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Degradation of electronic components is typically accompanied by a deviation in 

their electrical parameters from their initial values. Such parametric drifts in turn will 

cause degradation in performance of the circuit they are part of, eventually leading to 

function failure due to parametric faults. The existing approaches for predicting 

failures resulting from electronic component parametric faults emphasize identifying 

monotonically deviating parameters and modeling their progression over time. 

However, in practical applications where the components are integrated into a 

complex electronic circuit assembly, product or system, it is generally not feasible to 

monitor component-level parameters. To address this problem, a prognostics method 

that exploits features extracted from responses of circuit-comprising components 

exhibiting parametric faults is developed in this dissertation.  



  

The developed prognostic method constitutes a circuit health estimation step followed 

by a degradation modeling and remaining useful life (RUL) prediction step. First, the 

circuit health estimation method was developed using a kernel-based machine 

learning technique that exploits features that are extracted from responses of circuit-

comprising components exhibiting parametric faults, instead of the component-level 

parameters. The performance of kernel learning technique depends on the automatic 

adaptation of hyperparameters (i.e., regularization and kernel parameters) to the 

learning features. Thus, to achieve high accuracy in health estimation the developed 

method also includes an optimization method that employs a penalized likelihood 

function along with a stochastic filtering technique for automatic adaptation of 

hyperparameters. 

Second, the prediction of circuit’s RUL is realized by a model-based filtering method 

that relies on a first principles-based model and a stochastic filtering technique. The 

first principles-based model describes the degradation in circuit health with 

progression of parametric fault in a circuit component. The stochastic filtering 

technique on the other hand is used to first solve a joint ‘circuit health state—

parametric fault’ estimation problem, followed by prediction problem in which the 

estimated ‘circuit health state—parametric fault’ is propagated forward in time to 

predict RUL. Evaluations of the data from simulation experiments on a benchmark 

Sallen–Key filter circuit and a DC–DC converter system demonstrate the ability of 

the developed prognostic method to estimate circuit health and predict RUL without 

having to monitor the individual component parameters. 
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Chapter 1: Introduction 

Electronics are increasingly used in mission, safety, and infrastructure-critical 

systems. Unexpected failures in such electronic systems during field operation can 

have severe implications [1]. Failures could be prevented and unexpected system 

downtime could be eliminated if an appropriate prognostic method is incorporated to 

determine the advent of failure and mitigate system risk [2]. 

Electronic system failures can result from any part of the electronics, including 

faults in the circuit board (e.g. traces), electronic components, or connectors.  Many 

discrete electronic components such as capacitors, resistors, transistors, and more 

exhibit parametric faults as they age i.e., exhibit fractional deviation in component 

parameters (such as resistance, capacitance, and more) from their initial values and 

beyond their acceptable tolerance range [3]. The intensity of the fault, meaning the 

magnitude in parametric drift from initial value, increases as the fault progresses. For 

example, the capacitance of a liquid electrolytic capacitor decreases with constant 

exposure to elevated temperature [4]. The resistance between collector and emitter of 

an insulated gate bipolar transistor (IGBT) increases due to die-attach degradation 

resulting from thermo-mechanical stresses induced by power cycling [5]. Figure 1 

shows parametric drifts exhibited by electrolytic capacitor [4], IGBT [5], embedded 

capacitor [6], and resistor [7] under accelerated stress tests.  

Parametric faults in circuit components affect the performance of the circuit they 

are part of and eventually compromise the electronic system functions [3]. For 

example, photovoltaic power inverters often are plagued by parametric faults in 

electrolytic capacitors and IGBTs, which result in loss of power generation that are 
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valued in millions of dollars [8][9]. A parametric fault in capacitors and inductors 

within railway track circuit leads to significant disruption of rail service and could 

pose safety risks [10]. Thus predicting electronic circuit failures resulting from the 

progression of parametric faults in components will aid in improving the operational 

reliability and availability of electronic systems. 

 

 
Figure 1. Example plots for parametric drifts exhibited by electronic 
components. (a) Degradation of electrolytic capacitors under isothermal aging is 
accompanied by decrease in capacitance parameter. (b) Increase in resistance 
between the collector and emitter (𝑹𝑪𝑬) terminals of an insulated gate bipolar 
transistor due to die attach degradation. (c) Decrease in capacitance with 
degradation of embedded capacitors under combined temperature and voltage 
aging. (d) Increase in resistance with solder joint degradation of surface mount 
resistors under thermal cycling conditions. 

Development of a prognostic method generally involves the development of a (1) 

health estimation method, (2) degradation model, and (3) failure prediction method 
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(see Figure 2). In the health estimation step, the degradation in circuit health (or 

performance) is quantified and expressed as a health indicator (𝑯𝑰). The health 

indicator could be an estimate of the accumulated damage or a drift in circuit 

performance. In the degradation-modeling step, a first principles-based or an 

empirical model is developed to estimate the progression of 𝑯𝑰 based on the current 

health and operating conditions. In the failure prediction step, the end of life (𝑬𝑶𝑳) is 

predicted (from which remaining useful life (𝑹𝑼𝑳) is estimated) by integrating the 

degradation model with knowledge about future operating conditions, current and 

past estimates of 𝑯𝑰 using an appropriate regression technique. 

 
 

Figure 2. Typical steps involved in a prognostic approach. 

The scope of this dissertation is focused on the estimation and degradation 

modeling of the circuit health in the presence parametric faults in circuit components. 

Here, an electronic circuit is defined as a collection of discrete components that are 

connected in a closed- or open-loop format to carry out a predetermined function.  A 

parametric fault is defined as the deviation in circuit component parameters from their 

initial values and beyond their acceptable tolerance range [3]. The existing literature 

pertaining to health estimation and 𝑅𝑈𝐿 prediction of parametric fault is reviewed in 

Health Estimation Degradation Modeling Failure Prediction 
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Chapter 2: Literature Review. Additionally, the research gaps in the existing literature 

and the objectives of this dissertation are also provided in Chapter 2. 
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Chapter 2: Literature Review 

Many methods have been developed to estimate health and predict failures of 

mechanical systems [11]-[14]. However, health estimation and failure prediction in 

electronics is made challenging by the presence of component tolerances, 

interdependency of electronic components, and the complex nature of fault 

mechanisms. The existing literature is classified and reviewed based on the approach 

employed for health estimation and failure prediction. The two approaches being the 

component-centric and circuit-centric approaches. 

2.1 Component-Centric Approach 

Most of the current methods for the prognosis of failures resulting from component 

parametric faults implements a component-centric approach that have relied on the 

in-situ measurements of component-level parameters exhibiting monotonicity and 

trending them using an appropriate regression technique. For example, Celaya et al. 

[14] and Kulkarni et al. [15] developed a first principles-based model that uses 

capacitance (𝐶) and equivalent series resistance (𝐸𝑆𝑅) measurement to predict 

electrolytic capacitor failures. Patil et al. [5] and Celaya et al. [16] employed 

statistical filtering technique along with an empirical model to predict insulated gate 

bipolar transistor (IGBT) failures using resistance between collector-emitter, 𝑅!" 

parameter. Kwon et al. [17][18] used particle filtering to predict the time-to-failure of 

solder joints subjected to a mechanical stress condition based on RF impedance 

monitoring. A study by Alam et al. [6] focused on a distance-based data-driven 

approach to track the degradation of embedded capacitors using past and current 

measurements of the capacitance, dissipation factor, and insulation resistance 
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parameters. These methods approach prognostics from a component-centric 

perspective. However, in practical applications it may not be viable to measure the 

parameters of individual components of a circuit to predict failures. In particular, the 

number of components one needs to monitor can make it economically prohibitive.  

Additionally, parameters like resistance, capacitance, or inductance have to be 

measured when the component is not part of circuit. Once the component of interest 

is part of a circuit, the contributions from the rest of the circuit components affect the 

measurement of individual component parameters. It is for all of these reasons that 

the work in this dissertation takes a circuit-centric approach in contrast to a 

component-centric approach to predict failures resulting from parametric faults. 

2.2 Circuit-Centric Approach 

The principle underlying a circuit-centric approach is that the presence of a 

parametric fault in circuit components will change the circuit characteristics and as 

the parametric fault increases in magnitude, the circuit performance degrades, 

eventually leading to a functional failure. Thus, a health estimation or failure 

prediction method that exploits features specific to the electronic circuitries will 

alleviate the need to monitor the individual circuit components. 

The concept behind circuit-centric approach is not new. However, most of the 

existing research that employs a circuit-centric approach has aimed at detecting and 

isolating the component exhibiting parametric fault [19]-[24] using a machine 

learning technique. A few studies [25]-[28] have developed methods to quantify 

degradation in the health of a circuit and predict circuit failures due to parametric 

deviations in circuit components. These studies employ a distance-based method to 



 

 7 
 

estimate the circuit health from the extracted circuit features and uses an empirical-

model along with particle filter or relevance vector machine (RVM) to estimate the 

trend in circuit health degradation and predict 𝑅𝑈𝐿. For example, in Vasan et al. [25], 

the circuit health (also referred to as health indicator, 𝐻𝐼) was estimated using a 

Mahalanobis distance (MD)-based feature transformation: 

𝐻𝐼 = !"! !!!!
!!!

!"! !!!!
!!!

    (1) 

where 𝑟 represents the total number of feature sets extracted (e.g., time-domain, 

wavelet-based, or statistical features) with each feature set containing 𝑛! elements, 

and 𝑀𝐷! represents the MD value for the 𝑖th feature set. The idea behind Eq. (1) is 

that MD amplifies parametric deviations outside the tolerance range compared to the 

allowable parametric deviations within the tolerance range. 𝑅𝑈𝐿 prediction in [25] 

was realized by coupling a sum of double-Gaussian process model (see Eq.(2)) with 

particle filter: 

𝐻𝐼! = 𝑎!
! − !!!!

!

!!
!

!

+ 𝑎!
! − !!!!

!

!!
!

!

    (2) 

where 𝐻𝐼! is the circuit health at time 𝑡 is the time index; and 𝑎!
! , 𝑏!

! , 𝑐!
! ,𝑎!

! , 𝑏!
!  

and 𝑐!
! are the model parameters. 

Following [25], Li et al. [26] provided an estimate for analog filter circuit health 

(𝐻𝐼) using a Euclidean distance (ED) measure: 

𝐻𝐼 = !
!

𝑓!!
!!! ;𝑤𝑖𝑡ℎ 𝑓! =

!!!!!"#
!!"#!!!"#

    (3) 
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where 𝑓!  denotes the deviation in 𝑖th feature, 𝑓!"# denotes the minimum deviation 

distance, 𝑓!"# denotes the maximum deviation distance, and 𝑛 the total number of 

features. However, the 𝐻𝐼 calculated using Eq. (2) does not take into account the 

correlation between extracted features. Thus, if two features are correlated, the 𝐻𝐼 

calculated using Eq. (2) might exhibit a rapid increase leading to a false alarm, even 

before the circuit has functionally failed. Furthermore, 𝑅𝑈𝐿 prediction in [26] was 

carried out in a fashion similar to the approach employed in [25] with the only 

difference being the use of sum of double-exponential process model, as in Eq. (4), in 

place of a Gaussian process model: 

𝐻𝐼! = 𝑎! exp 𝑡. 𝑏! + 𝑐! exp 𝑡.𝑑!    (4) 

where 𝐻𝐼! is the circuit health at time 𝑡 is the time index; and 𝑎! , 𝑏! , 𝑐! , and 𝑑!are the 

model parameters. 

