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Invasive species have largely negative impacts on the environment and the economy. 

The management and regulation of invasive plants are facilitated using screening 

tools, such as weed risk assessments (WRAs) to predict the invasive potential of non-

native plants. The identification of these species and their subsequent regulation on 

importation helps to reduce the risk of future ecosystem and economic costs. 

Globally, there are many different types of highly useful WRAs already available. 

However, in this day of big data and powerful predictive analytics, there is an 

increasing demand for the development of new and more robust screening tools. In 

this thesis, I use the machine learning algorithm, Random forests, to develop a new 

WRA. I show that random forest model has greater predictive accuracies than an 

existing logistic regression model and that random forest is a better learner. In 

addition, variable importance analysis was performed to identify factors associated 

with invasive status classification of non-native plants. The study suggests that 



  

random forests make powerful weed risk screening tools and should be utilized for 

assessing invasive risk potential along with other WRAs. An integrative approach for 

evaluating weed risk can greatly serve to facilitate the WRA process.  
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Foreword 
 

This thesis is one of the fruits of my labor in the department of Plant Science and 

Landscape Architecture at the University of Maryland, College Park. Entering 

graduate school in PSLA of the college of Agriculture and Natural Sciences (AGNR) 

was a true learning experience. I started out my studies as an idealistic individual who 

wanted to grapple with many different aspects of the Invasion Ecology of plants. 

After a period of uncertainty I was able to pinpoint the direction my master’s thesis 

would ultimately take. 

I did not have much experience in programming prior to this experience, but I 

wanted to challenge myself and learn something new in my graduate student journey. 

Although learning the syntax of programming was challenging in the beginning, I 

soon got the hang of using such a tool and came to really enjoy my time coding and 

interacting with other R programmers whether by attending R Ladies meet ups or 

interacting with other R users on Stack Overflow and other programming centered 

resources. I became fascinated with the many different ways coding can be utilized to 

complete a wide variety of tasks. I was particularly excited by the way individuals in 

academia use Open Source tools like R to facilitate their research interests.  

The basis for this research originally stemmed from my passion for finding 

ways to improve what is already available. After many conversations with Dr. Tony 

Koop at the United States Department of Agriculture (USDA) Animal and Plant 

Health Inspection Services (APHIS), I was given the opportunity to use the Plant 
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Protection and Quarantine (PPQ) Weed Risk Assessment (WRA) dataset to start my 

research project of a comparative analysis of random forests and logistic regression 

for weed risk assessment. I hope you enjoy reading my work.  
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Chapter 1: Literature Review: The invasion process and the 

regulation of non-native invasive plants through predictive 

modeling  

 

Non-native invasive plants can cause ecological and economic damage to new 

environmental ranges (Pimentel et al., 2000; Richardson et al., 2000; Hulme et al., 

2013). Biological invasions in agriculture account for a total of  $120 billion in losses 

annually and out of that figure, alien weeds, which are plants that grow in unwanted 

geographical areas without being purposefully cultivated (Baker, 1991), cause $24 

billion loss in the agricultural industry (Pimentel et al., 2005). Strategies implemented 

to regulate invasive plant species include prevention through the implementation of 

screening tools like weed risk assessments (WRAs), and management practices such 

as, early detection, eradication, and control (Poorter et al., 2005). Eradication and 

control of invasive plants can be costly, while prevention and early detection are the 

most economic strategies for minimizing invasive spread (Lockwood et al., 2007).  

Prevention in particular, through the use of screening tools such as WRAs, is 

the first line of defense against the spread of invasive plants and there is a need for 

the development of a faster scientific assessment of weed risk of plant taxa proposed 

for introduction. Conducting these assessments can better serve the interests of 

stakeholders if there is a concern for the plant taxon risk potential.  

Inclusion of more types of data in the assessment will further help identify 

potential invasive plant taxa in the pending risk analyses process. In particular, 
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ecological and climate change models may inform the development of new, more 

dynamic and integrative weed risk models. As the climate is changing and 

ecosystems are not static, it becomes essential to have a dynamic WRA that 

incorporates predictions of climate change. However, developments of such 

integrative WRAs are limited to the availability of more and new types of data 

describing the relationship of non-native plants in terms of niche suitability, extreme 

weather event factors, plant-soil-microbe feedbacks and how it relates to species 

abundance, molecular biology studies that explore their genome attributes. Given the 

challenge in amassing ecological data specific to plant taxon proposed for 

introduction, a different approach to improve the predictive accuracies of WRAs 

could be to use improved machine-learning statistical methods, such as Random 

forests, on already existing data. 

 

The invasion process 

Invasion ecology has been a rapidly growing field in biology over the last six decades 

(Mooney et al., 2005; Richardson & Pysek, 2008; Hoopes et al., 2013). 

Understanding the invasion process is an important facet to the study of invasive 

species. The invasion process has been ably described elsewhere by Theoharides & 

Dukes (2007) and Mooney et al. (2005). The four stages of the invasion process will 

be described here. The invasion stages include the transport, establishment, spread, 

and impact of invasive species.  

The first stage is the physical transport of the non-native species into a new 

geographical location. The rapid acceleration of large-scale anthropogenic 
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movements can be attributed to the increased spread of invasive plants (Hulme, 

2015).  

Establishment, the second stage of the invasion process, occurs when non-

native species are able to survive and reproduce outside their native range. This may 

involve overcoming barriers such as abiotic and biotic factors of the new 

environment, as well as competition with native species for space and resources 

(Richardson et al., 2000).  

The third invasion stage is spread, where the non-native population spatially 

disperses into areas beyond the initial establishment. Dispersal through multiple 

vectors may help non-native plants to become widespread (PPQ, 2016). Dispersal 

mechanisms of successful plant invaders, which make them well-adapted to a large 

range of ecosystems, include unique characteristic traits, such as prolific and viable 

seed production, spreading roots, rhizomes and runner adventitious roots, or creeping 

stems (Richardson et al., 2000).  

Identification of plant traits that promote invasiveness can provide insight into 

the spread stage of the invasion process. For example, performance-related traits such 

as physiology, leaf-area allocation, shoot allocation, growth rate, and fitness showed a 

higher association with invasiveness for plants (see Van Kleunen et al., 2010 for the 

complete meta-analysis of 117 studies comparing trait differences between invasive 

and non-invasive plant species).  

The last stage of the invasion process is impact, where humans perceive the 

magnitude of impacts caused by invasive species. These impacts include negative 

effects on ecosystem structure and function (Neckles, 2015; Naeem et al., 1994), 
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agriculture (Paini et al., 2016), forestry (Anagnostakis, 1987; Maloy, 1997), fisheries 

(Griffiths et al., 1991; Walton et al., 2002; Rothlisberger et al., 2012), and recreation 

(Eiswerth et al., 2005; Pimentel et al., 2000). See the example below for impacts of 

invasive plants in enactment of regulatory policies. Overall, each stage of the invasion 

process is complex and is influenced by myriad of factors. 

Impacts of invasive cheatgrass and medusahead in action: Greater sage grouse  

Populations of greater sage grouse, a keystone species found in the sagebrush 

ecosystem, have dwindled throughout the years (Crawford et al., 2004). This can 

indirectly be contributed to increasing populations of cheatgrass and medusahead 

plants in the Great Basin. These invasive plants, cheatgrass and medusahead, 

outcompete native plants, such as sagebrush, and are easily combustible in the 

Sagebrush-Steppe habitat (Wambolt et al., 2002; Taylor et al., 2012). This becomes 

an issue for sage grouse, since they are heavily reliant on sagebrush for food, nesting, 

and cover from predators (Wambolt et al., 2002; Schroeder et al., 2006). While 

wildfires are a crucial component of the health of the sagebrush ecosystem, an 

increased frequency of fires jeopardizes the livelihood of sage grouse causing an 

overall decrease in their populations (Wambolt et al., 2002). Decreases in sage grouse 

populations are culturally impactful for humans who game these birds (Guttery et al., 

2016).  

In the past there have been failed attempts to list sage grouse under the 

Endangered Species Act (Hess, 2015). National Defense Authorization Act (NDAA), 

put together by the House Armed Services Committee, contains bill H.R. 4739, which 

prevents the greater sage grouse from being listed under the Endangered Species Act 
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of 1973 before September 30, 2026 (2016). This $600 billion annual bill for the U.S. 

defense policy argued that considering these birds as endangered would limit use of 

its rangeland for military training.  

Since the sage grouse was not added to the endangered species list, the lands 

inhabited by sage grouse will continue to be used for oil drilling and windmills. These 

anthropogenic physical barriers, along with the expansive presence of invasive plants, 

compromise the integrity of the breeding grounds for sage grouse (Wambolt et al., 

2002). Female sage grouse tend to nest on larger sagebrush that is  2 miles away 

from where breeding occurs (Schroeder et al., 2006), but nesting is jeopardized with 

the presence of urban equipment and smaller and fewer sagebrush.  

Due to the ecological and cultural importance of these birds, restoration and 

conservation of sage grouse populations is considered a priority by some. Impacts of 

non-native invasive plants need to be further investigated to see if regulation that 

deters further degradation of the sagebrush-steppe ecosystem needs to be potentially 

enacted. Enforcing more regulatory action through vigorous weed risk assessments 

could help to assess the invasive potential of plants considered for introduction, 

thereby potentially preventing or decreasing the destruction of native species 

populations and ecosystem in the Sagebrush-Steppe habitat by new invasive species. 

 

 

Predicting invasive potential of plants 

According to the International Plant Protection Convention (IPPC) in 1997 of the 

Food and Agricultural Organization of the United Nations (FAO), plant protection 
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organizations in each country must conduct pest risk analysis in order to protect and 

preserve their native plant resources. The United States Department of Agriculture 

(USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and 

Quarantine (PPQ) is one such national plant protection organization. One of the 

responsibilities of USDA-APHIS-PPQ is to safeguard native plants from noxious 

weeds.  

  

PPQ WRA 

The USDA-APHIS-PPQ WRA was developed as a preventative measure to limit the 

entry of potential non-native invasive plants into the United States. The PPQ WRA is 

based on the Australia WRA and has been a template for other screening tools such as 

the New Zealand WRA and the Hawaii-Pacific WRA. These models adapt questions 

from the Australia WRA to adjust for regional differences. For example, questions 

addressing Australia’s “arid climate” were adapted to New Zealand’s “equable 

climate” (Pheloung et al., 1999). Refer to Koop et al. for a comparative analysis of 

the Australia WRA and PPQ WRA for estimates of accuracy, error, and predictive 

value (2012). One of the goals of the PPQ WRA is to evaluate the potential 

invasiveness of plant taxon as a candidate for Federal Noxious Weed listing. Once a 

plant taxon is listed as a Federal Noxious Weed, humans are prohibited from 

intentionally transporting it across state lines. (PPQ, 2016).   

The principal risk elements of the PPQ WRA include questions evaluating the 

establishment/spread and impact potential of a plant taxon. Establishment and spread 

are discrete stages of the invasion process, but these stages are combined to form one 
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risk element in the APHIS PPQ WRA. These two risk elements (establishment/spread 

and impact potential) of the PPQ WRA evaluate the natural history of species or 

conspecific. Some of the questions on the PPQ WRA questionnaire refer to the 

known invasive potential of plants, such as invasive status outside native range (es1), 

weed status in natural systems (impn6), and weed status in production systems 

(immp6).  A majority of the questions refer to ecological traits of plants that are 

known to contribute to invasiveness, such as shade tolerance (es4), nitrogen fixing 

capability (es9), and minimum generation time (es13). Refer to Appendix A for the 

full questions of the establishment/spread and impact potential sections. The 

establishment/spread potential section assesses the establishment and spread status of 

a plant outside of its native range, while impact potential evaluates the weed status of 

the taxon and its impact on trade. The PPQ WRAs are produced by the Plant 

Epidemiology and Risk Analysis Laboratory (PERAL) and scientifically reviewed by 

at least one trained PPQ WRA risk analyst (PPQ, 2016). 

 

Uncertainty 

Each answer and risk element in the PPQ WRA is explicitly evaluated for uncertainty 

in order to ensure that weed risk is assessed based on adequate scientific evidence. 

Uncertainty is contextualized by the quality and quantity of available literature 

support, which is circumscribed by missing or incomplete information, evidence that 

is inconsistent or conflicting, and old or wrong information.  

Every PPQ WRA response contains a degree of associated uncertainty, which 

is categorized as negligible, low, moderate, high, or maximum. Maximum 
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uncertainty, the greatest degree of uncertainty, is assigned for answers lacking 

adequate literature support (PPQ, 2016). The PPQ WRA analyzes answer uncertainty, 

using a software program called @RISK, by running a Monte Carlo simulation 5,000 

times. This simulation, based on the assigned uncertainty levels associated with each 

answer, replaces original answers with different answers, thus generating new 

responses for evaluating WRA risk scores in order to assess how uncertainty may 

affect the assessment outcome (PPQ, 2016).  

 

The predictive model  

The PPQ WRA model was developed with 204 plant species (Appendix B) with 

known invasive status in the U.S. The invasive status, i.e. whether the taxon is a non-

invader (n=68), minor-invader (n=68), or major-invader (n=68), dictates the overall 

WRA risk score of the taxon. Non-invaders are plants that are not naturalized but 

have occupied the United States for 75 years or more. This minimum residency time 

ensures that the non-invader has had enough time to escape and establish, and 75 

years was specifically chosen because the PPQ WRA used Hortus as a historical 

reference for plants cultivated in North America (Bailey & Bailey, 1930), but lag time 

for invasions can range from less than 50 years to 100 years or more (Kowarik, 

1995). Plant naturalization status in the U.S. was determined primarily with the use of 

the USDA PLANTS database (http://plants.usda.gov/). Major-invaders are 

categorized with “I-rank” impact ranking of high or high-medium on NatureServe’s 

categorization (NatureServe, 2009), or listed as “serious” or “principal” by Holm et 
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al. (1979), or listed as “troublesome” by Bridges (1992). Minor-invaders are plants 

that are naturalized in the United States but do not fit the major-invader requirements.  

Collectively, the establishment/spread and impact potential risk elements of 

these 204 plant species were modeled with the Logit Generalized Linear Model 

(GLM) statistical method. This logistic regression model predicts the invasive status 

of a plant taxon. The risk score assigns the plant taxon to one of the three following 

risk categories: “Low Risk”, “Evaluate Further”, and “High Risk” (PPQ, 2016). This 

categorized risk score determined by the predictive model “quantifies a plant taxon’s 

ability to escape, establish, spread, and cause harm” in the U.S. (PPQ, 2016). This 

prediction of invasive potential is based on data considered without significant 

reference to time, despite the fact that specific invasion processes may change over 

time due to factors such as climate variabilities. For example, a plant taxon predicted 

by the model to have the invasive status minor-invader may in fact be a minor-

invader at this point in time, but may go onto become a major-invader or non-invader 

depending on future climate variabilities.  

 

New considerations for assessing weed risk 

Even though broad scale screening tools like the PPQ WRA are available, it is 

worthwhile to consider some additional types of data.  For example, plant hardiness 

(Higgins & Richardson, 2014) and genomic plasticity (Des Marais, 2013) were found 

to be predictive factors of invasiveness. Moreover, incorporation of distribution and 

abundance data, which are not included in the PPQ WRA, of potential invasive plants 

both in native and invaded (if there any) ranges in WRAs may enhance model 
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applicability (Wilson et al., 2007; Pearman et al., 2008) at a smaller jurisdictional 

scale (e.g., regional, state, local). Further, incorporation of data focusing on niche, 

nutrient input and impact on species abundance, and extreme weather events could 

also increase robustness of regional, state, or local risk assessments.  

In the absence of new types of data for small-scale WRAs, statistical methods 

like machine-learning algorithms, such as Random forests, could be implemented for 

broad-scale WRAs like the PPQ WRA. These newer statistical methods for assessing 

weed risk may improve upon the predictive accuracies of already existing screening 

tools like the PPQ WRA. 

What follows is a sampling of additional data types that could be considered 

for the improvement of broad WRA models or ones that are more regionally based. 

 

Niche data for predicting weed risk 

Incorporation of niche data to broad scale weed risk assessments, such as the PPQ 

WRA, is problematic due to the large geographic scale of the United States (PPQ, 

2016). Nonetheless, incorporation of niche datasets for small scale WRAs that 

address regional environmental differences could complement the broad scale WRA. 

For example, while there is a lack of data available for analyses of spatio-temporal 

niche dynamics during invasions (Broennimann et al., 2014), such analyses could 

inform the development of smaller scale preventative measures that look into the 

velocity of the invasion process. One study found a much slower initial invasion of 

Centaurea stoebe in habitats dissimilar to the native niche (Broennimann et al., 

2014).  
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Another niche consideration that is not addressed by broad scale WRAs is the 

ability of alien populations to realize different climatic niches compared to their 

native populations. Most of these WRAs look into the degree in climate match of 

species between the native niche and the non-native potential niche (Pheloung et al., 

1999). This poses a challenge when assessing invasion risk because potential 

distributions may be either underestimated or overestimated. Suggesting one potential 

approach to overcome this challenge with respect to climate change, a study 

examined climatic suitability under current conditions and future scenarios, by 

creating models of distribution using the Maximum Entropy “MaxEnt” model ( 

Beaumont et al., 2014). They compared and assessed the realized climatic niche for 

subspecies of the Australian invasive plant Chrysanthemoides monilifera under 

current and future extreme weather event scenarios, and showed that alien 

populations can occupy a new climatic niche not present in their native habitat. Their 

study validated a ban that was in place for the importation of C. monilifera subspecies 

from South Africa, and supported the importance of taking niche shifts into account 

via modeling tools to guide policy decisions. 

Despite improvements to WRAs that niche data can afford, a potential 

complication is that the ecological niche theory argues that for every species, only a 

fraction of its potential niches is ever realized (Shah & Shaanker, 2014). Therefore, a 

species introduced into a new environment may be simply expanding its original 

niche, in which case it should not be considered “invasive” (Shah & Shaanker, 2014), 

although the species may be alien in that niche. A further complication is that 

ecological niche theory does not consider the intentional or unintentional 
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transportation of species to new environments by humans. Application of the theory 

to WRA therefore represents a departure that requires closer consideration.  

