
will assume that our query ¢ does not contain two copies of the same relation
and consists of only the above three operators.

e select (oP): Suppose of operator with predicate ¢ acts on tuple ¢ and
produces new tuple 7, both containing the same mapping. There are two
cases to consider, if ¢ does not satisfy the predicate ¢, then r cannot be
produced and this is enforced by a false factor on X, that returns 1 if
X, = 0 and 0 when X, = 1. The other case is when ¢ satisfies ¢ and in
this case, X, holds true in possible world d if and only if X; holds true.
This is enforced by an equals factor that takes arguments X, and X; and
returns 1 whenever X, = X; and 0 o.w.

e join (xP): Let tuples t and ¢’ join to return new tuple r. In this case, as
we saw in the example, X, will hold true in possible world d if and only
if both X; and X, hold true. This can be enforced with the and factor
that we introduced in the example (Figure 6 (i)).

Xi, X, Xy z'alT,lgl,tl Xr, Xiy Xiy 7?1T,i1wi2
0 0 0 1 0 0 0 1
0 0 1 0 0 0 1 0
0 1 0 1 0 1 0 0
0 1 1 0 0 1 1 1
1 0 0 1 1 0 0 0
1 0 1 0 1 0 1 1
1 1 0 0 1 1 0 0
1 1 1 1 1 1 1 1

(i) (ii)

Figure 6: Definitions of (i) f2¥P, (Xi,, Xs;, X¢,) and (ii) £, 1 (Xry, Xiy, Xiy) from
Figure 5.

e project ([TR): Let tuples ¢1,...,t, project to form new tuple r. Thus, X,
holds true in possible world d if at least one of Xy, , ..., X}, hold true in d.
This can be enforced with a straightforward generalization of the or factor,
introduced in the example (Figure 6 (ii)), f°F, . (Xr, Xi,,... X;,) that
returns 1 if the first argument is the logical-or of the last n arguments.

Figure 7 defines the above operators in functional representation where Fg(t)
denotes the set of factors required to generate tuple ¢ inductively on query plan
q. Figure 7 also gives the rules for UP and —P. ¢ UP ¢’ has similiar semantics
as []?, if either of q or ¢’ produce ¢ then X is true and hence the use of for.
t is a result of ¢ —P ¢’ if t is produced by ¢ and not produced by ¢’ and this is
encoded in the factor ftrue—rfalse,

Figure 7 define the operators assuming there are no self-joins. It is easy to get
around this assumption by introducing if ... then ... else ... conditions in
the definitions. For example, consider executing the query R <1 R. Consider the
result of joining tuples ¢, € R where t # t’, since t and ¢’ are associated with
different random variables we will introduce a factor f?‘f, (X, X, X¢) where r
denotes the result tuple. On the other hand if ¢ joins with itself, then r =t >t
and the uncertainty associated with r is only associated with the uncertainty of
t, hence in this case we only introduce a factor fequals(Xr7 Xy).

Tt

3.3.2 Formulating the Query Evaluation Problem

We now justify our approach of generating factors for query evaluation. Let
Pr,(t) denote the probability associated with result tuple ¢ produced by query
q issued on the database D. Thus, from possible world semantics:

Pry(t) = > P(Xp =x)
x€{0,1}XDI tg(x)

where ¢ ~ g(x) is true if ¢ results from possible world x.
Let X; denote the random variable associated with ¢t. We would like to
express the above computation as a marginal probability computation problem

10

Fratse(x,) if C(t)is false
Fop gy =3 formals (X, X, UF,(t') if ¢(t) is true

o

where t =1t
A JO=FT (X X [t=]T 4t HU{F () [t=]1 4t'}

F

gxPq

Faupg (O=F(Xe,X 1, X 0)UF (£)UF (") where t=t'=t"

Fypgr (@)= o5 (Xy X0, X0)UF (Y)UF, (t") where t=t'=t"

P)= (X, X e, X) UF G (HUF i (t)

Figure 7: Definitions for relational algebra operators.

on the distribution Pr(Xp, X;) such that:

Pryty= > PrXp=xX;=1)
xE{O,l}‘xD‘

where Pr(Xp = x, X; = 1) is the distribution obtained by the product of factors
introduced during query evaluation and present amongst the base tuples with
the unnecessary random variables summed out.

For the above reformulation to hold we need to show that Pr(Xp = x, X; =
1) satisfies the following constraints:

_ | Pr(Xp=x) ift~qgx)
Pr(Xp=x,X;:=1) = { 0 o (3)
In this subsection we will show that for any intermediate tuple ¢ introduced
while evaluating query g Pr(X; = 1,X = x) satisfies Eq. (3).

For ease of exposition, let us rewrite Eq. (3) in terms of conditional probabil-
ities. Given two sets of random variables X; and X5, the conditional probability

of X; = x3 given Xy = x5 is defined as:

PT(Xl = Xl,Xg = X2)
PT(XQ = XQ)

P’I"(Xl = Xl‘Xg = Xg) =

Thus, using the chain rule of probability on Pr(X; =1,Xp = x):
PT(XD =X, Xt = 1) = PT’(Xt = 1|XD = X)P’I’(XD = X)
which means Eq. (3) can be equivalently expressed as:

1 ift~gq(x
Pr(X; =1|Xp =x) = { 0 O.VV?()
Since a conditional distribution is also a probability distribution and X; is a
boolean random variable, the full set of constraints on Pr(X; = 1|Xp = x) can

be expressed as:

11

| Pr(X; =0[Xp =x) Pr(X;=1Xp =x)
if t ~ q(x) 0 1 (4)
0. W. 1 0

Instead of justifying Eq. (3) it suffices to justify Eq. (4) to show that the refor-
mulation is admissible.

