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High-order compact upwind schemes produce block-tridiagonal systems due

to performing the reconstruction in the characteristic variables, which is necessary

to avoid spurious oscillations. Consequently they are less efficient than their non-

compact counterparts except on high-frequency features. Upwind schemes lead to

many practical drawbacks as well, so it is desirable to have a compact scheme that

is more computationally efficient at all wavenumbers that does not require a char-

acteristic decomposition. This goal cannot be achieved by upwind schemes so we

turn to the central schemes, which by design require neither a Riemann solver nor

a determination of upwind directions by characteristic decomposition. In practice,

however, central schemes of fifth or higher order apparently need the characteris-

tic decomposition to fully avoid spurious oscillations. The literature provides no

explanation for this fact that is entirely convincing; however, a comparison of two

central WENO schemes suggests one. Pursuing that possibility leads to the first

main contribution of this work, which is the development of a fifth-order, central



compact-reconstruction WENO (CCRWENO) method. That method retains the

key advantages of central and compact schemes but does not entirely avoid char-

acteristic variables as was desired. The second major contribution is to establish

that the role of characteristic variables is to to make flux Jacobians within a stencil

more diagonally dominant, having ruled out some plausible alternative explanations.

The CCRWENO method cannot inherently improve the diagonal dominance with-

out compromising its key advantages, so some strategies are explored for modifying

the CCRWENO solution to prevent the spurious oscillations. Directions for future

investigation and improvement are proposed.
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Chapter 1: Introduction

1.1 Physical Motivation

Engineers need to accurately predict the behavior of flow around an aircraft in

order to predict its performance, which requires solving numerically the governing

equations - the Euler or Navier-Stokes equations. Flows of aerodynamic interest

often contain discontinuities (shocks) and small-scale features (turbulent eddies)

which must both be computed accurately to predict, for example, drag or jet noise.

Shocks cause some numerical methods to produce spurious oscillations in the solu-

tion, which can be mistaken for actual flow features. Turbulent eddies can be small,

so to resolve them properly requires a fine discretization of the problem which leads

to large memory requirements for the computation. Efficient methods with a high

order of accuracy can resolve the same flow features with a coarser discretization,

thus saving memory, but if they are linear will produce oscillations near shocks [1].

Thus, to resolve both types of features with one method requires a nonlinear method.

The present work develops a method for solving such equations that retains ben-

eficial properties of one class of methods and avoids a severe drawback of another

such class.
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1.2 Theoretical Background

Consider a hyperbolic system of conservation laws

∂q

∂t
+

∂

∂xd
fd(q) = 0 (1.1)

with a prescribed initial condition

q(x, 0) = q0(x) (1.2)

where x = (x1, · · · , xD) ∈ RD is the vector of spatial coordinates, t is time, q =

q(x, t) ∈ RC is the state vector, and fd = fd(q) : RC → RC are the flux vectors.

Throughout this work the Einstein summation notation will be used, meaning that

repeated subscripts in a single additive term indicate summation over all possible

values of that subscript. A system of the form Eq. (1.1) is called hyperbolic if, for

all real wi, the matrix J =
∑D

d=1wdJd, where Jd are the Jacobians of the fluxes

fd, is real-diagonalizable [2]. For purposes of this introduction, we consider the

one-dimensional case D = 1.

Even if the initial data is smooth, solutions to the initial value problem Eqs.

(1.1)-(1.2) can become nonsmooth and even discontinuous. Thus it is to be un-

derstood that solutions are meant in the sense of distributions, meaning that they

satisfy the weak form of the conservation law Eq. (1.1):

∫ ∞
0

∫
RD
q
∂φ

∂t
+ fd

∂φ

∂xd
dx dt+

∫
RD
φ(x, 0)q(x, 0) dx = 0 (1.3)

for any smooth function φ(x, t) with compact support in RD × [0,∞). These weak

solutions are not necessarily unique [2], so an additional criterion is required to select
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the unique physically relevant solution. Equations of the form Eq. (1.1) often arise as

models of systems with small diffusive effects in the limit as those effects vanish. For

example, the Navier-Stokes equations governing viscous fluid flow become the Euler

equations for inviscid flow as the viscosity parameter approaches zero. Consider a

modified version of Eq. (1.1):

∂qε

∂t
+

∂

∂xd
fd(q

ε) = ε
∂qε

∂xd∂xd
(1.4)

The limit as ε → 0 of this family of solutions may be a solution of the weak form

Eq. (1.3). The details of this process are not relevant to the present work but the

reader may consult e.g. [2] for a thorough discussion.

Alternatively, one may require an entropy inequality [3] to hold for the unique

physical solution. An entropy pair associated with the conservation law Eq. (1.1)

consists of a convex entropy η : RC → R and an entropy flux E = (E1, · · ·ED) :

RC → RD for which:

∂η

∂qc

∂fcd
∂qj

=
∂Ed
∂qj

(1.5)

(note that fcd refers to the cth component of the flux for dimension d). This def-

inition is constructed to enable the formal equivalence of the entropy conservation

law:

∂

∂t
η(q) +

∂

∂xd
Ed(q) = 0 (1.6)

3



and the original conservation law Eq. (1.1). Indeed:

∂η

∂t
+
∂Ed
∂xd

=
∂η

∂qc

∂qc
∂t

+
∂Ed
∂qj

∂qj
∂xd

=
∂η

∂qc

∂qc
∂t

+
∂η

∂qc

∂fcd
∂qj

∂qj
∂xd

=
C∑
c=1

∂η

∂qc

(
∂qc
∂t

+
∂fcd
∂xd

)
= 0

(1.7)

Therefore if q is a continuously differentiable classical solution to the original con-

servation law then the entropy η is also conserved with fluxes Ed. If, however, the

solution is not differentiable then these manipulations are invalid. In that case, a

vanishing-viscosity solution qε satisfies:

∂η(qε)

∂t
+

∂

∂xd
Ed(q

ε) =
∂η(qε)

∂qc

∂qεc
∂t

+
∂η(qε)

∂qc

∂f(qε)cd
∂xd

= −ε ∂η
∂qc

∂qεc
∂xd∂xd

= ε
∂2η

∂xd∂xd
− ε ∂qr

∂xd

∂2η

∂qr∂qc

∂qc
∂xd

≤ ε
∂2η

∂xd∂xd

(1.8)

Convexity of η implies that the right-hand side of the last inequality is non-negative,

from which it follows [3] that bounded limits of vanishing-viscosity solutions satisfy

(a.e.):

∂η

∂t
+
∂Ed
∂xd
≤ 0 (1.9)

A weak solution that satisfies this entropy inequality (in the sense of distributions)

for all η and corresponding Ed is called an entropy or entropic solution. For details,

see [2]. Other characterizations of the entropy solution exist, of which Eq. (1.9) is

especially useful because numerical methods that satisfy a discrete analog of it can

be shown to converge to the entropy solution [4].
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1.2.1 The Euler Equations

This work deals mostly with the Euler equations of inviscid fluid flow. They are

restatements of the physical principles of mass, momentum, and energy conservation

for a fluid with no viscosity. Let ρ be the density of the fluid, ui its velocity in each

coordinate direction i = 1, · · · , D, and E be the energy per unit volume. Then:

q =


ρ

ρui

E

 , fd =


ρud

ρuiud + Pδid

(E + P )ud

 (1.10)

where δid is the Kronecker delta and P is the pressure. As written this system is not

closed, as P must be specified from the components of q. To calculate P we need an

equation of state, which depends on the physical model of the fluid being considered.

In this work we will assume a perfect gas, for which the specific heat capacities at

constant volume and pressure are constant and the ideal gas law P = ρRT holds,

where T is the temperature and R is a gas-specific constant.

P = (γ − 1)(E − ρuiui/2) (1.11)

where γ is the ratio of specific heat capacities and is also a constant, which we set

to the value for air unless otherwise noted: γ = 1.4. With this addition the Euler

equations are closed and can be solved numerically.
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1.3 The Finite Volume Framework

The finite-volume framework provides the means for obtaining a discrete sys-

tem that approximates the behavior of the continuous problem Eq. (1.1) and we

describe it in this section. For further details, consult [5] or [6]. Integrate the

conservation law Eq. (1.1) over a space-time control volume Ω× [t, t+ ∆t]:

∫
Ω

q(x, t+ ∆t) dx =

∫
Ω

q(x, t) dx−
∫ t+∆t

t

∫
∂Ω

fd(q(x), t)nd dSdt (1.12)

nd are the components of the outward unit normal vector along the boundary ∂Ω

of Ω. If this equation holds for any time interval [t, t+ ∆t] and any spatial domain

Ω, then the weak formulation Eq. (1.3) and the classical formulation Eq. (1.1) are

equivalent for weak solutions that are piecewise smooth.

To simplify the forthcoming discussion, consider the one-dimensional case of

Eq. (1.12) and let the spatial domain be an interval of small width ∆x: Ω =

[x−∆x/2, x+ ∆x/2]. Then Eq. (1.12) can be written as:

q̄(x, t+ ∆t) = q̄(x, t)− λ
[
f̂(x+ ∆x/2, t)− f̂(x−∆x/2, t)

]
(1.13)

where q̄(x, t) indicates an average over an interval centered at the point x:

q̄(x, t) =
1

∆x

∫ x+∆x/2

x−∆x/2

q(ξ, t) dξ (1.14)

the f̂ are time-averaged fluxes through the boundaries of Ω:

f̂(x, t) =
1

∆t

∫ t+∆t

t

f(q(x, τ)) dτ (1.15)
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and the mesh ratio λ = ∆t/∆x. One sees that if an approximate solution is available

that can be evaluated at an arbitrary point x and if the time integrals can be

evaluated, then the sliding averages q̄(x, t) can be evolved exactly using Eq. (1.13).

Since the averages at time t+ ∆t are centered at the same points as the averages at

time t, the first step in applying a finite-volume method is to cover a large domain

Ω with small cells Ωj, j = 1, · · · , N . The averages of q(x, t) over the cell Ωj at

time tn = n∆t are denoted q̄nj and Eq. (1.13) is applied to them. This setup

leaves the user with two decisions, which distinguish the varieties of finite-volume

method: first, the choice of control volumes; and second, the strategy for obtaining

the interface flux from the cell averages. In the next two subsections we discuss

two categories of schemes that differ in the choice of control volumes. Section 1.4

discusses some of the many alternatives for reconstructing interface values from cell

averages.

1.3.1 Upwind Schemes

Taking the space-time control volumes to coincide with the cells, i.e. Ωj ×

[tn, tn+1] is a control volume for each j, gives rise to the family of upwind schemes.

One obtains the evolution equation for the cell averages q̄nj simply by setting x =

xj, t = tn in the evolution equation for the sliding averages, Eq. (1.13), which gives:

q̄n+1
j = q̄nj − λ

[
f̂(xj + ∆x/2, tn)− f̂(xj −∆x/2, tn)

]
(1.16)

The quantities f̂ are time-averages of the exact flux, so they must be evaluated

approximately by numerical fluxes Hn
j+1/2 ≈ f̂(xj+1/2, t

n). The original upwind

7



scheme of Godunov [1] computes the f̂ exactly by the following approach. Suppose

the solution is globally represented as a function q̃(x) that is piecewise constant in

each cell Ωj and that matches the averages q̄j over those cells.

q̃(x) = q̄j if xj−1/2 < x < xj+1/2 for each j (1.17)

Then each interface can be considered as a (shifted) Riemann problem, i.e. the

original conservation law Eq. (1.1) with an initial condition of the form:

q(x, 0) =


qL x < 0

qR x > 0

(1.18)

For sufficiently small times, the solutions near each interface evolve independently

of each other due to the finite propagation speed that is a feature of hyperbolic

systems [6]. That is, any disturbance travels at a speed bounded by the spectral

radius ρ(J) of the flux Jacobian J , where Jij = ∂fi
∂qj

. Thus the piecewise-constant

representation of the solution evolves for small times as a set of non-interacting

Riemann problems.

It can be shown [2] that solutions to hyperbolic systems of conservation laws

are self-similar, so that the solution q(x, t) depends only on the parameter x/t. In

particular, the solution is constant along the line x = 0 in the space-time plane.

This definition assumes the initial discontinuity to be located at x = 0, t = 0, so

for the purpose of evolving the piecewise-constant numerical solution the Riemann

solutions are translated in space and time to their corresponding interfaces. Denote

by Rn
j+1/2(ξ) the solution to the Riemann problem at interface j + 1/2 at time tn,

8



which has initial data qL = q̄nj , qR = q̄nj+1 and with self-similarity coordinate ξ = (x−

xj+1/2)/(t−tn). Then the solution at x = xj+1/2 is simply q(xj+1/2, t) = Rn
j+1/2(0) for

sufficiently short times. This construction naturally leads to the following definition

for the numerical interface flux in terms of the Riemann solution:

Hn
j+1/2 = f̂(xj+1/2, t

n) =
1

∆t

∫ t+∆t

t

f(Rn
j+1/2(0)) dτ = f(Rn

j+1/2(0)) (1.19)

The Godunov strategy solves the problem of defining a single numerical flux at

a point where the numerical solution is discontinuous. It has, however, two serious

drawbacks. First, it requires an analytical solution to the Riemann problem, which

may be difficult to compute or may not even exist. Several strategies for obtaining

approximate Riemann solutions have been proposed and used with success, notably

the Roe scheme [7]. Numerous such approximations are available: see [5], [8], or, for

a summary of the simplest, [6]. The second drawback is that the piecewise-constant

representation of the solution limits the scheme to first-order accuracy in space.

This limit can be improved by using higher-order reconstructions (see Section 1.4),

replacing the piecewise constants with higher-degree polynomials, but then instead

of solving Riemann problems at each interface one must solve generalized Riemann

problems (where the initial data is not piecewise constant). This task is even more

difficult than the original task of solving bona fide Riemann problems, though in

practice the generalized Riemann problems are often treated as true Riemann prob-

lems [9]. In practical applications, the use of Riemann solvers introduces several

details with annoying consequences. The availability of multiple options introduces

an element of arbitrariness, and one may need to experiment with different solvers

9



xjxj−1/2 xj+1/2

q̄j+1/2

q̄j

Figure 1.1: A main grid (solid line) and its staggered counterpart (dashed line).

for a single problem. The Riemann solvers also incur computational expense per

cell interface which can become costly on large problems. Finally, one might ques-

tion the physical accuracy of a method that places discontinuities at every interface

even where the solution is smooth. Thus there are several conceptual and practical

advantages to a scheme that does not require any Riemann solver. The next sub-

section describes how such a scheme can be obtained by making a different choice

of the control volumes.

1.3.2 Central Schemes

Nessyahu and Tadmor [10] originated the idea of representing the solution at

the next time step on a staggered grid whose cells are centered on the cell interfaces

of the grid used at the current time step, as in Figure 1.1. In effect, the control

volumes are of the form [xj, xj+1]× [tn, tn+1] rather than [xj−1/2, xj+1/2]× [tn, tn+1]

as in the upwind schemes.

Considering the same piecewise-constant numerical solution as before, we see

that for sufficiently small time steps the waves from Riemann solutions at an in-

terface xj+1/2 will not reach the edges of the control volume. Therefore at the cell

centers, where point values are evaluated, never encounter a discontinuity. Thus we

10



can write the evolution equation for the averages q̄nj+1/2 over the staggered grid as:

q̄n+1
j+1/2 = q̄nj+1/2 − λ(f̂(xj+1, t

n)− f̂(xj, t
n)) (1.20)

The solution at the next time step is realized on the staggered grid whose

cell centers coincide with the cell interfaces on the main grid. With this choice

of control volume the flux function is evaluated only at points where the numerical

solution q̃(x) is continuous (i.e. single-valued), so no Riemann problems ever appear.

This is the key advantage of such schemes. Alternatively, one may think of the

central schemes as averaging over all the waves emanating from the discontinuities

at interfaces, as opposed to resolving them with a Riemann solver [6].

The initial averages over the staggered grid can be reconstructed in a way

that guarantees conservation by computing the half-averages q̄Lj of q̃(x) over the left

subcells [xj−1/2, xj]

q̄Lj =
1

∆x

∫ xj

xj−1/2

q̃(x) dx (1.21)

and defining the right subcell average as q̄Rj = q̄j − q̄Lj . Then it is also necessary to

reconstruct the point values of the solution at the cell midpoints in order to evaluate

the numerical fluxes. Both of these reconstructions are trivial if the numerical solu-

tion is taken as the piecewise-constant approximation, which leads to the following

evolution equation for the cell-averages:

q̄n+1
j+1/2 =

1

2
(q̄nj + q̄nj+1)− λ(f(qnj+1)− f(qnj )) (1.22)

Note the similarity to the classical Lax-Friedrichs scheme [11] [12]. As with the up-

wind schemes, the piecewise-constant reconstruction limits this scheme to first-order
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accuracy which can be improved by using higher-degree polynomials in the numerical

solution q̃. The Nessyahu-Tadmor scheme [10], for example, uses a piecewise-linear

reconstruction with a slope limiter which both enables second-order accuracy and

ensures that the scheme is total-variation diminishing in the scalar case.

Central schemes also have two drawbacks. First, because the waves of the

Riemann fan must not reach cell centers from interfaces, as opposed to reaching other

interfaces in the upwind scheme, the maximum time step for a central scheme is half

that for the corresponding upwind scheme [10] [13]. Second, and more importantly,

central schemes have numerical dissipation that scales with ∆t−1 which causes them

to excessively smear shocks and fine features [13] [6]. For example, by rearranging

(1.22), we obtain:

q̄n+1
j+1/2 − q̄nj+1/2

∆t
=
q̄nj − 2q̄nj+1/2 + q̄nj+1

2∆t
− 1

∆x
(f(qnj+1)− f(qnj )) (1.23)

Taylor series analysis shows that:

q̄nj − 2q̄nj+1/2 + q̄nj+1 =
1

8
(∆x2q′′(xj+1/2)) +O(∆x4) (1.24)

Because the staggered cells have the same shape regardless of ∆t, the leading co-

efficient of this expansion is also independent of ∆t [13]. This fact also means

that the scheme (1.22) cannot be reduced to a semi-discrete form that can be used

with a Runge-Kutta scheme for advancing in time. Kurganov and Tadmor [13]

provided the remedy for this problem, which is to let the width of the control

volumes depend on ∆t while still containing all waves of the Riemann fan at its in-

terface [13]. If a+
j+1/2, a

−
j+1/2 are upper bounds for the speeds of the waves traveling

in the +x and −x directions respectively, then the corresponding control volume
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is [xj+1/2 − a−j+1/2∆t, xj+1/2 + a+
j+1/2∆t] × [tn, tn+1]. The so-called central upwind

schemes resulting from this modification leads to a semi-discrete form and avoids

the ∆t−1 scaling of the numerical dissipation [13].

1.4 The Reconstruction Problem

In either category of scheme, a key problem is to obtain from the cell averages

other quantities of interest: interface values in the upwind schemes, and subcell

averages and midpoint values in the central schemes. A pth-order accurate ap-

proximation Q̂j of a desired quantity Qj can be obtained by, for example, a linear

combination of averages in adjacent cells:

Q̂j =
b∑

v=a

Rv q̄j+v = Qj +O(∆xp) (1.25)

As alluded to in the first section, such schemes have a devastating drawback

preventing their straightforward application to hyperbolic conservation laws. If the

coefficients Rv are fixed, then the approximation Q̂j will be oscillatory. Figure 1.2

shows an example of this behavior, where the scheme qj+1/2 = 1
3
q̄j−2 − 7

6
q̄j−1 + 11

6
q̄j

is applied to the cell averages of a piecewise constant function to estimate interface

values. Beyond merely degrading solution accuracy, these oscillations can make

solutions nonphysical by violating physical constraints such as positivity of density.

Such oscillations always arise, however, from any linear reconstruction whose order

of accuracy exceeds 1 [1]. To obtain the desired high-order accuracy without spurious

oscillations therefore requires a nonlinear scheme, i.e. one in which the coefficients

are not predetermined constants. In the next section we discuss the WENO family
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Figure 1.2: A high-order linear reconstruction produces oscillations near
discontinuities.

of such schemes.

1.4.1 WENO and CRWENO Reconstructions

Consider a scheme that computes a quantity associated with cell j using in-

formation in cells j + a, · · · , j + b. We refer to this set of cells as the stencil of

the scheme. The oscillations in Figure 1.2 occur when the reconstruction stencil

includes a discontinuity, which suggests that the role of the necessarily nonlinear-

ity should be to automatically adapt the stencil to avoid crossing discontinuities.

The Weighted Essentially Non-Oscillatory (WENO) schemes (originally presented

by Liu, Osher, and Chan in [14]) achieve this by taking the final reconstruction
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to be a convex combination of candidate reconstructions, with the weights in the

convex combination approaching zero (as the cell size approaches zero) when their

corresponding stencil contains a discontinuity. For example:

Q̂j =
S∑
s=1

ωsQ̂
(s)
j ,

S∑
s=1

ωs = 1

Q̂
(s)
j = Qj +O(∆xq) ∀s

(1.26)

For example, the fifth-order WENO scheme popularized by [15] is given by:

q̂
(1)
j+1/2 =

1

3
q̄j−2 −

7

6
q̄j−1+

11

6
q̄j ω̄1 =

1

10

q̂
(2)
j+1/2 = −1

6
q̄j−1+

5

6
q̄j +

1

3
q̄j+1 ω̄2 =

3

5

q̂
(3)
j+1/2 =

1

3
q̄j +

5

6
q̄j+1 −

1

6
q̄j+2 ω̄3 =

3

10

(1.27)

We refer to the schemes that provide the candidate reconstructions as sub-

schemes. Because the weight for a discontinuous stencil is (approximately) zero, the

subscheme that would produce oscillations has its contribution reduced to (approx-

imately) zero thus preventing the spurious oscillations of Figure 1.2. On the other

hand, when no stencil contains a discontinuity, all the weights approach ideal values

ω̄s for which the convex combination attains its maximum order of accuracy:

S∑
s=1

ω̄sQ̂
(s)
j = Qj +O(∆xq+S−1) (1.28)

This maximum order of accuracy can be achieved when the weights ωs 6= ω̄s

if the non-oscillatory weights ωs approach their ideal values quickly enough. The
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non-oscillatory reconstruction Eq. (1.26) can be written:

Q̂j =
∑
s

(ωs − ω̄s)Q̂(s)
j +

∑
s

ω̄sQ̂
(s)
j

=

(∑
s

(ωs − ω̄s)(Qj +O(∆xq))

)
+Qj +O(∆xq+S−1)

= Qj +

(∑
s

(ωs − ω̄s)O(∆xq)

)
+O(∆xq+S−1)

(1.29)

Thus to attain the maximum order of accuracy we require the sufficient con-

dition (cf. Henrick et al. [16]):

ωs − ω̄s = O(∆xS−1) (1.30)

The order of convergence here can be relaxed by considering the specific coef-

ficients of the truncation error expansions of the subschemes (see [16]) but it is often

extremely difficult to design schemes that meet the resulting condition. Therefore

in Section 1.4.2 we will seek weights that satisfy Eq. (1.30).