In cases where adaption of niche theory can be shown to be sufficiently 

robust, its application could better account for regional environmental differences and 

thereby improve the broad scale WRA. 

 

Climatic change data for predicting weed risk 

Incorporation of climate data to broad scale WRAs, such as the PPQ WRA, is not 

considered because the United States, due to its large size and land area distribution 

across different latitudes, is climatically diverse (PPQ, 2016). The PPQ WRA was 

designed to be climatically neutral in order to eliminate bias against smaller U.S. 

climatic regions (PPQ, 2016), but climate data could be implemented in small scale 

WRAs at regional, state, or local levels.  

Extreme weather event data is one type of climate data that has a limited 

number of available empirical studies and should be further studied. An increase in 

frequency and severity of extreme weather events may facilitate future invasions by 

creating disturbances and altering resource availabilities (Jiménez et al., 2011). 

Climate change could facilitate the expansion of invasive plants into new ranges 

where previously they were not able to survive and reproduce. For example, 

phenological events, which refer to the timing of plant growth and reproduction, will 

change in response to changes in climatic variables such as temperature and rainfall 

(Badeck et al., 2004) and could potentially increase fecundity of invasive plants. 

Enhanced fecundity is an important trait associated with invasion success in a new 
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range (Pyšek & Richardson, 2007). As extreme weather events, like cyclones, 

heatwaves and frosts, droughts and floods, are becoming more common, 

incorporation of these types of data into small scale WRAs can show a different 

perspective to assessing weed risk, which has not yet been fully explored.  Flooding 

events have been noted to benefit the invasion of Tamarix aphylla by dispersing seeds 

along the entirety of the Finke River (Griffin et al., 1989). Extreme weather models 

should be combined with species distribution and small-scale weed risk models to 

help predict potential future species distributions of potentially invasive non-native 

plants with respect to occurrence of extreme weather events. This could be 

particularly useful in states like California where in recent years have experienced 

multi-year droughts followed by heavy precipitation with a high number of 

atmospheric river storms lasting several months and is predicted to have an increase 

in the dry season and in sudden precipitation events in the future (Swain et al., 2018).  

One study looked at the determinants of changes in biodiversity for the year 

2100 based on atmospheric carbon dioxide, weather events, vegetation, and land use 

(Sala et al., 2000). Factors such as changes in land use, climate, nitrogen deposition 

and acid rain, biotic exchanges (introduction of new species), and atmospheric CO2 

concentration were ranked based on importance to driving extreme weather events for 

a predictive model (Sala et al., 2000). Different global models were used to measure 

the magnitude of change in climate and land use due to extreme weather events. Land 

use was found to have the most devastating impact due to effects on habitat 

availability and species extinctions. At higher latitudes the average temperature is 

predicted to increase, with less pronounced fluctuations in atmospheric CO2 levels. 
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However, there were changes in competitive balance observed between species that 

differed in root depths, photosynthetic pathways, woodiness, and association with 

belowground organisms. The study also found that an increase in atmospheric CO2 

had the greatest effect on biodiversity in biomes with a mixture of C3 and C4 plant 

species (i.e. Grasslands and Savannas) and in biomes where limitations in plant 

growth are mostly due to the scarce availability of water (i.e. Mediterranean 

ecosystems and deserts). An increase in nitrogen deposition was predicted to have the 

largest impact on biodiversity in nitrogen-limited habitats (northern temperate forests 

close to cities) (Sala et al., 2000).  

Another study used biogeography and current weather event data to configure 

the species distribution model “MaxEnt” to predict the invasive risk potential and 

future distributions of three non-native aquatic plants; Alternanthera philoxeroides 

(alligatorweed), Limnophila sessiliflora (limnophilia), and Salvinia molesta (giant 

salvini) in the United States under future climatic conditions (Koncki & Aronson, 

2015).  The study predicted a rise in temperature, and an increase in spatial 

distribution of all three species in the northeastern United States in years 2040 and 

2080.  

The above-mentioned studies show the importance of using climate change 

data to predict species distributions of non-native plants. Even though incorporation 

of these types of data describing extreme weather events to predict future occurrences 

of such events is difficult to integrate on a broad scale level, such as the PPQ WRA, 

due to the vast biogeographical diversity of the U.S., these types of data could be 

integrated to state or regional WRAs, such as the California WRA. 
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Plant-soil-microbe feedback and species abundance for predicting weed risk 

The paradox of invasion is that some non-native species thrive in new environments 

and become invasive, even though native species are historically adapted to their 

local environmental conditions (Sax & Brown, 2000). This paradox can pose a 

challenge to predicting the invasive potential of non-native species. Looking into the 

differences in plant-soil-microbe interactions in the native and invaded ranges could 

provide one explanation to the paradox of invasion and potentially be an asset to 

small scale WRAs.  

Altered interactions of soil microbial communities in new ranges are one way 

invasive plants increase their abundance and outcompete natives for resources.  

For example, a study investigated the influence of feedback with soil organisms in 

determining plant abundance of five invasive (i.e. Alliaria petiolata, Cirsium arvense, 

Euphorbia esula L., Lythrum salicaria L., and Polygonum cuspidatum Sieb. & Zucc) 

and five rare plant species (i.e. Agalinis gattingeri, Aletris farinosa, Gentiana alba, 

Liatris spicata, and Polygala incarnata L.). Measurement of the relative growth of 

plants in their own soil and soil from another species showed positive soil feedback 

responses for the five invasive species and negative feedback responses for the five 

rare plant species (Klironomos, 2002). These feedback responses are important 

considerations that affect the abundance of invasive plants. Incorporation of data 

obtained from plant-soil-microbe feedback studies to small scale WRAs is an 

innovative way to predict non-native plant abundance for new regions in a case-by-

case basis, but not experimentally feasible to incorporate to a broad scale level, such 

as the PPQ WRA.  
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In a similar vein of investigating invasive plant abundance in new regions, 

species richness could also be explored to elucidate the role invasive plants have on 

plant-soil-microbe feedback. The abundance of invasive plants is known to have 

negative effects in ecosystem structure and function (Neckles, 2015; Naeem et al., 

1994). One study looked at the effect of this feedback on species richness in field 

plots with and without the invasive plant Chromolaena odorata. Significant 

differences in plant species richness in these two plots were noted, where plots 

without C. odorata showed greater plant species richness than the plots with C. 

odorata. Additionally, shoot height was measured for Amaranthus spinosus and 

Bambusa arundinacea in order to investigate phenotypic differences of native plants 

grown in non-sterilized, sterilized, and soil with activated carbon for soil collected 

from the rhizopheres of C. odorata and native neighboring plants. Decreased shoot 

height for A. spinosus and B. arundinacea were seen in plants grown in soil collected 

from the rhizopheres of C. odorata with carbon activated and non-sterilized soil 

samples, but no difference was observed for plants grown in sterilized soil (Mangla et 

al., 2008).  

The study further explored the plant-soil-microbe feedback by counting the 

number of fungi Fusarium semitectum spores for all the soil samples.  The greatest 

number of F. semitectum spores were seen in non-sterilized soil collected from the 

rhizopheres of C. odorata. This finding suggests that C. odorata inhibits the growth 

of surrounding native plants through an indirect negative feedback by accumulating 

high concentrations of F. semitectum, thus enhancing the fungal infection potential 

for the native plants (Mangla et al., 2008). While conducting a study similar to the 



 

 

17 

 

one just mentioned is impractical from a time and economic perspective, it does 

provide direction to the types of data and questions ecologists should explore when 

developing WRAs. For example, the PPQ WRA does not address the plant-soil-

microbe feedback of invasive plants, but small scale WRAs could be developed to 

incorporate this type of data as a measure to assess invasive risk potential.  

Investigation of nutrient runoffs from agricultural systems is another factor to 

consider for assessing invasive potential. Agricultural practices are known to increase 

resource availability, and therefore effect the abundance and ecological performance 

of native and invasive species, thus altering the community composition (Boudell & 

Stromberg, 2015; Chen, He, & Qiang, 2013; Gustafson & Wang 2002; Lambert, 

Dudley, & Robbins, 2014). For example, reductions in growth of native shrubs were 

shown in the presence of mycorrhizae with high nitrogen soils compared to invasive 

grass (Sigüenza et al., 2006). Modeling these types of data describing nutrient runoffs 

in relation to prediction of weed risk is not feasible for broad scale applicability 

because the amount of nutrient runoff from agricultural systems may vary from one 

farm to the next and the effects of nutrient runoff may vary from one plant to the 

next; However, these types of data could be used as a first step to understanding how 

variables like nutrient runoff from agricultural systems affect species distribution of 

non-native plants on a small scale WRA.  

The studies mentioned above highlight the importance of investigating the 

plant-soil-microbe feedback for invasive and non-invasive plants and could prove to 

be useful for assessing weed risk. These effects and factors need to be taken into 
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account when developing a small-scale integrative weed risk assessment model to 

predict the invasive potential of non-native plants. 

 

Genomics, transcriptomic, and proteomics for predicting weed risk 

It is important to understand and categorize the genetic traits that are characteristic of 

an invasive species to help understand which genes contribute to invasiveness. 

Environmental adaptation of organisms can be investigated through the use of next 

generation sequencing, proteomics, and transcriptomic analyses.  

Expressed sequence tags, for transcriptomic analysis, have been used to 

characterize gene transcript expression differences in Senecio madagascariensis 

collected in native and introduced ranges. Differential gene expression was observed 

for defensive responses to biotic stimuli in the native range compared to the 

introduced range, most likely due to lack of natural enemies in the introduced ranges 

(Prentis et al., 2010).  

Next generation sequencing and quantitative proteomic analyses identified 

specific genes and proteins important for rhizome differentiation, development and 

function in Phragmites australis, which is highly invasive due to clonal reproduction 

via rhizomes (He et al., 2012). Clonal reproduction, in particular, could lead to dense 

plant growth and may indicate invasion success (Liu et al., 2006). In fact, this type of 

reproduction is important for predicting invasive potential and is included as a 

variable of interest in the PPQ WRA (PPQ, 2016). Elucidation of specific genes and 

proteins important for vegetative growth could help to predict the invasive potential 

of non-native plants. Specifically, a predictive model could be developed to assess the 
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potential that specific genes have for promoting vegetative growth for non-native 

plants. This would include conducting experimental work for each prospective plant 

undergoing evaluation.  

Approaches more modest than –omics can also be effective in identifying 

invasive risk associated with genome level analysis.  For example, quantitative trait 

locus (QTL) mapping is used to identify molecular markers that correlate genotypes 

to phenotypes of interest, and was used to study the genetics of adaptive introgression 

following hybridization. Molecular analysis revealed that the stabilized Helianthus 

annuus texanus was formed from H. annuus and H. debilis spp. cucumerifolius. This 

new hybrid is able to thrive in a new edaphic niche previously not inhabited by either 

parental species (Whitney et al., 2015). Increased genetic fitness as a result of 

hybridization may support invasion potential through competitive advantage. An 

increase in competitiveness has been shown in hybrid offspring compared to non-

hybrid parental lineages (Pareapa et al., 2014). This may be the result of increased 

genetic variation through hybridization, which may provide genes necessary for rapid 

environmental adaptation (Ellstrand & Schierenbeck, 2000).  

Evaluation of polyploidy could be another genome level analysis used for 

weed risk predictions.  Polyploidy, a result of hybridization, is known to contribute to 

plant invasion success (Pandit & White, 2014; Hull-Sanders et al., 2009) and are 20% 

more likely to be invasive than diploids (Pandit et al., 2011) due to increased 

heterozygosity (Soltis & Solits, 2000) and hybrid vigor (Ni et al., 2009). Increased 

chromosome numbers can be acquired either through autopolyploidy or 

allopolyploidy (te Beest et al., 2012). Regardless of whether intra- or interspecies 
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hybridization occurs, studies have shown that polyploid cytotypes proliferate in 

invaded ranges while their diploid counterparts are restricted to native ranges 

(Thébault et al., 2011; Broennimann et al., 2014; Hahn et al., 2012). For example, 

polyploidy in the spotted knapweed, Centaurea stoebe has been shown to contribute 

to invasion success in the U.S., where predominately the introduced tetraploid spotted 

knapweed is invasive, but not their diploid counterparts (Treier et al., 2009). Even 

though both cytotypes are found in their native European habitat, only the polyploid 

cytotype is invasive in the U.S. and this invasion success may be attributed to 

population level adaptation in a novel environment compared to the diploids (Treier 

et al., 2009). In addition, polyploidy can mask the negative effects of deleterious 

recessive mutations (te Beest et al., 2012; Sattler et al., 2016) by having more genetic 

material for growth and adaptation. Further, successful long-distance dispersal, which 

is a key aspect of invasion success, are seen in polyploid lineages rather than diploid 

(Linder & Barker, 2014). Genomic attributes such as hybridization, resulting in 

autopolyploidy or allopolyploidy, should be considered as a risk factor for predicting 

the invasive potential of plants. Cytological investigations of plants undergoing 

assessment for weed risk should be conducted to determine its genomic attributes, 

whether the plant is diploid or polyploid, to potentially help to predict its invasive 

potential. Ploidy level as a risk factor, which is not addressed in the PPQ WRA, could 

potentially be added to such broad scale risk-assessments. 
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A machine-learning method for weed risk assessment 

Development of WRAs using ecological data describing niche suitability, climate 

change factors, and plant-soil-microbe relationships, and molecular biology of 

invasive plants are not readily available due to time and economic constraints. In the 

absence of these types of data, non-traditional non-parametric statistical methods 

could be used to improve the robustness of weed risk assessments leveraging already 

available data to improve predictive accuracies. In this respect, Random forests, a 

machine-learning algorithm, could be used as an alternative to traditional parametric 

statistical methods for assessing weed risk.  

Random forests have already been used for classifying land cover with 

multisource remote sensing and geographic data (Gislason et al., 2006), predicting 

conifer species occurrence (Evans & Cushman, 2009), and predicting soil properties 

for soil mapping in Africa (Hengl et al., 2015). Random forests are ensembles of 

uncorrelated decision trees that can be used for classification, regression, and cluster 

analysis tasks (Breiman, 2001). Decorrelation of trees can be attributed to the two-

step randomization process of Random forests. The first step in the randomization 

process is to use a bootstrap sample from the original data to grow a tree and then, for 

the second step, a subset of predictor variables is randomly selected for splitting a 

node in a tree (Truong et al., 2004). “Growing” a “forest” with many decorrelated 

trees and using either averaging for regression tasks or majority voting for 

classification tasks aggregates the results, thus reducing model variance (Breiman, 

2001). Contrastingly, for the PPQ WRA, variance is assessed outside the logistic 
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regression predictive model by running a Monte Carlo simulation (PPQ, 2016) which 

computes invasive risk potential 5,000 times.  

For classification, the best split at each node of a tree is determined by 

choosing the split that minimizes the Gini index impurity (Maindonald, 2010). At 

each node, the Random forests classification algorithm computes the Gini index of 

impurity and best separates the bootstrap sample into two groups (Maindonald, 2010).  

The parameter mtry indicates the number of predictor variables used to split the node 

(Liaw & Weiner, 2002). The Random forests algorithm calculates internal estimates 

of generalization error, classifier strength, and dependence to compute the number of 

predictor variables (features) needed to split the node.  

These estimates, which are collectively referred to as out-of-bag (OOB) error 

reduce model bias (Breiman, 2001), which is the model error that is introduced when 

“approximating a real-life problem” (James et al., 2013). Bias reduction in WRAs is 

particularly important because WRAs are developed to predict the invasive potential 

of a non-native plant that has not been introduced to the new environment, but WRAs 

are developed with species with known life-history data (Hulme, 2012) and already 

present in the new region (Koop et al., 2012). In order to reduce model bias, the PPQ 

WRA for example, was developed with two subsets of data, one for training the 

model and one for testing (Koop et al., 2012). Additionally, only two parameters (the 

number of trees in the forest and number of variables selected at each node) need to 

be tuned for a random forest. The high predictive accuracies of Random forests 

compared to logistic regression (Peters et al., 2007), coupled with its applicability to 
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high-dimensional datasets (Li & Zhao, 2009) makes it an ideal statistical method for 

assessment of weed risk.  
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Chapter 2: A random forest approach for predicting 

invasive status of non-native plants for weed risk assessment 

 

Introduction 

In invasion ecology and related scientific fields, such as weed science and 

conservation biology, an important task is the prediction of outcomes (i.e. categorical 

response variables; dependent variables; class) with respect to available predictors 

(i.e. independent variables). Predictive modeling uses statistical methods to compute 

predictions for outcomes of interest. There are two broad classes of predictive 

modeling: parametric and non-parametric. This work aims to compare the predictive 

performance of the parametric Generalized Linear Model (GLM)-logistic regression 

and the nonparametric random forest models for Weed Risk Assessment (WRA). 

Logistic regression is used for multidimensional problems that linear regression 

cannot fit. The equation below expresses the logistic regression model for p 

quantitative independent variables for binary response variable Y (Agresti, 2014): 

logit[𝜋(𝑥1, … , 𝑥𝑝)] = log (
𝜋(𝑥)

1 − 𝜋(𝑥)
) = 𝛼 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 

(2.1) 

 (x) denotes the probability Y=1 at value x. 

 1-(x) denotes the probability Y=0 at value x. 

 𝛼 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑝 denotes the formula for the regression function. 
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Taking the inverse of logit[(x)], gives the probability (x) as a Sigmoid-shaped 

function of x:  

𝜋(𝑥) =
𝑒(𝛼+𝛽1𝑥1+⋯+𝛽𝑝𝑥𝑝)

1 +  𝑒(𝛼+𝛽1𝑥1+⋯+𝛽𝑝𝑥𝑝)
 

(2.2) 

 

Logistic regression models are fit using maximum likelihood estimates to predict 

probabilities for responses in non-linear solutions. The coefficients are expressed in 

the logistic regression formula for predictor variables. The formula for logistic 

regression provides a good model fit for datasets that have “large n, small p”. 

Random forests, an algorithmic approach, allow many predictors and are not fixed to 

a form of the equation prediction (Breiman, 2001). The algorithm below expresses 

Random Forests Classification (Hastie et al., 2009): 

1. For b=1 to B (where B is the total number of trees in the forest):           (2.3) 

a. Draw bootstrap sample of the training data. 

b. Grow a random forest tree to Tb using the bootstrapped data:  

i. Randomly select m number of variables from the total number 

of variables p. 

ii. Select the best m variable to split the data. 

iii. Make two daughter nodes from the node. 

iv. Recursively repeat steps i-iii until for tree’s terminal nodes 

until minimum node size is achieved. 