Zhang et al. [27] and Zhou et al. [28] calculated the 𝐻𝐼 as the 𝑐𝑜𝑠 ∗  and 𝑠𝑖𝑛!! ∗  

of the distance between the test features and the features extracted from circuit 

response under no-fault condition, but failed to take into account the effect of 

component tolerances. Prior experience has shown that the presence of component 

tolerances induces noise (in addition to measurement noise) in the features extracted 

and as a result affects the accuracy of a diagnostic and prognostic technique. Zhou et 

al. [28] employed the same model and regression technique as Li et al. [26] for 𝑅𝑈𝐿 

prediction. Zhang et al. [27] on the other hand used a RVM’s inherent model instead 

of a regression fit to realize RUL prediction, which requires and assumes the 𝑅𝑈𝐿 

random variable is Gaussian distributed. 
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The work of Kumar et al. [29] and Sutrisno [30], although not directly applied to 

circuits, can be adopted for circuit health estimation. The 𝐻𝐼 estimation method 

developed by Kumar et al. [29] was based on the fractional contributions by the MD 

measures over a time window of extracted features and was applied to detect 

anomalies. When an anomaly occurs, the number of higher MD values in a time 

window would increase, resulting in greater fractional contribution from the 

histogram bin’s with higher MD values and eventual increase in 𝐻𝐼. Sutrisno [29] 

proposed a k-nearest neighbor (k-NN)-based 𝐻𝐼 method, where the health is 

estimated as the ED measure between data to the centroid of the nearest neighbors 

from offline constructed healthy and failure classes. 

2.3 Gaps in Existing Literature  

The above-mentioned MD and ED measure-based health estimation methods [25]-

[30] rely on the assumption that the distance between samples of the healthy classes is 

smaller when compared to the distance between samples from the healthy class to that 

from the failure class in the principal component space (PCS) or Euclidean space 

(ES) respectively. This condition requires that the healthy and failure classes be 

linearly separable in the extracted feature space (see Figure 3) i.e., classification 

between healthy and failure classes can be realized using a decision function of the 

following form: 

ℎ! 𝑥 = 𝑔 𝑤!𝑥       (5) 

such that, 𝑤!𝑥 > 𝑘 (or < 𝑘); 𝑥 ∈ 𝐻 

and, 𝑤!𝑥 < 𝑘 (or > 𝑘); 𝑥 ∈ 𝐹. 
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where, 𝑤 is a weighting vector, 𝐻 and 𝐹 denotes the healthy and failure classes, and 𝑘 

is a constant. However, prior work [22]-[25] has demonstrated that circuit responses 

under no-fault and faulty conditions require nonlinear methods such as kernel-

learning techniques for fault diagnosis and are seldom linearly classifiable in the 

extracted feature space.  

 
Figure 3. Examples where linear separability between healthy and failure classes 
ensures 𝒅𝒉𝒉 < 𝒅𝒉𝒇 either in (a) Euclidean Space or (b) Principal Component 
Space. 
 

Menon et al. [31] compared various covariance estimation method with MD to 

classify parametric faulty from healthy features of Sallen-Key Band Pass Filter. The 

best fault classification accuracy achieved with MD method was ~78%. However, 

Vasan et al. [25] demonstrated that for the same benchmark circuit with same training 

and testing data, a trained least square-support vector machine (LS-SVM, a kernel-

based classifier) can achieve classification accuracy ~99%. This proves that, a non-

linear method is required to classify a healthy circuit from a circuit with parametric 

fault. Since health estimation methods extend the idea of fault classification, it is 
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expected that a health estimation method based on non-linear technique such as 

kernel-based learning is likely to provide health estimates with higher efficiency. 

Furthermore, the degradation models used in the above-mentioned studies for 

failure prediction [25]-[28] are entirely empirical and does not describe the actual 

progression of parametric fault in the circuit components. It has been demonstrated 

earlier [32] that, a first principles-based model that uses domain knowledge to capture 

the physics-behind degradation leads to a reliable prognostics outcome. This was also 

demonstrated by Kulkarni et al. [25], who used a first principles-based model instead 

of an empirical model, as used by Celaya et al. [14], to improve accuracy in 

electrolytic capacitor failure prediction. Thus there is a need for a first principles-

based degradation model that describes the progression of parametric fault in the 

circuit component to generate reliable 𝑅𝑈𝐿 estimates for circuits with parametric 

faults. 

2.4 Dissertation Objectives  

The first objective of this dissertation is to develop a kernel-based learning 

technique to estimate the health degradation of an electronic circuit due to parametric 

deviation in the circuit components. The health estimate should closely reflect 

intensity of the fault, meaning the magnitude in parametric drift from nominal value, 

as closely as possible. 

The second objective of this dissertation is to develop a first principles-based model 

to track degradation in circuit health due to the progression of parametric fault. This 

model will be used in conjunction with a stochastic filtering technique to predict 𝐸𝑂𝐿 

of a circuit generate 𝑅𝑈𝐿 estimates. 



 

 12 
 

Chapter 3: Electronic Circuit Health Estimation Through Kernel 
Learning 

This chapter presents the developed circuit-centric approach to circuit health 

estimation, which was posed and solved as a soft classification problem (first 

established by Wahba [33]) in the kernel Hilbert spaces using a parameterized kernel 

function. Thus, the circuit-centric approach uses a kernel-based machine learning 

technique to exploit features extracted from responses of circuit-comprising 

components exhibiting parametric faults, instead of component-level parameters to 

generate health estimates. Hence, this chapter begins by providing a brief background 

on kernel-based learning and hyperparameter selection in the context of kernels in 

Section 3.1. The health estimation problem is formulated as a kernel-based learning 

problem for which an efficient solution is developed in Section 3.2. Section 3.3 

presents the performance results of the health estimation method on a Sallen–Key 

band pass circuit and the circuits of a DC–DC buck converter system.  

3.1 Kernel-Based Learning  

The principle underlying kernel-based approaches (illustrated in Figure 4) that 

capture nonlinear relationships in the learning dataset (i.e., fault dictionary built for a 

circuit), is to map the data from a feature space to a higher-dimensional space and fit 

linear models in the projected space [34][35]. This task of projecting to a higher-

dimensional space is realized through computations in the form of inner products via 

kernel functions [36]. Given new test data, a decision on the test data is made by 

projecting the test data to the higher-dimensional space and then calculating the 



 

 13 
 

similarity measures between the test data, 𝒙𝒕, and all other training data, 𝒙𝒊 𝒊!𝟏
𝒏 , 

(both healthy and failure). 

 

Figure 4. Illustration of the principle underlying kernel-based learning methods. 

The function, 𝐾 𝑥! , 𝑥! :ℝ!!×ℝ!! → ℝ, determines the similarity measure between 

the test, 𝑥!, and training feature, 𝑥!, of length 𝑛! and often a parameterized family of 

kernel functions is considered. For example, the automatic relevance determinant 

Gaussian kernel function 

𝐾 𝑥! , 𝑥! = 𝑒𝑥𝑝 − !!,!!!!,!
!

!!

!!
!!!    (6) 

is parameterized by 𝝈 = 𝜎! 𝜎! ⋯ 𝜎!! , where 𝝈 is generally referred to as the 

kernel parameters. Furthermore, in the presence of component tolerances, the learning 

dataset is noisy and as a result one has to also include a regularization parameter, 𝛾, to 

control the complexity of the decision function. 

The representation of the intermediate metric, 𝑧, which aids in decision making 

(i.e., in classification the decision function is 𝑠𝑖𝑔𝑛(𝑧); for regression, 𝑧 is the output; 

and for health estimation,𝐻𝐼 = 𝑔 𝑧 ) of the test data 𝑥!, takes the following form 

[37]-[39]: 

𝑧 = 𝛼!𝐾 𝑥! , 𝑥! + 𝑏!
!!!          (7) 

where 𝛼! 𝛼! ⋯ 𝛼! 𝑏  are the model parameters, and 𝑛 represents the total 

training features available for learning. The estimation of model parameters has been 
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extensively dealt with in the literature [37]-[39]. However, the estimation of model 

parameters depends on the choice of regularization parameter, 𝛾, and kernel 

parameters,𝝈, which are collectively referred to as the hyperparameters, 𝒉. The 

automatic selection of hyperparameter values by the learning algorithm for a given 

training dataset is referred to as the model selection problem. 

The model selection problem can be solved by optimizing an error measure, such as 

v-fold cross-validation error, on a grid of hyperparameter values [33][40]. However, a 

grid search approach does not cover the entire hyperparameter space and is 

computationally expensive (depending on the length 𝑛! of feature vector 𝑥). Gradient 

descent-based methods have also been reported in the literature for model selection 

[41]-[43]. However, it is well understood that the gradient descent is optimal only 

when the validation measure is convex (or concave). Otherwise, the gradient descent-

based methods are affected by the local minima problem. Alternatively, evolutionary 

direct search methods that allow for different solutions to interact with the purpose to 

allocate more resources in the regions of the search space have been successfully 

applied to estimate hyperparameters [44]-[47]. However, in higher-dimensional 

search spaces, it is desirable to base the search on directional information as provided 

by the gradient descent. Hence, this study combined the advantage of gradient descent 

with an evolutionary search by drawing inspiration from Zhou et al. [48] to solve the 

model selection problem in the context of circuit health estimation. 

3.2 Heath Estimation Method 

The developed circuit health estimation method involves both learning and testing 

phase. During the learning phase, a fault dictionary is constructed, on which the 
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kernel-based learning algorithm is trained. In the testing mode the circuit health is 

estimated by extracting and comparing features with those stored in the constructed 

fault dictionary using a trained kernel algorithm. 

In order to construct a fault dictionary, the critical components of the circuit under 

test (CUT) are identified, using failure modes, mechanisms, and effects analysis 

(FMMEA) [51] or historical data or test results. Then we determine how the critical 

components will exhibit parametric faults and then perform fault-seeded simulations. 

For each critical component identified and for each failure mode through which the 

critical component can exhibit fault, a fault-seeded simulation must be performed. 

Thus, if there are four critical components and each component can exhibit faults in 

two different modes, such as in Sallen-Key filter, there are eight (4x2) fault-seeded 

conditions and one no-fault condition. Overall, a Sallen-Key filter circuit has nine 

fault conditions. 

A critical component is a discrete element, such as an electrolytic capacitor or 

IGBT, which has a high risk of exhibiting parametric deviations (see Figure 1) and 

eventually prevents the circuit from performing its intended functions. For example, 

assume a low-pass filter designed to allow signals with frequencies less than 2 kHz. If 

the low-pass filter’s critical components exhibit parametric faults and cause the 

circuit to allow 3 kHz signals, then the circuit is considered to have failed.  

For electronic circuits, the behavioral characteristics are assumed to be embedded 

in either or both the time and frequency responses. Hence, the circuit must be excited 

by a test signal to extract features. For example, the characteristics of a filter circuit 

are contained in its frequency response. In order to extract features from the 
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frequency response, the filter circuit has to be excited by an impulse signal or a sweep 

signal, based on whether the filter circuit is linear or nonlinear. 

Once the critical component and its fault modes (i.e., how the component exhibits 

parametric deviation) are identified, the CUT is then replicated in a simulation 

environment (e.g., PSPICE) for its hypothesized fault conditions and excited by a test 

signal to extract features. Here, a fault condition refers to a situation where one of the 

CUT’s critical components has deviated beyond a predefined failure range, which is 

larger than the actual tolerance range, such that the CUT fails to carry out its intended 

function. Fault-seeded testing can also be performed instead of running simulations, 

however, depending on the circuit complexity and the number of critical components 

this task may be time-consuming. Applying a signal processing technique such as 

wavelet transform on the CUT responses typically performs the feature extraction 

task. Feature extraction for CUT diagnostics is extensively addressed in the literature 

[20]-[22], [25], [52]-[55] and can be employed as needed for circuit health estimation. 

Features extracted under various fault conditions are stored in a fault dictionary. 

