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This body of work develops a modular, semi-active isolation suspension for

6-DOF vibration control of ground support equipment near a rocket launch. The

objective is to provide vibration and shock attenuation for a broad disturbance

spectrum with semi-actively controlled magnetorheological (MR) dampers. MR

dampers have adaptable rheological properties that can be quickly altered by the

application of an external magnetic field, allowing the device to be tailored to the

source disturbance. These changes are large, reversible, and rapid (10−3 s), which

make MR fluid an excellent medium for mechanical vibration damping.

This work addresses several practical issues the MR suspension may face, in-

cluding perturbations in operating temperature, payload mass, and center of gravity.

A model of a single, linear-stroke MR damper is developed to capture the force be-

havior for practical operating temperatures between 00C and 1000C. The impact of

temperature and payload mass on the attenuation performance is evaluated through

a simplified 1-DOF system. The analysis is extended to a multi-damper suspension



for 6-DOF vibration control and a mathematical model is derived to describe the

system dynamics. Several control laws are formulated in the 6-DOF framework, con-

sidering both centralized and decentralized algorithms. The mathematical model is

validated experimentally with a full-scale, deliverable system tested at George Wash-

ington University’s Earthquake Engineering Laboratory shake table in response to

simulated disturbances from NASA’s Space Shuttle Mobile Launch Platform during

the STS-31 launch. The model is used to analyze the attenuation ability of the

suspension considering MR damper orientation, control strategy, and perturbations

in payload mass, center of gravity location, and operating temperature.

The semi-active suspension is shown to be a robust, adaptable solution with

low power consumption requirements compared to the state of the art.
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Chapter 1

Introduction to Vibration Isolation

1.1 Motivation

Vibration is a phenomenon defined as oscillations about an equilibrium point.

Vibration can be transmitted through any medium such as the atomosphere (ie.

sound, or pressure waves), or through solid materials (ie. mechanical vibration).

There are many sources of vibration, such as earthquakes, interal combustion en-

gines, rocket blasts, a mass imbalance in a rotary environment, or contact distur-

bances to a road vehicle.

Occasionally vibration is desirable. This is the case with musical instruments,

jackhammers, or agitation machines used to vigorously shake cans of paint. How-

ever, often vibration is undesired, as it can cause discomfort (ie. audible noise), or

damage sensitive equipment. Therefore, it is often necessary to isolate the source

of vibration. This is typically done in one of two ways: (1) through impedance

mis-matching, which is accomplished by augmenting the mass or stiffness properties
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of the system (ie. tuned mass damper), or (2) through absorbing or dissipating

energy transmitted from the vibration source. The former is a technique that shifts

the natural frequencies of the system away from a particular disturbance frequency.

This can be achieved in several ways, from as simple as judiciously adding mass to

the system, or with slightly more sophistication, through the use of adjustable stiff-

ness elements, allowing the suspension to be adaptable. The latter does not alter

the undamped dynamics of the system, but rather introduces a dissipative element

into the system to attenuate resonant behavior. This too can be achieved in several

ways and is the subject of the next section.

1.2 Methods of Damping

Damping devices can be classified into three general categories: passive, ac-

tive, and semi-active. Passive damping devices are characterized by having a fixed

force/velocity relationship as seen in figure 1.1, and by their inability to introduce

net energy into the system in which they belong, assuring stability. Examples of

passive damping include viscous fluid shearing, frictional surface-to-surface contact,

or plastic deformation of a solid material. While these devices are inherently sta-

ble, require no control logic, and are relatively low maintenance, the performance

is limited due to the inability to adapt to perturbations in system parameters and

disturbances.

Fully active devices (ie. force generators) include hydraulic and pneumatic ac-

tuators, piezo-electric elements, and electric motors. Control algorithms dictate the
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operation of an active device through processing information obtained with sensors.

Active devices have the ability to exert a force independent of the relative motion

of the device. This ability is shown in figure 1.1, as the active device is capable

of exerting force in all four quadrants of the force vs. velocity plane, regardless of

the relative velocity of the device. This ability allows active devices to both inject

energy into, and dissipate energy from, a dynamic system. This provides superior

performance compared to passive systems and offers the ability to adapt to per-

turbations of system parameters and disturbances. However, there are drawbacks.

The ability to inject energy into the system may cause unstable behavior, requiring

robust control logic to ensure stability. Furthermore, active devices often require

bulky or heavy support hardware, and also consume large amounts of power for

operation.

Semi-active devices attempt to capture the adaptive nature of a fully active

device while also benefitting from the low power consumption and stable operation

of a passive device. Examples of a semi-active device include dampers with mechani-

cally adjustable bypass orficies, and magnetorheological (MR) and electrorheological

(ER) dampers. Semi-active devices have adaptable damping properties, providing a

variable force/velocity relationship that may occupy the upper right-most and lower

left-most dissipative quadrants, as seen in figure 1.1. Since the semi-active device

can only dissipate energy from the system, the power consumption is low, requiring

only enough power to alter the damping properties, and the device is inherently

stable.