A WENO scheme is completely determined by its constituent subschemes, its

ideal weights ω̄s, and the algorithm for computing the nonlinear weights ωs from the

ideal weights. The ideal weights can be determined by examining the truncation

errors of the individual subschemes. Section 1.4.2 will describe several strategies

for relating ωs to ω̄s. The subschemes themselves can be of the form Eq. (1.25).

Alternatively, Ghosh and Baeder proposed in [17] and [18] that the subschemes be

the compact (i.e. spatially implicit) schemes of Lele [19]. These have the form:

∑
v

LvQ̂j+v =
∑
v

Rv q̄j+v (1.31)

A convex combination of compact schemes leads to a linear system to be solved

for the unknown interface values. If the left-hand side coefficients Lv are chosen with
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Figure 1.3: The CRWENO matrix partitions into blocks at disconti-
nuities to provide a non-oscillatory reconstruction of a discontinuous
function.

zeros in appropriate places then discontinuities cause the linear system to partition

into decoupled blocks at shocks. For example, the original compact-reconstruction

WENO (CRWENO) scheme in [18] is:

2

3
q̂j−1/2+

1

3
q̂j+1/2 =

1

6
q̄j−1+

5

6
q̄j ω̄1 =

1

5

1

3
q̂j−1/2+

2

3
q̂j+1/2 =

5

6
q̄j +

1

6
q̄j+1 ω̄2 =

1

2

2

3
q̂j+1/2 +

1

3
q̂j+3/2 =

1

6
q̄j +

5

6
q̄j+1 ω̄3 =

3

10

(1.32)

Applying this scheme to the box function in Figure 1.2 leads to a linear system

with the sparsity pattern shown in Figure 1.3. Not only are clear block divisions

visible, indicating decoupling across the discontinuities, but the reconstruction has

none of the spurious oscillations seen in Figure 1.2.

CRWENO has the same advantage over WENO that the compact schemes

of [19] have over the non-compact schemes of the form Eq. (1.25). The coupling of

unknowns allows waves of higher frequency to be resolved on a given grid, and the
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truncation errors for compact schemes are smaller in absolute terms than those of

the non-compact schemes. For applications in aerodynamics, these properties mean

CRWENO schemes require coarser grids to resolve the same turbulent eddies while

still preventing spurious oscillations at shocks. We will see in section 1.7, however,

that CRWENO schemes have a severe drawback.

1.4.2 Choice of Weights

WENO and CRWENO schemes require an algorithm to modify the ideal

weights ω̄s so that the resulting ωs approach zero if the stencil s contains a dis-

continuity and approach ω̄s if no stencils contain discontinuities. In all cases the ωs

must form a convex combination i.e. we must have ωs ≥ 0 ∀s and
∑

s ωs = 1. A

typical WENO scheme meets these conditions by setting:

ωs =
αs∑
v αv

(1.33)

αs =
ω̄s

(ε+ ISs)p
(1.34)

Where ISs is a smoothness indicator for the stencil s, which is large when the

stencil contains a discontinuity. Typically the exponent p = 2. The parameter ε is a

small value whose sole purpose is to prevent division by zero. The original WENO

scheme [14] defined the smoothness indicators associated with cell j in terms of

undivided differences of the solution:

ISs =
S−1∑
l=1

S−l∑
i=1

(q[j − S + s+ i, l])2

S − l
(1.35)
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where S is the number of stencils and the u[·, ·] is an undivided difference:

q[j, 0] = qj

q[j, l] = q[j + 1, l − 1]− q[j, l − 1]

(1.36)

Thus for S = 3 we have

ISs =
1

2
(qj+s−1 − qj+s−2)2 +

1

2
(qj+s − qj+s−1)2 + (qj+s − 2qj+s−1 + qj+s−2)2

=
1

2
(∆xq′j +O(∆x))2 +

1

2
(∆xq′j +O(∆x))2 + (∆x2q′′j +O(∆x3))2

= (∆xq′j)
2(1 +O(∆x))

(1.37)

This weight definition therefore does not satisfy the convergence criterion Eq.

(1.30) to ensure maximum order of convergence in smooth regions. Jiang and Shu

[15] presented another smoothness indicator that measures the smoothness in terms

of L2 norms of derivatives of the reconstruction polynomial qs(x) (i.e. the polynomial

whose averages over the cells in the stencil match the given cell averages):

ISs =
S−1∑
r=1

∫ xj+1/2

xj−1/2

(∆xrq(r)
s )2 dx

∆x
(1.38)

At points where the first derivative of q(x) is nonzero, these indicators satisfy

the weight convergence criterion Eq. (1.30). They fail to do so, however, at points

where first and higher derivatives vanish. Several alternative weighting strategies

have been proposed that do not have this defect. In [16], a mapping function mod-

ifies the ωs computed with the Jiang-Shu indicators in such a way as to accelerate

convergence to their ideal values at critical points. The mapping process adds com-

putational expense to the scheme, so Borges et al. in [20] modified the definitions

of αs in Eq. (1.34) to incorporate information about higher derivatives:

αs = ω̄s

(
1 +

τ

ε+ ISs

)q
, τ = |IS0 − IS2|, s = 1, 2, 3 (1.39)
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where ISs are the Jiang-Shu indicators. This definition allows the maximum

order of accuracy to be achieved at critical points but fails to do so when the first,

second, and third derivatives vanish at a point [21]. Furthermore, the absolute value

in the definition of τ can cause a loss of accuracy at points where τ changes sign,

and for schemes with more subschemes the difference between the first and last

indicators does not provide the desired accuracy. Yamaleev and Carpenter in [21]

chose instead to set τ as the square of the highest-order undivided difference that

can be defined on the combined stencil (i.e. the union of the stencils of all the

subschemes). This definition prevents the order of accuracy from degenerating in

the presence of any number of vanishing derivatives and generalizes to schemes with

more than three subschemes.

1.5 Time Advancement

Two varieties of time-advancement schemes will be relevant to this work. First,

the Runge-Kutta family of schemes which take the form:

u(s) = un + ∆t

(
S∑
k=1

askF (t+ ck∆t, u
(k))

)
, s = 1, 2, · · · , S

un+1 = u(S)

(1.40)

where F (t, q) = dq/dt. Many such methods exist, varying in the number

of stages S and in their regions of stability. An important class of Runge-Kutta

methods is the strong-stability preserving (SSP) class, which have the property that

if a given stability condition is satisfied by a spatial discretization paired with the

explicit Euler method in time, then the same stability condition is satisfied if an
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SSP scheme is used in place of explicit Euler (possibly under a more restrictive CFL

condition). That is, for any norm, seminorm, or convex functional ‖ · ‖, a scheme is

SSP if:

‖q + ∆tF (q)‖ ≤ ‖q‖ ∀∆t, 0 ≤ ∆t ≤ ∆tE ⇒ ‖qn+1‖ ≤ ‖qn‖ ∀∆t, 0 ≤ ∆t ≤ c∆tE

(1.41)

where F (q) = dq/dt and c is some positive constant independent of ∆t,∆x.

Schemes can be designed to have this property by assembling them from convex

combinations of explicit Euler steps:

u(1) = un

u(s) = un + ∆t

(
s−1∑
k=1

αs,k

(
u(k) + ∆t

βs,k
αs,k

F (u(k))

))
, s = 2, · · · , S

un+1 = u(S)

(1.42)

Since consistency requires
∑

k αs,k = 1, Eq. (1.42) is a convex combination of

Euler steps (with varying time step sizes ∆tβs,k/αs,k) as long as all the αs,k and βs,k

are positive. The new time step restriction is found by:

max
s,k

∆t
βs,k
αs,k
≤ ∆tE ⇒ c = min

i,k

αs,k
βs,k

(1.43)

An SSP scheme is considered optimal if it has the largest possible constant c

over all SSP Runge-Kutta schemes of a given order of accuracy. The most popular

such scheme, which is also the one used in this work, is the third-order scheme:

u(1) = un + ∆tF (un)

u(2) =
3

4
un +

1

4

(
u(1) + ∆tF (u(1))

)
un+1 =

1

3
un +

2

3

(
u(2) + ∆tF (u(2))

)
(1.44)
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SSP Runge-Kutta schemes were originated in [22], and further discussion can

be found in e.g. [23], [24], [25]. The advantage of such schemes is that nonlinear

stability properties may be available for simple time-advancement schemes such as

explicit Euler, but not for more complicated high-order schemes. SSP schemes allow

such properties to carry over to the more practical high-order time discretizations.

The second class of time discretizations is the natural continuous extension of

Runge-Kutta schemes, originally developed by Zennaro [26] and the use of which in

central schemes was originated by Bianco et al. in [27] and used in [28] and [29]. In

a central scheme it is still necessary to evaluate the time-averaged fluxes Eq. (1.15),

and in the absence of a semi-discrete form obtained by taking the limit ∆t→ 0 then

that time integral must be approximated by quadrature. Intermediate values of the

solution can be obtained by a Runge-Kutta scheme applied to the differential form

of the conservation law Eq. (1.1):

dqj
dt

= −∂f(q)

∂x

∣∣∣
xj

(1.45)

which after spatial discretization becomes:

dqj
dt

= Fj(t, q) (1.46)

However the intermediate times at which Runge-Kutta stages are calculated

may not coincide with convenient quadrature nodes. Thus we need to interpolate the

solution within each time step using the information produced by the Runge-Kutta

scheme and preferably no additional information. To enable comparisons with the

schemes of [28] [30] [29] we employ the same fourth-order Runge-Kutta scheme used
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there and which is given by:

un+1 = un + ∆t
4∑

k=1

bkFk

F1 = F (un)

F2 = F

(
tn + c2∆t, un +

∆t

2
F1

)
F3 = F

(
tn + c3∆t, un +

∆t

2
F2

)
F4 = F (tn + c4∆t, un + ∆tF3)

c2 =
1

2
, c3 =

1

2
, c4 = 1

b1 =
1

6
, b2 =

1

3
, b3 =

1

3
, b4 =

1

6

(1.47)

The natural continuous extension replaces the coefficients bi with polynomials

bi(θ) to construct a polynomial z(t) such that:

z(tn + θ∆t) = qn + ∆t
4∑

k=1

bk(θ)Fk, 0 ≤ θ ≤ 1

z(tn) = qn and z(tn+1) = qn+1

max
tn≤t≤tn+1

∣∣q(r)(t)− z(r)(t)
∣∣ = O(∆t4−r), 0 ≤ r ≤ 4

where q(t) is the exact solution to Eq. (1.46). The polynomials bk(θ) are:

b1(θ) = 2(1− 4b1)θ3 + 3(3b1 − 1)θ2 + θ

bk(θ) = 4(3ck − 2)bkθ
3 + 3(3− 4ck)bkθ

2, k = 2, 3, 4

Since z(t) uniformly approximates the solution to Eq. (1.45) within 0 ≤ θ ≤ 1

it can be evaluated at the quadrature points in order to accurately approximate

the time integrals in Eq. (1.13). If the quadrature points for the time integrals are

known in advance, then the values of bi(θ) can be precalculated. In this work we
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apply Simpson’s rule to the continuous extension:

1

∆t

∫ tn+1

tn
f(q(xj, t)) dt =

1

6
(f(q(xj, t

n))+4f(q(xj, t
n+∆t/2))+f(q(xj, t

n+1)))+O(∆t4)

(1.48)

Unfortunately, the optimal SSP schemes do not have natural continuous ex-

tensions with order of accuracy equal to that of their natural continuous extensions,

which makes them unsuitable for purposes of the central schemes in this work.

1.6 Characteristic Variables

Oscillations can arise if the reconstruction itself is oscillatory or if the scheme

is unstable so that small perturbations are amplified. Using a WENO algorithm

prevents oscillations from the first source but achieves nothing in regard to the

latter. For simple problems such as the linear advection of a scalar given by:

∂q

∂t
+ a

∂q

∂x
= 0 (1.49)

(where a is a constant) oscillations of the second kind can be avoided by biasing

the reconstruction stencil in the direction from which information propagates - the

so-called upwind direction. If a > 0, so that the solution at a point x = x0 depends

only on the values of the solution for x ≤ x0, then the reconstruction scheme for

qj+1/2 should involve more points to the left of xj+1/2 than to its right (with the

directions reversed if a < 0). For systems of equations this condition becomes more

complicated. Consider linear advection as in Eq. (1.49) but with the constant scalar

a replaced by a constant square matrix A:

∂q

∂t
+ A

∂q

∂x
= 0 (1.50)
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We assume that this system is hyperbolic, thus A is real-diagonalizable: A =

XΛX−1. We may then multiply Eq. (1.50) on the left by X−1 to write:

X−1∂q

∂t
+ ΛX−1 ∂q

∂x
= 0 (1.51)

Since X−1 is constant we may rewrite the original system in terms of the so-called

characteristic variables ξ = X−1q:

∂ξ

∂t
+ Λ

∂ξ

∂x
= 0 (1.52)

Because the eigenvalue matrix Λ is diagonal, each row of Eq. (1.52) is an independent

scalar advection equation. The reconstruction for each component should have the

appropriate upwind bias, and then the physical variables q can be recovered from ξ.

This derivation does not apply in the case of a nonlinear system. We may

linearize the system Eq. (1.1) to obtain:

∂q

∂t
+ J(q)

∂q

∂x
= 0 (1.53)

where J(q) is the flux Jacobian matrix, and then diagonalize J(q) as before. How-

ever, the matrix X(q)−1 of left eigenvectors now depends on q and therefore cannot

be brought inside the derivatives to define new variables ξ. In practice, however, tak-

ingX(q)−1 to be locally constant within each stencil usually produces non-oscillatory

solutions despite the non-rigorous mathematical justification for doing so.

1.7 Drawbacks of Upwind CRWENO

With the theoretical and numerical background now in hand we can begin to

see serious deficiencies in the upwind CRWENO method, all of which connect to the
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use of characteristic variables. First, performing a compact reconstruction in char-

acteristic variables leads to a block-tridiagonal matrix as opposed to the tridiagonal

matrices obtained from a componentwise reconstruction. Indeed, consider compact

schemes of the form Eq. (1.31) combined in a CRWENO scheme that couples the

unknowns for component c in cells j − 1, j, j + 1:

S∑
s=1

ωcs(q̄)

(
1∑

v=−1

LsvQ̂j+v

)
=

S∑
s=1

ωcs(q̄)

(∑
v

Rsv q̄j+v

)
1∑

v=−1

(
S∑
s=1

ωcs(q̄)Lsv

)
Q̂j+v =

∑
v

(
S∑
s=1

ωcs(q̄)Rsv

)
q̄j+v

(1.54)

where S is the number of subschemes and Q̂ is the quantity of interest. For each

component c of a system of conservation laws Eq. (1.54) produces an independent

tridiagonal system if different weights are used for each component. On the other

hand, applying Eq. (1.54) to the characteristic variables ξ = X−1q gives:

1∑
v=−1

∑
c

(
S∑
s=1

ωfs(ξ̄)Lsv

)
X−1
fc Q̂c,j+v =

∑
v,c

(
S∑
s=1

ωfs(ξ̄)Rsv

)
X−1
fc q̄c,j+v (1.55)

Thus each value of v corresponds to a block of the form
∑

s Ω(s)LsvX
−1, where Ω(s)

is a diagonal matrix whose cth entry on the diagonal is the weight for subscheme

s computed from the cth component of the characteristic variables ξ̄. Because the

left eigenvector matrix combines all components of the physical variables q, this

system cannot be decoupled into independent systems in a componentwise fashion

and the prefactor Ω(s) prevents simplification by multiplying on the left by X. In

comparison, for non-compact WENO the analog of Eq. (1.55) is:

∑
c

X−1
fc Q̂c,j+v =

∑
v,c

(
S∑
s=1

ωfs(ξ̄)Rsv

)
X−1
fc q̄c,j+v (1.56)
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which becomes after multiplying on the left by X:

Q̂g,j =
∑
v,c,f

(
S∑
s=1

Xgfωfs(ξ̄)Rsv

)
X−1
fc q̄c,j+v (1.57)

For each v, the solution vector q̄j+v in cell j + v is multiplied by the matrix

X(
∑

s Ω(s)Rsv)X
−1, which in general is not diagonal. Thus although the compo-

nents of the reconstruction Q̂ depend on all the components of q̄, each component

can be calculated independently whereas in the compact reconstruction the compo-

nents of Q̂ are coupled.

The CRWENO scheme Eq. (1.32) of [18] has a smaller leading-order trunca-

tion error coefficient than the classical WENO scheme of [15], both of which are

fifth-order accurate [17]. Thus on a given grid one would expect the solution from

CRWENO to have a smaller error. On the other hand, the preceding discussion

strongly suggests that the computational expense for one CRWENO reconstruction

is greater than that for a WENO reconstruction, especially when characteristic vari-

ables are used. It is therefore not clear whether CRWENO is superior to WENO

in terms of efficiency, i.e. the time required to obtain a solution with a given level

error. As Figure 1.4 shows, a simple test case of a sinusoidal density wave which

advects with constant velocity under the Euler equations shows that CRWENO

is in fact slightly less efficient than WENO when characteristic variables are used

whereas CRWENO slightly outperforms WENO when the conserved variables are
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Figure 1.4: Characteristic variables increase the computational expense
and WENO slightly outperforms CRWENO in efficiency when charac-
teristic variables are used.

reconstructed directly.
ρ(x, 0)

u(x, 0)

P (x, 0)

 =


1 + 0.2 sin(4πx)

1

1

 , 0 ≤ x ≤ 2 (1.58)

Though the efficiency difference is small enough to be potentially sensitive to

implementation and hardware details, the fact that the efficiency gains obtained by

reducing the error evaporate as a result of using characteristic variables indicates

an opportunity for improvement. We also see that characteristic variables increase

the CRWENO computation time by about 98% whereas the corresponding increase
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with WENO reconstructions is only about 64%.

The mathematical justification for characteristic variables loses rigor when

considering nonlinear systems of conservation laws. As previously mentioned, the

standard strategy for treating nonlinear system is to use the flux jacobian evaluated

at some reference state that differs between stencils but is fixed within each stencil.

This strategy raises two troublesome questions. First, how should the reference state

be chosen? One might choose the state of the central cell, or a simple average of the

states on either side of a relevant interface, or, which seems in practice to be the

most robust, the density-weighted average of those two states as done in the Roe

flux difference splitting method [7]. A method may fail on some test problem with

one such choice but succeed with another, and one would prefer a method that does

not require such tinkering in order to function.

The second problem is that the assumption that the transformation matrix

X−1 is locally constant does not hold when the stencil includes a shock. Near shocks

this breakdown can lead to nonphysical values, such as negative density or pressure,

and this problem occurs frequently in compact schemes because the transformation

in one stencil influences the solution in nearby stencils. Yet some kind of charac-

teristic transformation is still necessary in order to prevent oscillations that would

arise from incorrect upwinding, so one must tinker with the reconstruction algorithm

itself to produce one that functions properly with the characteristic transformation.

Of course, that work could easily go to waste if the test problem changes.

Finally, although it is difficult to obtain any analytical results concerning the

stability or other relevant properties of WENO methods the added complication of
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the characteristic transformation amplifies that difficulty immensely. Furthermore,

because the characteristic variables derive from the flux jacobian a result for one

flux might not hold for general fluxes which also limits the applicability of any

analytical result. One would prefer, therefore, to have a method that can be applied

componentwise and, moreover, that is as simple and general as possible.

The upwind CRWENO method also inherits some drawbacks from its nature

as an upwind scheme. The use of a Riemann solver to determine the numerical

flux at an interface from the reconstructions on each side of the face necessarily

introduces all of the problems associated with Riemann solvers discussed in Section

1.3.1. The one-dimensional upwind framework benefits from the clear division of

waves into left- and right-going families which is not available in multiple dimensions.

In practice, it is common to perform one-dimensional reconstructions along coor-

dinate directions and treat each interface as a one-dimensional Riemann problem.

In reality, however, a two-dimensional Riemann problem (in which four different

states meet at a single point) exhibits fundamentally two-dimensional behavior ex-

amples of which can be seen in [31]. The coordinate-by-coordinate approach can

nevertheless produce reasonable results at the cost of a small time step, whereas a

two-dimensional Riemann solver can allow larger time steps [32]. Of course, all of

these problems would be avoided by using a method that does not require a Riemann

solver and that naturally extends to multiple dimensions.
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1.8 Purpose and Outline of Thesis

The upwind CRWENO method has serious drawbacks due to the use of char-

acteristic variables and the upwind framework. The purpose of this thesis is to

rehabilitate the idea of compact WENO reconstructions in such a way that charac-

teristic variables are not required but that does not sacrifice accuracy or the ability

to efficiently resolve high-frequency features, and that produces a method that is

simple, so that it can be fruitfully analyzed, yet robust so that it applies to a wide

range of problems without problem-specific tinkering with parameters.

Upwind schemes fail when the directions of information propagation are not

respected so in practice upwind schemes require use of characteristic variables, es-

pecially when the reconstruction is high-order. Therefore discarding characteristic

variables requires an entirely different discretization strategy. The central schemes

provide such an alternative, and have had success at dispensing with characteristic

variables [10] [28]. Levy et al. constructed central WENO schemes in which the nec-

essary quantities are reconstructed by WENO schemes of third and fourth order [28],

then extended to multidimensional schemes of third [33] and fourth [30] order all

without need for characteristic variables (note the different usage of the term com-

pact in [33], where it is used to mean that the reconstruction stencil involves few cells

rather than in the sense of [19], [18], and the present work where it is used to mean

that the reconstruction is spatially implicit). Qiu and Shu in [29], however, found

that when the central WENO framework of Levy et al. is used to construct fifth

or ninth-order central WENO schemes the results can be oscillatory unless charac-
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teristic decomposition is used in at least the subcell reconstruction. The authors

of [29] give no explanation, however, as to why the characteristic decomposition is

needed at all except to suggest that the high order of accuracy is at fault, let alone

why it is sufficient to perform the decomposition only in the subcell reconstruc-

tion given that all the reconstructions are high-order. Furthermore, although the

fourth-order central WENO scheme (which we will refer to as CWENO4 for brevity)

of in [28] is developed by forming a polynomial within each cell, when translated

into a finite-difference formula for the subcell average it becomes equivalent to the

fifth-order subcell reconstruction in [29]. Both methods use the same fourth-order

Runge-Kutta method with its natural continuous extension, so it would seem that

the nature of the point value reconstruction influences the need for characteristic

variables in some way.