2. Transfer the information to the ensemble of trees {Tb)1
B. 

3. Make a classification prediction: 

a. Take majority vote of the trees in the random forest. 
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Majority vote refers to proportion of trees in the forest that predicts for a particular 

response.  

Screening tools, such as WRAs, are utilized for assessment of potential 

invasive status of non-native plants in novel ranges. One of the challenges in 

development of WRAs includes limitations in available data. It is recommended that 

logistic regression models follow the “large n, small p” rule of thumb in order to 

reduce model noise from overfitting the data. For example, some suggest a minimum 

of 10-15 observations per covariate for logistic regression models (Babyak, 2004). 

This rule can prove to be a problem in WRAs due to limitations in data availability. 

In general, traditional statistical methods, such as logistic regression, used in risk 

analysis for predicting the invasive status of non-native plants afford no solution to 

the “small n, large p” problem. As an alternative, a non-parametric statistical method, 

Random forests has proved useful under such constraints and provide a more 

appropriate predictive modeling approach. 

Unlike logistic regression, Random forests do not need to follow the “large n, 

small p” rule in order to fit the model (Matsuki et al., 2016).  Due to this fact, 

Random forests modeling has been readily utilized in various fields such as 

bioinformatics and computational biology (Boulesteix et al., 2012), for predicting 

civil war onset in political science (Muchlinski et al., 2015), and for ecohydrological 

modeling of vegetation distribution (Peters et al., 2007) and for predicting presence of 

invasive plant species in lava beds in ecology (Cutler et al., 2007).  
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Effective WRAs should provide reliable conclusions even in instances of 

limited data (Keese et al., 2014), thus this flexibility of having a “small n, large p” 

makes Random forests a good candidate for the development of WRAs.  

Moreover, Random forests are well established for use in high-dimensional data (Li 

& Zhao, 2009), where (oftentimes) the number of predictors exceeds the number of 

available observations. The PPQ WRA is informed by a high-dimensional data set 

involving 41 predictors.  Additionally, Random forests provide the flexibility to 

choose between constructions of multiclass classification or regression trees, whereas 

traditional logistic regression is limited to only binary classifications. Multiclass 

models are particularly important for assessing weed risk where there are more than 

two classes, such as the PPQ WRA (PPQ, 2016).  

Random forests fits bootstrap samples of the complete data into numerous 

decorrelated decision trees yielding distinct grouped classes (James et al., 2013). This 

reduces the overall variance of the Random forests model (Breiman, 2001). In 

contrast, logistic regression uses log odds to make binary predictive outcomes 

(Agresti, 2014) and requires linear relationships between log odds and the dependent 

variable. Further, studies show that Random forests have lower classification errors 

and higher predictability accuracies compared to logistic regression counterparts 

(Peters et al., 2007).  

The PPQ WRA, the U.S. plant protection organization, uses a logistic 

regression model to predict weed risk of non-native plants considered for 

introduction. The main objective of this study is to compare the predictive 

performance between statistical methods logistic regression and random forest for the 
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PPQ WRA dataset. Other objectives include: examine the effect different sampling 

methods have on predictive performance of all models, analyze variable importance 

for the random forest model, and investigate the effects values of predictor variables 

have on the change in predictive value of the random forest model. 

 

Methods 

WRA Data 

 

The four models presented in this work were developed with a priori classes of the 

204 plant species indicated in Koop et al. (2012). The a priori categories include non-

invaders, minor-invaders, and major-invaders with N=64 for each. These data contain 

no missing values and is class-balanced since each a priori category has an equal 

number of observations. Definitions of non-invaders, major-invaders, and minor-

invaders were retrieved from Koop et al. (2012). Non-invaders are plants that are not 

naturalized but have occupied the United States for 75 years or more. Major-invaders 

are categorized with “I-rank” impact ranking of high or high-medium on 

NatureServe’s categorization (NatureServe, 2009), or listed as “serious” or 

“principal” by Holm et al. (1979), or listed as “troublesome” by Bridges (1992).  

Minor-invaders are plants that are naturalized in the United States but do not fit the 

major-invader requirements. The plant species used in the study are presented in 

Appendix B. Some of the questions on the PPQ WRA questionnaire refer to the 

known invasive potential of plants, such as invasive status outside native range (es1), 

weed status in natural systems (impn6), and weed status in production systems 

(imp6).  A majority of the questions refer to ecological traits of plants that are known 
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to contribute to “invasiveness”, such as shade tolerance (es4), nitrogen fixing 

capability (es9), and minimum generation time (es13). Refer to Appendix A for the 

full questions of the establishment/spread and impact potential sections. Scores of the 

establishment/spread and impact potential sections in the USDA-APHIS-PPQ WRA 

were summed to synthesize models with only two predictor variables in an effort to 

reduce model noise. In this study, we used the raw scores of each variable instead of 

the summed scores of each section, thus giving 41 predictors in order to calculate 

variable importance for the random forest model. 

 

 

Model development and statistical analysis 

 

All models, figures, and statistical analysis were developed in the R environment 

(version 3.3.2) and RStudio (version 1.0.153) on a Macintosh OS X El Capitan 

computer with the codes referenced in Appendix C. 

 

 

Model comparisons 

 

In binary classification, only two events can be evaluated; therefore, a first 

comparison of non-invaders and invaders and a second comparison between minor 

and major invaders were developed for logistic regression and random forest models. 

For model comparison A, between non-invaders and invaders, non-invaders were 

dummy coded as event 0, while minor and major invaders were dummy coded as 

event 1. For model comparison B, between major-invaders and minor-invaders, 

major-invaders were dummy coded as 0 and minor-invaders were dummy coded as 1. 

The logistic regression and random forest classifiers for model comparison A and B 
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were developed using k-fold cross-validation (CV) sampling methods, which is an 

estimate of model predictive accuracy (Cutler, 2010). In k-fold CV, the dataset is split 

into k folds where k – 1 folds are used for model training while the remaining fold is 

used for model testing (Hastie et al., 2009). This process is repeated until each 

observation is used for model training and testing. Each fold contains unique 

observations; this ensures that training and testing datasets are different. The average 

estimates of performance across all k trails of the testing data are computed. 

Classifiers for model comparisons were built with 10-fold CV with 10 repetitions, 

which gives 100 total resamples that are averaged for their estimates of performance, 

thus reducing variance. The typical choice for k-fold CV is 5 or 10 (Hashtie et al., 

2009), but if the dataset is small then the k value needs to be larger. The predictive 

performances of each model were assessed for sampling folds: k=2, 5, and 10-fold 

CV. This validation step in model development is critical for evaluating the predictive 

performance of the models. Utilization of the training dataset for model evaluation 

can potentially cause model overfitting, which occurs when a model follows errors 

(noise) instead of the underlying relationships between the predictor variables 

(independent variable) and outcome (dependent variable) (Brownlee, 2016; Mainali et 

al., 2015). A model that is overfit is less likely to compute accurate predictive 

estimates on new observations (cases not used in model development) (James et al., 

2013).  
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Random forest classifier 

 

A separate random forest classifier was developed with all three classes of invaders, 

i.e. non-invaders, minor-invaders, and major-invaders. The original dataset was 

randomly and proportionally split into a model development set (70%) and an 

independent validation set (30%) (Appendix B). Out-of-bag (OOB) sampling, a 

feature unique to Random forests and not used in logistic regression, was used for 

model development with the 70% dataset, instead of k-fold CV. An OOB sample 

refers to observations that were not used to construct a random forest tree. Each tree 

in the random forest is constructed with a random subset of the original dataset and 

the OOB sample is used to assess the predictive ability of the tree. OOB error is used 

for downstream calculations for assessment of model variable importance and partial 

dependence. The forest was grown to 1000 trees (ntree=1000) and 6 variables were 

used to split the nodes of the trees (mtry=6). For classification Random forests mtry is 

the square root of the number of predictors. Theses value of the ntree and mtry 

parameters yielded the lowest OOB error. The independent testing set (30%) was 

used for external validation of model predictive accuracy. 

 

 

ROC plots 

The predictive power of models is represented through the Area Under the Curve 

(AUC) values from Receiver Operating Characteristic (ROC) plots (Fawcett, 2006). 

The ROC-based metric can be used to calculate the predictive performance of binary 

classification models. This test uses evaluation datasets to calculate true positive rate 

(TPR; model sensitivity) and false positive rate (FPR; model specificity) over a range 
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of potential test thresholds of predictive models. The TPR indicates the proportion of 

instances that were correctly predicted to be in a particular class. The FPR indicates 

the proportion of instances that were incorrectly predicted to be of a certain class. In 

this case, the predicted class would be the species observed invasive status. TPR and 

FPR are used to calculate the AUC of a ROC plot. A good screening tool is 

characterized by an AUC that maximizes test sensitivity with minimal values of false 

positive predictions. For WRAs, a high proportion of potential invasive plants need to 

be rejected and non-invasive plants need to be accepted (Caley & Kuhnert, 2006). An 

AUC value of 1.0 is the greatest value for ROC plots. This value indicates that the 

predictive model is a perfect classifier. AUC values of 0.5 indicate that the predicted 

model outcome is purely random; therefore, the model did not learn to distinguish 

between the classes from the training dataset.  

 

Variable importance plot—mean decrease accuracy 

 

This method of calculating mean decrease accuracy is unique to Random forests and 

used to calculate the importance of variables (features) for prediction of outcomes. 

Variable importance was calculated for the Random forests classification task. In this 

study, variable importance was calculated for the 41-predictor variables (Appendix 

A) used in model development for predicting the invasive status of plant species for 

WRA. This methodology computes the importance of each variable Xj in classifying 

the data using mean decrease accuracy. The mean decrease in accuracy of Xj is 

calculated by permutation of the Xj values in the OOB samples, and then averaged 

across all the trees in the forest. In a random forest, the OOB samples are not used in 
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tree construction, but instead used in calculating prediction errors, which are known 

as OOB error values. These are the same calculations used to evaluate variable 

importance for each classification tree in a random forest (Genuer et al., 2010). If 

model mean accuracy decreases when a variable is omitted, then that variable is 

deemed important for accurately classifying the data. The equation below expresses 

the calculation of mean decrease accuracy for variable importance (Han et al., 2017): 

𝑉𝐼𝑗 =
1

𝑛𝑡𝑟𝑒𝑒
∑ (𝐸𝑃𝑡𝑗 − 𝐸𝑡𝑗)

𝑛𝑡𝑟𝑒𝑒

𝑡=𝑖

 

 (2.4) 

 VIj denotes variable importance of predictor variable x. 

 

 ntree denotes the number of trees in the random forest. 

 

 EPtj denotes the OOB error on tree t after permuting values for predictor 

variable Xj. 

 

 Etj denotes the OOB error on tree t before permuting values for predictor 

variable Xj. 

 

 

Partial dependence plots 

 

Partial dependence plots graphically show the marginal effect variable values have on 

model predictions when all other variables in the model are held at their mean. 

Specifically, partial dependence plots visualize the delta log-odds for a particular 

class’s sample probability of classification of “invasive status” (y-axis) as a function 

of a particular variable of interest (x-axis). The y-axis of a partial dependence plot 

shows how the predicted value changes in response to the value of the variable. 

Negative y values indicate that the specific variable value is less likely to be 

predictive for that particular class, whereas positive y values indicate the opposite. 
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The x-axis shows the range of values for the predictor variable. The equations 

expressed below mathematically define partial dependence plots (Liaw, 2015; 

Friedman, 2001): 

𝑓(𝑥) =
1

𝑛
∑ 𝑓(𝑥, 𝑥𝑖𝐶 )

𝑛

𝑖=1

 
(2.5) 

 x denotes the variable of interest for calculating partial dependence. 

 xiC denotes all the other variables in the dataset. 

 The summand in (2.5) is the logit of the estimated probability of classification 

of “invasive status” as a function of a particular variable of interest. 

When there are K classes, f(x) is defined as follows:  

𝑓(𝑥) = log[𝑝𝑘(𝑥)] −
1

𝐾
∑ log[𝑝𝑗

𝐾

𝑗=1

(𝑥)] 
(2.6) 

 K denotes the number of classes in the model. 

 k denotes the class of interest. 

 pj is the fraction of votes for class j in the classification model. 
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Results 

Greater predictive accuracy in random forest classifiers  

After developing the logistic regression and random forest classifiers for model 

comparison A (non-invader vs. invaders) and B (minor-invader vs. major-invader) 

with the PPQ WRA dataset, their ROC AUC values were compared in order to 

quantify classifier predictive accuracies. In model comparisons A and B, the random 

forest classifiers had higher AUC values compared to the logistic regression 

classifiers. For model comparison A, non-invaders versus invaders, the AUC values 

are 0.865 for logistic regression and 0.943 for random forest (Figure 1A). For model 

comparison B, minor-invaders versus major-invaders, the AUC values are 0.723 for 

logistic regression and 0.885 for random forest (Figure 1B). The significance of these 

differences show that the random forest classifiers have greater predictive accuracy 

than the logistic regression classifiers.  
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Figure 1. ROC curves for the logistic regression and random forest classifiers for 

model comparisons A (non-invader vs. invaders) and B (minor-invader vs. 

major-invader).  

(A) For model comparison A, non-invaders versus invaders, the AUC value for 

random forest was greater than logistic regression in relation to the observed 

“invasive status”. (B) For model comparison B, minor-invaders versus major-

invaders, the AUC value for random forest was greater than logistic regression in 

relation to the observed “invasive status”. Sampling 10-fold CV with 10 repeats was 

used to generate ROC curves for all classifiers in both model comparisons.  Random 

forest classifiers were grown to ntree = 1000 and mtry=6.  
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Greater predictive accuracy in random forest classifiers in all k-fold CV 

To assess model predictive performance for various sampling methods, additional 

models were developed for 2 and 5-fold CV (see Methods: I. Model comparisons). 

The random forest classifiers (i.e. RF model A for non-invader vs. invaders and B for 

minor-invader vs. major-invader) showed greater ROC AUC values than logistic 

regression classifiers (LR model A for non-invader vs. invaders and B for minor-

invader vs. major-invader and B) for 2, 5, and 10-fold CV sampling (Figure 2). 

Random forest classifier A (RF model A for non-invader vs. invaders) has the highest 

AUC values and logistic regression classifier B (LR model B minor-invader vs. 

major-invader) has the lowest AUC value for all sampling methods. Using sampling 

method 10-fold CV yielded the highest AUC for the logistic regression classifiers 

(LR model A (non-invader vs. invaders)= 0.865; LR model B (minor-invader vs. 

major-invader)=0.723) and 5-fold CV yielded the highest AUC for the random forest 

classifiers (RF model A (non-invader vs. invaders)=0.943; RF model B (minor-

invader vs. major-invader)=0.862), whereas sampling method 2-fold CV yielded the 

lowest AUC for all classifiers (LR model A (non-invader vs. invaders)=0.732; LR 

model B (minor-invader vs. major-invader =0.638; RF model A (non-invader vs. 

invaders)=0.862; RF model B (minor-invader vs. major-invader =0.870). The random 

forest classifiers had less variability in AUC values across the three sampling 

methods than the logistic regression classifiers. 
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Figure 2. Classifier ROC AUC values for 2, 5, and 10-fold CV for model 

comparison A (non-invader vs. invaders) and B (minor-invader vs. major-

invader).  

For model comparison A, non-invader vs. invaders, the AUC values for logistic 

regression are 0.732, 0.826, and 0.862 and 0.942, 0.944, and 0.943 for random forest 

using k=2, 5, and 10-fold CV with 10 repeats, respectively. For model comparison B, 

minor-invader vs. major-invader, the AUC values for logistic regression are 0.638, 

0.696, and 0.730 and 0.870, 0.879, and 0.877 for random forest using k=2, 5, and 10-

fold CV with 10 repeats, respectively. The random forest classifiers have the highest 

ROC AUC values across all sampling methods for model comparison A and B. Solid 

lines in the figure indicate model comparison A (non-invader vs. invaders) and 
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dashed lines indicate model comparison B (minor-invader vs. major-invader). 

Random forest classifiers were grown to ntree = 1000.  
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Important variables for predictive accuracy in the random forest classifier 

“Invasive status outside native range” (es1), “Weed status in natural systems” 

(impn6), and “Weed status in production systems” (impp6) had the highest mean 

decrease accuracy, 22.92, 20.74, and 20.14, respectively (Table 1), for the top ten 

important variables for predictive accuracy for random forest classifier (Figure 3). 

The top three important variables “Invasive status outside native range” (es1), “Weed 

status in natural systems” (impn6), and “Weed status in production systems” (impp6) 

occurred numerous times in the random forest (Table 1). The top three variables are 

representative of known invasive behavior of the taxon, while “Number of natural 

dispersal vectors” (es17) was the fourth most importance variable and the only 

variable out of the top four that related to biological characteristics of the plant taxon. 

“Climbing or smothering growth form” (es5) and “Minimum generation time” (es13) 

are the remaining top ten variables that were related to biological characteristics of 

the plant taxon. “Change in ecosystem processes and parameters that affect other 

species” (impn1) was the tenth most important variable, with the lowest mean 

decrease accuracy of 12.27, out of a total of 41 predictor variables (Figure 3). Impn1 

occurred 518 times in the random forest (Appendix D). Variables “Is the species 

highly domesticated” (es2) and “Parasitic” (impg2), with mean decrease accuracy 

values of 0, ranked the least important variables for the classifier and occurred 25 and 

38 times in the random forest, respectively (Appendix D). A gap of 3.02 in mean 

decrease accuracy values was present between “Number of natural dispersal vectors” 

(es17) and “Lowers commodity value” (impp2). In variable importance plots 
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assessing mean decrease accuracy, gaps between variables can be used as a break 

point for variable selection for further model development. 
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Figure 3. Variable importance by mean decrease accuracy for the random forest 

classifier.  

