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Knowledge about the interior density distribution of a planetary body can con-

strain geophysical processes and reveal information about the origin and evolution

of the body. Properties of this interior distribution can be inferred by analyzing

gravity acceleration data sampled by orbiting satellites. Usually, the gravity data is

complemented with additional laser ranging or seismic data in order to reduce the

range of possible density models of the interior. However, additional data might not

be available and tight prior constraints on model parameters might not be justified.

In this case, the flexibility of using non-informative priors and the ability to quantify

the non-uniqueness of the gravity inversions are of even greater importance.

In this work, we present a gravity inversion algorithm, THeBOOGIe, that

samples the posterior distribution of density in the interior of a planet or moon

according to Bayes theorem, following a Metropolis-Hastings iterative algorithm. It

uses non-informative priors on the number, location, shape and magnitude of density



anomalies. Different samples of the posterior show different density models of the in-

terior consistent with the observed gravity data. Inversions of synthetic gravity data

are ran using point masses, spherical caps and Voronoi regions (VRs) to parametrize

density anomalies. THeBOOGIe is able to retrieve the lateral location of shallow

density anomalies and the shape, depth and magnitude of a mid-mantle anomaly.

The uncertainty of the model parameters increases with depth, as expected.

Bouguer gravity data of the Moon obtained by the GRAIL mission was in-

verted using a VR parametrization. Shallow anomalies related to the SPA basin,

crustal dichotomy and near side basins were found in the correct latitude and lon-

gitude and a trade-off in their thickness and magnitude. Positive and negative

density anomalies were found in the depth range 500-1141 km. The location of deep

moonquakes do not have a clear relation to the location of these density anomalies.
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Chapter 1: Introduction

Knowledge about the interior structure of a planetary body can help shed light

on its compositional and thermal evolution. Different data sets and geophysical

methods can be used to reveal different properties of this interior structure, with

each data set and method having different advantages and limitations. Throughout

this work, a novel method to invert satellite gravity data is presented. It was

developed with the aim of constraining the density distribution within a spherical

body based on the gravity data available and of characterizing the non-uniqueness

inherent in gravity inversions. This method is applied to the lunar interior but is

motivated by the need to extract information from all the available gravity data of

any terrestrial planet and smaller bodies in our solar system. As such, it can be

applied to planetary bodies other than the Moon.

This chapter first presents the available seismic, gravitational and topographic

data of the Moon and introduces a view of the lunar interior as constrained by this

data and other methods. Then it describes the theory behind Bayesian inference

and Monte Carlo methods applied to gravity inversions and the advantages of this

type of inversion for relaxing prior constraints on the interior and characterizing the

non-uniqueness of gravity inversions.
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1.1 Spherical harmonics and models of the topography and gravity

of the Moon

Global topographic and gravitational data of planetary bodies are commonly

represented by a sum of spherical harmonic functions. The spherical harmonics are

a set of orthogonal basis functions on the surface of a sphere that can be used to

represent any real function. Equations 1.1 and 1.2 show how the function f(λ, φ)

is represented by a linear combination of spherical harmonics where Ylm is the

spherical harmonic function of degree l and order m and λ and φ are the latitude

and longitude on the surface of the sphere, flm are the weights or coefficients of the

spherical harmonic functions and P lm are the normalized Legendre polynomials [2].

The representation of a function on a sphere using spherical harmonics is analog to

a 1D function in Cartesian coordinates being represented by a Fourier series.

f(λ, φ) =
∞∑
l=0

l∑
m=−l

flmYlm(λ, φ) (1.1)

Ylm(λ, φ) =


P lm(sinλ) cosmφ m ≥ 0

P l|m|(sinλ) cos |m|φ m < 0

(1.2)

Global topographic and gravitational data are represented by a sum of spheri-

cal harmonics up to a maximum degree l, justified by the resolution of the sampling

done by an orbiting satellite. The weights or coefficients of the functions flm are

used to link the interior distribution of density in the body to the observed data

2



using different assumptions about the interior.

1.1.1 Topography

The topography (h) of a planetary body is the distance from a reference sphere

to the surface of the body. The Lunar Orbiter Laser Altimeter (LOLA) of the Lunar

Reconnaissance Orbiter [3, 4] measures the time it takes for a laser pulse to travel

from the instrument to the surface and back to a receptor and calculates the distance

assuming the laser pulse travels at the speed of light. It has collected over 6.5 billion

measurements of the lunar surface elevation since 2009 which, together with accurate

orbit determination, have been used to construct the highest resolution models of

the lunar topography [5]. These models are available in gridded map products where

interpolation is used to fill places lacking measurements and in spherical harmonic

models up to degree l = 2500 in the form:

h(λ, φ) =
∞∑
l=1

l∑
m=−l

hlmYlm(λ, φ) (1.3)

Where hlm are the spherical harmonic coefficients related to topography.

1.1.2 Gravity

Lateral variations of the mass distribution within a planetary body modifies

the expected trajectory of orbiting satellites. Regions with a higher density pull

the satellite towards the surface with more force than regions with a lower density.

With an accurate orbit determination, the gravity acceleration due to the mass

3



distribution of a body (g) can be measured and mapped across the surface. The

Gravity Recovery and Interior Laboratory (GRAIL) mission provided the highest

resolution map of the lunar gravity acceleration to date [6]. Two spacecrafts orbited

the Moon along the same trajectory and changes in the distance between the two

were measured down to a few microns. The data obtained by the GRAIL missions

has been used to construct gridded maps of the gravitational acceleration of the

Moon and spherical harmonic models up to order l = 1200 [7] in the form:

gr(r, λ, φ) =
GM

r2

∞∑
l=0

l∑
m=−l

(
R

r

)l
(l + 1)ClmYlm(λ, φ) (1.4)

Where gr is the radial component of the total gravitational acceleration (g), G

is the gravitational constant, M is the mass of the Moon, r is the radius of the

observation point, R is the mean radius of the Moon and Clm are the spherical

harmonic coefficients related to gravity.

1.2 Interior structure of the Moon

The existence of some features in the interior of the Moon is widely accepted

by the scientific community while the existence of others is debated. Generally, the

shallow structure is constrained with greater confidence because of the availability of

different types of data, for example: rock samples, gravity, topography and seismic

data. Mid-mantle and deeper features are more obscure because of the lack of

samples, the reduced sensitivity of surface data and the sparsity of seismic events

that can map out the structure at these depths. We present a summary of the

4



shallow features, specifically crustal thickness and density anomalies constrained

by gravity and topography data, and deeper features of the Moon constrained by

seismic data.

1.2.1 Crustal features

The Apollo seismic data can constrain the thickness of the lunar crust directly

underneath the Apollo stations while the gravity acceleration (g) and topography

(h) sampled by satellites can constrain the thickness of the crust globally, although

subjected to assumptions on crustal composition and porosity [8]. The gravitational

acceleration due to the topography can be removed from the total acceleration of a

planetary body in order to analyze the gravity signal produced by the distribution of

mass below a reference radius R. The gravitational acceleration due to topography

can be expressed in a similar way as equation 1.4 with Clm coefficients relating the

distribution of density existing from R - h with the Bouguer correction gBA. When

the density ρ of the material from R to h is constant, Clm can be approximated, in

the most basic form, by equation 1.5 [9].

Clm =
4πR2ρhlm
M(2l + 1)

(1.5)

More accurate approximations require the expansion of higher orders of the

topography hnlm in spherical harmonics and the consideration of variations of density

in latitude, longitude and depth [9]. Removing the effect of gBA from the total

gravity acceleration of the Moon g, results in the Bouguer gravity anomaly gB which
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is the acceleration produced by the distribution of mass below the mean radius of

the Moon. The material closest to the reference radius R has a stronger gravity

signal than deeper material because the gravity acceleration signal decreases with

distance from the source. Most of the signal of the lunar Bouguer gravity field is

then produced by material close to the reference radius of R = 1739 km.

Figure 1.1 shows the crustal thickness of the Moon as inferred by Wieczorek

et al. [10] using the Bouguer gravity field obtained from GRAIL data. The crustal

thickness is constrained by the estimation of crustal bulk density from high spherical

harmonic degrees and estimation of the mantle density and mean crustal thickness

from seismic data [11], varying density and thickness until they produce a gravity

acceleration matching the lunar Bouguer acceleration. The most prominent features

of the crustal thickness map of the Moon are the dichotomy between near and far

side crust, with the far side having thicker crust than the near side and the thin

crust within basins, especially in the near side basins which have a crustal thickness

close to zero.

The lunar crustal dichotomy is observed as a difference in the mean thickness

between the near and far side crust and also a difference in composition. The near

side crust has a higher concentration of radioactive heat sources in the Procellarum

KREEP Terrain and mare basalts. This dichotomy has motivated the developement

of different thermochemical models of the evolution of each hemisphere. Laneuville

et al. [12] found that the existence of a layer enriched in heat sources in the near

side produced localized melt in the near side consistent with the amount of lunar

volcanism expected.
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Figure 1.1: Plot of the crustal thickness of the Moon modified from Wieczorek et
al. [10]. The far side of the Moon (left) has a thicker crust than the near side (right),
except for the crust in the South-Pole Aitken basin. The thickness of the crust in
the major basins of the near side is close to zero.

Mascons are mass concentrations in a planet or moon with an associated pos-

itive Bouguer gravity anomaly. They exist in the Moon, Mars and Mercury. A

visco-elastic relaxation model of lunar impacts was developed by Melosh et al. [13]

to infer the properties of the Moon consistent with gravity data and low crustal

thickness in the near side mascons. It was proposed that the impactor removed

the crust and exposed mantle material and that the region surrounding the im-

pact craters had a superisostatic state that allowed for very dense material to be

supported by the lithosphere, which accounts for the resulting magnitude of the

Bouguer gravity anomaly in the center of the basin.

A region of the Moon with thinner crust produces a positive Bouguer gravity
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anomaly in the surface because it has more high density mantle material and less

low density crustal material than a region with a thicker crust. The estimation of

crustal thickness from Bouguer gravity data can be seen as a gravity inversion where

density variations or anomalies might exist at the reference depth of the mean crust-

mantle interface, if the density of the crust is assumed to be constant. A thinner

crust than the reference value is associated with a positive density anomaly since

crustal material was expected at a location where there is mantle material. Density

anomalies deeper than the reference crust-mantle interface are usually neglected

because the gravity signal decreases with increasing distance from the source and

their effect in the Bouguer field is smaller than the material above it. It is very

important however, to find the properties of density anomalies inside the Moon,

deep and shallow ones, since they might change the estimated parameters of the

crustal thickness and impose different constraints on evolution models of the Moon.

1.2.2 Deep features

The deep structure of the Moon has been inferred with seismic data and geo-

physical parameters measured by laser ranging experiments and orbital tracking

(mean mass, moment of inertia, tidal numbers, etc). The Apollo lunar seismic net-

work transmitted data to Earth from 1969 to 1977 with seismometers located in

a relatively small area on the near side of the Moon [14]. The network recorded

more than 12,000 seismic events including unclassified ones, artificial and meteoroid

impacts and shallow and deep moonquakes. Because it is harder to smooth out
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Figure 1.2: Plot of seismic velocities and density profile of the Moon reproduced
from Weber et al. [15]. A deep partial melt layer is found and the core of the Moon
is found to have a radius of 340 km, with a fluid outer core and solid inner core.

inconsistencies between first-arrival readings with fewer data, the interpretation of

lunar seismic data is more subjective than the interpretation of Earth data, giv-

ing rise to variations between different seismic models of the interior of the Moon.

Figures 1.2 and 1.3 show two examples of different profiles of the S and P wave

velocities and density in the interior of the Moon.

The deep structure shown in Figure 1.2 was obtained by Weber et al. [15] while

the structure at depths shallower than 1000 km in the same model was obtained by

Gagnepain-Beyneix et al. [17]. This model shows velocities and density consistent

with measured tidal Love numbers and moment of inertia of the Moon, within

uncertainties. A partial melt layer was found at a radius of 480 km and a fluid outer

core at 330 with a solid inner core at 240 km.

Figure 1.3 shows velocities and density profiles obtained by Garcia et al. [16]
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Figure 1.3: Plot of seismic velocities and density profile of the Moon reproduced
from Garcia et al. [16]. Solid lines show the mean value and dot-dashed lines show
the error bars. The deep structure of the Moon is not determined with as much
detail as the one shown in Figure 1.2. It is claimed that the paucity of seismic data
makes it difficult to constrain a partial melt layer and the structure of the lunar
core. The core is found to have a radius of 380 ± 40 km.
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with mean values shown by solid lines and error bars by dot-dashed lines. The

values are consistent with measured values of mean mass, moment of inertia and

tidal Love numbers, within uncertainties. The estimated core radius is 380 ± 40 km

and the structure within the core is not constrained. The author claims the paucity

of seismic data makes it impossible to constrain it.

These two examples show the large variations between different seismic models

of the Moon, particularly, variations in the deep lunar structure below a 1000 km

depth. There are also variation between seismic speeds above 1000 km inferred by

different research groups because they might use different inversion methods and

computational resources available might be different [11,14,18,19, for example].

Figure 1.4 shows the view of the interior of the Moon as constrained by seismic

data and geophysical parameters. The squares show the location of Apollo seismic

stations on the near side and circles show the location of moonquake clusters. A

seismic discontinuity in the range of 500-750 km has been proposed, while a uniform

mantle also fits the geophysical data [19, 20]. Deep moonquakes clusters are not

uniformly distributed and none has been detected in the region within 40◦ of the

antipode of the Moon [21]. This asymmetrical distribution of moonquake clusters

gives rise to two possibilities: seismic rays might be attenuated so they are not

observed by the Apollo network or moonquakes might not exist there because of

the particular properties of that region. Evidence for a partially molten layer in

the lowermost lunar mantle was found by Weber et al. [15] constrained by Apollo

seismic data and geophysical parameters as mean mass, moment of inertia and tidal

Love number. This partially molten layer might attenuate seismic waves coming
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Figure 1.4: Internal structure of the Moon inferred with lunar seismic data. Squares
show the location of Apollo seismic stations. Figure reproduced from Khan et al. [1].

from far side moonquakes to the seismic stations in the near side of the Moon [1].

1.3 Density models of planetary bodies and parametrization choices

Throughout this work, the term density model is used to refer to a simplifica-

tion of the continuous 3-D density distribution inside a planetary body and the term

parametrization is used to refer to the style of simplification used. In a 1-D density

model, for example, the density distribution is parametrized by layers of constant

density. The parameters that fully describe the model are the number of layers of

density, the depth of the layer interfaces and the density value of each layer. In a

3-D density model, the density distribution might be parametrized by a group of

objects with a location defined in 3-D space. In this work, the density distribution in

the interior of a sphere is parametrized using three different objects: point masses,
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spherical caps and Voronoi regions.

Point masses are points in space with an associated mass and no shape. This

parametrization is used to provide information about the location of density anoma-

lies but not its shape or size. The gravity acceleration produced by a group of point

masses can be computed very quickly, which makes this parametrization a good

option for iterative gravity inversion methods. A density model using this type of

parametrization is then described by the number of point masses (n), the location of

each point ({x}, {y} and {z}) and their mass ({m}), where {} are used to describe

arrays of n× 1 dimensions. The full advantages and disadvantages of a point mass

parametrization, in the context of gravity inversions, are described in Chapter 2.

Spherical caps are the intersection of two concentric spheres and a cone (Figure

1.5). The shape of a positive density anomaly caused by a thinner than average crust

below a basin is very well approximated by the shape of a spherical cap. Caps are

also versatile since, varying their parameters and locations, other shapes can be

approximated too. The parameters that describe density models using a spherical

cap parametrization are: density ρ, aperture a, thickness t, depth of outer shell d,

longitude φ and latitude θ of its center. R is the radius of the planetary interior and

rmax is the radius of the outer shell of the cap. The inversion of gravity acceleration

data using a spherical caps parametrization is described in Chapter 3.

A Voronoi region (VR) is the region that encloses the volume closer to nucleus

i than to other nuclei [22]. Figure 1.6 shows six 2-D Voronoi regions dividing the

area in the half disk between r1 and r2. All shapes of density anomalies can be pa-

rameterized using Voronoi regions, assuming the number or nuclei inside the sphere
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Figure 1.5: 2-D and 3-D representation of a spherical cap. The parameters that
define a spherical cap are its density ρ, aperture a, thickness t, depth of outer shell
d, longitude φ and latitude θ of its center. R is the radius of the planetary interior
and rmax is the radius of the outer shell of the cap.
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Figure 1.6: Voronoi regions in 2-D. Black dots show the location of nuclei and colors
represent a constant value of density within each region.

is large enough. The parameters that describe a density model using a Voronoi

parametrization are: the number of VRs (n), the location of each nuclei ({x}, {y}

and {z}) and the density value of each region ({ρ}). The full advantages and disad-

vantages of a VR parametrization, in the context of gravity inversions, are described

in Chapter 4.

The choice of which parametrization to use is important since some proper-

ties of the interior structure of the Moon might be better represented by a layered,
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point mass, spherical cap or Voronoi region parametrization. For example, in order

to parametrize the lateral variations of crustal thickness in the Moon, a Voronoi

parametrization is more adequate than a layered one since the latter can only pro-

vide information about the mean thickness. The time and resources spent on com-

puting the gravity acceleration produced by density models vary depending on the

parametrization used. The time spent on this computation is specially important

in iterative gravity inversions methods where it is performed at each iteration and,

in some cases, it is necessary to use thousands or millions of iterations.

1.4 Bayesian inference and non-informative priors in gravity inver-

sions

In order to fully evaluate the likelihood of density anomalies existing within the

Moon, a gravity inversion method should not set the location of density anomalies a

priori and should provide uncertainty information about the density model obtained.

Applied to gravity inversions, Bayes’ theorem relates the probability distribution

that a density model ρm is the correct representation of the interior (based on the

gravity data of a body ,{g}) to the prior knowledge about the interior of the body

and the ability of the density model to fit the gravity data.

P (ρm|{g}) =
P ({g}|ρm)P (ρm)

P ({g})
(1.6)
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Equation 1.6 shows Bayes’ theorem where P (ρm|{g}) is called the posterior prob-

ability distribution, P ({g}|ρm) is the likelihood probability distribution, P (ρm) is

the prior probability distribution and P ({g}) is usually called the evidence [23].

The density model ρm is defined in terms of the parametrization of a real con-

tinuous density distribution. For example, using a point mass parametrization,

ρm = n, {x}, {y}, {z}, {m} while a spherical caps one results in ρm = n, {rmax}, {θ},

{φ}, {d}, {a}, {t}, {ρ}, with each parameter having the same definition as in section

1.3.

Each term in equation 1.6 is a probability distribution function that provides

information about how the probability varies with respect to a set of parameters.

From the posterior distribution P (ρm|{g}), we can extract the combination of val-

ues of n, {rmax}, {θ}, {φ}, {d}, {a}, {t}, {ρ} that produces the most likely density

model of the interior based on the gravity data and is limited by the spherical cap

parametrization. We can also extract the range of parameter values that produce

a 1σ variation of the posterior. Approaching the gravity inversion problem with

probability distributions instead of single values for each parameter, allows the re-

trieval of variation information or uncertainty in the parameters of the density model

inferred.

P (ρm) = P (n)P ({rmax})P ({θ})P{φ})P ({d})P ({a})P ({t})P ({ρ}) (1.7)

The prior distribution of the density model ρm is the knowledge about its

16



parameters before data are evaluated. Equation 1.7 shows the expression for the

priors of model ρm. In the context of gravity inversions, the prior distribution

represents the knowledge of the density distribution inside a planetary body before

inverting the gravity data. An example of prior information could be that the total

mass of the Moon should be 7.346×1022 kg as measured by the GRAIL mission [24].

The prior distribution can be adapted to be very informative or non-informative.

If there is complete certainty about the location of the center of a spherical cap,

for example, the prior distribution of the location (P ({θ})P{φ})P ({d})) should be

a Dirac delta function having a probability equal to infinity at the known location

of the cap and zero elsewhere. If there is no information about the location of

anomalies in ρm, then the prior distribution of the location can be uniform within

the limits of a sphere of radius R. Other distributions can be used too in order to

represent the prior knowledge we have about the interior. The flexibility of using

non-informative prior distributions makes it possible to avoid setting the location of

the density anomalies in the Moon a priori and, instead, inferring the most likely

location and the 1σ variation of that location based on the gravity data.

1.5 Monte Carlo sampling of a posterior probability distribution

Equation 1.8 shows the evaluation of the evidence term in Bayes’ theorem as a

multi-dimensional integral where the number of dimensions depends on the number

of parameters that define the density model. In the case of spherical caps, there

are n× 7 + 1 parameters where n is the number of spherical caps inside the sphere.
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The posterior has the same dimensions as the evidence term and it might not be

a simple distribution with just one maximum. The topography of the posterior

might be complex and difficult to characterize by analytic techniques or numerical

evaluations of a multi-dimensional integral in a regular grid.

P ({g}) =

∫
ρ

∫
t

∫
a

∫
d

∫
φ

∫
θ

∫
rmax

∫
n

P ({g}|ρm)P (ρm)dnd{rmax}d{θ}d{φ}d{d}d{a}d{t}d{ρ}

(1.8)

Monte Carlo methods are commonly employed in the numerical evaluation of

integrals in large-dimensional spaces. These types of methods sample a complex

probability distribution using different approaches of a random walk [25]. A Monte

Carlo method applied to the evaluation of equation 1.6 would obtain a group of den-

sity models representative of the posterior probability distribution P (ρm|{g}). From

this group of models, the range of model parameters values that are constrained with

the gravity acceleration data can be estimated.

The Metropolis-Hastings algorithm [26] is an iterative Monte Carlo method

that, at each iteration, samples a density model from the prior distribution, evaluates

its likelihood based on how well it fits the gravity acceleration data and assigns a

probability of accepting the model based on the ratio of likelihoods between the

proposed model and the last accepted model. A proposed model with a higher

likelihood has a higher probability of being accepted. The distribution of accepted

density models eventually converge to the posterior probability distribution [27].

The group of models obtained at iterations after convergence is achieved, called
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the ensemble, is then a representative sample of the density variations that can be

constrained with the gravity data. The details of the Metropolis-Hasting algorithm

to the inversion of gravity data are found in Chapter 2, 3 and 4 for a point mass,

spherical cap and Voronoi parametrization, respectively.

1.6 Research goals

The main objectives of this work are:

• To develop a gravity inversion method that does not require an informative

prior distribution on the location of the density anomalies within the Moon

and can obtain the variations of the parameters values that can be constrained

with the lunar gravity acceleration sampled by the GRAIL data.

• Compare how the interior distribution of density of the Moon and the vari-

ations obtained with the novel inversion method differs from the view of the

lunar interior accepted by the scientific community.

• Analyze how the inferred interior density model of the Moon relates to possible

scenarios of its evolution.

1.7 Outline of the thesis

Chapter 2 introduces a novel gravity inversion method and a point mass

parametrization of the density anomalies within a sphere. The method combines

the elements described in sections 1.3 and 1.5 in order to use non-informative prior
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information about the number of anomalies existing in the interior and the location

and mass of each of them.

Chapter 3 describes the differences in the inversion algorithm of Chapter 2

when a spherical cap parametrization is used. The computation time of each iter-

ation is higher and the method requires more iteration before convergence. This

increase in computational resources needed is compensated by the ability of the

spherical caps to retrieve the shape and size of density anomalies within the sphere,

specially the ones related to impact basins.

Chapter 4 describes how the interior density distribution in a sphere can be

parametrized by Voronoi regions (VRs) and how the calculation of the gravity field

of density models using this parametrization can be made efficient, allowing for a

reduction of the computing time when compared with spherical caps. Synthetic

gravity data is inverted using this VR algorithm and a the shape and size of a

mid-mantle anomaly is inferred correctly.

Chapter 5 describes the inversion of the Bouguer gravity field of the Moon

using the novel gravity inversion method with a Voronoi parametrization. Shallow

anomalies are compared to the ones related to previous crustal thickness estimations

while deep anomalies are related to features inferred with seismic data.

Chapter 6 summarizes the findings of previous chapters and describes the

future work that would be needed in order to refine the view of the lunar interior

obtained from the gravity inversion of GRAIL data and the future work needed to

link the interior features to evolution models of the Moon.
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Chapter 2: A Bayesian approach to infer interior mass anomalies

from the gravity data of celestial bodies

Published as: Kristel Izquierdo, Vedran Lekić, Laurent G. J. Montési, A

Bayesian approach to infer interior mass anomalies from the gravity data of ce-

lestial bodies, Geophysical Journal International, Volume 220, Issue 3, March 2020,

Pages 16871699, https://doi.org/10.1093/gji/ggz544

2.1 Abstract

We developed a Transdimensional Hierarchical Bayesian (THB) inversion al-

gorithm that provides an ensemble of mass distribution models compatible with the

gravitational field of a celestial body. Using this ensemble of models instead of only

one, it is possible to quantify the range of interior parameters that produce a good

fit to the gravity acceleration data. To represent the interior structure of the planet

or moon, we parameterize mass excess or deficits with point masses. We test this

method with synthetic data and, in each test, the algorithm is able to find models

that fit the gravity data of the body very well. Three of the target or test models

used contain only point mass anomalies. When all the point mass anomalies in

the target model produce gravity anomalies of similar magnitudes and the signals
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from each anomaly are well separated, the algorithm recovers the correct location,

number and magnitude of the point mass anomalies. When the gravity acceleration

data of a model is produced mostly by a subset of the point mass anomalies in

the target model, the algorithm only recovers the dominant anomalies. The fourth

target model is composed of spherical caps representing lunar mass concentration

(mascons) under major impact basins. The algorithm finds the correct location of

the center of the mascons but fails to find their correct outline or shape. Although

the inversion results appear less sharp than the ones obtained by classical inversion

methods, our THB algorithm provides an objective way to analyze the interior of

planetary bodies that includes epistemic uncertainty.