Let the features available during training be denoted by 𝑆 = 𝑥! ,𝑦! !!!
! , where 𝑛 

denotes the number of training samples, 𝑥! is the 𝑖th feature vector of length 𝑛! that is 

extracted from the circuit response to test stimulus and belongs to feature space 𝑋, 

and 𝑦! ∈ 𝑌 is the label for which 𝑦! = +1 denotes the feature vector 𝑥!  is extracted 

when the circuit was healthy, and 𝑦! = −1 denotes the feature vector 𝑥!  is extracted 

when the circuit failed, (i.e., the parametric deviation in one of the circuit components 

has caused the circuit characteristics to go out of bounds). The goal of the circuit 
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health estimation problem is to estimate a metric 𝐻𝐼 ∈ 0,1  for a test input 𝑥! given 

𝑆. 

In kernel methods a feature vector (𝑥) is projected to a higher-dimensional space 

where the healthy and failure classes are linearly separable. An intermediate 

metric 𝑧  is calculated to identify where the test point is projected to in the higher-

dimensional space using Eq. 6. For a given choice of hyperparameters, the model 

parameters in Eq. 7 can be optimally estimated. For example, in least squares-support 

vector machine (LS-SVM) or regularization network, the model parameters can be 

estimated by solving a system of linear equations [38][39]: 

𝛀 + !
!
𝚰 𝟏

𝟏! 0

𝜶
𝑏 = 𝒀

0     (8) 

where 𝜶 = 𝛼! 𝛼! ⋯ 𝛼! !,  𝒀 = 𝑦! 𝑦! ⋯ 𝑦! ! , 𝟏 = 1,1,1⋯ 1 !×!
! , 𝑰 is 

an identity matrix of size 𝑛×𝑛, and 𝛀 = Ω!" = 𝐾 𝑥! , 𝑥! . 

In order to estimate the circuit health 𝐻𝐼!, at time 𝑡, the metric is treated as the 

healthy class conditional probability i.e., the probability that 𝑥! is extracted when the 

CUT is healthy and no critical component exhibit parametric fault. Platt [56] 

demonstrated that the conditional probability of the positive label given the prediction 

from Eq. 7 could be represented by a logistic regression function. Thus, using Platt’s 

[56] posterior class probability function, the circuit health 𝐻𝐼! can be estimated from 

𝑧! using the following form: 

𝐻𝐼! = Ρ 𝑦! = +1 𝑥! = 𝑔 𝑧! = !
!!!"# !!!!!

= 𝑝!         (9) 

where 𝑨 and 𝑩 are parameters are estimated by using Newton’s backtracking method 

over the training dataset 𝑺 [57]. As can be seen from Eq. 9, 𝑯𝑰 depends on 𝒛, and it 
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has been established in Sec. 3.1 that 𝒛 depends on the hyperparameters 𝒉. Thus, the 

proper selection of 𝒉 for a given 𝑺 is necessary to achieve the best possible accuracy 

in health estimation. An overview of the developed circuit health estimation method 

is schematically represented in Figure 5. 

3.1.1 Likelihood-based Function for Model Selection 

The model selection problem is often solved by constructing an objective function 

with a probabilistic interpretation of a term that takes form 𝐹 + 𝜆𝑅, where 𝐹 depends 

on the empirical loss, 𝑅 is the regularization term, and 𝜆 is the regularization 

parameter. Glasmachers and Igel [41] argued that this function is better off 

represented as a negative logarithm of a posterior probability than choosing priors on 

hyperparameters. Based on this argument, an objective function has been developed 

that extends Platt’s [56] posterior class probability function to a negative log-

likelihood function. 

Let 𝑝 denote the health estimate for a CUT from which a feature vector 𝑥  is 

extracted. Then, the likelihood function ℒ ∗  for a feature vector 𝑥!  is 𝑝!  if 

𝑦! = +1 (circuit is healthy) and 1− 𝑝!  if 𝑦! = −1 (circuit failed). This can be 

mathematically expressed as follows: 

ℒ 𝑥! , 𝑦! = 𝑝!
!!!!
! 1 − 𝑝!

!!!!
! .    (10) 

However, in Eq. (10), 𝑝!  is a function of 𝑧! , i.e., 𝑝! = 𝑔 𝑧!  and 𝑧! in turn depends 

on the model parameters 𝜶 and 𝑏 (see Eq. 7), which in turn depend on the 

hyperparameters 𝛾 and 𝝈 (see Eq. 8). Thus, the likelihood function is essentially a 

function of the hyperparameters. The objective function is typically defined over 
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cross-validation datasets that are extracted from the training dataset. Thus, the cost 

function is the negative log-likelihood function over a cross-validation set 𝑆 =

𝑥! ,𝑦! !!!
! : 

ℒ! 𝛾,𝝈 = − !!!!
!

𝑙𝑜𝑔 𝑝! + !!!!
!

𝑙𝑜𝑔 1 − 𝑝!!
!!!  (11) 

where 𝑝! =
!

!!!"# !!!!!
 and 𝑧! = 𝛼!𝐾 𝑥! , 𝑥! + 𝑏!

!!! . 

 

Figure 5.  Overview of the proposed circuit health estimation method. 
 
 

For model selection, this study focuses on minimizing the k-fold cross-validation 

log-likelihood 

 ℒ = ℒ!! 𝛾,𝝈
!
!!!     (12) 

where 𝑆 = 𝑆! ∪ 𝑆! ∪⋯ 𝑆! is a partition of the training dataset into K disjoint subsets 

and ℒ!! 𝛾,𝝈  denotes the objective function given the holdout set 𝑆!. 
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3.1.2 Optimization Approach for Model Selection 

To identify the hyperparameter values that will reduce the generalization error (Eq. 

12), the optimization problem can be mathematically expressed as follows: 

ℎ∗ = argmin!∈ℋ ℒ! ℎ     (13) 

where ℒ! ℎ  denotes the likelihood function ℒ in Eq. 12 over the cross-validation set 

𝑆 , and ℋ denotes the solution space for hyperparameters. It is assumed 

that ℒ! ℎ  has a unique global optimal solution ℎ∗. 

Many global optimization algorithms such as particle swarm optimization (PSO) 

[58] or simulated annealing (SA) [59] could be applied to solve this problem. Global 

optimization algorithms share the similarity of iteratively repeating the following two 

steps: (1) the candidate solutions are generated from an intermediate distribution over 

the solution space, and (2) the intermediate distribution is updated using the candidate 

solutions. The difference between various global optimization methods depends on 

how the aforementioned two steps are performed. An approach for global 

optimization with a faster convergence rate was developed by Zhou et al. [48] by 

reformulating the global optimization problem as a stochastic filtering problem. Zhou 

[49] demonstrated in her thesis that a filtering-based global optimization approach 

outperforms cross entropy (CE) and SA optimization methods. Boubezoul and Paris 

[50] in-turn demonstrated that the classification accuracy obtained using CE method 

for selecting the hyperparameters of a SVM classifier is better than the classification 

accuracy obtained with PSO or grid search optimization methods. Additional 

simulation studies were carried out in Appendix A to demonstrate superiority of 

Zhou’s [49] filtering-based global optimization approach over PSO. The stochastic 
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filtering-based global optimization approach allows for directional information to be 

included during the search process and thus was incorporated into this work to solve 

the model selection problem. 

The goal of stochastic filtering is to estimate the unobserved state in a dynamic 

system through a sequence of noisy observations of the state. The unobserved state 

corresponds to the optimal solution to be estimated; the noisy observations in filtering 

bring randomization into the optimization algorithm; and the conditional distribution 

of the unobserved state is a distribution over the solution space, which approaches a 

delta function concentrated on the optimal solution as the system evolves. Hence, the 

task of searching for the optimal solutions is carried out through the procedure of 

estimating the conditional density sequentially. Some sort of approximation is 

required to implement a stochastic filtering method. Particle filter is a widely used 

sequential Monte Carlo technique that does not apply a constraint on the state’s 

distribution and does not need Gaussian assumption on the process noise. Hence, a 

particle filter is employed for performing global optimization to solve the model 

selection problem.  

The optimization problem is transformed into a filtering problem by constructing an 

appropriate state-space model. Let the state space model be: 

ℎ! = ℎ!!! − 𝜀∇ℒ ℎ!!! ;     𝑘 = 1,2,…   (14) 

𝑒! = ℒ ℎ! − 𝑣!       (15) 

where ℎ! is the unobserved state to be estimated (i.e., the new set of 

hyperparameters) and 𝑒! is the observation with noise 𝑣! (which brings 

randomization into the optimization algorithm).  
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In Eq. 14, ∇ℒ ℎ!  denotes the gradient of the likelihood function ℒ! ℎ  with 

respect to the hyperparameters ℎ!. Since ℒ ℎ!  is log-likelihood function, it is 

differentiable with respect to the hyperparameters whenever the kernel function is 

differentiable. ∇ℒ ℎ!  can be found by solving the following system of linear 

equations if the automatic relevance determinant Gaussian kernel function is chosen: 

!ℒ!
!"

= !ℒ!
!!!

!!"#$ !𝝍! !! 𝜷
!!
! 𝝍! 𝑥! 𝜷!

!!!    (16) 

!ℒ!
!!!

= !ℒ!
!!!

!!"#$ !𝝍! !! 𝜷
!!
! 𝝍! 𝑥! 𝜷 +𝝍! 𝑥! 𝜷!

!!!  (17) 

where 𝑝! = 1+ 𝑒𝑥𝑝 𝐴𝝍! 𝑥! 𝜷+ 𝐵
!!, 

  𝝍! 𝑥! = 𝑘 𝑥!, 𝑥! 𝑘 𝑥!, 𝑥! ⋯ 𝑘 𝑥!, 𝑥! 1 , and  

  𝜷 = 𝛼! 𝛼! ⋯ 𝛼! 𝑏 !. In Eq. 16 and Eq. 17, 𝜷 is obtained by solving 

for 𝜷 = −𝚸!𝟏𝚸𝜷, where 𝚸 = 𝛀+ !
!
𝚰 𝟏

𝟏! 0
. 

Figure 6 illustrates the use of particle filter for optimization in model selection, and 

the algorithm is summarized below, where the hyperparameter is assumed to be one-

dimensional for illustration purposes. Initially, a distribution 𝑏 is assumed over the 

solution space for hyperparameters ℋ as shown in Figure 6(a). This distribution 

represents the probability of having a global optimum at different regions of the 

solution space. Random sampling of the hyperparameter space is done in an 

independent and identically distributed (i.i.d) fashion, and the corresponding 

generalization error ℒ (see Eq. 12) for each choice of hyperparameter ℎ!
!  is obtained. 

Next, the hyperparameter vectors are updated as shown in Figure 6(b) based on their 
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gradients ∇ℒ ℎ!! . In the next step, he hyperparameter vectors with least 

generalization error (i.e., elite performing particles) are selected as 1− 𝜌 –quantile 

of all generalization error as shown in Figure 6(c). Then, the distribution 𝑏 is updated 

as shown in Figure 6(d) based on the elite performing particle locations on the 

solution space. Since the distribution 𝑏 is represented by particles and their associated 

weights, various shapes for 𝑏 can be realized without having to establish a parametric 

model. The above-mentioned steps are repeated until the distribution 𝑏 is close to a 

delta function, indicating that the global optimum is identified. 

Algorithm 1. Particle filtering algorithm for hyperparameter optimization. 

Input: Training features from fault dictionary 

𝑆 = 𝑥! ,𝑦! !!!
!  

Output: Estimated optimal hyperparameter vector: ℎ ∈ℋ 

1.Initialization step: Specify 𝜌 ∈ 0,1] and an initial probability density function 

(pdf) 𝑏! that is defined on ℋ. Sample ℎ!
!
!!!