3



 

 

semi−active
passive
active

Velocity

Actuator Force

Figure 1.1: Comparison of force exertion capability for passive, semi-active, and
active devices.
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Figure 1.2: In the absence of magnetic field the MR fluid behaves as a Newtonian
fluid, however with the application of magnetic field the ferrous particles form chains
creating a yield stress τy that must be overcome before motion may occur.

1.3 MR Technology

MR fluid is a biphasic suspension with magnetically dependent, anisotropic

properties. The suspension is composed of a carrier fluid (typically either mineral

oil, synthetic oil, water, or glycol) and micron-sized (typically 0.1 - 10 μm) iron (Fe)

particles. The typical particle to fluid volume fraction is between 20 - 40 percent by

volume.

Figure 1.2 depicts the formation of the partical chains with the application of

magnetic field and the need to overcome the yield shear stress before motion can

occur. The formation of the particle chains between the two parallel surfaces is rapid

and occurs on the order of milliseconds (< 15 ms). The magnetized gap thickness

is typically between 0.5 - 2 mm.

There are three primary ways the fluid may flow through the magnetized gap.

Figure 1.3 illustates the flow, shear, and squeeze modes of operation.
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Figure 1.3: Modes of operation for MR fluid dampers.
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1.3.1 Flow Mode

The flow mode of operation forces the MR fluid to flow between two stationary,

parallel plates in figure 1.3(a) which create a magnetized gap with the magnetic

flux lines perpendicular to the plates. A pressure differential forces the fluid to

flow through the gap and severe the particle chains. Flow mode operation allows

for hydraulic amplification which is useful for high force applications such as shock

absorption. Examples of flow mode devices include crashworthy occupant seating

[20, 38, 76], landing gear for aircraft [8, 19], primary suspensions for automobiles,

seismic damping elements for civil structures, and lag dampers for helicopter main

rotors [41].

1.3.2 Shear Mode

The shear mode operation translates one side of the gap in-plane relative to

the other as in figure 1.3(b). Shear mode operation allows for high dynamic range

due to low field-off stresses. Examples of shear mode devices include rotary dampers

for occupant crash protection in helicopters [37], rotary clutches and brakes [27], and

rheometer testing machines.

1.3.3 Squeeze Mode

The squeeze mode operation translates one side of the gap parallel to the

magnetic flux lines as in figure 1.3(c). Due to the small required gap thickness,

the squeeze mode is limited to low stroke applications. Squeeze mode operation is
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gap Housing 

Piston 

Magnetic coil 

Figure 1.4: Schematic of a mixed mode damper combining flow and shear modes.

applicable to variable stiffness devices, engine mounts [82], and rotating shafts [75].

1.3.4 Mixed Mode

MR dampers can also be designed to use a combination of the three primary

operation modes. A floating piston design shown in figure 1.4 combines both flow

and shear modes, and Brigley et al. [9] designed a mixed mode damper that employs

all three primary modes.

1.4 6-DOF Isolation

Often many systems experience multi-axis vibration and require damping

along each DOF. Figure 1.5 gives examples, including occupant seating systems for

marine-based vehicles, primary suspensions for land-based vehicles, helicopter main
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(a) Occupant seating sys-
tems for marine-based vehi-
cles.

(b) Primary suspensions for
land-based vehicles.

(c) Helicopter main rotors.

(d) High-precision pointing
devices.

(e) Ground support equip-
ment and electronics for
rocket launches.

(f) Seismic structural pro-
tection of buildings.

Figure 1.5: Multi-axis vibration applications.

rotors, high-precision optical instruments and precision pointing devices, ground

support equipment and electronics for rocket launches, and seismic structural pro-

tection of buildings. These real systems in three-dimensional space can often be

viewed as rigid bodies that have six DOF, comprising of 3 translational DOF along

orthogonal axes and 3 rotational DOF about those same axes.

1.4.1 Passive

Passive techniques have been used to address 6-DOF isolation. Modern au-

tomobiles and high-performance off-road vehicles have suspensions that isolate pas-

sengers in the cabin from disturbances originating from the interaction between the
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Main Rotor 

Helicopter Fuselage 

Rotor Hub 

Figure 1.6: Passive isolation of helicopter main rotor vibrations [6].

road surface and automobile wheels. Balke et al. [6] suggests the use of linkages

and elastomeric elements to isolate a rotorcraft fuselage from the vibration of a

helicopter main rotor in figure 1.6. Platus [62] describes an apparatus of bi-stable

stiffness elements in figure 1.7 which strive to preserve an acceptable static deflec-

tion while shifting the natural frequency of the system much lower than is possible

with linear springs, however this technology is limited to only small deflections.