Before providing the justification we first require some terminology which
will help identify some properties of the query evaluation procedure introduced
in the previous subsection.

Definition 3.1. A conditional probability distribution (CPD) is given by a fac-
tor f(X) over a set of random wvariables X such that X can be partitioned
into X, (a set of random wvariables) and X, (a single random variable) and
Xe & Xy X UX, =X, Let Val(Xy) and Val(X.) denote the possible assign-
ments to X, and X, respectively, then f(X) satisfies:

Z fXe=0,X=V)=1, VV € Val(X,) (5)

veVal(X,.)

Notice that in Figure 7, we use only factors representing CPDs (the factors
over the base tuple random variables can, however, involve factors that are not
CPDs). As an illustration, for for; . (XTI,XWX) in Figure 6 (ii) setting

= ={Xi,Xs,} and X, = X, shows how i in (X Xiy, X)) satisfies the
above definition and represents a CPD.

It is traditional to express a CPD using a | to separate X, from X . Further,
in the previous subsection we identified factors by their semantics. For example,

i in (X Xiy, Xiy) (Figure 6 (ii)) identified a factor with OR semantics. In the
subsequent discussion, however, we will identify factors by the relational algebra
operators they are associated with and this we will denote by FP(X.|X,).
Thus, as an illustration, FII (X, |X;,, X;,) would denote I i in (X s Xy Xy).

Another aspect of the design of our query evaluation algorithm is that for
each relational algebra operator op, the corresponding F°P contains as X, the
random variable corresponding to the tuple generated at the time of introduction
of F °P. For example, in the query evaluation example presented in Section 3.2,

i in (X Xy, Xi,) was introduced while generating tuple 71 (see Figure 5)
and thus X, = X, for Xy, Xy, X

7’12112(T19 19)

Definition 3.2. A deterministic conditional probability distribution (det. CPD)
is given by a CPD f(X) over a set of random variables X such that for every
instantiation v € Val(X):

f(X=wv) = either1 or0, VYV € Val(X,)
All factors in Figure 7 represent det. CPDs. Given an assignment to X, of

a det. CPD, there is one and exactly one assignment to the corresponding X,
such that the probability of the joint assignment is non-zero. For example, in

12

i g (X Xiy, Xi,y) (Figure 6 (ii)), for Xi, =0, X;, = 1 the only assignment
to X,, that gives a joint assignment with non-zero probability is X,, = 1.

We now present a lemma that vouches for the “correctness” of the factor
F°P and will be useful while presenting our justification.

We denote the generation of a new tuple ¢ by the application of relational
algebra operator op on the collection of tuples S by § =2 ¢. Note that not
all tuples in S need to be true or present to generate t. For example, during
projection, any one tuple that projects to the result tuple ¢ need be present in
any instantiation of the probabilistic database to produce . To denote this,
we employ the more expressive notation Xg = xg 2L X, = z; where Xg
denotes the random variables corresponding to the collection S, X; denotes the
random variable corresponding to t and xg and x; denote the corresponding
assignments.

Lemma 3.1. Each relational operator op and its corresponding factor f°P match
in semantics. In other words:

1 Zf XS XS%Xt:(Et
0 ifXS:XS%Xt:"Et

FOp(Xt = I’t|XS = XS) = {

Proof. By construction. O

Note that the above lemma was possible partly because F°P() is a det. CPD.
Otherwise, given any assignment to Xg we would have obtained a distribution
over assignments to X;.

We are now ready to state the main theorem of this subsection.

Theorem 3.1. For any tuple t generated by applying query q to probabilis-
tic database D, the probability associated with t under possible world semantics
Pry(t) is equal to the marginal probability corresponding to X; = 1 from the
distribution induced by the factors introduced by query evaluation operations
(Figure 7) along with the factors present amongst the base tuples. More pre-
cisely,
Pryty= > Pr(Xp=xX,=1)
x€{0,1}/*D!

where Pr(Xp = x, Xy = 1) is the distribution obtained by the product of factors
introduced during query evaluation and present amongst the base tuples with the
unnecessary random variables summed out.

Proof. As discussed earlier, instead of directly proving the theorem we will,
instead, show that Pr(X; = z;, Xp = x) satisfies Eq. (4).

The proof is by induction on the operators in query q. We first consider the
base case when ¢ consists of only one operator.

Base Case: Let op denote a relational algebra operator that acts on the
base tuples in probabilistic database D to produce the tuple t.

13

Let X; € Xp denote the random variable corresponding to the tuples that
are involved in generating ¢.

Pr(X;=1,Xp =x)
Pr(Xp =x)

_ FP(X; = 1|1X; = x;) Pr(Xp = x)

N Pr(Xp =x)

= FOp(Xt = 1|Xz = Xi)

Pr(X:=1Xp=x)=

which means Pr(X; = 1|Xp = x) is either zero or one since F°P(X; = 1|X; =
x;) is a det. CPD. All that needs to be shown now is that Pr(X; = 1|Xp = x)
is one when t ~ ¢(x) and zero otherwise.

t~qx)if X; = x; == X, =1 in which case by Lemma (3.1) Pr(X, =
11Xp = x) = FP(X; = 1|X; = x;) = 1. Also, t is not present in g(x) if
X; = x; == X; = 0 in which case by Lemma (3.1) Pr(X; = 1|Xp = x) =
For(X, = 1|X; = x;) = 0. Thus the base case holds.

