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1 Introduction

Our objective is to construct an observer for the linear system

z(t) = Az(t) + Bu(t), z(0) = z,, (1)
y(t) = Cz(t),

as the asymptotic limit of (Kalman) filters for a family of associated filtering
problems

dzf(t) = Az(t)dt+ Bu(t)dt + /eNdw(t), z°(0) = =, (2)
d¢f(t) = Czf(t)dt + /eRdv(t), ¢°(0) =0.

Such a construction is suggested by the fact that for certain choices of
P¢ = cov(z§), the filters are independent of €, as discussed in Baras and
Krishnaprasad [1]. Also, the theory of large deviations says that the solu-
tions of (2) “converge” as € — 0 to the solution of (1).

The motivation for such an approach is the hope that it might lead to
the construction of observers for certain nonlinear systems; for example,
the Benes case [4].

The work of Hijab [2], [3] is indispensible here in deriving a large de-
viation principle for the conditional measures P; (see Section 4), and
identifying the limit of the filters for (2) as an associated deterministic
estimator.

2 Observers and Filters

We assume as usual that z(t) € R", u(t) € R™, y(t) € R?, and t — u(t)
is piecewise continuous.
Recall that the observer problem consists of constructing a dynamical
system
3(t) = Ez(t) + Fu(t) + Gy(t), 2(0) = z, (3)
so that the error
e(t) = =(t) — 2(t) (4)
decays exponentially fast to zero, at a rate controlled by the designer, in-
dependent of choice of zp and zg. This reflects the fact that the initial
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condition z, is unknown, and the best that can be done is to approximately
estimate z(t) by z(¢) in this way.
Solutions to this problem are well known, first given by Luenberger [5].
In particular, if the pair (4,C) is detectable, then there exists a matrix T
such that the matrix A + I'C has eigenvalues in the open left half plane.
Then set
E=A+4+TC, F=B, G=-T.

In this case the error (4) satisfies
e(t) = (A+TC)e(t), e(0) = zo— 20,

and the eigenvalues of A + I'C can be arbitrarily assigned by the designer
if and only if (A4,C) is observable.
Consider the system (1). Define £(t) = f§ y(s)ds, so that (1) becomes

:z:(t) = Az(t) + Bu(t), z(0) = =z, (5)
é) = o), £0)=o0.

Then associate with (5) the family of filtering problems (2), where w, v are
independent standard n-dimensional, respectively p-dimensional Brownian
motions. The initial condition zo is Gaussian, independent from v, w with
E(zf) = z§, cov(z§)=F¢ , where P is positive definite. Note that the
(small) parameter € controls the intensity of the noise.

As is well known, the minimum variance estimate #¢(t) = E(z(t) |
£¢(s),0 < s < t) for the linear Gausssian filtering problem (2) is given by
the Kalman filter [6]

dif(t) = A%Z%(t)dt + Bu(t)dt + K*(t)C'(RR')"'C(d¢(t) — C(t)dt),
£(0) = =, (6)
where K* satisfies the Riccati equation
K(t) = AKS(t) + K*(t)A' — K*(t)C'(RR')"'CK*(t) + NN', (7)
K¢(0) = Fj/e.

Note that these filters depend on € only via the matrix P¢/e. In fact, if we
choose P¢ = €Py, then all the filters are independent of € and identical with
the filter for € = 1.



Following Hijab [2], it is convenient to consider the filter (6), (7) as a
map
Fe:c(o,¢,R) — R,
£(s),0<s<t — Z(2).

3 Deterministic Estimation

Following Mortensen [7] and Hijab [2], we associate with (5) the determin-
istic (noisy) system
z(t) = Az(t) + Bu(t) + Nw(t), z(0) =z, (8)
() = Cz(t)+Ro(t), £(0) =0,

and energy cost functional

Jo(Z,w,0) = (Z - Zo) P (2 — 5:0)+% [ (w(s)'w(s) + v(s) (RR)™0(s)) ds,
(9)

where ¢ — w(t), ¢t — v(t) are piecewise contiuous.