A separate random forest model with all classes (non-invader, minor-invader, and 

major-invader) was constructed for variable importance calculations. Variables 

“Invasive status outside native range” (es1), “Weed status in natural systems” 

(impn6), and “Weed status in production systems” (impp6) have the highest mean 

decrease accuracy values for the random forest classifier. The mean decrease 

accuracy for es1, impn6, and impp6, are 22.92, 20.74, and 20.14, respectively. The 

most important variables for classifying the data are presented at the top-right of the 

variable importance plot, whereas variables of lesser importance are at the bottom-

left. Refer to Appendix A. for more detailed descriptions of variables presented in this 

figure. The random forest classifier was grown to ntree = 1000. 
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Table 1. Top three important variables for each class in the random forest 

model  

 Non- 

invader 

Minor- 

invader 

Major-

invader 

Mean Decrease 

Accuracy  

# of times variable 

occurred in the random 

forest 

 

Es1 

 

20.90 

 

-2.08 

 

19.38 

 

22.92 

 

2267 

 

Impn6 

 

21.05 

 

5.38 

 

7.57 

 

20.74 

 

1452 

 

Impp6 

 

19.89 

 

-5.68 

 

16.79 

 

20.14 

 

1237 
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Random forest better at classification of non-invader and major-invader than 

minor-invader 

The partial dependence plots show the change in predicted values of classification in 

response to predictor values (Friedman, 2001). Invasive status partial dependence was 

investigated for the top 3 important variables for the random forest classifier: 

“Invasive status outside native range” (es1), “Weed status in natural systems” 

(impn6), and “Weed status in production systems” (impp6) (Figure 4). The y-axis of a 

partial dependence plot shows the change in the predicted value in response to 

variable value (x-axis). A lower y value indicates that the variable value is less likely 

to predict for a particular class, whereas a greater y value indicates a higher likelihood 

(Machado et al., 2015). In this study, the observed invasive status (i.e. non-, minor-, 

or major-invader) is the predicted classes. The random forest model predicted non-

invader when es1 values were <2, major-invader when the value was >2, and minor-

invader for all es1 values (-5 to 5) but more strongly predicted when values were <2 

(Figure 4A). The random forest model predicted non-invader when impn6 values 

were < 0.2, major-invader when values were > 0.2, minor-invader for all impn6 

values (0 to 0.6) (Figure 4B). The random forest model predicted non-invader when 

impp6 values were < 0.2, major-invader when values were > 0.2, minor-invader for 

all impp6 values (0 to 0.6) (Figure 4C). The partial dependence plots show that the 

random forest model predicted observed invasive status of major-invader when 

variable values were above a particular value, but non-invader and minor-invader 

were predicted for the same variable values. Random forest model could distinguish 

between non-invader and major-invader based on variable values, but cannot 
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distinguish minor-invader from the provided variable values. These results are 

consistent with the confusion matrix predictive accuracies for the random forest 

model. Confusion matrices are estimates of predictive accuracy that return detailed 

values for predicted and reference classes instead of just giving a general estimate of 

predictive accuracy (Fawcett, 2005). The confusion matrix showed that minor-

invader predictions had low accuracy while high predictive accuracies were seen for 

non-invaders and major-invaders for the random forest classifier.  
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Figure 4. Partial dependence of top three important variables for the random 

forest classifier. 

Variables with the highest mean decrease accuracy values were used to investigate 

the marginal effect raw values of variables have on model predictions for invasive 

status class: non-invader, minor-invader, and major-invader. (A) “Invasive status 

outside native range” (es1). (B) “Weed status in natural systems” (impn6). (C) “Weed 

status in production systems” (impp6). The y-axis shows the change in predictive 

value for invasive status (∆fraction of votes for class K) for an independent variable 

of interest, while all other variable predictions are held at their mean. The x-axis 

shows the corresponding variable values.  
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Table 2. Classification performance of Radom forest model for predictor 

variables. Confusion matrix for the random forest model validated, using plant 

species from the 30% original data subset, with all predictor variables (n=41). 

Random forest model is better at predicting for non-invader and major-invader than 

predicting for minor-invader. 

   

Reference 

  

   

Non-invader 

 

Minor-invader 

 

Major-invader 

 

Predicted 

 

Non-invader 

 

15 

 

3 

 

1 

  

Minor-invader 

 

3 

 

6 

 

3 

  

Major-invader 

 

0 

 

7 

 

18 

     
Note: *Random forest model correctly predicted non-invader 15/18 times, minor-invader 3/16 times, 

and major-invader 18/22 times.  
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Discussion 

WRA evaluations for model comparisons   

In this study, logistic regression and random forest models were developed and then 

compared for predictive accuracy for assessing invasive status of non-native plants. 

The models are limited to the assessment of only non-native plants because the 

models were trained and validated with non-native plants that are known to have 

invasive “behavior” in the U.S. (PPQ, 2016). Both models have high predictive 

accuracies, with AUC scores exceeding 0.5, indicating non-random predictions, 

although, random forest classifiers resulted in higher predictive accuracies than the 

logistic regression classifiers. Applications of random forests in other studies also 

show improvements in predictive accuracies compared to logistic regression models 

(Cutler et al., 2007; Muchlinski et al., 2015; Peters et al., 2007). Both logistic 

regression and random forest classifiers are better at differentiating the invasive status 

between non-invaders and invaders (model comparison A), than between minor-

invaders and major-invaders (model comparison B). In previous studies, using the 

Australian WRA in Florida, a greater number of minor-invaders in the dataset needed 

to be further evaluated for weed risk compared to major-invaders (Gordon et al., 

2008a). In the PPQ WRA, minor-invaders have been shown to have a larger 

variability in invasive status compared to non-invaders and major-invaders and 

needed further evaluation (Koop et al., 2012). This may relate to the gradients of 

invasion in the stages of the invasion process.  

The dataset used to develop the USDA-APHIS-PPQ WRA logistic regression 

model was also used to develop the random forest model. However, PPQ-WRA was 
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developed using summed “risk scores” of the sections establishment/spread potential 

and impact potential, while the raw values of each variable in the 

establishment/spread and impact potential sections were used to develop the 

classifiers presented in the study. When comparing the predictive accuracy of the 

classifiers for model comparison A for 10-fold CV, non-invader vs. invaders, the PPQ 

WRA (AUC=0.953) showed greater predictive accuracy. However, when comparing 

AUC scores with Koop et al., the differences were minimal between random forest 

classifier A (AUC=0.943) developed in this study and the PPQ WRA (AUC=0.953), 

whereas the logistic regression classifier A (AUC=0.865), developed in this study, 

performed poorly compared to the PPQ WRA (Koop et al., 2012). Overall, random 

forest classifiers showed greater predictive power than the logistic regression 

classifiers that were developed in this study and are an improvement to the PPQ 

WRA in the sense that all the variables of the PPQ WRA are considered in the 

analysis.  

When comparing the predictive accuracy of all the classifiers developed for 

the model comparisons (between non-invader vs. invaders and minor-invader vs. 

major-invader) across 2, 5, and 10-fold CV methods, the results show that the random 

forest classifiers have greater predictive accuracies than the logistic regression 

classifiers across all CV methods. The k-fold CV sampling is indicative of how the 

dataset is split for training and testing and is an estimate for predictive accuracy of 

prediction of observed “invasive status”, whether the taxon is a non-invader, minor-

invader, or major-invader. The greatest predictive accuracy is shown using 5-fold CV 

for the random forest classifiers, while the 10-fold CV yields the best predictive 
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accuracy for the logistic regression classifiers. These results indicate that random 

forest classifiers need a lower ratio of training data compared to the logistic 

regression classifiers. That is, random forest classifiers are “better learners” than the 

logistic regression classifiers even in instances of limited number of observations in 

the dataset available for training the model (Figure 2). This is particularly important 

for assessing weed risk because of the limitation in data availability because alien 

species data tend to be scattered through disconnected data silos lacking 

interoperability (Quentin et al., 2017). Further, the performances of the random forest 

classifiers are more stable across the different sampling methods than the logistic 

regression classifiers (Figure 2) 

 

Variable importance for the random forest classifier 

The raw risk scores of the establishment/spread and impact potential sections of the 

data were used to develop the classifiers presented in this study; however, the PPQ 

WRA is developed with summed risk scores of the two sections which is useful in 

logistic regression for reduction of model overftting that occurs in ‘small n, large p’ 

dataset scenarios and masks the presence of multicollinearity within the dataset. 

Using raw scores in the random forest models is beneficial for assessing the model’s 

variable importance, whereas using summed risk scores results in only two 

independent variables available for assessing variable importance. By developing a 

separate multi-class (non-, minor-, and major-invader) random forest model, this 

study shows the importance of variables for predictor accuracy for the random forest 

model.  
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The best predictor of invasive status for the random forest classifier is es1, 

which quantifies the invasive status of the plant outside the native range. This result is 

consistent with the question analysis, using chi-square tests, conducted by Koop et al. 

prior to final model development, which found that the response to invasive status 

elsewhere has the greatest association with a priori invasive status for minor and 

major-invaders (2012). Additionally, other previous studies also indicate that the 

invasive status of plants elsewhere strongly predicts for invasiveness (Gordon et al., 

2008b; Dawson et al., 2009; Herron et al., 2007). Although, the invasive status of a 

non-native plant elsewhere is rated as the best predictor for assessing invasive 

potential in a new range, it is important to consider that non-native plants may 

respond differently to environmental factors at different spatio-temporal stages of the 

invasion process.  

Other predictors such as, impn6 (weed status in natural systems) and impp6 

(weed status in production systems) also have greater variable importance for the 

random forest classifier. This is consistent in industrial practice, where research 

develops new taxa for agricultural and horticultural purposes with characteristics that 

promote production which consequently also increase environmental weed risk 

(Driscoll et al., 2014). Two predictors, es2 (is the species highly domesticated) and 

impg2 (parasitic) have no importance in predicting invasive status for the random 

forest classifier but this could be due to a low n of parasitic taxon in the dataset used 

to develop the model. Interestingly, a study found that native parasitic plants cause 

more damage to invasive hosts than the native, non-invasive hosts (Li et al., 2012). 
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While a later study found that as the age of the invasive plant increases, there is a 

decrease in parasitic damage to the invasive plant (Li et al., 2015).   

Variables describing the biological traits of the taxon in regard to growth form 

(i.e. “whether it has climbing or smothering growth habit”; es5), “minimum 

generation time” (es13), “number of natural dispersal vectors” (es17), and 

“propagules likely to disperse in trade as contaminants or hitchhikers” (es16) are 

variables that are also important for predictive accuracy of the random forest model 

(Figure 3).  This differs from a previous study where only a few questions regarding 

biological traits were found to be significant in chi-square tests for the PPQ WRA 

(Koop et al., 2012).  In general, variables describing biological traits of potential 

invasive plants are expected to be of significance in WRA because weed status 

elsewhere is most likely not known for plants undergoing evaluation.  

Overall, assessing variable importance for the random forest classifier 

provides relevant information when looking for subsets of variables to use for WRA. 

Specifically, this provides insight into which variables are of the highest importance 

for invasive status prediction and which variables are of the least importance. 

Unimportant variables have low mean decrease accuracy, which means they have 

little to no effect on model accuracy. Moreover, variables of least importance may 

potentially be unreliable variables that could hinder model performance by 

introducing noise (Han et al., 2017). An abbreviated model containing only variables 

with the greatest importance could potentially be developed in an effort to strengthen 

model predictive performance and to supplement the existing WRA process. When 

multiple predictive models yield similar predictions, this can further enhance the 
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confidence of the perceived outcome, which is valuable in WRAs to help inform 

policy-making. 

 

Influence of predictor variables on the observed invasive status for the random 

forest classifier 

Partial dependence functions can be used for interpretation of models produced with a 

“black box” prediction method such as Random forests (Friedman, 2001). In Ecology, 

partial dependence functions have been used to interpret the influence environmental 

variables has on presence of short-finned eels for a Boosted Regression Tree (BRT) 

model (Elith et al., 2008).  In this study, partial dependence plots were used to further 

investigate the relationship between prediction accuracy for the observed invasive 

classes (non-, minor-, and major-invader) for the top three important variables (es1, 

impn6, and impp6) of the random forest model. The results show that the marginal 

effect that variable values have on the change of class prediction can only be seen for 

observed invasive status non-invader and major-invader. That is, for the top three 

variables, the random forest classifier is best at classification of non-invaders and 

major-invaders than minor-invaders based on the variable value. Overall, none of the 

top three variables show strongly non-linear relationships between variable value and 

change in predicted value. If strong non-linear relationships were present then 

Generalized Linear Models (GLMs) like logistic regression would be unsuitable for 

prediction of invasive status of non-native plants for WRA. This result supports the 

conclusion that the logistic regression classifiers also show high predictive accuracy, 

even though greatest predictive accuracy is seen with random forest classifiers.  
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Closing remarks 

Broadly, the conclusions presented here indicate that the prediction of invasive status 

using the PPQ WRA dataset is improved when using a Random forests model 

compared to predictions using the generalized linear model logistic regression. This 

was consistent across ROC AUC analysis under multiple k-fold conditions. Use of 

random forest methodology allowed additional analysis of variable importance with 

respect to predictive power and partial dependence of classification on variable 

values.   

Partial dependence plots indicates the difficulty of predicting minor-invaders 

in WRAs apart from the non-invader and major-invader counterparts.  This could be 

suggestive of room for improvement in the classification scheme for future analysis, 

it could be a consequence of the limitations of prediction of minor-invaders given the 

data and the model, or some combination thereof.  On the one hand, while assignment 

of minor invader status is rooted in the literature, multiple of the pooled sources for 

defining the invasive status were ultimately subjective in their own classifications.  

This is indicative of the discretion involved in making such distinctions and of the 

care required when interpreting such analysis.  Additional analysis of other variables 

ranked less important could also shed light on this issue.  If the poor predictive 

accuracy for minor invaders is persistent across the vast majority of the most 

important variables, then this would be suggestive of the complexity involved in 

making such a prediction. 

Of additional interest is the analysis of variable importance. One underlying 

assumption of a WRA approach that utilizes sets of traits associated with past 
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invaders is that said traits are reasonable grounds from which to predict future weed 

risk. This is a practical first order approach. Future efforts should strive to grapple 

with the complex temporal and ecological spatial relationships associated with 

potential invasive species relative to possible recipient communities across multiple 

geographic and time zones.  Closer consideration of items such as the biological traits 

of the greatest importance determined here and integrating how these and other 

biological traits will influence future weed risk may be useful in efforts to improve 

future WRA implementations. 
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Chapter 3: An exploratory approach to invasive plant 

species distribution modeling for weed risk assessment 

 

Introduction 

Assessment of geographic potential of non-native plants for new ranges is integral to 

the WRA process. The USDA-APHIS-PPQ WRA process includes assessment of the 

geographic potential of non-native plants undergoing weed risk evaluation (PPQ, 

2016). This portion of the WRA process is not part of the PPQ WRA model, but 

informs the overall report compiled for each plant taxon under WRA (PPQ, 2016). 

Geographic/climate suitability risk for regional establishment of species is assessed 

through climate variable matching, but does not assess species establishment from a 

climate change perspective. Future changes in climate are expected to promote weeds 

by increasing their negative impacts (Bradley et al., 2010). Tools modeling plant 

species distributions (e.g. “MaxEnt”, CLIMEX) are available to map current 

distributions and future distributions that incorporate climate change predictions. 

These models work under the assumption that climate variables are the primary risk 

factors for assessment of species potential ranges in the future.  

This chapter of the thesis explores new avenues for modeling species 

distributions with respect to climate change predictions using open source software 

not currently utilized in potential species distribution of non-native plants. 

Distribution of Alternanthera philoxeroides (alligatorweed), Acanthospermum 

australe (paraguayan starbur), and Abutilon megapotamicum (trailing abutilon) in the 
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U.S. is visualized by mapping occurrence points to an overlay of climatic variables 

(i.e. mean monthly historical temperatures). These plants were part of the random 

forest validation dataset described in chapter two.  

 

 

Methods 

Climate data  

 

Historical temperature data 

The rWBclimate software package (Hart, 2014) was used to access historical 

temperature climate data from the World Bank Climate Change Knowledge Portal 

(CCKP). The Climatic Research Unit (CRU) of the University of East Anglia (UEA) 

originally produced the historical temperature data. Decade level temperatures for 

years 1990-2000 were retrieved at river basin spatial scales for the 78 major 

watersheds in the United States (excluding Hawaii and Alaska) and Mexico. A global 

map of river basins, with their respective basin IDs can be viewed at the CCKP 

website (http://sdwebx.worldbank.org/climateportal/index.cfm?page=basin_map_regi 

on&ThisMap=NA&ThisView=basin). KML files, a file format for the display of 

geographic data, were retrieved for mapping the historical temperatures of each river 

basin. KML files can also be retrieved using ISO country codes, but they result in 

lower map resolutions compared to river basins. 
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Climate change model 

 

The rWBclimate software package (Hart, 2014) was used to access climate data from 

the World Bank Climate Change Knowledge Portal (CCKP) in order to compare 

modeled estimates of temperature with recorded historical temperatures. Climate data 

was downloaded from the General Circulation Model (GCM) Hadley Centre Coupled 

Model version 3 (HadCM3). The original historical climate data used by HadCM3 

was provided by the CRU of UEA. HadCM3 is used by the North American Regional 

Climate Change Assessment Program (NARCCAP), Plant Species and Climate 

Profile Predictions, WorldClim, and the Intergovernmental Panel on Climate Change 

(IPCC) Third, Fourth, and Fifth Assessments (IPCC, 2001; IPCC, 2007; IPCC, 2014). 

The HadCM3, from the UK Met Office, is a coupled climate prediction model that 

has an atmospheric and oceanic component. There are 19 different categories to the 

atmospheric component, which includes a horizontal resolution of 2.5° latitude by 

3.75° longitude, thus producing a global grid of 96 x 73 grid cells (“Met Office 

climate prediction model: HadCM3, 2018).  