Inductive Hypothesis: Let tuple ¢ be the product of some relational algebra
operator op on the (intermediate) tuples {i1, iz, ..., }. Let Eq. (4) hold for each
ij, j=1,...n. Thus:

‘ Pr(X;, =0 Xp =x) Pr(X;, =1|Xp =x)

v

ifi; ~q(x) 0 1 (6)

0. W. 1 0

Let us first take a close look at what Eq. (6) implies about the expression:

Z Pr({X;, =z|j=1,...n}|Xp =x)
z;€{0,1}n

> I PrXs, = o {Xi, =i lk=j+1,...n},Xp =x)
z;,€{0,1}" j=1,...n

Z H Pr(X;, = z;;|Xp = x)

z;€{0,1}™ j=1,...n

where the second line follows from conditional independence of random variables
in Xi~

Construct an assignment to X; by choosing z;, such that Pr(X;, = z; |Xp =
x) = 1. From Eq. (6) we know such an assignment exists for each X;, . Denote
this joint assignment by y.

The only term in the summation above that is non-zero is the term corre-
sponding to X; = y, all other terms result in zeroes. Because of this we say
Xp=x = X; =y. Thus:

S oPr({Xi, =aili=1,..n}Xp =x) =Pr(X; =yXp=x)=1 (7)
a:l-e{O,l}"'

14

Thus the inductive hypothesis implies an assignment to X; (y) and if ¢ ~
¢(x) then t needs to be produced from this assignment. In other words, ¢ ~ ¢(x)

ifX; =y =2 X, = 1. We now need to show that when X; = Y “Lox, =1
Pr(X;=1Xp=x)=1.
Pr(X; =1Xp =x)

= Z Pr(X; =1,{X;, =z|j=1,...n}|Xp =x)
z;€{0,1}"

z;€{0,1}™
=FP(X, =1X; =y)Pr(X; =y|Xp =x) ... (from Eq. (7))
— FP(X, = 1|X; = y)

i ~ q(x) when Xp = x = X, =y such that X; =y =L X, =1in
which case by Lemma (3.1), Pr(X; =1Xp =x)=F?(X; =1X;=y)=1.
is not present in ¢(x) if Xp = x = X;=ysuchthat X; =y = X, =0
in which case, again by Lemma (3.1), Pr(X; = 1|Xp =x) = FP(X;, = 1X; =
y)=0. O

4 Query Execution

In this section, we provide further details as to how we execute queries in prob-
abilistic databases with dependencies. We begin with a description of variable
elimination, the inference algorithm used in our current implementation, and
discuss various optimizations to perform variable elimination efficiently. After
that we discuss ways to store probabilistic databases with correlated tuples and
to execute arbitrary Select-Project-Join (SPJ) queries over such data.

4.1 Inference in Graphical Models

Exact probabilistic inference is known to be NP-hard in general [7]. However,
many applications provide graphical models with a graph structure that allow
efficient probabilistic computation [36]. Variable elimination (VE), also known
as bucket elimination, [36, 13] is an exact inference algorithm that has the ability
to exploit this structure. VE can be used to compute the marginal probabilities
of a single random variable from a joint distribution. The main advantages of
VE are simplicity and generality.

Computing the marginals of a random variable X requires that we sum
out all the other random variables present in the joint distribution (Eq. (2)).
Figure 8 (i) shows how VE computes the marginal probability corresponding to
X3 = x3 for the joint distribution described in Figure 3. In Figure 8 (i) we first
sum over X; producing a new factor p(X2) and then sum over X5 producing
a factor ps(X3) from which we can retrieve the required result.

15

S FPX =1{X;, =2 |j =1,..n})Pr({X;, = ;i = 1,...n}|Xp =x)

()= RO

Pr(z3)=3,, o, f1(x1)fr2(z1,22) f23(22,73) ‘l’

=34, fa3(z2,23) X4, f1(x1) fr2(z1,m2) @ @ @ @
OB
=>4, fas(z2,m3)pa(22)

p2(z3) @

(i) (ii)

Figure 8: (i) Marginal probability computation for X3 using variable elimination on
the distribution shown in Figure 3. (ii) Transforming a graphical model using decom-
posability.

The complexity of VE depends on some natural parameters relating to the
connectivity of the graph underlying the graphical model corresponding to the
joint probability distribution [31]. The inference problem is easy if the graphical
model is or closely resembles a tree and the problem becomes progressively
harder as the graphical model deviates more from being a tree.

Another possible reason for inference being difficult is due to the presence of
factors involving a large number of random variables. Projection and aggregate
operations can produce large factors but we can easily reduce the size of these
factors by exploiting decomposability [37, 31]. This allows us to break any large
projection factor into numerous (linear in the number of tuples involved in the
projection) constant-sized 3-argument factors. Figure 8 (ii) shows the pictorial
representation of this optimization. The top graphical model represents n tuples
projecting into one result tuple producing a large factor. The bottom graphical
model shows the transformed graphical model that contains n — 1 new random
variables and consists of only 3-argument factors. We refer the interested reader
to Zhang and Poole [37], Rish [31] for details. All aggregate operators (e.g., sum,
max etc.) are also decomposable with the exception of avg. To compute avg,
we first compute sum and count, both of which are decomposable, and then
compute the average.