The Shockwave Seat company [3] manufactures 6-DOF isolation systems for high-

performance, marine-based occupant seating systems for rough ocean conditions,

using passive peumatic shock absorbers in figure 1.8. Klembczyk and Mosher [47]

designed a passive suspension using several coil springs and viscous dampers to pro-

vide isolation from rocket-blast induced vibration for all 6-DOF of a large piece of

equipment onboard NASA’s Mobile Launch Platform (MLP) in figure 1.9.
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Audio Electronics 

Figure 1.7: Bi-stable stiffness device offering passive 6-DOF isolation [62].

Figure 1.8: Shockwave Seat company 6-DOF isolation, marine-based occupant seat-
ing systems for rough ocean conditions.
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Ground Support Equipment 
for Shuttle Launch 

Figure 1.9: Passive 6-DOF isolation from rocket-blast induced shock and vibration
on NASA’s Mobile Launch Platform (MLP) [47].

1.4.2 Active

Active suspensions have been used to provide 6-DOF isolation. The origins

of these devices date back to Stewart [70] who publicized a parallel manipulator in

figure 1.10 invented by Eric Gough in the 1950s as a platform to mechanically test

automotive tires under combined loads [32]. This parallel manipulator is commonly

refered to as either a “hexapod”, “Gough/Stewart”, or simply “Stewart”, platform

which uses six prismatic actuators to synergistically position a platform relative to

the base with six degrees of freedom (ie. 3 translational, 3 rotational). In addition

to mechanical testing of automotive tires, these devices have been used for aviation

flight simulation in figure 1.11, and robotic orthopedic surgery in figure 1.12 [50].

Hexapod manipulators have also been used as isolation suspensions. Thayer

et al. [71] and Hanieh [36] apply active control strategies to cubic hexapod manip-

ulators designed with voice coil and piezoelectric actuators, shown respectively in
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figures 1.13 and 1.15, to provide isolation to sensitive spacecraft payloads.

1.4.3 Semi-Active

Semi-active devices provide an adaptable, low-cost, low-maintanance solution

to isolating shock and vibration. Several rigid body suspensions have been modeled

as simplified single-DOF systems. Ahmadian and Vahdati [4] simplified a ground

vehicle suspension as only a quarter-car model. Others have considered simplified

suspension models for ground vehicles, capturing roll, pitch, and/or heave DOFs (<

six-DOF) as in figure 1.15 [10, 16, 67, 83]. The primary suspensions of many popular

consumer automobiles are now equiped with MR dampers. This trend began in 2002

with the introduction of the MagneRide suspension in the Cadillac Seville STS from

the automobile manufacturer General Motors [1].

Several researchers have investigated multi-axis vibration suspensions with

fixed bases. Brigley et al. [9] investigated a multi-directional, mixed mode MR iso-

lator with limited stroke capability in figure 1.16. The Shockwave Seat company

[3] is begining to offer its multi-axis occupant seating suspensions for high per-

formance, marine-based applications in figure 1.8 with MR technology. Unsal [72]

models a cubic hexapod mechanism in figure 1.17 that employs both actuators and

semi-active MR dampers arranged in-series to provide precision positioning as well

as vibration control for space applications. Jean et al. [43] constructed a hexapod

suspension using only MR dampers in figure 1.18 and showed good vibration atten-

uation with the Frobineus norm of transmissibility. A similar hexapod MR damper

design in figure 1.19 was used on the 2005 DARPA Grand Challenge autonomous
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Figure 1.10: Universal Tyre-Testing Machine developed by Gough [32].
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Figure 1.11: Flight simulator motion achieved with a hexapod manipulator.

Figure 1.12: Robotic 6-DOF Stewart platform to assist in orthopedic surgery [50].
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Figure 1.13: Cubic hexapod manipulator with voice coil actuators [71].
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Figure 1.14: Cubic hexapod manipulator with piezoelectric actuators [36].

Figure 1.15: Simplified full car model capturing the roll, pitch, and heave DOFs
[16].
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Figure 1.16: Multi-directional, mixed mode MR isolator [9].

ground vehicle entry from Carnegie Mellon University to isolate electronics onboard

the vehicle [2].

1.5 Dissertation Outline

The motivation of this present body of work is to develop a semi-active suspen-

sion to provide 6-DOF isolation for ground support equipment near a rocket launch.

Semi-active, MR fluid technology is selected due to its adaptive capabilities, low
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MR Damper 

Actuator 

Figure 1.17: Model of a cubic hexapod mechanism that utilizes both actuators and
semi-active MR dampers, arranged in-series, to provide precision positioning as well
as vibration control [72].

power consumption, and stable, fail-safe operation.

In this discussion, practical design considerations are taken into account. The

implications of perturbations in the system properties are studied and the isolation

performance is evaluated. A large stroke capability for the suspension is pursued so

that the suspension may possess low stiffness and yield good high frequency isola-

tion. There are limitations to the cubic hexapod design, which has been previously

studied [2, 43, 72]. It is not modular in the sense that it requires exactly six link-

ages. Adding or subtracting linkages would disrupt the orthogonality of the cubic

configuration. The ability to add or subtract individual leg subsystems from the

suspension accommodates payloads of varying size and mass without the need to

redesign a fixed number of MR dampers or springs. It is desired to have a modular

suspension design that could scale with payload mass and geometric size.