A plausible candidate for the relevant difference is that, because it directly

forms a polynomial reconstruction in each cell, CWENO4 uses the same polynomial

to determine the subcell averages and the point value. The fifth-order scheme of

Qiu and Shu [29] (CWENO5), although it does not explicitly involve polynomials,

cannot be equivalent to any polynomial-derived scheme because the ideal weights

in its subcell and point value reconstructions are different. We conjecture that this

inconsistency manifests as oscillatory behavior which the characteristic decomposi-

tion serves to quell. This hypothesis would also explain why only high-order schemes

appear to require characteristic variables, since only lower-order schemes can have

the subcell and point value reconstructions arise from the same polynomial. Using

a compact scheme prevents the direct formation of a reconstruction polynomial, so
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we aim for the similar goal of designing a scheme that uses the same ideal weights

for the subcell and point value reconstructions.

The remainder of this work is structured as follows. Chapter 2 describes the

design of a method intended to meet the goals stated in this section and Chapter

3 discusses the quality of the solutions to various test problems obtained with the

resulting method. That discussion will reveal a significant drawback to the scheme of

Chapter 2, which is described and investigated in Chapter 4. Chapter 5 summarizes

the project and avenues for future work.
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Chapter 2: A Central CRWENO Method

In this chapter we enumerate the properties desired for a method that achieves

the goals discussed in the introduction. These properties will lead to constraints on

the spatial reconstruction scheme, and geometric considerations will determine the

modifications required at boundaries. As central schemes have had success with

avoiding characteristic transformations [28] [29] [34] and avoid Riemann solvers by

construction, the development of the new method will use the framework of central

schemes. We will start by deriving the one-dimensional method, which will turn out

to be easily extended to multiple dimensions. Then we will conclude with numerical

analysis of the method.

2.1 Design Requirements

Figure 2.1 diagrams one time step of a central scheme, which computes cell

averages on the staggered grid at the next time step. Repeating the process produces

cell averages on the main grid. Three quantities need to be reconstructed:

1. Subcell averages from cell averages

2. Midpoint values from cell averages
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3. Derivatives from point values

A fully compact scheme would perform each of these reconstructions com-

pactly. Because each compact reconstruction involves calculation of the nonlinear

weights and solving a linear system, a central CRWENO method would appear to

require three such processes whereas the upwind CRWENO requires only one. Some

of this expense can be avoided, however, by designing the schemes to use the same

ideal weights. Since the smoothness indicators are calculated from the same solu-

tion for each reconstruction, if the ideal weights are also identical then so will be the

nonlinear weights which would only need to be calculated once. A one-parameter

family of such weight-linked schemes exists, for which the subschemes for the left

subcell averages are:

5

8
q̄Lj−1 +

3

8
q̄Lj =

1

64
q̄j−2 +

13

32
q̄j−1 +

5

64
q̄j

3

16
q̄Lj−1 +

5

8
q̄Lj +

3

16
q̄Lj+1 =

5

32
q̄j−1 +

5

16
q̄j +

1

32
q̄j+1

3

8
q̄Lj +

5

8
q̄Lj+1 =

19

64
q̄j +

7

32
q̄j+1 −

1

64
q̄j+2

(2.1)

and the subschemes for point values u are:

(1− s1)qj−1 + s1qj =
−1

24
q̄j−2 +

(
13

12
− s1

)
q̄j−1 +

(
−1

24
+ s1

)
q̄j(

9

80
+ s2

)
qj−1 +

(
31

40
− 2s2

)
qj +

(
9

80
+ s2

)
qj+1 =(

17

240
+ s2

)
q̄j−1 +

(
103

120
− 2s2

)
q̄j +

(
17

240
+ s2

)
q̄j+1

s1qj + (1− s1)qj+1 =

(
−1

24
+ s1

)
q̄j +

(
13

12
− s1

)
q̄j+1 +

−1

24
q̄j+2

(2.2)

where the parameters s1 and s2 are related by:

s2 =
s1

10
+

9

400
(2.3)
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Figure 2.1: Flowchart of one time step of a central scheme.
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Figure 2.2: Central CRWENO stencils for the left subcell reconstruction.
Solid rectangles indicate subcells.

S

S−1

S0

S1

j − 2 j − 1 j j + 1 j + 2

Figure 2.3: Central CRWENO stencils for the point value reconstruction.

Figure 2.2 shows the cells and subcells involved in each subscheme, and Figure

2.3 shows the cells and point values involved. Note that wherever a subscheme

involves a subcell average, the corresponding subscheme for the point value involves

the point value in the same cell and vice versa. S−1, S0, and S1 are the subschemes

that combine to form the high-order scheme S.

In both reconstructions the ideal weights are ω̄−1 = 1/12, ω̄0 = 5/6, ω̄1 = 1/12.

Though the overall scheme formed according to the ideal weights has O(∆x5) formal
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Figure 2.4: s1 = 0 causes the solution to the Sod problem to blow up.

accuracy regardless of s1, the choice of s1 greatly affects the quality of the results

when the solution is not smooth. For example, when s1 = 0 the method blows up

when applied to the Sod problem [35] as shown in Figure 2.4. If s1 ≥ 0.5, however,

the solution is stable but creates spurious oscillations after the contact discontinuity

shown in Figure 2.5.

The s1 = 0 variant fails so spectacularly because the WENO process selects

(i.e. assigns weights of O(1) to) only the first or only the third stencil of (2.2),

which do not involve qj at all when s1 = 0. The coefficient matrix in the system

for the point values therefore has a 2x2 block on the diagonal with entries that are

essentially zero. While the blocks associated with the regions to either side of the
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Figure 2.5: s1 = 0.6 eliminates the fatal instability but does not eliminate
all oscillations.
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discontinuity are still essentially decoupled, they are far from diagonally dominant.

When s1 ≥ 0.5, however, we see from (2.2) that the first and third stencils have

coefficients of qj that are greater than those of qj±1, which causes the blocks of

the coefficient matrix to be diagonally dominant near shocks. We note from (2.1)

that the first and third subschemes in the subcell-average reconstruction are not

diagonally dominant, which explains the presence of small oscillations after the

instability of Figure 2.4 is addressed by imposing diagonal dominance. Furthermore,

we observe that the high-frequency oscillations present in Figure 2.5 do not appear

when the problem is solved by CWENO4 which is a spatially explicit method i.e.

the coefficient matrix is the identity which is as diagonally dominant as a matrix can

be. Lastly, diagonal dominance guarantees that the coefficient matrix is invertible.

Therefore we require the designed scheme to be diagonally dominant for all possible

weight combinations. Equivalently, we require each individual subscheme to be

diagonally dominant in the sense that the coefficient of the unknown at cell j exceeds

the sum of absolute values of all other coefficients.

Because the coefficients of the reconstruction depend on the solution itself a

direct reconstruction of the staggered cell averages cannot be guaranteed to maintain

conservation. Instead, we reconstruct the half-averages over the left subcells

q̄Lj =
1

∆x

∫ xj

xj−1/2

u(x) dx (2.4)

and then compute the half-averages over right subcells by conservation as follows:

q̄Rj =
1

∆x

∫ xj+1/2

xj

u(x) dx = q̄j − q̄Lj (2.5)
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For convenience and to simplify the discussion of the multidimensional extension,

subcell average will refer to these integrals that are normalized by the cell volume,

which in one dimension would be more properly referred to as subcell half-averages.

In effect, we reconstruct the average over a whole cell of the solution multiplied

by the indicator function of the subcell. Consider a CRWENO scheme for the left

subcell: ∑
s,k

ωs(σ)Lskq̄
L
j+k =

∑
s,k

ωs(σ)Rskq̄j+k (2.6)

Here σ is the ordered set containing the union of all cell indices involved in the

subschemes in increasing order: σ = {j1, j2, · · · , jm}. There are two ways to obtain

the averages over right subcells. First, one may use the conservation approach in

which Eq. (2.5) is substituted into Eq. (2.6), giving the following scheme for the

right subcell: ∑
s,k

ωs(σ)Lsk(q̄j+k − q̄Rj+k) =
∑
sk

ωs(σ)Rskq̄j+k

−
∑
s,k

ωs(σ)Lskq̄
R
j+k =

∑
s,k

ωs(σ)(Rsk − Lsk)q̄j+k

∑
s,k

ωs(σ)Lskq̄
R
j+k =

∑
s,k

ωs(σ)(Lsk −Rsk)q̄j+k

(2.7)

Here s indexes the subschemes. Alternatively, one may simply reflect Eq. (2.6)

about the center of cell j to obtain:

∑
s,k

ωs(−σ)Ls,−kq̄
R
j+k =

∑
s,k

ωs(−σ)Rs,−kq̄j+k (2.8)

Where if σ = {j1, j2, · · · , jm} then −σ is the reflection of σ through the point j:

−σ = {j− jm, j− jm−1, · · · , j− j1}. Note the reversed order. For the subcell recon-

struction to be consistent, meaning that it does not matter whether one reconstructs
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the left subcell and obtains the right subcell by conservation or vice versa, we need

for Eq. (2.7) and Eq. (2.8) to be identical for all possible values of the nonlinear

weights ωs. We may write the nonlinear weights ωs in terms of the corresponding

ideal weights ω̄s and functions fs(σ) that depend only on the solution q̄j, j ∈ σ.

ωs(σ) =
ω̄sfs(σ)∑
r ω̄rfr(σ)

, ωs(−σ) =
ω̄sfs(−σ)∑
r ω̄rfr(−σ)

(2.9)

We then obtain a condition on the left-hand side coefficients of the subschemes:∑
s

ωs(σ)Lsk =
∑
s

ωs(−σ)Ls,−k

∑
s

ω̄sfs(σ)∑
r ω̄rfr(σ)

Lsk =
∑
s

ω̄sfs(−σ)∑
r ω̄rfr(−σ)

Ls,−k

(2.10)

The function fs(σ) measures the smoothness in the stencil of subscheme s, and

therefore must have the property that its value is unchanged after reflecting the

stencil σ and interchanging the subscheme index: fs(−σ) = f−s(σ). From this fact

we can simplify Eq. (2.10):

∑
s

ω̄sfs(σ)∑
r ω̄rfr(σ)

Lsk =
∑
s

ω̄sf−s(σ)∑
r ω̄rf−r(σ)

Ls,−k (2.11)

Re-indexing the sums on the right-hand side:

∑
s

ω̄sfs(σ)∑
r ω̄rfr(σ)

Lsk =
∑
s

ω̄−sfs(σ)∑
r ω̄−rfr(σ)

L−s,−k (2.12)

For Eq. (2.12) to hold regardless of the values of fs(σ) requires ω̄s = ω̄−s and Lsk =

L−s,−k for all s and k. That is, the ideal weights must be symmetric and the array

of left-hand side coefficients must be rotationally symmetric. As a consequence, we

have for the combined scheme:

∑
s

ω̄sLsk =
∑
s

ω̄−sL−s,−k =
∑
s

ω̄sLs,−k (2.13)
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after reindexing the sum. Therefore the left-hand side of the combined scheme must

also be symmetric. From a numerical perspective it is beneficial to scale the rows so

that they have equal sums so we also require the normalization condition
∑

k Lsk = 1

for each s.

The equivalence of Eq. (2.7) and Eq. (2.8) also implies a condition on the

right-hand side coefficients:∑
s

ωs(−σ)Rs,−k =
∑
s

ωs(σ)(Lsk −Rsk)

∑
s

ω̄sfs(−σ)∑
r ω̄rfr(−σ)

Rs,−k =
∑
s

ω̄sfs(σ)∑
r ω̄rfr(σ)

(Lsk −Rsk)

∑
s

ω̄−sfs(σ)∑
r ω̄−rfr(σ)

R−s,−k =
∑
s

ω̄sfs(σ)∑
r ω̄rfr(σ)

(Lsk −Rsk)

(2.14)

We already know that ω̄s = ω̄−s, so:

∑
s

ω̄sfs(σ)∑
r ω̄rfr(σ)

R−s,−k =
∑
s

ω̄sfs(σ)∑
r ω̄rfr(σ)

(Lsk −Rsk) (2.15)

which implies the condition:

R−s,−k +Rsk = Lsk (2.16)

The ideal weights ω̄s depend on the truncation error expansions of the subschemes

and may be negative, so that the resulting combination of subschemes is not a

convex combination. This loss of convexity can cause instability so it is desirable

to have subschemes with positive ideal weights. If negative weights are unavoid-

able, the splitting procedure of [36] can be applied to obtain a stable method, but

that procedure involves performing two sets of reconstructions with different ideal

weights. Because the compact reconstructions can be expensive we prefer to mini-

mize the number that need to be performed, so we will aim for positive ideal weights
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that sum to 1. We can arrange to solve even fewer linear systems if, in addition to

matching the ideal weights for the subcell and point value reconstructions, the LHS

coefficients of the individual subschemes can also be matched. This would cause

the coefficient matrices for the two reconstructions to be identical, with only the

RHS differing to produce the reconstructed subcell averages and point values. As a

result, instead of forming and solving two different coefficient matrices with different

right-hand sides, we assemble only one system and apply it to the two right-hand

sides.

To summarize, the conditions for the central CRWENO scheme are:

1. The subcell and point value subschemes must use the same ideal weights.

2. The ideal weights must be symmetric.

3. The ideal weights must be positive and sum to 1.

4. The left-hand side of each subscheme must be diagonally dominant.

5. The left-hand side coefficients of each subscheme for the point value must

match those of the corresponding subscheme for the subcell average.

6. The left-hand side coefficients must satisfy Lsk = L−s,−k.

7. The left-hand side coefficients must sum to 1.

8. The entire method must be at least fifth-order accurate (in order to be com-

petitive with CRWENO).
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2.2 Spatial Reconstructions

The foregoing discussion has not imposed any constraints on the number of

subschemes or their stencils except that the stencil for subscheme −s must be the

reflection of that of subscheme s. In the following derivation of the central CRWENO

(CCRWENO) method we will derive a three-subscheme method that uses the same

stencils as the classical fifth-order WENO method of [15]. First, we constrain the

left-hand side (LHS) coefficients and then use the results to constrain the right-hand

side (RHS) coefficients.

2.2.1 LHS Coefficients

Let Lsk be the array of LHS coefficients of the subschemes s = −1, 0, 1:

Lsk =


L−1,−1 L−1,0 L−1,1

L0,−1 L0,0 L0,1

L1,−1 L1,0 L1,1

 (2.17)

To avoid the Gibbs phenomenon at discontinuities we need the coefficient matrix

to automatically decouple at discontinuities, which means that no subscheme can

involve a cell on its LHS that does not appear in the RHS stencil. Since the RHS for

subscheme s = −1 does not include cell j + 1 and the RHS for subscheme for s = 1

does not include cell j − 1, we must have L−1,1 = L1,−1 = 0. In conjunction with

the rotational symmetry constraint Lsk = L−s,−k and the normalization
∑

k Lsk = 1
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this condition implies that Lsk must take the form:

Lsk =


1−d1

2
1+d1

2
0

1−d0
4

1+d0
2

1−d0
4

0 1+d1
2

1−d1
2

 (2.18)

for some parameters d1, d0. Diagonal dominance is achieved whenever d1 > 0 and

d0 > 0.

2.2.2 RHS Coefficients

Let the RHS coefficients for the subcell-average subschemes be given by:

RSA
sk =


R−1,−2 R−1,−1 R−1,0 0 0

0 R0,−1 R0,0 R0,1 0

0 0 R1,0 R1,1 R1,2

 (2.19)

The second subcell equivalence condition Eq. (2.16) implies that RSA must have

the form:

RSA
sk =


−R1,2

1−d1
2
−R1,1

1+d1
2
−R1,0 0 0

0 1−d0
4
−R0,1

1+d0
4

R0,1 0

0 0 R1,0 R1,1 R1,2

 (2.20)

The free parameters Rsk can be expressed in terms of the diagonal excesses d0, d1

by requiring each subscheme to be at least third-order accurate, which gives:

RSA =


−d1
16

3−d1
8

3d1+2
16

0 0

0 3−2d0
16

1+d0
4

1−2d0
16

0

0 0 6+5d1
16

1−3d1
8

d1
16

 (2.21)
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Because the ideal weights are symmetric and sum to 1, we have that ω̄−1 = ω̄1 =

(1 − ω̄0)/2. The truncation error coefficients of the combined scheme in terms of

ω̄0, d0, d1 are shown in Table 2.1

Table 2.1: Truncation error coefficients of the subcell reconstruction.

Power ∆x3 ∆x4 ∆x5 ∆x6

Coefficient 3ω̄0

16
(d0 + d1)− 3

16

(
d1 + 1

4

)
0 5ω̄0

64
(5d0 + 23d1)− 5

64
(23d1 + 2) 0

A similar analysis provides the RHS coefficients for third-order subschemes for

the point value:

RPV =


−1
24

7−6d1
12

11+12d1
24

0 0

0 5−6d0
24

7+6d0
12

5−6d0
24

0

0 0 11+12d1
24

7−6d1
12

−1
24

 (2.22)

Table 2.2 shows the truncation error coefficients for the combined point-value re-

construction:

Table 2.2: Truncation error coefficients of the point value reconstruction.

Power ∆x3 ∆x4 ∆x5 ∆x6

Coefficient 0 ω̄0

4
(d0 − d1 − 2) + d1

4
+ 29

80
0 ω̄0

32
(23d0 − 23d1 − 100) + 23d1

32
+ 73

28

To attain the desired fifth-order accuracy we need to choose ω̄0, d0, d1 to cancel

at least the ∆x3 error term in the subcell reconstruction:

ω̄0(d0 + d1) = d1 +
1

4
(2.23)
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and the ∆x4 term in the point value reconstruction:

ω̄0(2− d0 + d1) = d1 +
29

20
(2.24)

The system Eqs. (2.23)-(2.24) has the solution:

d0 =
5 + 8d1

17 + 20d1

, ω̄0 =
d1 + 1

4

d1 + d0

(2.25)

d1 is a free parameter. We can see that d0 ≥ 1/4 when d1 ≥ 0 which then implies that

the ideal weight ω̄0 < 1, therefore implying that the ideal weights are all positive.

Substituting Eq. (2.25) into the ∆x6 truncation error coefficient for the point value

reconstruction (from Table 2.2) gives

T PV6 =
9

4480

(
65− 61d1

1 + d1

)
(2.26)

So the point value reconstruction is sixth-order accurate except when d1 = 65
61

when

it becomes eighth-order accurate. On the other hand, substituting Eq. (2.25) into

the ∆x5 truncation error coefficient for the subcell reconstruction (from Table 2.1)

gives

T SA5 =
−3

256

(
5 + 23d1

1 + d1

)
(2.27)

which unfortunately does not vanish for any positive value of d1 so the subcell

reconstruction will always be fifth-order accurate. So the subschemes for the subcell

and point value reconstructions are:

d0 =
5 + 8d1

17 + 20d1

(2.28)

ω̄−1 =
1− ω̄0

2
, ω̄0 =

d1 + 1
4

d1 + d0

, ω̄1 =
1− ω̄0

2
(2.29)
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1− d1

2
q̄Lj−1 +

1 + d1

2
q̄Lj =

−d1

16
q̄j−2 +

3− d1

8
q̄j−1 +

3d1 + 2

16
q̄j

1− d0

4
q̄Lj−1 +

1 + d0

2
q̄Lj +

1− d0

4
q̄Lj+1 =

3− 2d0

16
q̄j−1 +

1 + d0

4
q̄j +

1− 2d0

16
q̄j+1

1 + d1

2
q̄Lj +

1− d1

2
q̄Lj+1 =

5d1 + 6

16
q̄j +

1− 3d1

8
q̄j+1 +

d1

16
q̄j+2

(2.30)

1− d1

2
qj−1 +

1 + d1

2
qj =

−1

24
q̄j−2 +

7− 6d1

12
q̄j−1 +

11 + 12d1

24
q̄j

1− d0

4
qj−1 +

1 + d0

2
qj +

1− d0

4
qj+1 =

5− 6d0

24
q̄j−1 +

7 + 6d0

12
q̄j +

5− 6d0

24
q̄j+1

1 + d1

2
qj +

1− d1

2
qj+1 =

11 + 12d1

24
q̄j +

7− 6d1

12
q̄j+1 +

−1

24
q̄j+2

(2.31)

2.2.3 Derivative Reconstruction

The third spatial reconstruction is that of the flux derivatives from the values

of the fluxes evaluated at cell midpoints. Suppose the reconstruction is given by

∑
s,k

ωs(σ)Lskq
′
j+k =

∑
s,k

ωs(σ)Rskqj+k (2.32)

Reflecting the scheme about point j should produce the same derivative but with

opposite sign: ∑
s,k

ωs(−σ)Ls,−kq
′
j+k = −

∑
s,k

ωs(−σ)Rs,−kqj+k (2.33)

Therefore the weights and coefficients must satisfy:

∑
s

ωs(σ)Lsk =
∑
s

ωs(−σ)Ls,−k (2.34)

∑
s

ωs(σ)Rsk = −
∑
s

ωs(−σ)Rs,−k (2.35)
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As before, expressing the nonlinear weights in terms of the ideal weights ω̄s and

smoothness functions fs(σ) allows us to write the conditions Eq. (2.34) as:

∑
s

ω̄sfs(σ)∑
r ω̄rfr(σ)

Lsk =
∑
s

ω̄sf−s(σ)∑
r ω̄rf−r(σ)

Ls,−k

=
∑
s

ω̄−sfs(σ)∑
r ω̄−rfr(σ)

L−s,−k

(2.36)

and Eq. (2.35) as:

∑
s

ω̄sfs(σ)∑
r ω̄rfr(σ)

Rsk = −
∑
s

ω̄sf−s(σ)∑
r ω̄rf−r(σ)

Rs,−k

= −
∑
s

ω̄−sfs(σ)∑
r ω̄−rfr(σ)

R−s,−k

(2.37)

We then have the same symmetry condition on the weights:

ω̄s = ω̄−s (2.38)

and on the LHS coefficients:

Lsk = L−s,−k (2.39)

and a different condition on the RHS coefficients:

Rsk = −R−s,−k (2.40)

The locations of the nonzero entries in Lsk must remain the same to ensure proper

decoupling at discontinuities, so the form of Lsk is unchanged but the diagonal

excesses c0, c1 may differ from those in the subcell and point value reconstructions:

LFD =


1−c1

2
1+c1

2
0

1−c0
4

1+c0
2

1−c0
4

0 1+c1
2

1−c1
2

 (2.41)
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The RHS coefficients of the subschemes with these LHS coefficients and maximum

order of accuracy are:

RFD =


d1
2
−1− d1 1 + d1

2
0 0

0 −1
2

0 1
2

0

0 0 −1− d1
2

1 + d1 −d1
2

 (2.42)

Table 2.3 shows the leading terms in the truncation error expansion.

Table 2.3: Truncation error coefficients of the derivative reconstruction.