4.2 Safe plans and Tree-structured Graphical Models

In the context of probabilistic databases with independent base tuples, Dalvi
and Suciu [10] identified a class of queries that allow efficient evaluation (queries
with safe plans). In this subsection, we show that safe plans give rise to inference
problems with tree-structured graphical models where running inference is easy.
Throughout this subsection we will be concerned with probabilistic databases
containing independent base tuples and conjunctive queries (composed of rela-

16

tional algebra operators o, [and x) without self-joins.

We first describe how to obtain the probabilistic graphical model for query
q issued on probabilistic database D. Once we have run the query and obtained
all the factors required for query evaluation construct graph G, = (V,, E,) as
follows:

e Construct V; by introducing a node v for each tuple-based random vari-
able.

e Construct E, by performing the following steps. For each factor F°P(X;|Xg)
obtained during evaluating operator op on set of tuples S to generate tuple
t:

— Introduce an edge e € E, from X — X, VX € Xg.
— Annotate the edge e with the operator op.

In our query evaluation procedure, we are usually concerned with performing
inference to obtain the probability specific to result tuple . Thus, we are more
concerned with the probabilistic graphical model specific to ¢ which we will
denote by G4(t) = (V4(t), E4(t)). We can extract this subgraph as follows:

o V,(t) = {vjv € V,v ~ X;} where X; denotes the node corresponding to
the random variable for ¢ and v; ~ v; is true if there is a path from v; to
v;. Note that X; € V,(1).

o Ey(t) = {e = (vi,vj)le € Eq,vi,v; € Vo(t)}

As discussed earlier, G4(t) provides easy inference if it resembles a tree [31].

We now discuss some simple lemmas related to the graphical model for
tuple ¢ produced by (conjunctive) query ¢ (without self-joins) on probabilistic
database D.

Lemma 4.1. For two nodes v;,v; € Vy(t) such that the corresponding proba-
bilistic tuples belong to the same probabilistic relation, there must exist:

e cdge e; on the path from v; to X; such that e; is annotated with [
e edge e; on the path from v; to Xy such that e; is annotated with ||
Proof. The lemma follows from the behaviour of relational algebra operators.

Basically, it says that g should include a projection operator for it to involve
two probabilistic tuples from the same relation in G(¢). O

Lemma 4.2. If G4(t) is not a tree then it must contain nodes v;,vj, vy, € Vy(t)
with edges e;, ey € E,(t) such that ej = v; — vj and ep = v; — V.

Proof. Since G4(t) is not a tree then there must exist a pair of vertices v and w
(w could be X;) such there is more than one path connecting them otherwise
G,(t) is a tree (by definition).

17

Let t; denote the first path from v to w which follows the sequence of nodes

To =V — 1 — T — ... — T, = w and let ¢ denote the second path
Yo =V — Y1 — Y2... — Yy = w. Let z, and y, denote the first vertices
in which the node sequences t; and to differ, respectively. Therefore, set v; =
Ta—1 = Yb—1,V5 = La, Vg = Yb- O

Lemma 4.3. If G,(t) is not tree-structured then q must involve a projection
operator .

Proof. By Lemma (4.2), G,(t) must contain a pair of edges v; 2 vj,v; 25 vy, €
E,(t) where v;, v, v, € V,(t). We are going to show that if g is restricted to o
and X operators then no assignment to op; and ops are possible.

First, it should be clear that neither op; nor ops can be o. The operation
we defined for o? (Figure 7) makes sure that if v; = v; € F,(t) then there exist
no other edge e € E,(t) such that e = v; — vy.

The only remaining case to consider is op; = opa = x. Thus G4(t) consists
of the following subgraph:

(%1 V; Vg
Uy Vg

The only possibility of this happening is when v; corresponds to a tuple from one
(intermediate) relation that joins with two tuples from another (intermediate)
relation corresponding to v; and vi-. But notice that now v; and v belong
to the same (intermediate) relation. Thus, by Lemma (4.1) there has to be a
projection operator in q for op; = ops = X to be true. Thus ¢ has to involve a
projection operator if G4(t) is not tree-structured. O

We next provide the main theorem connecting safe plans to tree-structured
graphical models. Before that we need to first give some background on safe
plans. The analysis for safe plans involves tuple-specific event ids. Each in-
dependent tuple in the database is assigned a unique event id and each inter-
mediate tuple ¢ is associated with the complex event expression formed by the
combination of event ids of the base tuples involved in the generation of ¢.

Theorem 4.1. For any safe plan [10] q (representing a conjunctive query with-
out self-joins) and a result tuple t, G4(t) is tree-structured.

Proof. (By contradiction). Let G(t) not be tree-structured. Thus, by Lemma (4.2),
G, (t) must contain a pair of edges v; 2 v;,v; 2% vy, € E,(t) where v;,v;, v, €
V,4(t) and, by Lemma (4.3), ¢ contains atleast one projection operator. We next
attempt to locate this projection operator.