A minimum energy input triple (z*,w*,v*) given &(s), 0 < s < t, is
a triple that minimises J; subject to (8) and produces the given output
record £(s), 0 < s < t. The deterministic or minimum energy estimate
of z(t) given £(s), 0 < s <, is the endpoint Z(t) of the trajectory of (8)
corresponding to a minimum energy input triple.

According to Krener [8], % is the solution of the Kalman filter equations

£(t) = Az(t) + Bu(t) + P(t)C'(RR')I(E(t) — C2(t)), (10)
£(0) = o,

P(t) = AP(t)+P()A'— P(t)C'(RR)'CP(t)+ NN',  (11)
P(0) = P. '

As in the stochastic case (Section 2), it is convenient to consider the deter-
ministic filter (10), (11) as a map

F:c(o,t,R") — R,
£(s), 0<s<t — ().
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Note that this corresponds to the stochastic filter for ¢ = 1, that is, F2.
Also, Z(t) is obtained from an optimal control problem, and is determined
by a Hamilton-Jacobi-Belman equation [2], [7].

4 Large Deviations

Consider the stochastic differential equation (2). Let P¢ be the probabil-
ity measure induced on Q" = C([0,t], R") by the diffusion z°. Assuming
that =5 — zo as € — 0, the large deviation theory of Ventcel-Friedlin (see
Varadhan [9]) suggests that as e — 0, P¢ converges weakly to the degener-
ate measure concentrated on the unique solution z of (1).

There are several formulations of this large deviation principle available
in the literature, for example Azencott [11], Varadhan [9] and Hijab [3]. It
is convenient for us to follow Hijab’s approach. In order to do so directly,
we shall assume in this section that z§ = zo a.s., and u = 0. For w € Q",
let z,, denote the unique solution to (8) with initial condition z,(0) = zo.
The following result is proven in Hijab [3].

Theorem 4.1 For any open subset O and any closed subset C of Q7

T
limsup elogP;(0) > —inf{:zl—/ w(s)'w(s)ds | z, € 0} ,
0

e—0
liminf dogPs(C) < —inf {7 [" w(s)w(s)ds |z € C
11611.151 Gogz < m 2 Jo wils)wisjas | .

Remark 4.2 Azencott [11], Proposition 2.10, shows that the action func-
tional or rate function is given by

16) = 5 [ (B0) - A8, (NN () - 46(9))et
= inf {%/(}Tw(s)'w(s)ds | ¢ = :z:w} .



We now consider the observation equation in (2). Let P¢ ¢ be the condi-
tional probability measure on 02" of z¢ given ¢° € QF = C([0, T}, IR?). Hijab
proves the following large deviation result for le ¢

Theorem 4.3 For any open subset O and any closed subset C of O,
lim inf elog 21e(0) > —inf{I(w,£) | z, € O}

limsupelogP;(C) < —inf{I(w,¢) |z, €C}

e—0

where
I(w,§) = J(w,&) —inf{J(w,§) |weq"}
T T
J(w,§) = /0 <%w(s)'w(s) + %zw(s)'C"C’zw(s)) ds—/o Cz,(s)dE(s).

Proof Define, for each ¢ € 7, w € Q7
d(w, ) = —¢(T)Cw(T)+
/ ’ (e0ycavls) + Suirorcus - %f(t)’CNN’C’{(t)) dt.
There exist constants A, B depending only on ¢, such that
—¢(w,€§) < A+ Blw]|.

Then arguing as in Varadhan [10],

lim limsupe¢log e
R—00 ¢ {w: —¢(w,£)2R}

xp (—24(0,8)) dPX = ~co.

But this estimate is enough to prove the theorem. See Hijab [3] and Varad-
han [10] for details. O

This theorem implies that if £ is an actual output record of the sys-
tem (5), then as ¢ — 0, P;IE converges weakly to a degenerate measure
concentrated on the corresponding solution of (5).



Note 4.4 The minimisation of the action functionals I, J is related to the
deterministic estimator of Section 3. It is suspected that more general
versions of Theorems 4.1 and 4.3 are true, taking initial conditions into
acount. This would make the relationship clearer.