Power ∆x2 ∆x3 ∆x4 ∆x5

Coefficient 1
2
− 3

2
ω̄0d0 − 3

2
ω̄0d1 + 3d1

2
0 3

2
− 5

2
ω̄0d0 − 25

2
ω̄0d1 + 25

2
d1 0

To cancel the second- and fourth-order error terms requires ω̄0d0 = 4
15

which

then implies:

1

15
= d1(ω̄0 − 1) > 0 (2.43)

However, diagonal dominance requires d1 > 0 and positive weights require ω̄0 < 1,

which together are incompatible with Eq. (2.43). The derivative reconstruction will

therefore have to be fourth order at best. A fourth-order compact reconstruction

would need to outperform the fourth-order non-compact scheme obtained by setting

d1 = d0 = 1 and choosing ω̄0 = 2
3

to cancel the second-order error term, which is

given by:

ω̄−1 =
1

3
, ω̄0 =

2

3
, ω̄1 =

1

3
(2.44)
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q′j =
1

2
qj−2 − 2qj−1 +

3

2
qj

q′j = −1

2
qj−1 +

1

2
qj+1

q′j = −3

2
qj + 2qj+1 −

1

2
qj+2

(2.45)

Either reconstruction would be performed four times per time step during the

Runge-Kutta process, magnifying the cost of solving the systems arising from a

compact reconstruction. In practice, the difference in accuracy between compact

and non-compact derivative reconstructions is minimal whereas the former requires

substantially more time. Therefore we will use the non-compact reconstruction Eqs.

(2.44)-(2.45) for the flux derivatives.

2.3 Boundary Treatment

If the array of LHS coefficients Ls,k 6= 0 when k 6= 0, however, then at bound-

aries the scheme would call for subcells to be placed outside the boundaries. Rather

than prescribe values for such subcells, we alter the LHS stencil at the boundaries

to involve only subcells inside the domain. The symmetry condition Lsk = L−s,−k

must apply at every cell so that the subcell reconstruction will be consistent, how-

ever, and implies that for the stencil to not protrude past the boundary it must also

not extend into the interior; it can contain only the cell immediately adjacent to

the boundary. Therefore the boundary subschemes must all be non-compact. These

schemes can be found easily by setting the diagonal excess parameters d0 = d1 = 1

which prevents the error cancellation conditions Eq. (2.23) and Eq. (2.24) from

holding simultaneously. Canceling the O(∆x4) error term in the point value recon-
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struction by satisfying Eq. (2.24) would lead to negative ideal weights, and more

importantly would degenerate the subcell reconstruction from fifth to third order.

Therefore we satisfy Eq. (2.23) at the cost of fourth-order accuracy in the point value

reconstruction at boundaries. These considerations lead to the following boundary

scheme:

ω̄−1 =
3

16
, ω̄0 =

5

8
, ω̄1 =

3

16
(2.46)

q̄Lj =
−1

16
q̄j−2 +

1

4
q̄j−1 +

5

16
q̄j

q̄Lj =
1

16
q̄j−1 +

1

2
q̄j −

1

16
q̄j+1

q̄Lj =
11

16
q̄j −

1

4
q̄j+1 +

1

16
q̄j+2

(2.47)

qj =
−1

24
q̄j−2 +

1

12
q̄j−1 +

23

24
q̄j

qj =
−1

24
q̄j−1 +

13

12
q̄j +

−1

24
q̄j+1

qj =
23

24
q̄j +

1

12
q̄j+1 +

−1

24
q̄j+2

(2.48)

The derivative reconstruction is already non-compact and does not need to be mod-

ified for boundary cells.

2.4 Multidimensional Extension

The staggered-grid framework extends straightforwardly to arbitrarily many

space dimensions, with the staggered cells being centered at the vertices of the main

cells as in Fig. 2.6 for the two-dimensional case.

The multidimensional analog of Eq. (1.20) describing the evolution of cell

averages is:

q̄n+1
~j+1/2

= q̄n~j+1/2
− 1

|Ω~j+1/2|

∫ tn+1

tn

∫
∂Ω~j+1/2

fdnd dS (2.49)
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Main grid

Staggered grid

Figure 2.6: Staggering in each dimension produces a grid whose cells are
centered on the vertices of the main grid.

where Ωj+1/2 is the cell centered at point xj+1/2, |Ωj+1/2| is its volume, nd is the

dth component of the unit normal vector to the boundary ∂Ωj+1/2, and fd is the

physical flux function in the dth dimension. Here ~j is a multi-index. The pro-

cedure of obtaining the initial staggered average q̄nj+1/2 by reconstructing averages

over subcells then evolving point values to obtain the time-integrated fluxes does

not change; however, the multidimensional case alters the nature of the quantities

being reconstructed in ways that would appear to greatly complicate the method.

First, the subcells are orthants of their respective cells which would appear to ne-

cessitate construction of 2D− 1 different subschemes for all the subcell averages not

computed by conservation. Second, the point values of interest are those located at

the cell centers. Finally, the boundary integral in Eq. (2.49) requires quadrature of

surface integrals, as opposed to straightforward evaluation at a point. All of these

challenges, however, can be easily addressed by considering tensor products of the
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one-dimensional schemes which we now describe.

A multi-index notation will simplify the coming discussion. For theD-dimensional

case, an arrow above a symbol denotes an ordered tuple of D elements. Then we

define:

Table 2.4: Notation conventions for multidimensional schemes.

Object or operation Multi-index Equivalent
notation

Tuple ~i (i1, i2, · · · , iD)
Tuple of identical numerical constants c ~c (c, c, · · · , c)

Coordinate tuple in direction d ~ed (δ1d, δ2d, · · · , δDd)
Tuple subscript of sequence φn φ~i (φi1 , φi2 , · · · , φiD)

Tuple subscript of array B B~i Bi1,i2,··· ,iD
Generic binary operation * on tuples ~u ∗ ~v (u1 ∗ v1, u2 ∗ v2, · · · , uD ∗ vD)

Scalar multiplication a~u (au1, au2, · · · , auD)
Product of tuple elements Π~u u1u2 · · ·uD

Tuple interval [~a,~b] [a1, b1]× [a2, b2]× · · · × [aD, bD]
Tuple differential d~z dzDdzD−1 · · · dz2dz1

Integral with vector bounds
∫ ~b
~a
Qd~z

∫ b1
a1
· · ·
∫ bD
aD
QdzD · · · dz1

2.4.1 Tensor Product Extensions

Consider a D-dimensional region Ω = [a0, b0] × [a1, b1] · · · × [aD−1, bD−1] and

let ~∆x = (∆x0,∆x1, · · · ,∆xD−1) be a tuple of cell widths in each dimension. The

integral (normalized by the cell volume Π ~∆x) of an integrable function u over Ω can

be written as an iterated integral:

1

Π ~∆x

∫
Ω

u(x) dx =
1

∆x0

∫ b0

a0

(
1

∆x1

∫ b1

a1

(
· · ·

(
1

∆xD−1

∫ bD−1

aD−1

u dxD−1

)
· · ·

)
dx2

)
dx1

(2.50)
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Therefore averaging over rectangular Ω is equivalent to taking successive averages

over each coordinate direction within the cell, each of which is a one-dimensional

process. Suppose ΩL
~j

is the subcell of cell ~j given by [x~j−1/2, x~j] and that we have a

one-dimensional subcell reconstruction scheme given by:

∑
k

Lkq̄
L
j+k =

∑
k

Rkq̄j+k +O(∆xp) (2.51)

Then we may rewrite the outermost integral in Eq. (2.50) using the reconstruction

Eq. (2.51):

∑
k0

Lk0
1

Π ~∆x

∫
ΩL
~j+k0~e0

=
∑
k0

Lk0
1

∆x0

∫ xj0+k0

xj0−1/2+k0

(
1

∆x1

∫ xj1

xj1−1/2

(· · · ) dx1

)
dx0

=
∑
k0

Rk0

1

∆x0

∫ xj0+1/2+k0

xj0−1/2+k0

(
1

∆x1

∫ xj1

xj1−1/2

(· · · ) dx1

)
dx0 +O(∆xp0)

(2.52)

Then we may apply the reconstruction to Eq. (2.52) along the x1 direction:

∑
k1

Lk1

∑
k0

Lk0
1

Π ~∆x

∫
ΩL
~j+k0~e0+k1~e1

 =

∑
k1

Lk1

(∑
k0

Rk0

1

∆x0

∫ xj0+1/2+k0

xj0−1/2+k0

(
1

∆x1

∫ xj1+k1

xj1−1/2+k1

(· · · ) dx1

)
dx0 +O(∆xp0)

)

=
∑
k0,k1

Rk1Rk0

(
1

∆x0

∫ xj0+1/2+k0

xj0−1/2+k0

1

∆x1

∫ xj1+1/2+k1

xj1−1/2+k1

(
1

∆x2

∫ xj2+k2

xj2−1/2+k2

(· · · ) dx2

)
dx1

)
dx0

+O(∆xp0) +O(∆xp1)

(2.53)

Repeating this process for each dimension eventually produces the complete tensor-

product extension:

∑
~k

(
ΠL~k

)
q̄L~j+~k =

∑
~k

(
ΠR~k

)
q̄~j+~k +O(∆xp0) + · · ·+O(∆xpD−1) (2.54)
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Note that the order of accuracy is unchanged. Eq. (2.54) defines the average for

the subcell that occupies the left half along each dimension of the full cell which

contains it. The averages for other subcells can be obtained by replacing Eq. (2.51)

with its one-dimensional equivalent for the right subcell at the appropriate steps of

the process Eqs. (2.52)-(2.54) producing the general tensor-product extension:

∑
~k

(
Lα0
k0
Lα1
k1
· · ·LαD−1

kD−1

)
q̄α~j+~k =

∑
~k

(
Rα0
k0
Rα1
k1
· · ·RαD−1

kD−1

)
q̄~j+~k+O(∆xp0)+· · ·+O(∆xpD−1)

(2.55)

where α is a multi-index identifying the orthant occupied by the subcell in question

and the superscripts on L and R indicate whether the coefficient comes from the left-

or right-subcell scheme. Note that unlike in the one-dimensional case, in multiple

dimensions the right-subcell scheme is actually used because more than one subcell

average must be computed before obtaining the last one by conservation.

The point value may be considered as the limiting case of a function average as

the averaging region shrinks to the cell center, therefore the same argument leads to

a tensor-product extension of the point value scheme. If the one-dimensional point

value scheme is given by:

∑
k

LPVk qj+k =
∑
k

RPV
k q̄j+k +O(∆xp) (2.56)

then the tensor-product extension is:

∑
~k

(ΠL~k)q~j+~k =
∑
~k

(ΠR~k)q̄~j+~k +O(∆xp0) + · · ·+O(∆xpD−1) (2.57)

The foregoing discussion applies directly to tensor-product extensions of sub-

schemes of WENO-type schemes and to tensor-product extensions of the combined
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schemes with ideal weights. Let csk be the array of (left- or right-hand side) co-

efficients of the one-dimensional subschemes and Ck the coefficients of the one-

dimensional combined scheme. Then the coefficients of the multidimensional exten-

sion of the combined scheme are:

∑
~k

(
ΠC~k

)
=
∑
~k

D∏
d=1

(∑
sd

ω̄sdcsd,kd

)

=
∑
~k

∑
~s

D∏
d=1

ω̄sdcsd,kd

=
∑
~s

(
D∏
d=1

ω̄sd

)∑
~k

(
D∏
d=1

csd,kd

) (2.58)

The product in the sum over offsets ~k is the coefficient array of the tensor-product

extension of the subschemes given by the multi-index ~s, and therefore the multi-

dimensional ideal weight corresponding to that combination of subschemes must

be:

ω̄~s =
D∏
d=1

ω̄sd (2.59)

Figure 2.7 shows an example of this construction in two dimensions. A one-

dimensional subscheme for the left subcell in the x direction (index r, shown in

red) is combined with another one-dimensional subscheme for the left subcell in the

y direction (index s, shown in blue) to produce a two-dimensional subscheme for

the subcell in the lower left quadrant. For clarity we show only the left-hand side

coefficients, but the same process applies to the right-hand side coefficients.

Figure 2.8 shows the relationship between the main and staggered grids in the

two-dimensional case.
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x:
∑
m

Lrmq̄
L
i+m =

∑
m

Rr
mq̄i+m

y:
∑
n

Lsnq̄
L
j+n =

∑
n

Rs
nq̄j+n

∑
m,n

LrmL
s
nq̄

LL
i+m,j+n =

∑
m,n

Rr
mR

s
nq̄i+m,j+n

i− 1

j − 1 Lr−1L
s
−1

Lr−1L
s
0

Lr−1L
s
1

i

j

Lr0L
s
−1

Lr0L
s
0

Lr0L
s
1

i+ 1

j + 1

Lr1L
s
−1

Lr1L
s
0

Lr1L
s
1

ω̄r,s = ω̄rω̄s

Figure 2.7: A subscheme (red) in the x direction is combined with a
subscheme (blue) in the y direction to produce a two-dimensional sub-
scheme.

t

Staggered grid at tn+1

Main grid at tn

Temporal quadrature nodes

Spatial quadrature nodes

Figure 2.8: Evolution from main to staggered grids in two dimensions.
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2.4.2 Surface Integral Quadrature

In multiple dimensions the flux integrals become surface integrals which must

be approximated. In two dimensions, for example Eq. (2.49) becomes:

q̄n+1
i+1/2,j+1/2 = q̄ni+1/2,j+1/2

− 1

∆x∆y

∫ tn+1

tn

(∫ xi+1

xi

f1(u(x, yj+1))− f1(u(x, yj)) dx

)
dt

− 1

∆x∆y

∫ tn+1

tn

(∫ yj+1

yj

f0(u(xi+1, y))− f0(u(xi, y)) dy

)
dt

(2.60)

Though it is possible to evaluate these integrals by a WENO-like process of com-

bining candidate values depending on local smoothness, as in [30] we find that it is

enough to approximate them by a simple quadrature rule which for the face shown

in green in Fig. 2.6 involves the points shown there in red:

1

∆x

∫ xi+1

xi

u(x) dx =
−1

12
ui−1 +

13

12
ui +

13

12
ui+1 −

1

12
ui+2 +O(∆x4) (2.61)

The desired fifth-order spatial accuracy of the overall method requires, however,

that a more accurate quadrature be used such as the sixth-order rule:

1

∆x

∫ xi+1

xi

u(x) dx =
11

1440
ui−2−

31

480
ui−1+

401

720
ui+

401

720
ui+1−

31

480
ui+2+

11

1440
ui+3+O(∆x6)

(2.62)

In either case, the integral is approximated by a linear combination of values of the

integrand at midpoints, which will be computed by a Runge-Kutta method with

its natural continuous extension as in the one-dimensional case. In implementation

it is convenient to exchange the order of integration in (2.60), calculating first the

time integrals of the fluxes at each cell center and then using Eq. (2.62) to ap-

proximate the spatial integrals. If more than two dimensions are involved, then the
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surface integrals themselves are multidimensional and can be approximated by the

tensor-product extension of a one-dimensional rule. That is, if the one-dimensional

approximation is given by:

1

∆x

∫ xj+1

xj

q(x) dx =
∑
k

ckqj+k +O(∆xp) (2.63)

then the integral over the surface Sd = [xj0 , xj0 + ∆x0] × [xj1 , xj1 + ∆x1] × · · · ×

xjd × · · · × [xjD−1
, xjD−1

+ ∆xD−1] (i.e. a surface normal to the xd direction) is

approximated by:

∆xd

Π ~∆x

∫
Sd

q ds =
∑
~k,kd=0

Πs 6=dcksq~j+~k (2.64)

2.4.3 Smoothness Indicators

Jiang and Shu [15] define the one-dimensional indicator as a sum of scaled

L2 norms of derivatives of the reconstruction polynomial P̃ (x) over the cell [x∗ −

∆x/2, x∗ + ∆x/2] common to all stencils:

β =

∫ x∗+∆x/2

x∗−∆x/2

rd∑
r=1

1

∆x

(
∆xr

drP̃

dxr

)2

dx (2.65)

Here rd is the number of derivatives used (usually rd = 2). We generalize this

definition to higher dimensions by considering derivatives of the multidimensional

reconstruction polynomial P (~x) for the cell centered at ~x∗ in each of the coordinate

directions:

β =

∫ ~x∗+ ~∆x/2

~x∗− ~∆x/2

D∑
d=1

rd∑
r=1

1

Π ~∆x

(
∆xrd

∂rP̃

∂xrd

)2

d~x (2.66)
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Note that Π ~∆x = ∆x1∆x2 · · ·∆xD is the volume of a cell. Define the array B of

coefficients of P̃ (~x) according to:

P̃ (~x) =
∑

{~i|0≤is≤rs}

B~iΠ

(
~x− ~x∗
~∆x

)~i
1

~i!
(2.67)

Define the nondimensional displacement ~z by:

~z =
~x− ~x∗
~∆x

(2.68)

Then the reconstruction polynomial becomes:

P (~z) =
∑

{~i|0≤is≤rs}

B~iΠ
(
~z
~i
) 1

~i!
(2.69)

and the definition of the indicator becomes:

β =

∫ ~1/2

−~1/2

D∑
d=1

rd∑
r=1

(
∂rP

∂zrd

)2

d~z (2.70)

The necessary derivatives of P can be found from (2.69):

∂P

∂zd
=

∑
0≤is≤rs

B~iidΠ
(
~z
~i−~ed

) 1

~i!
(2.71)

where the sum runs over all D-tuples (i1, i2, · · · , iD) such that 0 ≤ is ≤ rs for each

s = 1, 2, · · · , D. Since the summand with id = 0 vanishes, we may skip that term

in the sum to avoid unneeded computations:

∂P

∂zd
=

∑
δsd≤is≤rs

B~iΠ

(
~z
~i−~ed

(~i− ~ed)!

)
(2.72)

where δsd is the Kronecker delta. A similar equation holds for the rth derivative:

∂rP

∂zrd
=

∑
rδsd≤is≤rs

B~iΠ

(
~z
~i−r~ed

(~i− r~ed)!

)
(2.73)
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β =
D∑
d=1

rd∑
r=1

∫ ~1/2

~−1/2

( ∑
rδsd≤is≤rs

B~iΠ

(
~z
~i−r~ed

(~i− r~ed)!

))2

d~z (2.74)

Rather than reduce this definition to a formula giving the indicator directly from

cell averages, we evaluate it by Gaussian quadrature. This approach is more general

and circumvents the need to store such formulas once they are computed. Denote

the one-dimensional Gaussian quadrature nodes in [−1/2, 1/2] by ξq with weights

wq, for q = 0, 1, ..., Q. Then converting the integrals in (2.74) gives:

β =
∑

~0≤~q≤ ~Q

Πw~q

D∑
d=1

rd∑
r=1

( ∑
rδsd≤is≤rs

B~iΠ

(
ξ
~i−r~ed
~q

(~i− r~ed)!

))2

(2.75)

Written in more traditional notation:

β =
∑

~0≤~q≤ ~Q

(
D∏
j=1

wqj

)
D∑
d=1

rd∑
r=1

 ∑
~i,

rδsd≤is≤rs

B~i

D∏
j=1

(
ξ
ij−rδjd
qj

(ij − rδjd)!

)
2

(2.76)

To complete the calculation of β we need to obtain the coefficients B~i from the cell

averages. The reconstruction polynomial is defined by requiring that it match the

cell averages on neighboring cells ~j:

ū~j =

∫ ~1/2+~j

−~1/2+~j

∑
~0≤~i≤~rs

B~i

~z
~i

~i!
d~z

=
∑

~0≤~i≤~rs

B~i

D∏
d=1

(∫ 1/2+jd

−1/2+jd

zidd
id!

dzd

)

=
∑

~0≤~i≤~rs

B~i

D∏
d=1

(
(jd + 1/2)id+1 − (jd − 1/2)id+1

(id + 1)!

)

=
∑

~0≤~i≤~rs

B~i

D∏
d=1

V
(d)
jd,id

(2.77)

Each V (d) is a matrix that produces the average over the interval from (0, · · · , 0, jd−

1/2, 0, · · · , 0) to (0, · · · , 0, jd+1/2, 0, · · · , 0) from the coefficient array B. Therefore
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the entries of B can be recovered using the inverses of the V (d):

Bi1,··· ,iD =
∑

(j1,··· ,jD),js∈Js

ūj1,··· ,jD

D∏
d=1

[(
V (d)

)−1
]
id,jd

(2.78)

The matrices
(
V (d)

)−1
can be precomputed and depend only on the set of cells over

which P (~z) is defined.

2.5 Numerical Analysis

The CCRWENO method consists of four processes:

1. Reconstruction of subcell averages from cell averages

2. Reconstruction of point values from cell averages

3. Reconstruction of flux derivatives from flux point values

4. Time advancement

Heuristically, one expects that the CCRWENO method would become unstable

if any of these steps is individually unstable in some appropriate sense. We will

consider the subcell and point value reconstructions individually and require that

when the input is a single Fourier mode the output is a Fourier mode of lesser or

equal amplitude. This analysis will also suggest values for the diagonal dominance

parameter d1.

2.5.1 Subcell Reconstruction

Let Lk, Rk be respectively the left- and right-hand side coefficients for cell j+k

of the combined scheme using the ideal weights. The amplitude condition is (see
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Appendix A): ∣∣∣∣∑k Rke
ikθ∑

k Lke
ikθ

2 sin(kθ/2)

1− e−ikθ/2

∣∣∣∣ ≤ 1 (2.79)

for all 0 ≤ θ ≤ π where θ = m∆x is the wavenumber m normalized by the grid

spacing. After some simplifications Eq. (2.79) becomes

G(d1, θ) =

∣∣∣∣∑k Rke
ikθ∑

k Lke
ikθ

2 sin(kθ/2)

1− e−ikθ/2

∣∣∣∣ ≤ 1 (2.80)

Note that the coefficients depend on d0, d1, and ω̄0 the first and third of which

depend on d1 due to the accuracy constraint and the compatibility with the point

value reconstruction Eq. (2.25). Thus the amplification factor G depends on the

diagonal dominance parameter d1 and the normalized wavenumber θ. Figure 2.9

shows the G as a function of those two parameters.

We see that not only is the amplification factor less than unity for all wavenum-

bers and all d1 ∈ [0, 2], but that G(d1, θ) becomes less sensitive to d1 as d1 increases.

In practice, at the higher wavenumbers θ > π/2 the nonlinear effects of the WENO

weight adaptation intervene to stabilize the reconstruction so the variation of the

amplification factor in that region is less relevant.

2.5.2 Point Value Reconstruction

Let Lk, Rk be respectively the left- and right-hand side coefficients for cell j+k

of the combined scheme using the ideal weights. The amplitude condition is (see

Appendix A):

G(d1, θ) =

∣∣∣∣∑k Rke
ikθ∑

k Lke
ikθ

2 sin(kθ/2)

kθ

∣∣∣∣ ≤ 1 (2.81)
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Figure 2.9: The subcell reconstruction is stable for all d1 ≥ 0 and de-
pends weakly on d1.
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Figure 2.10: The point value reconstruction is unstable for d1 < 65/61.