First, notice that v; has a fan-out > 2 and this can happen only when
op1 = opa = X, assigning either op; or ops either of o or [will not achieve
this. Thus op1 = ops = x. Thus, by Lemma (4.1), there exists edges e; on the

18

AlB| s
s1 | m| 1§ fg"wcgr
so | n| 1 T/
N
({fpind
e f82
C| D b
t1| 1] pw_ B
7 X\
2 and
Al B C|D AELIEY
i1 | m| 1] 1]
ig|n| 1] 1 pes2nd

Figure 9: Partitions for the “nxor” dependency shown in Figure 2 (i) with the parti-
tions introduced by the join shown in Figure 5.

path v; ~ X; and e on v ~ X; both annotated with I1. In other words, if we
represent ¢ as a query plan tree then there exists a [[above the x corresponding
to op; and ops.

Since ¢ is a safe plan, by Theorem 4 in Dalvi and Suciu [11], every operator
in ¢ is safe. We now show that the projection operator located above is not safe.
Since v; — vj, v; is associated with a complex event expression that contains v;’s
complex event expression as a sub-expression. Similarly, v, also contains v;’s
complex event expression. Thus the projection operator after this join projects
two tuples with complex events that are not independent rendering it unsafe
(see Dalvi and Suciu [11] Theorem 3 bullet 3). Thus we have a contradiction
and hence G,(t) is tree-structured. O

4.3 Representing Probabilistic Relations

Earlier approaches represented probabilistic relations by storing uncertainty
with each tuple in isolation. This approach is inadequate for our purposes
since the same tuple can be involved in multiple dependencies. In our imple-
mentation, we store the data and uncertainty parts separately. The tuples are
stored as part of relations. To store uncertainty, we introduce the concept of a
partition. A partition consists of a factor and a set of references to the
tuples whose random variables form the arguments to that factor. Be-
sides, each tuple ¢ in a relation also contains a list of pointers to the partitions
that contain references to the tuple. The relations and partitions together form
a doubly-linked data structure so that we can move from one to the other. Fig-
ure 9 shows the arrangement of relations and partitions for the database with
the “nxor” dependency (Figure 4 (iii)) where dotted lines represent the pointers
from tuples to partitions and solid lines show the references.

19

4.4 Query Execution Steps

The naive way of executing query ¢ would be to execute it and construct the full
probabilistic graphical model G, (for a brief description of how to construct G,
see Section 4.2). One of the concerns with this approach is that the full graphical
model (involving all the result tuples) might exceed available memory. In this
subsection, we describe some simple strategies to handle this issue.

In most cases, the probabilistic graphical model G, will be a collection of
disjoint subgraphs. In such cases we can improve the situation by extracting one
disjoint subgraph at a time and computing the probabilities of the result tuples
present in that subgraph. Constructing G, is not an issue. One can follow
the standard database approach of taking each operator from the query and
reading in the relations they act upon, constructing new nodes corresponding
to intermediate tuples and new edges for G; and storing these on disk. The
main implementation issue here is to find disjoint subgraphs from G, without
actually reading the whole of G, into memory.

One simple strategy to extract disjoint subgraphs from G, is to use external
memory graph algorithms [33] (e.g., depth-first search to find connected com-
ponents) for these tasks. In the case when the database consists of independent
base tuples, the only operations that can connect components of G, belonging
to different relations are join operations. In this case it is useful to perform all
join operations together so one can concentrate on determining disjoint com-
ponents produced by tuples specific to the joins. Besides these tricks we also
employ standard tricks of pushing projections and selections down in the query
plan.

Here is a summary of the steps we follow for SPJ queries:

1. Perform early selections: We push down and execute as many selections
as possible.
2. Perform early projections: We also push down as many projections as

possible.

3. Join phase: In this phase, we perform all the join operations and perform
them as part of one multi-join operation, creating partitions and inter-
mediate relations (Figure 9 shows the partitions introduced due to a join
operation on the database shown in Figure 4 (iii)).

4. Perform final projection: Here we project onto the result attributes spec-
ified by the user in the query.

5. Probability computation: For each result tuple, we recursively collect all
partitions required to perform inference and compute the required marginal
probability.

4.5 Further Optimizations

When exact probabilistic inference turns out to be too expensive we have the
flexibility of switching to approximate inference techniques. Just like exact

20

inference, approximate inference is also known to be NP-hard [9]. However there
exist a fairly large variety of approximate inference algorithms that perform well
in practice in a variety of cases each varying in speed and accuracy e.g., Markov
Chain Monte Carlo techniques [20], Variational Methods [26] etc. Depending
on the user’s requirements we can easily switch between inference algorithms in
our approach.

5 Experimental Study

In this section, we present an experimental evaluation demonstrating the need
for modeling tuple correlations, and the effectiveness of our techniques at model-
ing such correlations and evaluating queries over them. This evaluation was done
using a prototype system that we are currently building on top of the Apache
Derby Java DBMS [23]. Our system supports the query execution strategies
discussed in the previous section.

Following Fuhr and Rolleke [17] and Dalvi and Suciu [10], we generate prob-
abilistic relations by issuing similarity predicates over deterministic relations.
Briefly, given a predicate of the form R.a ~ k, where a is a string attribute, and
k is a string constant, the system assigns a probability to each tuple ¢, based
on how similar t.a is to k. Similarity is ascertained by computing the distance
between t.a and k using a standard distance function (following prior work [10],
we used 3-gram distance [32]). This distance is then converted to a posterior
probability by assuming that the distance is normally distributed with mean 0,

and variance o
efdistance2 (t.a,k) /o>

where o is a parameter to the system. The details can be found in Dalvi and
Suciu [10].