2.2 Introduction

We introduce a Transdimensional Hierchical Bayesian (THB) gravity inversion

algorithm and evaluate its performance with a fast forward problem. A point mass

is an idealization of a particle that contains all of its mass in a point with zero

volume. This idealization allows the use of simple equations to calculate the gravity

acceleration produced by particles of this type. In order to test the efficacy of the

gravity inversion method while keeping each iteration quick, the algorithm uses a

distribution of point masses inside the sphere to fit a given set of gravity acceleration

values. The number of point masses is not fixed a priori (transdimensional aspect)

but instead chosen in light of the data. The location of each point mass could

be anywhere between the core-mantle boundary and the surface of the spherical
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body. The variance in the data is also estimated as part of the inversion technique

(hierachical aspect). The Bayesian aspect involves the use of Bayes’ theorem to

assign a probability to each mass distribution model based on how well it fits the

gravity data and additional constraints.

In gravity inversions to date, the use of a Transdimensional Bayesian algorithm

has been limited to the recovery of 2D local-scale density structures. The shape of

a 2D polygon, defined by a fixed density difference and size, a varying number of

vertices in the x-y plane and an infinite length in the z-direction, can be recovered

[28]. In Titus et al., 2017 [29], the additional parameters of density difference and

size of a rectangle containing the polygon were also estimated.

The advantage of our THB method is that it requires fewer prior constraints

and explores a larger model space. These two characteristics make it possible to use

this method for the inversion of gravity data of bodies that are not well known as

well as for the ones from which we have plenty of geological priors.

In Section 2.3, we describe the Bayesian approach to the inference of mass

distribution models and the general logic of the algorithm. In Section 2.4, we show

the results of inverting several synthetic gravity fields to illustrate the capabilities

and limitations of the method. In the first set of tests, the input gravity acceleration

data is produced by a distribution of point masses while in the second set, it is pro-

duced by spherical caps which are more realistic mass distributions. Section 2.4.2.4

discuss the uncertainty related to using point masses to recover three-dimensional

density features.
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2.3 Inversion technique

In this section, we describe how Bayes’ rule is used to assign probabilities

to different mass distributions inside a sphere when the number of parameters is

not fixed a priori. We also present the reversible jump Markov chain Monte Carlo

(rjMcMC) algorithm [30] used to perform THB gravity inversions. We will use

brackets {} to represent sets of values for one parameter, such as the value of each

anomaly in the model {m}, or the gravity acceleration data, {g}. Since {g} is only

informative to the inversion when the effect expected from a sphere of constant

density is removed, the terms gravity acceleration data or gravity anomaly might

be used to refer to {g}.

2.3.1 Bayesian inference

Bayes’ rule states that the probability P of having an interior mass anomaly

with magnitude m given the gravity acceleration values at the surface {g} is propor-

tional to the probability of observing {g} if the mass anomaly is m multiplied by the

probability of the mass anomaly being m according to our current understanding

of its possible values: P (m|{g}) ∝ P ({g}|m)P (m). P (m|{g}) is formally known

as the posterior probability function, P ({g}|m) as the likelihood and P (m) is the

prior.
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2.3.2 Transdimensionality

In the classical use of Bayesian inference, the number of mass anomalies n in

the model was fixed. In the case described above, it was set to one. Thus m was

a scalar. If the number of mass anomalies is not known a priori, n can be treated

as another parameter to invert from data {g}. Equation 2.1 shows the updated

probability distribution function P ({m}, n|{g}).

P ({m}, n|{g}) ∝ P ({g}|{m}, n)P ({m}, n) (2.1)

There are now n+1 unknowns to be determined. A transdimensional inversion

provides the added flexibility of estimating the number of layers in a 2D velocity

model using seismic data, for example, or the number of density anomaly objects

in a 3D model using gravity data. This flexibility is required because we do not

actually have that information when working with real data, since the anomalies lie

in the inaccessible interior of the planet.

2.3.3 Reversible jump Markov chain Monte Carlo algorithm (rjM-

cMC)

We represent the mass anomalies inside a sphere with point masses. We de-

scribe in section 2.4.2.4 how this parametrization performs when the gravity data

to invert is produced by finite-sized objects instead of point masses. Using this

parametrization, the interior mass distribution model {pm} contains the values
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of each parameter describing the mass distribution in the interior of the sphere:

{pm} =
{
n, {m}, {x}, {y}, {z}, σ2

g

}
where n is the number of point mass anomalies,

{m} is the set of values of the mass anomalies in kilograms, {x}, {y} and {z} are

their Cartesian coordinates in kilometers and σ2
g is the variance of the white noise of

the gravity acceleration data in (m/s2)2. The corresponding posterior probability

implied by Bayes’ theorem in equation 2.2 is:

P ({pm}|{g}) = P (n, {m}, {x}, {y}, {z}, σ2
g |{g})

∝ P ({g}|{pm})P ({pm}) (2.2)

with the likelihood P ({g}|{pm}) given by:

P ({g}|{pm}) =
1√

2πn(σ2
g)
s

exp

(
−Φ

2

)
(2.3)

where s is the number of independent observation points and

Φ = ({g} − {gM})T
1

σ2
g

({g} − {gM}) (2.4)

where {gM} are gravity accelerations predicted by model {pm}.

Using the Metropolis-Hastings criteria [31], we construct an algorithm that

finds the values n, {m}, {x}, {y}, {z}, σ2
g that best fits the data and additional

constraints in an unbiased way. The process to do this is divided in two steps: 1)

proposing models from the distribution q({p′m}|{pm}) and 2) accepting models with
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Choose inital anomaly. Location and 
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residual.
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Add a new anomaly

Change location of one 
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Change noise variance

Calculate optimal mass of all 
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Figure 2.1: Flowchart of the THB gravity inversion algorithm. The initial model
is chosen randomly from the prior distribution and subsequent models are ob-
tained from the current model either by changing the position of a randomly-chosen
anomaly, by changing the noise variance, or by adding a new or removing an exist-
ing anomaly according to the reversible jump Markov chain Monte Carlo (rjMcMC)
procedure. Proposed models are accepted or rejected based on their relative likeli-
hood (Equation 6). After a burn-in period, models are saved to the ensemble, which
represents a sample of the posterior distribution P ({pm}|{g}). Note that masses of
the anomalies are not explored, but rather inverted for at each step of the algorithm.
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the probability given by equation 2.5 .

α({p′m}|{pm}) = min

[
1,
P ({p′m})P ({g}|{p′m})
P ({pm})P ({g}|{pm}

q({pm}|{p′m})
q({p′m}|{pm})

]
(2.5)

The expressions for the proposal distributions and derivation are presented in

Appendix A.1. When adding a new anomaly, its parameters are taken from the

prior distributions which are uniform. When changing the location of an existing

anomaly, the new location is selected from a normal distribution with mean at the

current location.

Figure 2.1 shows a detailed flowchart of the algorithm. At each step of the

rjMcMC, we propose a random new model based on perturbing the existing model.

We either remove or change the location of a randomly selected anomaly, or we

introduce a new anomaly with a location sampled randomly from the prior, or we

perturb the variance describing the noise in the data.

It is important to note that after randomly choosing the location of the anoma-

lies, we compute their corresponding masses by minimizing the difference between

the predicted and observed acceleration values. This is possible thanks to the linear

relation between the magnitude of a point mass and the acceleration it produces:

{g} = D{m}. Here, D is a matrix constructed using the gravitational constant

G and inverse of the distances between the point masses and the sampling points,

dij, where i is the index of the mass considered and j is the index of the observa-

tion point: Dij = G/d2ij. The optimal value of the point masses are determined

in a least squares sense: {mo} = (DTC−1g D)−1DTC−1g {g}. Because uncertainty on
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the data {g} are assumed to be normally distributed, P ({g}|{pm}) will be repre-

sented by a generalized Gaussian with mean {mo} and posterior covariance given by

C̃m = (DtC−1g D + C−1m )−1 [25], where Cg is the data covariance matrix (Cg = σ2
gI)

and Cm is the prior model covariance matrix. We set Cm to be a diagonal ma-

trix since masses of individual anomalies are not assumed to be correlated a priori.

The prior model covariance matrix also acts to stabilize the inversion for {m} by

contributing to the diagonal.

The advantage of solving for the optimal set of mass anomalies {m} at each

step of the rjMcMC is that doing so reduces by {n} the dimensionality of the inverse

problem, which dramatically improves the efficiency of the search, as we only have

to explore a fraction of the model space. However, this also means that instead of

obtaining the likelihoods of randomly generated models at each step of the rjMcMC

(which is commonly the case), we only obtain the likelihoods for randomly generated

models in which the values {m} have been tuned to optimal values {mo} so that:

P ({g}|{pmo}) = max
{m}

P ({g}|{pm}) (2.6)

The presence of tunable parameters means that we cannot simply use the ratio

of likelihoods when computing acceptance probabilities in Equation 2.5. Instead, it is

necessary to marginalize over the set of tunable parameters {m} prior to comparing

likelihoods and deciding to accept or reject a proposed model. The marginalization

removes the dependence on the tunable parameters:
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P ({g}|n, {x}, {y}, {z}, σ2
g) =

∫ mmax

mmin

P ({g}|{pm})P{m}d{m}

=

√
(2π)n|C̃m|

(mmax −mmin)n
P ({g}|{pmo}). (2.7)

Putting this all together, the acceptance probability α used by the algorithm be-

comes:

α = min

[
1,
(σ2

g

σ2
g

)s
exp

(
−Φ− Φ′

2

)√
|C̃m′ |
|C̃m|

(mmax −mmin)n−n
′

]
(2.8)

Since the optimal values of the anomalies is obtained by linear inversion, there

is not a strict limit on its minimum and maximum possible values (mmin and mmax).

We use instead −1022 to 1022 kg as a sufficiently wide range in equation 2.8.

2.3.4 Hierarchical parameter

As described above, our algorithm treats the uncertainty of the data, param-

eterized by the variance of the normal distribution describing white noise in the

data (σ2
g), as a parameter to be inferred during the inversion. This formulation is

referred to as hierarchical [32]. Since the complexity of the mass distribution models

obtained by the algorithm depends on the level of noise in the data, it is impor-

tant to estimate the noise variance together with the estimation of the values of the

model parameters [33]. Inversions of data with higher noise levels should produce
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simpler models. Lower noise levels produce more complex models since a greater

number of model parameters can be justified when attempting to fit the data. Even

when the noise variance is estimated by external methods, like measurement un-

certainties from satellite tracking data, estimating the hierarchical noise parameter

through the inversion can be important in asessing how well the model can fit the

data (epistemic uncertainty). For example, Olugboji et al. [34] found that when

constructing surface wave phase velocity maps, the hierarchical noise estimates are

systematically higher than reported data uncertainties, and attributed the difference

to additional uncertainty arising from modeling assumptions. Gao et al. [35] details

how the parameterization of the model itself can degrade or bias inferences obtained

by transdimensional Bayesian inversion; we later discuss how these effects manifest

in the hierarchical noise parameter in our inversions. In this work, the level of noise

is unknown but it is assumed to have a normal distribution.

2.4 Validation

In order to assess the ability of the proposed method to characterize the mass

anomaly distribution within a celestial object, we carry out a suite of validation

tests. We construct four different mass distributions by specifying the location and

magnitude of mass anomalies inside a sphere with radius R and zero mean density.

We call these mass distributions target or true mass distributions. We calculate the

gravity acceleration produced by each target distribution and apply a level of white

noise to it. The inversion algorithm described in Section 2.3 uses this synthetic
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x y z σ2
g n

Min −R −R −R 10−14 (m/s2)2 1
Max R R R 10−10 (m/s2)2 140

Table 2.1: Prior distributions of parameters used by the rjMcMC algorithm. R is the
radius of the sphere. The limits of x, y and z are clearly marked by the boundaries
of the sphere since anomalies cannot be outside it. The distributions of σ2

g and n
do not have tangible limits. We instead set them to sufficiently large values so that
the posterior distributions for these parameters are not truncated. In other words,
the possible ranges of values are wide enough not to bias the search of the rjMcMC.

gravity data as input to obtain a mass distribution ensemble. We then compare the

mean of the ensemble with the corresponding target model to see how effectively

the algorithm recovered the mass distribution that produced the input gravity data.

The validation tests are divided in two types according to whether the mass

anomalies of the target models are point masses or three-dimensional objects. Since

the algorithm uses point masses to construct an output mass distribution, the goal

is to test how well the algorithm recovers the location and magnitude of anomalies

with a perfect parameterization and how it approximates the shape of finite objects

with point masses.

2.4.1 Point masses as the target mass distribution model

In the first series of validations tests, the target mass distribution is built

using point mass anomalies. It might be expected that the inversion algorithm,

which parameterizes mass anomalies as point masses, should be able to recover the

distribution perfectly. However, the resolution of the gravity data and the natural

attenuation of 1/r2 of the gravity acceleration limit the combination of depths and

magnitudes it can recover. In addition, the transdimensional aspect of the inversion
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Parameter Target Model I Target Model II
1 2 3 4 5 1 2 3 4 5

Latitude (◦) θ 31.7 43.9 22.0 15.0 -65.9 -15.2 -15.2 -15.2 -15.2 -15.2
Longitude (◦) λ -90 12.8 155.5 -63.3 -168.3 -80.3 -80.3 -80.3 -80.3 -80.3
Radius (R) r 0.99 0.90 0.80 0.70 0.60 0.99 0.96 0.93 0.90 0.87
Mass (kg) m 1016 1018 2× 1018 5× 1018 9× 1018 1016 1016 1016 1016 1016

Table 2.2: Location, number and magnitude of point masses used in Target Models
I and II.

method is inherently parsimonious, so the output distribution is likely to contain

fewer mass anomalies than the target model.

We consider three cases in this category of target models. Target Model I and

Target Model II contains five point mass anomalies (Table 2.2). In Target Model

I, the deeper anomalies have larger magnitudes than the shallower anomalies and

all the anomalies have different latitudes and longitudes. In Target Model II all the

mass anomalies have the same latitude, longitude and mass but different depths.

Target Model III contains 50 anomalies. Their locations and magnitudes are chosen

from an uniform probability (see supplementary material).

The parameters to recover are {m}, {x}, {y}, {z}, n and σ2
g . The prior

information given to the algorithm is shown in Table 2.1 with the only additional

constraint that anomalies should be located inside the sphere (x2 + y2 + z2 ≤ R2).

All inversions ran for 1× 106 steps using only one McMC chain.

2.4.1.1 Fit to input gravity data

Figure 2.2 shows the input gravity acceleration data used for each validation

test and the gravity acceleration data of the mass distribution found by the algo-

rithm. Each dataset contains 2542 acceleration values uniformly sampled across the
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Figure 2.2: Gravity acceleration data used as input in the inversion (a) and gravity
acceleration data produced by the output which is the mean of the ensemble of
mass distribution models (b). In the three cases shown here, the target model
consists of point masses. Target model 1: five point masses with different depths
and magnitudes. Target model II: five point masses with the same latitude and
longitude but different depths. Target model III: fifty point masses with random
locations and magnitudes. The maximum misfit magnitude is 10 mGal in places
where the acceleration is 200 mGal or higher, as shown by maps in c), indicating
that the algorithm is able to provide satisfactory data fits. Figures III a) and III
b) are saturated to 200 mGal to show the gravity signal produced by several point
masses. Otherwise the maps are dominated by the signal of one very large and
shallow point mass. Table A.1 and A.2 in the supplementary material provide the
locations and magnitudes of all 50 point masses.
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surface of the sphere. In case I, the gravity signature of each of the five point mass

anomalies are clearly distinguished because larger magnitude deeper point masses

produce gravity signatures of similar amplitude as the smaller but shallower point

masses and because all the point mass anomalies are positioned at different latitude

and longitude. At first sight, it would appear that target model II has a gravity

anomaly only at one location. That is because the five input masses have the same

latitude, longitude and magnitude but different depths. Deeper anomalies with the

same magnitude produce a broader and weaker gravity signal than shallower ones.

In case III, the gravity data is produced by 50 point mass anomalies with random

locations and magnitudes. For visualization, the gravity maps in Figure 2.2 III are

saturated at 250 mGal in order to show the gravity signatures of many anomalies.

In reality, the shallowest mass anomaly produces a gravity acceleration as strong as

1000 mGal that dominates the gravity map, overpowering the other signals.

In all three cases, our inversion algorithm is able to find a mass distribution

that fits the input gravity data. Additionally, the noise of the input gravity ac-

celerations σg is recovered to 2% error of the true value. However, the purpose of

the inversion is not just to reproduce the input gravity values but to constrain the

source. We discuss next the distribution of mass anomalies in the output model and

how they compare with the target distribution.
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2.4.1.2 Fit to target density model

As gravity inversions are non-unique, fitting the input gravity data does not

mean the algorithm has found the correct mass distribution. In this section, we com-

pare the mean of the model ensemble obtained by the algorithm with the known cor-

rect mass distribution (target model). In order to do that, we examine the posterior

probability distribution of the models, P ({pm}|{g}) = P (n, {m}, {x}, {y}, {z}, σ2
g |{g}).

Which shows the most likely combination of parameters given the gravity data. This

posterior probability is obtained by measuring the frequency of different values of

parameters from an ensemble of models obtained by the algorithm. The ensemble

only contains models sampled after convergence is achieved. In other words, the

sampling starts only after the residual between model prediction and input data

(Equation 2.4) no longer changes significantly compared to the variation in the first

set of iterations.

The locations of the gravity anomalies in the output acceleration data match

those of the input, (Figure 2.2). This shows that density anomalies found by the

algorithm are present at the correct latitudes and longitudes. Therefore, we fo-

cus on describing the distribution of the parameters that have trade-offs in gravity

inversions: the magnitude and depth of anomalies.

Figure 2.4 shows the comparison between the target and output models for

test cases I, II and III. In test case I, there is perfect agreement between the mass

anomalies in the target model and the inversion result. This shows that the algo-

rithm is able to find the correct distribution of mass anomalies inside the sphere with
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Figure 2.3: Likelihood plots for cases I, II and III. We can see that the likelihood
increases with the number of iterations until it reaches a higher value where it
stabilizes. The ensembles are composed of models from the 4 × 105 to the 1 × 106

iteration.
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non-informative priors for the situations when the gravity signature of the masses

are equally dominant. In a more graphical way, this means that we can easily iden-

tify the signature of all masses in the gravity map (Figure 2.2 I) . Similarly, perfect

matches were obtained for target models with n from 1 to 20 as long as each gravity

signature was easily identifiable.

For case II, the algorithm fails to match the correct distribution. Instead,

it finds a distribution that fits the gravity data using fewer point mass anomalies.

As shown in Figure 2.4 II, the target model has five mass anomalies of the same

magnitude (1 × 1016 kg) but different depths. Deeper mass anomalies produce

very low magnitude gravitational acceleration compared to the shallower one which

causes the fit of the model to the data to be dominated by one shallowest mass. As

can be seen in Equation 2.8 in the term (mmax−mmin)n−n
′

where n is the number of

point masses, the THB algorithm prefers models with fewer anomalies, which means

that it tends to match the gravity signature of the dominant anomalies only. Here

the algorithm favors a single anomaly with a larger magnitude in a shallow location

instead of the correct location of the five anomalies. The deeper mass anomalies in

the target model produce subtle gravity signatures that are considered noise by our

inversion algorithm. A lower noise variance (σ2
g) would enhance the significance of

weak features of the input gravity data, and would therefore justify the placement

of additional anomalies.

For test case III, something similar to test case II occurs. In Figure 2.4 III,

we can see that the mass anomalies located in the upper right triangle of the plot

r vs m are preferentially recovered by the algorithm. This means that, again, the
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Figure 2.4: Comparison of target mass anomalies (squares) with output mass
anomalies (triangles) and associated probability distributions for cases I, II and III.
The location of the symbol shows the magnitude of a point mass and its distance
from the center of the sphere. The color shows the probability of having a point
mass there based on the input gravity acceleration data. In case I there is per-
fect agreement between the output and target models and between the probability
distributions. In case II the inversion favors a single point mass anomaly of larger
magnitude than the five point mass anomalies in the target model. The point mass
anomalies in output model III have shallower locations or larger magnitudes. The
red triangle is included to highlight this fact. Point mass anomalies outside this tri-
angle appear in the target model but not in the output one. This mismatch happens
because the algorithm is parsimonious and uses the fewer number of total anomalies
possible. Deep and small anomalies do not affect the residual as strongly as shallow
and large ones, so the parsimony of the algorithm works against their recovery.

algorithm is less sensitive to the presence of deeper, smaller masses that do not

contribute much to the residual. Reflecting its inherent parsimony, the algorithm

fits the gravity data with fewer masses than present in the target model. Figure 2.5

shows the number of anomalies recovered by the THB method in comparison with

the ones contained in the true or target models of test cases I, II and III.

In summary, the algorithm is able to find mass distribution models that fit the

input gravity data and accurately recovers the input noise levels. However, in all
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three cases, the inherent parsimony of the method makes it difficult to recover all

the anomalies when a subset of them dominate the gravity data and overpower the

contributions of smaller and/or deeper masses to the residual. Lower input noise

levels would justify the introduction of additional point masses. This behavior is

common in all transdimensional inversions where the number of seismic velocity

layers or density anomaly objects is not specified a priori (e.g., number of layers

recovered in transdimensional Bayesian surface wave dispersion) [35]. Although it

might be tempting to fix the number of parameters in order to avoid this problem in

the tests presented here, that approach is not appropriate for the study of real gravity

datasets, where the number of density anomalies is not known a priori. Instead,

it is important to understand the limitations of transdimensional inversions and

interpret the results taking these limitations into account.

2.4.2 Spherical caps as the target density model

As a second set of validations tests, we invert a set of gravitational acceleration

values that was produced by three-dimensional objects instead of point masses. It

is necessary to see which features of our target three-dimensional objects we can

recover using point masses. If necessary, future algorithm development may use a

model parameterization with finite sized objects to recover target three-dimensional

objects. The objects used here are similar in shape to the expected mass anomalies

found under major impact basins on the Moon, called mascons [36]. These objects

are represented by spherical caps such as the one shown in Figure 2.6.
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Figure 2.5: Number of anomalies inferred by the THB algorithm. For case I, the
correct number of anomalies is found, while for cases II and III, fewer anomalies are
recovered. This is a reflection of the parsimony of the algorithm. Since some deep
and small anomalies do not substantially affect the residual (defined by equation
2.4), and the algorithm prefers simpler to more complex models (i.e. it is parsimo-
nious), the algorithm does not introduce these masses when fitting the input gravity
acceleration data.

Figure 2.6: Spherical caps used as mass anomaly objects in the target model. They
represent the volume inside a spherical shell of certain thickness Rmax−Rmin limited
by a concentric cone of aperture α
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Name Latitude Longitude Diameter (km) Aperture (◦)

Imbrium 32.8 N 15.6 W 224 23.21
Nubium 21.3 S 16.6 W 143 14.82
Serenitatis 28 N 17.5 E 141 14.61
Australe 38.9 S 93 E 120 12.44
Crisium 17 N 59.1 E 165 17.10
Humorum 24.4 S 38.6 W 115 11.92
Smythii 1.3 N 87.5 E 145 15.03
Nectaris 15.2 S 25.5 E 100 10.36
Orientale 19.4 S 92.8 W 110 11.40

Table 2.3: Location and diameter of lunar basins used to produce the synthetic
gravity data. The density anomaly of these mascons is 300 kg/m3.

2.4.2.1 Fit to input gravity data

We use synthetic gravity acceleration data that provides a simpler, idealized

view of the lunar gravity field [37]. This radial gravity acceleration map (Figure 2.7a)

was obtained by computing the radial gravity acceleration produced by spherical

caps with sizes, latitudes and longitudes listed in Table 2.3. The location and size

of these caps are similar to those of major basins on the Moon where large mass

concentrations, called mascons, where identified [38, 39]. The outer shells of the

caps were set to r = 0.99 and the inner ones to r = 0.97. The black circles in

Figure 2.7 show the outline of these caps and the name of basins on which they

are based [40]. The 2562 acceleration values of this map and the prior probability

distributions in Table 2.1 were the inputs to the inversion. As in the previous test,

the prior information was not informative, only limiting the anomalies to be inside

the sphere.
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Figure 2.7: Comparison between the gravity data used as input in the inversion
(a) and the gravity data produced by the mass distribution model found by the
algorithm (b). The maps of differences (c)) show that the error is only 5 mGal in
places with a gravity acceleration larger than 200 mGal.
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2.4.2.2 McMC set up

One hundred independent Markov chains were run using the gravity accelera-

tion dataset of Figure 2.7 as input. Each of these chains had a different initial mass

distribution model {pm} chosen randomly from the prior distribution. Each chain

was run for 5× 106 iterations of the rjMcMC cycle shown in Figure 2.1. Figure 2.8

shows that the likelihood of the density models increases with increasing number of

iterations. After 4 million iterations, the value of the likelihood no longer changes

significantly and is similar for models of all chains. This is taken as a sign of con-

vergence. The ensemble is obtained by sampling one model every 1000 iterations

starting after 4 million iterations. Therefore, the ensemble contains 1000 models

from each of the 100 chains. The average gravity data produced by this ensemble

matches the input gravity data very well with differences of only ± 2 mGal (Figure

2.7 b).