Chapter 1 begins by identifying sources of vibration and several examples

where it is desired to eliminate vibration from the system. Semi-active damping
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Figure 1.18: Cubic hexapod suspension using 6 MR dampers [43].
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Figure 1.19: Hexapod MR damper suspension used on the 2005 DARPA Grand
Challenge autonomous ground vehicle entry from Carnegie Mellon University to
isolate electronics onboard the vehicle [2].
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and MR fluids are introduced and the state of the art for multi-directional vibration

supression is discussed.

Chapter 2 develops a hydro-mechanical analysis to model the MR damper

behavior considering perturbations in operating temperature.

Chapter 3 uses the damper model to examine a base-disturbed, single-DOF

system and investigates the robust isolation performance of the MR suspension when

subjected to perturbations in operating temperature and payload mass.

Chapter 4 derives a mathematical model of the full 6-DOF dynamics of the

semi-active suspension system as well as control laws to govern the behavior of the

MR dampers.

Chapter 5 discusses the design and characterization of the MR damper and

coil spring suspension. A single suspension leg is used to evaluate control law per-

formance and calibrate the control gains. The full 6-DOF experimental testing is

discussed and the results are presented. The mathematical model is validated using

the measured data.

Chapter 6 develops an analysis of the MR damper orientations within the

suspension and it is shown that the dampers can be oriented to attenuate all six

resonant modes of the rigid body system and provide high frequency isolation of

system disturbances. Also, the isolation performance of the suspension is evaluated

using centralized and decentralized control laws, as well as considering perturbations

in payload mass, center of gravity, and operating temperature.

Chapter 7 summarizes the original contributions of this dissertation and iden-

tifies future work in this research area.
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Chapter 2

Analysis of a Magnetorheological Damper

Incorporating Temperature Dependence

2.1 Introduction

Aside from external environmental heating, a magnetorheological (MR) damper

may internally self-heat due to both resistive heating by the electromagnetic coil and,

to a greater extent, by dissipating mechanical energy into thermal energy. Temper-

ature can significantly alter damper behavior as the fluid viscosity and accumulator

gas pressure are highly dependent on temperature. Therefore, to improve the un-

derstanding of the behavior of a linear stroke MR damper designed for a ground

vehicle seat suspension, its performance is characterized over temperatures ranging

from 00C to 1000C. A hydro-mechanical analysis is used to represent MR damper

behavior when it is subjected to large temperature perturbations, and captures con-

tributions from fluid viscosity, fluid inertia, and pneumatic compressibility. The
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effect of damper self-heating on the identified model parameters is presented, and

the connection of these parameters to physical properties is also discussed.

2.2 Background

Magnetorheological (MR) fluids have rheological properties that can be quickly

altered by the application of an external magnetic field. The changes are manifested

by large changes in yield stress (nominally, 0 − 60 kPa), reversible, and rapid (on

the order of milliseconds) [13], which make MR fluid an excellent working fluid

for mechanical vibration damping and shock isolation devices. Linear stroke MR

dampers or MR energy absorbers can be used for such applications as protective

occupant seating [20, 38, 76] and aircraft landing gear suspensions [8, 19].

MR fluids consist of micron-sized ferrous particles suspended in a carrier fluid

such as oil, water, or glycol [13]. The MR fluid inside a damper can experience large

variations in temperature due to resistive heating of the electromagnetic coil and,

to a greater extent, fluid agitation as the damper strokes in response to mechanical

excitation. Energy is dissipated by transforming mechanical energy into thermal

energy by shearing the fluid as it flows through an orifice in the piston traveling

through the hydraulic cylinder. Temperature can significantly affect the rheological

properties of the MR fluid [54]. The viscosity of the carrier fluid is strongly linked

to temperature, as with any simple liquid, due to the molecular kinetic energy of the

material [15]. Also, the pressure of a damper’s pneumatic accumulator is directly

proportional to the temperature of the gas inside the accumulator [15].
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Consequently, research has been conducted to study how to compensate for

these temperature effects. Gordaninejad and Breese [31] developed an energy bal-

ance framework to predict the heat generation of MR fluid dampers as a function

of energy entering a defined control volume through mechanical and electrical work,

or leaving via thermal conduction. Dogruoz et al. [26] experimentally enhanced

heat dissipation out of an MR damper using thermally conductive heat-sink fins to

minimize the loss in passive damping for fail-safe damper applications. Batterbee

and Sims [7] showed that feedback controllers for MR shock absorption applications

can exhibit reduced force-tracking performance as temperature increases due to a

reduction in viscous damping and yield force. Liu et al. [49] investigated a control

strategy for vibration reduction with an MR damper and demonstrated improved

isolation performance using temperature compensation over uncompensated control.