5.1 Need for Modeling Dependencies

Consider a publications database containing two relations: (1) PUBS(PID, Title),
and (2) AUTHS(PID, Name), where PID is the unique publication id, and con-
sider the task of retrieving all publications with title y written by an author
with name z. Assuming that the user is not sure of the spellings x and y, we
might use the following query to perform the above task:

HTitle (O—Namezz (AUTHS) > O—Titlezy (PUBS))

As discussed above, the similarity predicates will cause both the relations to
be converted into probabilistic relations, AUTHS? and PUBSP. However, note
that AUTHSP contains natural mutual exclusion dependencies with respect to
this query. Since the user is looking for publications by a single author with
name x, it is not possible for x to match two AUTHSP tuples corresponding to
the same publication in the same possible world. Thus, any two AUTHSP tuples
with the same PID exhibit a mutual exclusion dependency, and a possible world
containing both of them should be assigned zero probability.

21

[Title | [Title |
Reinforcement learning with hidden Reinforcement learning with hidden
states (by L. Lin, T. Mitchell) states (by L. Lin, T. Mitchell)
Feudal Reinforcement Learning (by Feudal Reinforcement Learning (by
C. Atkeson, P. Dayan, ...) C. Atkeson, P. Dayan, ...)
Reasoning (by C. Bereiter, M. Scar- Reasoning (by C. Bereiter, M. Scar-
damalia) damalia)

(i) MUTEX_DB results at o = 10, 50,100 (ii) IND_DB results at o = 10
[Title | [Title |

Decision making and problem solv-
ing (G. Dantzig, R. Hogarth, ...)
HERMES: A heterogeneous reason-
ing and mediator system (by S.
Adali, A. Brink, ...)

Induction and reasoning from cases
(by K. Althoff, E. Auriol, ...)

Feudal Reinforcement Learning (by
C. Atkeson, P. Dayan, ...)
Decision making and problem solv-
ing (G. Dantzig, R. Hogarth, ...)
Multimodal Learning Interfaces (by
U. Bub, R. Houghton, ...)

(iii) IND_DB results at o = 50 (iv) IND_DB results at o = 100

Figure 10: Top three results for a similarity query: (i) shows results from MUTEX_DB;
(ii), (iii) and (iv) show results from IND_DB.

To illustrate the drawbacks of ignoring these mutual exclusion dependen-
cies, we ran the above query with z = “T. Michel” and y = “Reinforment
Leaning hiden stat” on two probabilistic databases, one assuming complete in-
dependence among tuples (IND_DB) and another that models the dependencies
(MUTEX_DB). We ran the query on an extraction of 860 publications from the
real-world CiteSeer dataset [19]. We report results across various settings of o.

Figure 10 shows the top three results obtained from the two databases at
three different settings of o (we also list the author names to aid the reader’s
understanding). MUTEX_DB returns intuitive and similar results at all three
values of 0. IND_DB returns reasonable results only at ¢ = 10, whereas at
o = 50,100 it returns very odd results (“Decision making and problem solving”
does not match the string “Reinforment Leaning hiden stat” very closely and
yet it is assigned the highest rank at o = 100). Figure 11 shows the cumulative
recall graph for IND_DB for various values of o, where we plot the fraction of the
top N results returned by MUTEX_DB that were present in the top N results
returned by IND_DB. As we can see, at ¢ = 50 and 100, IND_DB exhibits poor
recall.

Figure 10 shows that IND_DB favors publications with long author lists.
This does not affect the results at low values of o (=10) because, in that case,
we use a “peaked” gaussian which assigns negligible probabilities to possible
worlds with multiple AUTHS? from the same publication. At larger settings of o,

22

Recall

O I I I I I I I I
0 100 200 300 400 500 600 700 800 900
N

Figure 11: Cumulative recall graph comparing results of IND_DB and MUTEX_DB
for o = 10, 50, 100.

however, these possible worlds are assigned larger probabilities and IND_DB re-
turns poor results. MUTEX_DB assigns these possible worlds zero probabilities
by modeling dependencies on the base tuples.

We would like to note that, although setting the value of o carefully may
have resulted in a good answer for IND_DB in this case, choosing o is not easy in
general and depends on various factors such as user preferences, distributions of
the attributes in the database etc [10]. Modeling mutual exclusion dependencies
explicitly using our approach naturally alleviates this problem.

5.2 Scalability

Next we study the scalability of our proposed query execution strategies using
a randomly generated TPC-H dataset of size 10MB. For simplicity, we assume
complete independence among the base tuples (though the intermediate tuples
may still be correlated).

Figure 12 shows the execution times on TPC-H queries Q2 to Q8 (modified
to remove the top-level aggregations). The first bar on each query indicates
the time it took for our implementation to run the full query including all the
database operations and the probabilistic computations. The second bar on
each query indicates the time it took to run only the database operations using
our Java implementation. Here are the summary of the results:

e As we can see in Figure 12 , for most queries the additional cost of proba-
bility computations is comparable to the cost of normal query processing.

e The two exceptions are Q3 and Q4 which severely tested our probabilistic
inference engine. By removing the aggregate operations, Q3 resulted in a

23

70
60 -] @ Full Query
- B Bare Query
© 50
(]
)
o 40
£
= 30 1
S
c 20 -
N B

Q2 Q3 Q4 Q5 Q6 Q7 Qs

Figure 12: Run-times on TPC-H data.

relation of size in excess of 60,000 result tuples. Although Q4 resulted in
a very small relation, each result tuple was associated with a probabilistic
graphical model of size exceeding 15,000 random variables. Each of these
graphical models are fairly sparse but book-keeping for such large data
structures took a significant amount of time. We expect that a more
careful and efficient implementation to significantly improve these run
times.