2.4.2.3 Fit to target mass distribution

The most likely mass distribution found by the algorithm is obtained by break-

ing down the volume of the sphere in cells and calculating the average mass from the

ensemble in each cell at all depths. This follows from the argument that the models

contained in the ensemble are sampled with a frequency representative of the pos-

terior probability. Figure 2.9 shows the comparison between the target model and

the mean of the ensemble. The output or mean model contains prominent positive

masses near the center of the location of target caps, but they are often surrounded
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Figure 2.8: Evolution of the likelihood of models found by each of the 100 indepen-
dent Markov chains. Each point on represents the likelihood of the density model
{pm} accepted at each iteration. As the number of iteration increases, all the chains
converge to similar likelihood values. Models after 4 million iterations are regarded
as having converged and are sampled (one out of every 1000 model) to form the
ensemble used to compute the most likely density model.

by a ring of negative masses. This was not expected since the target model contains

only positive density anomalies.

The negative mass anomalies that appear in Figure 2.9 could have one of two

different origins.

1) Parsimony of the algorithm encourages the model to match the gravity signature

of spherical caps with fewer masses than would be needed to cover the entire

spherical cap. Instead of uniformly distributed positive mass anomalies where

there is a positive density in the target model, the algorithm uses negative masses

to sharpen a broad positive gravity signal. A schematic of this phenomenon is

shown in Figure 2.10. A well-chosen distribution of positive and negative point

masses produces a boxcar-shaped anomaly that resemble the expected signal at
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Figure 2.9: Comparison of the target density model (a) with the location of the point
mass anomalies of the mean of the ensemble (b). In map b), negative anomalies are
plotted using the blue colorbar while positive anomalies the red one. The locations
of positive mass anomalies in the output model match the center of the mascons in
the target model. However, their outlines are not perfectly circular and most are
surrounded by a ring of negative anomalies. The black circles outline the basins that
motivated the density anomalies in the target model; they are shown for reference
but are not part of the inversion.
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the cost of a slightly larger a posteriori variance. This interpretation is further

supported by a pair of additional synthetic tests we carried out. When inversion

is performed on data computed at an elevation of 100 km above the surface, but

otherwise identical to those described thus far, the ensemble mass distributions

shown in the top panel of Figure 2.11 no longer show the rings of negative mass

anomalies. This is because the additional distance suppresses high wavenumber

features of the mascon gravity data – those arising from the sharp edges shown

in Figure 2.10 – more than the low wavenumber ones corresponding to smooth

variations. Similarly, when we increase the maximum allowed value of the noise

to 10−8, we allow the inversion to ignore smaller amplitude features, such as those

due to the edges; the resulting mass anomalies also no longer show the rings of

negative mass, as seen in the bottom panel of Figure 2.11.

2) Since models from consecutive iterations differ from each other only in the loca-

tion or magnitude of a single anomaly, it is possible that the algorithm first finds

a large, deep positive mass that improves the residual very much. This mass

becomes almost impossible to delete because of its effect on the residual and, in-

stead, later models are improved by adding the negative point masses. In essence,

the algorithm remains at a local misfit minimum. However, the stochastic accep-

tance probability adopted in our algorithm and the presence of 100 independent

McMC should prevent this kind of effect from dominating the ensemble solution.

Therefore, it is most likely that the imperfect distribution of density anomalies

returned by our inversion technique is due to the parsimony inherent to THB
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Figure 2.10: Gravity acceleration produced by different mass distributions. The dots
show the location of the point mass anomalies, the size indicates relative magnitude
of the mass anomaly, and the color indicates whether they represent mass surplus
(positive mass anomaly, red) or deficit (negative mass anomaly, blue). The blue line
shows the values of the gravitational acceleration produced by the point masses. a)
Gravity acceleration produced by the target model which is a density anomaly of
finite extent. b) Gravity acceleration due to many positive point masses can match
the gravity acceleration produced by the density anomaly shown in (a). c) The
gravity acceleration in (a) can be approximated with fewer point masses including
both positive and negative ones. An inherently parsimonious algorithm would prefer
the simpler model comprising fewer point mass anomalies provided that the fit
to the data is sufficiently good. This is our explanation for why parsimony can
introduce negative mass anomalies into our ensemble solution.

algorithms.

Another way to compare the inversion result and the target models is to ex-

amine the posterior probability distributions computed from the ensemble, which

shows the relative frequency of models in the ensemble having certain value of a

parameter or a combination of parameters. The credible region of these parame-

ters is calculated as the region where 68% of the posterior probability is located,

in a similar fashion than results shown in a 1 σ confidence intervals. Figure 2.12

shows the posterior probability of the location of anomalies and their credible region.

Peaks of probability match the true location of the center of mascons, which means

that the algorithm effectively recovers the value of these parameters. Figure 2.13
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Figure 2.11: Effect of observation height and noise hyperparameter on retrieval of
mass anomalies. Same as Figure 2.9 but with (a) synthetic gravity data computed
at 100 km elevation above the surface instead of at the surface, and (b) 100 times
larger noise variance hyperparameter. Note the disappearance of negative mass rings
visible in Figure 2.9

shows the posterior probability distribution of mass anomaly depth, P ({r}|{g}).

The posterior probably features a marked preference for anomalies at very shallow

depth, around the correct depths of 0.97 ≤ r ≤ 0.99 which are the same limits the

spherical caps in the target model have. This distribution extends deeper than this

limits, probably again as a result of the parsimony of the algorithm that can adjust

the shape of the gravity anomalies by including deeper point masses (Figure 2.10).

The credible region is limited by r & 0.87, which includes the correct value of the

target model.

The value of the noise variance is overestimated by the algorithm: 10−10
(
m/s2

)2
instead of 10−11

(
m/s2

)2
in the target model. When we repeat the inversion increas-

ing the maximum value of the prior on the noise hyperparameter, the algorithm

returns the highest possible value 10−8
(
m/s2

)2
. This implies that the true value of

the noise variance is too small to be recovered since it is swamped by the large mod-

eling error of using the point mass parameterization to represent objects of finite
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Figure 2.12: Posterior probability of the latitude and longitude of mass anomalies
for three inversions: a) standard inversion (Figure 8); b) inversion of the gravity
data observed at 100 km height; and c) inversion with large noise hyperparameter
allowed. The red contours outline the regions where the 68% probability region is
located. The anomalies are fully contained inside the basins where the target mass
anomalies are specified (black circles). Recovery of true center positions of the input
mascons improves when higher altitude gravity observations are used -since they
have longer wavelength gravity variations- and when larger noise hyperparameter
values are allowed -since they allow the inversion to neglect fitting the sharp corners
of the mascon gravity data. 2.10
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Figure 2.13: Posterior probability distribution of point mass radius r. The mass
anomalies in the target density model have r = 0.99 for the outer shell and r = 0.97
for the inner shell. The most likely r matches the target value and it is contained
in the 68 % credible region limited by the red line.

size.

The most likely value of the number of anomalies n is 60 with a range between

50 and 73 contained in the 68% credible interval. Although this lacks physical mean-

ing since the true density model is not made of point masses, this shows an important

characteristic of the algorithm. The fact that most models have 60 anomalies, less

than maximum number allowed (140), shows that the algorithm is indeed parsimo-

nious, as designed. It matches the true gravity data with fewer number of anomalies

than the ones it could use.

2.4.2.4 Uncertainty related to point mass parametrization

In section 2.4.2.3 we described how the output mass distribution model or

the mean of the ensemble has patterns of negative and positive rings of point mass

anomalies where the spherical caps of the target model are located. This shows
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that using point masses in the THB algorithm contributes to the uncertainty in the

interpretation of what the actual internal distribution of the mass in a body is. If

the output mass distribution model is given by figure 2.10 c), for example, the actual

mass distribution of the interior of the body could be the ones shown in figure 2.10 a)

or 2.10 c). Additional constraints might help distinguish between them but, in the

absence of such constraints, all these possibilities must be considered. Uncertainty

on the inversion results is higher than if instructive a priori constraints were used,

as in the case where mass anomalies are restricted to a given depth representing,

say, the crust-mantle interface. However, in the absence of independent constraints,

our approach provides a more complete estimate of the actual uncertainty.

2.5 Discussion

Our validation tests show that while the location of mass anomalies can be

readily recovered by the THB method, their detailed shape cannot be confidently

estimated when the input gravity data is produced by finite-sized objects. Addition-

ally, we find that the parsimonious nature of the algorithm can cause spurious nega-

tive mass anomalies to be introduced into the ensemble solution when the point mass

anomaly parameterization is used. There are, nevertheless, important advantages

of using our THB method compared to current TB gravity inversion ones [28, 29]

since our THB method recovers a global mass distribution model, instead of a local

density distribution and it explores a larger model space with many possible com-

bination of magnitude, location and number of anomalies. The global approach is
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necessary for the detection of deep anomalies inside celestial bodies since it does not

restricts the size of possible density anomalies and provide more flexibility in their

location while local inversions imposes prior constraints even when there is not a

good argument for them.

The drawbacks of the THB method described in this chapter can be addressed

by increasing the complexity of the model parameterization. In particular, we con-

sider finite size objects instead of point masses in chapters 3 and 4. In chapter 3 we

describe the modifications of the THB algorithm necessary to use these objects and

to make it more efficient in order to balance the increase in time per iteration.

2.6 Conclusion

This study presents a Transdimensional Hierarchical Bayesian algorithm for

the inversion of gravity data. This method uses a point mass parameterization,

non informative priors, and a larger model space than previous transdimensional

Bayesian gravity inversion methods. In order to reduce the number of iterations

needed to achieve convergence, an optimization of the magnitude of point masses is

applied. A new acceptance probability α that takes into account this optimization

is derived.

The performance of the algorithm is assessed through a series of validation

inversions which aim to recover a target mass distribution model that contains either

point mass anomalies or three-dimensional objects of constant density anomaly.

The algorithm is able to match perfectly the target model in which the gravity
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signatures of all point mass anomalies have similar values and are well separated

from each other. When the gravity acceleration data is dominated by the signa-

ture of fewer point masses than the total number contained in the target model,

the algorithm tries to fit only those dominant masses. This is a consequence of

parsimony and the transdimensionality of the algorithm. In the second set of in-

versions, the algorithm finds the correct latitude, longitude and depth of the center

of massive spherical caps but fails to find their outline. Instead the model includes

a ring of negative masses and some deeper masses to sharpen the gravity data to

better match the the input. For all the tests for which the target model is build

from point masses, the algorithm finds the correct noise variance. However, if the

target model contains finite size objects, like spherical caps, the variance increases

during the inversion above the data uncertainty because of the addition of modeling

error arising from the use of point masses and the parsimony of the algorithm. A

parameterization based on finite size object such as spherical cap may be better able

to recover target models that contain three-dimensional density objects.
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Chapter 3: Spherical caps as parametrization of density anomalies

in global gravity inversions

3.1 Abstract

The shape, magnitude and location of density anomalies below impact basins

of the Moon help constrain the present state of compensation of the basin region

and properties of the lithosphere at the time of the impact. In order to constrain

these density anomalies we build on the gravity inversion algorithm from Izquierdo et

al. [41] using a spherical cap parametrization of the anomalies. The amount of uplift

of the core-mantle boundary, for example, could be constrained by the thickness of

the caps and the size by their aperture. With this approach, called THeBOOGIe,

we can constrain the density anomalies related to crustal thinning below basins

and also anomalies occurring at other locations, without assuming all the gravity

signal comes from variations of crustal thickness. It also provides the additional

advantage of showing the range of variation of model parameters that fit the data

in order to analyze if they can be confidently constrained or not. We construct a

target model of two spherical caps and use the gravity acceleration data produced

by it as input in the inversion. The results show that the method is able to find
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the values of the latitude, longitude and aperture of both caps in the target model

very well and with a small uncertainty. The depth, thickness and corresponding

density of the caps in the mean model have tradeoffs because of the non-uniqueness

of gravity inversions, however, this non-uniqueness is quantified and informs about

upper limits of the values of these parameters. The calculation of the gravity field of

density models using this parametrization is slow and grows with increasing number

of caps. Future improvements to the efficiency of the algorithm are needed before

this parametrization can be used in the inversion of realistic planetary gravity fields.

3.2 Introduction

The density distribution within a planetary body is the result of its thermal

and compositional evolution. Satellite gravity data is sensitive to the lateral varia-

tions of this density distribution and has been used extensively to constrain plane-

tary interiors, specially to infer lateral variations of crustal thickness [9, 10, 42, for

example]. The Bouguer gravity data shows the gravity acceleration produced by ma-

terial below a reference radius, after the signal related to topography is removed [43].

A region with a thinner crust produces a positive Bouguer anomaly because it has

more high density mantle material and less low density crustal material than a re-

gion with a thicker crust. Figure 3.1 shows the Bouguer gravity field of the Moon

obtained by Lemoine et al. [44]. Many circular features have a positive Bouguer

anomaly. These features are impact basins. Near side basins have a specially large

positive Bouguer anomaly, between 500 and 1000 mGal.
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The crust at the location of impact basins is generally thinner than its global

mean value because the impactor removes surface material of a planetary body at

the time of the impact and posterior isostatic compensation makes the crust-mantle

interface shallower in the basin region [39]. The amount of mantle uplift underneath

an impact basin is an important parameter to constrain because it shows the present

state of isostatic compensation of the Moon in the corresponding region. This

state of compensation can be related to the past condition of the lithosphere at the

location of the basins, for example, how strong the lithosphere was at the time of

the impact [45].

Melosh et al. [46] modeled the impacts and subsequent evolution of the Freundlich-

Sharonov and Humorum basins using different impactor energies, lunar thermal gra-

dients and amounts of volcanic fill. According to this study, the lithosphere of the

Moon has to be strong enough so support a super-isostatic state of compensation.

The lithosphere in this state would sustain an excess of mass that produced a gravity

signal matching the observed Bouguer gravity acceleration data in those regions.

Density anomalies are not only related to variations of crustal thickness. Den-

sity anomalies might exist within the crust, upper, mid and deep mantle. Crustal

thickness estimation methods might map these anomalies as mantle uplift if it is as-

sumed all Bouguer signal comes from variations in crustal thickness. It is necessary

to study all possible distributions of 3-D density anomalies within a body that fit

the Bouguer gravity data in order to infer correctly the thickness of the crust and

the densities of the crust and mantle. Even if most of the Bouguer gravity signal in

a region comes from variations in the thickness of the crust, the part of the signal
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Figure 3.1: Bouguer gravity anomaly of the Moon (orders 1-700) from Lemoine et
al [47]. The acceleration is produced by the distribution of density inside a reference
radius of R = 1739 km . The acceleration due to topography is removed.

θ,Φ,d=R-rmax

a
t

r max

R

r=0

Figure 3.2: 2-D and 3-D representation of a spherical cap. The parameters that
define a spherical cap are its density ρ, aperture a, thickness t, depth of outer shell
d, longitude φ and latitude θ of its center. R is the radius of the planetary interior
and rmax is the radius of the outer shell of the cap. Figure duplicated from chapter
1 for convenience.
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that might come from deeper or shallower locations might be incorrectly mapped to

the crust-mantle interface and the properties of the body inferred from this interface

might be incorrect.

In this chapter, we build onto the Transdimensional Hierarchical Bayesian

method described by Izquierdo et al. [41] and incorporate a three-dimensional parametriza-

tion of the density distribution inside a sphere using spherical caps to represent

density anomalies or density variations from a mean value. Prior information used

in this method can be non-informative. For example, anomalies can be located any-

were in the sphere, not only in the core-mantle interface and the number of caps

to find inside a sphere is not fixed apriori but inferred from the data. The method

provides the range of parameter values of density models that fit the observed grav-

ity data, from which uncertainty information can be calculated. The uncertainty

information is essential in gravity inversions because different density models can

match the gravity data and the significance of a density value in a region depends

on how unique or non-unique it is [48].

A spherical cap is an ideal candidate to represent the density anomaly related

to an impact basin because the mantle uplift in the circular basin region can be

represented by the thickness t and aperture a of the cap. Figure 3.2 shows the

schematics of 2-D and 3-D spherical caps. They are completely defined by the

parameters: density ρ, aperture a, thickness t, depth of upper shell d, longitude φ

and latitude θ of center.

This chapter first describes the inversion algorithm using spherical caps (sec-

tion 3.3). Then describes the validation of the algorithm with the inversion of syn-
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thetic gravity data (section 3.4) and finally presents a discussion of the advantages

and disadvantages related to other methods and other parametrizations (section 3.5)

3.3 Gravity inversion method

Figure 3.3 shows a flowchart of the algorithm used in this chapter. The cen-

tral part of the algorithm is the construction of a Markov chain [30] linked to a

Transdimensional Hierarchical Bayesian (THB) invesion method. The method is

transdimensional because the number of spherical caps in the interior of the sphere

is not fixed a priori but, instead, is a parameter to be constrained by the input grav-

ity data. It is hierarchical because the noise variance is also unknown and estimated

including the modeling error [32] and Bayesian because it uses Bayes’ theorem to

compare pairs of models and choose the one that best represents the interior of the

sphere based on the input data and, if desired, additional constraints.

Since a density anomaly is represented by the shape, size and location of an

object, in this case a spherical cap, this inversion approach is an object-oriented

approach. Point masses are not used in an object-oriented approach because pa-

rameters of a density anomaly are represented by a distribution of point masses.

We called this algorithm, THeBOOGIe or Transdimensional Hierarchical Bayesian

Object-Oriented Gravity Inversion.

m = n, {ρ}, {a}, {t}, {d}, {φ}, {θ}, σ2
g (3.1)

At each iteration, there is an accepted density model m and a proposed density
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model m′. Equation 3.1 shows that a density model m is defined by the number

of caps inside the sphere n, their density {ρ}, aperture {a}, thickness {t}, depth

of upper shell {d}, longitude {φ}, latitude {θ} and noise variance of the input

data σ2
g where the curly brackets denote vectors of size n. The noise variance of

the input data is a parameter of the model because σ2
g combines the error on the

measurements of the input gravity data and the modeling errors caused by the

parametrization [32,33].

The values of the parameters of the initial density model m (at iteration i = 1)

are obtained by sampling uniform distributions with the limits shown in table 3.1.

These distributions are called prior distributions because it reflecs our knowledge

of the interior before inverting the gravity data. The priors are non-informative

because they only require the spherical caps to be located inside the sphere and to

have a density anomaly that is physically possible. Material with a density anomaly

outside the range of -500 and 500 kg/m3 from the mean density value of the Moon

are not likely to exist within the Moon.

The proposed model m′ is obtained by randomly making one modification

to the accepted model m. Figure 3.4 shows the possible modifications and how the

proposed model would look compared to the accepted model. There are five possible

changes to make: change the aperture of cap i, change the thickness of cap i, change

the location of of cap i, delete cap i, add a new cap to the density model or change

the noise variance. The change to make is chosen randomly and so is the cap i

that is modified. After one of these changes is applied, the density of the caps in

model m′ is linearly optimized to reduce the misfit between the gravity acceleration
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Lower limit Upper limit

Density (kg/m3) -500 500

Aperture (◦) 0 180

Thickness (km) 0 1409 km

Depth (km) 0 1409 km

Longitude (◦) 0 360

Latitude (◦) -90 90

Noise variance (mGal2) 1× 10−4 1

Table 3.1: Prior information of model parameters. All the priors distributions are
uniform with non-informative limits. Spherical caps are limited to be located within
the sphere, between radius r = 330 km and R = 1739 km. r = 330 km is chosen as
lower limit of r because it is the location of the core-mantle boundary of the Moon.

produced by m′ and the input gravity acceleration. Model m′ is then completely

defined.

After the proposed model is computed, its gravity acceleration data is cal-

culated and used to compute its likelihood (P ({g}|m′). The expressions for the

likelihood, acceptance probability and their derivations from Bayes’ theorem are

shown by Izquierdo et al. [41] and only summarized here. The likelihood of a model

m is given by equation 3.2 where n is the number of spherical caps, s is the number

of gravity data points and Φ is the residual. C̃m is the posterior model covariance

matrix, C̃m = (DtC−1g D + C−1m )−1 [25] where D is a matrix constructed using the

gravitational constant G and inverse of the distances between the center of the caps

and the observation points. Cg is the data covariance matrix (Cg = σ2
gI) and Cm

is the prior model covariance matrix. Cm is assumed to be a diagonal matrix since

there is no reason to assume different caps are correlated.
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Figure 3.3: Flowchart of the gravity inversion algorithm called THeBOOGIe. Steps
necessary to propose a new density model are highlighted in green and orange.
Parameters of the new density model obtained from a random walk are highlighted
in green while the one obtained from a linear optimization (the density of each cap)
is highlighted in orange.
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a) b) c) d) e)

Figure 3.4: Current density model and possible modifications to obtain next pro-
posed density model . The blue sphere represents the core of the Moon. Six caps,
each of different position, depth, aperture, and density (represented by the color)
make up the current model. Of these, only the one highlighted in purple is modified
in this example. It is possible to modify: a) the aperture of the cap; b) the thickness
of the cap; c) the location of the cap. In addition, d) the cap can be deleted and
e) a new cap (green) can be added. Not visualized: the variance of the data can be
changed.
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P({g}|m) =

√
|C̃m|

(σ2
g)
s(ρmax − ρmin)n

exp

(
−Φ

2

)
(3.2)

The residual is given by equation 3.3 where {g} is the input gravity data and {gm}

is the gravity data of density model m.

Φ = ({g} − {gm})T
1

σ2
g

({g} − {gm}) (3.3)

After the likelihood of model m and m′ is computed, an acceptance probability

α is assigned to model m′. Equation 3.4 shows the expression of the acceptance

probability α. This probability is a function of the ratio of likelihood of the proposed

model and the likelihood of the accepted model. If the proposed model has a much

larger likelihood than the accepted model, then its acceptance probability is high

and the proposed model might replace the accepted model m. The probability of

accepting model m′ increases if its residual or noise variance decreases compared to

the values of model m, the determinant of the model covariance matrix increases or

if model m′ has a fewer number of spherical caps, keeping everything else constant.

α = min

[
1,
( σ2

g

σ2′
g

)s
exp

(
−Φ− Φ′

2

)√
|C̃ρ′ |
|C̃ρ|

(ρmax − ρmin)n−n
′

]
(3.4)

The process of proposing and accepting models is done at each iteration of the

THB algorithm. Not all accepted models are part of the group of output models,

however. The first accepted model (at iteration 1) is randomly chosen so it most

likely has a very bad fit to the gravity data. Even if the model at iteration 2 has a
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better fit to the data, the fit might still be poor. Only after convergence is achieved,

the accepted models would be a representative sample of the parameters that fit the

input gravity data. Convergence is said to be achieved when the values of likelihood

(Equation 3.2) do not change much per iteration compared to the variations observed

in the initial iterations. The accepted models m obtained during the initial iterations

have very different values of its likelihood and they are not part of the output models.

This initial period of iterations is called burn-in period.

3.3.1 Gravity acceleration of a spherical cap

The gravity acceleration produced by a spherical cap of density ρ at a set of

2562 points {rs} over the surface of the sphere is given by equation 3.5. R is the

radius of the sphere, G is the gravitational constant, pl is the Legendre polynomial

of degree l, a is the aperture of the cap and β is the angle between the observation

point and the center of the cap [49].

{gcap} = 2πρG
∞∑
n=0

Rl+3
max −Rl+3

min

(2l + 1)(l + 3)Rl+2
(l + 1)[pl+1(cos(a))− pl−1(cos(a))]pl(cos(β))

(3.5)

At each iteration of the algorithm, the gravity acceleration {g′} produced by

the proposed density model m′ is calculated by adding equation 3.5 n times each

time for each cap in the model. The Legendre polynomials are calculated in a

iterative way and the time it takes to calculate this gravity data scales linearly with

the number of spherical caps of model m′. These two factors make the calculation

of {g′} the most time-consuming operation in the THB algorithm with a spherical
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cap parametrization. The density ρ of each cap needed to compute equation 3.5, is

obtained by a constrained linear least-squares optimization where the value of ρ that

reduces the residual Φ is obtained bounded to the limits of -500 and 500 kg/m3.

This optimization of the density is the second-longest process in the algorithm.

For an inversion of 2562 gravity data points ran for 100 iterations with an average

of four spherical caps per iteration, the percentage of the total time spent on the

calculation of the gravity field of the models was 70 % and the percentage spent in

the optimization of density was 4%.

3.4 Validation

The gravity inversion method is validated by creating a density model (target

model), calculating its gravity acceleration data, inputting this data into the algo-

rithm in figure 3.3 and comparing the mean of the output models obtained with

the target model. The Moon is represented by a perfect sphere of radius R = 1739

km and mean density of zero. This mean density is set to zero in order to visualize

only the density anomalies parametrized as spherical caps. An spherical cap with

density of 300 kg/m3, represents an anomaly of 300 kg/m3 over the mean density

of the Moon. The target model consists of two spherical caps with a density of

300 kg/m3 located in the surface of an otherwise empty sphere. The gravity field

produced by the target model is sampled over 2562 points uniformly distributed at

an altitude of 10 km over the surface of the sphere. Noise with variance equal to

1 × 10−2 mGal is added to the gravity data to test if the value of its variance can
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Figure 3.5: Logarithm of the likelihood per iteration. The likelihood increases
with increasing number of iterations until it stabilizes around iteration 5.5 ×105.
Accepted models after this point are considered converged models and from part of
the output models of the THB algorithm.

be determined by the algorithm.