Figure 2.10 shows the amplification factor as a function of d1 and θ. Also

shown is the level curve |G| = 1, which divides the region of instability on the lower

left from the region of stability. We see, therefore, that the critical value of d1 is

the value where this level curve intersects θ = 0. Numerical evidence supports the

conjecture that this intersection occurs at the circled point where d1 = 65/61 which

also gives the 8th-order point-value reconstruction. The instability in the region

0.6 < d1 < 1 is so mild that in some cases it may be unnoticeable. Experimentally,

using d1 = 1.3 gives stable results for all the test cases that will be considered in

Chapter 3.
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2.5.3 Conditioning of the System

Let ci, i = −1, 0, 1 be the left-hand side coefficients of the combined scheme

Eqs. (2.30)-(2.31) using ideal weights. Symmetry and normalization imply that

2c−1 = 2c1 = c0, and Eqs. (2.28)-(2.30) can be used to express c0 as:

c0 =
25 + 31d1

40 + 40d1

(2.82)

Note that for nonnegative d1, 5/8 ≤ c0 < 31/40. In particular, c0 < 1. Now consider

the fully periodic case, so that a non-compact boundary treatment is not required

and the coefficient matrix Mp is tridiagonal except for nonzero entries in the lower-

left and upper-right corners. The diagonal entries are c0 and the off-diagonal entries

are c1 = c−1, therefore Mp is symmetric. Since c0 > 0, then by the Gershgorin circle

theorem, it is also positive definite as long as it is strictly diagonally dominant which

it is by design. Thus the L2 condition number, equal to the ratio of the largest to

the smallest singular value of Mp, is also equal to the ratio of the largest to smallest

eigenvalues of Mp since its eigenvalues and singular values coincide. The symmetry

of Mp ensures that these eigenvalues are all real, so the Gershgorin circle theorem

implies that they all reside in the interval [c0 − 2|c1|, c0 + 2|c1|]. But 2c1 = 1 − c0

and positive d1 implies 0 < c0 < 1, so we have the following upper bound on the

condition number:

κ(Mp) ≤
1

2c0 − 1
=

20 + 20d1

5 + 11d1

(2.83)

(In fact, this inequality becomes an equality if the number of cells is even). Mp is

strictly diagonally dominant when d1 > 0, in which case κ < 4. In D dimensions,
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the tensor-product construction of the scheme allows the coefficient matrix M
(D)
p

to be expressed as a Kronecker product of the one-dimensional coefficient matrix

Mp = M
(1)
p :

M (D)
p = Mp ⊗Mp · · · ⊗Mp︸ ︷︷ ︸

D copies

(2.84)

Consider the singular value decomposition of Mp: Mp = UΣV T . Then we have also

the following decomposition of M
(D)
p :

M (D)
p = (UΣV T )⊗ (UΣV T ) · · · ⊗ (UΣV T )

= (U ⊗ · · · ⊗ U)(Σ⊗ · · · ⊗ Σ)(V T ⊗ · · · ⊗ V T )

(2.85)

where each group of Kronecker products includes D copies of the corresponding

matrix. It then follows that the largest and smallest singular values of M
(D)
p are

respectively the largest and smallest singular values of Mp raised to the power D,

from which we obtain the following bound on the condition number:

κ(M (D)
p ) ≤

(
20 + 20d1

5 + 11d1

)D
< 4D (2.86)

Thus in the ideal periodic case the coefficient matrix is well-conditioned for problems

of low- to moderate dimensionality and the conditioning improves as d1 increases.

Accounting for non-periodic boundary conditions in the one-dimensional case

leads to a M that is not symmetric:

M =



1 0

c1 c0 c1

. . . . . . . . .

c1 c0 c1

0 1


(2.87)
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Since M is not symmetric its singular values differ from its eigenvalues so we must

consider the eigenvalues of MMT to obtain the singular values of M . MMT is

symmetric and pentadiagonal with the following form:

MMT =



1 c1 0

c1 c2
0 + 2c2

1 2c0c1 c2
1

0 2c0c1 c2
0 + 2c2

1 2c0c1 c2
1

0 c2
1 2c0c1 c2

0 + 2c2
1 2c0c1 c2

1

. . . . . . . . . . . . . . .

c2
1 2c0c1 c2

0 + 2c2
1 2c0c1 c2

1

c2
1 2c0c1 c2

0 + 2c2
1 2c0c1 0

c2
1 2c0c1 c2

0 + 2c2
1 c1

0 c1 1


(2.88)

MMT is not diagonally dominant for arbitrary c0. The intervals on the real axis

that can contain the eigenvalues of MMT are, by the Gershgorin circle theorem:

(A) [1− c1, 1 + c1] =

[
1 + c0

2
,
3− c0

2

]
(B) [c2

0 + c2
1 − c1 − 2c0c1, c

2
0 + 3c2

1 + 2c0c1 + c1]

=

[
1

4
(3c0 − 1)2 +

1

2
(c0 − 1),

1

4
(c0 + 1)2 +

1

2
(1− c0)(2− c0)

]
(C) [c2

0 − 4c0c1, c
2
0 + 4c0c1 + 4c2

1] = [c0(3c0 − 2), 1]

(2.89)

The lower bound on the eigenvalues needs to be positive which, given that c0 > 0,
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requires:

(A)
1

4
(c0 + 1)2 +

1

2
(1− c0)(2− c0) > 0⇔ c0 /∈

[
1

9

(
2−
√

13
)
,
1

9

(
2 +
√

13
)]

(B) c0(3c0 − 2) > 0⇔ c0 >
2

3
(2.90)

Eq. (2.82) ensures that c0 > (2+
√

13)/9 = 0.622839 . . . so Eq. (2.90)A is automat-

ically satisfied. The second condition Eq. (2.90)B, however, requires that d1 > 5/13

in view of Eq. (2.82). We have already seen that choosing d1 > 5/13 is required for

the point-value reconstruction to be stable so this condition is not prohibitive. The

relevant range of c0 is therefore 2/3 < c0 < 31/40 and over this range the functions

defining the endpoints in Eq. (2.89) do not intersect. The largest upper bound

comes from Eq. (2.89)A and the smallest lower bound comes from Eq. (2.89)C. The

upper bound on the condition number is therefore:

κ(M) ≤

√
3− c0

2c0(3c0 − 2)
,

2

3
< c0 <

31

40
(2.91)

In terms of the diagonal excess d1:

κ(M) ≤

√
1780d2

1 + 3680d1 + 1900

403d2
1 + 170d1 − 125

, d1 >
5

13
(2.92)

This bound approaches
√

1780/403 = 2.10163 . . . as d1 → ∞. Using the recom-

mended diagonal excess d1 = 1.3 gives the bound as κ(M) ≤ 3.53167 . . . . The

same Kronecker-product procedure used in the periodic case gives the correspond-

ing condition number bound for multidimensional reconstructions with boundary

conditions.

The lower bound obtained with the Gershgorin theorem is substantially lower

than the smallest eigenvalues actually computed, particularly when d1 is small.
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Numerical experiments strongly suggest that the eigenvalues of MMT are bounded

below by (2c0 − 1)−2 and bounded above by a number approximately equal to 1.05

regardless of d1, which gives a bound on the condition number that is only about

5% larger than the corresponding bound in the periodic case. Qualitatively, this is

the behavior one would expect since M is almost symmetric and MMT is almost a

Toeplitz matrix. Unfortunately the structure of MMT is not amenable to deriving

these bounds analytically.

A similar analysis cannot be performed for the case where the weights are not

fixed at their ideal values because, although the ideal weights are computed in the

tensor-product fashion, the non-oscillatory weights depend on the multidimensional

indicators which are not calculated as tensor-products of one-dimensional indicators.

In practice, however, with non-oscillatory weights the condition number stays well

within an order of magnitude of its value when ideal weights are used.

2.6 Dual-Grid Formulation

It was mentioned in Section 1.3.2 that central schemes with fixed-size stag-

gered cells incur a numerical dissipation that scales as O(∆t−1), leading to excessive

smearing of sharp gradients and precluding the possibility of a semi-discrete form

to be used with Runge-Kutta methods for time advancement. The present central

CRWENO scheme has this deficiency as well. Whereas the modification suggested

by Kurganov and Tadmor in [13] solves this problem if the scheme produces a func-

tional representation of the solution over the whole cell, in the present case only the
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subcell averages and the midpoint value are ever computed. Furthermore, using the

variable and asymmetric cell sizes that depend on local wave speeds described in [13]

may destroy the precarious situation in which the coefficients and ideal weights for

the two reconstructions can be made to coincide.

Fortunately, an alternative discretization is available that leads to a dissipa-

tion independent of ∆t and therefore a semi-discrete form. Y. Liu in [37] introduced

the idea of reconstructing the same solution on the main and staggered grids simul-

taneously as follows. Let ūj denote, as usual, the average of the solution over the

main-grid cell [xj−1/2, xj+1/2] and uj the value of the solution u(x) at point xj, where

u(x) reproduces the cell averages ūj. Now denote also by v̄j−1/2 the average of the

auxiliary solution v(x) over the staggered cell [xj−1, xj] and let vj−1/2 be its point

value at xj−1/2. Then for each grid, a forward Euler approximation to the solution

at the next time step involves the fluxes at midpoint values from the other grid and

a convex combination of the two available representations of the average over the

cell in question.

ūn+1
j = θ

(
1

∆x

∫ xj+1/2

xj−1/2

v(x) dx

)
+ (1− θ)ūnj −

1

∆x
(f(vnj+1/2)− f(vnj−1/2))

v̄n+1
j−1/2 = θ

(
1

∆x

∫ xj

xj−1

u(x) dx

)
+ (1− θ)v̄nj−1/2 −

1

∆x
(f(unj )− f(unj−1))

(2.93)

Liu’s approach is to let the combination parameter θ depend on the time step:

θ = ∆t/∆τ where ∆τ is an upper bound on the permissible time step. With this
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choice Eq. (2.93) leads directly to the semi-discrete form:

dūj
dt

=
1

∆τ

(
1

∆x

∫ xj+1/2

xj−1/2

v(x) dx− ūj

)
− ∆t

∆x
(f(vnj+1/2)− f(vnj−1/2))

dv̄j−1/2

dt
=

1

∆τ

(
1

∆x

∫ xj

xj−1

u(x) dx− v̄j−1/2

)
− ∆t

∆x
(f(unj )− f(unj−1))

(2.94)

from which one sees that the discrepancy between the two representations of the

solution provides dissipation. More importantly, the dissipative terms can be cal-

culated from the subcell averages and the flux terms from the point values, so the

CCRWENO scheme already developed can be directly transplanted into this frame-

work to obtain a semi-discrete method. This would allow a smaller time step thus

less numerical dissipation, an expectation which will be tested in Chapter 3. Figure

2.11 diagrams one time step of a dual-grid central scheme. Computational expense

can be avoided if the non-oscillatory weights are calculated once per time step and

not once per Runge-Kutta stage.

One might wonder whether the dissipative term in Eq. (2.94) is truly necessary,

or if the point value reconstruction alone provides enough dissipation on its own. If

so, then the subcell reconstruction could be entirely avoided which would not only

avoid computational expense, but also allow more freedom in designing point-value

schemes since matching weights and coefficients would be unnecessary. Indeed, the

truncation error coefficients in Table 2.2 imply that an eighth-order scheme with

positive ideal weights would be available. In the semi-discrete case this is possible,

but such a scheme cannot be stable in the fully-discrete case.

Proposition 2.1. Let f(q) = aq, a > 0, be the flux for linear advection and con-

sider a point-value reconstruction uj =
∑

k ckūj+k with ck constant. Then the semi-
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Figure 2.11: Flowchart of one time step of a dual-grid central scheme.
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discrete scheme given by

dūj
dt

= −∆t

∆x
(f(vnj+1/2)− f(vnj−1/2))

d ¯vj−1/2

dt
= −∆t

∆x
(f(unj )− f(unj−1))

(2.95)

with periodic boundaries is L2-stable if the circulant matrix R given by Ri,j =

cj−i mod N (N being the number of cells on the main grid) is symmetric, in which

case it is neutrally stable.

Proof. Let U and V denote the vectors of cell averages on the main and staggered

grids, respectively. Both are of length N since the periodic boundary ensures that

the staggered cells centered on the first and last interfaces have the same solution,

so we need only track one. Then the scheme Eq. (2.95) can be written as:

d

dt

U
V

 =
−a
∆x

 0 RD+

RD− 0


U
V

 = − a

∆x
A

U
V

 (2.96)

where D± are the forward and backward difference matrices:

D+ =



−1 1 0 · · · 0

0 −1 1
...

...
. . . . . . 0

0 0 · · · −1 1

1 0 · · · 0 −1


, D− =



1 0 0 · · · −1

−1 1 0
...

...
. . . . . . 0

0 · · · −1 1 0

0 0 · · · −1 1


(2.97)

Note that D+ = −(D−)T . For stability we ask that the L2 norm of [UT , V T ] not

increase:

0 ≥ 1

2

d

dt

[UT , V T ]

U
V


 =

−a
∆x

[UT , V T ]A

U
V

 (2.98)
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So positive semidefiniteness of A implies stability. This is equivalent to positive

semidefiniteness of the symmetric part Ā of A:

Ā =
1

2
(A+ AT ) =

1

2

 0 RD+ + (RD−)T

RD− + (RD+)T 0



=
1

2

 0 RD+ −D+RT

RD− −D−RT 0


(2.99)

Since D± and the reconstruction matrix R are all circulant they commute with each

other, so we have:

Ā =
1

2

 0 D+(R−RT )

D−(R−RT ) 0

 (2.100)

For this matrix to be positive semidefinite requires:

0 ≤ [UT , V T ]

 0 D+(R−RT )

(D+(R−RT ))T 0


U
V


= UT (D+(R−RT ))V + V T (D+(R−RT ))TU

= 2UT (D+(R−RT ))V

(2.101)

for any vectors U and V whose elements have the same sum (because both U and V

represent the same solution). This is only possible if every entry of (D+(R − RT ))

is non-negative, since otherwise one may choose U and V to have all elements zero

except one which is 1 to isolate a negative entry of D+(R−RT ). (D+(R−RT )) ≥ 0

if and only if the entries along each column of R − RT are non-decreasing and

the last entry is less than or equal to the first. This is only possible if all entries

along a column of R−RT are equal, but its diagonal entries are necessarily all zero

due to its being antisymmetric so it must be that R − RT = 0 ⇐⇒ R = RT .
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In this case, the matrix Ā = 0 so A is antisymmetric, from which it follows that

d
dt

(UTU + V TV ) = 0.

The simplest reconstruction matrix arises from the second-order approxima-

tion of point values by cell averages, uj = ūj + O(∆x2), in which case R = I. In

view of this result one expects the time discretization to ruin the precarious neu-

tral stability, which is indeed the case as we now show in the case of forward Euler

time-stepping.

Proposition 2.2. Let f(q) = aq, a > 0, be the flux for linear advection and con-

sider a point-value reconstruction uj =
∑

k ckūj+k with ck constant. Then the fully-

discrete scheme given by

un+1
j = unj −

∆t

∆x
(f(vnj+1/2)− f(vnj−1/2))

vn+1
j−1/2 = vnj−1/2 −

∆t

∆x
(f(unj )− f(unj−1))

(2.102)

with periodic boundaries is unconditionally unstable.

Proof. Keeping the same notation as in Proposition 2.1, the evolution over one time

step can be written:Un+1

V n+1

 =

Un

V n

−σ
 0 RD+

RD− 0


Un

V n

 =

 I −σRD+

−σRD− I


Un

V n

 = M

Un

V n


(2.103)

where σ = a∆t/∆x is the CFL number. For convenience we write A = RD+, B =
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RD−. Then for stability we want the L2 norm to be non-increasing:Un

V n


T Un

V n

 ≥
Un+1

V n+1


T Un+1

V n+1

 =

Un

V n


T

MTM

Un

V n



=

Un

V n


T Un

V n

+

Un

V n


T

(MTM − I)

Un

V n


(2.104)

Therefore we need the matrix MTM − I to be negative semidefinite. We have:

MTM − I = σ

 σBTB −A−BT

−AT −B σATA

 (2.105)

And we desire:

0 ≥

U
V

 (MTM−I)

U
V

 = σ2(UTBTBU+V TATAV )−2σUT (A+BT )V (2.106)

2σUT (A+BT )V ≥ σ2(UTBTBU + V TATAV ) (2.107)

for any U, V whose elements have the same sum. Clearly the right-hand side of

(2.107) is always non-negative. Because U and V are arbitrary, however, they can

always be chosen so that the left-hand side is strictly negative unless every entry

of A + BT is non-negative. But A + BT = RD+ − D+RT = D+(R − RT ), since

the matrices are all circulant thus commute with each other. Stability therefore

requires that every entry of D+(R − RT ) be non-negative, which by the reasoning

in Proposition 2.1 occurs if and only if R = RT . In that case, however, A+BT = 0

so the left-hand side of Eq. (2.107) would vanish for all U, V whereas the right-

hand side can be made strictly positive. Therefore any linear dual-grid scheme is

unconditionally unstable with explicit Euler time advancement.
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In practice, using a WENO-type reconstruction appears to provide some dis-

sipation due to the weight adaptation process which quells the instability for short

times, but it eventually appears even for smooth solutions. If a discontinuity is

present the instability immediately appears and becomes catastrophic. The schemes

Eq. (2.95) and Eq. (2.102) can be viewed as the limiting case of Eq. (2.94) as

∆τ → ∞, which suggests that better stability will be obtained when ∆τ is the

smallest feasible upper bound on the time step ∆t.
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Chapter 3: CCRWENO Numerical Results

In this chapter we apply the CCRWENO method developed in Chapter 2 to

a suite of test problems. Unless otherwise indicated, all results are obtained using

the Jiang-Shu formulation [15] of the non-oscillatory weights.

3.1 1-Dimensional Tests

3.1.1 Convergence

First we establish that CCRWENO converges at fifth order for a simple case,

linear advection of a low-frequency sinusoid through a periodic domain. The domain

is [0, 1] and the initial condition is:

q(x, t = 0) = sin(2πx) (3.1)

which evolves according to Eq. (1.49) with propagation speed a = 1. Table 3.1

lists the errors obtained on successively refined grids after one period of advection.

The maximum error decreases more quickly than fifth-order whereas the L1 error

decreases at fifth-order.

Repeating the same test with a nonlinear flux and a higher-frequency sinusoid
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Table 3.1: CCRWENO errors in 1D linear advection of a sinusoid.
N1 L∞ error L∞ error order L1 error L1 error order

50 4.5315× 10−5 - 1.8589× 10−5 -
100 1.7596× 10−6 4.69 5.6671× 10−7 5.04
200 6.7411× 10−8 4.71 1.7717× 10−8 5.00
400 2.0849× 10−9 5.01 5.4400× 10−10 5.03
800 4.3678× 10−11 5.58 1.6575× 10−11 5.04

also gives fifth-order convergence. The initial condition is:

q(x, t = 0) =


ρ

ρu

E

 =


1 + 0.2 sin(8πx)

ρ

P
γ−1

+ 1
2
ρ

 (3.2)

where the pressure P = 1 is constant, the ratio of specific heats γ = 1.4 is constant,

and the velocity u = 1 is also constant. The solution evolves according to the one-

dimensional Euler equations Eq. (1.10) for one period. The domain is again [0, 1]

with periodic boundaries. Table 3.2 confirms that CCRWENO converges at fifth

order.

Table 3.2: CCRWENO errors in 1D density wave advection.

N1 L∞ error L∞ error order L1 error L1 error order

50 1.3987× 10−2 - 9.7308× 10−3 -
100 6.6739× 10−4 4.39 4.3670× 10−4 4.48
200 2.4283× 10−5 4.78 1.3382× 10−5 5.03
400 7.9087× 10−7 4.94 4.1199× 10−7 5.02
800 2.3266× 10−8 5.09 1.2512× 10−8 5.04

Applied to Euler advection of a density wave, CCRWENO is more efficient than

upwind WENO and CRWENO with characteristic variables. Despite using a four-

stage Runge-Kutta scheme compared to the three-stage SSP Runge-Kutta scheme

[23] used with the upwind schemes, the cost per cell of CCRWENO is lower due to
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Figure 3.1: CCRWENO outperforms the characteristic upwind schemes
and on sufficiently fine grids also outperforms the upwind schemes with-
out characteristic variables.

the absence of any Riemann solver. As a result, for sufficiently fine grids CCRWENO

also outperforms the two upwind schemes without characteristic variables. Figure

3.1 demonstrates this behavior.

3.1.2 Riemann Problems

Several classical test cases take the form of Riemann problems, which serve to

demonstrate the ability to solve Riemann problems without Riemann solvers and

to do so without spurious oscillations. We begin with the Riemann problem of

Sod [35], in which the initial discontinuity produces a contact discontinuity flanked
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by a rarefaction and a shock. The initial conditions are:

[ρ, u, P ] =


[1, 0, 1] x ≤ 1

[0.125, 0, 0.1] x > 1

(3.3)

The contact discontinuity provides most of the challenge in this problem, since

its development out of the initial discontinuity can be accompanied by spurious

oscillations. Figure 3.2 shows part of the solutions obtained with λ = 0.1 at time

t = 0.2. Compared to CWENO4, the CCRWENO solution is steeper near the

discontinuities at the cost of larger oscillations there, though those oscillations do

decrease in amplitude as the grid is refined. Observing the solution as it evolves

shows that the initial oscillations are larger with CCRWENO and diminish less

rapidly than in the solution from CWENO4. The initial larger size likely results from

improper coupling in the first few steps. As the contact discontinuity and the shock

separate, there is a time step in which each subscheme contains a discontinuity in its

stencil, causing the weights to have similar magnitudes even though the solution is

discontinuous. Once the oscillations are established, they are propagated as smooth

solutions which experience less damping due to the lower numerical dissipation of

CCRWENO.

A second Riemann problem is that of Lax. Qiu and Shu in [29] use the

Lax problem to test the non-oscillatory behavior of their fifth-order central WENO

scheme, and it was the results of the tests with this problem that led them to suggest

incorporating a characteristic decomposition into the subcell reconstruction. We
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Figure 3.2: Solutions to the Sod problem near discontinuities. Top:
200 cells. Bottom: 400 cells. Circles: CCRWENO solution. Crosses:
Solution by CWENO4. Solid line: Exact solution.
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repeat their tests here with the CCRWENO scheme. The initial conditions are:

[ρ, u, P ] =


[0.445, 0.698, 3.528] x ≤ 0

[0.5, 0, 0.571] x > 0

(3.4)

As in the Sod problem, the challenge is to resolve the discontinuity (a shock this

time) without incurring oscillations. Figure 3.3 shows part of the solutions ob-

tained with λ = 0.038 at time t = 0.16. Both the CWENO4 and CCRWENO

results show oscillations of similar magnitude near the contact discontinuity, with

the CCRWENO scheme producing steeper discontinuities. The oscillations decrease

in amplitude as the grid is refined. Compared with Figure 3 in [29], CCRWENO

produces oscillations of similar magnitude and frequency to CWENO5 as well.