Q7 and Q8 are queries without safe plans [10] yet their run-times are
surprisingly fast. By taking a closer look we notice that both these queries
gave rise to tree structured graphical models justifying our belief that there
are queries that lend to efficient probabilistic inference even though they
might not have safe plans.

5.3 Aggregate operations

Our system also naturally supports efficient computation of a variety of aggre-
gate operators over probabilistic relations. As discussed in Section 4, we can
perform these operations efficiently due to aggregate operators being decom-
posable [37, 31]. Figure 13 shows the result of running an average query over
a synthetically generated dataset containing 500 tuples. As we can see, the
final result can be a fairly complex probability distribution, which is quite com-
mon for aggregate operations. Effective computation of aggregates over large
probabilistic databases is an open research problem that we plan to study in
future.

24

!

0.0014 | "~ 10.02516
0.0012 |
0.001 |
0.0008 |
0.0006 |
0.0004 |
0.0002 |
0

probability

1.7 18 1.9 2 21 22
average

Figure 13: AVG aggregate computed over 500 randomly generated tuples with attribute
values ranging from 1 to 5.

6 Related Work

There has been much work on managing probabilistic, uncertain, incomplete,
and/or fuzzy data in database systems (see e.g. [25, 2, 27, 28, 21, 17, 3, 5, 10,
34]). With a rapid increase in the number of application domains such as data
integration, pervasive computing etc., where uncertain data arises naturally,
this area has seen renewed interest in recent years (see [18] for a survey of the
ongoing research).

We will briefly discuss some of the closely related work in the area of prob-
abilistic data management. Previous work in this area can be differentiated
based on (a) whether probabilities are associated with attributes or with tuples,
(b) whether the resulting relations are in the first normal form (which is highly
desirable given the complexity of managing and querying data which is not in
INF), and (c) whether the correlations typically present in real-world data can
be modeled. Barbara et al. [2] propose an approach that associates probabilities
with attributes and can model arbitrary correlations between attributes within
a single tuple. However the resulting relations are not in INF and further the
semantics of some of the query operators are messy, both of which seriously
limit the applicability of their approach. More recently, Choenni et al. [6] dis-
cuss conceptually how to make the query semantics more consistent through use
of Dempster-Schafer theory.

Cavallo and Pittarelli [4] and Dey and Sarkar [15] propose and study tuple-
level uncertainty models that explicitly capture mutual exclusivity. More re-
cently, Andritsos et al. [1] use a similar basic model to capture dirty data, and
develop query evaluation algorithms for the same. In a series of papers, Fuhr
and Rolleke [17] propose using tuple-level probabilities to model uncertain data

25

in information retrieval context, and present the intensional and extensional
query evaluation techniques discussed in Section 2. Extending this work, Dalvi
and Suciu [10] define safe query plans to be those for which extensional and in-
tensional query evaluation produces identical results, and show how to generate
a safe query plan for a query if one exists. Tuple independence is assumed for
most of the work by both these groups. Lakshmanan et al. [27] attempt to com-
bine these different approaches by associating probability intervals with tuples
in their ProbView system. Their model also supports various conjunction and
disjunction strategies that allow a limited encoding of tuple interdependences.
Cheng et al. [5], Xia et al. [35] associate (continuous) probability distribu-
tions with attributes, and propose several query evaluation and indexing tech-
niques over such data. Trio [34, 12] aims to provide a unified treatment of
data uncertainty, data lineage and data accuracy in a single system. They also
study the issues of completeness and closure under various alternative models for
representing uncertainty, though their notion of uncertainty does not currently
include probabilities. In recent years, there has also been renewed interest in
probabilistic extensions of object-relational [16] and XML data models [29, 24].

7 Conclusions

There is an increasing need for database solutions for efficiently managing and
querying uncertain data exhibiting complex correlation patterns. In this paper,
we presented a simple and intuitive framework, based on probabilistic graphi-
cal models, for explicitly modeling correlations among tuples in a probabilistic
database, and developed strategies for efficiently executing SQL queries over
such data. Our experimental evaluation illustrates both the necessity of model-
ing tuple correlations, and the effectiveness of our techniques at representing and
querying correlated datasets. Our research so far has raised several interesting
challenges that we plan to pursue in future. Although conceptually our ap-
proach allows for capturing arbitrary tuple correlations, exact query evaluation
over large datasets exhibiting complex correlations may not always be feasible.
We plan to develop approximate query evaluation techniques that can be used
in such cases. We are also planning to develop disk-based query evaluation
algorithms so that our techniques can scale to very large datasets.

References

[1] Periklis Andritsos, Ariel Fuxman, and Renee J. Miller. Clean answers over
dirty databases. In International Conference on Data Engineering, 2006.

[2] Daniel Barbara, Hector Garcia-Molina, and Daryl Porter. The management
of probabilistic data. In IEEE Transactions of Knowledge Data Engineer-
ing, 1992.