The HadCM3 model can forecast future climate predictions as well as 

backcast for 20-year intervals, starting from year 1920 to 2099 for two Green House 

Gas (GHG) emissions scenarios (a2 or b1). Both climate predictions are based on 

model estimates, not observed data. The a2 scenario is the future rate of GHG 

emissions remaining the same as the present, in a world that is regionally 

heterogeneous oriented in economic development with a continuous increase in 
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human population (Cubasch et al., 2001). The optimistic b1 scenario is characterized 

by a decrease in rate of GHG emissions compared to the current rate with the 

introduction of clean technologies in a convergent world with improved equity and a 

continuous increase in human population (Cubasch et al., 2001). Model data and 

detailed scenario descriptions are available at the International Panel on Climate 

Change Data Distribution Center (http://www.ipcc-data.org/). Climate model 

estimates of average monthly temperatures for GHG emission scenarios a2 and b1 

were retrieved at country spatial scales for the United States for years 2080-2100 to 

ensure max change in the future years. These modeled estimates were compared to 

average monthly historical temperatures from years 1901-2009.   

 

 

Species occurrence data 

 

The spocc software package (Chamberlin, 2017) was used to retrieve species 

occurrence data for three plant species. They included, the aquatic/terrestrial plant A. 

philoxeroides (major-invader; family: Amaranthaceae), terrestrial plant A. australe 

(minor-invader; family: Asteraceae), and terrestrial plant A. megapotamicum (non-

invader; family: Malvaceae). These plants were chosen because they are part of the 

data subset used to validate the random forest model (see methods on random forest 

classifier), they represent a wide variety of plant families, and each species represents 

a different observed invasive status in the PPQ WRA dataset. The spocc package was 

used to retrieve 500 occurrence records with coordinates for each species from the 

Global Biodiversity Information Facility (GBIF). Only 500 occurrence records were 
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retrieved for each plant to ensure feasible retrieval time. This returned 87 global 

occurrences with coordinates for A. megapotamicum, 500 records for A. philoxeroides 

out of a total of 2,729, and 500 records for A. australe out of a total of 972. GBIF is a 

network of over 200 million primary plant species occurrence data published by 

scientists all over the world, including 1,163 publishing institutions (GBIF; 

www.gbif.org). It is important to keep in mind that a lack of complete records for 

plant occurrences persists. However, for this work, the assumption was that the 

density of the data registered with the GBIF network is representative of species 

occurrence density gradientsEach record follows the Darwin Core Standard (DwC), 

which is a body of data standards used by GBIF (Wieczorek et al., 2012). Along with 

coordinates from where the species was found, each occurrence record includes meta-

data such as the event of the record (whether it was a human observation or a 

preserved specimen), location, geological context, occurrence, taxon, and 

identification (Wieczorek et al., 2012).  

Plant species distributions were visualized with respect to historical 

temperatures by mapping occurrence points to their recorded coordinates. The 

randomly selected occurrence points with coordinates were further modified to 

remove records with coordinates that were < 7  latitude (below the continental U.S. 

and Mexico). The remaining occurrence records were overlaid, with their 

corresponding coordinates, on a map of the continental United States and Mexico. 

Historical temperature (mean monthly temperature data from years 1990-2000) from 

the basin climate map was extracted for each remaining number of species occurrence 

point. Climatic variables, such as mean annual temperature are one of the most 
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important variables for predicting invasion success (Bellard et al., 2016). Out of the 

original occurrence dataset A. megapotamicum (n=5), A. australe (n=11), and A. 

philoxeroides (n=158) occurrence points were overlaid onto the map of historical 

temperatures.  

 

 

Results 

HadCM3 climate model projects an increase in average monthly temperatures in 

the United States for years 2080-2100 than historical average temperatures 

The observed historical temperature range for A. megapotamicum (trailing abutilon) 

is 26.33-29.66 ºC with an average of 26.99 ºC (Sd. 1.488) and 18.60 º latitude (Sd. 

2.81). The trailing abutilon occurrence records are found in river basins located in 

southeast Mexico and the San Juan river basin and one occurrence in the U.S. Pacific 

Northwest. The observed historical temperature range for A. australe (paraguayan 

starbur) is 17.64-26.25 ºC with an average of 23.09 ºC (Sd. 2.84) and 31.31 º latitude 

(Sd. 3.22). The observed historical temperature range of A. philoxeroides 

(alligatorweed) is 16.19-26.25 ºC with an average of 23.55 ºC (Sd.1.49) and 31.57 º 

latitude (Sd. 1.88) (Figure 5). Majority of the recorded occurrences for alligatorweed 

were found in the Texas Gulf Coast river basin, while the rest were found in the 

South-Atlantic Gulf basin along with most of the recorded occurrences for 

paraguayan starbur. The climate model HadCM3 was used to forecast average 

monthly temperatures in future GHG scenarios a2 (pessimistic) and b1 (optimistic), 
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for years 2080-2100. The model predicted that temperatures would be higher than the 

reported averaged monthly historical temperatures for years 1901-2009 (Figure 6).  
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Figure 5. U.S. and Mexico mean historical temperature map for years 1990-2000 

overlaid with species distribution occurrences of three non-native plant species, 

i.e. A. australe (paraguayan starbur), A. megapotamicum (trailing abutilon), and 

A. philoxeroides (alligatorweed). Historical temperature data were retrieved for each 

decade by averaging monthly temperatures from years 1990-2000.  Species are shown 

in non-native ranges. Climate data from World Bank Climate API for basin level 

spatial scales. Species occurrence records were retrieved from GBIF.   
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Figure 6. Averaged monthly temperature (C) projections in the United States 

for years 1901-2009 and 2080-2100.  Historical temperatures for years 1901-2009 

are lower than HadCM3 modeled temperature projections for future years 2080-2100. 

Historical averaged monthly temperatures were derived for each decade.  HadCM3 

climate model temperature projections are presented for future GHG scenarios a2 

(pessimistic) and b1 (optimistic). The Climatic Research Unit (CRU) of the 

University of East Anglia (UEA) provides the original dataset. Temperature data were 

retrieved for the U.S. ISO country code.  
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Discussion 

Plant species distributions 

Alligatorweed 

Alligatorweed is a perennial aquatic and terrestrial invasive plant that is listed as a 

Federal Noxious Weed and a major-invader. The current distribution presented in this 

study and the distribution predicted by “MaxEnt” (Knocki & Aronson, 2015) are 

similar in their mapped distributions shows the majority of occurrence points located 

in the Southeast continental U.S. This is consistent with reports supporting that 

alligatorweed prefers subtropical to cool climates found in freshwater habitats in the 

Southeast (https://www.cabi.org/isc/datasheet/4403). The optimal growth temperature 

of alligatorweed in a greenhouse has experimentally been shown to be between 15-

20C (Julien et al., 1995). However, another study showed a 90% survival rate of 

alligatorweed stem cuttings (4-5 cm in length; N=2000) harvested from 29N-31N in 

July 2008 and grown in a greenhouse where temperatures were between 15-40C (15-

25C from October to November and 30-40C from August to September) (Sun et al., 

2010), suggesting a wider habitat suitability. The HadCM3 climate model projection 

for mean monthly temperature, for years 2080-2100, is predicted to be highest in July, 

23.87C for scenario a2 and 21.56C for scenario b1. The lowest predicted 

temperatures are -0.15C and -1.61C for a2 and b1, respectively.  Historical 

temperatures and projected forecast of climate model temperature estimates presented 

in this study, and experimental temperatures (Julien et al., 1995; Sun et al., 2010) 

show the temperature in the continental U.S. will remain within physical tolerable 
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values for alligatorweed; therefore, future species range in the continental U.S. may 

continue to expand in freshwater habitats.  

 Paraguayan starbur 

Paraguayan starbur is an annual and short-lived perennial that is a minor-invader. Its 

distribution presented in this study is similar to the distribution found with the 

“MaxEnt” species distribution model (Magarey et al., 2017). Both distribution maps 

show occurrence points located in the Southeast continental U.S., where it thrives in 

warm, relatively dry habitats where the average warm temperature is > 10C and the 

average cold temperature is > 0C (https://www.cabi.org/isc/datasheet/118957). The 

mean temperature predictions from the HadCM3 climate model indicate that U.S. 

habitat temperatures will be increasingly tolerable for paraguyan starbur, indicating 

that species range could potentially expand in the future.  

Trailing abutilon  

Trailing abutilon is an annual ornamental plant and is considered a non-invader in the 

U.S.  Its distribution presented in this study is mainly in Mexico and Canada, right 

above the Pacific Northwest. Trailing abutilon is found in USDA plant hardiness 

zones 8-10, where average annual extreme minimum temperature is estimated to be 

from -12.2C to 4.4C (http://planthardiness.ars.usda.gov/PHZMWeb/#) and was 

predicted to be a non-invader in the Florida WRA (Gordon et al., 2008b). There are 

no species distribution models describing plant range for trailing abutilon available in 

scientific literature. This could be attributable to its status as a non-invader.  From the 

available literature, one study showed that trailing abutilon is susceptible to Leaf Spot 

disease, caused by Myrothecium roridum Tode ex Fr., in the greenhouse and fields 



 

 

67 

 

(Ben et al., 2016). Additionally, ornamental plant care manuals suggest yearly 

pruning to help prevent disease. Invasive plants tend to be characteristically hardy 

(Chai et al., 2016) and relatively pest-free (Keane & Crawley, 2002; Lind & Parker, 

2010). If perspective ranges become favorable in the future with an increase in mean 

temperature (as predicted by HadCM3 GCM), trailing abutilon may become invasive 

in the future. 

 

 

Utility and future directions of simple SDMs 

In this exploratory section of the study, species occurrence points were overlaid on 

historical temperatures (the mean monthly temperature recorded for years 1990-

2000). This overlay of species occurrence points onto a climate map is a simple 

species distribution model (SDM) because species absences are not accounted for and 

only species occurrence records from a country are visualized (global distributions of 

occurrence records cannot be extrapolated for their associated climatic variables and 

then mapped to new particular region). Therefore, resultant species distributions are 

not quantitatively predicted for new regions.  

The USDA-APHIS-PPQ WRA process uses a similar and more robust SDM, 

Proto3, to assess geographic/climatic suitability risk for regional establishment of 

species. The Proto3 model combines a Geographic Information System (GIS) overlay 

of three climate variables (i.e. plant hardiness zones (Magarey et al., 2008), 10-inch 

global precipitation bands (Magarey et al., 2008), and Köppen–Geiger climate classes 

(Peel et al., 2007) to reveal a potential distribution of species (PPQ, 2016).  
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Although complex SDMs are known to have high predictive accuracies 

(Vorsino et al., 2014), there are still benefits to using simple SDMs. For example, the 

simple SDM presented in this study used the spocc package, which can easily 

combine species occurrence data from multiple data sources, such as GBIF, Berkeley 

Ecoengine, iNaturalist, VertNet, Biodiversity Information Serving Our Nation 

(rbison), eBird, AntWeb, iDigBio, Ocean Biogeographic Information System (OBIS), 

and Atlas of Living Australia (ALA) (Chamberlin, 2017). However, some of these 

sources have overlaps in data resulting in duplicate occurrence points. This is an issue 

that could potentially be resolved in future versions of the spocc package 

(Chamberlin, 2017). Nevertheless, spocc package-derived tools could prove useful 

when modeling the presence of multiple species with niche overlaps. This species-

level comparison can be a first step to get a better understanding of the underlying 

ecological relationships/trends in a region. Exploration of species-level comparisons 

are particularly important in WRAs because it is widely known that invasive species 

have detrimental effects on ecosystem structure and function (Neckles, 2015; Naeem 

et al., 1994). 

 The most obvious advantage of this methodology for modeling species 

distributions is the availability of the software through open-source avenues like R 

(CRAN). Additionally, species occurrence data from spocc can be combined with 

other R software packages, as shown in this study, such as rWBclimate to generate 

climate maps with historical data or GCM data. Yet, climatic variable extrapolation 

from global species occurrences to predict for new geographic suitability is not yet 

available from these packages. Besides this lack in current functionality, these tasks 
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are more or less easily executable for individuals with at least an intermediate 

expertise in R.  

One of the driving forces of the USDA-APHIS-PPQ is a demand for more 

timely and flexible solutions for assessing invasive potential risk for non-native 

species (PPQ, 2015). Ease of use for generating SDMs for the WRA process becomes 

particularly important for Risk Analysts conducting these assessments because they 

might not have experience developing complex SDMs and simpler SDMs take less 

time to conduct with respect to gathering data for the modeling process and to 

actually carry out the model run (Magarey et al., 2017). It can be useful to incorporate 

more SDMs to facilitate a more integrative WRA process. 
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Appendices 
 

Appendix A. WRA dataset variables used for development of all models. 

Questions ES1-IMPP6 are predictor variables and INVASIVE STATUS is the 

dependent variable. Adapted from Koop et al., 2012. Corresponding numerical 

values are entered into model for lettered responses (i.e. A, B, C, D, E, and F). 

Responses with a “?” receive a numerical value of 0.    

Variables  Score Scale 

ESTABLISHMENT/SPREAD POTENTIAL 

 

ES1  (Status/invasiveness outside native 

range) 

A=-5; B=-2; C=0; D=0; E=2; F=5; ?=0 

ES2 (Is the species highly domesticated) Yes=-3; No=0; ?=0 

ES3 (Weedy congeners) Yes=1; No=0; ?=0 

ES4 (Shade tolerant at some stage of its 

life cycle) 

Yes=1; No=0; ?=0 

ES5 (Climbing or smothering growth 

form) 

Yes=1; No=0; ?=0 

ES6 (Forms dense thickets) Yes=2; No=0; ?=0 

ES7 (Aquatic) Yes=1; No=0; ?=0 

ES8 (Grass) Yes=1; No=0; ?=0 

ES9 (Nitrogen-fixing woody plant) Yes=1; No=0; ?=0 

ES10 (Does it produce viable seeds or 

spores) 

Yes=1; No=-1; ?=0 

ES11 (Self-compatible or apomictic) Yes=1; No=-1; ?=0 

ES13 (Minimum generation time) A=2; B=1; C=0; D=-1 

ES14 (Prolific reproduction) Yes=1; No=-1; ?=0 

ES15 (Propagules likely to be dispersed 

unintentionally by people) 

Yes=1; No=-1; ?=0 

ES16 (Propagules likely to disperse in 

trade as contaminants or hitchhikers) 

Yes=1; No=-1; ?=0 

ES17 (Number of natural dispersal 

vectors) 

None=-4; One=-2; Two=0; Three= 2; 

Four or Five=4 

ES18 (Evidence that a persistent (>1 

year) propagule bank (seed bank) is 

formed) 

Yes=1; No=-1; ?=0 

 

ES19 (Tolerates/benefits from 

mutilation, cultivation or fire) 

Yes=1; No=-1; ?=0 

ES20 (Is resistant to herbicides or 

potential to acquire herbicide resistance) 

Yes=1; No=0; ?=0 
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ES21 (Number of cold hardiness zones 

suitable for its survival) 

Varies 

ES22 (Number of climate types suitable 

for its survival) 

Varies 

ES23 (Number of precipitation bands 

suitable for its survival) 

Varies 

IMPACT POTENTIAL 

 

IMPG1 (Allelopathic) Yes= 0.1; No=0; ?=0 

IMPG2 (Parasitic) Yes=0.1; No=0; ?=0 

IMPN1 (Change ecosystem processes 

and parameters that affect other species) 

Yes=0.4; No=0; ?=0 

 

IMPN2 (Changes community structure) Yes=0.2; No=0; ?=0 

 

IMPN3 (Changes community 

composition) 

Yes=0.2; No=0; ?=0 

 

IMPN4 (Is it likely to affect federal 

Threatened and Endangered species) 
Yes=0.1; No=0; ?=0 

 

IMPN5 (Is it likely to affect any 

globally outstanding ecoregions) 
Yes=0.1; No=0; ?=0 

 
IMPN6 (Weed status in natural 

systems) 
A=0; B=0.2; C=0.6 

IMPA1 (Impacts human property, 

processes, civilization, or safety) 
Yes=0.1; No=0; ?=0 

 
IMPA2 (Changes or limits 

recreational use of an area) 
Yes=0.1; No=0; ?=0 

IMPA3 (Outcompetes, replaces, or 

otherwise affects desirable plants and 

vegetation) 

Yes=0.1; No=0; ?=0 

IMPA4 (Weed status in anthropogenic 

systems) 
A=0; B=0.1; C=0.4 

IMPP1 (Reduces crop/product yield) Yes=0.4; No=0; ?=0 

IMPP2 (Lowers commodity value) Yes=0.2; No=0; ?=0 

IMMP3 (Is it likely to impact trade) Yes=0.2; No=0; ?=0 

 
IMMP4 (Reduces the quality or 

availability of irrigation, or strongly 

competes with plants for water) 

Yes=0.1; No=0; ?=0 

IMMP5 (Toxic to animals, including 

livestock/range animals and poultry) 
Yes=0.1; No=0; ?=0 
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IMMP6 (Weed status in production 

systems) 
A=0; B=0.2; C=0.6 

INVASIVE STATUS Non-invader; Major-invader; Minor-

invader 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B. Plant species used to develop all WRAs in this study. Adapted 
from Koop et al., 2012. Note: *Plant species used for the 30% random forest validation 

subset. 