5 Observer Construction

We now prove that as ¢ — 0 the stochastic filter F¢ converges to the
deterministic filter F'.

Theorem 5.1 Suppose that (2) has initial conditions x§ Gaussian with
mean Ty and covariance P§ satisfying

N
g £ B = P

where Py is positive definite. Let £ € (1P and £°(t), Z(t) be the corresponding
estimates. Then
lim £°(t) = £(¢).

e—0

Proof Let ¢¢(t,s), $(t,s) be the transition matrices for A—K*(t)C'(RR')"1C,
A — P(t)C'(RR")7IC respectively. Since linear ordinary differential equa-
tions depend continuously on their initial conditions, then as ¢ — 0,

K¢(s) — P(s) uniformly in s € [0,1],
¢(r,s) — ¢(r,s) uniformly in 7,s € [0,¢].

From Sections 2 and 3, the estimates are given by
@) = ¢(t,0)T0 + /ot °(t, s) (Bu(s) + Ke(s)C'(RR')—lé(s)) ds,
20) = 96,0030+ [ 6(t,9) (Buls) + P()C(RR)E(s)) d.

The theorem then follows using the triangle inequality. O



Next we construct an observer for the system (1). Assume that (C, A)
is observable and (4, N) is controllable. Then as t — oo, P(t) — P, where
P is the unique positive definite solution of the algebraic equation [6]

AP + PA' — PC'(RR')"'CP+ NN' =0. (12)
Furthermore, the matrix
A=A- PC'(RR')'C (13)

is exponentially stable.

Choose the initial covariances P§ in such a way that P, = P ( for exam-
ple, P§ = eP). Then the deterministic filter (10), (11) is time invariant. We
use this filter to specify the matrices E = A, F = B, G = —PC'(RR')™!,
giving the observer

3(t) = Az(t) + Bu(t) + PC'(RR') ™ (y(t) — C=(t)), (14)
Z(O) = 20,

where P satisfies (12).
When z, = x5, 2(t) = £(t) and by Theorem 5.1, £¢(¢t) — 2(t) as € — 0.
The observer error satisfies

é(t) = Ae(t), e(0) = zo — 2o, (15)

which is exponentially stable. We have proved the following theorem.

Theorem 5.2 Given the linear system (1), where (C,A) is observable,
an n X n matriz N such that (A, N) is controllable, and a p X n matriz
R such that RR' is positive definite, then there exists a unique positive
definite solution P to the algebraic Riccati equation (12) , the matriz A 1s
exponentially stable, and the system (14) is an observer for the given system

(1).

Note 5.3 If we make the weaker assumptions that (C, A) is detectable,
(A, N) is stabilisable, then P, = P is positive semi-definite and the energy
functional (9) may not be defined. However, (14) is still an observer since
A will still be exponentially stable.



Remark 5.4 The exponential decay of the observer error equation (15) is
controlled by the design matrices R, N via the Riccati equation (12). An
interesting algebraic problem is the following:

Given an observable (detectable) pair (C, A), analyse the de-
pendence of the spectrum of A, given by (12), (13), on matrices
R, N such that RR' is positive definite and the pair (A, N) is
controllable (stabilisable).

6 Conclusion

We have shown how an observer for a linear system can be obtained as a
limit of Kalman filters for an associated family of filtering problems. The
limit was identified as a deterministic estimator for an associated problem.
The theory of large deviations suggests deeper connections between these
ideas. Finally, an interesting algebraic problem was posed.

Much of what we have done can be extended to certain nonlinear sys-
tems. Following Hijab [2], the above suggests that the limiting filters corre-
spond to deterministic estimators, which depend on the Hamilton-Jacobi—
Bellman equation. In general, this is infinite dimensional. In cases where
finite dimensional filters exist, observability and controllability conditions
need to be examined to determine whether the corresponding error equa-
tion is asymptotically stable, and so giving an observer. The Bene$ case
[4], with appropriate observations, is a candidate for such an investigation.
This will be taken up in a latter paper.
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