The THB algorithm was run for 1 × 106 iterations. Figure 3.5 shows the

logarithm of the likelihood per iteration or the logarithm of the likelihood of the

accepted model at each iteration. There is a large variation of the likelihood during

the first half of the run and then the value of the likelihood stabilizes. Convergence

is said to occur at iteration 5.5 ×105 and 1× 103 density models obtained after that

iteration form the output density models or ensemble.

As a first validation criteria, it is necessary to check if the output models fit the

input gravity data. Figure 3.6 shows that the mean gravity acceleration of models

within the ensemble is very similar to the acceleration of the target model. The
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Figure 3.6: a) Gravity acceleration of target model. b) Mean of the gravity acceler-
ation produced by individual density models in the ensemble. c) Difference between
gravity acceleration data in a) and b). The differences between the gravity accelera-
tion of the target model (input gravity) and the mean gravity of the output models
is relative small. This shows that the THeBOOGIe is able to find an ensemble of
density models that fit the data.
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maximum misfit is less than 8 mGal. The small residual indicates that the inversion

algorithm described in figure 3.3 is able to find a group of density models that fit

the input gravity data.

The second validation criteria is to check how similar is the mean density

model from the target model. As mentioned before, the THB method does not solve

the non-uniqueness of gravity inversions but has the advantage of quantifying how

much variation in the parameters is allowed by the input gravity data. Therefore, a

mismatch between the mean and the target model does not indicate a failure of the

THB inversion method but, instead, shows which parameters of the target model

can be uniquely constrain with the input gravity data and which ones cannot.

The target model consists of two spherical caps with different latitudes, longi-

tudes and apertures. Both caps have a density anomaly of 300 kg/m3, a thickness

of 20 km and their outer shells are located at the surface of the sphere. The sphere

has radius R = 1739 km. The gravity data produced by the target model is the

input data of the inversion algorithm and it is shown in figure 3.6 a). Tables 3.2 and

3.3 show the mean value of the model parameters in the ensemble, their standard

deviation and the values of the target model. The mean density is the model with

parameters values given by the mean of the parameters in the ensemble.

Figure 3.7 shows an upper view of the mean density model, the target model

and the difference between the two. In order to visualize the density of the mean

model in this figure, the density of all models in the ensemble are averaged in a 2-D

grid of 0.1◦ in latitude and longitude. It is clear that the algorithm is able to fit

very well the latitude and longitude of the center of the caps and their aperture. It
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Mean value of ensemble Standard deviation Target value

Density (kg/m3) 444.2 49.8 300

Aperture (◦) 7.33 0.06 7.4

Thickness (km) 14.7 2.1 20

Depth (km) 10.7 1.8×10−14 0

Longitude (◦) 344.3 8.5×10−13 344

Latitude (◦) 32.5 6.4×10−14 32

Table 3.2: Value of the parameters of the North Cap in the output ensemble and
the target model.

Mean value of ensemble Standard deviation Target value

Density (kg/m3) 321.2 75.3 300

Aperture (◦) 4.7 0.08 4.7

Thickness (km) 20.1 5 20

Depth (km) 1.1 4.2×10−15 0

Longitude (◦) 343.4 9.7×10−13 343

Latitude (◦) -21.2 5.3×10−14 -21

Table 3.3: Value of the parameters of the South cap in the output ensemble and the
target model.
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Figure 3.7: a) Upper view of the mean density model with density values at all
depths within the ensemble averaged on a 2-D grid of 0.1◦ in latitude and longitude.
The north cap has a mean density of 444.2 kg/m3 while the south cap has a mean
density of 321.2 kg/m3. b) Target model contains two caps with densities of 300
kg/m3. c) The difference between the mean and target model show that the inversion
algorithm estimates the lateral location of the cap very well (latitude and longitude
of center and aperture) while the density of both caps are overestimated. The north
cap by 48 % and the south cap by 7%.

72



is also clear that the density of the caps in the mean model is larger than in the

target model which means that this parameter was overestimated by the inversion.

The north cap has a mean density of 444.2 kg/m3 and the south cap of 321.2 kg/m3

corresponding to overestimates of 48% and 7%, respectively, over the target model

density anomaly of 300 kg/m3. Since the fit to the input data is good, the excess

of density should be compensated by the mean model by having deeper or thinner

caps than the target model.

Figure 3.8 shows a slice of the density distribution of the mean model, target

model and the difference between them. The mean model plotted in this figure is

obtained by averaging the density values of all models in the ensemble in a grid of

0.1◦ blocks in latitude and 2 km in depth. The slice is taken at longitude Φ = 345◦.

This figure shows that the north cap is much thinner and deeper in the mean model

than in the target one. The south cap in the mean model is deeper than in the target

model too but it is not necessarily thinner. Most of the density is concentrated in

a thinner cap while there is a spread of density values in deeper locations. The

spread or fuzziness in the boundaries of the caps in figure 3.7 is due to the fact that

the depth extent of the caps varies between different models in the ensemble, even

though each cap has uniform density. By contrast, the lateral and top boundaries of

the density anomalies in the mean model, are sharp. This shows that the thickness

of the caps is less well constrained than their lateral location.

Figure 3.9 shows histograms of the values of density, aperture, thickness, depth,

longitude and latitude of all models in the ensemble. This distribution of values is

complementary information from the mean model and is specially suited to make a
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Figure 3.8: Slice of the mean model, target model and difference between depth at
longitude Φ = 345◦. a) Output or mean density model. The outer shell of the north
cap (left) has a depth of 0.016R while the one from the south cap (right) has a depth
of 0.010R where R is the radius of the Moon. b) Both caps in the target model have
an upper shell at 0 depth. c) The difference between the mean and target model
shows that the inversion algorithm overestimates the depth of both caps. The north
cap in the mean model is 27 km deeper than in the target model while the south one
is 17 km deeper. The fit to the gravity field is very good because the lateral location
and size of the cap is recovered very well and the excess of density is compensated
by the deeper location of the caps.
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Figure 3.9: Distribution of model parameter values within the ensemble. The
black vertical lines show the corresponding value of each parameter in the target
model. The aperture, latitude and longitude are very well constrained since most or
all models in the ensemble match the values in the target model and the variation
within models is small. The density (ρ), thickness and depth are less well constrained
because the spread of values is larger and the peak of the distribution is not located
at the corresponding value in the target model. There is a trade-off between the
density, thickness and depth of the spherical caps which is expected for gravity
inversions but only quantified in THB inversion methods.
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quantitative analysis of the uncertainty or non-uniqueness of each parameter. The

aperture, latitude and longitude have a spread of less than 1◦ and they all have their

distribution peaks located at the values of the respective parameter in the target

model. These parameters are well constrained by the input gravity data.

The density, thickness and depth are not as well constrained as other param-

eters. Since the density of the caps is calculated once a thickness and depth is

specified, there are only two independent parameters that are not well constrained,

the thickness and depth. A trade-off between these parameters is expected in all

gravity inversions but it is only quantified in THB inversions. There is not much

variation in the depth of the caps (less than 1 cm of standard deviation for both)

but both caps are located deeper in the sphere than they are in the target model.

The variation is much greater for the thickness of the caps (2 and 5 km of standard

deviation for North and South cap respectively) which means the algorithm is more

likely to change the thickness than changing the depth of the caps.

Figure 3.10a shows the depth of the outer shell of the caps vs their thickness.

It shows that the depth value of both caps does not vary much between different

density models while the corresponding thicknesses do. As shown in figure 3.4, the

depth of the current model is modified in the same step as the latitude and longitude.

At certain iteration, the algorithm probably chose a location for a cap that fitted

the latitude and longitude of the target model very well while it did not fit the

depth as well. In order to modify this depth value, the algorithm had to modify

latitude and longitude too because the three coordinates are modified in the same

step. The location of the cap stayed fixed because the odds of having an even better
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Figure 3.10: Depth, thickness and density values of all models in the ensemble. a)
The values of the depth of caps between different models do not change significantly
while their thicknesses do. b) Thicker caps in a model have a lower density value
than thinner caps in a different model. This is a consequence of the density being
obtained by an optimization of the difference between the input gravity data and
the gravity data produced by the model at iteration. Since the depth of the caps do
not change much, the density values depends on their thicknesses. c) There is no
clear relationship between how the thickness of the North cap varies with respect
to the thickness of the South cap. These parameters are independent.
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value for the three parameters was lower than the odds of worsening the latitude

and longitude of the cap.

The prior constraints on the depth of the caps (table 3.1) show that the spheri-

cal caps are only allowed to be inside the sphere so the value of their depths is always

going to be skewed to deeper values. Figure 3.9 show that the caps in the mean

model are always deeper than the ones in the target model. Since the thickness

is modified in a individual step and the density of the cap is optimized, modifying

the thickness of the current model is easy and proposed models with different thick-

nesses do not change the fit very much so they are more likely to be accepted than

proposed models with a modified location value.

Figure3.10b shows that, with increasing thickness of a cap, its density de-

creases. This allows the mass of the cap to be almost constant and produce a similar

gravity anomaly than the one produced by the target model. This is a consequence

of the fact that the density is not a free parameter of the Monte Carlo algorithm.

It is instead obtained by a linear optimization of the difference between the input

gravity data and the gravity data produced by the model at iteration i. Figure 3.10c

shows that there is no clear relationship between how the thickness of the North

cap varies with respect to the thickness of the South cap. These parameters are

independent.

The number of caps is another parameter of the ensemble models. All of the

models have two caps which is the same as in the target density model. This pa-

rameter is perfectly constrained by the input data. The noise of the input data is

correctly recovered at 1×10−2 mGal. This is possible because the same parametriza-
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tion used to produced the input gravity data, is used to find the ensemble models.

In contrast, when using spherical caps to produce the input gravity data and point

masses to produce the ensemble models, a THB algorithm overestimates the noise

variance as described in Chapter 2 (section 2.4.2.3).

3.5 Discussion

The comparison between the mean density model obtained by THeBOOGIe

algorithm presented in this paper and the target density model show that the algo-

rithm is able to recover the latitude, longitude and aperture of the caps perfectly

and quantifies the expected trade-off between depth, density and thickness of the

caps. The spherical cap parametrization allows then the recovery of the location,

shape and size of the density anomalies , improving on the point mass parametriza-

tion used by Izquierdo et al. [41] that only recovers the location of the center of this

anomalies.

The input gravity field contains only two visible gravity anomalies with a

relative similar size and shape. A more realistic gravity field of the Moon would

contain features of different sizes and shapes, additionally to the circular features of

impact basins. A density model that produces a similar gravity acceleration would

require many spherical caps. Since the time needed to compute the gravity field

of model m at each iteration grows linearly with increasing number of caps, the

iterations would take much longer than the ones in the inversion described here.

Because the number of parameters to find grows with increasing number of caps
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too, more iterations of the inversion algorithm would be needed to run in order to

find the correct combination of parameters values that fit the gravity data.

In general, a more realistic input gravity field of the Moon would require

a longer running time of THeBOOGIe. That is expected for all parametrizations

because there are more parameters to find. However, the issue with the spherical cap

parametrization is that the running time might be too long for practical applications.

For the inversion described here, the THeBOOGIe was ran for 1× 106 iterations for

a total of 70 hours in processor running at 2.8 GHz. An inversion of the gravity field

produced by a target model with three spherical caps was tested and convergence

was not achieved even after running the algorithm for seven days and 1.5 × 106

iterations. The time it would take to find the parameters of more than two caps is

unknown but it is too large for our purposes and resources available. The algorithm

needs to be more efficient in the calculation of the gravity field of proposed density

models or in the sampling of these models before it can be applied to the inversion

of realistic gravity fields.

3.6 Conclusion

We build on the THB global gravity inversion algorithms by using a three-

dimensional parametrization of the density anomalies that allows for the recovery

of their location, shape and size. The results show that the algorithm matches the

lateral location perfectly and quantifies the expected trade-off or non-uniqueness in

depth but an increase in the complexity of the input data and corresponding output
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ensemble is needed in order to apply this parameterization to realistic planetary

inversions.
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Chapter 4: Bayesian gravity inversion algorithm for inferring finite

size density anomalies in planetary interiors

4.1 Abstract

Gravity inversions have contributed greatly to our knowledge of planetary

bodies such as the Moon. They are especially important to constrain the thickness

and density variations of the lunar crust. Commonly-used inversion methods, how-

ever, would map mantle density anomaly features to the crust as they assume all the

Bouguer gravity anomaly signal is coming from the crust-mantle boundary. In order

to find density anomalies at different depths, we use a Transdimensional Hierarchi-

cal Bayesian Object-Oriented Gravity Inversion method (THeBOOGIe) that does

not require any prior constraints in the location of the density anomalies. This iter-

ative method divides the whole volume of the sphere into regions of similar density

(Voronoi cells) where the number of regions, their size and location are chosen from

a prior uniform distribution. At each iteration, the optimal density of the regions,

at their randomly chosen location, and the fit of the density model to the surface

gravity data of the body is calculated. Models fitting the data and additional con-

straints are saved and an ensemble of well fitting models is output when convergence
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is achieved. We validate this method by creating a target density model and compar-

ing how well the mean of the ensemble matches its features. The density anomalies

in the target model emulate lunar density anomalies: the difference in thickness

between the near and far side of the crust, the SPA basin, Imbrium and Serenitatis

mass concentrations and a deep feature at the mid mantle. The algorithm is able

to recover the lateral location of all the anomalies correctly but overestimates the

thickness of the shallow features. The shape of the deep feature in the target model

is recovered correctly . Because the output is a group of density models, instead of

just one, we can obtain measures of variation from the mean density at each loca-

tion inside the sphere. This variation provides information about the sensitivity of

the method to different depths and about how uniquely a value can be constrained

given the data. THeBOOGIe does not provide tighter constrains on the location of

the shallow features yet but it provides a new way to detect density anomalies at

different locations without mapping deeper anomalies to the crust depth while, at

the same time, providing measures of confidence in the density values found.

4.2 Introduction

A layered model of the interior of a planetary body is an idealization of the

distribution of material inside it. However, regions with different temperature or

composition might exist within layers and the properties of these regions might

shed light on the overall history of the body. For example, the location and shape

of Large Low Shear Velocity Provinces (LLSVPs) on Earth [50] constrains different
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models of the circulation of the mantle [51–56]. The size and magnitude of mass

anomalies under impact basins on the Moon indicates the state of compensation of

the surrounding crust and upper mantle material at the time of the impact [13].

Deeper anomalies in other planets have also been proposed [57].

Seismic and gravity data can both constrain anomalies in the interior struc-

ture of planets, but, because of costs and technology limitations, seismic data is

only available on Earth, the Moon [58] and, more recently, Mars [59]. Gravity data,

instead, is available for all terrestrial planets and is the most complete data set to

infer global density anomalies in other bodies [9]. Gravity data is a sampling of the

acceleration felt by a satellite caused by the mass of the body that is orbiting [60].

Regions with a higher density exert a higher pull on the satellite and regions with

a lower density, exert a lower one, changing by different amounts the orbit of the

satellite which is being tracked from Earth. Thus, inverting gravity provides con-

straints on the distribution of density anomalies inside a planetary body, especially

the deviations from a perfectly radial structure.

Gravity inversions are non-unique and different methods have been developed

to obtain unique density models from gravity data. In lunar applications, for ex-

ample, positive lunar Bouguer gravity anomalies have been linked to regions with a

shallower crust-mantle boundary and negative gravity anomalies to a deeper bound-

ary assuming a constant density of the crust and mantle [10,61]. A shallower crust-

mantle boundary produces a positive gravity anomaly in the surface because there

is more high density mantle material and less low density crustal material than in

a location with a deeper boundary. Two-dimensional density variations in the crust
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and upper mantle below the South Pole-Aitken basin have been infered by mini-

mizing residual stress in the lithosphere and residual Bouguer gravity [62]. These

gravity inversion have provided invaluable insight into the structure of the crust

and upper mantle of the Moon; however, they do not provide a complete view of

the density distribution in planetary interiors. Remaining challenges include: con-

straining the three-dimensional shape of density anomalies instead of only lateral

variations; eliminating the need for extensive prior information like compensation

state or depth of anomalies; and providing a measure of how well model parame-

ters can be resolved by the gravity data. An inversion method that addresses these

challenges would help infer density anomalies at different depths, although perhaps

at the cost of producing a more complex result than traditional inversion methods.

We developed a new gravity inversion algorithm that considers that density

anomalies might be present anywhere from the core-mantle boundary to the surface

of a spherical body. With this method, the density, location and number of anomalies

are constrained from the gravity data. Prior assumptions, like limiting the depth

of anomalies to the crust mantle boundary, are not needed but could be included if

desired. Our method does not eliminates the non-uniqueness of gravity inversions

but it quantifies it by obtaining a group of density models that match the gravity

data. In that way, our method provides a result that complement other analyses

where a priori constraints, not all of which are independently justified, artificially

reduce the number of presented results. From this group of models, it is possible

to obtain the range of densities, locations and number of anomalies that match the

data and to inform decisions about the confidence of the interior view of the body.
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Our algorithm, called THeBOOGIe for Transdimensional Hierarchical Bayesian

Object Oriented Gravity Inversion, belongs to the general Transdimensional Hier-

archical Bayesian (THB) family of gravity inversion algorithms. Transdimensional

means that the number of anomalies is not fixed a priori [63]. Hierarchical means

that the noise of the gravity data, including the modeling error, is a result of the in-

version and not necesarly an input [32]. Bayesian means that it uses Bayes’ theorem

to infer which density model better represents the interior based on the gravity data

and prior information [64]. By Object-Oriented, we mean that the distribution of

density in the interior of a planetary body is parameterized as a collection of finite

size objects.

Although several choices for the parametrization of density anomalies are pos-

sible, we focus here on a space-filling discretization of the planetary interior that

uses Voronoi regions and a tesseroid grid described in section 4.3. This work builds

on previous THB methods that constrain 2D features or layered structures inside

bodies at different scales (for example, [65–67]) and our earlier gravity inversion

method, that was based on a collection of point masses in the interior of a planetary

body [41].

In this paper, we first describe the parametrization used to represent the vol-

ume of a planet or moon and the shape of density anomalies (section 4.3). In section

4.4, we explain how to quantify the fit and quality of density models. In section

4.5 we show the steps of the gravity inversion algorithm. We then show the re-

sults of inverting synthetic gravity data produced by an idealized version of certain

lunar density anomalies and describe how the chosen parametrization and values
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c) 3D view of one tesseroid where Φ=longitude,
 Θ=latitude and r=radius 
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Figure 4.1: Voronoi regions and underlying tesseroid grid. a) A Voronoi region (VR)
is the volume closer to a nucleus than to any other nuclei. The number of nuclei
define the number of regions in which the volume of a sphere is divided. Moving
one nuclei to a different location changes the boundary of its corresponding VR and
the ones sorrounding it. Voronoi regions are used in this work to represent regions
inside the sphere with constant density. b) VR are discretized by an underlying
tesseroid grid to aid in the computation of the gravity acceleration produced by the
density distribution inside the sphere. c) A tesseroid is the intersection between two
latitudes, two longitudes and two concentric spheres.

of parameters of the density models influence inversion results (section 4.6). We

finally discuss the advantages and disadvantages of the application of this method

to planetary geophysical problems (section 4.7).
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Layer number Depth range (km)

1 0 to 14.1
2 14.1 to 56.4
3 56.4 to 126.8
4 126.8 to 225.4
5 225.4 to 352.2
6 352.2 to 507.2
7 507.2 to 690.4
8 690.4 to 901.7
9 901.7 to 1141.3
10 1141.3 to 1409

Table 4.1: Depth range of tesseroids in the grid.

4.3 Discretization of the interior: Voronoi regions and tesseroid grid

A model is a simplification of reality. Therefore, we use the term density model

to refer to a simplification of the three-dimensional density distribution inside a

planetary body. The planet shape is represented by a perfect sphere of radius R

and the density distribution inside the sphere is represented by Voronoi regions (VR)

of constant density. Voronoi region i encloses the volume closest to the nucleus i

than to other nuclei inside the sphere [22]. Figure 4.1a shows a schematic of six

two-dimensional VRs dividing the area of a half circle. The area inside a VR has a

constant density value represented by its color. Using Voronoi regions to represent

the density distribution inside a sphere allows the flexibility to have many small

VRs in places where there are small scale density variations while having only a few

large VRs in places where the density does not vary much. Since the number of

density regions is not a prior constraint in transdimensional inversions, the VRs are

specially suited to estimating this number as required by the input gravity data.

The calculation of the gravity acceleration of three-dimensional polygons with
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changing shape is expensive. It is necesary to find a way to compute the gravity

acceleration quickly since it is computed at each iteration in THeBOOGIe. To solve

this issue, we discretize the Voronoi regions into units of volume with fixed locations

(figure 4.1b). These units are called tesseroids and they are the intersection of two

latitudes, two longitudes and two concentric spheres (figure 4.1c). [68] provided

a program to compute the gravity acceleration of a group of tesseroids, making

it possible to pre-compute the gravity acceleration of each tesseroid in our grid

before an inversion and then only multiply the acceleration values produced by each

tesseroid by the density value of the Voronoi region enclosing the tesseroid.

The VRs corresponding to each of the tesseroids in the grid are found by doing

a k-nearest neighbor analysis between the center of all tesseroids and the nuclei. The

Euclidean distance between the points is found and the tesseroids with centers closest

to nucleus i than to the other nuclei are assigned the density value of Voronoi region i.

Another advantage of using tesseroids is that it allows an easier comparison between

the density distribution in different models. For the fixed location of tesseroid i we

can compute the mean and standard deviation between the models of the ensemble

in a straightforward manner.

Our tesseroids have a 10◦ size in latitude and longitude. The resulting grid

have 648 tesseroids per layer and 10 layers in depth, extending from the surface to

the core-mantle boundary. Table 4.1 shows the depth range of each layer of the grid.

The thickness of the layers increase with depth as seen in figure 4.1b because it is

unlikely that the gravity data is sensitive to very small density features in very deep

regions. The number of iterations it takes for the algorithm to reach convergence
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depends mostly on the number of Voronoi regions inside the sphere and the mem-

ory depends mostly on the number of tesseroids of the grid. The resolution of our

tesseroid grid and the maximum number of VR allowed inside the sphere (100) were

selected to keep the duration of the inversions presented here under a week and the

memory resources under the available ones.

4.4 Selection criteria for density models. Posterior, likelihood and

acceptance probabilities

In gravity inversions, density models must fit the radial component of the

gravity acceleration of a body in order to be considered acceptable models of its

interior. Since gravity inversions are non-unique, many models might fit the gravity

data with the same error, and all of these models should be considered as a possi-

ble representation of the interior if there are no additional constraints that shows

they are unrealistic. THeBOOGIe outputs an ensemble of density models fitting the

data with similar error. This ensemble does not contain all of the possible models,

of course, but a representative sample of them. The criteria of how to sample a rep-

resentative group of models is based on Bayes’ theorem from which an acceptance

probability can be calculated and an iterative Markov chain algorithm to propose

models from a uniform prior distribution and save them or delete them based on

the acceptance probability (section 4.5).

Equation 4.1 shows Bayes’ rule, applied to gravity inversions. P (ρm|{g}) is the
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probability of a density model ρm being correct based on the observed gravity accel-

eration data {g}. It is proportional to the likelihood P ({g}|ρm) or the probability

of model ρm producing the same gravity data {g} multiplied by the probability of

that model being correct according to our current understanding of the interior, or

prior information P (ρm).

P (ρm|{g}) ∝ P ({g}|ρm)P (ρm) (4.1)

In this work, a density model ρm (equation 4.2) is uniquely defined by the

number of Voronoi regions n, their nuclei location vectors {vloc}, the density values

of each region {ρ} and the value of the noise variance σ2
g . The noise variance is a

parameter of the model because it includes the inferred uncertainty of the gravity

measurements and the modeling error [69].

ρm = n, {vloc}, {ρ}, σ2
g (4.2)

Equation 4.3 shows the likelihood or how well the combination of parameters in

the density model fits the gravity data. This is obtained after a forward calculation

where the gravity data produced by the density model is compared to the gravity

data of the body. The better the fit, the higher probability of this model being the

correct one.

P ({g}|ρm) =
|C̃m|1/2

(σ2
g)
s/2(ρmax − ρmin)n

exp

(
−Φ

2

)
(4.3)
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vlocr̂ σ2
g n ρ

Min CMB 10−14 (m/s2)2 1 -500 (kg/m3)
Max R 10−10 (m/s2)2 500 500 (kg/m3)

Table 4.2: Uniform prior distributions used in equation 4.1. R is the radius of
the sphere. The limits of the radial component of vector vlocr̂ are clearly marked
by the boundaries of the sphere and nuclei are not allowed to be outside it. The
distributions of σ2

g and n do not have tangible limits. We instead set them to
sufficiently large values so that the posterior distributions for these parameters are
not truncated.

C̃m is the posterior covariance matrix which is a function of the data and model

covariance matrices, σ2
g is the noise variance of {g}, s is the number of independent

data points of {g}, n is the number of Voronoi regions, ρmax and ρmin are the limits

of the density of the regions and Φ is the misfit between the gravity data produced

by the model {gm} and the input gravity data {g} (equation 4.4).

Φ = ({g} − {gm})T
1

σ2
g

({g} − {gm}) (4.4)

The prior probability P (ρm) shows our current understanding of the interior

before data {g} is taken into account. It can include constraints additional to the

gravity field like in situ measurements of rock samples. If no additional constraints

are available, then P (ρm) can be uniform or non informative. For example, if there

are no additional information about the possible locations of the nuclei, the prior

probability of their vector location, P (vloc) is uniform in the volume from the CMB

to the surface. In this work, the prior probabilities are uniform within reasonable

limits (table 4.2) in order to determine what the gravity data can tell us by itself.