!
i.i.d. from 𝑏!. Set 𝑘 = 1. 

2.Observation construction step: Let 𝑒!  be the sample 1− 𝜌 –quantile of 

ℒ ℎ!
!

!!!

!
. If 𝑘 > 1and 𝑒! < 𝑒!!!, then set 𝑒! = 𝑒!!!. 

3.State update step:  Update the particle locations in the hyperparameter space as 

per the system dynamic model 

ℎ! = ℎ!!! − 𝜀∇ℒ ℎ!!! ;     𝑘 = 1,2,… 

4.Bayes’ updating step: 𝑏! ℎ! = 𝑤!
!!

!!! 𝛿 ℎ! − ℎ!
!  where weights are 

calculated according to 

𝑤!
! ∝ 𝜑 ℒ ℎ!

! − 𝑒!  
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    and normalized. 

5.Resampling step: Construct a continuous approximation from 𝑏! ℎ!  and then 

perform i.i.d sampling to get ℎ!!!
!

!!!

!
. 

Stopping criterion: If the standard deviation of 𝑏! ℎ! < 𝜔, then stop. Else, 

𝑘 ← 𝑘 + 1 and go to step observation construction step. 

 

Figure 6.  Particle filtering approach for optimization of hyperparameters. 

3.3. Implementation Results 

This section demonstrates the developed circuit health estimation approach using a 

model-adapted kernel method to estimate the health of a benchmark Sallen–Key band 
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pass filter (BPF) circuit and a DC–DC converter system. The following 

demonstration focuses on circuit health estimation in the presence of a single-fault 

condition wherein one of the CUT’s critical components is degrading. 

During the off-line learning phase, simulations-before-tests were conducted in a 

PSPICE environment to understand the behavior of the CUT under healthy and 

failure conditions. Hence, faults of varying intensity were seeded into the critical 

components. A circuit was considered to be healthy when all the components varied 

within their tolerance range, i.e., 1− 𝑇 𝑋! < 𝑋 < 1+ 𝑇 𝑋!, where 𝑇 is the 

tolerance range, 𝑋 is the actual value of the component, and 𝑋! is the nominal value 

of the component. If any of the components varied beyond their tolerance, i.e., 

𝑋 < 1− 𝑇 𝑋! and 𝑋 > 1+ 𝑇 𝑋!, then the circuit was termed to have a parametric 

fault. Parametric fault need not mean the circuit had failed. The circuit was 

considered to have failed only when the parametric deviation in a circuit component 

beyond its tolerance range has led to the circuit failing to perform its intended 

functions. The features were extracted from the circuit’s response to a test stimulus 

under these hypothesized fault conditions and were stored in a fault dictionary for use 

during on-line health estimation. 

The parametric degradation data of resistors and capacitors from accelerated life 

tests (ALTs) conducted in previous CALCE studies [4][6][7] were used to validate 

the developed health estimation approach. Resistor degradation trends were obtained 

from the temperature cycling test (–15 to 125 °C with 10-min dwell) on 2512 ceramic 

chip resistors (300 Ω) [7]. On the other hand, capacitor degradation trends for the 

Sallen–Key filter circuit were obtained from temperature and voltage aging tests 
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(125 °C and 285 V) on 0.44nF embedded capacitors [6]. For the low-pass filter 

circuit in the DC–DC converter system, capacitor degradation trends were obtained 

from isothermal aging tests at 105 °C on electrolytic capacitors [4]. 

3.3.1 Band-Pass Filter Circuit 

A schematic of the Sallen–Key BPF with 25kHz center-frequency is shown in 

Figure 7. 𝐶!, 𝐶!,  𝑅!, and 𝑅! are the critical components of this CUT and the 

condition for failure of this CUT is assumed to be 20% shift in center-frequency, 

and/or the gain at the center-frequency increases by twice or reduces by half the 

nominal gain value. In this study, the failure conditions for CUT are assigned to 

evaluate the performance of diagnostic approach. However, in field applications, the 

failure conditions for a critical circuit is defined either based on the function of circuit 

in the whole system or based on the known level of parametric drifts exhibited by 

circuit components before failing in a catastrophic fashion.  

During off-line learning phase, the faults were seeded in the critical components 

and the severity of the fault was varied to find the threshold at which the circuit failed 

as per the failure conditions established. The severity of fault in a critical component 

at which the circuit performance meets failure conditions is denoted as that critical 

component ‘failure range’. The table accompanying the Figure 7 lists the critical 

components, their tolerance, and failure threshold (or range). 
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Figure 7.  Schematic of a Sallen-Key band pass filter centered at 25 KHz. The 
table represents the critical components and their failure ranges. 

For the Sallen–Key BPF under consideration, the shape of pass-band shifts when 

any of the critical components degrade. This is illustrated in Figure 8, which shows 

the magnitude and phase of the Sallen Key BPF’s transfer function with no-fault and 

fault seeded into its critical components.  

 

Figure 8. Magnitude and phase of Sallen-Key BPF’s transfer function with and 
without faults. 
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In order to capture this shift in frequency response, the circuit is stimulated by a 

sweep signal (shown in Figure 9) containing frequency bandwidth larger than that of 

the BPF circuit. This study used a sweep signal (5 V) ranging from 100 Hz to 2 MHz 

with 100msec time window as a test stimulus. This ensured that the BPF circuit was 

excited by all of the frequency components to which it was sensitive.  

  
Figure 9. Example of a sweep (test) signal. 

Two types of features are extracted from the time domain response of the CUT to 

sweep test signal, namely the wavelet features and the statistical property features. 

Fourier analysis is the most commonly used signal analysis method to extract the 

information embedded in a signal. However, Fourier transformation gives only the 

global frequency content of a signal and thus is suitable for the analysis of stationary 

signals only, whose properties do not evolve with time. However, any change in time, 

in a non-stationary signal, will spread over the entire frequency domain that will not 

be detected through Fourier analysis [58]. Thus it is impossible to distinguish when 
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an event took place by using a Fourier transformation which turns out to be a 

drawback for fault diagnosis as the sort of signals to be analyzed are expected to 

contain time-varying frequencies. This is where wavelet transformation comes in 

handy, which is capable of performing local analysis. Wavelet analysis has been 

proved to reveal signal aspects such as trends, break points and discontinuities. This 

formed the motivation for choosing wavelet features in the fault diagnosis of filter 

circuits.  

A wavelet representation of a signal automatically tracks back to the concept of 

multiresolution decomposition, which enables us to have a scale-invariant 

interpretation of the information content in the signal. In wavelet analysis, the signal’s 

correlation with families of functions that are generated based on the shifted and 

scaled version of a mother wavelet is calculated, which results in the mapping of the 

signal of interest to a set of wavelet coefficients that vary continuously over time 

[59]. The discrete version of the wavelet transform consists of sampling the scaling 

and shifted parameters but not the signal or the transform. This makes the time 

resolution good at high frequencies and the frequency resolution becomes good at low 

frequencies.   

In the discrete time version of the wavelet transform [60], the concept of 

multiresolution is closely related to the concept of multirate filter bank theory. Thus 

filter banks are used in determining the wavelet coefficients for a discrete signal i.e. 

the approximation coefficients at a lower resolution level are subjected to high-pass 

and low-pass filtering (derived from mother wavelet) followed by a downsampling by 
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two to get the detail and approximation coefficients for a higher resolution level. This 

is expressed in Figure 10.  

 
Figure 10. (a) Illustration of wavelet decomposition using filter banks and (b) 

Frequency range coverings for the details and approximation for three levels of 
decomposition. 

In this work, through discrete wavelet transformation we decompose the time 

domain response of the CUT to a sweep signal into the approximation and detail 

signals using multirate filter banks. The information contained in signal is represented 

using features extracted by computing the energy contained in the detail coefficients 

at various level of decomposition. This is expressed as follows: 

𝐸! = 𝑑!,!
!

! ,   𝑗 = 1: 𝐽     (18) 

where 𝐸! denotes the energy in the detail coefficient 𝑑! at the 𝑗th level of 

decomposition. The second set of features extracted is the kurtosis and entropy of the 

time-domain response of the CUT to the test signal. Kurtosis is a statistical property 

that is formally defined as the standardized fourth moment about the mean that 

represents the movement of probability density function without affecting the 

variance [61]. Thus, it provides a measure of the heaviness of the tails in the 
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distribution of the signal, which is related to the abrupt changes in the signal having 

high values and appearing in the tails of the distribution. Kurtosis is mathematically 

described as follows: 

𝑘𝑢𝑟𝑡 𝑥 = ! !!! ! !

! !!! !
! !    (19) 

On the other hand, entropy provides a measure on the information capacity of the 

signal, which denotes the uncertainty associated with the selection of an event from a 

set of possible events whose probabilities of occurrences are known [62]. It is defined 

for a discrete-time signal as: 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 𝑥 = − 𝑃 𝑥 = 𝑎! 𝑙𝑜𝑔𝑃 𝑥 = 𝑎!!  (20) 

where 𝑎! are the possible values of 𝑥, and 𝑃 𝑥 = 𝑎!  is the associated probabilities. 

Circuit health estimation was carried out using the extracted features. During the 

off-line tests, 250 no-fault cases (every component varied within its tolerance range) 

and 400 fault cases with varying fault levels (at least one of the circuit components 

varied beyond its failure range) were simulated. During each simulation, the Sallen–

Key filter circuit was stimulated with a sweep signal and features were extracted. 

These features, along with their class labels (healthy or failure), were used to train the 

kernel-based health estimator. The particle size used for hyperparameter selection 

was 50. Since the elements of the hyperparameter are known to take values from 

10!! to 10!!, the hyperparameter search was conducted in the 𝑙𝑜𝑔 ℎ  plane from 

−15,+15 . Figure 11 shows the training error rate, using 5 fold cross validation. It 

can be seen that, with increase in iteration the training error rate reduces indicating 

that the proposed hyperparameter optimization approach is moving towards the global 
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minima. Beyond 15 iterations, the decrease in error rate is reduced as the 

hyperparameter optimization method gets in the neighborhood of the global minima. 

 

Figure 11. Plot of training error rate with respect to iteration number. 

In order to validate the approach, the resistor and capacitor degradation trends from 

ALT were used to replicate the degradation of components in the BPF circuit. At each 

level of component degradation, the circuit-level features were extracted and given as 

input to the trained kernel-based health estimator, which provided an estimate of the 

circuit health. The results of this validation study are summarized in Table 1 and 

shown in Figure 12 through Figure 15. For each critical component, two degradation 

pathways were evaluated and the corresponding circuit health was estimated. The 

following terminologies are used in Table 1 to evaluate the developed circuit health 

estimation method: 

• 𝑇!: Denotes the actual circuit failure time 
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• 𝑡!: Denotes the failure time estimated from 𝐻𝐼! (i.e., the time at which 𝐻𝐼! is 

less than 0.05). 

• 𝑡!": Denotes the time at which parametric fault alarm was raised (i.e., time at 

which 𝐻𝐼! is less than 0.95). 

• 𝐹!: Denotes the fault severity at estimated failure time 𝑡! . 

• 𝐹!": Denotes the fault severity at time 𝑡!". 

Figure 12 through Figure 15 includes the developed kernel-based health estimation 

results (in blue) along with the results of MD-based health estimation method (in 

green) described in [25] for comparison. The idealistic health 𝐻𝐼!! of the circuit is also 

provided (in red) in the plots to verify the capability of the proposed health estimation 

methods to reflect the increase in intensity of fault in the component exhibiting 

parametric fault. Here, the idealistic health 𝐻𝐼!! of the circuit at time 𝑡 is defined as 

follows: 

𝐻𝐼!! = 1 − !! !±! !!
!! !±!! ! !±!