A key concern in each of these studies was how to model changes in damper behavior

as a result of thermal perturbations.

Although several models have been proposed to capture the force behavior

of MR fluid dampers [74], few models have addressed the effect of temperature.

Sahin et al. [64] measured the rheological properties of an MR grease with a shear

mode rheometer, and proposed a temperature dependent Herschel-Bulkley model

to represent these behaviors, showing temperature has an appreciable effect on the

field-induced dynamic yield stress. Temperature can significantly alter the damper

force. Not only can temperature changes alter the maximum achievable force, but

also change the hysteresis and phase relationship of the damper force relative to the

piston motion. These changes can be pronounced in both pre-yield and post-yield
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damper behavior.

Modeling pre-yield force hysteresis is well documented [22, 29, 68, 78]. Post-

yield force behavior has also been studied. Kamath and Wereley [44] developed

a model that uses a nonlinear combination of linear mechanisms that can capture

an extensive spectrum of damper behavior in both the pre-yield and post-yield

domains. Yang et al. [81] extended the versatile Bouc-Wen model to include an

inertia term capable of capturing the MR fluid stiction phenomenon as well as fluid

inertial and shear thinning effects. However, this extended Bouc-Wen model requires

a large number of parameters. Peel et al. [61] proposed a dynamic model capable of

capturing post-yield stiffness and inertial behavior. Çeşmeci and Engin [14] noted

the influence of inertia on the force hysteresis near maximum piston velocity. Powell

[63] proposed a model with physical mechanical elements that is capable of capturing

the post-yield inertia effects observed in experimental rheometer data and attributes

this to a nonlinear softening of the post-yield fluid elasticity. However, none of

these models have considered the post-yield behavior in the context of temperature

perturbations.

This study uses hydro-mechanical analysis to develop a physically motivated

model that captures the force behavior of a linear stroke MR damper over temper-

atures ranging from 00C to 1000C. The parameters of the model are well motivated

by the physical properties of the damper and MR fluid, and the measured trends

of the parameters are presented as a function of operating temperature and applied

magnetic field.
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Figure 2.1: Magnetorheological (MR) seat damper.

2.3 Damper Characterization

The experimental testing is carried out using an MR damper (figure 3.4) de-

signed for occupant seat isolation onboard the US Marine Corps’s amphibious Ex-

peditionary Fighting Vehicle (EFV) [42]. The EFV vehicle is subjected to a broad

spectrum of vibrations and shocks in both land and sea mode operations, thus re-

quiring low transmissibility over a large frequency range. The MR seat isolator was

designed and fabricated at the University of Maryland and uses a commercially avail-

able fluid (Lord MRF-132DG) to achieve the desired maximum yield force (4.3 kN)

and target field-off viscous damping (1.0 kNs/m) for the EFV seat application at

an operating temperature of 500C. The MR valve operates as a purely flow mode

device [77] and the pneumatic accumulator is filled with nitrogen gas, pressurized

to 2.41 MPa (350 psi).

Damper characterization was performed on an MTS 810 material testing sys-

tem inside of a temperature-controlled environmental chamber, as seen in figure 2.3.

The MR damper was characterized at temperatures ranging from 00C to 1000C. A

thermocouple was installed inside the damper to directly measure the operating
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Figure 2.2: Internal construction of MR damper.

Figure 2.3: Temperature-controlled environmental chamber.

28



temperature of the MR fluid. The thermocouple was fixed to the surface of the steel

bobbin and the lead wires were guided up through the hollow piston rod together

with the lead wires of the MR coil. The maximum temperature was 1000C because

that is the rated temperature for safe operation of the damper’s polyurethane rod

seals. To achieve higher relevant temperatures, seals with a higher operating tem-

perature can be utilized. Liquid nitrogen was fed into the environmental chamber

to achieve temperatures below 00C. For each test, the damper was first cooled be-

low 00C, as indicated by the thermocouple, then the chamber door was opened to

ambient room temperature and excitation began. As a result of the mechanical ex-

citation and the resistive heating from the electromagnetic coil, the damper would

self-heat and the thermocouple reading would increase to 1000C, which concluded

the test. An excitation of 4 Hz and 7.62 mm (0.3 in) displacement amplitude was

chosen as representative of the resonant condition of the EFV seat suspension sys-

tem. This procedure was repeated for applied current levels of 0, 0.25, 0.5, 1.0,

1.5, 2.0, and 2.5 A to evaluate temperature effects over the full range of control. A

linear variable differential transformer (LVDT) sensor was used to measure piston

displacement and a load cell was used to measure transmitted force.