3.1.3 Shu-Osher Problem

A high-order scheme should resolve small-scale features in addition to be-

ing non-oscillatory. In the Shu-Osher problem, a shock encounters a density wave

producing a wave train behind the shock. Thus the problem contains both a dis-

continuity and high-frequency waves in close proximity. The initial conditions are:

[ρ, u, P ] =


[

27
7
, 4
√

35
9
, 31

3

]
x ≤ 1

[1 + 0.2 sin(5x), 0, 1] x > 1

(3.5)

Figure 3.4 shows the solutions obtained with λ = 0.038 at time t = 1.8 in the

region containing the small-scale features. Both CWENO4 and CCRWENO fail to

resolve the oscillations on 200 cells, but detect them on 400 cells with CCRWENO
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Figure 3.3: Solutions to the Lax problem near discontinuities. Top:
200 cells. Bottom: 400 cells. Circles: CCRWENO solution. Crosses:
Solution by CWENO4. Solid line: Exact solution.
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Figure 3.4: Solutions to the Shu-Osher problem near discontinuities.
Top: 200 cells. Bottom: 400 cells. Circles: CCRWENO solution.
Crosses: Solution by CWENO4. Solid line: Exact solution.

88



matching the amplitudes much more closely. No spurious oscillations appear due to

the shock in either case.
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3.2 2-Dimensional Tests

3.2.1 Convergence

First we verify fifth-order convergence in the case of a linear flux. Consider

a sinusoidal solution advecting through a unit square with periodic boundary, with

constant velocity oriented along a diagonal of the square. The initial condition is:

u(x, y, 0) = sin2(πx) sin2(πy) (3.6)

The governing equation is:

∂u

∂t
+
∂u

∂x
+
∂u

∂y
= 0 (3.7)

The CCRWENO stencil parameter d1 = 1.3 and the mesh ratio λ = ∆t/∆x = 0.35.

Time steps are taken until t = 1 and the solution is resolved on the main grid. Table

3.3 shows the error behavior for CCRWENO applied to this problem.

Table 3.3: CCRWENO errors in 2D linear advection of a sinusoid.
N1 N2 L∞ error L∞ error order L1 error L1 error order

20 20 3.26× 10−4 - 7.87× 10−5 -
40 40 1.04× 10−5 4.96 2.27× 10−6 5.12
80 80 3.27× 10−7 5.00 6.92× 10−8 5.03
160 160 9.48× 10−9 5.11 2.13× 10−9 5.02
320 320 2.62× 10−10 5.18 6.63× 10−11 5.00

Since the solution is smooth and an exact solution is available, we can compare

the efficiency of CCRWENO to those of CWENO4 and the tensor-product extension

of CWENO5 (see [29]) by considering the computation time required for each to

achieve a given error, as in Figure 3.5. As expected, CCRWENO requires more time

on a given grid but produces less error. This speed advantage disappears as the grid
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Figure 3.5: Efficiency of CCRWENO and CWENO4 for linear wave
advection. Markers correspond to the grids in Table 3.3.

is refined due to the expense of solving a linear system, but the error incurred by

CCRWENO is sufficiently smaller than those produced by the other schemes that

it remains the most efficient choice.

To verify fifth-order convergence with a nonlinear flux we consider a moving

isentropic vortex. The isentropic vortex is a smooth exact solution of the two-

dimensional Euler equations for an ideal gas. The domain is a square of side length

10, with the vortex initially centered. The freestream velocity at which the vortex

travels is (u∞, v∞) = (1, 5.5). Note that the vortex does not travel in a coordinate
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direction. 

ρ

u

v

P


=



ρ∞

(
1− (γ−1)w2

2γ

) 1
γ−1

u∞ − (y − 5)w

v∞ + (x− 5)w

ργ


w =

b

2π
exp

(
1− r2

2

)
, r =

√
(x− 5)2 + (y − 5)2

(3.8)

The ratio of specific heats is set to its value for air, γ = 1.4 and the freestream

density is ρ∞ = 1. The vortex strength is b = 5. The mesh ratio is λ = 0.05. Table

3.4 shows the error achieved at time t = 10 and confirms fifth-order convergence.

Using the exact solution, we can again compare the computational efficiency yielding

the results in Figure 3.6. CCRWENO is again more efficient than CWENO4 and

CWENO5 apart from on one of the test grids, which appears to be a fluke owing to

cache effects.

Table 3.4: CCRWENO errors in isentropic vortex advection.

N1 N2 L∞ error L∞ error order L1 error L1 error order

40 40 3.77× 10−2 - 1.94× 10−1 -
80 80 7.92× 10−4 5.57 5.61× 10−3 5.11
120 120 9.90× 10−5 5.13 8.31× 10−4 4.71
160 160 2.27× 10−5 5.12 2.10× 10−4 4.79
200 200 7.23× 10−6 5.12 7.06× 10−5 4.87
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Figure 3.6: CCRWENO outperforms other central schemes in isentropic
vortex advection. Markers correspond to the grids in Table 3.4.
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3.2.2 Riemann Problems

Two-dimensional Riemann problems test the ability of the tensor-product ex-

tension of the one-dimensional CCRWENO to reproduce phenomena that are inher-

ently two-dimensional, as well as the ability to resolve Riemann fans without any

kind of Riemann solver. Lax and Liu [38] present several Riemann problems based

on [39]. Figures 3.7-3.9 show the results obtained with CCRWENO for a selection

of the configurations in [38] each on a grid of 400 × 400 cells. In some cases the

solution is resolved without visible oscillations as desired, but in others a disconti-

nuity produces a train of oscillations. In every case the key features of each solution

are present. In particular, the roll-ups of contact discontinuities are clearly resolved

and shock interactions emerge correctly. The oscillations, however, pose a serious

drawback and will be addressed in Chapter 4. The results for Configurations 5 and

16 improve on the results in [40] because the flux derivative reconstruction in the

current implementation calculates new one-dimensional smoothness indicators in-

stead of reusing the two-dimensional indicators computed for the subcell and point

value reconstructions, as was done for the tests in [40].

94



Figure 3.7: Density contours of the CCRWENO solutions of Configura-
tions 3 (top) and 4 (bottom) from [38].
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Figure 3.8: Density contours of the CCRWENO solutions of Configura-
tions 5 (top) and 12 (bottom) from [38].
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Figure 3.9: Density contours of the CCRWENO solutions of Configura-
tions 16 (top) and 17 (bottom) from [38].
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3.2.3 Rayleigh-Taylor Instability

This test case is taken from [41]. Gravity acts in the +y direction on two

fluids of densities 1 and 2 that are initially at rest but for a small perturbation

in the vertical velocity. Because the Euler equations include no viscous effects, the

apparent consequences of viscosity reflect solely the numerical viscosity. The domain

is 0 < x < 0.25, 0 < y < 1 and the initial condition is:

[ρ, u, v, P ] =


[2, 0,−0.025

√
γP/ρ cos(8πx), 1 + 2y] y ≤ 0.5

[1, 0,−0.025
√
γP/ρ cos(8πx), 1.5 + y] y > 0.5

(3.9)

where γ = 5/3 (the Atwood number is 1/3). The simulation ends at time t =

1.95. The left and right boundaries are slip walls while solution values at the top

and bottom boundaries are kept constant. Because the solution behavior depends

strongly on the numerical viscosity, different formulations of the non-oscillatory

weights can give markedly different results. Figure 3.10 shows the solutions obtained

on a 64 × 256 grid and a 128 × 512 grid using the Jiang-Shu weights [15] and the

solutions obtained on the same grids using the weighting strategy described in [42],

which are defined as follows:
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Figure 3.10: Density contours of the CCRWENO solutions of the inviscid
Rayleigh-Taylor instability problem using Jiang-Shu and TENO weights.

ωs =
ω̄sδs∑
r ω̄rδr

δs =


0 χs < CT

1 otherwise

χs =
γs∑
r γr

γs =

(
C +

τ

ε+ βs

)q

(3.10)

where βs are the Jiang-Shu smoothness indicators [15]. The parameters are set as

q = 6, CT = 10−4, and C = 1.

We see that on the coarser grid the choice of weights has little effect on the
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solution although some nascent small features appear when the TENO weights are

used. On the finer grid, however, the TENO weights clearly incur much less arti-

ficial dissipation giving rise to secondary vortices and a completely different plume

shape. Compared to the cases using TENO weights in [42], which exhibit more fine

features and asymmetric solutions, we conclude that even with TENO weights the

CCRWENO method has more artifical dissipation than the upwind schemes of the

same order used in [42].

3.2.4 Double Mach Reflection

Woodward and Colella [31] originated the double Mach reflection problem as

a test case for non-oscillatory methods. A Mach 10 shock initially makes a 60◦ angle

with the horizontal at x = 1/6 and moves rightward, forming two Mach stems and

two contact discontinuities. The physical domain is 0 < x < 4, 0 < y < 1 and the

initial condition is:

[ρ, u, v, P ] =


[1.4, 0, 0, 1] y < (x− 1/6)

√
3

[8, 7.145,−4.125, 116.8333] otherwise

(3.11)

The simulation ends at time t = 0.2. The exact post-shock conditions are imposed

at the left boundary and along the portion of the lower boundary from x = 0 to

x = 1/6, while the remainder of the lower boundary is a reflecting wall. Boundary

values on the top edge correspond to the exact motion of the shock and the right

boundary is an outflow boundary. This case also benefits from use of the TENO

weighting strategy Eq. (3.10). Figure 3.11 shows the results on 512 × 128 and

100



1024× 256 grids using the Jiang-Shu weights [15] and the TENO [42] weights using

Eq. (3.10). The TENO weights cause less numerical dissipation thereby revealing

the instability in the contact discontinuity as it approaches the wall.

3.2.5 High-Frequency Wave Propagation

We expect the compact reconstructions used in CCRWENO to improve the

resolution of small-scale features. As a test we consider advection of sinusoidal

density waves of increasingly high frequency on a fixed 150 × 150 grid. The initial

condition is:

ρ(x, y) = 2 + sin(2πkx) sin(2πky)

u = 1

v = 0

P = 1

(3.12)

which evolves according to the Euler equations Eq. (1.10). The domain is a square of

side length 1 and the mesh ratio is λ = ∆t/∆x = 0.35. Figure 3.12 shows the errors

incurred for each wavenumber k with CCRWENO, CWENO4, and CWENO5 [29].

Sudden dips in the error occur at wavenumbers of k = 30, 50, and 60 with each

method, corresponding to cases where either the five-point stencil of the combined

scheme or a three-point substencil contain an integer number of wavelengths. In

such cases the combined point-value reconstruction becomes exact for a sinusoidal

solution so less error accumulates per time step. CCRWENO either matches or

considerably outperforms the other two schemes at each wavenumber.
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Figure 3.11: Density contours of the CCRWENO solutions of the double
Mach reflection problem using Jiang-Shu and TENO weights.
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Figure 3.12: Maximum error vs. wavenumber for three central schemes.
Solid line: error incurred with CCRWENO. Dashed line: CWENO4.
Dotted line: CWENO5.
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Figure 3.13: Density contours of the dual-grid CCRWENO solution to
the Rayleigh-Taylor instability problem with TENO weights.

3.2.6 Dual-Grid Formulation

By construction, we expect the dual-grid CCRWENO to exhibit less numerical

dissipation at small time steps. To test this expectation we apply the dual-grid vari-

ant to test cases where the time step is small: the Rayleigh-Taylor instability and,

for a representative case among the two-dimensional Riemann problems, Configura-

tion 3. Figure 3.13 shows the solution obtained for the Rayleigh-Taylor instability

using the TENO weights with the same parameters and grid size as the rightmost

result in Figure 3.10. Smaller numerical dissipation would give rise to finer features.

Neither solution contains features that are clearly finer than those of the other.
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Figure 3.14: Density contours of the dual-grid CCRWENO solution to
Configuration 3.
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Figure 3.14 shows the solution to Configuration 3. Compared to Figure 3.7,

the dual-grid variant produces more erratic oscillations and shows asymmetry in

the central plume. The asymmetry results from the smaller numerical diffusion

providing less stabilizing influence. These results clearly indicate that the dual-grid

formulation has similar or less numerical dissipation when the time step is small. The

cost of this improvement is drastically slower computation. Since a reconstruction is

performed on each grid each Runge-Kutta stage, using the third-order SSP Runge-

Kutta method [22] the computation time is increased by a factor of almost 6 over

the original CCRWENO. Therefore the dual-grid variant should only be used when

a small time step is absolutely necessary.
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Chapter 4: Investigating Oscillations

The numerical results of the CCRWENO method applied to two-dimensional

Riemann problems include spurious oscillations in some cases, indicating that the

need for characteristic variables still remains. The original conjecture that using the

same weights for both the subcell and point value reconstructions evidently is false.

To uncover the reason for the oscillations we begin by reexamining the reasoning on

which the original conjecture was based.

4.1 Characteristic Variables in CWENO4

Nowhere in the formulation of a central scheme does a need for characteristic

variables appear. The two-dimensional CWENO4 scheme [30] produces solutions to

Configurations 5 and 16 with no spurious oscillations. When that scheme is applied

to other two-dimensional Riemann problems oscillations do appear. Figure 4.1 shows

the results obtained with CWENO4 and the tensor-product extension of CWENO5

from [29] applied to Configuration 17. Qualitatively, these solutions hardly differ

from the CCRWENO result in Figure 3.9, though the CCRWENO result has fewer

oscillations. Comparing the CCRWENO results on Configurations 5 and 16 to the

CWENO4 results on those cases presented in [30] show similar results, suggesting
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that the need for characteristic variables depends in some way on the problem. It is

not the case, however, that CWENO4 never requires characteristic variables as was

first believed.

4.2 The Role of Characteristic Variables

It is now clear that inconsistency in the ideal weights between the subcell and

point-value reconstructions does not necessitate characteristic variables as was first

thought. To modify the CCRWENO method to avoid characteristic variables now

requires a fuller understanding of their function, so that it may be fulfilled by some

other means. The literature presents several explanations as to why characteristic

variables are needed. Quoting directly some representative examples in the context

of central schemes:

• “Due to the staggering, the approximation of the evolved fluxes is done in

smooth regions (up to an appropriate CFL condition). Hence, no characteristic

decomposition is required and the upwinding is replaced by a straightforward

centered computation of the quantities involved.” [28]

• “Namely, no Riemann problems are solved and consequently characteristic

decompositions – required in order to distinguish between the left and right-

going waves inside the Riemann fan, are avoided.”’ [10]

• “When the reconstruction order becomes higher, characteristic decomposition

is usually necessary to reduce spurious oscillations for systems of conservation
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Figure 4.1: The CWENO4 and CWENO5 schemes produce spurious
oscillations on Configuration 17.
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laws. Characteristic decomposition locally creates larger smooth area for poly-

nomial reconstruction by separating discontinuities into different characteristic

fields.”’ [43]

And in the context of upwind schemes:

• “However, for more demanding test problems, or when the order of accuracy

is high, we would need the following more costly, but much more robust char-

acteristic decompositions.”’ [44]

• “It is also known that while the characteristic-based reconstruction is necessary

for inviscid flow problems with strong discontinuities, reconstruction of con-

served or primitive variables suffices when physical viscosity is present.”’ [18]

None of these explanations survive close scrutiny. Regarding the central

schemes, the explanations from [28] or [10] would imply that characteristic vari-

ables would never be necessary for any central scheme since every central scheme

evaluates fluxes in smooth regions and avoids solving Riemann problems. Yet in

Chapter 3 and Figure 4.1 we clearly see oscillations in some cases. The assertion

in [43] that high order of accuracy usually requires characteristic variables is some-

what undermined by that paper itself, which presents a process (the hierarchical

reconstruction) that eliminates the oscillations but preserves the order of accuracy

without requiring characteristic variables (though often producing over- and under-

shoots at discontinuities [43]). Evidently the high-order is not inherently at fault,

since the fifth-order accuracy preserved by the hierarchical reconstruction does not
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lead to oscillations, though it is an experimental fact that without special treatment

high-order schemes without characteristic decompositions produce oscillations.

The second part of the explanation from [43] correctly states that after the

characteristic decomposition it may be that some characteristic fields are smooth,

but the relevance of this fact is dubious. First, it can happen that a discontinu-

ity in one conserved variable causes discontinuities in more than one characteristic

variable, which if this explanation were true would suggest that under some cir-

cumstances the characteristic decomposition can actually exacerbate oscillations.

This appears never to occur and a literature search for documentation of such a

phenomenon has been fruitless. Second, if redistributing the discontinuity among

characteristic fields explains the need for the decomposition, then one would expect

the scalar case to be the most difficult since no such redistribution is possible. In

reality, however, the scalar case is the most well-behaved. Finally, this explanation

has no connection to the order of accuracy and we know experimentally that the

order of accuracy is important.

Another common explanation, found in [44] for example, is that the char-

acteristic decomposition decouples the solution into independent scalar equations.

Disregarding the fact that this is true only in an approximate sense when the Jaco-

bian is non-constant, this explanation is only a reduction to the scalar case. One still

needs to explain why the scalar case is so well-behaved, and why the order of accu-

racy has any importance. It could be true that even an approximate diagonalization

is sufficient.
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The explanations from the literature on upwind schemes make more sense

though they are less directly applicable to mitigating the oscillations from CCR-

WENO. The explanation from [44] is consistent with experiments but is hardly a

precise mathematical statement. What makes a problem demanding? Similarly the

explanation in [18] accurately reflects practical knowledge but does not lead directly

to a mathematical formulation. Intuitively, one expects a shock to be “strong”’ if

its magnitude is large. In the scalar case, however, even large jumps do not lead to

oscillations.

To design a high-order method that avoids the characteristic decomposition we

need to properly understand its function, and this understanding must be consistent

with the following experimental facts:

1. Oscillations do not appear in the scalar case.

2. Even without characteristic variables, some discontinuities produce small or

no oscillations.

3. Central schemes do not produce oscillations when the flux Jacobian is constant,

even without the characteristic decomposition.

4. Characteristic variables are needed when the order of accuracy is 4 or greater

(and possibly for lower-order schemes).

5. Oscillations only appear near discontinuities.

Assuming to be true the explanation in [44], that the characteristic decom-

position (approximately) diagonalizes the system Eq. (1.1), we can explain some
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of the salient facts. The scalar case behaves well because the Jacobian is already

diagonal, being simply a scalar. The discontinuities that produce small or no oscil-

lations might be those for which the Jacobians (of the flux in the direction normal

to the discontinuity) of the left and right states are already close to diagonal. This

prediction is confirmed by Figure 4.2, in which oscillations emanate from the up-

per discontinuity while the lower discontinuity produces none. We see that the

Jacobians for the left and right states in the top half have zeros on their diagonals

whereas those in the bottom half, though not diagonally dominant, are closer to

being so than their upper counterparts. On the other hand, Figure 4.3 shows that

in Configuration 4 no oscillations are visible (though some appear at intermediate

time steps before being obscured by the contour level choice), yet the Jacobians are

not at all close to being diagonally dominant.

On the other hand, the facts are also explained by the following hypothesis:

the characteristic decomposition produces a system for which the eigenvectors of

the flux Jacobians are approximately constant over a stencil. In particular, the

eigenvectors on either side of a discontinuity become closer to equal. Therefore

the characteristic decomposition is needed when those eigenvectors in the original

system are too different. This explanation addresses all the shortcomings of those

previously discussed:

• The scalar case is well-behaved because the eigenvectors are simply 1, which

is already constant.

• The discontinuities that produce small or no oscillations are those for which
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Figure 4.2: The Jacobians for the lower discontinuity are closer to diag-
onally dominant than are the Jacobians for the upper discontinuity.
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Figure 4.3: In Configuration 4 the oscillations are minuscule despite
non-diagonally-dominant Jacobians.
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the eigenvectors are already similar.

• When the flux Jacobian is constant so are the eigenvectors. The central frame-

work does not involve flux Jacobian eigenvectors at all, so it is not surprising

that problems whose origin lies with those eigenvectors would affect central

schemes. Central schemes do not require upwinding, but the eigenvectors may

still change.

• High-order schemes require characteristic variables while low-order schemes do

not because high-order schemes better preserve large gradients near the shock

location. These large gradients in the solution lead to dissimilar eigenvectors

within a stencil necessitating a change to characteristic variables. In contrast,

low-order schemes diffuse discontinuities rapidly enough that these gradients

are smaller, and the low-order schemes use smaller stencils anyway. In viscous

flows the physical viscosity performs the same function, leading to the observed

lesser need for characteristic variables [18].

• Oscillations appear near discontinuities because the eigenvector matrix is dis-

continuous there.

• A physics-independent measure of shock strength is the dissimilarity between

the eigenvectors on either side.

Furthermore, when the Jacobian is diagonalized the eigenvector matrix of the di-

agonalized system is the identity which is constant, explaining why diagonalization

appears to be important. And finally, recall that the justification for the charac-
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teristic decomposition involved treating the eigenvector matrix as constant within

a stencil anyway.

For all its elegance, the eigenvector hypothesis has conceptual obstacles. First,

if an eigenvalue is repeated (as occurs in the multidimensional Euler equations) then

its eigenvectors are not unique. In this case the comparison should be the angle

between the eigenspaces corresponding to the repeated eigenvalues [45]. This com-

parison causes no trouble with the Euler equations which always have a repeated

eigenvalue, but for a general conservation law it may be that an eigenvalue is re-

peated on one side of a shock but on the other side the eigenvalues are all distinct.

A natural comparison is not clear in such a case. This possibility raises the broader

question of which eigenvectors should be compared to each other in the first place.

For the Euler equations where it is known that the eigenvalue set of each flux Jaco-

bian has the form {u− a, u, u, u+ a} the comparison can be between corresponding

eigenvectors after the eigenvalues are sorted in ascending order (provided that u

does not change sign). This might not be possible for general fluxes.

After accounting for these details, the agreement between eigenvectors for

the states in Configuration 10 of [38], shown in Figure 4.4, is fairly close but not

dramatically so. The eigenvectors for the left and right states of the lower shock

are somewhat similar whereas those for the upper shock are much less so simply

by noting the signs of individual components. In the well-behaved Configuration 4,

shown in Figure 4.5 with the relevant eigenvectors, the eigenvectors are mostly close

to equal (after possibly changing signs of columns). The eigenvector hypothesis led

to a more correct prediction about this configuration than did the diagonalization
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Figure 4.4: The eigenvector matrices for the lower discontinuity are closer
to equal than are those for the upper discontinuity.

hypothesis.

The eigenvectors shown in Figures 4.4 and 4.5 demonstrate another trouble-

some feature of the eigenvector hypothesis: the approximate equality can be rough.