However more informative priors can be used too.

Putting it all together, equations 4.3, 4.4 and table 4.2 show the expressions
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used to compute the posterior probability P (ρm|{g}) which assigns a high value to

good density models based on their fit to the gravity data, prior constraints and the

number of Voronoi regions it contains.

4.5 Gravity inversion algorithm

Section 4.4 shows how to use Bayes’ rule to quantify what a good model is. In

this section, we describe the algorithm used to create density models in a unbiased

way, test them according to their likelihood and priors and output a group of good

models representative of the interior distribution of density. A complete description

of the derivation of the acceptance probability based on Bayes’ rule is provided by

Izquierdo et al. [41].

THeBOOGIe is a reversible jump Markov chain Monte Carlo algorithm that

uses the Metropolis-Hastings criteria [26] to 1) choose models from a proposal dis-

tribution q() and 2) keep models based on an acceptance probability α derived from

equation 4.1. The probability of accepting a proposed model ρ′m depends uniquely

on the last accepted model ρm.

α({ρ′m}|{ρm}) = min

[
1,
P ({ρ′m})P ({g}|{ρ′m})
P ({ρm})P ({g}|{ρm}

q({ρm}|{ρ′m})
q({ρ′m}|{ρm})

]
= min

[
1,
(σg
σ′g

)s
exp

(
−Φ− Φ′

2

)√
|C̃m′|
|C̃m|

(ρmax − ρmin)n−n
′

]
(4.5)

Equation 4.5 shows that a proposed density model has a higher acceptance

probability if it has a better fit to the data and additional constraints than the
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current model, if it has the same fit but fewer Voronoi cells or if its noise variance

is smaller. Figure 4.2 shows an schematic of the rjMCMC algorithm that uses the

acceptance probability α. This is an iterative method where, at each step, a pair

of models is compared. Convergence is achieved when the likelihood of accepted

models does not change anymore. After convergence is achieved, accepted density

models are saved as the resulting ensemble of models that match the gravity data

and are representative of the interior density distribution of a body.

As a first step, the algorithm sets the first density model with n = 2. The

nuclei location of both Voronoi regions and the noise variance are selected from the

uniform prior distribution. The density of the regions is optimized with a linear

inversions bounded from -500 to 500 kg/m3. After this step, the accepted density

model m is completely defined according to equation 4.2 and its likelihood 4.3 is

computed. The proposed density model m’ is set by making one change to m. This

change can be adding a new nucleus or a new Voronoi region, deleting one, changing

its location or changing the noise variance. The change is chosen randomly. After

the number and location of Voronoi regions are defined, the density of each region is

calculated by minizing the misfit between the gravity field of the body {g} and the

gravity field produced by the proposed model {gm}. Obtaining the density values

this way helps reduce the number of iterations needed to find good density models.

The data {gm} is calculated using the pre-computed forward problem approach

for tesseroids in spherical coordinates provided by Uieda et al. [68]. After the values

of all parameters are assigned, the likelihood of the proposed model is calculated

and it is accepted with probability α. In iterations where the proposed model is
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Adding a new nucleus

Deleting an existing 
nucleus
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Figure 4.2: Flowchart of the THeBOOGIe. The initial model is chosen randomly. At
each iteration, a new model is proposed by making a randomly chosen modification
to the current density model. The proposed model is then accepted or rejected
based on its acceptance probability (equation 4.5). The process is repeated until
convergence is achieved. The output of the algorithm is a group of density models
with a good fit to the input gravity data.
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accepted, the model m takes the value of the parameters in m′. The process is

repeated until accepted models have similar likelihood throughout many iterations

and the ensemble is produced by saving a group of these last models. The burn-in

period refers to the first iterations where the fit to the gravity data {g} is not good

since the initial model is chosen randomly.

Bayesian inversion algorithms of this sort have previously been used to invert

various geophysical data, including gravity data. We have earlier presented a THB

gravity inversion where the model was parameterized using a collection of point

masses inside a planetary body [41]. Here, we adopt an object-oriented approach

(See section 2) that motivates the acronym THeBOOGIe (Transdimensional Hier-

archical Bayesian Object-Oriented Gravity Inversion) for our algorithm as a whole.

4.6 Method validation

We test how well the algorithm constrains the interior density distribution

inside a sphere by inverting synthetic data resembling the lunar radial gravity accel-

eration. The objective is to compare the mean of the ensemble of density models to

the target density model used to calculate the gravity acceleration. Using synthetic

lunar data allow us to test more accurately how the acceptance probability and the

Voronoi parametrization perform to find density features with shapes and locations

likely to exist in the Moon. Since we can compare the output models to the one

that is actually producing the gravity data, we can understand the tradeoffs and

limitations of the algorithm before making inferences about the real interior of the
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Moon.

4.6.1 Target density model and input gravity acceleration data

We consider density features that may be present in the interior of the Moon

due to the availability of a high quality lunar gravity field [70] but very limited

seismic information which makes it important to evaluate whether or not they could

be constrained using gravity data. The target model is then a perfect sphere with

a mean density of 3300 kg/m3 and idealized lunar features that deviate from that

mean density. The shape and location of the deviations or density anomalies are

shown in figure 4.3. Plotting the anomalies instead of the absolute value of density,

allows the visualization of the four features inside the sphere.

The gravity signature of the shallow features included in the target model

can be easily identified in lunar Bouguer gravity maps [44] and are related to the

crustal dichotomy, the South Pole-Aitken basin and the largest mass concentrations

called mascons [71]. The Moon has a thicker far side crust than near side crust.

The origin of this dichotomy is still uncertain but models of different near and fare

side thermal evolution result in consistent thicknesses [12]. The thicker far side

crust is represented in the target model as a half shell 15 km thick with a density

anomaly of -500 kg/m3 ( 500 kg/m3 less than the mean density of 3300 kg/m3). The

South Pole-Aitken (SPA) basin is the largest basin in the Moon. The SPA density

anomaly in the target model is a positive and has a circular shape. The Imbrium

and Serenitatis mascons are also positive density anomalies in the target model but

97



have a square shape due to the limitations in the resolution of the tesseroids. The

density anomaly of these basins is higher than the one in SPA because they are the

result of the removal of crust from the impact and a superisostatic state of the Moon

at the time of the impact, which allowed for more mantle material to be supported

in such a shallow location [13].

The fourth feature in the target model is a deeper anomaly of the kind that

has not been observed in the lunar gravity. There is no clear evidence that the deep

feature exists but it is necessary to investigate the capabilities of the method to

detect it in case anomalies at the same depth are mapped into shallower locations

by other methods. It is also important to understand if the absence of a clear signal

from a deep anomaly is because this signal would not be detectable or because there

actually is no deep density anomaly.

Figure 4.3b shows the gravity data produced by the target model which is the

input gravity data of THeBOOGIe. This gravity data is sampled at 10424 locations

uniformly distributed at a altitude of 100 km over the surface of the sphere. The

density distribution inside the lunar core is not to be constrained in this work.

The target density model does not contain a core and, instead, covers the volume

between the core-mantle boundary (Rcore = 330 km) and the surface ( R = 1739

km). The gravity data produced by the target model does not contain then the signal

corresponding to a synthetic lunar core and the output models of THeBOOGIe will

only be able to provide a density distribution between the same limits of Rcore and

R.

Figure 4.4 shows the natural log of the likelihood of the accepted density
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a) Target density model b) Input gravity acceleration of THeBOOGIe

185° 5°

-800

-400

0

400

800

m
G

al

-500

-250

0

250

500

 k
g/

m
3

5°185°

Imbrium
Serenitatis

Deep feature
South Pole-Aitken 

Thick-thin 
crust line

South Pole-Aitken 

Far side thick crust 

Imbrium
Serenitatis

Deep feature

Near side thin crust 

Figure 4.3: Target density model and input gravity acceleration data. a) Target
density model. Plotted values are density anomalies from a reference mean density
of 3300 kg/m3. The density of the Lunar mantle is 3330 kg/m3 and the corre-
sponding 30 kg/m3 density anomaly in the target model was made transparent to
help visualize the non spherically symmetric anomalies: the Imbrium and Sereni-
tatis mascons, crustal dichotomy, SPA basin and a deep feature in the near side.
b) Radial component of the gravity field used as input data in THeBOOGIe which
are produced by the target model. The density distribution inside the core is not
of interest in this work, therefore, the target model covers the volume between the
core-mantle boundary (Rcore = 330 km) and the surface ( R = 1739 km) and the
gravity acceleration data in b) does not contain the gravity signal corresponding to
a synthetic lunar core. The longitudes 185◦ and 5◦ are used as references of the
location of cross sections of the output model in figure 4.12.
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model ρm for each iteration of the THB algorithm. As described in section 4.5,

the likelihood is a measure of the residual between the input gravity data and the

gravity data of the density model obtain at iteration i. Each line in figure 4.4

represents an inversion with a different initial density model, all chosen randomly.

The likelihood generally increases with increasing number of iterations. It does so

abruptly at first and then slowly converges to a certain value. The output ensemble

of density models comprises 10×104 which are all saved after iteration 7×105 of the

algorithm, when the likelihood is believed to have stabilized enough. The number of

models that should be part of the ensemble is arbitrary, more models show a more

detailed sampling of the different density distributions that match the input gravity

data but also more memory is needed to save them and to later perform statistical

analysis on them.

Figure 4.5a shows the mean gravity acceleration produced by the ensemble

of models and figure 4.5b shows the average misfit or difference between the mean

output gravity and the input gravity. The ensemble of density models fits the in-

put data very well in most places, with maximum differences of the order of 80

mGal in the outline of the density anomalies related to the SPA basin, dichotomy

and mascons. A finer grid would most likely reduce this differences. The inversion

algorithm is able to find a group of models that fit the input gravity data. It is

necessary, however, to look at the density distribution of these models in order to

analyze the similarities and tradeoff they have compared to the target density model.
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Figure 4.4: Natural logarithm of the likelihood per iteration of THeBOOGIe. Each
line color corresponds to an inversion starting with a different initial density model.
Each starting models was chosen randomly from an uniform distribution of the
location of Voronoi nuclei and noise of the input data. The likelihood of each
inversion increases with increasing number of iterations and converges after 700 000
iterations. Models obtained after convergence form the output ensemble used to
compute mean density values and measures of variation.
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Figure 4.5: Mean gravity acceleration data and average misfit. a) The mean gravity
data shows that most models produce radial gravity acceleration similar to the input
data shown in figure 4.3b. b) The average misfit is the difference between the mean
gravity of the output ensemble and the input gravity data. The largest differences
are located in the boundaries of the far side crust, SPA basin and Imbrium and
Serenitatis mascons. Points a) to d) are located in tesseroids inside these features
and they will be used as reference in plots throughout this work.
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Figure 4.6: Normalized Kullback-Liebler divergence (DKL/max(DKL) in blue) and
standard deviation (σ/max(σ) in purple) of the density values of the ensemble. The
values of these two functions are plotted against the tesseroid index with schematics
showing the depth of the tesseroids at each layer. DKL measures how different the
posterior distribution of the densities at each location is from an uniform distribution
(the prior distribution), with higher values being more different or less random. σ
shows how much the density value of each location varies between models of the
ensemble. The density values of shallow tesseroids have a less random distribution
and less variation between different models in the ensemble compared to deeper
tesseroids. The behavior of DKL and σ show how much we can trust the deeper
tesseroids relative to the shallow ones.

4.6.2 Output density models

As mentioned before, the output of THeBOOGIe is a group or ensemble of

10000 density models fitting the input gravity data. Each model contains a density

value for each Voronoi Region and the corresponding tesseroids inside each region. In

order to summarize the information given by this large group of models, we calculate

the mean of density values for each tesseroid and two measures of the spread and

significance of this value. It is more practical to calculate these quantities at the

tesseroid level instead of the VRs because the tesseroid grid (number, location and

size of tesseroids) is fixed for all models. The measures of spread and significance

are the standard deviation (σρ) and the Kullback-Liebler divergence (DKL). The
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standard deviation of the density value at tesseroid i shows what is the spread or

variation of the density value at that location between all models in the ensemble.

If σρ is very large, then a wide range of density values at location i can fit the input

gravity data and the density is then poorly constrained.

DKL(p|q) =
N∑
i=1

p(ρi) log

(
p(ρi)

q(ρi)

)
(4.6)

The Kullback-Liebler divergence DKL (Equation 4.6) quantifies how similar

or different the posterior probability distribution of density at tesseroid i, p(ρi) , is

from its prior distribution q(ρi) [72]. Applied to Bayesian inference, DKL shows how

similar the distribution of density values in the ensemble is to the prior distribution.

A tesseroid with high values of DKL has a distribution of density values very different

from a random one which implies that imposing constraints from input gravity data

has added information on the density at that location. Conversely, a low value of the

DKL indicates a location where the results are dominated by the prior. Although it

is conceivable that the prior is a good representation of the distribution of density

at this location, it is also possible that the imposed data are not sensitive to this

region. Thus, it is impossible to confidently interpret the density in these locations.

Unfortunately, there are not absolute values of σρ and DKL that clearly indi-

cate if density values can or cannot be constrained by the input gravity data. In

other words, there is no way to know which value of σρ is too high or which value

of DKL is too low, we only know that a lower value of σρ is better than a higher σρ

value, for example. We use the following criteria as an arbitrary indication that the
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density value at tesseroid i can be constrained by the input data: σρi/µρi < 1 where

µρi is the mean density at tesseroid i and DKLi
/max(DKL) < 0.5 where max(DKL)

is the maximum value of DKL of all tesseroids.

Figure 4.6 shows the DKL/max(DKL) and σρ/max(σρ) of each tesseroid in the

grid where max(DKL) and max(σρ) are the maximum value of DKL and σρ in all

tesseroids, respectively. The schematics show the relative depth of the layer where

they are located. There are 6480 tesseroids in the grid, distributed as 18 x 36 x 10.

The indexing of the tesseroids from 1 to 6480 correspond to their location, where

the first 18 correspond to different latitudes at the same 0 to 10◦ longitude range

and the first 648 correspond to tesseroids at the shallowest layer. Deeper tesseroids

have lower DKL/max(DKL) and higher σρ/max(σρ) than shallower tesseroids. This

is expected since the gravity acceleration decreases with increasing distance from

the source which makes the residual in equation 4.4 more sensitive to the density

values of shallow tesseroids.

Figure 4.7 shows the density anomalies of the target model per layer. It

contains the same values as in figure 4.3 with the difference that the density anomaly

of the mantle is made visible. The mean density anomalies of the output models is

plotted in figures 4.8 and 4.9. Figure 4.8 shows the density anomaly only in regions

where the divergence is high enough and tesseroids with DKL/max(DKL) < 0.5 are

grayed out. Figure 4.9 shows the density anomaly only in regions where the standard

deviation is low enough and tesseroids with σρ/µρ > 1 are grayed out where µρ is

the mean density anomaly. Figures 4.7, 4.8 and 4.9 show which density values can

be confidently constrained from the input gravity data and how those values are
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Figure 4.7: Density anomalies of the target model. Map view of each layer of the
target density model shown in figure 4.3. The first layer has a negative density
because the lunar crust is less dense than the reference density of 3300 kg/m3. The
first and second layer show the density anomalies related to the mascons, crustal
dichotomy and SPA basin. Layers 3 to 10 show the mantle density anomaly and
layer 7 shows the deep anomaly.
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Figure 4.8: Mean density anomalies of the ensemble for each layer of the grid with
the normalized Kullback-Liebler divergence as a measure of uncertainty. Tesseroids
with DKL/max(DKL) < 0.5 are grayed out in order to show only reliable values.
The first six layers show clear density anomalies related to the crustal dichotomy,
Imbrium, Serenitatis and SPA basins. Layer 7 shows a slight increase in density
around point d). This is the location of the deep feature. The number of grayed out
tesseroids increases with depth, from a few tesseroids near sharp density changes to
all 648 tesseroids in layer 10. 106
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Figure 4.9: Mean density anomalies of the ensemble for each layer of the grid with the
standard deviation as a measure of uncertainty. Tesseroids with a ratio of σρ/µρ > 1
are grayed out in order to show values that can be confidently differentiated from
0. As in figure 4.8, the first six layers show clear density anomalies related to the
crustal dichotomy, Imbrium, Serenitatis and SPA basins. Layer 7 shows a slight
density increase in the location of the deep feature.
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Figure 4.10: Mean density anomalies of the ensemble for an inversion where the
gravity signal of the deep density anomaly is not included in the input gravity data.
The normalized Kullback-Liebler divergence as a measure of uncertainty. Tesseroids
with DKL/max(DKL) < 0.5 are grayed out in order to show only reliable values.
The first six layers show clear density anomalies related to the crustal dichotomy,
Imbrium, Serenitatis and SPA basins. Layer 7 does not show an increase in density
at location d) compared to surrounding area.
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Figure 4.11: Mean density anomalies of the ensemble for an inversion where the
gravity signal of the deep anomaly is not included in the input gravity data. The
standard deviation is used a measure of uncertainty. Tesseroids with a ratio of
σρ/µρ > 1 are grayed out in order to show values that can be confidently differenti-
ated from 0. The first six layers show clear density anomalies related to the crustal
dichotomy, Imbrium, Serenitatis and SPA basins. As in figure 4.11, layer 7 does not
show an increase in density at location d) compared to surrounding area and it is
not grayed out. 109



similar or different from the “correct” values in the target density model.

The first six layers of the mean of the output models have a similar density

distribution, with regions of higher density anomaly at locations a) and b) and lower

density anomaly at location c). Most of the tesseroids at these layers are visible in

both Figures 4.8 and 4.9 which shows they are well constrained by the input gravity

data. Layer 7 shows a region with higher density anomaly than the surrounding

area at point d). This region is also well constrained by the input gravity data

according to the two measures of confidence used. The density anomalies at layers 8

to 10 are completely uncertain using the Kullback-Liebler divergence criteria while

only some of them are uncertain using the standard deviation criteria. The mean

of density values in layers 8 to 10 is higher than their standard deviation but the

distribution of density values within the ensemble is not significative different the

uniform prior. Plots of mean density of the output models without grayed out

tesseroids, DKL/max(DKL) and σρ are shown in the supplementary material.

The density values at the first six layers of the mean of the output models

form similar features than the ones in the first two layers of the target model. The

features with positive density anomaly near points a) and b) has the same shape

and location than the mascons and SPA in the target model while the feature with

negative anomaly near point c) has a similar location and shape than the far side

thick crust in the target model. The deep feature with positive density anomaly at

layer 7 near d) has the same shape and location than the deep feature in the target

model.

The main difference between features near points a) - d) in the mean of the
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output models and the target model is the magnitude of their density anomalies and

their thickness. The density anomalies of the target model have a higher magnitude

(SPA 100 kg/m3, far side crust -500 kg/m3, Imbrium mascon 100 kg/m3, Serenitatis

mascon 200 kg/m3 and deep feature 150 kg/m3) than the mean density anomaly

of the output models (SPA 50 kg/m3, far side crust -100 kg/m3, Imbrium and

Serenitatis mascon 85 kg/m3 and deep feature 47 kg/m3). The shallow density

anomalies near points a)-c) extend from layer 1 to layer 6 in the mean model resulting

in a thickness of 507 km while the same anomalies in the target model have varying

thickness going from 14 km for the mascons, 70 km for the far side crust and 32

km for the SPA. The deep feature in the mean model has the same thickness and

depth than in the target model. The two mascons in the target model appear as one

feature in the mean model. We might expect that a higher resolution input gravity

field than used here, and perhaps a finer tesseroid grid, would be able to separate

these features.

The density anomalies of layers 8-10 are much higher than anomalies in shal-

lower layers and do not correspond to density anomalies in the target model. They

are, most likely, a result of optimization of density performed in THeBOOGIe at

each iteration. When the gravity acceleration of the model is not sensitive to a

location in the grid, an optimization of the density values at that location results in

very large magnitudes. Layers 8-10 also show a reversal of the magnitude of density

anomalies between the far and near side. The far side has a positive anomaly while

the near side a negative one. This can be explained by the fact that the anoma-

lies related to the mascons, SPA and dichotomy are much ticker than in the target
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model, creating an excess or deficit of mass that is compensated by the anomalies

in layers 8-10.

We ran an inversion with a different input gravity data. The data does not

contain the gravity signal of the deep density anomaly near point d), only the

gravity signatures of the shallow features in the target model (SPA, dichotomy

and mascons). Figures 4.10 and 4.11 show the mean of the output models for

that inversion. The lateral distribution of density in the first six layers are very

similar than the ones from the mean output of the previous inversion. The mean

density anomaly of the SPA is 66 kg/m3, far side crust is -50 kg/m3, Imbrium and

Serenitatis mascon is 93 kg/m3 while there is no density increase near point d) in

layer 7 compared to the surrounding area. The standard deviation and Kullback-

Liebler divergence show similar variations per depth as in the previous inversions.

Comparing the output model of this inversion with the output of the previous one

shows that THeBOOGIe can effectively constrain a deep density anomaly down to

a depth of 500 to 690 km if its signal is present in the input gravity data.

Figure 4.12 shows the mean density (µρ), normalized divergence (DKL/max(DKL))

and standard deviation (σρ) of the ensemble for a slice of the sphere at 185 ◦ and 5◦.

Locations with unconstrained density values according to any of the two criterias

are grayed out. The mean density plot shows how depth the density anomalies are

stretched out compared to the ones in the target density model. This is why most

density models in the ensemble are able to fit the input gravity data very well even

though the magnitude of the density anomalies is less than in the target model.

Our inversion method does not provide tight constraints on the depth of density
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Figure 4.12: Slices of mean density of the ensemble (µρ), normalized Kullback-
Liebler divergence DKL/max(DKL) and standard deviation (σρ). Tesseroids in the
left half are located at longitude 185◦ and the ones in the right at 5◦ which are the
longitudes of the dashed lines shown throughout this work. The letters show the
latitude of points a)-d). The mean density in a) is only shown in tesseroids with
DKL/max(DKL) > 0.5 and σρ/µρ > 1 in order to focus on reliable density values
according to the two measures of uncertainty. The colorbar is saturated at 100
kg/m3. Crustal density features like the mascons, SPA and dichotomy are thicker
than in the target model while their magnitudes are lower. The deep feature does
not appear in the slices because it is located at different longitudes but it is described
in Figure 4.13

anomalies, which tend to bleed to greater depth. This might occur because the

Voronoi Regions must fill the entire space of the planetary interior. The parsimony

inherent to our methods favors a solution with a smaller number of regions, which

necessarily will have greater volume. The density anomalies are therefore diluted

through these regions.

Figure 4.13 shows density profiles at location d): the target density distribu-

tion, the mean of the output models, standard deviation (σρ) and the normalized

Kullback-Liebler divergence DKL/max(DKL). The magnitude of the mean and its

σρ increases with depth while DKL/max(DKL) decreases, consistent with the be-

havior shown in Figure 4.6. Figure 4.13 also shows the difference between the the

crustal anomaly in the target model and the one in the mean output model. The
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Figure 4.13: Target density, mean density of the output models (µρ), standard devi-
ation (σρ) and normalized Kullback-Liebler divergence DKL/max(DKL) at location
d). a) Depth vs density for all layers. The negative density anomaly of the target
model at layer 1 is not recovered by the output models and instead, the mean model
has a positive anomaly stretching from layer 1 to layer 8. b) Zoom in to layers 6, 7
and 8. There is an increase in the mean density of the ensemble in layer 7 compared
to layer 6 and 8. The location of this increase in the density coincides with the
location of the deep feature in the target model, indicating that the algorithm can
recover this deep feature although with a lower magnitude.
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Figure 4.14: Target density, mean density of the ensemble (µρ), standard deviation
(σρ) and normalized Kullback-Liebler divergence DKL/max(DKL) at location d) for
an inversion where the input gravity field does not contain the gravity signal of a
deep anomaly. a) Depth vs density for all layers. The target density model has
the same distribution of density as in Figure 4.13 with the exception of the increase
of density at layer 7. b) Zoom in to layers 6, 7 and 8. The mean of the output
models matches the density anomaly of the target model almost perfectly without
an increase of density at layer 7.
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target model has a crustal thickness of 14 km in the near side, shown also in Figure

4.7 as a negative density anomaly covering most of the first layer. The mean of the

output models shows no negative crustal anomaly at the first layer, but a positive

density anomaly extending from layer 1 to layer 6 (507 km thick). The mean of

the output model does not recover the negative density anomaly in the first layer of

the target model because this anomaly covers the whole shell, making it spherically

symmetric and impossible to recover using gravity data. In figure 4.13 b), we can

see that the mean density increases slightly at layer 7, where the deep feature of the

target density model is located. In contrast, Figure 4.14 shows the distribution of

density per depth for the same location from the output of an inversion where the

input gravity data does not contain the gravity signal of a deep anomaly. There is

no increase of density anomaly at layer 7 in Figure 4.14b. As mentioned before, the

inversion algorithm can detect a density anomaly if its gravity signature is included

in the input gravity data.

4.7 Discussion

The output ensemble used in plots of section 4.6.2 is obtained by sampling

models after convergence is achieved in the THeBOOGIe. Convergence to a dis-

tribution, however, is not straigtforward to identify. The mathematical proof of

convergence to the posterior probability distribution only exists for an infinite num-

ber of iterations of a Markov chain algorithm [27]. Therefore, any convergence

assessment on finite chains is flawed in theory. In practice, there are diagnostic
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tools to asses convergence [73–75]. In this work, we follow the time-series approach

and compare the change in the likelihood parameter between chains or inversions

starting from different initial conditions.