26

3]

[13]

[14]

[15]

[16]

[17]

Bill P. Buckles and Frederick E. Petry. A fuzzy model for relational
databases. International Journal of Fuzzy Sets and Systems, 1982.

Roger Cavallo and Michael Pittarelli. The theory of probabilistic databases.
In International Conference on Very Large Data Bases, 1987.

Reynold Cheng, Dmitri Kalashnikov, and Sunil Prabhakar. Evaluating
probabilistic queries over imprecise data. In International Conference on
Management of Data., 2003.

Sunil Choenni, Henk Ernst Blok, and Erik Leertouwer. Handling uncer-
tainty and ignorance in databases: A rule to combine dependent data. In
Database Systems for Advanced Applications, 2006.

Gregory F. Cooper. The computational complexity of probabilistic infer-
ence using bayesian belief networks. Artificial Intelligence, 1990.

Robert G. Cowell, Steffen L. Lauritzen, and David J. Spiegelhater. Proba-
bilistic Networks and Expert Systems. Springer, New York, 1999.

Paul Dagum and Michael Luby. Approximate probabilistic reasoning in
bayesian belief networks is np-hard. Artificial Intelligence, 1993.

Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic
databases. In International Conference on Very Large Data Bases, 2004.

Nilesh Dalvi and Dan Suciu. Efficient query evaluation on probabilistic
databases. International Journal on Very Large Data Bases, 2006.

Anish Das Sarma, Omar Benjelloun, Alon Halevy, and Jennifer Widom.
Working models for uncertain data. In International Conference on Data
Engineering, 2006.

Rina Dechter. Bucket elimination: A unifying framework for probabilis-
tic inference. In Proceedings of the Conference on Uncertainty in Articial
Intelligence., 1996.

Amol Deshpande, Carlos Guestrin, Sam Madden, Joseph M. Hellerstein,
and Wei Hong. Model-driven data acquisition in sensor networks. In In-
ternational Conference on Very Large Data Bases, 2004.

Debabrata Dey and Sumit Sarkar. A probabilistic relational model and
algebra. ACM Transactions on Database Systems., 1996.

Thomas Eiter, Thomas Lukasiewicz, and Michael Walter. A data model
and algebra for probabilistic complex values. Annals of Mathematics and
Artificial Intelligence, 2001.

Norbert Fuhr and Thomas Rolleke. A probabilistic relational algebra for
the integration of information retrieval and database systems. ACM Trans-
actions on Information Systems, 1997.

27

[18]

[19]

[20]

[21]

[22]

[27]

[28]

Minos Garofalakis and Dan Suciu, editors. IEEE Data Engineering Bulletin
Special Issue on Probabilistic Data Management. March 2006.

C. Lee Giles, Kurt Bollacker, and Steve Lawrence. Citeseer: An automatic
citation indexing system. In Conference on Digital Libraries, 1998.

Walter R. Gilks, Sylvia Richardson, and David J. Spiegelhalter. Markov
Chain Monte Carlo in Practice. Chapman & Hall, 1996.

Gosta Grahne. Horn tables - an efficient tool for handling incomplete in-
formation in databases. In Symposium on Principles of Database Systems,
1989.

Joseph Halpern. An analysis of first-order logics for reasoning about prob-
ability. Artificial Intelligence, 1990.

http://db.apache.org/derby. The Apache Derby project.

Edward Hung, Lise Getoor, and V. S. Subrahmanian. PXML: A probabilis-
tic semistructured data model and algebra. In International Conference on
Data Engineering, 2003.

Tomasz Imielinski and Jr. Witold Lipski. Incomplete information in rela-
tional databases. Journal of the ACM., 1984.

Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and
Lawrence K. Saul. An introduction to variational methods for graphical
models. Machine Learning, 1999.

Laks V. S. Lakshmanan, Nicola Leone, Robert Ross, and V. S. Subrahma-
nian. Probview: a flexible probabilistic database system. ACM Transac-
tions on Database Systems., 1997.

Suk Kyoon Lee. An extended relational database model for uncertain and
imprecise information. In International Conference on Very Large Data
Bases, 1992.

Andrew Nierman and H. V. Jagadish. Protdb: Probabilistic data in XML.
In International Conference on Very Large Data Bases, 2002.

Judaea Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kauf-
mann, 1988.

Irina Rish. Efficient Reasoning in Graphical Models. PhD thesis, University
of California, Irvine, 1999.

Esko Ukkonen. Approximate string matching with g-grams and maximal
matches. In Theoretical Computer Science, 1992.

Jeffrey Scott Vitter. External memory algorithms and data structures:
Dealing with massive data. ACM Computing Surveys, 2001.

28

[34]

[35]

Jennifer Widom. Trio: A system for integrated management of data, accu-
racy, and lineage. In Proceedings of the Biennial Conference on Innovative
Data Systems Research, 2005.

Yuni Xia, Sunil Prabhakar, Shan Lei, Reynold Cheng, and Rahul Shah.
Indexing continuously changing data with mean-variance tree. In ACM
Symposium on Applied Computing, 2005.

Nevin Lianwen Zhang and David Poole. A simple approach to bayesian
network computations. In Canadian Conference on Artificial Intelligence,
1994.

Nevin Lianwen Zhang and David Poole. Exploiting causal independence
in bayesian network inference. Journal of Artificial Intelligence Research,
1996.

29