Considering the lower discontinuity in Figure 4.4, for example, the first columns of

the two eigenvector matrices have the same sign pattern but the individual com-

ponents differ from their respective averages by as much as 25%. Calling them

approximately equal is justifiable only in comparison to the eigenvectors for the up-

per discontinuity which differ even in signs. The agreement in Figure 4.5 is much

closer but the fourth columns each have a component that clearly does not approx-

imate its counterpart. However, the fact that discrepancies of this size observably
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Figure 4.5: The eigenvector matrices for two of the discontinuities are
numerically close.
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do not necessitate a characteristic decomposition demonstrates that such a trans-

formation need not align the eigenvectors perfectly (as one would expect since it is

known to work despite not being fully rigorous). It may even be enough to simply

match the signs of the components.

4.2.1 Numerical Characteristic Transformations

We need to check now whether applying a characteristic transformation results

in Jacobians that are more diagonally dominant and/or have more similar eigenvec-

tors in the case of the two-dimensional Euler equations. The transformation matrix

will be the inverse of the eigenvector matrix for the Jacobian of the flux in the

appropriate direction, corresponding to eigenvalues sorted in increasing order, eval-

uated at the Roe-averaged state [7] computed from two state vectors (i.e., the left

and right states across a discontinuity). The Roe average qA is obtained from the
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left state qL and right state qR by:

qA =



ρA

ρAuA

ρAV

EA


, r =

√
ρR√
ρL

ρA = rρL

uA =
uL + ruR

1 + r

V =
vL + rvR

1 + r

HA =
HL + rHR

1 + r

EA =
1

γ

(
ρAHA +

γ − 1

2
ρA(u2

A + v2
A)

)

(4.1)

where H is the enthalpy, related to the energy E by:

H =
1

ρ

(
γE − γ − 1

2
ρ(u2 + v2)

)
(4.2)

Testing the eigenvector hypothesis with the two-dimensional Euler equations

is complicated by the repeated eigenvalue leading to a two-dimensional eigenspace.

Therefore the numerical tests will examine eigenvectors with the one-dimensional

Euler equations and the Jacobian diagonals for the two-dimensional Euler equa-

tions. To quantify the improvement in diagonal dominance, we introduce a diagonal

dominance measure of an N ×N matrix A defined by:

θ(A) =
1

N

∑
i

|Aii|∑
j |Aij|

(4.3)

where if the denominator in the sum is zero then the whole summand is set to zero.

θ(A) = 0 if and only if A has zeros on the diagonal and θ(A) = 1 if and only if A is
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diagonal.

We now examine the diagonals of Jacobians before and after a characteristic

transformation, taking examples from discontinuities in the two-dimensional Rie-

mann problems of [38].

1. The discontinuity between the first and second quadrants in Configuration 11.

qL =



2

0

−0.6

2.59


, qR =



1

0

0.3

2.545


, qA =



1.4142

0

−0.0728

2.5460


(4.4)

The Jacobian at the states qL, qR, and qA are:

JL =



0 1.0000 0 0

0.0180 0 0.1200 0.4

0 −0.3000 0 0

0 1.7950 0 0


, JR =



0 1.0000 0 0

0.0180 0 −0.1200 0.4

0 0.3000 0 0

0 3.5450 0 0



JA =



0 1 0 0

0.0005 0 0.0206 0.4

0 −0.0515 0 0

0 2.5199 0 0


(4.5)
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The eigendecomposition of JA is:

JA = V ΛAV
−1

V =



−0.3459 1 0.9407 0.3459

0.3471 0 0 0.3471

0.0178 0 0.3386 −0.0178

−0.8715 −0.0013 −0.0187 0.8715


,ΛA =



−1.0037 0 0 0

0 0 0 0

0 0 0 0

0 0 0 1.0037


(4.6)

Note that the JL and JR have zeros on their diagonals. The characteristic

decomposition procedure transforms the quasilinear form

dq

dt
+ J(q)

dq

dx
= 0 (4.7)

by premultiplying it with V −1, which is equivalent to the following quasilinear

system:

d

dt
(V −1q) + V −1J(q)V

d

dx
(V −1q) = 0 (4.8)

We are therefore interested in the diagonals of V −1JLV and V −1JRV in com-

parison to those of JL and JR. We have:

Table 4.1: Diagonal dominance of Jacobians with and without characteristic decom-
position for the upper discontinuity in Configuration 11.

θ J V −1JV

Left 0 0.3875

Right 0 0.4108

2. The discontinuity between quadrants 2 and 3 in Configuration 18.
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Table 4.2: Diagonal dominance of Jacobians with and without characteristic decom-
position for the left discontinuity in Configuration 18.

θ J V −1JV

Left 0.3739 0.7265

Right 0.1921 0.6581

Table 4.3: Diagonal dominance of Jacobians with and without characteristic decom-
position for the lower discontinuity in Configuration 16.

θ J V −1JV

Left 0.2859 0.5986

Right 0.3245 0.5353

3. The discontinuity between quadrants 3 and 4 in Configuration 16

It is clear enough that the characteristic decomposition serves to transform the

original system into one whose Jacobian is more diagonally dominant, which is not

surprising given the motivation. Liu and Osher in [46] made a similar observation:

“...near discontinuities, the flux must be close to a flux which does not mix the

fields” (which is closer to the eigenvector hypothesis). A full examination would

consider the case where the transition from the left to the right state is not abrupt,

corresponding to a smeared shock within a stencil. Because such an analysis would

depend on the specific method being employed it is outside the scope of this chapter.

However, we now have a plausible explanation for why the best choice of the average

state can depend on the problem: in some cases, it might not provide enough

diagonal dominance or even reduce it.

We now turn our attention to the one-dimensional Euler equations to examine

124



the eigenvectors. To quantify the similarity between two sets P and Q of eigenvec-

tors, in the order of increasing eigenvalues and normalized to have L2 norm 1, we

introduce the quantity η(P,Q):

η(P,Q) =
∑
i

max ‖Pi −Qi sign(Pi ·Qi)‖L∞ (4.9)

The dot product accounts for eigenvectors being equivalent under sign change; it

automatically replaces Qi with −Qi if −Qi would make a smaller angle with Pi. A

value of η = 0 indicates perfect agreement, and for consistency all eigenvectors are

normalized to have length 1. We consider three cases:

1. A steady shock with left and right states:

qL =


1

1

3.7857

 , qR =


2.6667

2

8.7857

 (4.10)

2. The initial discontinuity in the Lax shock tube problem

3. The initial discontinuity in the Shu-Osher problem

Table 4.4 shows the similarity measure for the eigenvectors before and after char-

acterstic decomposition for these cases. In each case the eigenvectors of the trans-

formed system are less similar than those of the original system. In view of this

fact and the conceptual difficulties with comparing sets of eigenvectors we discard

the eigenvector hypothesis in favor of the diagonal dominance hypothesis, with the

caveat that diagonal non-dominance does not necessarily lead to oscillations if char-

acteristic variables are not used.
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Table 4.4: Similarity of Jacobian eigenvectors with and without characteristic de-
composition for several test cases.

Case JL and JR V −1JLV and V −1JRV

1D shock 0.1950 0.5968

Lax problem 0.9539 1.9995

Shu-Osher problem 1.3975 2.7462

4.3 Designing a Non-Oscillatory CCRWENO Method

4.3.1 Approximate Characteristic Decomposition

The characteristic decomposition procedure can be formulated as the solution

to a maximization problem.

Definition 4.1 (Generalized Characteristic Decomposition - One-dimensional Case).

Find a D ×D matrix M satisfying:

M = argmax
∑
j

θ(MJ(qj)M
−1) (4.11)

where the sum runs over all cells j in a stencil and J(qj) is the Jacobian of the

physical flux function evaluated at qj.

The characteristic decomposition is usually presented as a procedure, instead

of a solution of a specific problem, and a procedure that only applies naturally in one

dimension at that. Definition 4.1, however, extends naturally to multiple dimensions

as follows:

Definition 4.2 (Generalized Characteristic Decomposition - Multidimensional Case).
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Find a D ×D matrix M satisfying:

M = argmax
D∑
d=1

∑
~j

θ(MJd(q~j)M
−1) (4.12)

where Jd is the Jacobian of the physical flux in the dth direction and the interior

sum runs over all cells in the multidimensional stencil, indexed by the multi-index

~j (see Table 2.4).

To keep the componentwise reconstructions in CCRWENO requires that the

matrix M be diagonal in every stencil. However, such a matrix cannot improve the

diagonal dominance of an arbitrary matrix.

Proposition 4.1. Let D ∈ RN×N be a diagonal matrix. Then θ(DAD−1) ≥ θ(A)

for all A ∈ RN×N if and only if Dii = ±c for some constant c ∈ R, in which case

θ(DAD−1) = θ(A).

Proof. Let Aij be the i, j entry of A and di be the i, i entry of D. Rewriting the

inequality using the definition of θ:

θ(DAD−1) =
1

N

∑
i

|diAiid−1
i |∑

j |diAijd
−1
j |

=
1

N

∑
i

|Aii|
|di|
∑

j |Aij||d
−1
j |

= θ(AD−1)

≥ 1

N

∑
i

|Aii|∑
j |Aij|

(4.13)

which is true for arbitrary Aij if and only if:

|di|
∑
j

|Aij||d−1
j | ≤

∑
j

|Aij| ∀i

⇐⇒ |Aii|+
∑
j 6=i

|Aij|
|di|
|dj|
≤ |Aii|+

∑
j 6=i

|Aij| ∀i

⇐⇒
∣∣∣∣didj
∣∣∣∣ ≤ 1 ∀i, j with j 6= i

(4.14)
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Of course, if the last inequality is strict for some i and j then interchanging i and

j produces a violation. Therefore the only possibility is that |di| = |dj| for all i, j.

Clearly this situation would make the original inequality become an equality.

Allowing non-diagonal M would mean sacrificing the advantages of compo-

nentwise reconstruction, so another strategy is needed.

4.3.2 Limiters

Rather than altering the innards of the algorithm we now consider modifying

the solutions obtained with the CCRWENO method of Chapter 2. The oscillations

form from initial overshoots or undershoots that are imperfectly corrected in later

steps, so the most obvious strategy is to blend the CCRWENO solution with a

solution that is closer to the original cell averages. This blending should be per-

formed only near jumps since it is only there where oscillations are generated. Thus

some form of discontinuity detection is necessary. Fortunately this is already accom-

plished by the calculation of the non-oscillatory weights; a jump exists wherever one

of those weights is small. This reasoning leads to the following limiting procedure

for the subcell averages ūS in terms of the CCRWENO solutions ũS:

ūSj =


(1− r)ũSj + r

2D
ūj minω < Cω

ũSj otherwise

(4.15)

Experimentation, shown in Figure 4.6 suggests that Cω = 10−3, r = 0.2

removes the most oscillations without introducing excessive dissipation in a one-
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dimensional test case (a vertical cross-section of the moving shock on the right of

Configuration 16). The large undershoots that remain are generated by a different

mechanism, since they occur even when an upwind scheme is employed with the

characteristic decomposition. This subcell relaxation strategy extends straightfor-

wardly to arbitrarily many dimensions, and Figures 4.7 and 4.8 show the results

when it is applied to Configurations 3 and 17 respectively with the same parame-

ters. The original CCRWENO solution of Configuration 3 resolved the intersecting

shocks without difficulty, but because those shocks occur in such close proximity the

subcell relaxation introduces dissipation into too many cells leading to a worthless

solution. The solution to Configuration 17 is less degraded – the rolled-up contact

discontinuity is at least visible – but the true discontinuities are more smeared and

the oscillations not entirely eliminated. Indeed, along the lower edge of the domain

oscillations were created or accentuated that were not visible before (cf. Figure

3.9). Varying the weight threshold Cω and relaxation r produced similar results,

and applying the limiting to the point value as well has virtually no effect. Clearly

this simple strategy costs too much accuracy for its meager improvement on the

oscillations.

An alternative is the hierarchical reconstruction originated by Liu et al. in [34]

for central discontinuous Galerkin schemes and in [43] for traditional finite-volume

methods. This process takes a polynomial representation of the solution within a

cell and limits the derivatives in a recursive fashion, starting with the highest-order,

in a way that removes oscillations but preserves the original order of accuracy. Of

course, the obstacle in applying the hierarchical reconstruction to the CCRWENO
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Figure 4.6: Cω = 10−3, r = 0.2 give acceptable results for a simple test case.

130



Figure 4.7: Subcell relaxation introduces far too much dissipation in
Configuration 3.
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Figure 4.8: The contact roll-up in Configuration 17 is still resolved, but
the spurious oscillations not entirely eliminated.
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method in its present form is that no polynomial representation is directly available.

We can, however, build a polynomial from the reconstructed subcell averages and

the midpoint value, apply the hierarchical reconstruction, then set the new subcell

averages and point values from the limited polynomial. Figure 4.9 shows the results

of applying the hierarchical reconstruction with two choices of polynomial to the

case of the moving shock obtained by a cross-section of Configuration 16 at x = 0.9.

One option (HR2) is to use the quadratic that matches the two subcell averages and

point value within each cell. One expects this choice to give third-order accuracy, so

to obtain the desired fifth-order we include the next two adjacent subcell averages

to form a quartic polynomial in each cell (HR4). In both cases the hierarchical

reconstruction is applied at every cell in which at least one non-oscillatory weight

is less than 0.001. This threshold is sufficient to detect cells near discontinuities

without falsely marking cells in smooth regions. We see that HR2 reduces the

amplitude of most of the oscillations but does not remove them entirely, whereas

the result from HR4 coincides almost exactly with the unmodified solution.

The hierarchical reconstruction is ineffective because the oscillations generated

are smooth features and are not generated in the cells immediately next to the

shock. Figure 4.10 shows the unmodified CCRWENO solution at t = 0.0094, in

which we can see that the discontinuity in the density is smeared asymmetrically

producing a region to the left that is almost linear. This linear region produces

oscillations at around t = 0.0205, which can be seen in Figure 4.11. The asymmetry

and production of oscillations appear to result from the flux Jacobian being non-

constant, by comparison with Figure 4.12 which shows the same initial condition
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Figure 4.9: The low-degree hierarchical reconstruction provides some
improvement.
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evolved according to the flux:

f(q) =


0.2338 0.6408 0.0916

1.1165 −0.1697 0.4825

−0.8062 1.1153 1.3882

 q (4.16)

The coefficient matrix is chosen so that the jump across the shock is an eigenvector

with corresponding eigenvalue equal to the shock propagation speed s = 1.6523,

with the other eigenvectors chosen randomly and the other eigenvalues equal to 0.8

and −1 (note that the Jacobian is not diagonally dominant). Thus the exact solution

coincides with the exact solution to the Euler equations. Yet we see in Figure 4.12

that the shock is smeared almost symmetrically and no linear region appears to give

rise to oscillations.

Clearly the oscillations arise due to some property of the Euler flux. There-

fore a generally-applicable method that prevents them must incorporate informa-

tion about the flux function, and apparently in a more comprehensive manner than

merely evaluating it at point values during time advancement. Even characteris-

tic variables are not entirely sufficient, as the largest oscillations still arise at the

same locations and with similar amplitudes even when using an upwind scheme with

characteristic variables, as shown in Figure 4.13. This fact indicates that multiple

mechanisms produce oscillations, some of which are not addressed by the character-

istic decomposition.

Liu and Osher [46] suggest that a componentwise reconstruction will perform

well when it degenerates to the first-order reconstruction at discontinuities. This

strategy is undesirable in the context of compact reconstructions because the local
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Figure 4.10: The shock in Configuration 16 is smeared asymmetrically
and produces a nearly linear region behind itself.
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Figure 4.11: The linear region destabilizes into oscillations.
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Figure 4.12: A linear flux that gives the same exact solution displays
neither a linear region nor oscillations.
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Figure 4.13: Characteristic variables do not prevent all oscillations.
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first-order accuracy would pollute the accuracy away from the shock, and is impos-

sible in the context of WENO schemes because even if the reconstruction involves

only one subscheme, it will be of higher than first order. A reconstruction that can

adapt from fifth-order to first order would need to be of an entirely different type

than WENO.
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Chapter 5: Conclusion and Future Work

5.1 Conclusion

Compact upwind schemes such as the CRWENO scheme of Ghosh and Baeder

[18] lead to solving a block-tridiagonal system when reconstructing characteristic

variables, which is necessary for high-order upwind schemes to be stable. Conse-

quently, the CRWENO scheme is less computationally efficient measured by the time

required to obtain a specified error compared to the non-compact WENO scheme

with the same stencil and equal order of accuracy from [15]. On the other hand, com-

pact schemes reconstruct high-frequency features more efficiently than non-compact

schemes of the same order of accuracy and the upwind framework introduces many

practical drawbacks, so it is desirable to have a compact scheme that is more com-

putationally efficient at all wavenumbers. This goal, however, cannot be achieved

by upwind schemes because the characteristic decomposition is required in order to

reconstruct in the upwind direction.

An alternative framework is that of the central schemes, originated by Nessyahu

and Tadmor [10]. Their chief advantage is that by averaging over rather than re-

solving the Riemann fans at cell interfaces they do not require any Riemann solver,

nor do they require determining upwind directions by characteristic decomposition.
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These features address many of the practical troubles one encounters with the up-

wind schemes, and allow central schemes to be used as a “black box” solver that only

ever evaluates the physical flux function and not any of its derivatives. In practice,

however, central schemes of fifth or higher order apparently need the characteristic

decomposition to fully avoid spurious oscillations [29]. The literature provides no

explanation for this fact that is entirely convincing; however, the juxtaposition of

the fourth-order CWENO4 of [28] with the nearly identical fifth-order CWENO5

of [29] (both non-compact) would appear to provide a clue. The only difference is in

the reconstruction of the point value, which is fourth-order in CWENO4 but fifth-

order in CWENO5. This fact is surprising because practical experience shows that

the point-value reconstruction has only a weak influence on the solution, suggesting

that this subtle difference is significant in some way. One plausible explanation is

that in CWENO5 the subcell and point value reconstructions use different ideal

weights whereas in CWENO4 the ideal weights are the same for both. This fact

is significant because it implies that the reconstructions CWENO5 cannot be ex-

pressed as an evaluation of a single polynomial. In comparison, CWENO4 by its

construction forms one polynomial and uses it for both the subcell and point value

reconstructions. This inconsistency in CWENO5 could manifest as an instability

that the characteristic decomposition mitigates. This hypothesis has the additional

benefit of explaining why central schemes beyond specifically fourth order require

characteristic variables – they must use different polynomials for their reconstruc-

tions.

The fifth-order non-compact central scheme is uniquely defined, so a fifth-order
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central scheme that uses one polynomial must be compact. This constraint aligns

neatly with the other goal of developing a central compact-reconstruction WENO

scheme for efficiency and practical flexibility. Unfortunately, compact schemes do

not have a clear correspondence with polynomials so we settled for designing a

compact scheme with the same ideal weights. This consideration leads to the main

contribution of the work: the CCRWENO method and a variant that has a semi-

discrete form. These methods retain the advantages of requiring no Riemann solver

and efficiently resolving fine features, and are more efficient than the non-compact

CWENO5, but still produce oscillations in many cases demonstrating that the need

for characteristic variables was not fully addressed.

To modify the CCRWENO method to truly avoid the characteristic decompo-

sition requires fully understanding why that process is necessary. Close scrutiny of

the explanations given in the literature reveals that none fully explains all the exper-

imental knowledge about when one should perform a characteristic decomposition.

The second contribution of this work was to consider some promising alternative

explanations and decide that the effect of the characteristic decomposition is to

make the flux Jacobians in each cell more diagonally dominant. Unfortunately this

conclusion does not allow us to modify the core CCRWENO method in such a way

as to avoid the characteristic decomposition while retaining its desirable properties,

so we consider strategies to alter the CCRWENO results in a way that suppresses

the oscillations. Such a limiting strategy should be as computationally inexpen-

sive as possible yet allow a natural extension to multiple dimensions. A simple

first-order limiter was tested and found to be far too diffusive, and the hierarchical
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reconstruction of [34] and [43] did not quell the oscillations in even one dimension.

5.2 Future Work

We have amassed convincing evidence that the characteristic decomposition

functions by improving the diagonal dominance of the Jacobians in a given stencil,

and proven that this cannot be done within the reconstruction except with a diagonal

transformation matrix. Thus it is necessary to couple the components which would

lead to the compact reconstruction being less efficient than its non-compact version.

The viability of compact reconstructions therefore depends entirely on the quality of

any limiting scheme applied to the reconstructed quantities. The first direction for

future work is to develop a more sophisticated limiter for the subcell averages. To

preserve the dimension-scalability of CCRWENO this limiting procedure must be

inherently multidimensional, and to minimize computational expense it should make

maximal use of the information already computed by the reconstruction process.

On the other hand, use of a limiter calls into question the wisdom of a per-

forming a WENO-type reconstruction in the first place. In [43], for example, the

initial polynomial to which the hierarchical reconstruction is applied is simply the

central reconstruction polynomial. This situation highlights an inherent awkward-

ness to WENO methods that has been present throughout the current work: the

WENO process avoids spurious oscillations in the reconstruction, yet additional ef-

fort is needed to prevent spurious oscillations in the evolving solution. This seeming

paradox stems from the fact that reconstruction and evolution are fundamentally
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different operations; the involvement of time in the latter introduces information

propagation behavior which the static reconstruction process does not account for.

Consequently, progress might be made toward eliminating the oscillations by em-

ploying a unified space-time formulation with a reconstruction that involves data

at multiple time steps. This could eliminate the need for upwinding but does not

affect Jacobians. Another possibility to achieve the same end is to involve the flux

function more heavily in the reconstruction in a way that detects relevant physics.

The characteristic decomposition does this, so the objective would be to obtain a

similar result using only flux evaluations.

The CCRWENO method presented here requires a uniform grid with no vari-

ation in cell widths along each dimension. If a mapping from a non-uniform grid to

a computationally uniform grid is not available then the method would need to be

reformulated in a way that accounts for variable cell widths. It may not be possible

to do this while keeping the ideal weights the same. Alternatively, local variation

in cell size could be accomplished by adaptively refining the grid. The CCRWENO

method already incorporates two levels of grid resolution – the main grid and the

grid of subcells – so it can be applied recursively to successively finer grids in a

subregions of coarser grids. The obstacle to this improvement is interpolation of

the point values which are still required for time advancement. Midpoint values in

the finer cells will correspond to off-center points in the coarser cells and the val-

ues at those off-center points will need to be interpolated in a non-oscillatory way.