The measured displacement signal was filtered, using a Fourier series expan-

sion, by selecting only the primary excitation frequency component (4 Hz), while the

measured nonlinear damper force was left unfiltered. However, the bias force was

removed from the measured data. Figure 2.4 depicts the operating temperature of

the MR fluid as a function of time during the characterization of the damper at each

applied field. The shortest test occured for the largest applied field (2.5 A), lasting
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Figure 2.4: Operating temperature of MR fluid vs. time for several applied fields.
Temperature reading was taken from a thermocouple affixed to bobbin in piston,
and is representative of the MR fluid temperature.

around 3 minutes, indicating the operating temperature increased by approximately

0.10C per stroke cycle of the damper, providing accuracy of ±0.050C for each com-

plete stroke cycle. Figure 2.5 shows the operating temperature and the envelope

function using the Hilbert Transform [65] of the total damper force as a function of

time during the damper characterization at 2.5 A, illustrating the gradual change in

damper behavior as temperature increased over the duration of the test. From 00C

to 1000C, the measured peak damper force dropped 37% for an applied current of

2.5 A. The force and displacement signals were segmented into one cycle intervals

and used for further modeling and analysis.

Representative force vs. piston displacement and velocity data are shown in

figure 2.7, providing the qualitative trends of the damper force behavior as a func-

tion of operating temperature. Comparing figures 2.7(a) and 2.7(b), it can be seen

that the area inside each force/displacement curve decreases as temperature rises, in-

dicating a decrease in the dissipated energy per cycle. Figure 2.9 graphically defines
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Figure 2.6: Measured MR damper force vs. time.
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1000C.
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(c) Force vs. piston velocity data at 00C.
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(d) Force vs. piston velocity data at 1000C.

Figure 2.7: Measured force signals of the MR damper.
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Figure 2.8: Zoomed view of figure 2.7(c) showing the force overshoot phenomenon
in the force vs. piston velocity data at 00C.
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Figure 2.9: Representative force vs. piston velocity curve highlighting key features.

the post-yield force asymptote, which approximately intercepts the zero-velocity

axis at the yield force and has a slope equal to the post-yield damping. Examining

the force vs. velocity curves in figures 2.7(c) and 2.7(d), as temperature rises, the

post-yield asymptotes rotate clockwise and translate toward a lower force level, il-

lustrating the decrease in both the post-yield damping and yield force, respectively.

Also seen in figures 2.7(c) and 2.7(d), the separation (or thickness) between the

accelerating and decelerating portions of the curve along the post-yield asymptotes

increases with with rising temperature, signifying an increase in damper stiffness.

This is also indicated in figure 2.7(b) by the counter-clockwise rotation of the force

vs. displacement curves. Another interesting phenomenon is the force overshoot,

shown in figures 2.7(c) and 2.8 at 1.0 and 2.5 A, where the maximum force occurs

before the maximum piston velocity is reached. This behavior is the result of cou-

pling between the fluid inertia and the fluid pressure. The force overshoot is strongly

dependent upon the damper stiffness (pressure), noting that at high temperature,
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Figure 2.10: Hydromechanical representation of the MR damper.

as in figure 2.7(d), this behavior is not present.

2.4 Damper Analysis

A physically motivated analysis is derived from damper geometry and material

properties. The final form of the model is expressed using temperature-dependent,

lumped parameters that describe the damper force in response to a given excitation.

2.4.1 Derivation

A hydro-mechanical analysis, first established by Singh et al. [69] for passive

dampers, and adapted by Hong et al. [40] for ER/MR dampers, is used to capture

the behaviour of the MR damper. Figure 2.10 shows the physical representation of

the model. The pressure drop across the piston head ΔPp due to the fluid passing
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through the active gap can be written as

ΔPp = P1 − P2 = RfAf ẋf + IfAf ẍf +ΔPMR tanh ((ẋ+ λ1x)λ2) (2.1)

where

If =
ρl

Af

(2.2)

Rf =
12μl

Afd2
(2.3)

ΔPMR =
2l

d
τy(H) (2.4)

Here, If is the fluid inertance, Rf is the zero-field flow resistance, and ΔPMR is

the magnitude of the pressure drop due to the yield stress of the MR fluid. The

hyperbolic tangent function tanh(·), with rate parameters λ1 and λ2, was developed

by Choi et al. [22], and adopted by others [35, 48]. It effectively captures the

pre-yield hysteretic damper behavior and describes the on-set of the yield stress.

The yield shear stress τy is a function of the magnetic field intensity H, ρ is the

fluid density, μ is the zero-field fluid viscosity, Af is the cross-sectional area of the

active gap, l is the total active gap length in the direction of flow, d is the separation

between the active gap walls, x is the piston displacement, and xf is the displacement

of the fluid inside the active gap.
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The pressure of chambers #1 and #2 can be expressed, respectively, as

P1 = P0 +ΔP1 (2.5)

P2 = P0 +ΔP2 (2.6)

where P0 is the constant static pressure, ΔP1 is the pressure change of chamber #1

from static, and ΔP2 is the pressure change of chamber #2 from static.