Species 

 

Family 

 

Habit 

Major-invaders 

Abrus precatorius  Fabaceae  

 

Vine 

Abutilon theophrasti*  Malvaceae  Herb 

Alnus glutinosa Betulaceae  Tree 

Ardisa elliptica* Myrsinaceae Shrub 

Avena fatua Poaceae Graminoid 

Cardaria draba Brassicaceae Herb 

Centaurea solstitialis* Asteraceae Herb 

Cirsium arvense Asteraceae Herb 

Convolvulus arvensis* Convolvulaceae Vine 

Cupaniopsis anacardioides Anacardiaceae Tree 

Cyperus rotundua Cyperaceae Graminoid 

Datura stramonium* Solanaceae Herb 

Eichhornia crassipes Pontederiaceae Herb 
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Eugenia uniflora Myrtaceae Shrub 

Hydrilla verticillata Hydrocharitaceae Aquatic 

Lactuca serriola Asteraceae Herb 

Lonicera maackii Caprifoliaceae Shrub 

Miconia calvescens Melastomataceae Tree 

Mimosa pigra Fabaceae Shrub 

Pittosporum undulatum Pittosporaceae Herb 

Portulaca oleraceae Portulaceae Herb 

Psidium guajava Myrtaceae Tree 

Rumex crispus Polgonaceae Herb 

Psidim guajava Myrtaceae Tree 

Rumex crispus Polgonaceae Herb 

Senecio vulgaris Asteraceae Herb 

Setaria italica subsp. Viridis Poaceae Graminoid 

Sisymbrium irio Brassicaceae Herb 

Solanum nigrum* Solanaceae Subshrub 

Sorghum halepense Poaceae Graminoid 

Tamarix ramosissima Tamaricaceae Shrub 

Thlaspi arvense Brassicaceae Herb 

Tradescantia fluminensis  Commelinaceae Herb 

Triadica sebifera Euphorbiaceae Tree 

Aegilops cylindrica* Poaceae Graminoid 

Albizia julibrissin* Fabaceae Tree 
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Allium vineasle Lilliaceae Herb 

Alternanthera philoxeroides Amaranthaceae Aquatic 

Barbarea vulgaris Brassicaceae Herb 

Berberis thunbergii Berberidaceae Shrub 

Bromus tectorum Poaceae Graminoid 

Capsella bursa-pastoris Brassicaceae Herb 

Carduus nutans Asteraceae Herb 

Carpobrotus chilensis Aizoaceae Herb 

Casuarina equisetifolia Casuarinaceae Tree 

Cayratia japonica Vitaceae Vine 

Cytisus scoparius*  Fabaceae Shrub 

Daucus carota subsp.* 

Carota 

Apiaceae Herb 

Elaeagnus umbellate Elaeagnaceae Shrub 

Emex spinosa Polygonaceae Herb 

Euphorbia esula Euphorbiaceae Herb 

Galinsoga parviflora Asteraceae Herb 

Hypericum perforatum  Hypericaceae Herb 

Imperata cylindrical* Poaceae Graminoid 

Lamium amplexicaule Lamiaceae Herb 

Lygodium japonicum Lygodiaceae Vine 

Lythrum salicaria Lythraceae Aquatic 

Malva parviflora Malvaceae Tree 
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Myriophyllum spicatum* Haloragaceae Aquatic 

Nandina domestica Berberidaceae Shrub 

Neyraudia reynaudiana* Poaceae Graminoid 

Pennisetum ciliare* Poaceae Graminoid 

Poa annua Poaceae Graminoid 

Polygonum aviculare Polygonaceae Herb 

Polygonum convolculus Polygonaceae Vine 

Rottboellia cochinchinesis* Poaceae Graminoid 

Schefflera actinophylla* Araliaceae Tree 

Minor-invaders 

Acer palmatum* Aceraceae Tree 

Artocarpus 

heterophyllus* 

Moraceae Tree 

Bellardia trixago* Scrophulariaceae Herb 

Cichorium intybus Asteraceae Herb 

Cissus rotundifolia Vitaceae Vine 

Clematis terniflora Ranunculaceae Vine 

Costus speciosus Zingiberaceae Herb 

Cotoneaster coriaceus Rosaceae Shrub 

Dioscorea oppositifolia Dioscoreaceae Vine 

Epipactis helleborine Orchidaceae Herb 

Euryops multifidus Asteraceae Subshrub 

Geranium pusillum Geraniaceae Herb 
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Gloriosa superba Colchicaceae Vine 

Gomphrena globosa* Amaranthaceae Herb 

Hiptage benghalensis Malphigiaceae Vine 

Hylotelephium telephium* Crassulaceae Herb 

Ilex paraguariensis* Aquifoliaceae Tree 

Ligustrum obtusifolium Oleaceae Shrub 

Linaraia vulgaris Scrophulariaceae Herb 

Lysimachia punctata Primulaceae Herb 

Melilotus indicus Fabaceae Herb 

Orobanche minor Orobanchaceae Herb 

Prunus armeniaca  Rosaceae Tree 

Pyracantha coccinea Rosaceae Shrub 

Quisqualis indica Combretaceae Vine 

Ranunculus acris Ranunculaceae Herb 

Rhamnus utilis Rhamnaceae Shrub 

Ribes rubrum Grossulariaceae Shrub 

Rumex pulcher Polgonaceae Herb 

Saponaria officinalis Caryophyllaceae Herb 

Senecio jacobaea* Asteraceae Herb 

Spermacoce latifolia Rubiaceae Herb 

Stapelia gigantea* Asclepiadaceae Herb 

Tillandsia gardneri Bromeliaceae Epiphyte 

Abutilon hirtum Malvaceae Shrub 
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Acanthospermum australe Asteraceae Herb 

Actinidia chinensis Actinidiaceae Vine 

Agrostemma githago Caryophyllaceae Herb 

Aira caryophyllea Poaceae Graminoid 

Akebia quinata  Lardizabalaceae Vine 

Antirrhimum majus* Scrophulariaceae Herb 

Archontophoenix 

alexandrae 

Arecaceae Tree 

Arctium minus Asteraceae Herb 

Bassis hyssopifolia Chenopodiaceae Herb 

Betula pendula* Betulaceae Tree 

Castilla elastica Moraceae Tree 

Conium maculatum Apiaceae Herb 

Costus dubius Zingiberaceae Herb 

Dendrobium crumenatum Orchidaceae Epiphtye 

Eucalyptus camaldulensis Myrtaceae Tree 

Euonymus alatus* Celastraceae Shrub 

Glechoma hederacea Lamiaceae Herb 

Guzmania lindenii Bromeliaceae Epiphyte 

Helichrysum petiolare Asteraceae Subshrub 

Hygrophila polysperma Acanthaceae Aquatic 

Ligustrum sinense* Oleaceae Shrub 

Luma apiculata Myrtaceae Tree 
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Luziola subintegra Poaceae Aquatic 

Pittosporum pentandrum Pittosporaceae Tree 

Rosa multiflora Rosaceae Shrub 

Setaria palmifolia Poaceae Graminoid 

Spartina densiflora* Poaceae Graminoid 

Theobroma cacao* Sterculiaceae Tree 

Trachelospemum 

jasminoides* 

Apocynaceae Vine 

Ulmus procera Ulmaceae Tree 

Verbena bonariensis Verbenaceae Subshrub 

Wisteria sinensis/W. 

floribunda 

Fabaceae Vine 

 

Xanthosoma atrovirens Araceae Herb 

Non-invaders 

Agave filifera* Agavaceae Shrub 

Allium giganteum Liliaceae Herb 

Asarum europaeum* Aristolochiaceae Herb 

Bombax ceiba Bombacaceae Tree 

Brugmansia sanguinea  Solanaceae Shrub 

Buxus microphylla Buxaceae Shrub 

Catalpa bungei Bignoniaceae Tree 

Cedrus libani* Pinaceae Tree 

Centaurea dealbata ASteraceae Herb 
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Cupressus sempervirens* Cupressaceae Herb 

Festuca amenthystina* Poaceae Graminoid 

Fortunella japonica* Rutaceae Shrub 

Gazania rigens Asteraceae Herb 

Kniphofia caulescens Liliacae Herb 

Linaria alpina Schrophulariaceae Herb 

Listera ovate* Orchidaceae Herb 

Medicago arborea* Fabaceae Shrub 

Pistacia chinesis * Anacardiaceae Tree 

Podophyllum hexandrum Berberidaceae Herb 

Polygonum 

amplexicaule* 

Polygonaceae Herb 

Pouteria sapota Sapotaceae Tree 

Primula elatior* Primulaceae Herb 

Primula pulverulenta*  Primulaceae Herb 

Prunus japonica Rosaceae Shrub 

Rhododendron simsii Ericaceae Shrub 

Ribes orientale Grossulariaceae Shrub 

Rondeletia odorata Rubiaceae Shrub 

Saintpaulia ionantha Gesneriaceae Herb 

Styphnolobium japonicum Fabaceae Tree 

Teucrium chamaedrys* Lamiaceae Subshrub 

Tulipa gesneriana Liliaceae Herb 
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Yucca guatemalensis Agavaceae Tree 

Abutilon 

megapotamicum* 

Malvaceae Shrub 

Acer buergerianum Aceraceae Tree 

Acorus gramineus Acoraceae Aquatic 

Bergernia crassifolia* Saxifragaceae Herb 

Blechnum brasiliense Blechnaceae Herb 

Brachycome iberidifolia* Asteraceae Herb 

Ceiba speciosa Bombacaceae Tree 

Combretum coccineum* Combretaceae Shrub 

Davallia canariensis Polypodiaceae Herb 

Dendrocalamus 

latifolrus* 

Poaceae Tree 

Diospyros kaki Ebenaceae Tree 

Erica carnea Ericaceae Subshrub 

Fatsia japonica* Araliaceae Shrub 

Gardenia thunbergii Rubiaceae Shrub 

Ginkgo biloba  Ginkgoaceae Tree 

Hydrangea anomala Hydrangeaceae Vine 

Lavandula latiflora* Lamiaceae Subshrub 

Libertia grandiflora Iridaceae Herb 

Lilium martagon Liliaceae Herb 

Myrtus communis Myrtaceae Shrub 
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Penstemon companulatus Scrophulariaceae Herb 

Pinus wallichiana* Pinaceae Tree 

Pittosporum bicolor Pittosporaceae Tree 

Prunus maackii Rosaceae Tree 

Quercus serrata Fagaceae Tree 

Rodgersia sambucifolia  Saxifragaceae Herb 

Salix glabra Salicaceae Shrub 

Stenocarpus sinuatus Proteaceae Tree 

Stephanandra tanakae Rosaceae Shrub 

Syzygium eucalyptoides Myrataceae Tree 

Torreya nucifera* Taxaceae Tree 

Trollius europaeus Ranunculaceae Herb 

Viburnum farreri Adoxaceae Shrub 

Wisteria brachybotrys* Fabaceae Vine 
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Appendix C. R codes for statistical modeling work 

#########first model 2-fold CV################################## 

 

 

library(randomForest) #random forests algorithm  

library(lattice) 

library(ggplot2) 

library(caret) #for cross validation folds  

library(ROCR) #for ROC plots and statistics 

library(gplots) 

library(pROC) #same as ROCR 

 

data=read.csv(file="filename.csv") #data for prediction 

#NON=non invader=0 #OTH=major invader + minor invader=1 

 

###Using 41 variables specified in Appendix A### 

full.data<-data[,c("invasion.status",  

                   "es1", "es2", "es3","es4", "es5","es6","es7", 

                   "es8","es9","es10","es11","es12","es13","es14", 

                   "es15","es16","es17","es18","es19","es20","es21", 

                   "es22","es23", "impg1", "impg2", "impn1", "impn2",  

                   "impn3", "impn4", "impn5", "impn6", "impa1", "impa2", 

                   "impa3", "impa4", "impp1", "impp2", "impp3", "impp4",  

                   "impp5", "impp6")] 

 

###Conversion of the response variable “invasive status” into Factor with names for 

Caret Library### 

full.data$invasion.status<-factor(full.data$invasion.status,  

                                  levels=c(0,1),  

                                  labels=c("NON", "OTH")) 

 

 

set.seed(100)  #for repeatability  

 

#In the trainControl function, the resampling method is "repeatedcv" (repeated cross-

validation) 

#number = 2 indicates that there are 2 folds in K-fold cross-validation 

#repeats = 10 indicates that there are ten separate 2-fold cross-validations used as the 

resampling scheme 

#verboseIter is a logical for printing a training log 

#returnData is a logical for saving the data into a slot called trainingData 

#summaryFunction provides a ROC  AUC summary statistics 

 

tc<-trainControl(method="repeatedcv", number=2,  

                 repeats=10, summaryFunction=twoClassSummary,  



 

 

83 

 

                 verboseIter = T, returnData = T,  

                 classProb=T, savePredictions = T) 

 

LR.first.model<-train(as.factor(invasion.status)~es1+es2+es3+ 

                          es4+es5+es6+es7+es8+es9+es10+es11+es12+ 

                          es13+es14+es15+es16+es17+es18+es19+es20+ 

                          es21+es22+es23+impg1+impg2+impn1+impn2+impn3+ 

                          impn4+impn5+impn6+impa1+impa2+impa3+impa4+impp1+ 

                          impp2+impp3+impp4+impp5+impp6,  

                        metric="ROC", method="glm",  

                        family="binomial", trControl=tc,  

                        data=full.data) 

 

#model coefficients for independent variables 

LR.first.model$finalModel  

 

# training log saved from the returnData argument = TRUE 

LR.first.model$trainingData  

 

# cross validation summary statistics 

LR.first.model  

 

### RF with 2-fold CV on data### 

RF.first.model<-train(as.factor(invasion.status)~.,  

                      metric="ROC", method="rf",  

                      importance=T, proximity=F,  

                      ntree=1000, trControl=tc,  

                      data=full.data) 

 

RF.first.model$finalModel 

RF.first.model$trainingData 

 

RF.first.model 

 

 

 

 

 

 

 

#########second model 2-fold CV################################ 

 

 

 

library(randomForest) #random forests algorithm  

library(lattice) 
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library(ggplot2) 

library(caret) #for cross validation folds  

library(ROCR) # for ROC plots and statistics 

library(gplots) 

library(pROC) #same as ROCR 

 

data=read.csv(file="filename.csv") 

#MAJ=major invader=1 #MIN=minor invader=0 

 

###Using 41 variables specified in Appendix A### 

full.data<-data[,c("invasion.status",  

                   "es1", "es2", "es3","es4", "es5","es6","es7", 

                   "es8","es9","es10","es11","es12","es13","es14", 

                   "es15","es16","es17","es18","es19","es20","es21", 

                   "es22","es23", "impg1", "impg2", "impn1", "impn2",  

                   "impn3", "impn4", "impn5", "impn6", "impa1", "impa2", 

                   "impa3", "impa4", "impp1", "impp2", "impp3", "impp4",  

                   "impp5", "impp6")] 

 

 

###Conversion of the response variable “invasive status” into Factor with names for 

Caret Library### 

full.data$invasion.status<-factor(full.data$invasion.status,  

                                  levels=c(0,1),  

                                  labels=c("MIN", "MAJ")) 

 

set.seed(100)  #for repeatability  

 

#In the trainControl function, the resampling method is "repeatedcv" (repeated cross-

validation) 

#number = 2 indicates that there are 2 folds in K-fold cross-validation 

#repeats = 10 indicates that there are ten separate 2-fold cross-validations used as the 

resampling scheme 

#verboseIter is a logical for printing a training log 

#returnData is a logical for saving the data into a slot called trainingData 

#summaryFunction provides a ROC  AUC summary statistics 

 

tc<-trainControl(method="repeatedcv", number=2,  

                 repeats=10, summaryFunction=twoClassSummary,  

                 verboseIter = T, returnData = T,  

                 classProb=T, savePredictions = T) 

 

LR.second.model<-train(as.factor(invasion.status)~es1+es2+es3+ 

                          es4+es5+es6+es7+es8+es9+es10+es11+es12+ 

                          es13+es14+es15+es16+es17+es18+es19+es20+ 

                          es21+es22+es23+impg1+impg2+impn1+impn2+impn3+ 
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                          impn4+impn5+impn6+impa1+impa2+impa3+impa4+impp1+ 

                          impp2+impp3+impp4+impp5+impp6,  

                        metric="ROC", method="glm",  

                        family="binomial", trControl=tc,  

                        data=full.data) 

 

#model coefficients for independent variables 

LR.second.model$finalModel  

 

# training log saved from the returnData argument = TRUE 

LR.second.model$trainingData  

 

# cross validation summary statistics 

LR.second.model  

 

### RF with 2-fold CV on data### 

RF.second.model<-train(as.factor(invasion.status)~.,  

                      metric="ROC", method="rf",  

                      importance=T, proximity=F,  

                      ntree=1000, trControl=tc,  

                      data=full.data) 

 

RF.second.model$finalModel 

RF.second.model$trainingData 

 

RF.second.model 

 

 

#########first model 5-fold CV################################## 

 

 

 

library(randomForest) #random forests algorithm  

library(lattice) 

library(ggplot2) 

library(caret) #for cross validation folds  

library(ROCR) # for ROC plots and statistics 

library(gplots) 

library(pROC) #same as ROCR 

 

data=read.csv(file="filename.csv") #data for prediction 

#NON=non invader=0 #OTH=major invader + minor invader=1 

 

###Using 41 variables specified in Appendix A### 

full.data<-data[,c("invasion.status",  

                   "es1", "es2", "es3","es4", "es5","es6","es7", 
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                   "es8","es9","es10","es11","es12","es13","es14", 

                   "es15","es16","es17","es18","es19","es20","es21", 

                   "es22","es23", "impg1", "impg2", "impn1", "impn2",  

                   "impn3", "impn4", "impn5", "impn6", "impa1", "impa2", 

                   "impa3", "impa4", "impp1", "impp2", "impp3", "impp4",  

                   "impp5", "impp6")] 

 

###Conversion of the response variable “invasive status” into Factor with names for 

Caret Library### 

full.data$invasion.status<-factor(full.data$invasion.status,  

                                  levels=c(0,1),  

                                  labels=c("NON", "OTH")) 

 

 

set.seed(100)  #for repeatability  

 

#In the trainControl function, the resampling method is "repeatedcv" (repeated cross-

validation) 

#number = 5 indicates that there are 5 folds in K-fold cross-validation 

#repeats = 10 indicates that there are ten separate 5-fold cross-validations used as the 

resampling scheme 

#verboseIter is a logical for printing a training log 

#returnData is a logical for saving the data into a slot called trainingData 

#summaryFunction provides a ROC  AUC summary statistics 

 

tc<-trainControl(method="repeatedcv", number=5,  

                 repeats=10, summaryFunction=twoClassSummary,  

                 verboseIter = T, returnData = T,  

                 classProb=T, savePredictions = T) 

 

LR.first.model<-train(as.factor(invasion.status)~es1+es2+es3+ 

                          es4+es5+es6+es7+es8+es9+es10+es11+es12+ 

                          es13+es14+es15+es16+es17+es18+es19+es20+ 

                          es21+es22+es23+impg1+impg2+impn1+impn2+impn3+ 

                          impn4+impn5+impn6+impa1+impa2+impa3+impa4+impp1+ 

                          impp2+impp3+impp4+impp5+impp6,  

                        metric="ROC", method="glm",  

                        family="binomial", trControl=tc,  

                        data=full.data) 

 

#model coefficients for independent variables 

LR.first.model$finalModel  

 

# training log saved from the returnData argument = TRUE 

LR.first.model$trainingData  

 



 

 

87 

 

# cross validation summary statistics 

LR.first.model  

 