The natural logarithm of the likelihood for the starting models of these chains

range two orders of magnitude while the range of this parameter for the converged

part, range less than one order of magnitude. Variations within each chain are also

smaller in the convergence part than in the burn-in one and chains cross over in the

burn-in part meaning they do not explore completely separate regions of the model

space. These properties show convergence as it is usually assessed.

The models in the ensemble have the correct lateral location and boundaries

of the density anomalies of interest while their thicknesses are overestimated. This

issue might be a consequence of the shallow location of the anomalies in the target

model (first and second layers), the Voronoi parametrization used and the linear

optimization of the density values. The location of the Voronoi nuclei of the initial

model are chosen randomly with uniform probability between the CMB and the

surface which makes having a nuclei in the first layer of the tesseroid grid unlikely.

The parsimony of the algorithm included in equations 4.5 makes density models

with fewer Voronoi Regions most likely to be included in the output ensemble. Big

Voronoi Regions result in thicker density anomalies and, in order to fit the input

gravity data, these anomalies have lower values than in the target model. Randomly

sampling the density values instead of optimizing them would eliminate this tradeoff

but the convergence is too slow to be a practical solution.

The Kullback-Liebler divergence does not have a specific value we can use to
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disregard tesseroids. The relative value used in this work DKL/max(DKL) < 0.5 is

arbitrary but the choice of this value would not change the retrieved lateral density

distribution, only the depth to which we can interpret anomalies, whether or not

there are anomalies close to the surface.

The discretization of the volume of the sphere in tesseroids allows us to retrieve

the three-dimensional shapes of density anomalies and their corresponding density

values. This discretization provides a clearer way to analyze what the inversion

algorithm is able to constrain and what it is not able to. It is a key improvement

compared to the point mass discretization used by Izquierdo et al. [41] where the

gravity acceleration data of three-dimensional density anomalies were matched by

configurations of point masses and no clear shape of density values could be recovered

but only central locations.

THeBOOGIe estimates a thickness of 507 km for the mascons, far side crust

and SPA basin. This value is not a better estimate than the ones given by other

synthetic gravity inversion methods (41 km mean crust by Zhang et al. [76] and 100

km mean crust by Liang et al. [77], for example). On the contrary, this method

provide a larger range of possible values because no informative prior is used and

there is a tradeoff between the thickness of these features and their density anomaly.

The advantage of this novel method is that it can constrain features of very different

sizes in very different locations without the need to assume all the gravity anomalies

are caused by anomalies in the Moho depth. Another advantage is that this method

provides measure of confidence in the resulting density distribution. Including prior

information to limit the possible ranges of depths and magnitudes would reduce this
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tradeoff and it would be interesting to explore how it would affect the ability of the

algorithm to constrain features of very different sizes and locations.

4.8 Conclusions

We invert synthetic gravity data with magnitudes and features similar to the

Bouguer gravity field of the Moon using a novel inversion algorithm, THeBOOGIe.

This algorithm is able to recover the correct lateral location and boundaries of the

density anomalies producing the input gravity data even when these anomalies have

differences sizes and locations. The thickness of the crustal density anomalies in the

target model is overestimated while the thickness of a mid mantle feature is not.

The amplitude of all features is reduced. The reason for the mismatch between the

thicknesses is that the correct location of the anomalies is too shallow and it is more

likely to end up with nuclei at deeper locations. The method is able to provide the

standard deviation and Kullback-Liebler divergence values of the output models.

These two indicators of confidence allows us to provide a more complete analysis

than current gravity inversions methods and inform decisions about the ability to

constrain the density value of a region of the body given its gravity acceleration

data.

119



Chapter 5: Shallow and deep density anomalies of the Moon from a

flexible inversion of GRAIL data

5.1 Abstract

Knowledge about the interior structure of the Moon can help test hypotheses

about its origin and evolution. In this study, we use Bouguer gravity acceleration

from the GRAIL mission data to infer the location and shape of density anomalies

in the Moon with respect to a mean density value of 3300 kg/m3. The inversion

uses minimal prior constraints on the location of the density anomalies in order to

fully explore the range of density distributions consistent with the observed lunar

gravity field. This philosophy is complementary to the approach in which gravity

variations are ascribed to a particular density interface in the subsurface, such as

the core-mantle boundary. THeBOOGIe algorithm introduced in chapter 4 enables

this inversion while obtaining a group of density models that fit the data from which

confidence measures can be obtained.

The lateral distribution of shallow density anomalies matches the lateral vari-

ations in crustal thickness and other surface features. The shape and size of the SPA

basin, near side basins and far-side highlands are recovered. Because we introduce
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less prior information on the location of the density anomalies than other methods,

shallow structures are smeared at depth. The confidence on the density values ob-

tained decreases with increasing depth, as expected, but a clustering of the deep

density anomalies shows that there are negative and positive density anomalies in

the depth range of 507-1141 km. The density distribution of the far side is not signif-

icantly different from the one in the near side and deep moonquakes do not seem to

be related to a specific positive or negative anomaly. Deep density anomalies might

be related to an inefficient overturn of ilmenite cumulates or to water reservoirs in

the deep mantle. However, their implications for the rheology and dynamics of the

lunar mantle warrant further modeling study.

5.2 Introduction

The present-day interior structure of the Moon is a result of its compositional

and thermal evolution. The difference in thicknesses and composition between the

lunar far side and the near side [10,12], for example, have been associated to spatial

variations in tidal heating [78], tilted convection [79] and asymmetric crystallization

of the lunar magma ocean [80]. The literature contains many other examples of the

link between the interior structure of the Moon and models of its evolution [1,13,15,

to name a few].

Different data sets have been used to infer the interior structure of the Moon.

Seismic, electromagnetic and gravitational data, moment of inertia, tidal numbers

and mean mass are only some of them [81]. Each type of data has its advantages
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and limitations, often acting as complementary sources of information about the

interior. Seismic data, for example, is able to distinguish between layered models

of the Moon while it is not able to detect small-scale lateral variations due to the

limited sampling done during the Apollo missions [11,14,82,83]. Gravity data, on the

contrary, is not able to distinguish between perfectly radially-distributed material

inside a sphere [84] but is able to detect anomalies at very different scales if they are

not spherically-symetric. The gravity acceleration data of the Moon has an impresive

4.5 km × 4.5 km resolution at the equator [7] thanks to the gravity acceleration data

sampled by the Gravity Recovery and Interior Laboratory (GRAIL) mission [6].

It is more practical to globally sample the gravity acceleration of a planet

or Moon by orbiting satellites than by deploying a sufficiently large network of

seismometers on its surface. Regions of the body with a higher density exert a

higher pull on an orbiting satellite and regions with a lower density exert a lower

one, perturbing the orbit of a satellite tracked from Earth [60]. Put simply, the

tracking data is converted to spherical harmonic models of the gravity field after

sources of acceleration modifying the trajectory of the satellite, other than the mass

anomalies of the body, are removed [9].

The inversion of geophysical data is non-unique [85] and gravity inversions are

no exception. Different density distributions can fit the observed gravity acceleration

values [86]. However, the fact that gravity data from many planetary bodies is

available, including all terrestrial planets, while seismic data is only available at

Earth, the Moon [58] and, more recently, Mars [59], has made gravity data and

gravity inversions necessary tools to constrain the properties of density anomalies
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that exist within layers of a planetary body.

Different methods had been developed to reduce the non-uniqueness of gravity

inversions. It can be reduced by requiring density models to fit additional types

of data [87–90, for example] or by making prior assumptions about the interior

density distribution of a body. The crustal and upper mantle density of the Moon,

for example, have been assumed to be uniform and the observed Bouguer gravity

anomalies considered to be caused by anomalies in the crust-mantle interface depth

[10,61]. A shallower crust-mantle boundary produces a positive gravity anomaly in

the surface because there is more high density mantle material and less low density

crustal material than in a location with a deeper boundary. If the prior assumptions

used are not justified, however, then this would lead to biasing the density models

obtained or neglecting other models that fit the data. Density anomalies in the mid

mantle can be mapped as crustal thickness variations if the location of all anomalies

is restricted a priori to the crust-mantle interface, for example.

In order to map out the likelihood of mass anomalies at all locations of the

Moon and not only the crust-mantle interface, we need to use a gravity inversion

method that does not require prior constraints on their depths and quantifies how

well these anomalies are constrained by the input gravity data. A Transdimensional

Hierarchical Bayesian gravity inversion algorithm is a great tool to do that since

the prior constraints used can be non-informative and it outputs a collection of

samples from the posterior distribution of density in the moon given the gravity

field. From this output, the variation and significance of the density anomalies

can be obtained [41]. Specifically, the Object-Oriented approach of THeBOOGIe
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algorithm can provide the finite-sized shape of these density anomalies. In this work,

we invert lunar gravity data using THeBOOGIe algorithm and compare how the

interior density anomalies obtained with this method and their variations compare

to the accepted view of the lunar interior inferred by other methods.

5.2.1 Lunar interior anomalies

The existence of some features in the interior of the Moon is widely accepted

while the existence of others is debated. Generally, shallow features are inferred with

greater confidence because of the availability of gravity, topography and samples in

addition to seismic data [9]. Mid-mantle or deeper features are more obscure because

of the lack of samples and the reduced sensitivity of surface data to this depth.

The Bouguer gravity anomaly of a planetary body shows the gravity accelera-

tion produced by the interior distribution of density after the removal of the acceler-

ation due to topography, assuming a near surface density [43]. Figure 5.1 shows the

Bouguer field of the Moon which is dominated by a broad negative anomaly related

to the far side and positive anomalies related to the near side and impact basins.

Figure 5.2 shows a map of the crustal thickness of the Moon obtained using this

Bouguer data. Locations with a thicker crust coincide with locations having a neg-

ative Bouguer anomaly while locations with a thinner crust coincide with locations

having a positive one.

The crustal thickness is constrained by the estimation of crustal bulk density

from short wavelength gravity data [10] and estimation of the mantle density and
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Figure 5.1: Bouguer gravity anomaly of the Moon (orders 1-700) from Lemoine et
al. [47]. The acceleration is produced by the distribution of density inside a reference
radius of R = 1739 km . The acceleration due to topography is removed. Figure
duplicated from chapter 3 for convenience.

mean crustal thickness from seismic data [11]. The thickness of the lunar crust was

inferred to be between 34 and 43 km in average. The far side crust is thicker than

the near side crust ( approximately 50 km in average for the far side and 30 km in

the near side, near the location of the Apollo stations) and the crust of the SPA

basins and the major basins in the near side is very thin, almost close to zero.

Lunar mantle anomalies have also been inferred but they are more uncertain

than shallow ones. A seismic discontinuity in the range of 500-750 km has been

proposed [19, for example] while a chemically uniform mantle can also fit the seismic

data [20]. The presence of a partial melt layer in the lowermost mantle is supported

by inversions of seismic and laser ranging data [1,15,91] while evidence of this layer

was not found by Garcia et al. [16] using the same Apollo data. Moonquakes in

the lower mantle are not uniformly distributed and none has been detected in the
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Figure 5.2: Crustal thickness of Moon infered by Wieczorek et al. [10]. Duplicated
from section 1.2.1 for convenience. The far side of the Moon (left) has a ticker crust
than the near side (right), except for the crust in the SPA basin. The thickness
of the crust in the major basins of the near side is close to zero. The Bouguer
gravity acceleration in Figure 5.1 was used to compute this crustal thickness and
thicker crust coincides with negative Bouguer values while thinner crust coincides
with positive values.
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region within 40◦ of the antipode from Earth [21]. Seismic rays originated in the far

side might be attenuated by the partial melt layer so they are not observed by the

Apollo network in the near side of the Moon or moonquakes might not exist there

because of the particular properties of that region.

5.2.2 Lunar evolution

The Moon most likely formed from the debris of the collision between a Mars-

sized object and Earth [92–94]. It was initally molten, possibly down to a 1000 km

depth [95] due to the energy of the impact, radiogenic heating, and tidal forces,

forming a lunar magma ocean (LMO) [96, 97]. As the LMO cooled, it crystallized

minerals that were denser (olivine, pyroxene) and lighter (plagioclases) than the

remaining liquid. Thus, the last layer to crystallize, rich in incompatible elements

(potassium, rare Earth elements, phosphorus, uranium and thorium) formed over

a dense ilmenite (Fe-Ti) layer located between the solidified plagioclase crust and

olivine mantle [95]. Once crystallized, this layer would have been denser than the

underlying olivine-rich mantle [96].

It is believed that a fraction of the incompatible elements (called urKREEP

[95]) and ilmenite layer sank to the lower mantle because of gravitational instability,

driving a large-scale overturn of the lunar mantle [98, 99]. The urKREEP and

ilmenite material might have reached the core-mantle boundary (CMB), possibly

forming the partially molten layer inferred by Weber et al. [15]. If the urKREEP

and ilmenite material became positively buoyant instead, it could have ascended to
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shallower mantle. An inefficient overturn or upwelling of the Fe-Ti material could

create Fe-Ti rich zones in the lunar mantle [100]

Mallik et al. [98] estimated the densities of Fe-Ti partial melts in order to

asses the buoyancy and resulting stability of the material at the CMB, finding that

a wide range of lower and higher values of density, compared to the density of the

lunar mantle, were possible. Scheinberg et al. [101] showed that a density contrast

from 300 to 500 kg/m3 between the urKREEP layer and the lower mantle would

keep the urKREEP material stable at the CMB. Scheinberg et al. further proposed

that the urKREEP layer could remain molten for several billions of years, forming

a metalliferous basal magma ocean from which a high-intensity lunar dynamo could

be sustained, with intensities and duration agreeing with the ones inferred from

Apollo samples of lunar crust.

Apollo samples of the lunar crust indicate that a magnetic field of approxi-

mately 77 µT must have existed between 4.2 and 3.56 Ga with a weaker field of

approximately 5 µT existing beyond 2.5 Ga. This observation is significant because

core convection alone could not sustain a lunar dynamo for the duration and inten-

sities described [102]. The basalt magma ocean (BMO) proposed by Scheinberg et

al. [101] and previously described, is one of the mechanism proposed to increase the

magnetic field intensities. In this scenario, the lunar dynamo would be driven by

convection in a basal magma ocean near the core-mantle boundary.

For the lower intensity period of the magnetic field, it was proposed that

water reservoirs located in the deep mantle would have enhanced the vigor of the

lunar core dynamo by reducing the mantle viscosity [103]. This water is most likely
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primordial [104], possibly coming from Earth, and the water reservoirs might be

located below the 1000 km depth estimated for the lunar magma ocean. Other

mechanism that could have increased the intensity of the lunar magnetic field are

the removal of a thermal blanket near the CMB [105], impact-induced rotation

changes [106] or precession of a lunar inner core [107].

As mentioned before, in this work we remove the prior constraints that in-

terpret gravity variations entirely in terms of shallow density anomalies in order to

obtain a 3-D density distribution of the Moon and analyze the similarities and dif-

ferences between the image we obtain and the one the community has been building

up over the years. Constraining the location and magnitude of density anomalies

in the Moon with flexible priors might show crustal anomalies in addition to deeper

anomalies linked to seismic activity, to an inefficient overturn or upwelling or to

water reservoirs of the lunar mantle.

In section 5.3 we describe the inversion algorithm and how it can use minimal

prior information and obtain variation and significance measures. In section 5.4,

we describe the density anomalies found and explore the measures of confidence of

these anomalies. Finally, in section 5.5, we compare the anomalies obtained with

this method to the anomalies inferred by others, previously described.

5.3 Method

The Transdimensional Hierarchical Bayesian Object-Oriented Gravity Inver-

sion algorithm, THeBOOGIe is a transdimensional algorithm in the sense that the

129



number of density anomalies is not fixed a priori but it is inferred directly from the

gravity data. It is Hierarchical in the sense that the uncertainty of the gravity data,

including the modeling error, is estimated through the inversion [108]. Bayesian

means that it uses Bayes’ theorem to infer which density model better represents

the interior based on the gravity data and prior information [64]. In a Bayesian

framework, the current knowledge knowledge of the interior (prior), the gravity

data and the inferred interior structure (posterior), are all modeled as probability

distributions. Object-Oriented means that the distribution of density in the interior

of a planetary body is parameterized as a collection of finite size objects. The finite-

sized objects are Voronoi regions (VRs) that enclose the volume closer to the point

i, called nucleus, than to other chosen points (nuclei) inside the sphere [22]. THe-

BOOGIe outputs a group of density models sampled from the posterior probability

distribution of the lunar interior given by the gravity data.

5.3.1 Parametrization of density anomalies and global grid

All shapes of density anomalies can be parameterized using Voronoi regions,

assuming the number or nuclei inside the sphere is large enough. The parameters

that describe a density model using a Voronoi parametrization are: the number of

VRs (n), the location of each nuclei ({x}, {y} and {z}) and the density value of each

region ({ρ}). The shapes of density anomalies obtained with a VR parametrization

is mapped into an underlying tesseroid grid with fixed locations in order to speed

up the computation of the gravity field of a given density model. A tesseroid is
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the intersection between two latitudes, two longitudes and two concentric spheres.

The global tesseroid grid used in this work has 18×36×10 tesseroid elements. The

tesseroids have a 10◦ size in latitude and longitude and there are 648 tesseroids in

each of the 10 layers of the grid. The details of this mapping and the computation

of the gravity field are given in section 5.3.3.

5.3.2 Prior constraints

THeBOOGIe is implemented through a reversible jump Markov Chain Monte

Carlo algorithm. At each step, a density model is proposed with randomly selected

parameters from a prior distribution. Different parameter can have different priors.

The prior distribution of the location of Voronoi nuclei, for instance, can be uniform

in the volume the core-mantle boundary to the surface of the Moon. A density model

having VRs with depths randomly sampled in this volume is then saved or deleted

based on how similar the gravity field produced by its density distribution is from

the input gravity data. The uniform prior distribution of the locations allows the

algorithm to find all density models that fit the data independently of where their

VRs are. Table 5.1 shows the prior distributions used in this work for the location

of nuclei vloc, variance of the noise in the input data σ2
g , number of Voronoi Regions

n and density of each region ρ. The density of each region is not sampled from an

uniform distribution but, instead, optimized linearly once the location of the nuclei

are sampled. The density values assigned to each Voronoi region are obtained by

a constrained linear minimization of the residual within the ranges -500 and 500
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vlocr̂ σ2
g n ρ

Min CMB 10−10 (m/s2)2 1 -500 (kg/m3)
Max R 10−1 (m/s2)2 500 500 (kg/m3)

Table 5.1: Prior distributions used in THeBOOGIe. R is the radius of the sphere.
Voronoi regions can exist in the volume between the core-mantle boundary (CMB)
and the surface of the sphere. The distributions of σ2

g and n do not have tangible
limits. We instead set them to sufficiently large values so that the posterior distri-
butions for these parameters are not truncated. The density of the Voronoi regions
obtained by reducing the residual between the gravity acceleration produced by the
density model and the input gravity data. This is constrained linear optimization
between the ranges of -500 and 500 kg/m3.

kg/m3.

5.3.3 Ensemble of density models

The output density models of THeBOOGIe are a sample of the posterior den-

sity distribution that fit the input data very well, selected from the pool of density

models that fit the prior distribution. This group of output models is called the

ensemble. The mean of the ensemble and its standard deviation will be used to

summarize the content of all these models in section 5.4. Equation 5.1 shows the

likelihood used to quantify the fit of each model.

likelihood =
|C̃m|1/2

(σ2
g)
s/2(ρmax − ρmin)n

exp

(
−Φ

2

)
(5.1)

Where σ2
g is the noise variance of the input gravity data {g}, s is the number of data

points of {g}, n is the number of Voronoi regions of the model, ρmax and ρmin are the

limits of the density of the regions shown in table 5.1. C̃m is the posterior covariance

matrix, C̃m = (DtC−1g D+C−1m )−1, whereD is a function of the gravitational constant

132



and distances of the Voronoi regions to the observation points fitting {g} = D×{ρ},

Cg is the data covariance matrix (Cg = σ2
gI) and Cm is the prior model covariance

matrix. Φ is the misfit between the gravity data produced by the model {gm} and

the input gravity data {g} (equation 5.2).

Φ = ({g} − {gm})T
1

σ2
g

({g} − {gm}) (5.2)

The gravity field of the density model proposed at iteration i, {gm}, is cal-

culated by mapping the Voronoi regions into an underlying tesseroid grid [109].

Once the location of the Voronoi regions are defined, the tesseroids having its center

within the VR are assigned the density value of the VR. The gravity acceleration

of each tesseroid is pre-computing following Uieda et al. [68] and updated with the

corresponding density value assigned to the corresponding VR at iteration i.

At each iteration, the algorithm creates model m′ by sampling the value of

its parameters from the prior distributions described in section 5.3.2 and compares

how well or bad it fits the data relative to a previously saved model m. Model m′ is

saved with a probability α = min(1, likelihood′/likelihood). According to equation

5.1, the probability of keeping model m′ increases if φ′, σ2′
g and n′ are smaller than

φ, σ2
g and n, respectively. Keeping everything else constant, the algorithm prefers

to keep models that have fewer Voronoi regions. This is a fortuitous consequence of

parsimony and the fact that an increasing number of VRs increases the computa-

tional time of the inversion so the additional VRs are only valuable if they improve

the fit of the model to the input data.
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Instead of having one model of the interior, the output of this inversion ap-

proach are thousands of models, each one containing n Voronoi regions, their lo-

cations and density values. This vast amount of information can be presented in

different ways in order to help visualize the similarities and differences between mod-

els of the interior of the Moon which show the amount of variation in the parameters

of density models allowed by the input gravity data.

The mean density model is obtained by averaging the density values of all

output models within each tesseroid of the grid and shows the most likely value

of the density at that location. The standard deviation of the density values at

each tesseroid (σρ) shows how much or little the value in that location can change

while still fitting the input data. Tesseroids with densities that vary greatly across

models in the ensemble have less well constrained density than tesseroids with lesser

variations.

DKL(p|q) =
N∑
i=1

p(ρi) log

(
p(ρi)

q(ρi)

)
(5.3)

The Kullback-Liebler divergence DKL (Equation 5.3) shows how similar or dif-

ferent the posterior probability distribution of density at tesseroid i, p(ρi), is from

its prior distribution q(ρi) [72]. A tesseroid with high values of DKL has a distribu-

tion of density values very different from the prior one which implies that imposing

constraints from input gravity data has added information on the density at that

location. A tesseroid with a low value of DKL indicates that the input data might

not be sensitive to that location, therefore, it is impossible to confidently interpret

the density in this location. The mean density, standard deviation and Kullback-
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Liebler divergence will be the measures used throughout this work to represent the

information contained in the output density models of THeBOOGIe.

5.3.4 Input GRAIL gravity acceleration data

Equation 5.4 shows the expression for the radial component of the gravity

field as a summation of spherical harmonic coefficients Clm. G is the gravitational

constant, M is the mean mass of the body, R is its radius and r, θ and φ are the

altitude, latitude and longitude of the observation point r. Clm is the spherical

harmonic coefficient of degree l and order m and Ylm (θ, φ) are spherical harmonic

functions of the corresponding coefficients at the location given by the latitude θ

and longitude φ. We use the spherical harmonic coefficients obtained by Lemoine

et al. [47] using data from the GRAIL mission. and a grid of points uniformly

distributed over the sphere as input in equation 5.4 in order to produce the set

of gravity acceleration values used as input in THeBOOGIe. The grid has a total

of 10242 points at a altitude of 100 km over the surface of the sphere and the

summation in equation 5.4 was truncated to degree l = 100 in order to include the

degrees corresponding to that spatial resolution and avoid aliasing.

g(r) =
GM

r2

100∑
l=0

l∑
m=−1

(
R

r

)l
(l + 1)ClmYlm (θ, φ) (5.4)

The location of each of the 10242 points where g(r) is calculated, is saved and

the output density models of THeBOOGIe should produce similar values when their

radial gravity acceleration is sample at these points.
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5.4 Results

THeBOOGIe algorithm was used to run seven parallel inversions of the same

gravity acceleration data described in section 5.3.4. The mean radius of the Moon

was considered to be R = 1739 km. Each inversions starts from a different density

model,selected randomly from the prior. If the output models obtained from these

seven inversions are similar, then the inversion results can be considered to not

depend on the starting model. Figure 5.3 a shows the logarithm of the likelihood

at each iteration for the seven inversions. The likelihood increases at each iteration

until it stabilizes around iteration 2.1×106. A closer look into iterations 2.1×106

- 3×106 (Figure 5.3 b) shows that there is some variation between the likelihood

of models within the same inversion and that models from different inversions have

slightly different likelihood values. However, since the variations of the likelihood

after iteration 2.1×106 are much smaller than the initial variations, the algorithm is

considered to have converged and models obtained after iteration 2.1×106 are then

representative of the interior density distribution of the Moon as constrained by the

input gravity data .

The gravity acceleration of all output models is calculated and averaged in

Figure 5.3c. This average shows gravity acceleration features related to the crustal

thickness variations shown in figure 5.1. The misfit between the input gravity data

and the mean gravity acceleration data of the output models (Figure 5.3d) shows

that the fit between these two data sets is very good, with the largest differences

found at small-scale circular features. The mean gravity of the output models cannot
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fit these small scale gravity features because the low resolution of the tesseroid grid.