    (21) 

where 𝑇! is the failure threshold for the critical component considered. From Eq. 21 it 

can be understood that 𝐻𝐼!! is an ideal case, when all components of the circuit are at 

their nominal value and there is no variations within their tolerance range. However, 

this is never the case as circuit component values are not always equal to their 

nominal value. Thus the expectation is to have the health estimation method generate 

health estimates as close to 𝐻𝐼!! as possible. 
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TABLE 1 

PERFORMANCE RESULTS OF DEVELOPED HEALTH ESTIMATION METHOD ON SALLEN-KEY BPF 

Component Tolerance (%) 
Failure Range 

(%) 
𝒕𝑷𝑭 (hours) 𝒕𝑭 (hours) 𝑭𝑷𝑭 (%) 𝑭𝑭 (%) 𝑻𝑨 (hours) 

𝐶! 
5 15 214 285 8.6 14.4 298 

5 15 212 280 7.6 13.4 302 

𝐶! 
5 15 171 302 6.0 15.0 302 

5 15 209 308 9.4 15.4 298 

𝑅! 
5 15 7200 8340 5.83 20.0 8170 

5 15 900 3870 4.46 14.71 3900 

𝑅! 
5 10 2970 4120 3.16 13.0 3970 

5 10 2890 3840 4.25 14.4 3810 

 

 



 

 35 
 

 

Figure 12. (a) Progression of parametric fault in 𝑪𝟏 of Sallen-Key BPF. (b) 
Health estimates using the developed kernel (blue) and MD-based (green) 

method for fault in 𝑪𝟏. 
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 Figure 13. (a) Progression of parametric fault in 𝑪𝟐 of Sallen-Key BPF. (b) 
Health estimates using the developed kernel (blue) and MD-based (green) 

method for fault in 𝑪𝟐. 
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Figure 14. (a) Progression of parametric fault in 𝑹𝟐 of Sallen-Key BPF. (b) 
Health estimates using the developed kernel (blue) and MD-based (green) 

method for fault in 𝑹𝟐. 
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Figure 15. (a) Progression of parametric fault in 𝑹𝟑 of Sallen-Key BPF. (b) 
Health estimates using the developed kernel (blue) and MD-based (green) 

method for fault in 𝑹𝟑. 
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As can be seen from Table 1 and Figure 12 through Figure 15, the developed 

approach can identify the circuit health degradation with increase in fault intensity 

and shows better performance than the MD-based health estimation method. MD-

based method can fairly track the circuit health degradation for faults in components 

𝐶! and 𝑅!. However, for components 𝐶! and 𝑅! the health estimates generated by 

MD-based method does not follow the trend in actual health 𝐻𝐼!!. This is potentially 

due to the similarities in amplitude of the BPF’s transfer function even when there is 

a fault in 𝐶! or 𝑅! when compared to the healthy circuit. This is where the non-linear 

kernel-based method stands out, as it can still identify the shifts in frequency and 

generate health estimates that closely follow 𝐻𝐼!!. 

3.3.2 DC-DC Buck Converter System 

A DC–DC buck converter system converts a high-to-low DC voltage level (e.g., 

12–5 V) and supports the operation of many low-power consuming electronic 

products. The three critical circuits within a DC–DC buck converter system are: a 

low-pass filter, a voltage divider feedback circuit, and a switching circuit. Each of 

these circuits has discrete circuit elements that have been known to exhibit parametric 

deviations during field operation (see Figure 16). In this validation study, the health 

estimation of a low-pass filter and a voltage divider feedback circuit was investigated. 
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Figure 16.  DC–DC buck converter system design abstraction levels. 

The low-pass filter circuit, with cut-off frequency of 2 kHz (schematic shown in 

Figure 17) is used to remove noises from the DC output voltage. Degradation of the 

electrolytic capacitor increases ripple at the DC output, which damages the 

electronics powered by the converter. Capacitance value is often used as a precursor 

parameter to predict electrolytic capacitor failure. However, the capacitance value 

cannot be extracted once the capacitor is placed in the circuit. Hence, the low-pass 

filter circuit topology was exploited to capture the parametric degradation of the 

electrolytic capacitor. 

The low-pass circuit was stimulated by a sweep signal with frequency range of 

100 Hz to 20 kHz. Frequency and statistical features were extracted from the circuit 

response using wavelet packet transform. Frequency features included, the energy 

contained in both approximate and detailed coefficients up to 6-levels of 

decomposition using discrete wavelet transformation. Haar mother wavelet was used 
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in wavelet transformation. Statistical features include the kurtosis and entropy of the 

CUT’s response to sweep signal. Thus overall, there were 14 features extracted for 

low pass filter circuit. 

 

Figure 17.  Schematic of a LC low-pass filter circuit in a DC–DC converter 
system. 

Circuit health estimation was carried out using the extracted features. During the 

off-line tests, 200 no-fault cases (every component varied within its tolerance range) 

and 200 fault-seeded cases were simulated. Four different degradation trends were 

obtained from ALT of the electrolytic capacitor and was used to simulate parametric 

faults in the low-pass filter of the DC–DC converter system. The corresponding 

circuit health estimated using the kernel method (in blue) is plotted in Figure 18 

through Figure 21. The actual health calculated using Eq. 21 is shown in red. It can be 

seen from the actual health 𝐻𝐼!! degradation curves that the variation in capacitance 

with time was gradual and never reached the failure range (10%) over 2,250 h of 

testing. Still, the kernel-based health estimator provided estimates of the failure time.  

Furthermore, the circuit health estimated using the different degradation trends 

exhibited variations, and the results were not as consistent as 𝐻𝐼!! degradation trends. 
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This variation in health estimation performance could result from the contributions of 

other components in the circuit varying within their tolerance range.  

 

Figure 18. LPF circuit health estimated using the kernel method (blue) in 
comparison to the actual health 𝐻𝐼!! for the progression of parametric fault in 𝑪 

– Run 1. 

 

Figure 19. LPF circuit health estimated using the kernel method (blue) in 
comparison to the actual health 𝐻𝐼!! for the progression of parametric fault in 𝑪 

– Run 2. 
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Figure 20. LPF circuit health estimated using the kernel method (blue) in 
comparison to the actual health 𝐻𝐼!! for the progression of parametric fault in 𝑪 

– Run 3. 

 

Figure 21. LPF circuit health estimated using the kernel method (blue) in 
comparison to the actual health 𝐻𝐼!! for the progression of parametric fault in 𝑪 

– Run 4. 
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In the DC–DC converter, feedback from output DC voltage is obtained via a 

voltage divider circuit and fed into the switch controller circuit, in order to regulate 

the DC voltage. If resistance 𝑅! and 𝑅! degrades (see Figure 22), the voltage fed back 

will be different, resulting in the switch to over-regulate or under-regulate. Resistance 

value is often used as a precursor parameter to predict resistor failure. Instead of 

monitoring the two resistors individually, this approach exploited the feedback circuit 

topology to capture resistor degradation. The feedback circuit was stimulated using a 

step voltage signal (0–5 V), which steps up by 1 V every 100msec. The voltage 

response generated by the circuit was directly used as input to the health estimator, 

and the results are shown in Figure 23 and Figure 24. 

 

Figure 22.  Schematic of voltage divider feedback circuit in a DC–DC 
converter system. 

Table 2 summarizes the performance results of the validation study on the critical 

circuits of a DC–DC converter. The terminologies used for performance analysis are 

the same as those described in Table 1. 
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Figure 23. Voltage divider feedback circuit health estimated using the kernel 
method (blue) in comparison to the actual health 𝐻𝐼!! for the progression of 
parametric fault in 𝑹𝟏. Figure 23(a) and 23(b) represents two different 
degradation trends. 
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Figure 24. Voltage divider feedback circuit health estimated using the kernel 
method (blue) in comparison to the actual health 𝐻𝐼!! for the progression of 
parametric fault in 𝑹𝟑. Figure 24(a) and 24(b) represents two different 
degradation trends. 
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TABLE 2 

PERFORMANCE RESULTS OF DEVELOPED HEALTH ESTIMATION METHOD ON DC-DC CONVERTER SYSTEM 

Component Tolerance (%) Failure Range 

(%) 

𝒕𝑷𝑭 (hours) 𝒕𝑭 (hours) 𝑭𝑷𝑭 (%) 𝑭𝑭 (%) 𝑻𝑨 (hours) 

𝐶 

5 10 230 2230 3.24 8.56 >2250 

5 10 630 1830 4.01 5.87 >2250 

5 10 810 2010 6.01 7.56 >2250 

5 10 580 1930 3.17 6.39 >2250 

𝑅! 
5 35      0 8800 0.15 30.46 8890 

5 35 0 8930 0.09 28.52 8950 

𝑅! 
5 25 0 8420 0.25 29.15 8050 

5 25 0 7150 0.24 19.95 8180 

 



 48 

As can be seen from Table 2, the health estimator was able to identify the instant at 

which the parametric fault began to show up in the low-pass filter circuit. However, 

this was not true with the voltage divider circuit. The estimated health was always 

less than 0.95 probability even when the resistors 𝑅! and 𝑅! were well within their 

tolerance range. On the other hand, the estimator was able to detect the actual failure 

time for the voltage divider circuit. However, for the low-pass filter circuit, the health 

estimator raised early failure warnings i.e., the estimated failure time 𝑡! is less than 

the actual time-of-failure 𝑇!. This indicates that the developed method raises early 

failure warning, even before the circuit has actually failed. Although this is desirable 

feature in any prognostics and health management (PHM) module, the difference 

𝑇! − 𝑡!  should not be too large, causing wastage of useful life. It can be deduced 

from Table 2 that, the difference 𝑇! − 𝑡!  for the electrolytic capacitor in LPF circuit 

of the DC-DC converter is ~20% of the total lifetime of the capacitors. It is possible 

that, the features extracted during time 𝑡! was similar to the features extracted while 

the circuit had failed, and the model adapted kernel method decided that the 

probability the extracted features belong to the healthy class was less than 0.05. 

Thus, although the developed method can capture the trend in health degradation, 

there is room for improvement and there is a need for consistency in early fault and 

failure detection. 
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Chapter 4: RUL Prediction using Model-based Filtering 

The prognostics problem involves the prediction of a system or device end of life 

𝐸𝑂𝐿  from which the remaining useful life 𝑅𝑈𝐿  is estimated, where 𝑅𝑈𝐿 is 

defined as the duration from the time at which prediction is made to the 𝐸𝑂𝐿. In the 

case of circuit functional failures resulting from parametric deviations in electronic 

components, the degrading component does not necessarily exhibit a hard failure. The 

degradation is simply accompanied by parametric deviation in component parameters 

that shifts the circuit characteristics. The component exhibiting parametric fault may 

still function, but it is just that the circuit in which the component is part of might not 

operate in permissible predefined range. In this chapter a model-based filtering 

method is developed for predicting the remaining useful performance (RUL) of 

electronic circuit-comprising components exhibiting parametric faults. The developed 

prognostics method relies on a first principles-based model that describes the 

progression of parametric fault in the circuit component and a stochastic filtering 

technique to first solve a joint ‘circuit health state—parametric fault’ estimation 

problem, followed by prediction problem in which the estimated ‘circuit health 

state—parametric fault’ is propagated forward in time to predict 𝑅𝑈𝐿. The rest of the 

chapter is organized as follows. Section 4.1 mathematically formulates the 

prognostics problem. Section 4.2 presents the first principles-based model developed 

in this dissertation to capture the degradation in circuit performance. The stochastic 

algorithm used for joint state-parameter estimation and 𝑅𝑈𝐿 prediction is discussed in 

Section 4.3. Section 4.4 presents the validation results using data obtained from 

simulation-based experiments on the critical circuits of a DC-DC converter system. 
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4.1 Prognostics Problem Formulation 

In order to realize model-based prognostics a health state vector consisting of one 

or more metrics that evolve by reflecting the degradation in performance of a system 

or circuit is required. In most prognostic applications, a measurable parameters 

exhibiting monotonic trend is chosen as the health state vector. However in some 

applications such as in circuit prognostics, a health vector has to be constructed from 

features extracted from circuit responses to test stimulus. Irrespective of whether 

health state vector is a measured parameter or a variable constructed from measured 

parameters, the underlying assumption is that the health state vector evolve according 

to a dynamic state space model as in Eq. 22: 

𝒙 𝑡 = 𝑓 𝑡,𝒙 𝑡 ,𝜽 𝑡 ,𝒖 𝑡 + 𝒗 𝑡     (22) 

𝒚 𝑡 = ℎ 𝑡,𝒙 𝑡 ,𝜽 𝑡 ,𝒖 𝑡 + 𝒏 𝑡   (23) 

where 𝒙 𝑡 ∈ ℝ!!  represents the health vector of length 𝑛!, 𝒚 𝑡 ∈ ℝ!!  is the 

measurement vector of length 𝑛!, 𝜽 𝑡 ∈ ℝ!!  is the unknown parameter vector that 

has to be estimated along with the state 𝒙 𝑡 , 𝒖 𝑡 ∈ ℝ!!  is the input vector, 

𝒗 𝑡 ∈ ℝ!!  is the process noise, 𝒏 𝑡 ∈ ℝ!!  represents the measurement noise, and 

finally 𝑓 ∗  and ℎ ∗  denotes the state and measurement equations, respectively. 