### RF with 5-fold CV on data### 

RF.first.model<-train(as.factor(invasion.status)~.,  

                      metric="ROC", method="rf",  

                      importance=T, proximity=F,  

                      ntree=1000, trControl=tc,  

                      data=full.data) 

 

RF.first.model$finalModel 

RF.first.model$trainingData 

 

RF.first.model 

 

 

 

#########second model 5-fold CV################################ 

 

 

 

library(randomForest) #random forests algorithm  

library(lattice) 

library(ggplot2) 

library(caret) #for cross validation folds  

library(ROCR) # for ROC plots and statistics 

library(gplots) 

library(pROC) #same as ROCR 

 

data=read.csv(file="filename.csv") 

#MAJ=major invader=1 #MIN=minor invader=0 

 

###Using 41 variables specified in Appendix A### 

full.data<-data[,c("invasion.status",  

                   "es1", "es2", "es3","es4", "es5","es6","es7", 

                   "es8","es9","es10","es11","es12","es13","es14", 

                   "es15","es16","es17","es18","es19","es20","es21", 

                   "es22","es23", "impg1", "impg2", "impn1", "impn2",  

                   "impn3", "impn4", "impn5", "impn6", "impa1", "impa2", 

                   "impa3", "impa4", "impp1", "impp2", "impp3", "impp4",  

                   "impp5", "impp6")] 

 

 

###Conversion of the response variable “invasive status” into Factor with names for 

Caret Library### 

full.data$invasion.status<-factor(full.data$invasion.status,  
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                                  levels=c(0,1),  

                                  labels=c("MIN", "MAJ")) 

 

set.seed(100)  #for repeatability  

 

#In the trainControl function, the resampling method is "repeatedcv" (repeated cross-

validation) 

#number = 5 indicates that there are 5 folds in K-fold cross-validation 

#repeats = 10 indicates that there are ten separate 5-fold cross-validations used as the 

resampling scheme 

#verboseIter is a logical for printing a training log 

#returnData is a logical for saving the data into a slot called trainingData 

#summaryFunction provides a ROC  AUC summary statistics 

 

tc<-trainControl(method="repeatedcv", number=5,  

                 repeats=10, summaryFunction=twoClassSummary,  

                 verboseIter = T, returnData = T,  

                 classProb=T, savePredictions = T) 

 

LR.second.model<-train(as.factor(invasion.status)~es1+es2+es3+ 

                          es4+es5+es6+es7+es8+es9+es10+es11+es12+ 

                          es13+es14+es15+es16+es17+es18+es19+es20+ 

                          es21+es22+es23+impg1+impg2+impn1+impn2+impn3+ 

                          impn4+impn5+impn6+impa1+impa2+impa3+impa4+impp1+ 

                          impp2+impp3+impp4+impp5+impp6,  

                        metric="ROC", method="glm",  

                        family="binomial", trControl=tc,  

                        data=full.data) 

 

#model coefficients for independent variables 

LR.second.model$finalModel  

 

# training log saved from the returnData argument = TRUE 

LR.second.model$trainingData  

 

# cross validation summary statistics 

LR.second.model  

 

### RF with 5-fold CV on data### 

RF.second.model<-train(as.factor(invasion.status)~.,  

                      metric="ROC", method="rf",  

                      importance=T, proximity=F,  

                      ntree=1000, trControl=tc,  

                      data=full.data) 

 

RF.second.model$finalModel 
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RF.second.model$trainingData 

 

RF.second.model 

 

 

#########first model 10-fold CV################################## 

 

 

 

library(randomForest) #random forests algorithm  

library(lattice) 

library(ggplot2) 

library(caret) #for cross validation folds  

library(ROCR) # for ROC plots and statistics 

library(gplots) 

library(pROC) #same as ROCR 

 

data=read.csv(file="filename.csv") #data for prediction 

#NON=non invader=0 #OTH=major invader + minor invader=1 

 

###Using 41 variables specified in Appendix A### 

full.data<-data[,c("invasion.status",  

                   "es1", "es2", "es3","es4", "es5","es6","es7", 

                   "es8","es9","es10","es11","es12","es13","es14", 

                   "es15","es16","es17","es18","es19","es20","es21", 

                   "es22","es23", "impg1", "impg2", "impn1", "impn2",  

                   "impn3", "impn4", "impn5", "impn6", "impa1", "impa2", 

                   "impa3", "impa4", "impp1", "impp2", "impp3", "impp4",  

                   "impp5", "impp6")] 

 

###Conversion of the response variable “invasive status” into Factor with names for 

Caret Library### 

full.data$invasion.status<-factor(full.data$invasion.status,  

                                  levels=c(0,1),  

                                  labels=c("NON", "OTH")) 

 

 

set.seed(100)  #for repeatability  

 

#In the trainControl function, the resampling method is "repeatedcv" (repeated cross-

validation) 

#number = 10 indicates that there are 10 folds in K-fold cross-validation 

#repeats = 10 indicates that there are ten separate 10-fold cross-validations used as 

the resampling scheme 

#verboseIter is a logical for printing a training log 

#returnData is a logical for saving the data into a slot called trainingData 
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#summaryFunction provides a ROC  AUC summary statistics 

 

tc<-trainControl(method="repeatedcv", number=10,  

                 repeats=10, summaryFunction=twoClassSummary,  

                 verboseIter = T, returnData = T,  

                 classProb=T, savePredictions = T) 

 

LR.first.model<-train(as.factor(invasion.status)~es1+es2+es3+ 

                          es4+es5+es6+es7+es8+es9+es10+es11+es12+ 

                          es13+es14+es15+es16+es17+es18+es19+es20+ 

                          es21+es22+es23+impg1+impg2+impn1+impn2+impn3+ 

                          impn4+impn5+impn6+impa1+impa2+impa3+impa4+impp1+ 

                          impp2+impp3+impp4+impp5+impp6,  

                        metric="ROC", method="glm",  

                        family="binomial", trControl=tc,  

                        data=full.data) 

 

#model coefficients for independent variables 

LR.first.model$finalModel  

 

# training log saved from the returnData argument = TRUE 

LR.first.model$trainingData  

 

# cross validation summary statistics 

LR.first.model  

 

### RF with 10-fold CV on data### 

RF.first.model<-train(as.factor(invasion.status)~.,  

                      metric="ROC", method="rf",  

                      importance=T, proximity=F,  

                      ntree=1000, trControl=tc,  

                      data=full.data) 

 

RF.first.model$finalModel 

RF.first.model$trainingData 

 

RF.first.model 

 

###ROC Plots### 

LR.first.model.pred<-predict(LR.first.model, full.data$invasion.status, type="prob") 

RF.first.model.pred<-predict(RF.first.model, full.data$invasion.status, type="prob") 

first.model.pred.LR<-prediction(LR.first.model.pred$OTH, data$invasion.status) 

first.model.perf.LR<-performance(first.pred.LR, "tpr", "fpr") 

first.model.pred.RF<-prediction(RF.first.model.pred$OTH, data$invasion.status) 

first.model.perf.RF<-performance(first.pred.RF, "tpr", "fpr") 
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par(family="serif", fig=c(0.0,1,0.0,1),  

    mar=par()$mar+c(2,2,2,13), xpd=TRUE,  

    cex.lab=1.2, lwd=2, pty="m", font.axis=2) 

plot(first.model.perf.LR,  

     main="Logistic Regression and Random Forests",  

     lty=1, col="red") 

plot(first.model.perf.RF, xlab = "False Positive Rate",  

     ylab = "True Positive Rate",  

     add=T, lty=3, col="blue") 

 

 

legend(1.2, 1.0, c("Logistic Regression 0.865",  

                 "Random Forest  0.943"), 

       xpd=TRUE,  

       lty = c(1,3), col = c("red","blue","green"),  

       bty="o") 

 

 

#########second model 10-fold CV################################ 

 

 

library(randomForest) #random forests algorithm  

library(lattice) 

library(ggplot2) 

library(caret) #for cross validation folds  

library(ROCR) # for ROC plots and statistics 

library(gplots) 

library(pROC) #same as ROCR 

 

data=read.csv(file="filename.csv") 

#MAJ=major invader=1 #MIN=minor invader=0 

 

###Using 41 variables specified in Appendix A### 

full.data<-data[,c("invasion.status",  

                   "es1", "es2", "es3","es4", "es5","es6","es7", 

                   "es8","es9","es10","es11","es12","es13","es14", 

                   "es15","es16","es17","es18","es19","es20","es21", 

                   "es22","es23", "impg1", "impg2", "impn1", "impn2",  

                   "impn3", "impn4", "impn5", "impn6", "impa1", "impa2", 

                   "impa3", "impa4", "impp1", "impp2", "impp3", "impp4",  

                   "impp5", "impp6")] 

 

 

###Conversion of the response variable “invasive status” into Factor with names for 

Caret Library### 

full.data$invasion.status<-factor(full.data$invasion.status,  
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                                  levels=c(0,1),  

                                  labels=c("MIN", "MAJ")) 

 

set.seed(100)  #for repeatability  

 

#In the trainControl function, the resampling method is "repeatedcv" (repeated cross-

validation) 

#number = 10 indicates that there are10 folds in K-fold cross-validation 

#repeats = 10 indicates that there are ten separate 10-fold cross-validations used as 

the resampling scheme 

#verboseIter is a logical for printing a training log 

#returnData is a logical for saving the data into a slot called trainingData 

#summaryFunction provides a ROC  AUC summary statistics 

 

tc<-trainControl(method="repeatedcv", number=10,  

                 repeats=10, summaryFunction=twoClassSummary,  

                 verboseIter = T, returnData = T,  

                 classProb=T, savePredictions = T) 

 

LR.second.model<-train(as.factor(invasion.status)~es1+es2+es3+ 

                          es4+es5+es6+es7+es8+es9+es10+es11+es12+ 

                          es13+es14+es15+es16+es17+es18+es19+es20+ 

                          es21+es22+es23+impg1+impg2+impn1+impn2+impn3+ 

                          impn4+impn5+impn6+impa1+impa2+impa3+impa4+impp1+ 

                          impp2+impp3+impp4+impp5+impp6,  

                        metric="ROC", method="glm",  

                        family="binomial", trControl=tc,  

                        data=full.data) 

 

#model coefficients for independent variables 

LR.second.model$finalModel  

 

# training log saved from the returnData argument = TRUE 

LR.second.model$trainingData  

 

# cross validation summary statistics 

LR.second.model  

 

### RF with 10-fold CV on data### 

RF.second.model<-train(as.factor(invasion.status)~.,  

                      metric="ROC", method="rf",  

                      importance=T, proximity=F,  

                      ntree=1000, trControl=tc,  

                      data=full.data) 

 

RF.second.model$finalModel 
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RF.second.model$trainingData 

 

RF.second.model 

 

###ROC Plots### 

LR.seond.model.pred<-predict(LR.second.model, full.data$invasion.status, 

type="prob") 

RF.second.model.pred<-predict(RF.second.model, full.data$invasion.status, 

type="prob") 

second.model.pred.LR<-prediction(LR.second.model.pred$OTH, 

data$invasion.status) 

second.model.perf.LR<-performance(second.pred.LR, "tpr", "fpr") 

second.model.pred.RF<-prediction(RF.second.model.pred$OTH, 

data$invasion.status) 

second.model.perf.RF<-performance(second.model.pred.RF, "tpr", "fpr") 

 

par(family="serif", fig=c(0.0,1,0.0,1),  

    mar=par()$mar+c(2,2,2,13), xpd=TRUE,  

    cex.lab=1.2, lwd=2, pty="m", font.axis=2) 

 

plot(second.model.perf.LR,  

     main="Logistic Regression and Random Forests",  

     lty=1, col="red") 

plot(second.model.perf.RF,  

     xlab = "False Positive Rate",  

     ylab = "True Positive Rate", add=T, lty=3, col="blue") 

legend(1.2, 1.0, c("Logistic Regression 0.723", "Random Forest  0.885"), 

       xpd=TRUE,  

       lty = c(1,3), col = c("red","blue"),  

       bty="o") 

 

 

 

 

 

########################Figure  2##################################### 

##Data retrieved from previous calculations above 

x <- as.factor(c("2-fold CV", "5-fold CV", "10-fold CV")) 

 

sweet <- c(0.732, 0.8257, 0.862) #lr A 

tart <- c(0.9415, 0.9435, 0.943) #rf A 

sweet2 <- c(0.638, 0.6956, 0.730) #lr B  

tart2 <- c(0.87045, 0.8798, 0.877) #rf B 

 

###Plotting### 

par(family="serif", #par(mar = c(5, 5, 4, 2)), 
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    xpd = T, mar = par()$mar + c(0,0,0,7), 

    xpd=TRUE,  

    cex.lab=1.2, lwd=2, pty="m", font.axis=2) 

 

plot(seq_along(x), xlab="k-fold CV", ylab="ROC AUC", sweet, ylim=c(0.600, 1), 

lty=1, col="red", type="b", xaxt="n") 

##axis(1, at=seq_along(x), labels=c("2-fold CV", "5-fold CV", "10-fold CV")) 

par(new=TRUE) 

plot(seq_along(x),tart, ylim=c(0.600, 1), xlab="k-fold CV", ylab="ROC AUC", 

type="b", add=TRUE, col="blue", xaxt="n") 

 

par(new=TRUE) 

plot(seq_along(x),sweet2, ylim=c(0.600, 1), xlab="k-fold CV", ylab="ROC AUC", 

lty=2, type="b", add=TRUE, col="red", xaxt="n") 

 

par(new=TRUE) 

plot(seq_along(x),tart2, ylim=c(0.600, 1), xlab="k-fold CV", ylab="ROC AUC", 

lty=2, type="b", add=TRUE, col="blue", xaxt="n") 

 

axis(1, at=seq_along(x), labels=c("2-fold CV", "5-fold CV", "10-fold CV")) 

 

 

legend(3.2, 1.0, c("LR Model A", "LR Model B", "RF Model A", "RF Model B"),  

       xpd=TRUE, lty =c(1,2,1,2),col=c("red","red", "blue", "blue"),  

       bty="o") 

 

 

 

############################Random forest model####################### 

data <- read.csv("filename.csv", header = TRUE) 

 

dataabbr<-data[,c("invasion.status",  

                   "es1", "es2", "es3","es4", "es5","es6","es7", 

                   "es8","es9","es10","es11","es12","es13","es14", 

                   "es15","es16","es17","es18","es19","es20","es21", 

                   "es22","es23", "impg1", "impg2", "impn1", "impn2",  

                   "impn3", "impn4", "impn5", "impn6", "impa1", "impa2", 

                   "impa3", "impa4", "impp1", "impp2", "impp3", "impp4",  

                   "impp5", "impp6")] 

str(dataabbr) 

dataabbr$invasion.status <- as.factor(dataabbr$invasion.status) 

table(dataabbr$invasion.status) 

options(max.print=900000) 

 

# Data Partition 

set.seed(123) 
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ind <- sample(2, nrow(dataabbr), replace = TRUE, prob = c(0.7, 0.3)) 

train <- dataabbr[ind==1,] 

test <- dataabbr[ind==2,] 

options(max.print=900000) 

train 

test 

write.csv(train, "traindatasetwra.csv") 

write.csv(test, "testdatasetwra.csv") 

 

library(randomForest) # Random Forest 

set.seed(222) 

rf <- randomForest(invasion.status~., data=train, 

                   ntree = 1000, 

                   mtry = 6, 

                   importance = TRUE, 

                   proximity = TRUE) 

print(rf) #OOB estimate error rate: 22.3% for ntree=1000 mtry=6 

          #   1  2  3 class.error 

############1 41  8  1   0.1800000 

############2 10 34  7   0.3333333 

############3  0  7 40   0.1489362 

 

attributes(rf) 

rf$confusion 

rf$err.rate 

 

# Prediction & Confusion Matrix - train data 

library(caret) 

p1 <- predict(rf, train) 

confusionMatrix(p1, train$invasion.status) 

###Confusion Matrix and Statistics 

 

########Reference 

########Prediction  1  2  3 

#################1 50  1  0 

#################2  0 50  0 

#################3  0  0 47 

 

 

 

# # Prediction & Confusion Matrix - test data 

p2 <- predict(rf, test) 

confusionMatrix(p2, test$invasion.status)  

#Confusion Matrix and Statistics: 
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#Reference 

#Prediction  1  2  3 

##########1 15  3  1 

##########2  3  6  3 

##########3  0  7 18 

 

##########Overall Statistics 

 

##########Accuracy : 0.6964          

##########95% CI : (0.559, 0.8122) 

##########No Information Rate : 0.3929          

##########P-Value [Acc > NIR] : 4.143e-06  

#Statistics by Class: 

                      #Class: 1 Class: 2 Class: 3 

#Sensitivity            0.8333   0.3750   0.8182 

#Specificity            0.8947   0.8500   0.7941 

##Sensitivity(True positive rate) for Class 2 is really low (0.3750) 

 

 

 

# Variable Importance 

varImpPlot(rf, 

           sort = T, 

           n.var = 10, type=1, labels= c("Change ecosystem processes and parameters 

that affect other species", "Climbing or smothering growth form", "Reduces 

crop/product yield", "Minimum generation time", "Propagules likely to disperse in 

trade as contaminants or hitchhikers", "Lowers commodity value", "Number of 

natural dispersal vectors", "Weed status in production systems", "Weed status in 

natural systems", "Status/invasiveness outside native range")) 

 

 

 

importance(rf) 

##############Actual variable importance values for each class 

############### 1          2          3 MeanDecreaseAccuracy MeanDecreaseGini 

#es1   20.9077410 -2.0803047 19.3888251           22.9246610       9.19473316 

#es2    0.0000000  0.0000000  0.0000000            0.0000000       0.01831460 

#es3    1.8545260 -1.3865015  0.1108207            0.3154562       1.45901784 

#es4   -3.1687545 -2.4245899 -1.8566209           -4.4761316       1.13815385 

#es5   13.8174636  7.3215009  1.4018801           14.5241891       2.62737365 

#es6    9.5839278 -3.2569912  8.3396054            9.7436463       1.47830128 

#es7   -1.7284327 -1.0955790  1.1595379           -1.4648598       0.16808220 

#es8    0.5583773 -0.5903296 -1.5353788           -1.0719336       0.31894988 

#es9   -1.0972092  7.4534105  6.5055382            8.2661539       1.16109793 

#es10  -2.4543880 -2.2503793  0.0000000           -3.1426419       0.42391230 

#es11  -0.5110099  0.3727102  8.2991278            4.0427577       2.94826017 
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#es12  -4.0385710 -0.4334052  1.6203737           -3.4773321       0.70256893 