The rate of change of pressure equated to volume flow rate of each chamber

can be expressed as follows

C1Ṗ1 = Apẏ − Af ẋf (2.7)

C2Ṗ2 = Af ẋf − (Ap − Ar)ẋ (2.8)

C4Ṗ4 = Apẋ− Apẏ (2.9)

where C1, C2, and C4 are the fluid compliances for chambers #1, #2, and #4,

respectively, Ap is the area of the piston head, Ar is the cross-sectional area of the

piston rod, and y is the displacement of the pneumatic accumulator. Equations (2.1)

and (2.7) - (2.9) are the governing equations of the fluid flow inside the damper.

The damper force is given as

f = P1Ap − P2(Ap − Ar) (2.10)
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and by substituting for P2 with equation (2.1) we have

f = P1Ar + (RfAf ẋf + IfAf ẍf +ΔPMR tanh ((ẋ+ λ1x)λ2)) (Ap − Ar) (2.11)

Substituting equation (2.9) into (2.7) and rearranging gives

C1Ṗ1 = Apẋ− C4Ṗ4 − Af ẋf (2.12)

By assuming that Ṗ4 ≈ Ṗ1, we can rearrange and integrate equation (2.12) to find

ΔP1 =
Ap

C1 + C4

x− Af

C1 + C4

xf (2.13)

The compliance C2 is relatively small because the compressibility of the MR fluid

is low, so we assume C2Ṗ2 ≈ 0 in equation (2.8), giving

ẋf =
Ap − Ar

Af

ẋ (2.14)

Equations (2.5), (2.13) and (2.14) are substituted into (2.11) to give the

damper force

f = P0Ar +
A2

r

C1 + C4

x+Rf (Ap − Ar)
2ẋ+ If (Ap − Ar)

2ẍ (2.15)

+ΔPMR(Ap − Ar) tanh ((ẋ+ λ1x)λ2)
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Figure 2.11: Nonlinear model of the MR damper.

The damper force can be expressed in a condensed lumped parameter form as

f = f0 + kdx+ cpoẋ+mf ẍ+ fy tanh ((ẋ+ λ1x)λ2) (2.16)

where

f0 = P0Ar (2.17)

kd =
A2

r

C1 + C4

(2.18)

cpo = Rf (Ap − Ar)
2 (2.19)

mf = If (Ap − Ar)
2 (2.20)

fy = ΔPMR(Ap − Ar) (2.21)

Figure 3.5 shows the proposed lump parameter model with stiffness element kd,

post-yield damping cpo, yield force fy, fluid inertial mf , damper body displacement

x, force off-set f0, and damper force f .

Figure 2.12 shows how the model parameters contribute toward the force/velocity

curve.
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Figure 2.12: Representative force vs. piston velocity curve highlighting the contri-
butions from the model parameters.

2.5 Modeling Results and Discussion

A constrained least-mean-squared error minimization was performed to iden-

tify the model parameters from the measure data using the following cost function:

J(f0, kd, cpo,mf , fy, λ1, λ2) =
N∑
k=1

[f(tk)− f̂(tk)]
2 (2.22)

Here, f(tk) is the measured force, f̂(tk) is the modeled force calculated using equa-

tion (2.16), and tk is the time at which the kth sample was taken. The cost function,

J , was minimized while constraining all seven parameters to be greater than zero.

This minimization procedure was performed at temperature measurements from 00C

to 1000C, in increments of 10C.

Representative plots of the measured and modeled force-velocity curves for low

and high temperature operation are seen in figure 2.13. There is good correlation
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Figure 2.13: Force vs. velocity curves of the MR damper measured data and model.
(Note that the bias force was removed from the data.)

between the model and the measured data across both the entire tested temperature

range and applied fields. The hysteresis at high piston velocity, due to increased

stiffness at high temperature, is captured with the model. At cold temperatures,

the model captures the force overshoot phenomenon seen at applied fields of 1.0 and

2.5 A in figure 2.14.

2.5.1 Quantification of Modeling Error

To quantitatively evaluate the correlation between model and experiment, two

error metrics are used. The first metric is the energy error and it quantifies the extent
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Figure 2.14: Zoomed view of figures 2.13(c) and 2.13(d) showing the model captur-
ing the force overshoot phenomenon in the force vs. piston velocity data at 00C.

the model differs from the measured data in terms of the dissipated energy. This is

determined by calculating the dissipated energy over one cycle using

E =

∮
f(t)dx =

∫ 2π/ω

0

f(t)ẋ(t)dt (2.23)

The energy error is then calculated using

ΔE% = 100

∣∣∣∣∣E − Ê

E

∣∣∣∣∣ (2.24)

where E is the energy calculated from the experimental data and Ê is the energy

calculated from the model.