 The goal is to predict the time instant at which this health state vector will evolve 

beyond a certain desired region of acceptable performance. This region represents the 

condition where the circuit performance no more guarantees reliable system operation 

and is expressed through a set of requirements 𝑟! !!!
!! . For example, 𝑛! could 
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represent the number of critical circuits in a system and for each critical circuit, 

𝑟!:ℝ → 𝔹 denotes a function that maps a subspace in the actual health state space to 

the Boolean domain, 𝔹 ≜ 0,1 .  For example, assume 𝑥 𝑡 ∈ 0,1  represents the 

health of a critical circuit, where 𝑥 𝑡 = 1 represent circuit is healthy and 𝑥 𝑡 = 0 

represent that the circuit has failed. In this case, a requirement could be defined as 

𝑟 𝑥 𝑡 = 1 if circuit is yet to fail i.e., 1 ≥ 𝑥 𝑡 > 0.05, and 𝑟 𝑥 𝑡 = 0 once the 

circuit has failed. 

These individual circuit requirements can be combined into a single threshold 

function for a system 𝑇!"#:ℝ!! → 𝔹 that is defined as follows: 

𝑇!"# 𝑥 𝑡 = 1,
0,   

0 ∈ 𝑟! !!!
!!

𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   (24) 

where 𝑇!"# = 1 denotes at least one of the system’s critical circuit has violated a set 

requirement. Now, 𝐸𝑂𝐿 and 𝑅𝑈𝐿 is defined as 

𝐸𝑂𝐿 𝑡! ≜ 𝑖𝑛𝑓 𝑡 ∈ ℝ: 𝑡 ≥ 𝑡! ∧ 𝑇!"# 𝑥 𝑡 = 1   (25) 

𝑅𝑈𝐿 𝑡! = 𝐸𝑂𝐿 𝑡! − 𝑡!    (26) 

where 𝐸𝑂𝐿 represent the earliest time (see Eq. (25)) from the time of prediction 𝑡! at 

which the system has failed. In practice, uncertainty in modeling, measurement, and 

choice of initial state for 𝒙 𝑡!  leads to uncertainty in the estimation of 𝒙 𝑡 ,𝜽 𝑡 . 

As a result, it is reasonable to compute 𝐸𝑂𝐿 and 𝑅𝑈𝐿 as probability distributions, 

instead of point estimates. Hence, the goal of prognostics is to compute the 

conditional probability, 𝑝 𝑅𝑈𝐿 𝑡! |𝒚 𝑡!: 𝑡! , at time 𝑡! (see Figure 25). The 

variables with a cap and without a cap in Figure 25 denote estimates and the ground 
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truth, respectively. For example, 𝑅𝑈𝐿 and 𝑅𝑈𝐿 represents the estimated and actual 

𝑅𝑈𝐿 respectively. 

 

Figure 25. Prognostics illustration. 

4.2 Circuit Degradation Modeling 

In order to implement model-based prognostics, the first step is to identify or 

construct a health state vector 𝒙 𝑡 . This was carried out in Chapter 3 of this 

dissertation where 𝒚 𝑡  is equivalent to 𝐻𝐼! produced by the kernel-based health 

estimator and 𝒙 𝑡  is equivalent to 𝐻𝐼! i.e., the health state estimate from 𝒚 𝑡 . The 

next step is to identify the parameter 𝜽 𝑡  and input vector 𝒖 𝑡  using which the state 
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To model circuit degradation, it is assumed that the degradation in circuit 

performance (or health) is due to parametric drifts in one or more circuit components. 

Hence, the circuit health at future time is the sum of current circuit health and the 

degradation in health resulting from the parametric drifts in circuit components 

(pictorially illustrated in Figure 26). This can be expressed as: 

𝑥 𝑡 + Δ𝑡 = 𝑥 𝑡 + 𝑔 !!!
!!
, !!!
!!
,⋯ , !!!

!!
  (27) 

where 𝑥 𝑡  denotes the health at time 𝑡, ∆𝑝! denotes the parametric drift in 𝑖th circuit 

component over ∆𝑡, and 𝑁 denotes the total number of critical components in the 

circuit. 𝑝! could represent the drift in any component parameter such as 𝐶, 𝐸𝑆𝑅, 𝑅!" 

and more. Next step is to define the function 𝑔 ∗  in Eq. 27. To define a structure for 

𝑔 ∗ , assume a simple circuit with one component 𝑝!, a source, and load as shown in 

Figure 26. 

 

Figure 26. Simple one-component circuit for degradation modeling illustration. 
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The degradation in performance of this circuit depends only on the parametric 

deviation in 𝑝! i.e., when ∆𝑝! 𝑡 = 0 at time 𝑡 the circuit health 𝑥 𝑡 = 1. Similarly, 

when the parametric deviation in 𝑝! has reached the maximum allowable deviation 

(assume ∆𝑝! 𝑡 = Υ!"#), the circuit health 𝑥 𝑡 = 0. Thus the change in health over 

a short time ∆𝑡 can be expressed as follows: 

! !!∆! !! !
∆!

= !!
!!"#

∆𝑝! 𝑡 .   (28) 

The modulus on Υ!"# is because; the deviation in circuit component could either 

increase or decrease. For example, in the case of embedded capacitor, 𝐶 is expected 

to decrease over time. However in electrolytic capacitor, 𝐸𝑆𝑅 increases with 

degradation. A modulus accommodates both cases.  

From Eq. 28 it can be discerned that the circuit health at a future time instant can 

be expressed as 

𝑥 𝑡 + ∆𝑡 = 𝑥 𝑡 + !!
!!"#

!!!
!"
∆𝑡.   (29) 

The term −1 Υ!"#  in Eq. 28 can be perceived as the sensitivity of the health metric 

𝑥 to change in the component parameter 𝑝! and thus from now will be replaced with 

𝑆!!, indicating sensitivity of health due to parametric deviations in 𝑝!. 𝑆!! can be 

easily determined through fault-seeded simulations.  

The second term in Eq. 29 corresponding to component parametric deviation is 

applicable only if that component is found to have a fault (i.e., parametric deviations 

are more than the acceptable tolerance range). Thus Eq. 29 can be further refined as: 

follows 
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 𝑥 𝑡 + ∆𝑡 = 𝑥 𝑡 + 𝑆!!
!!!
!"
∆𝑡

!!∈!
.  (30) 

where 𝑝! ∈ 𝐹  indicates that this is an indicator function which exists only if the 

component is faulty. Now, the model for circuit health degradation can be extended 

for a circuit with multiple components as follows: 

𝑥 𝑡 + ∆𝑡 = 𝑥 𝑡 + 𝑆!!
! !!!!

!"
∆𝑡

!!∈!
!
!!!   (31) 

where 𝑁 denotes the total number of critical components in the circuit, 𝑆!!
!  refers to 

the sensitivity of circuit health metric 𝑥 to parametric deviation in circuit 

component 𝑒! , and 𝑑𝑝!! refers to the parametric deviation in circuit component 𝑒! . 

The circuit health degradation model in Eq. 31 can be simplified to a matrix-based 

state space model with process noise as follows: 

𝑥 𝑡 + ∆𝑡 = 𝑥 𝑡 + 𝑷! 𝑡 𝑰 𝑡 𝑺 + 𝑣 𝑡   (32) 

where 𝑷 = !!!!
!"

, ⋯ ,
!!!!
!"

, 𝑰 is a diagonal fault matrix with 𝑰 𝒊𝒊 = 𝟏 if the ith 

circuit component is faulty, and 𝑺 = 𝑆!!
! , ⋯ , 𝑆!!

!  is the deterministic-sensitivity 

vector. Although the vector 𝑷 in Eq. 32 indicates parametric deviations in critical 

circuit components, the elements of this vector is not known as the components are 

not measurable in real time. Hence, comparing Eq. 32 with Eq. 22 reveals, 𝑷 is 

equivalent to unknown parameter vector 𝜽 that has to be estimated along with state 𝑥, 

and 𝑰 is equivalent to the input vector 𝒖 that is obtained from the fault diagnostics 

module. 
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4.3 Model-based Prognostic Methodology 

Model-based prognostics methodology is realized in two steps. First step is the 

health state estimation from noisy health state values (estimated by kernel-based 

learning algorithm) where both state and parameter vectors are estimated i.e., 

𝑝 𝑥 𝑡 ,𝜃 𝑡 |𝒚 𝑡!: 𝑡  is computed. Many stochastic filtering algorithms such as 

unscented Kalman filter or particle filter can be used to jointly estimate state-

parameter vectors with nonlinear system models. Particle filter is widely used in the 

prognostic community for its capability to estimate the state of a nonlinear system 

with non-Gaussian noise without having to apply a constraint on the state & 

parameter vector’s probability distribution function (PDF). For the same reason 

sampling importance resampling (SIR) particle filter is used in this study for 𝑅𝑈𝑃 

estimation. 

In particle filters, the state-parameter PDF is represented using a set of discrete 

weighted samples, typically refereed to as particles 

𝑥!! ,𝜽!! ,𝑤!! !!!
!

    (33) 

where 𝑀 denotes the number of particles, and for each particle 𝑖, 𝑥!! denotes the 

health state estimate, 𝜽!!  represents the parametric deviations estimate, and 𝑤!!  denotes 

the weight at time 𝑡. At each time instant, the particle filter uses the past estimates of 

state and parameter along with real time measurements to estimate the current state. 

To realize this multi-step computation, first the parameter vector 𝜽𝒕 is estimated from 

the previous time instant parameter estimates using some process that is independent 

of the state 𝑥!. The typical approach is to use a random walk process, i.e., 𝜽𝒕 =

𝜽𝒕!∆𝒕 + 𝝃𝒕!∆𝒕, where 𝝃 is sampled from a distribution such as zero-mean Gaussian 
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[63]. However, in the circuit prognostic application we have defined 𝜽 as parametric 

deviations in circuit components. For a number of discrete components, first-

principles based models exists to describe these parametric deviations. For example, 

in Kulkarni et al. [15] the deviation in capacitance of an electrolytic capacitor was 

described using a linear equation as follows: 

𝐶! = 𝐶!!∆! − Θ𝜐!∆𝑡    (34) 

where 𝐶! denotes the capacitance at time 𝑡, Θ is a model-constant that depends on the 

geometry and materials of the capacitor, and 𝜐! denotes the volume of electrolyte. 