#es13  15.9931308 -2.9257367  6.9632562           13.8320315       3.83445574 

#es14   1.3045280 -1.6023560 16.3728518           11.4404989       4.34396400 

#es15   8.9363975 -4.6687640  8.6962208            7.5826949       3.99227939 

#es16  17.2796782 -3.6074208  7.9790571           13.6078543       3.84532243 

#es17   9.7445245  4.8837234 17.5885127           18.0902551       6.11650676 

#es18  -3.3808874  6.1531682 10.8406064            9.3330577       3.57144825 

#es19   3.7496907  4.2083000 10.7431437           10.3355339       3.10193918 

#es20   5.6865176  4.9192707  6.2409152            8.5782756       1.26109297 

#es21   0.5448779 -0.6127891 -0.8657698           -0.4682052       1.06407360 

#es22  12.3026495 -1.5326339  3.4367479            8.9389699       3.41825333 

#es23   9.5216798  3.8165194  2.0717154            9.5964934       3.35591664 

#impg1  0.9759378 -2.5087859 -0.2370607           -0.9259242       0.86774170 

#impg2  0.0000000  0.0000000  0.0000000            0.0000000       0.06444133 

#impn1  7.2431428 -1.1342385 12.1042891           12.2734430       1.64126082 

#impn2  3.2571554 -2.2350409  7.9470701            6.1565847       1.25842775 

#impn3 14.1738198 -6.1217933  5.6572710           11.4371387       1.84071123 

#impn4  6.4249253 -2.6127886  5.4033326            6.0334833       1.31054863 

#impn5  6.3930894 -3.1664783  9.4223193            7.8751462       1.79243584 

#impn6 21.0503867  5.3872449  7.5793567           20.7441151       6.47437422 

#impa1 -2.3400687  1.4857470 -1.1570218           -1.1117846       0.60499203 

#impa2  6.3899186 -2.9985668  0.5829608            3.5679138       0.49378987 

#impa3  5.5049030 -0.6669316 -0.9041189            3.3918606       0.61175650 

#impa4  8.9244294 -2.1366781  6.8339701            8.5488364       3.18330280 

#impp1 11.3405631  1.5549458  9.3559311           12.6102414       2.60334526 

#impp2 11.7037795  0.1901616 13.6439690           15.0676896       3.35650684 

#impp3  7.8231436 -1.3822586  3.4240562            6.8614587       1.41561606 

#impp4  4.4052873  2.1898047  4.7343212            6.5796319       0.42345847 

#impp5 -0.4323909 -2.9337907  2.1543595           -0.8728398       1.23916670 

#impp6 19.8966966 -5.6865388 16.7956142           20.1448025       6.14611695 

 

varUsed(rf) 

####give the number of time each variable has occurred in the random forest 

####es2 (the second variable) has only occurred a total of 22 times in the random 

forest 

#[1] 2267   25 1116  957 1063  670  139  243  497  314 1780  469 1747 1847 1635 

#[16] 1148 2324 1809 1740  387  708 1772 1758  662   38  518  484  739  565  698 

#[31] 1452  365  263  371 1191  585  603  497  199  907 1237 

 

# Partial Dependence Plot 

par(mfrow=c(3,3)) 

partialPlot(rf, train, es1, "1",xlab="Non-Invaders", main="es1", 

ylab=expression(paste(Delta, "Fraction of Votes p(Y=K)"))) 

partialPlot(rf, train, es1, "2",xlab="Minor-Invaders", main="es1", 

ylab=expression(paste(Delta, "Fraction of Votes p(Y=K)"))) 
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partialPlot(rf, train, es1, "3",xlab="Major-Invaders", main="es1", 

ylab=expression(paste(Delta, "Fraction of Votes p(Y=K)"))) 

partialPlot(rf, train, impn6, "1",xlab="Non-Invaders", main="impn6", 

ylab=expression(paste(Delta, "Fraction of Votes p(Y=K)"))) 

partialPlot(rf, train, impn6, "2",xlab="Minor-Invaders", main="impn6", 

ylab=expression(paste(Delta, "Fraction of Votes p(Y=K)"))) 

partialPlot(rf, train, impn6, "3",xlab="Major-Invaders", main="impn6", 

ylab=expression(paste(Delta, "Fraction of Votes p(Y=K)"))) 

partialPlot(rf, train, impp6, "1",xlab="Non-Invaders", main="impp6", 

ylab=expression(paste(Delta, "Fraction of Votes p(Y=K)"))) 

partialPlot(rf, train, impp6, "2",xlab="Minor-Invaders", main="impp6", 

ylab=expression(paste(Delta, "Fraction of Votes p(Y=K)"))) 

partialPlot(rf, train, impp6, "3",xlab="Major-Invaders", main="impp6", 

ylab=expression(paste(Delta, "Fraction of Votes p(Y=K)"))) 

 

 

 

#####################################Figure 5######################### 

####Adapted from Scott Chamberlin tutorial in R Open Sci 

library("rWBclimate") 

library("spocc") 

library("plyr") 

library("sp") 

require(rWBclimate) 

require("spocc") 

dir.create("/path") 

options(kmlpath="/path/kmlhist") 

options(stringsAsFactors = FALSE) 

usmex <- c(273:284, 328:365) #river basin IDs for Mexico and United States 

str(usmex) 

usmex.basin <- create_map_df(usmex) 

str(usmex.basin) 

## Download temperature data 

temp.dat <- get_historical_temp(usmex, "decade") 

temp.dat <- subset(temp.dat, temp.dat$year == 2000) 

str(temp.dat) 

write.csv(temp.dat, "temp.dathist.csv") 

# Bind temperature data to map data frame 

usmex.map.df <- climate_map(usmex.basin, temp.dat, return_map = F) 

library(ggplot2) 

splist <- c("Acanthospermum australe", "Abutilon megapotamicum", "Alternanthera 

philoxeroides") 

splist <-sort(splist) 

splist 

out <- occ(query=splist, from= "gbif", limit=500)               

out <-fixnames(out, how="query") 
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out_df 

write.csv(out_df, "out_df.csv") 

out_df <- occ2df(out) #combine results from occ calls to a single data 

 

library(taxize) 

### grab common names  

cname <- ldply(sci2comm(get_tsn(splist),  

                        db = "itis", simplify = TRUE),  

               function(x) { return(x[1]) })[, 2] 

 

out_df <- out_df[order(out_df$name), ] 

out_df <- out_df[!is.na(out_df$latitude), ] 

 

str(out_df) 

write.csv(out_df, "out_df_woNA.csv") 

out_df$name 

out_df <- out_df[out_df$latitude > 7, ] 

str(out_df) 

out_df$common <- rep(cname, table(out_df$name)) 

out_df$ 

  install.packages("extrafont") 

install.packages("tidyverse") 

library(tidyverse) 

write.csv(out_df, "out_df_woNA_wolesslat7.csv") 

 

 

usmex.map <- ggplot() + 

  geom_polygon(data = usmex.map.df, aes(x = long, y = lat, group = group, fill = 

data, alpha = 0.9)) + 

  scale_fill_continuous("Average annual \n temp (°C): 1990-2000", low = "yellow", 

high = "red") + 

  guides(alpha = F) + 

  theme_bw(12, base_family = "Times New Roman") + 

  theme(axis.line = element_line(colour = "black", 

                                 size = 1, linetype = "solid")) + 

  theme(axis.text.x = element_text(face = "bold", colour = "black", size = 12), 

        axis.text.y = element_text(face = "bold", colour = "black", size = 12) 

  ) + 

  xlab("Longtitude") + 

  ylab("Latitude") 

 

print(usmex.map) 

 

usmex.map <- usmex.map + 

  geom_point(data = out_df, aes(y = latitude, x = longitude, group = common, colour 

= common)) + 
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  xlim(-125, -59) + 

  ylim(5, 55) + 

  scale_color_discrete(name = "Non-native plants",  

                       labels = c("Paraguayan starbur", "Alligatorweed", "Trailing abutilon")) 

+ 

  theme(legend.background = element_rect(colour= "black", fill="transparent", 

size=.5, linetype="solid")) 

 

 

print(usmex.map) 

 

## Create a spatial polygon dataframe binding kml polygons to temperature 

## data 

temp_sdf <- kml_to_sp(usmex.basin, df = temp.dat) 

### Now we can change the points to a spatial polygon: 

library(sp) 

library(maptools) 

library(spocc) 

 

occ_to_sp <- function(x, coord_string = "+proj=longlat +datum=WGS84", 

just_coords = FALSE){ 

  points <- occ2df(x) 

  # remove NA rows 

  points <- points[complete.cases(points),] 

   

  # check valid coords 

  index <- 1:dim(points)[1] 

  index <- index[(points$longitude < 180) & (points$longitude > -180) & 

!is.na(points$longitude)] 

  index <- index[(points$latitude[index] < 90) & (points$latitude[index] > -90) & 

!is.na(points$latitude[index])] 

   

  spobj <- sp::SpatialPoints(as.matrix(points[index,c('longitude','latitude')]), 

proj4string = sp::CRS(coord_string)) 

   

  sp_df <- sp::SpatialPointsDataFrame(spobj, data = 

data.frame(points[index,c('name',"prov")])) 

  if (just_coords) spobj else sp_df 

} 

 

 

 

sp_points <- occ_to_sp(out) 

str(sp_points) 

 

tdat <- vector() 



 

 

101 

 

### Get averages 

for (i in 1:length(splist)) { 

  tmp_sp <- sp_points[which(sp_points$name == splist[i]), ] 

  tmp_t <- over(tmp_sp, temp_sdf)$data 

  tdat <- c(tdat, tmp_t) 

} 

 

### Assemble new dataframe 

spDF <- data.frame(matrix(nrow = dim(sp_points)[1], ncol = 0)) 

spDF$species <- sp_points$name 

spDF <- cbind(coordinates(sp_points), spDF) 

 

### Alphebetically ordering points######## 

spDF <- spDF[order(spDF$species), ] 

 

spDF$cname <- rep(cname, table(sp_points$name)) 

spDF$temp <- tdat 

### Strip NA's 

spDF <- spDF[!is.na(spDF$temp), ] 

 

str(spDF) 

write.csv(spDF, "spDF.csv") 

## Create summary 

summary_data <- ddply(spDF, .(cname), summarise, mlat = mean(latitude), mtemp = 

mean(temp), 

                      sdlat = sd(latitude), sdtemp = sd(temp)) 

 

str(summary_data) 

write.csv(summary_data, "summary_data.csv") 

ggplot(summary_data, aes(x = mlat, y = mtemp, label = cname)) + 

  geom_text() + 

  xlab("Mean Latitude") + 

  ylab("Mean Temperature (C)") + 

  theme_bw() + 

  xlim(10, 50) 

 

ggplot(spDF, aes(as.factor(cname), temp)) + 

  geom_boxplot() + 

  theme_bw(13) + 

  ylab("Temperature") + 

  xlab("Common Name") + 

  theme(axis.text.x = element_text(angle = 45, hjust = 0.5, vjust = 0.5)) 
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####################Figure 6########################################## 

####Adapted from Scott Chamberlin tutorial in R Open Sci 

 

library("rWBclimate") 

library("spocc") 

library("plyr") 

library("sp") 

require(rWBclimate) 

require("spocc") 

dir.create("/path") 

options(kmlpath="/path/kmlmodel") 

options(stringsAsFactors = FALSE) 

usmex <- c(273:284, 328:365) #river basin IDs for Mexico and United States 

usmex.basin <- create_map_df(usmex) 

usa.dat <- get_model_temp("USA", "mavg", 2080, 2100) 

 

###data.frame': 24 obs. of  7 variables: 

#$ fromYear: num  2080 2080 2080 2080 2080 2080 2080 2080 2080 2080 ... 

#$ toYear  : num  2099 2099 2099 2099 2099 ... 

#$ gcm     : Factor w/ 15 levels "bccr_bcm2_0",..: 14 14 14 14 14 14 14 14 14 14 ... 

#$ data    : num  -2.09 -1.47 2.9 9.14 15.23 ... 

#$ scenario: chr  "a2" "a2" "a2" "a2" ... 

#$ month   : int  1 2 3 4 5 6 7 8 9 10 ... 

#$ locator : chr  "USA" "USA" "USA" "USA" ... 

#usa.dat.bcc <- usa.dat[usa.dat$gcm == "bccr_bcm2_0", ] 

usa.dat.had <- usa.dat[usa.dat$gcm == "ukmo_hadcm3", ]  

write.csv(usa.dat.had, "usa.dat.had.csv") 

###'data.frame': 24 obs. of  7 variables: 

#$ fromYear: num  2080 2080 2080 2080 2080 2080 2080 2080 2080 2080 ... 

#$ toYear  : num  2099 2099 2099 2099 2099 ... 

#$ gcm     : Factor w/ 15 levels "bccr_bcm2_0",..: 14 14 14 14 14 14 14 14 14 14 ... 

#$ data    : num  -2.09 -1.47 2.9 9.14 15.23 ... 

#$ scenario: chr  "a2" "a2" "a2" "a2" ... 

#$ month   : int  1 2 3 4 5 6 7 8 9 10 ... 

#$ locator : chr  "USA" "USA" "USA" "USA" ... 

str(usa.dat.had) 

summary(usa.dat.had) 

 

####historical temp#### 

hist.dat <- get_historical_temp("USA", "month") #monthly averages of temperatures 

from 1901-2009 

str(hist.dat) 

#'data.frame': 12 obs. of  3 variables: 

#$ month  : Factor w/ 12 levels "Jan","Feb","Mar",..: 1 2 3 4 5 6 7 8 9 10 ... 

#$ data   : num  -5.662 -3.8577 0.0517 5.9262 11.9592 ... 

#$ locator: chr  "USA" "USA" "USA" "USA" ... 
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write.csv(hist.dat, "hist.dat.csv") 

str(hist.dat) 

str(usa.dat.had) 

hist.dat <- read.csv("hist.dat.csv", header = TRUE) 

 

usa.dat.had$ID <- paste(usa.dat.had$scenario, usa.dat.had$gcm, sep = "-") 

 

plot.df <- rbind(usa.dat.had, hist.dat)  

str(hist.dat) 

plot <- ggplot(usa.dat.had, aes(x = as.factor(month), y = data, group = ID, colour = 

gcm, 

                    linetype = scenario)) + geom_point() + geom_path() + 

  theme_classic(12, base_family = "Times New Roman") + 

  theme(axis.line = element_line(colour = "black", 

                                 size = 1, linetype = "solid")) + 

  theme(axis.text.x = element_text(face = "bold", colour = "black", size = 12), 

        axis.text.y = element_text(face = "bold", colour = "black", size = 12) 

  ) + 

  ylab("Average temperature in degrees (°C)") + 

  xlab("Month")  

  

 

plot 

   

plot <- plot + 

  geom_line(data = hist.dat, aes(x = month, y = data, colour = "blue"),  

            inherit.aes = FALSE) + geom_point() + 

  scale_color_discrete(name = "Temperature projections",  

                       labels = c("Historical (1901-2009)", "HadCM3 (2080-2100)")) + 

  theme(legend.background = element_rect(colour= "black", fill="transparent", 

size=.5, linetype="solid")) 

 

print(plot) 
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Appendix D. Variable importance for each class for the random forest model. 

Variables presented here as the same as the variables presented in Appendix A. 

 Non-

invader 

Minor-

invader 

Major-

invader 

Mean 

Decrease 

Accuracy 

# of times 

variable 

occurred in 

the random 

forest 

Es1 20.90 -2.08 19.38 22.92 2267 

Es2 0 0 0 0 25 

Es3 1.85 -1.38 0.11 0.315 1116 

Es4 -3.16 -2.42 -1.85 -4.47 957 

Es5 13.81 7.32 1.40 14.52 1063 

Es6 9.58 -3.25 8.33 9.74 670 

Es7 -1.72 -1.09 1.15 -1.46 139 

Es8 0.55 -0.59 -1.53 -1.07 243 

Es9 -1.09 7.45 6.50 8.26 497 

Es10 -2.45 -2.25 0 -3.14 314 

Es11 -0.51 0.37 8.29 4.04 1780 

Es12 -4.03 -0.43 1.62 -3.47 469 

Es13 15.99 -2.92 6.96 13.83 1747 

Es14 1.30 -1.60 16.37 11.44 1847 

Es15 8.93 -4.66 8.69 7.58 1635 

Es16 17.27 -3.60 7.97 13.60 1148 

Es17 9.74 4.88 17.58 18.09 2324 
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Es18 -3.38 6.15 10.84 9.33 1809 

Es19 3.74 4.20 10.74 10.33 1740 

Es20 5.68 4.91 6.24 8.57 387 

Es21 0.54 -0.61 -0.86 -0.46 708 

Es22 12.30 -1.53 3.43 8.93 1772 

Es23 9.52 3.81 2.07 9.59 1758 

Impg1 0.97 -2.50 -0.23 -0.92 662 

Impg2 0 0 0 0 38 

Impn1 7.24 -1.13 12.10 12.27 518 

Impn2 3.25 -2.23 7.94 6.15 484 

Impn3 14.17 -6.12 5.65 11.43 739 

Impn4 6.42 -2.61 5.40 6.03 565 

Impn5 6.39 -3.16 9.42 7.87 698 

Impn6 21.05 5.38 7.57 20.74 1452 

Impa1 -2.34 1.48 -1.15 -1.11 365 

Impa2 6.38 -2.99 0.58 3.56 263 

Impa3 5.50 -0.66 -0.90 3.39 371 

Impa4 8.92 -2.13 6.83 8.54 1191 

Impp1 11.34 1.55 9.35 12.61 585 

Impp2 11.70 0.19 13.64 15.06 603 

Impp3 7.82 -1.38 3.42 6.86 497 
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Impp4 4.40 2.18 4.73 6.57 199 

Impp5 -0.43 -2.93 2.15 -0.87 907 

Impp6 19.89 -5.68 16.79 20.14 1237 
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