5.4.1 Mean density anomalies and confidence

Figures 5.4 and 5.5 show the mean density model obtained as an inversion

of the input gravity data described in section 5.3.4 where unconstrained values are

grayed out according to two different criteria, the standard deviation σρ and the

Kullback-Liebler divergence DKL. As mentioned before, the mean density model

is the mean density value µρ in each tesseroid of the output models across the

seven inversions. The criterion |σρ/µρ| < 1 shows the tesseroids with small density

variations relative to their mean and the criterion DKL/max(DKL) > 0.5 shows

the tesseroids with a large normalized Kullback-Liebler divergence which have a

distribution of density different to the prior distribution.

Figure 5.4 shows that the σρ criteria considers density values in most of the

tesseroids unconstrained, with the exception of few density features. In layers 1-6

(depths 0-507 km), these features are density anomalies clearly related to the far

side thick crust, SPA basin and major near side basins. Layers 7 - 10 (depths 507-

1409 km) show positive density anomalies not related to any surface feature. Figure

5.5 shows that the significance of the density values at each tesseroid decreases with

depth. Most tesseroids in the first five layers have density values with a distribution

significantly different from an uniform one while tesseroids in layers 7-10 do not.

Within layers 1-5, the far side of the Moon is better constrained than the near side.

The location of positive density anomalies in the mean model coincide with the
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Figure 5.3: Convergence and fit of the output models to the input gravity
data. a) For each of the seven inversions with different initial density models (lines
of different color), the likelihood increases per iteration and stabilizes after iteration
2.1×106. The inversion is said to have converged at this point. b) The likelihood of
most inversions keep increasing after iteration 2.1×106 but their variations are still
much smaller than before this number of iterations. Density models obtained after
convergence are the output models of THeBOOGIe. c) The mean gravity accelera-
tion of the output models shows gravity features related to the crustal dichotomy,
SPA basin and major lunar mascons. d) The average misfit shows that the gravity
data in a) fits the input gravity data very well. With differences in the range of -50
to 50 mGal. The largest differences between the data in c) and the input gravity
data are located near smaller scale impact craters of the Moon. The low resolution
of the tesseroid grid makes it impossible to have density anomalies of this size in
the output models.
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location of positive Bouguer gravity anomaly (Figure 5.1) and thinner crust (Figure

5.2). As mentioned in section 5.2, a shallower crust-mantle boundary produces a

positive gravity anomaly in the surface because there is more high density mantle

material and less low density crustal material than in a location with a deeper

boundary. The inversion algorithm is then able to find density anomalies that fit

the expected crustal thickness variations while also finding anomalies at a deeper

location than the crust-mantle boundary depth.

The lateral variations between the density distribution found by THeBOOGIe

and the lateral variations of crustal thickness are very similar while the density

anomalies in the mean model are thicker and have a lower magnitude than the

ones expected by crustal thickness variation alone. Both Figures 5.4 and 5.5 show

that the density anomalies related to the far side crust, SPA and near side basins

in the mean model have a thickness of 507 km (layers 1-6) and the magnitude of

the density anomalies are less than 200 kg/m3. By contrast, Wieczorek et al. [10]

inferred crustal thickness ranges from 0 to 60 km and magnitude of crustal density

anomalies from 1000 to 400 kg/m3. The tradeoff between thickness and density

value of shallow features was expected because of the non-uniqueness of gravity

inversions. The same gravity signal can be matched by modifying the thickness or

modifying the density value.

Figure 5.6 shows the distribution of density values of the ensemble at 30

tesseroids chosen randomly. The row of the tesseroids indicate the layer they belong

to. With the first row of tesseroids belonging to the first layer and so on. The red

line shows the mean value shown in the maps of Figures 5.4 and 5.5, the black line
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Figure 5.4: Mean density model with grayed out area indicating the location of
tesseroids with a very high standard deviation (σρ) relative to their mean value (µρ).
The criteria |σρ/µρ| > 1 is used to select which tesseroids to gray out.
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Figure 5.5: Mean density model with grayed out area indicating the location
of tesseroids with a very low Kullback-Liebler divergence (DKL). The criteria
DKL/max(DKL) < 0.5 is used to select which tesseroids to gray out.
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Figure 5.6: Distribution of density values of the ensemble at 30 tesseroids. Each row
corresponds to tesseroids at the same layer, with the first row corresponding to layer
1 and the last row to layer 10. The red line shows the mean density of the ensemble at
tesseroid i (value shown in Figures 5.4 and 5.5) and the black line shows the standard
deviation of the ensemble at the same tesseroid. The distribution of density values
is not normal in some tesseroids and the mean and standard deviation parameters
do not provide a complete description of the distribution. The histogram of each
tesseroid is needed to fully understand the variations of density at each location.
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shows the standard deviation and the blue bars show the number of models having

density ρ in that tesseroid. Many of these histograms show that the distribution of

density values per tesseroid is not Gaussian, especially in the deeper layers.

The distribution of density values in the ensemble is not necessarily Gaussian

because the value of density is obtained by a least-squares optimization of the resid-

ual once the location and size of the Voronoi region is obtained. If the size of the VR

changed abruptly from one model to the other, then its density value also changes

abruptly. The bayesian approach of this gravity inversion allows us to see the full

distribution of density values per tesseroid which does not need to be parametrized

into a normal distribution, however, this vast amount of information is difficult to

analyze for all 6480 tesseroids in the grid. We explore next other alternatives for

summarizing the information obtained.

5.4.2 Correlation between density anomalies in the output models

Figure 5.7 shows the correlation coefficient between the density values of

tesseroids in the grid. Tesseroid indexes are random variables and the density

anomalies from different density models are observations. The x and y axes show

the tesseroid indexes of the 6480 tesseroids in the grid. White grid lines are placed

every 648 tesseroids, showing the boundaries of all ten layers in the grid. The corre-

lation value cij in the plot shows the correlation coefficient between tesseroid i and

tesseroid j with light blue values showing anti-correlation and light green values

showing positive correlation. The main diagonal of the plot has values cii = 1.
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There are three sections in the plot with similar correlation values. The first

section contains tesseroids from layers 1 to 5 (tesseroid indexes 1-3240 vs tesseroid

indexes 1-3240) with mostly positive correlation values. The second section is

formed by tesseroids in layers 6 to 8 vs all other layers (tesseroid indexes 3241-

5184 vs tesseroid indexes 1-6480). These tesseroids are not clearly correlated or

anti-correlated, having low magnitude correlation coefficients. The third section

is formed by tesseroids in layers 9 and 10 vs tesseroids in layers 1 to 5 (tesseroid

indexes 5185-6480 vs tesseroid indexes 1-3240) that are anti-correlated.

In the first five layers of the grid, there are groups of tesseroids that change

their density value together, if the density in one tesseroid decreases, the density of

the rest of the tesseroids in the group do too. Tesseroids in layers 6 to 8 are not cor-

related to any teseroid in any other layer. Their density value varies independently

of the values of other tesseroids. Tesseroids in layers 9 and 10 increase or decrease

their value in opposite way as the ones in layers 1 to 5.

Figure 5.8 shows a zoom in to sections a and b highlighted in Figure 5.7.

Section a of figure 5.8 shows the correlation between tesseroids in the first layer of

the grid. The tesseroids indexes enclosed by the red squares correspond to the near

side Mare region and tesseroids in the green square correspond to the SPA basin.

Although not all tesseroids in these squares have positive correlation values, most

do, indicating that there are density structures related to the SPA basin and near

side mare in layer 1. Since the correlation pattern between tesseroid indexes 1-3240

and tesseroid indexes 1-3240 is similar to the one in section a, the structures related

to the SPA and near side mare present in layer 1 are also present in layers 2 to 5.
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a)

b)

Figure 5.7: Correlation of the density values at tesseroids of the grid. White
grid lines show the boundary between layers. There are three main features in the
correlation matrix. Most tesseroids in layers 1 to 5 are positively correlated between
each other. Tesseroids in layers 6 to 8 are not correlated to tesseroids in any other
layer. Tesseroids in layers 9 and 10 are anti-correlated to tesseroids in layers 1 to 5.
Sections a and b are zoomed-in in figure 5.8.
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SPA

Near side Mare

Figure 5.8: Zoom in to correlation values of sections a and b in figure 5.7. a)
Correlation between tesseroids in layer 1. The red and green squares highlight the
tesseroids with the most positive correlation values. They are located in the nearside
Maria (red) and the SPA basin (green). b) Correlation between tesseroids in layer 10
and 1 with corresponding squares highlighting the most negative correlation values.
These two correlation plots show that the tesseroids in the nearside Maria and SPA
basin regions change their density in the same direction as a group while the density
of the corresponding regions in layer 10, change to the opposite direction.

Section b of figure 5.8 shows the correlation values between tesseroids in layer

10 and tesseroids in layer 1 with tesseroids enclosed by the red and green squares

having the same latitude-longitude than the ones enclosed by the corresponding

rectangles in section a. The tesseroids at the deepest layer are anti-correlated to the

tesseroids at the shallowest layer which means that if tesseroids in the SPA basin

region (layer 1) have a higher density value in one density model, the tesseroids in

the corresponding latitude-longitude in the deepest layer of the same model have a

lower density value.

Figure 5.9 shows maps and cross-sections of the correlation values between the

density anomaly in one chosen tesseroid and others. The star shows the location of
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the chosen tesseroid. The red line shows the location of the cross-sections. Tesseroids

near the star are positively correlated and tesseroid far away are not correlated or

anti-correlated. This behavior occurs in all maps and cross-sections and supports

the correlation pattern found in Figure 5.8.

If shallow tesseroids are anti-correlated with deeper tesseroids, then there

might be a depth that shows the boundary between shallow density features and

deeper features. The radial correlation (Rρ) and correlation length (ρρ) have been

used before to find depth boundaries based on the correlation between features at

the same range of depths [110–112].

Equation 5.5 shows the expression to calculate the radial correlation between

the density values at locations r = r1 and r = r2. ρ(r1) is the density at r = r1,

µρ(r1) is the mean of the density and σρ(r1) the standard deviation at that radius.

Rρ(r1, r2) =
E[(ρ(r1)− µρ(r1))(ρ(r2)− µρ(r2))]

σρ(r1)σρ(r2)
(5.5)

The correlation length ρρ(r) shows the rate at which the structure present at a

location r decorrelates in the radial direction. Specifically, the correlation length is

the distance from r, δr, at which the radial correlation is equal or less than 0.75.

Equation 5.6 shows the exact expression for ρρ(r).

ρρ(r) = min[|δr| : Rρ(r − δr, r + δr) <= 0.75] (5.6)

Figure 5.10a shows the radial correlation (Rρ) between layers of the mean

density model. Figure 5.10b shows the mean radial correlation of all output density
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Figure 5.9: Map of the correlation values between the tesseroid at the location of
the star and all other tesseroids at layer 1 (0 to 14 km depth) and cross-sections in
depth. The red line shows the location of the cross-section in the map. Tesseroids
near the star are positively correlated while tesseroids far away (in different latitudes
and longitudes or in the deepest layers) are anti-correlated.
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models of the THeBOOGIe. Figure 5.10c shows the standard deviation of the radial

correlation between output density models, as complementary information of Figure

5.10b. With some small differences, both the radial correlation of the mean model

and the mean radial correlation of the output models show that: the first (shallow)

layers are positively correlated between each other; some layers immediately below

them are not correlated with the shallow layers and some deeper layers are anti-

correlated with the shallow layers.

Figure 5.11 shows the correlation lengths calculated as a function of the radial

correlation of the mean model (blue line) and the mean radial correlation of the

output models (red line). The depth of the minimum of the correlation length is

indicative of a boundary depth since the structures at this depth are different from

the structures immediately above or below them. The minimum correlation length

given by the radial correlation of the mean model is located at the boundary between

layer 5 and layer 6 (black line), at a depth of 352 km. The minimum given by the

mean radial correlation of the output models is located in the boundary between

layer 4 and 5 (orange line), at a depth of 225 km. The slice of the mean density

model in Figure 5.11 shows the location of the two boundaries found. We choose

the black boundary given by the radial correlation of the mean model as the better

fitting one. This boundary matches the limit between the low magnitude shallow

density anomalies and the higher magnitude, smaller scale density anomalies below

them.
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Figure 5.10: Radial correlation analysis. a) The radial correlation of the mean
density model show that the first five layers are positively correlated between each
other, slightly anti-correlated with layer 8 and not correlated to layers 6, 8, 9 and
10. b) The mean radial correlation of individual models in the ensemble show
that the first four layers are positively correlated between each other, slightly anti-
correlated with layers 7, 8 and 9 and not correlated to layers 5, 6 and 10. c) The
standard deviation of the mean radial correlation show that the radial correlation
values between layer 5 and layers 1, 2, 3 have the highest variation, followed by the
correlation values between layer 10 and layers 1, 2, 3 and 4.
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Figure 5.11: Correlation length ρρ and corresponding boundary of the mean density
model. ρρ is a function of the radial correlation Rρ and shows the distance at
which layers are no longer correlated. A small value of ρρ means that the density
distribution inmediatly above or below r, is very different from the one in r. The
blue line is calculated from the radial correlation of the mean density model (figure
5.10 a) and the red line from the mean radial correlation of the individual models
in the ensemble (figure 5.10 b). Their minimums indicate a boundary at 0.8R and
0.88R, respectively. The slice of density values show that the boundaries effectively
divide the mean density model into distinct regions.
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5.4.3 Cluster analysis of density anomalies in the mean model

A cluster analysis provides a way to quantify patterns in a data set. There

are 648 density profiles of the mean density model, each one showing what is the

density value at the 10 different layers of the grid. Clustering the density profiles

would show regions that have a similar distribution of density per depth. Since

there is a boundary between shallow and deep tesseroids given by the correlation

length, the clustering is done in the density profiles above the boundary (648 density

profiles of layers 1-5) separately from the clustering of the density profiles below the

boundary (648 density profiles of layers 6-10). The features found in the clustering

of the first five layers will be called shallow features while the ones found in the

deepest five layers will be called deep features.

We use a k-means algorithm [113] and a Euclidean metric to classify density

profiles into nc clusters. The k-means algorithm requires specifying nc. Different

values of nc were tested (2-11) and the final value used in this section was chosen

based on how robust the assignment of models to clusters was. If more clusters

are used than what is justify by the data, then the resulting assignment of density

profiles to clusters is dependent of the initial conditions of the algorithm. Density

profile i can sometimes be assigned to cluster c and sometimes to cluster d, for

example. The value of nc used for the clustering of the shallow layers is 6 while the

one used for the clustering of the deep layers is 3.
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5.4.4 Shallow density anomalies

Figure 5.12 shows the topography of the Moon (a), the mean density of the

output models at layer 1 (b) and the location of members of the six clusters of

shallow density profiles (c). The topography is plotted in the same grid as the mean

density with light yellow colors showing positive topography and light blue colors

showing negative topography. Zero topography shows the reference radius of 1739

km. The k-means algorithm groups the density profiles into six clusters and these

clusters match the location of surface features.

Cluster 1 contains density profiles of the SPA basin, confidently recovered

by the inversion algorithm, while containing some near side profiles which are not

confidently recovered. Cluster 2 and 3 contain most of the unconstrained density

profiles which coincide with topography near zero. Cluster 4 contain the density

profiles at the center of the major near side basins: Imbrium, Serenitatis, Crisium,

Smythii and Nectaris. They coincide with positive density anomaly and low eleva-

tion. Cluster 5 is mostly formed by the density profiles of the highlands and low

density of the far side. Cluster 6 contains the density profiles at the center of the

Orientale and Humorum basin which are well constrained by the input gravity data

and some unconstrained density profiles in the near side. Although not perfectly,

the clustering of shallow density profiles finds six clusters with density distributions

linked to surface features of the Moon.

Figure 5.13 shows the mean density profile and the related standard deviation

of each cluster. The mean of each cluster is plotted in colors corresponding to the
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ones used in the map of Figure 5.12c while the standard deviation is plotted in

light pink. The standard deviation used in Figure 5.13 should not be confused with

the standard deviation used to gray out tesseroids in the mean density maps of

Figure 5.4. The one used in Figure 5.13 represents the variation of density between

members of the same cluster, which are all part of the mean model while the one

used in Figure 5.4 represents the variation of density between output models of the

inversion algorithm.

Having clusters of density profiles allow us to analyze the distribution of den-

sity per depth for each type of feature, individually. The density anomaly of the

SPA basin (cluster 1), for example, is positive and its magnitude does not change

much from layers 1 to 5. The density anomaly of the near side basins is also positive

from layers 1 to 5 but there is more variation per layer than there is for the SPA

basin. Layer 1 of the mean model (Figure 5.12b) shows that the density anomaly

at each basin is different which causes this variation within cluster 4. However, the

relationship between increasing depth and increasing density (down to layer 5) is

similar for the five major near side basins Imbrium, Serenitatis, Crisium, Smythii

and Nectaris. The density of the highlands is negative and its magnitude does not

change much per layer. The density of the Orientale and Humorum basins is pos-

itive in the shallowest layers and decreases per depth until it becomes negative in

layer 5.

Figure 5.14 shows the density profile at the center of 28 lunar basins. The

outline of each basin is plotted in the maps throughout this work (Figure 5.12b,

for example). The location and size of each basin was provided by Neumann et
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Figure 5.12: Topography of the Moon (a), mean density of the output models
at layer 1 with grayed out tesseroids having very large standard deviation (b) and
location of clusters obtained from classifying tesseroids in layers 1 to 5 of the mean
model (c). Although not perfectly, the clustering identifies groups of density profiles
that match the location of surface features in the Moon.
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Figure 5.13: Density profiles of the mean model classified into six clusters and their
respective standard deviation. The color of the mean of the cluster correspond to
the ones used in Figure 5.12. The standard deviation shows the variations of density
value per layer between members of the same cluster.
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Figure 5.14: Density anomaly of the mean model and standard deviation of
tesseroids at the center of 28 lunar basins. The standard deviation shows the varia-
tion of density anomaly between the output models. The color of the density profiles
show the cluster at which they belong to. The lunar basins appear in decreasing
order of diameters size with SPA first having the largest diameter and Schwarzschild
last, having the smaller diameter.
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al. [40]. The color of the density profile correspond to the color of the cluster each

basin belongs to while the gray area corresponds to the 1σ variation of the output

models for the corresponding locations. The basins are ordered according to their

diameter size with the SPA basin first (largest basin) and the Schwarzschild basin

last ( smallest basin). Comparing the density profiles of each basin would allow us

to identify any relationship between the diameter of the basin and the depth of the

positive density anomaly in its center.

Comparing the profiles of the SPA and Imbrium basin shows that the largest

basin does not necessarily has the deepest distribution of positive density anomaly.

The positive density anomaly of the SPA basin stretches from layer 1 to layer 6

while the positive density anomaly of the Imbrium basin reaches down to layer 10.

The algorithm does not simply match a broader gravity signal with a deeper density

distribution, instead, it finds a particular density distribution for each basin which

is a more complex and possibly more realistic way to represent the distribution of

density per depth.

5.4.5 Deep density anomalies

The clustering of the deepest five layers was performed separately from the

clustering of the shallowest layers since density features above the boundary given by

the correlation length are significantly different than the features below the bound-

ary. Figures 5.15 a-c show the mean density of the output models at layers 7, 8 and 9

with pink dots showing the location of deep moonquakes in the corresponding layers
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as inferred by Nakamura et al. [21]. Figure 5.15d shows the location of members of

the three clusters obtained by classifying density profiles from layers 6 to 10.

Most of the tesseroids at layers 7, 8 and 9 of the mean model are grayed out

because they have very high standard deviations compared to their mean (|σρ/µρ| >

1) however, Figure 5.16 indicates that the density anomalies in cluster 1 are negative

while the ones in cluster 2 are positive and the ones in cluster 3 are close to zero.

Although the standard deviation is high, the fact that the means of tesseroids in

a cluster are not randomly distributed and, instead they are all negative, indicates

that it is more likely that the density anomalies of those tesseroids are negative,

instead of positive. We can say then, subject to the resolution or our tesseroid grid

and input gravity data, that there are regions of lower than average density in the

near and far side of the Moon. The exact value of the density of these regions is

unknown, however, and it is necessary to evaluate further if the magnitude of these

anomalies is not a product of the linear optimization of density, as they where in

chapter 4.

As described in section 5.2.1, the main features in the deep interior of the Moon

are the proposed mid-mantle discontinuity, the partial-melt layer and the asymmet-

rical distribution of moonquakes, which could be caused by a difference in properties

between the deep far side and the deep near side of the Moon. If the mid-mantle

discontinuity and the partial-melt layer are in fact global and spherically symmetric

features of the interior of the Moon, then their location cannot be evaluated using

gravity data. The asymmetrical distribution of the deep moonquakes, however, can

be compared to the distribution of density found by THeBOOGIe at similar depths.
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As can be seen in Figure 5.16, approximately half of the near side deep moon-

quakes coincide with the location of the low density region in the near side of cluster

1 while the other half coincides with areas of clusters 2 and 3. There is not a clear

relationship between the location of a low or high density anomaly and the location

of near side deep moonquakes. There are only three moonquake clusters of the far

side and they do not coincide with the location of a specific density anomaly cluster

either.

The positive deep density anomalies found at layers 7-9 (507 to 1141 km depth)

could be caused by an inefficient overturn of the Fe-Ti cumulates and the negative

anomalies might reflect primordial water reservoirs in the lunar mantle. It is nec-

essary, however, to analyze if the water content of these reservoirs is enough to

produce a detectable change in density in the material.

5.5 Discussion

The thickness of the density anomalies found by THeBOOGIe is larger than the

ones expected by crustal thickness variations. The combined effect of the parsimony

of the algorithm and the fact that density models are less likely to have very shallow

nuclei, contributes to creating large Voronoi region and, as consequence, large and

thick density anomalies. The prior distribution of the location of Voronoi nuclei

is uniform in the volume between the core-mantle boundary and the surface of

the Moon (table 5.1). However, the location vector vloc has three components in

Cartesian coordinates (x, y and z) that are sampled uniformly from the core-mantle
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Figure 5.15: Mean density of layers 7-9 with grayed out tesseroids having very large
standard deviation (a-c) with pink dots showing the location of deep moonquakes
[21]. d) Map of the location of clusters obtained using tesseroids at layers 6-10 of
the mean model.
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Figure 5.16: Density per depth of clusters 1-3. Thick black lines show the location
of layers 7, 8 and 9 used in the clustering of deep density anomalies.

boundary to the surface. This means that there are fewer combinations of the

values of these coordinates that result in nuclei at locations r > 0.9R compared

to the number of combinations resulting in r < 0.9R where R is the radius of the

Moon. It is then more likely to have Voronoi nuclei in layers 2-10 than in layer 1.

Increasing the number of allowed Voronoi regions and using a higher resolution

tesseroid grid would result in small Voronoi regions but running an inversion with a

higher resolution grid would require a higher memory and computation time since

it is necessary to save the location of each Voronoi region and the density value of

each tesseroid, for each density model.

The density profiles of 28 lunar basins of varying diameter were plotted and a

relationship between the size of the diameter and the depth of these basins was not
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found. Largest basins do not necessarily have the thickest distribution of positive

density anomaly which would generate a broader gravity feature and match the

input gravity data. There is no clear relationship between the size of the basins and

how the density in its center is distributed with depth.

The boundary given by the correlation length divides the volume of the sphere

into two parts, shallow and deep. Clustering of the shallow density anomalies shows

great agreement with the location of surface features of the Moon and allow us to

analyze how the density changes per depth in each feature individually. As expected,

clustering of deep density anomalies do not show an agreement with surface features,

instead, the clustering shows large scale positive and negative density anomalies that

are not correlated to surface features.

The Apollo seismic stations have detected very few deep moonquakes in the

far side and there is still a region of the far side within 40◦ of Earth’s antipode where

no deep moonquakes have been detected. This has led to two ideas: moonquakes

occur in the same frequency in the far side and near side but the ones in the far side

are not detected by the Apollo seismic stations or moonquakes occur in the near

side only because of the particular conditions of that region [21].

We find positive and negative density anomalies in the depth range of 507 to

1141 km but the density structure at those depths is not clearly different between

the near and far side. Our results do not support the idea that the material in

the far side of the Moon, specifically the density of this material, is different from

the one in the near side. The location of moonquakes do not coincide exclusively

with a positive or negative density anomaly, therefore, it not possible to link their
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occurrence to a mechanism producing a negative or positive density anomaly. Our

work suggests that deep moonquakes may occur in the far side too and seismic waves

were attenuated before reaching the Apollo seismic stations in the near side.

The existence of positive and negative density anomalies in the depth range

of 507 to 1141 km is consistent with previous studies proposing and heterogeneous

lunar mantle [103, for example]. The positive density anomalies might be related

to inefficient overturn of ilmenite cumulates while the negative anomalies to water

reservoirs. The estimates of the bulk water content in the Moon is low (300 ppm)

[104], however, that is a lower limit for the content of water in these reservoirs.

There is no additional constrain on the lateral location of these reservoirs and the

depth of the low density anomalies confidently resolved in this work are slightly

shallower than the proposed water reservoirs (507-900 km compared to 1000-1300

km) as shown in Figure 5.15. The mean of cluster 1 in Figure 5.16 shows that

there might be a negative anomaly from 1141 to the CMB although with increased

uncertainty.