Similar models have been described by Smet et al. [64], Celaya et al. [14], Patil et al. 

[5], Alam et al. [6] for IGBT, MOSFET, electrolytic capacitor, and embedded 

capacitor respectively. These models can be used in-place of random walk process to 

describe the evolution of the unknown parameter vector 𝜽. Thus, the proposed circuit 

prognostics approach can make use of existing physics-of-failure (PoF)-based models 

on circuit components in the overall circuit degradation model and combine it with 

data-driven circuit health estimates to provide a fusion prognostics outcome. 

Once the parameter vector is updated, the circuit health is estimated from the 

system equation in Eq. 32 after which the associated weights are computed using the 

principle of importance resampling [65]. The pseudo code for a single iteration of SIR 

particle filter is given in Algorithm 2 and Figure 27 steps involved in a single 

iteration of particle filter for state estimation. 
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Algorithm 2. Pseudo code for a single iteration of particle filtering algorithm for state 

estimation. 

Input: 𝒙𝒕!∆𝒕𝒊 ,𝜽𝒕!∆𝒕𝒊 ,𝒘𝒕!∆𝒕
𝒊

𝒊!𝟏
𝑴
,𝒖𝒕!∆𝒕,𝒕,𝒚𝒕 

Output: 𝒙𝒕𝒊 ,𝜽𝒕𝒊 ,𝒘𝒕
𝒊
𝒊!𝟏
𝑴

 

Pseudo Code:  

for 𝒊 = 𝟏 to 𝑴 do 

  𝜽𝒕𝒊~𝒑 𝜽𝒕|𝜽𝒕!∆𝒕𝒊   

 𝒙𝒕𝒊~𝒑 𝒙𝒕|𝒙𝒕!∆𝒕𝒊 ,𝜽𝒕!∆𝒕𝒊 ,𝒖𝒕!∆𝒕  

 𝒘𝒕
𝒊~𝒑 𝒚𝒕|𝒙𝒕𝒊 ,𝜽𝒕𝒊 ,𝒖𝒕  

end for 

 𝑾 ← 𝒘𝒕
𝒊𝑴

𝒊!𝟏  

for 𝒊 = 𝟏 to 𝑴 do 

 𝒘𝒕
𝒊 ← 𝒘𝒕

𝒊/𝑾 

end for 

 𝒙𝒕𝒊 ,𝜽𝒕𝒊 ,𝒘𝒕
𝒊
𝒊!𝟏
𝑴 ← 𝑹𝒆𝒔𝒂𝒎𝒑𝒍𝒆 𝒙𝒕𝒊 ,𝜽𝒕𝒊 ,𝒘𝒕

𝒊
𝒊!𝟏
𝑴
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Figure 27. Illustration of the steps involved in simple particle filter.  

At the end of iteration the estimated state and parameter vector – particles are 

investigated for degeneracy and resampled if necessary. During resampling, the 

particles with least weights are eliminated thereby allowing us to concentrate on the 

particles with larger weights. Details on degeneracy and resampling can be found in 

Arulamapalam et al. [65]. 

The second step in model-based prognostics involve the 𝑅𝑈𝐿 prediction, where the 

goal is to compute 𝑝 𝑅𝑈𝐿 𝑡! |𝒚 𝑡!: 𝑡!  at time 𝑡!using the joint state-parameter 

estimates 𝑥 𝑡! ,𝜽 𝑡! |𝒚 𝑡!: 𝑡! . The idea to solve the 𝑅𝑈𝐿 prediction problem is 

to simply let the state and parameter vector – particles to evolve without Bayesian 

updating, until the threshold function evaluates to 𝑇!"# 𝑥!! = 1 for each particle. The 

predicted time 𝑡: 𝑡 ≥ 𝑡! at which 𝑇!"# 𝑥!! = 1 provides the 𝐸𝑂𝐿!!
! , from which 
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𝑅𝑈𝐿!!
! is estimated using Eq. 26. The pseudo code for the 𝑅𝑈𝐿 prediction method is 

given in Algorithm 3. 

Algorithm 3. Pseudo code for 𝑅𝑈𝐿 prediction using particle filtering algorithm. 

Input: 𝒙𝒕𝑷
𝒊 ,𝜽𝒕𝑷

𝒊 ,𝒘𝒕𝑷
𝒊

𝒊!𝟏

𝑴
 

Output: 𝒙𝒕𝒊 ,𝜽𝒕𝒊 ,𝒘𝒕
𝒊
𝒊!𝟏
𝑴

 

Pseudo Code:  
for 𝒊 = 𝟏 to 𝑴 do 

 𝒕 ← 𝒕𝑷 

 𝜽𝒕𝒊 ← 𝜽𝒕𝑷
𝒊   

 𝒙𝒕𝒊 ← 𝒙𝒕𝑷
𝒊  

while 𝑻𝑬𝑶𝑳 𝒙𝒕𝒊 = 𝟎 do 

 𝜽𝒕!∆𝒕𝒊 ~𝒑 𝜽𝒕!∆𝒕|𝜽𝒕𝒊  

 𝒙𝒕!∆𝒕𝒊 ~𝒑 𝒙𝒕!∆𝒕|𝒙𝒕𝒊 ,𝜽𝒕𝒊 ,𝒖𝒕  

 𝒕 ← 𝒕+ ∆𝒕 

 𝒙𝒕𝒊 ← 𝒙𝒕!∆𝒕𝒊  

 𝜽𝒕𝒊 ← 𝜽𝒕!∆𝒕𝒊  

end while 

 𝑬𝑶𝑳𝒕𝑷
𝒊 ← 𝒕 

 𝑹𝑼𝑳𝒕𝑷
𝒊 ← 𝑬𝑶𝑳𝒕𝑷

𝒊 − 𝒕𝑷 

  end for 
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4.4 Implementation Results 

In this section, simulation-based experimental results are presented demonstrating 

the model-based fusion prognostics methodology on the two critical circuits of a DC–

DC converter system i.e., low pass filter (Figure 17) and voltage divider feedback 

circuit (See Figure 22). This demonstration focuses on circuit failure prediction due to 

the presence of a single-fault condition wherein one critical component is degrading. 

Situations where two or more components are exhibiting parametric drifts will be 

considered in future work. 

Although the prognostic results are obtained from simulation-based experiments, 

the component degradation trends are extracted from accelerated life tests (ALTs) 

conducted in previous CALCE studies [4][7]. Resistor degradation trends were 

obtained from the temperature cycling test (–15 to 125 °C with 10-min dwell) on 

2512 ceramic chip resistors (300 Ω) [7]. On the other hand, capacitor degradation 

trends were obtained from concurrent ripple current (at 1.63A) and isothermal aging 

tests at 105 °C on 680µF 35V liquid electrolytic capacitor [4]. 

The circuit topology, component tolerance and failure range, features extracted and 

failure conditions for both low pass filter (Figure 17) and voltage divider feedback 

circuit (See Figure 22) remains the same as the description provided in Section 3.3.2. 

4.4.1 Low-Pass Filter Circuit 

Low-pass filter circuit health was estimated from the extracted features using the 

approach summarized in Section 3.1 and was used as input to the prognostics module. 

Figure 28 shows the degradation in health of the low-pass filter circuit with 

progression of parametric fault in electrolytic capacitor i.e., it plots the variation of 
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𝐸 𝑥 𝑡 |𝑦 𝑡!: 𝑡  with respect to time. The solid blue curve that is referred to as 

‘Observed Health’ represents the noisy health computed using the method described 

in Chapter 3. The dashed red line represents the health estimated using the model in 

Section 4.2, Eq. 32. Figure 29 shows the estimated parametric deviation in circuit 

component beyond tolerance (i.e., 5%) in comparison to the ground truth (solid blue 

line).  The difference in the estimated parametric deviation in electrolytic capacitor 

with respect to the ground truth is attributed to the difference between 𝐻𝐼!! the circuit 

and the circuit health estimate generated by the kernel-method, see Figure 19. 

The red dashed lines in Figure 28 and Figure 29 together represents the joint state-

parameter estimates. It can be seen from Figure 29 that the developed model in Eq. 31 

is capable of capturing the degradation trend in the actual deviation of the component 

parameter without having to monitor the component individually. This capability has 

never been demonstrated before with any of the previous circuit diagnostic or 

prognostic studies. 

In order to realize prognostics, a failure threshold function has to be defined with 

respect to the health state. Based on the discussion in Section 3, the ideal failure 

threshold should be 𝑥 𝑡 = 0. In order to generate conservative 𝑅𝑈𝐿 estimates, a 

health value of 0.05 as the failure threshold in this study. Based on this failure 

threshold, the low-pass filter circuit was found to fail at 183 hours. Failure prediction 

of low-pass filter circuit was realized by using the following model for dynamic 

evolution of unknown parameter vector: 

𝜃! = 𝜃!!∆! +𝑚!∆𝑡    (35) 
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where 𝑚!is a model constant that is estimated at each iteration by curve fit. However, 

in practice it is better to evaluate 𝑚!using for a given capacitor material and 

geometry. The Eq. (35) is similar to the PoF-based model described by Kulkarni et al. 

[15] for liquid electrolytic capacitor. 

Figure 30 shows the prediction result for the low-pass filter circuit as a 𝛼 − 𝜆 plot, 

which requires that at a given prediction point 𝜆, 𝛽 of the predicted RUL distribution 

must fall within 𝛼 of the true RUP. In this case study, 𝛼 = 0.30 and 𝛽 = 0.5 for all 𝜆 

was used, indicating that at each prediction time at least 50% of the 𝑅𝑈𝐿 distribution 

lie within 30% error with respect to the ground truth [66]. It can be seen from Figure 

30 that an acceptable 𝑅𝑈𝐿 estimate can be obtained as early as 149 hours, indicating 

that a prognostic distance of 34 hours. The fluctuation in 𝑅𝑈𝐿 estimate (Figure 30) 

can result from the fluctuations in health estimate or due to uncertainty in modeling. 

 
Figure 28. Observed and estimated degradation in health of low pass filter 

circuit due to progression of fault in electrolytic capacitor.  
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Figure 29. Estimated deviation in capacitance of liquid electrolytic capacitor.  

 

Figure 30. 𝑹𝑼𝑳 estimation result for low pass filter circuit using model-based 
filtering method. 
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4.4.2 Voltage Feedback Circuit 

The voltage feedback circuit was stimulated using a step voltage signal (0–5 V), 

which steps up by 1 V every 100ms. The voltage response generated by the circuit 

was directly used as input to the health estimator in Chapter 3. The following resistor 

degradation model was used to evolve the unknown parameter vector for voltage 

feedback circuit prognostics: 

𝜃! = 𝜃!!∆! +𝑚!𝑒!!𝒕 𝑒!!∆! − 1      (36) 

where 𝑚! and 𝑚! are model constants that are estimated at each prediction iteration 

by curve fit. The model in Eq. 36 is similar to the solution of the quadratic differential 

equation proposed by Lall et al [67] for increase in resistance due to degradation of 

solder joints.  

Figure 31 shows the degradation in health of the voltage divider feedback circuit 

due to progression of fault in 𝑅!. Figure 32 shows the estimated increase in resistance 

of 𝑅! beyond its tolerance. Similar to the electrolytic capacitor in low pass filter, the 

developed degradation model in Eq. 32 does a reasonable job in capturing the 

parametric deviation trend without having to monitor the resistance value. Finally, the 

prognostic result for voltage feedback circuit due to fault in 𝑅! is shown in Figure 33. 