The payoff, however, is that by using coarser grids in locations where resolution

is less important the size of the linear system to be solved can decrease. Because
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solving the system is the most restrictive barrier to high performance the payoff for

implementing the adaptive mesh refinement would be enormous.
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Appendix A: Analysis of Linear Schemes by Generating Functions

A.1 Introduction

Consider a linear finite-difference approximation of the derivative operator:

∑
k

Lk(q
′)j+k =

∑
k

Rkqj+k (A.1)

The coefficients Lk and Rk might be chosen to cancel leading-order terms of the

Taylor expansion of the truncation error or to optimize spectral properties. In

either case one must solve a system of equations for the coefficients, a system which

changes if the stencil (i.e. the set of indices k) changes or if the operator to be

approximated changes. In finite-volume schemes the quantities on the right-hand

side are cell-averages instead of point values of the solution; thus Taylor expansion

of the cell averages becomes necessary, complicating the process of obtaining the

coefficients.

A.2 The Generating Function of a Linear Scheme

Suppose ũ : R → R is an analytic function on some region of interest and let

uj = ũ(j∆x), where ∆x is a small grid spacing. Consider the Taylor expansion of
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ũ((j + k)∆x) = uj+k about the point xj = j∆x:

uj+k =
∞∑
r=0

krũ
(r)
j

∆xr

r!
(A.2)

There is a clear bijection between these expansions and those of exponentials. In-

deed, for each k associate uj+k ↔ ekz:

ekz =
∞∑
r=0

kr
zr

r!
(A.3)

In determining coefficients of a finite-difference scheme we would consider the ex-

pansion of a linear combination of uj+k for various values of k and cancel leading

powers of ∆x. In view of the aforementioned bijection, this procedure is equivalent

to cancelling powers of z in the same combination of ekz:

∑
k

ckuj+k =
∞∑
r=0

(∑
k

ckk
r

)
ũ

(r)
j

∆xr

r!∑
k

cke
kz =

∞∑
r=0

(∑
k

ckk
r

)
zr

r!

(A.4)

Clearly the O(∆xp) term in the first expansion is cancelled if and only if the O(zp)

is cancelled in the second, since their coefficients are the same. Conveniently, the

coefficient of zr/r! can be extracted by taking the rth derivative of the exponential

combination and evaluating it at z = 0:

∑
k

ckk
r =

dr

dzr

∣∣∣∣∣
z=0

(∑
k

cke
kz

)
(A.5)

The utility of the generating function, therefore, is that it combines all the terms

in the Taylor expansion into a single object that can be manipulated algebraically

and differentiated to obtain the same result that would have been obtained by

manipulation of individual terms in the expansion. Moreover, the conversion to the
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generating function abstracts away the dependence of the output of an operator on

the specific function ũ; observe that no derivatives appear in the z expansions, nor

even dependence on the point j. As a result, the coefficients in the expansion cannot

depend on ũ - they must be constants. This restriction enables useful properties of

the generating function but limits the type of operator that can be considered.

Definition A.1 (Admissible Operator). Let A be the space of analytic functions.

An operator P : A → A is admissible if for any ũ ∈ A the output Pũ can be written

as:

(Pũ)(y) =
∞∑
r=0

Prũ
(r)(y)

∆xr

r!
(A.6)

where Pr are constants that depend only on r.

The grid spacing ∆x appears on the right-hand side because the operator P

may depend on ∆x, as in the case of the shift operator which shifts the function

ũ by ∆x. From the definition it is clear admissible operators must be linear due

to the linearity of differentiation. We can now define the generating function of an

admissible operator.

Definition A.2. Let P : A → A be an admissible operator. Then the generating

function P̂ (z) of P is:

P̂ (z) =
∞∑
r=0

Pr
zr

r!
(A.7)

From this definition it is clear that the transformation P → P̂ is injective.

Theorem A.1. If the generating functions for operators P and Q are P̂ (z) and Q̂(z)

respectively, then the generating function of the composition P ◦Q is P̂ (z)Q̂(z).
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Proof. Consider the composition of two operators P and Q:

(P ◦Q)ũ(j∆x) = P (Qũ)(j∆x) =
∞∑
r=0

Pr
dr

dxr

∣∣∣∣∣
x=j∆x

(Qũ)
∆xr

r!

=
∞∑
r=0

Pr
dr

dxr

∣∣∣∣∣
x=j∆x

(
∞∑
s=0

Qsũ
(s)
j

∆xs

s!

)
∆xr

r!

=
∞∑
r=0

∞∑
s=0

PrQsũ
(r+s)
j

∆xr+s

r!s!

=
∞∑
r=0

∞∑
s=0

PrQs

(
r + s

r

)
ũ

(r+s)
j

∆xr+s

(r + s)!

(A.8)

Let m = r + s:

(P ◦Q)ũ(j∆x) =
∞∑
m=0

m∑
r=0

PrQm−r

(
m

r

)
ũ

(m)
j

∆xm

m!

=
∞∑
m=0

(PQ)mũ
(m)
j

∆xm

m!

(A.9)

Therefore the composition P ◦Q has the generating function:

P ◦Q↔ P̂ ◦Q(z) =
∞∑
m=0

(PQ)m
zm

m!
(A.10)

where the Taylor coefficients depend on those of P and Q themselves according to:

(PQ)m =
m∑
r=0

PrQm−r

(
m

r

)
(A.11)

On the other hand, consider the product of P̂ (z) and Q̂(z):

P̂ (z)Q̂(z) =
∞∑
m=0

dm

dzm

∣∣∣∣∣
z=0

(P̂ (z)Q̂(z))
zm

m!

=
∞∑
m=0

(
m∑
r=0

(
m

r

)
P̂ (r)(0)Q̂(m−r)(0)

)
zm

m!

=
∞∑
m=0

(
m∑
r=0

(
m

r

)
PrQm−r

)
zm

m!

(A.12)

since the rth derivative of the generating function at z = 0 is the rth Taylor coeffi-

cient of the corresponding operator. But this is the same expression that appeared
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in the expansion of the composition P ◦Q. It follows that P̂ ◦Q(z) = P (z)Q(z) =

Q(z)P (z) = Q̂ ◦ P (z).

The restriction that the Taylor coefficients be independent of ũ implies that

we can only consider operators that commute with each other. As long as we confine

our attention to linear schemes, however, this is not a relevant limitation.

Corollary A.1. Let P be an admissible operator. If P has an inverse P−1, then

the generating function of the inverse satisfies 1 = P̂ (z)P̂−1(z)

Proof. If an operator P is invertible, then its inverse P−1 must satisfy (P ◦P−1)(ũ) =

ũ. Clearly, then, the Taylor expansion of (P ◦ P−1)(ũ) must be

(P ◦ P−1)(ũ)(j∆x) = ũ(j∆x) =
∞∑
r=0

Prũ
(r)(j∆x)

zr

r!
(A.13)

where Pr = δr,0. Then the generating function is simply:

̂P ◦ P−1(z) = 1 (A.14)

But we know from Theorem A.1 that the generating function of a composition is

the product of the individual generating functions. Therefore:

1 = P̂ (z)P̂−1(z) (A.15)

It follows that if P̂ (z) = 0 for any z then the operator P is not invertible.

The prime example of this fact is P = D, the differentiation operator. In that case

D̂(z) = z which vanishes when z = 0, and as we know differentiation is invertible

only up to an additive constant.
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Table A.1 the generating functions corresponding to operators that frequently

arise in the context of finite-difference and finite-volume schemes.

Table A.1: Generating functions for common FD/FV operators

Operation Definition Pr P̂ (z)
Shift (Eũ)(x) = ũ(x+ ∆x) 1 ez

Derivative (Dũ)(x) = ∆xũ′(x) δ1,r z

Averaging (Aũ)(x) = 1
∆x

∫ x+∆x/2

x−∆x/2
ũ(s) ds 1+(−1)r

2(r+1)(r+1)

2 sinh(z/2)
z

Remark. One might find it helpful to think of the variable z in the generating

functions as an operator z = ∆xD where D is the differentiation operator. Then

the definition of the shift operator becomes E = ezD which is simply a restatement of

Taylor’s theorem. This conception can be used to obtain the same practical results

as the generating function system, but leads to expressions where one differentiates

with respect to the operator z. Rather than trust the formal equivalence between

power-series expressions involving the operator z and the corresponding functions of

the variable z, we eschew the operator notation from the beginning and deal solely in

generating functions. This approach has the advantage that, because we are dealing

with functions, all the usual rules for manipulating functions are available due to

linearity of the conversion to generating functions and Theorem A.1.

A.3 Applications

In this section we present applications of the generating function approach to

several problems that arise in the construction of finite-volume and finite-difference
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schemes.

A.3.1 Truncation Error of Reconstructions

In the development of the CCRWENO method we need to construct sub-

schemes of prescribed order of accuracy for the reconstruction of subcell averages

from cell averages. The ordinary approach to this problem would be to construct a

table of the Taylor coefficients of the cell- and subcell-averages involved and solve

a linear system for the coefficients that cancel leading-order error terms. This ap-

proach rapidly becomes tedious because the expansion for the average over one cell

does not directly lead to the expansion for the average over a different cell. The

generating function system, by abstracting away the location-dependence of the

expansion, removes this obstacle. For example, suppose we want a pth-order recon-

struction. Let P and Q be operators (e.g. cell average and subcell average). Then

the scheme takes the form:(∑
k

LkE
k

)
Q =

(∑
k

RkE
k

)
P + T (A.16)

where T is an operator that returns the truncation error. We can solve for the

generating function of T by considering the generating function of the other two

terms. (∑
k

Lke
kz

)
Q̂(z) =

(∑
k

Rke
kz

)
P̂ (z) + T̂ (z) (A.17)

Therefore:

T̂ (z) =

(∑
k

Lke
kz

)
Q̂(z)−

(∑
k

Rke
kz

)
P̂ (z) (A.18)
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The accuracy condition amounts to requiring the first p derivatives of T̂ (z) to van-

ish at z = 0. Note that the truncation error expansion is centered on the point

corresponding to k = 0.

We are interested in ensuring that the subcell and point value reconstructions

in the CCRWENO method are stable, in the sense that if a reconstruction is applied

to a Fourier mode then the output will be a mode with lesser or equal amplitude.

Let A be the cell-average operator and let Q be either the point-value or subcell-

average operator and consider a scheme of the form Eq. (A.16). The application of

that scheme to a Fourier mode eimx produces a mode of the same wavenumber m

with amplitude G:(∑
k

LkE
k

)
QG(m)eimx =

(∑
k

RkE
k

)
Aeimx (A.19)

For stability we need |G(m)| ≤ 1 for all m. The amplification factor G(m) can be

found using the generating function. Consider an admissible operator P acting on

eimx:

P (eimx)(y) =
∞∑
r=0

Pr
(
(im)reimy

) ∆xr

r!

=

(
∞∑
r=0

Pr
(im∆x)r

r!

)
eimy

= P̂ (im∆x)eimy

(A.20)

Applying this fact to both sides of Eq. (A.19) and canceling eimy on both sides gives

an expression for the amplification factor:(∑
k

Lke
ikm∆x

)
Q̂(im∆x)G(m) =

(∑
k

Rke
ikm∆x

)
Â(ikm∆x) (A.21)

G(m) =

∑
k Rke

ikm∆x∑
k Lke

ikm∆x

Â(im∆x)

Q̂(im∆x)
(A.22)
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We have recovered the result of traditional Fourier analysis but with the added

capability of accounting for the effects of averaging.

A.3.2 Error Cancellation in CRWENO Reconstructions

A WENO-type scheme built from a given set of subschemes need not have

positive ideal weights. Negative ideal weights can cause instability unless the recon-

struction is modified [36], but the special treatment required to prevent instability

incurs extra computational expense. One would therefore prefer to design sub-

schemes that together have only positive ideal weights. The CRWENO schemes

of Ghosh and Baeder [18] use the following subschemes to reconstruct the right

interface value qj+1/2 from cell averages (cf. Eq. (1.32)):

2

3
q̂j−1/2+

1

3
q̂j+1/2 =

1

6
q̄j−1+

5

6
q̄j ω̄1 =

1

5

1

3
q̂j−1/2+

2

3
q̂j+1/2 =

5

6
q̄j +

1

6
q̄j+1 ω̄2 =

1

2

2

3
q̂j+1/2 +

1

3
q̂j+3/2 =

1

6
q̄j +

5

6
q̄j+1 ω̄3 =

3

10

(A.23)

The coefficient arrays for the left- and right-hand sides are:

L =


2
3

1
3

0

1
3

2
3

0

0 2
3

1
3

 , R =


1
6

5
6

0

0 5
6

1
6

0 1
6

5
6

 (A.24)

Observe that the second subscheme is the reflection of the first about point j and

that the third is simply the first shifted one cell to the right. One might conjecture

that this structure is sufficient to ensure positive weights and this question can be

answered using the generating function system.
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Let Q be the left-hand side operator, which returns the function value ∆x/2

to the right: Q = E1/2. Also let the right-hand side operator P be the cell-average

operator. Then the generating function for truncation error of the first subscheme

is:

T̂1(z) =

(
1∑

k=−1

L1,ke
kz

)
ez/2 −

(
1∑

k=−1

R1,ke
kz

)
2 sinh(z/2)

z
(A.25)

Since the third subscheme is the first subscheme shifted by one cell (i.e. by ∆x) we

must have that its truncation error satisfies:

T̂3(z) = ezT̂1(z) (A.26)

The reflection of the first subscheme through the point j is given by:(
1∑

k=−1

L1,ke
−kz

)
e−z/2 =

(
1∑

k=−1

Ri,ke
−kz

)
2 sinh(z/2)

z
(A.27)

The factor ez/2 on the left-hand side of the original subscheme becomes e−z/2 in

order to refer to the correct faces. We can see that the result of the reflection is the

same as replacing z in the original subscheme with −z, thus the truncation error

for the second subscheme is related to that of the first by:

T̂2(z) = T̂1(−z) (A.28)

Eqs. (A.25)-(A.28) hold for any CRWENO scheme constructed by reflecting and

shifting an initial subscheme. Suppose the first subscheme is pth-order accurate.

Then:

T̂
(r)
1 (0) = 0, r = 0, 1, · · · , p− 1 (A.29)

We are interested in finding positive solutions to the system (all derivatives are
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evaluated at z = 0): 
1 1 1

T̂
(p)
1 T̂

(p)
2 T̂

(p)
3

T̂
(p+1)
1 T̂

(p+1)
2 T̂

(p+1)
3




ω̄1

ω̄2

ω̄3

 =


1

0

0

 (A.30)

where we normalize the ideal weights by requiring that they sum to 1. Using Eqs.

(A.25)-(A.28) we can express the truncation errors of the second and third sub-

schemes in terms of those of the first:
1 1 1

T̂
(p)
1 T̂

(p)
2 T̂

(p)
3

T̂
(p+1)
1 T̂

(p+1)
2 T̂

(p+1)
3

 =


1 1 1

a (−1)pa a

b (−1)p+1b (p+ 1)a+ b

 (A.31)

where a = T̂
(p)
1 , b = T̂

(p+1)
1 and we have used the fact that:

dr

dzr

∣∣∣∣∣
z=0

ezT̂1(z) =
r∑
s=0

(
r

s

)
T̂

(s)
1 =

r∑
s=p

(
r

s

)
T̂

(s)
1 (A.32)

since the first subscheme is pth-order accurate. The system Eq. (A.30) can be solved

by Cramer’s rule:

D = a2(p+ 1)((−1)p − 1)

ω̄1 =
(−1)p

D
(2ab+ a2(p+ 1))

ω̄2 =
1

D
(−a2(p+ 1))

ω̄3 =
(−1)p

D
(−2ab)

(A.33)

The determinantD is nonzero only if the pth-order truncation coefficient a is nonzero

(which it is by definition of p) and if p is odd, in which case D < 0. Taking p to be
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odd, Eq. (A.33) becomes:

D = −2a2(p+ 1)

ω̄1 =
−1

D
(2ab+ a2(p+ 1))

ω̄2 =
−1

D
(a2(p+ 1))

ω̄3 =
−1

D
(−2ab)

(A.34)

Thus for positivity of all the ω̄i we need:

0 < 2ab+ a2(p+ 1)

0 < a2(p+ 1)

0 < −2ab

(A.35)

The second of these inequalities is satisfied by default. The third implies that a and

b must have opposite sign and b 6= 0, and combined with the first gives the necessary

and sufficient condition:

0 < −2ab < a2(p+ 1) (A.36)

Since the two nonzero terms are positive, the latter inequality is equivalent to

2|a||b| < a2(p+ 1)⇔ 2|b| < |a|(p+ 1) which can be written:

|b|
|a|

<
p+ 1

2
(A.37)

Thus positive weights exist if the truncation error coefficients of the first subscheme

do not grow too rapidly. The generating function method enabled this result by

allowing us to easily relate the truncation errors of the subschemes.

158



A.3.3 Dispersion, Dissipation, and the Modified Equation

The generating function method extends straightforwardly to space-time dis-

cretizations by involving multiple variables in the generating function, which allows

the dispersion and dissipation of a numerical method to be analyzed holistically.

Analogously to the one-variable case, suppose an operator P : A → A is given by:

(Pũ)(x, t) =
∞∑

r,s=0

Pr,s

(
∂r+s

∂xr∂st
ũ(x, t)

)
∆xr∆ts

r!s!
(A.38)

Then the corresponding generating function is:

P̂ (ξ, τ) =
∞∑

r,s=0

Pr,s
ξrτ s

r!s!
(A.39)

As before, the space A consists of all functions that are analytic on a region of

interest and Pr,s are constants that depend only on r and s. The construction of

the generating function parallels the single-variable process. For example, consider

the first-order upwind scheme for the linear advection equation:

qn+1
j = qj − σ(qnj − qnj−1) (A.40)

where σ is the CFL number. Relative to the value qnj , the value qn+1
j at the next

time step is shifted in time in the same way that qnj−1 is shifted in space. Converting

both sides of Eq. (A.40) to their generating functions gives:

eτ = 1− σ(1− e−z) (A.41)

As before, the action of this method on a Fourier mode eimx can be found by simply

replacing z by im∆x. By analogy with the traditional Fourier analysis, one sees
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that the analog of the amplification factor is the expression eτ since both describe

the change at a point over one time step. The conversion to generating functions

thereby gives the amplification factor immediately:

G(m∆x) = 1− σ(1− e−im∆x) = (1− σ + σ cos(m∆x))− iσ sin(m∆x) (A.42)

The generating function method can be used to analyze more complicated methods.

In the general case, the conversion of a fully discrete method can be written as:

M(eτ ) = P (z) (A.43)

The amplification factor can be found simply as:

G = M−1(P (im∆x)) (A.44)

where M−1 is the inverse function of M (not its reciprocal).

With propagation speed a and an initial condition given by q(x, 0) = eimx, the

exact solution of the linear advection equation Eq. (1.49) is clearly:

q(x, t) = eim(x−at) = eimxe−imat = exp

(
−im∆xσ

t

∆t

)
q(x, 0) (A.45)

where σ = a∆t/∆x. Discretizing this exact solution:

qn+1
j = e−im∆xσqnj (A.46)

Therefore the exact amplification factor is G = exp(−im∆xσ). The amplification

factor Eq. (A.44) of the fully discrete method produces an approximation G∗ to the

exact amplification factor.

G∗ = exp(−im∆x(σ∗R + iσ∗I )) = exp(−im∆xσ∗R) exp(m∆xσ∗I ) (A.47)
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where σ∗R and σ∗I are respectively the real and imaginary parts of σ∗. We see that the

σ∗I controls the magnitude of G∗ (the dissipation) while σ∗R controls the propagation

speed of the discrete solution and thus the dispersion. σ∗R and σ∗I can be found by:

σ∗R =
−1

m∆x
=(lnG∗) = − lnG∗ − lnG∗

m∆x
= − 1

m∆x
ln

(
G∗

G∗

)
(A.48)

σ∗I =
1

m∆x
ln |G∗| (A.49)

σ∗R should approximate σ while σ∗I should approximate 0.

Thus far the generating function approach has provided an alternative, perhaps

more elegant path to the same results that traditional Fourier analysis would obtain.

We close this appendix by describing and demonstrating an application in which

it has a unique and decisive advantage. Warming and Hyett [47] introduced the

concept of a modified equation, a partial differential equation for which the solution

of the discretized equation is an exact solution. Given a discretization of a PDE Eq.

(A.43), the modified equation takes the form:

∆tqt =
∞∑
r=0

cr∆x
r ∂

rq

∂xr
(A.50)

which we have adapted slightly compared to [47] so that the coefficients cr are all

dimensionless. In practice, one traditionally obtains the modified equation by taking

Taylor expansions of the solution at each point involved in the fully discrete scheme,

then isolating the qt term. At this point the right-hand side contains derivatives with

respect to both x and t. The time derivatives are cancelled by first differentiating

the entire equation with respect to t and substituting the result in place of the qtt

term on the right-hand side, and repeating this process for all terms that involve
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time derivatives. This approach is immensely tedious due to the need to differentiate

and track infinitely many terms at each step. It is also not always clear in advance

how many terms at each step one must keep in order to obtain the leading terms in

the final result. The generating function method sidesteps all of these problems.

Observe that Eq. (A.50) involves a single time derivative on the left and only

spatial derivatives on the right-hand side. Thus after transforming to generating

functions, the left-hand side must be simply τ (the generating function for a lone

first derivative with respect to time) while the generating function on the right must

not depend on τ at all. Because the solution to the modified equation Eq. (A.50)

and the fully discrete method Eq. (A.43) are the same, the generating functions for

the modified equation and the fully discrete method must be equivalent i.e. each

can be obtained from the other. We desire, therefore, to obtain an equation for τ

in terms of z from Eq. (A.43). But this is simple:

M(eτ ) = P (z)⇒ τ = ln(M−1(P (z))) = lnG(z) (A.51)

In this sense of generating functions, the modified equation is simply the natural

logarithm of the amplification factor. To demonstrate, consider again the first-order

upwind method Eq. (A.40). The generating function for the modified equation is:

Y (z) = ln(1− σ(1− e−z)) (A.52)

The coefficients of individual terms can be extracted by evaluating derivatives of
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Y (z) at z = 0. Clearly Y (0) = 0.

Y ′(z) =
−σe−z

1− σ + σe−z
⇒ Y ′(0) = −σ

Y ′′(z) =
(σ − σ2)e−z

(1− σ + σe−z)2
⇒ Y ′′(0) = σ − σ2

Y ′′′(z) =
(σ − σ2)e−z(2σe−z − (1− σ + σe−z))

(1− σ + σe−z)3
⇒ Y ′′′(0) = (2σ − 1)(σ − σ2)

(A.53)

Therefore the first three terms of the modified equation are (note the division by

factorials due to the definition of the generating function):

∆tqt = −σ∆xqx + (σ − σ2)
∆x2

2
qxx + (2σ − 1)(σ − σ2)

∆x3

6
qxxx + · · · (A.54)

Compare this result with the modified equation presented in e.g. [9] and then com-

pare the effort required to obtain it by generating functions versus the effort required

by the traditional method described there.
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