Further constrains on the location of the water reservoirs is needed together

with an analysis of the water content needed to produce a negative density anomaly

and the dynamics that allowed a low density region to maintain an stable location

within the lunar mantle.
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5.6 Conclusions

We present a group of density models that fit the Bouguer gravity acceleration

of the Moon obtained using non-informative priors in a flexible gravity inversion

method, THeBOOGIe. This group of density models is represented by a mean model

and two measures of confidence on the mean value at each tesseroid in the grid. The

density anomalies in these models are not restricted to be located in the crust-mantle

interface or above it in order to not bias the inversion result. The lateral distribution

of density anomalies fit the lateral variations of crustal thickness which is a very

positive result. The thickness of the anomalies is overestimated and is close to six

times larger than the thickness inferred by other methods. This trade-off is expected

because of the non-uniqueness of gravity inversions. The confidence measures on

the density values obtained, provide information about how well-constrained each

value is in light of the input gravity acceleration used and is an essential information

since gravity inversions are non-unique. In general, the uncertainty on the density

models inferred increases with increasing depth.

The correlation and cluster analysis done on the group of density models ob-

tained provides a wealth of knowledge about the relationship between tesseroids. It

provides a way to identify density features other than visually inspecting maps of

each layer of the mean model. The correlation length shows that there is a bound-

ary between shallow an deep density anomalies. The clustering of shallow anomalies

shows density features corresponding to surface features while the clustering of deep

anomalies shows positive and negative density anomalies that are not correlated
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with surface features. The density distribution on the far side is not significantly

different from the distribution on the near side, supporting the idea that far side

deep moonquakes might occur in the far side too and seismic waves were attenuated

before reaching the Apollo seismic stations. The deep density anomalies might be

related to a inefficient overturn of ilmenite cumulates or water reservoirs in the deep

mantle.
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Chapter 6: Summary and future work

6.1 Summary

A novel method to invert gravity acceleration data was developed with the aim

of constraining the interior distribution of density within a planetary body. THe-

BOOGIe does not require informative priors for the location of density anomalies

or any other parameter of interest. However, an informative prior can be provided

if justified. This inversion method outputs a group of density models representative

of a posterior probability distribution. From this group of models, the variation of

parameter values that fit the data can be obtained and other measures of uncer-

tainty can be calculated. Regions within a planetary body having density values

with large uncertainties are not well constrained by the data while regions with a

small uncertainty are. Using non-informative priors for the location, the density

anomalies are not required to be located at the crust-mantle interface and deeper

anomalies are not necessarily mapped to these depths.

The chosen parametrization of density anomalies is an important factor affect-

ing the performance of THeBOOGIe. Point masses represent the simplest parametriza-

tion since they are defined as points in space with an associated mass and no shape.

The calculation of the gravity field of density models using a point mass parametriza-
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tion is very fast. When the input gravity data is produced by a group of point masses,

the inversion algorithm outputs density models having point masses with locations

and magnitudes matching the ones producing the data. When the input gravity

data is produced by spherical caps, the algorithm finds the correct location of their

center but cannot constrain their shape or density. For both cases, the inversion

method find density models that fit the input gravity data very well.

Spherical caps have similar shapes as the density anomalies produced by im-

pact craters where crust is removed by the impactor and the crust-mantle boundary

might be shallower. The inversion of synthetic data showed that THeBOOGIe is

able to find density models that fit the input gravity data very well and that most

of the output density models match the one producing the input gravity data. The

mean of the output models match the location of the latitude, longitude and aper-

ture of the caps in the target model and their 1σ deviations is very small. The

uncertainty is larger for the thickness, depth and density values, as expected. Us-

ing a spherical cap parametrization, however, increases the computing time of the

gravity acceleration and the number of iterations needed for convergence compared

to using point masses due to the increase of parameters to constrain.

A Voronoi region (VR) contains the volume close to a nucleus i than to other

nuclei in a sphere. VRs can parametrize density anomalies of any shape with the

right location and number of nuclei and the calculation of the gravity field of models

using this parameterization is not as slow as with spherical caps. An inversion of

synthetic gravity data resembling the Bouguer gravity field of the Moon shows that

THeBOOGIe can find density models that fit the input data. These density models
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match certain parameters of the density model producing the input data while

having some differences in other parameters. The lateral distribution of density

is retrieved correctly, with the lunar crustal dichotomy and impact basins in the

right latitudes and longitudes. The thickness of shallow features is overestimated

while the density anomalies related to them is underestimated. This is an expected

tradeoff in gravity inversions where the same signal can be produced by a thin dense

feature and by a thick, less dense one.

The shape of a mid-mantle anomaly is retrieved correctly by THeBOOGIe

using a VR parametrization. Density anomalies at this depth in the Moon had not

been previously reported in the literature but it is useful to assess if the algorithm

would be able to detect it in case they do exist and the algorithm does. The 1σ

variations and another measure of uncertainty called the Kullback-Liebler divergence

show that this anomaly is significant and is not part of the noise of the density

distribution. The recovery of such a deep anomaly is very promising since it shows

that a mantle anomaly could recovered with gravity data.

The Bouguer gravity field of the Moon was inverted using a VR parametriza-

tion. Density anomalies from the surface to a depth of 350 km are linked to surface

features. THeBOOGIe clearly identifies density anomalies related to the South-Pole

Aitken basin, the crustal dichotomy and near side impact basins. The thickness of

these shallow anomalies is much larger than the one inferred by other methods while

their magnitude is smaller. This is due to the non-uniqueness of gravity inversions.

Anomalies deeper than 350 km are not related to surface features. The algorithm

finds two regions with a negative density anomaly in the depth range 507-1141 km.
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Some near side deep moonquakes coincide with the location of one of the low den-

sity regions and some of them not. A clear relationship between the location of

near side deep moonquakes and density anomalies is not found. The deep positive

density anomalies might be related to an inefficient overturn of ilmenite cumulates

while the deep negative anomalies might be related to water reservoirs in the deep

mantle.

6.2 Future work

The thickness of shallow lunar density anomalies are currently overestimated

by THeBOOGIe, compared to estimations of crustal thickness. Although a trade-off

between the thickness and magnitude of anomalies is expected in gravity inversions,

it is important to explore if the trade-off can be reduced with updates to the inversion

algorithm. If the prior distribution of the depth of nuclei is uniform, then very

shallow Voronoi regions would be just as likely as deeper ones. Currently, the prior

distribution of the nuclei location is uniform in the volume of the sphere which do

not necessarily mean they are uniform in the radial direction.

Density anomalies can be as small as the size of the tesseroids in the grid. If a

Voronoi region is smaller than the size of one tesseroid, then this small region would

be mapped in a region the size of the tesseroid. Reducing the size of the tesseroids

would allow smaller anomalies to exist. This would mean increasing the resolu-

tion of the grid and increasing the number of tesseroids. Having smaller anomalies

might reduce the overestimation of the thickness of shallow anomalies but would
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increase the memory requirements of the inversion since the density value of each

tesseroid, at each iteration, is saved. The computation time of each iteration would

also increase but not necessarily in a significant way. In the mapping of density

anomalies from Voronoi regions to the tesseroid grid, it is necessary to do a nearest

neighbor analysis and locate the tesseroid that is closer to a nuclei. If the number

of tesseroids increases, then the calculations of the distances between nuclei and

tesseroids needed would increase too but this process currently occupies less than

5% of the computation time of each iteration.

Running more iterations of THeBOOGIe algorithm would provide a larger

sampling of the posterior which might result in a more clear image of the interior.

The number of additional iterations to run, however, is not clear since there is no

way to predict the number of iterations needed for an efficient sampling. Even if

more iterations are ran, the algorithm might get stuck in a local minimum and

sample only a small region of the posterior.

Gravity data is not sensitive to different layered models of the interior. Concen-

tric layers of constant density produce the same gravity field as a sphere of uniform

density, as long as the total mass is the same in both cases. Therefore, it is not

possible to combine a radial density distribution of the Moon with the 3-D density

anomalies inferred in this work just using gravity data as constraint. It would very

interesting to estimate, instead, the size and magnitude of 3-D low-density anoma-

lies that might exist in the depth range 500-1141 km while fitting laser ranging data

of the Moon. It is also necessary to calculate the flow stress produced by the lateral

variations of density caused by these anomaly regions. If the size and magnitude
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of these regions produce realistic tidal Love numbers, moment of inertia and stress,

then the confidence on the existence of these anomalies would increase.

Finally, the deployment of seismometers in the lunar far side would bring a

wealth of knowledge about the deep interior of the Moon. Far side seismic stations

could detect far side deep moonquakes and clarify if they occur as frequently as they

do in the near side or not. Far side seismic stations could also map the similarities

and differences of the deep near and far seismic velocity structures which can be

related to density.
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Appendix A: A Bayesian approach to infer interior mass anomalies

from the gravity data of celestial bodies

A.1 Proposal distributions

The general proposal distribution used to generate a new member of the

Markov chain Monte Carlo is q({p′m}|{pm}) = q(n′, {m′}, {x′}, {y′}, {z′}, σ2′
g |{n}, {m}, {x}, {y}, {z}, σ2

g).

As can be seen in Figure 2.1, the model {p′m} is chosen by making one of four possible

changes in model {pm}. Therefore, depending on the change chosen, the proposal

distribution simplifies in one of several ways.

1. Add a new anomaly. The location of the new anomaly is chosen from the prior

distribution.

2. Change the coordinates of an existing anomaly. This proposal distribution is

the same for x, y and z. The magnitude of the standard deviation represents

how far or close can be the new location of the anomaly and s is the number

of data points in the input gravity data. In the inversions shown in this paper,

σx = σy = σz = 5 km.
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q(x′|x) =
1√

(2πn(σ2
g)
s)

exp

(
−(x′ − x)2

2σ2
x

)
(A.1)

3. Delete an existing point mass: uniform probability of choosing any of the

existing ones.

4. Change the variance of noise on input data. The standard deviation of this

distribution is σσ2
g
. For the inversions shown in this paper, σσ2

g
= 4.9 ×

10−12
(
m/s2

)
.

q(σ2′

g |σ2
g) =

1√
(2πn(σ2

g)
s)

exp

(
−

(σ2′
g − σ2

g)
2

2σ2
σ2
g

)
(A.2)

A.2 Location of anomalies of target model III

The location and magnitude of the anomalies were chosen randomly.
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Anomaly Latitude Longitude Radius Mass (kg)

1 -42.1 -25.9 0.9 7.4879 ×1017

2 75.3 -58.5 0.49 0.4125 ×1017

3 -7 11.6 0.94 0.6318 ×1017

4 66.7 59.1 0.87 0.2002 ×1017

5 54.9 76.5 0.56 0.3022 ×1017

6 53.7 52.5 0.62 0.6162 ×1017

7 -44.1 38.4 0.84 1.9651 ×1017

8 -21.4 73.5 0.74 0.1294 ×1017

9 -48.5 -64.8 0.73 4.5031 ×1017

10 -67.7 41.8 0.82 0.2986 ×1017

11 60.6 157.5 0.91 3.1491 ×1017

12 -46.2 123.2 0.85 4.4993 ×1017

13 22.4 -2.5 0.58 0.2314 ×1017

14 12.2 170.2 0.87 3.582 ×1017

15 4.1 -64 0.8 3.0992 ×1017

16 7.1 -171 0.7 1.9576 ×1017

17 34.2 26.9 0.89 0.1286 ×1017

18 -18.4 -92.2 0.9 7.8446 ×1017

19 -8.4 -20.1 0.8 0.397 ×1017

20 -39.5 -146.9 0.76 8.8032 ×1017

21 8.8 -26 0.32 0.1749 ×1017

22 -40.9 173.5 0.75 0.9531 ×1017

23 38.8 -14.5 0.65 0.4445 ×1017

24 -35.8 -169.8 0.99 5.0659 ×1017

25 48.1 117.6 0.76 0.4204 ×1017

Table A.1: Location of anomalies 1-25 of the target model III
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Anomaly Latitude Longitude Radius Mass (kg)

26 12 -37 0.71 2.0249 ×1017

27 -16.7 -0.5 0.63 4.1305 ×1017

28 16.5 128 0.59 8.5556 ×1017

29 -61.2 50.9 0.59 3.3633 ×1017

30 -46.9 -131.1 0.79 0.1691 ×1017

31 -70.3 177.2 0.71 1.3994 ×1017

32 29.8 -179.1 0.91 0.4983 ×1017

33 -11.1 53.5 0.77 0.8389 ×1017

34 -39.6 35.5 0.89 8.8763 ×1017

35 36.9 -34.5 0.44 0.1471 ×1017

36 11.7 91.4 0.65 0.3964 ×1017

37 16.7 -93.4 0.49 0.7331 ×1017

38 -9.1 -116.2 0.67 0.2973 ×1017

39 4.9 -30.6 0.73 0.9013 ×1017

40 -39.3 -119.2 0.8 3.9532 ×1017

41 38.7 -100.3 0.92 1.3488 ×1017

42 -38.8 97.3 0.87 1.0252 ×1017

43 -31.1 -19.7 0.93 2.4992 ×1017

44 -37.4 57.8 0.75 1.1489 ×1017

45 -52.9 -24.8 0.68 0.3238 ×1017

46 17.9 179.7 0.79 0.2273 ×1017

47 -10.9 -115 0.86 1.33 ×1017

48 24.3 93 0.29 0.6577 ×1017

49 55.5 128.7 0.23 0.7973 ×1017

50 -26.1 105.1 0.65 2.4374 ×1017

Table A.2: Location of anomalies 26-50 of the target model III
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Appendix B: Bayesian gravity inversion algorithm for inferring finite

size density anomalies in planetary interiors

B.1 Mean density anomaly of the output models at all layers

Figure B.1 shows the mean density anomaly of the output models. There

is an increase in density anomaly near point a) where the Imbrium basin is, next

to Serenitatis. The dichotomy between the near and far side is also visible by a

density difference between negative values of the far side and positive values of the

near side. The boundary of this far side anomaly has the right location. The SPA

basin has also the right center location and size. There is increase in density near

point d) in layer 7 and 8. This corresponds to the right lateral location of the deep

feature in the target density model but in the target model, it only exists in layer 7.

The magnitude of the anomalies in layers 8-10 is very large compared to the ones

in shallower layers. These anomalies do not correspond to any density anomaly in

the target model and are, most likely, a result of optimization of density performed

in THeBOOGIe at each iteration. If the gravity acceleration of the model is not

sensitive to the density anomaly at these depths, an optimization of the density

values at these depths results in very large values. Layers 8-10 also show a reversal
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of the magnitude of density anomalies between the far and near side. The far side

has a positive anomaly while the near side a negative one. This can be explained

by the fact that the anomalies related to the mascons, SPA and dichotomy are

much ticker than in the target model, creating an excess or deficit of mass that is

compensated by the anomalies in layers 8-10. The mascons, SPA and dichotomy

features in the mean model are thicker than in the target model because the location

of the nuclei is chosen with uniform probability inside the sphere and it is less likely

to have nuclei so close to the surface.

B.2 Kullback-Liebler divergence of the output models at all layers

Figure B.2 shows the normalized Kullback-Liebler divergence DKL/max(DKL)

of the output models per layer. DKL/max(DKL) decreases with depth. The loca-

tions with values DKL/max(DKL) > 0.5 are significantly different from the prior

distribution of density values (uniform distribution with limits -500 kg/m3 to 500

kg/m3) which means that density values in these locations depend on the input data

and are constrained by it. Most tesseroids in the first six layers are well constrained

by the input data. Tesseroids near location d) in layer 7 are well constrained too

while most of the rest of the tesseroids in that layer are not. In layers 8-10, most

tesseroids are below the limit DKL/max(DKL) < 0.5 which means they are not

significantly different from the prior distribution. There is only a small region that

is above the limit DKL/max(DKL) > 0.5 near point d) in layer 8. The area near

point d) is the location of the deep feature of the target density model.
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Figure B.1: Maps of mean density anomalies of the output models at all layers. The
first six layer have a similar lateral distribution of density with features resembling
the mascons, SPA and far side crust of the target density model. There is an increase
in density anomaly near point d) in layers 7 and 8. The deep anomaly near d) in
the target model is located in layer 7 only. There is a sudden increase and reversal
of the density anomalies in layers 8-10 compared to the shallower layers.
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Figure B.2: Maps of normalized Kullback-Liebler divergence (DKL/max(DKL)) of
output models at all layers. Most tesseroids in layers 1-6 are well constrained by the
input gravity data because they have a value of DKL/max(DKL) > 0.5. The region
near point d) in layer 7 and 8 is well constrained too while most of the tesseroids in
layers 8-10 are not.
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B.3 Standard deviation of the output models at all layers

Figure B.3 shows the standard deviation of the output models per layer.The

standard deviation increases with depth showing that very different values can fit the

input gravity data at deep locations compared to shallow locations. Layers 1-6 have

a low standard deviation with the highest values being located near the boundaries of

the far and near side crust, SPA basin and mascons. Layers 7 and 8 show interesting

values near point d). In layer 7, there is a region of uniform standard deviation near

this point but the values are slightly higher than the surrounding area. In layer 8,

there is a region with a lower standard deviation than the surrounding area near

this point also. Just by using the standard deviation is difficult to asses what this

means. The criterion used to asses significance using the standard deviation values

also depends on the mean density of the tesseroids. σρ/µρ < 1. Using the quantity

σρ/µρ allows to see the 1σ range of tesseroids that fit the input data.

B.4 Standard deviation of the output models divided the mean den-

sity anomaly at all layers

Figure B.4 shows the standard deviations values of the output models divided

by their mean density anomalies. Tesseroids with σρ/µρ > 1 are well constrained by

the input data while tesseroids with σρ/µρ < 1 are not. Regions near the boundary

of the far and near side crust, SPA basin and mascons in layers 1-6 are not well

constrained while the rest of the tesseroids in these layers are. The area near point
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Figure B.3: Maps of standard deviation (σρ) for all layers. The standard deviation
increases with depth at most locations. The standard deviation is slightly higher
near the boundaries of the far side and near side crust, SPA basin and mascons in
layers 1-6. There is a region of uniform standard deviation near point d) in layer 7
and a region of low standard deviation near point d) in layer 8.
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d) in layer 7 is well constrained too while the corresponding location in layer 8 is

not.
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Figure B.4: Maps of standard deviation divided by the mean density anomaly
of the tesseroids at each layer. Tesseroids with values smaller than 1 have density
anomalies well constrained by the input gravity data. Regions near the boundary
of the far and near side crust, SPA basin and mascons in layers 1-6 are not well
constrained while the rest of the tesseroids in these layers are. The area near point
d) in layer 7 is well constrained too.
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Hanna, Francis Nimmo, and Walter S. Kiefer. Lunar impact basins revealed by
Gravity Recovery and Interior Laboratory measurements. Science Advances,
1(9), 2015. 10.1126/sciadv.1500852.

[41] Kristel Izquierdo, Vedran Leki, and Laurent G J Montsi. A Bayesian ap-
proach to infer interior mass anomalies from the gravity data of celes-
tial bodies. Geophysical Journal International, 220(3):1687–1699, 12 2019.
10.1093/gji/ggz544.

[42] Yoshiaki Ishihara, Sander Goossens, Koji Matsumoto, Hirotomo Noda,
Hiroshi Araki, Noriyuki Namiki, Hideo Hanada, Takahiro Iwata, Seiichi
Tazawa, and Sho Sasaki. Crustal thickness of the Moon: Implications
for farside basin structures. Geophysical Research Letters, 36(19), 2009.
https://doi.org/10.1029/2009GL039708.

[43] William J. Hinze, Ralph R. B. von Frese, and Afif H. Saad. Gravity and
Magnetic Exploration: Principles, Practices, and Applications. Cambridge
University Press, 2013. 10.1017/CBO9780511843129.

[44] Frank G. Lemoine, Sander Goossens, Terence J. Sabaka, Joseph B. Nicholas,
Erwan Mazarico, David D. Rowlands, Bryant D. Loomis, Douglas S.
Chinn, Gregory A. Neumann, David E. Smith, and Maria T. Zuber.
GRGM900C: A degree 900 lunar gravity model from GRAIL primary and ex-
tended mission data. Geophysical Research Letters, 41(10):3382–3389, 2014.
10.1002/2014GL060027.

[45] Maria T. Zuber, David E. Smith, Frank G. Lemoine, and Gregory A. Neu-
mann. The Shape and Internal Structure of the Moon from the Clementine
Mission. Science, 266(5192):1839–1843, 1994. 10.1126/science.266.5192.1839.

189



[46] H. J. Melosh, Andrew M. Freed, Brandon C. Johnson, David M. Blair, Jef-
frey C. Andrews-Hanna, Gregory A. Neumann, Roger J. Phillips, David E.
Smith, Sean C. Solomon, Mark A. Wieczorek, and Maria T. Zuber. The origin
of Lunar mascon basins . Science, 340(6140):1552–1555, 2013. 10.1126/sci-
ence.1235768.

[47] Frank G. Lemoine, Sander Goossens, Terence J. Sabaka, Joseph B. Nicholas,
Erwan Mazarico, David D. Rowlands, Bryant D. Loomis, Douglas S.
Chinn, Gregory A. Neumann, David E. Smith, and Maria T. Zuber.
GRGM900C: A degree 900 lunar gravity model from GRAIL primary and ex-
tended mission data. Geophysical Research Letters, 41(10):3382–3389, 2014.
10.1002/2014GL060027.

[48] Richard J. Blakely. Potential Theory in Gravity and Magnetic Applications.
Cambridge University Press, 1995. 10.1017/CBO9780511549816.

[49] John David Jackson. Classical electrodynamics. Wiley, New York, NY, 3rd
ed. edition, 1999. ISBN:9780471309321.

[50] Allen K. McNamara. A review of large low shear velocity provinces
and ultra low velocity zones. Tectonophysics, 760:199 – 220, 2019.
https://doi.org/10.1016/j.tecto.2018.04.015.

[51] Trond H. Torsvik, Rob van der Voo, Pavel V. Doubrovine, Kevin Burke,
Bernhard Steinberger, Lewis D. Ashwal, Reidar G. Trønnes, Susan J. Webb,
and Abigail L. Bull. Deep mantle structure as a reference frame for move-
ments in and on the Earth. Proceedings of the National Academy of Sciences,
111(24):8735–8740, 2014. 10.1073/pnas.1318135111.

[52] Adam M. Dziewonski, Vedran Lekic, and Barbara A. Romanow-
icz. Mantle anchor structure: An argument for bottom up tec-
tonics. Earth and Planetary Science Letters, 299(1):69 – 79, 2010.
https://doi.org/10.1016/j.epsl.2010.08.013.

[53] Edward J. Garnero, Brian Kennett, and David E. Loper. Studies of the Earth’s
Deep Interior-Eighth Symposium. Physics of the Earth and Planetary Interi-
ors, 153(1):1 – 2, 2005. https://doi.org/10.1016/j.pepi.2005.08.003.

[54] A. Mark Jellinek and Michael Manga. Links between long-lived hot spots,
mantle plumes D” and plate tectonics. Reviews of Geophysics, 42(3), 2004.
10.1029/2003RG000144.

[55] Vincent Courtillot, Anne Davaille, Jean Besse, and Joann Stock. Three dis-
tinct types of hotspots in the Earth’s mantle. Earth and Planetary Science Let-
ters, 205(3):295 – 308, 2003. https://doi.org/10.1016/S0012-821X(02)01048-8.

[56] Louise H. Kellogg, Bradford H. Hager, and Rob D. van der Hilst. Composi-
tional stratification in the deep mantle. Science, 283(5409):1881–1884, 1999.
10.1126/science.283.5409.1881.

190



[57] Bernhard Steinberger, Stephanie C. Werner, and Trond H. Torsvik.
Deep versus shallow origin of gravity anomalies, topography and vol-
canism on Earth, Venus and Mars. Icarus, 207(2):564 – 577, 2010.
https://doi.org/10.1016/j.icarus.2009.12.025.

[58] J.R. Bates, W.W. Lauderdale, and H. Kernaghan. ALSEP Termination Re-
port. Technical report, NASA Reference Publication Series, 1979.

[59] W. Bruce Banerdt, Suzanne E. Smrekar, Don Banfield, Domenico Giardini,
Matthew Golombek, Catherine L Johnson, Philippe Lognonne, Aymeric Spiga,
Tilman Spohn, Clement Perrin, Simon C. Stahler, Daniele Antonangeli, Sami
Asmar, Caroline Beghein, Neil Bowles, Ebru Bozdag, Peter Chi, Ulrich Chris-
tensen, John Clinton, Gareth S. Collins, Ingrid Daubar, Veronique Dehant,
Melanie Drilleau, Matthew Fillingim, William Folkner, Raphael F. Garcia,
Jim Garvin, John Grant, Matthias Grott, Jerzy Grygorczuk, Troy Hudson,
Jessica C. E. Irving, Gunter Kargl, Taichi Kawamura, Sharon Kedar, Scott
King, Brigitte Knapmeyer-Endrun, Martin Knapmeyer, Mark Lemmon, Ralph
Lorenz, Justin N Maki, Ludovic Margerin, Scott M McLennan, Chloe Michaut,
David Mimoun, Anna Mittelholz, Antoine Mocquet, Paul Morgan, Nils T.
Mueller, Naomi Murdoch, Seiichi Nagihara, Claire Newman, Francis Nimmo,
Mark Panning, W Thomas Pike, Ana-Catalina Plesa, Sebastien Rodriguez,
Jose Antonio Rodriguez-Manfredi, Christopher T. Russell, Nicholas Schmerr,
Matt Siegler, Sabine Stanley, Elanore Stutzmann, Nicholas Teanby, Jeroen
Tromp, Martin van Driel, Nicholas Warner, Renee Weber, and Mark Wiec-
zorek. Initial results from the InSight mission on Mars. Nature Geoscience,
2020. https://doi.org/10.1038/s41561-020-0544-y.

[60] Christoph Reigber. Gravity field recovery from satellite tracking data. In
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