The actual circuit performance failure occurred at 2310 hours. And the model-based 

filtering prognostics method can provide reliable predictions as early as 2000 hours. 

The details for the 𝛼 − 𝜆 plot and failure threshold are same as in low pass filter 

topology [66]. Similar results are presented in Figure 34 through Figure 36 for 

progression of fault in 𝑅!, where the actual failure occurred at 8950 hours and reliable 

𝑅𝑈𝐿 estimates were generated as early as 6000 hours. 
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Figure 31. Observed and estimated degradation in voltage feedback circuit 
health due to progression of fault in 𝑹𝟏. 

 

Figure 32. Estimated deviation in resistance 𝑹𝟏 of voltage feedback circuit.  
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Figure 33. 𝑹𝑼𝑳 estimation result in voltage feedback circuit due to progression 
of fault in 𝑹𝟏 using model-based filtering method. 

 
Figure 34. Observed and estimated degradation in voltage feedback circuit 

health due to progression of fault in 𝑹𝟑. 
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Figure 35. Estimated deviation in resistance 𝑹𝟑 of voltage feedback circuit. 

 
Figure 36. 𝑹𝑼𝑳 estimation result in voltage feedback circuit due to progression 

of fault in 𝑹𝟑 using model-based filtering method. 
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4.4.3 Source of RUL Prediction Error 

In Figure 30 and 36, the RUL prediction trend did not linearly correlate with the 

expected RUL trend. The source of RUL prediction error can be the fluctuations in 

estimated circuit health (i.e., input to degradation model) or the uncertainty in 

degradation modeling. In order to identify the source of RUL prediction error, 

simulated degradation experiments were carried out instead of using degradation 

trends from actual ALT. In this experiment, component 𝑅! of the voltage divider 

feedback circuit was set to gradually degrade and all other components were fixed to 

their nominal values. The corresponding circuit health estimate for this scenario is 

shown in Figure 37.  

 

Figure 37. Estimated voltage feedback circuit health due to simulated 
progression of fault in component 𝑹𝟑. 
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Figure 38 shows the estimated increase in resistance of 𝑅! beyond its tolerance 

using degradation model in Eq. 36. As seen from Figure 38, the error in parameter 

estimation has significantly reduced with simulated degradation. Finally, the 

prognostic result for voltage feedback circuit due to fault in 𝑅! is shown in Figure 39. 

The actual circuit performance failure occurred at 8050 hours. And the model-based 

filtering prognostics method can provide reliable predictions as early as 7000 hours. 

Additionally, the RUL prediction trend falls in-line with the expected RUL trend. 

This result proves that the major source of RUL prediction error is the fluctuations in 

the health values given as input to degradation model and not the model itself. 

 

Figure 38. Estimated deviation in resistance 𝑹𝟑 of voltage feedback circuit with 
simulated component degradation. 
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Figure 39. 𝑹𝑼𝑳 estimation result in voltage feedback circuit due to simulated 
progression of fault in 𝑹𝟑 using model-based filtering method. 
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confidence in RUL prediction with first principles-based model is better than that 

with simple random walk (see Figure 41). 

 

 

Figure 40. 𝑹𝑼𝑳 prediction results for voltage divider feedback circuit with (a) 
random walk model for 𝜽𝒕 and (b) first principles-based model for 𝜽𝒕. 
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Figure 41. Predicted 𝑹𝑼𝑳 distribution for voltage divider feedback circuit with 
random walk model (red) and first principles-based model (blue) for 𝜽𝒕 at (a)-(c) 

100hours and (b)-(d) 50hours before failure. 
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Chapter 5:  Conclusions and Future Work 

Electronic circuit and system failures due to parametric faults in circuit components 

regularly occur in fielded applications requiring longer service life. A good example 

includes solar industry, where inverter and optimizer failures contribute the largest to 

balance-of-system downtime. Methods that can predict circuit failures resulting from 

parametric faults will aid in improving the reliability of fielded systems. 

Most of the existing prognostics research focuses on exploiting component-level 

features to predict component failures. However, these approaches become 

impractical when cost and complexity are taken into consideration. Furthermore, most 

of the component-level parameters cannot be measured once the component is part of 

a circuit. To address this problem, a circuit prognostics methodology is developed in 

this dissertation to predict circuit performance-related failures resulting from 

progression of parametric faults in discrete electronic components. 

First, to facilitate prognostics, a circuit health estimation method using a kernel-

based learning technique was developed and demonstrated on a benchmark circuit 

and DC–DC buck converter system. Second, a model-based filtering method with 

first principles-based degradation model was developed for 𝑅𝑈𝐿 prediction. 

The developed circuit health estimation method exploits features that are extracted 

from circuit responses, instead of component parameters. In the process of 

establishing the circuit health estimation method, an approach was also developed to 

solve the model selection problem in kernel-based health estimation. The 𝑅𝑈𝐿 

prediction method on the other hand, allows the estimation of parametric deviation in 

faulty circuit component (i.e., parametric fault severity) along with the degradation in 
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circuit health, while taking into consideration unit-to-unit variations. This is 

meaningful from a health management perspective, where a maintenance personnel is 

given not only 𝑅𝑈𝐿 information but also fault severity information. Additionally, the 

developed model-based filtering method is capable of generating fusion-prognostics 

outcome provided, physics of failure based knowledge and model exists for the 

critical components. This is beneficial from performance standpoint, as it has been 

proved in the past that fusion-prognostic outcome is reliable and desirable over a data 

driven or physics-of-failure approach. 

Implementation results indicate that the developed circuit health estimation 

approach is able to capture the actual degradation trends of the faulty component. In 

most of the cases, the estimated failure time, 𝑡! , was less than the actual failure time, 

𝑇!, indicating that the developed health estimation method raised early failure 

warning prior to the actual circuit failure. Although this attribute is desirable in any 

diagnostic method, it is actually beneficial only if the difference between 𝑇! and 𝑡! is 

kept minimal, else there will be wastage of useful life. This problem of early failure 

detection was experienced with the estimation of healthy of low pass circuit due to 

parametric fault in electrolytic capacitor. Recollecting the definition of 𝐻𝐼 as a 

posterior class probability representing the conditional probability of a healthy class 

for the extracted feature set, the wastage of useful life could result  (i.e., rapid drop in 

𝐻𝐼 towards zero) due to two reasons. First reason being, the size of the failure class 

features in the kernel Hilbert space is much bigger than the size of the healthy class 

features thereby biasing the conditional probability value towards fault class. Second 

reason, is that the healthy and failure classes are well spaced apart in the kernel 
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Hilbert space, and thus are easily classifiable. The second reason could be easily 

tackled by relaxing the failure threshold i.e., choose a value much closer to 0, the 

theoretical failure limit. However, to tackle first reason, further studies need to be 

conducted in order to investigate the potential impact of having tighter control on the 

distribution of faulty features in kernel Hilbert space. 

Another observation from the conducted health estimation study is that the health 

estimate is dependent on the contributions from component tolerances. Component 

tolerance effects on the extracted features control the distribution of features in the 

kernel Hilbert space. In spite of the inclusion of regularization parameters to address 

the contributions from component tolerances, there were fluctuations in the circuit 

health estimate as seen with the low-pass filter example in the DC–DC converter 

system. Further investigation needs to be conducted in order to account foe 

application-specific constraints in the hyperparameter optimization framework to 

control the spread of healthy class features in the kernel Hilbert space in order 

achieve a more robust circuit health estimate. 

A limitation of the developed model-based filtering method for 𝑅𝑈𝐿 prediction is 

that the degradation model is developed with a single fault condition in mind. If two 

or more components exhibit parametric fault, the model will capture the effect of 

individual component fault in a linear fashion, which may not be the case. As a result 

the developed model will most likely generate early failure warnings, resulting in 

wastage of useful life. Future work is required to address the nonlinear relation 

between circuit health and the effect of more than one component being faulty. 
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Chapter 6:  Dissertation Contributions 

The contributions of this dissertation are as follows: 

• A circuit health estimation method based on kernel-learning that takes into 

account the effect of component tolerances and allows for health estimation: 

§ Irrespective of whether healthy and failure classes are linearly 

separable or not. 

§ Without having to monitor the parameters of the individual circuit 

components.  

• A stochastic filtering approach for the automatic selection of optimal 

hyperparameter values in kernel methods 

• A degradation model for RUL prediction, that is capable of estimating the 

intensity of parametric faults and generating fusion prognostic outcome. 
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Appendix A: Comparison of Particle Filter with Other Global 
Optimization Methods 

 

Zhou et al [48][49] developed a global optimization method using particle filter, 

which falls under the category of model reference adaptive search. Zhou compared 

her approach with well-known cross entropy (CE) methods with varying smoothing 

factor 𝑣. Figure 37 shows the comparison of optimization with particle filter (referred 

to as CEA in Figure 37) and CE for 20-dimension Powell singular function that has 

multiple local minima and one global minima of 𝐻 𝑥∗ = 0 at 

𝑥∗ = 0 0 ⋯ 0 0 !"!!
! , where: 

𝐻 𝑥 = 𝑥!!! + 10𝑥! ! + 5 𝑥!!! − 𝑥!!! ! + 𝑥! − 2𝑥!!! ! + 10 𝑥!!! − 𝑥!!! !!!!
!!! .(37) 

 
Figure 42. Average performance of particle filter and CE optimization methods 

on 20-D Powell singular function [49]. 
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Figure 37 clearly shows that particle filter outperforms CE method for a complex 

objective function with multiple local minima and single global minima. For the same 

objective function, Hu et al [68] used a model reference adaptive search (MRAS) 

similar to Zhou [49] (with the only difference being the assumption on the 

distribution being Gaussia) and compared with Simulated Annealing (SA). The result 

of Hu et al [68] is shown in Figure 38 where it can be seen that a MRAS method will 

outperform CE and SA method. This lies in agreement with results from Zhou [49]. 

 

Figure 43. Average performance of MRAS, CE, and SA optimization methods on 
20-D Powell singular function [68]. 

 
Furthermore, Boubezoul and Paris [50] compared the use of CE search method with 

particle swarm optimization and grid search methods to automatically select the 

Simulated Annealing 
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CE, v=0.2 
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hyperparameters of a support vector machine for classification. Boubezoul and Paris 

[50] demonstrated that the classification accuracy using CE search method 

outperformed both particle swarm optimization (PSO) and grid search method for 

selecting the hyperparameters of support vector machine classifier (see Table 3). Thus 

a stochastic filtering-based global optimization approach that falls under the category 

of MRAS is expected to provide the best solution among global optimization methods 

to solve the model selection problem. 

TABLE 3 
Comparison of CE, PSO, and Grid search methods for optimal selection of 
hyperparameters in SVM on various benchmark classification datasets [50]. The 
format of the numbers in the table is 𝑹± 𝒔𝒕𝒅, where 𝑹 is the average 
classification accuracy and 𝒔𝒕𝒅 is the standard deviation in classification 
accuracy. 

 

Additional simulation studies (see Figure 39) were carried out comparing Zhou’s 

[49][50] stochastic filtering-based global optimization method with PSO on 

benchmark optimization problems such as trigonometric function (20-D), Powel’s 

singular function (20-D), and Rosenbrock function (20-D). In each of these cases, 

filtering-based optimization exhibited faster convergence when compared to PSO. 
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Figure 44. Comparison of filtering-based optimization with PSO on benchmark 
problems: (a) Trignometric, (b) Powel’s Singular, and (c) Rosenbrock functions. 
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Figure 40 compares the performance of filtering-based optimization method with 

and without gradient information on Trigonometric optimization problem. Clearly, 

the inclusion of gradient information increases the convergence rate, although it 

doesn’t change the identified optimum location. 

 

Figure 45. Comparison of filtering-based optimization with and without gradient 
information on Trigonometric function. 
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