The second model performance metric is the complex correlation coefficient
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(CCF ) [23, 33]. This method compares the boundaries or perimeters of two 2D

geometries to assess their similarity. The boundary functions are given by

b(t) = x(t) + jf(t) (2.25)

b̂(t) = x(t) + jf̂(t) (2.26)

where b is the boundary function for the damper displacement and measured force,

and b̂ is the boundary function for the damper displacement and modeled force. The

CCF is then given by

CCF =

∫
b(t)b̂∗(t)dt

[(
∫
b(t)b∗(t)dt)(

∫
b̂(t)b̂∗(t)dt)]1/2

(2.27)

where b∗(t) and b̂∗(t) are the complex conjugates of b(t) and b̂(t), respectively. If the

two geometries being compared are identical then the CCF will equal unity. This

performance metric evaluates both the magnitude and phase of the model.

Figure 2.15 shows the level of correlation between model and data using both

performance metrics. Note that for all cases, the energy error is < 1% and the

complex correlation metric was > 99%. Thus, the model very accurately represents

the measured data.

2.5.2 Model Parameters

The behavior of the model parameters versus operating temperature is pre-

sented in figure 3.6.
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Figure 2.15: Model correlation metrics.

2.5.2.1 Force Offset, f0, and Stiffness, kd

Figures 3.6(a) and 3.6(b) show the force offset f0 and stiffness kd terms in-

creasing linearly with operating temperature. As the operating temperature in-

creases from 00C to 1000C, the mean value of the stiffness kd, across all measured

applied fields, increases over 300%. The compliance of the nitrogen-filled accumu-

lator, chamber #4 (figure 2.10), is much greater than that of the hydrocarbon oil

based MR fluid chamber #1 (C4 >> C1), so we may rewrite equation (2.18) as

kd ≈ A2
r

C4

(2.28)

and conclude that the stiffness kd is primarily attributed to the compressibility of

the nitrogen-filled pnuematic accumulator. Assuming nitrogen gas obeys the ideal

gas law, the accumulator pressure is linearly proportional to temperature, explaining

the trend we see in figure 3.6(b).

The force offset f0 is also directly proportional to the static internal pressure
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(b) Stiffness kd.
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Figure 2.16: Model parameters as a function of operating temperature.
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Figure 2.17: Model parameters as a function of operating temperature.

of the damper P0 in equation (2.17), again explaining the linear relationship with

temperature in 3.6(a) for all applied fields. As applied field increases, the trend

lines for f0 shift lower in value. This is attributed to any asymmetry in the damper

force between the compression and extension portions of the stroke cycle which may

become more prominent as the applied field increases.

2.5.2.2 Inertia, mf

Considering equations (2.2) - (2.4) and (2.20), the inertia, mf , is physically

connected to the fluid density and damper geometry. The Lord MRF132-DG fluid

used in this study is composed of a hydrocarbon-based carrier fluid, similar to the

Shell Vitrea series oil. It has been shown [80] that the density of Shell Vitrea 460

decreases by 6 − 8% as the temperature increases from 00C to 1000C within the

pressure range of 0.1 to 8 MPa. Figure 3.6(c) reveals the inertia mf is relatively

constant as a function of temperature, assuming a value of zero in the absence of

applied field (0 A) and increases as a function of applied field. While the fluid density
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may change slightly with temperature, the temperature trends in figure 3.6(c) do

not clearly reflect this perturbation.

It is interesting to consider the combined effect of mf and kd. By assum-

ing a harmonic excitation of x = sin(ωt) and ignoring the static offset force f0,

equation (2.16) becomes

f = γx+ cpoẋ+ fy tanh ((ẋ+ λ1x)λ2) (2.29)

where γ = (kd − ω2mf ) and is dependent upon kd, mf , and the excitation frequency

ω. Figure 3.6(d) presents γ as a function of temperature for several applied fields.

Assuming mf is relatively temperature independent, kd accounts for the linear tem-

perature dependence of γ and the role of mf serves only to translate the trend lines

vertically in figure 3.6(d).

Figure 2.18 shows the effect γ has on the damper force at high piston velocity.

A value of γ = 0 indicates a net absence of both damper stiffness and inertia terms

that contribute towards total damper force. While both may be physically present,

they act in such a way that one cancels the effect of the other, so that only the MR

yield-force fy and post-yield damping cpo determine damper force. When γ > 0,

the stiffness term kd dominates the expression for γ, which can be visually seen in

figure 2.18 as a thickening of the hysteresis along the high piston velocity asymptote.

This occurs at low applied fields and high operating temperatures. When γ < 0,

the inertial term mf dominates the expression for γ, indicating that fluid inertia

has the more significant contribution to damper force. This can visually be seen in
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Figure 2.18: Sensitivity of the term γ.

figure 2.18 as an overshoot of the damper force as the piston positively accelerates

just prior to achieving maximum piston velocity. This is found to occur at lower

operating temperatures and higher applied fields.

2.5.2.3 Post-yield Damping, cpo

Figure 3.6(e) shows that the post-yield damping cpo decreases significantly as

temperature rises for all applied fields. At the field-off condition, the post-yield

damping decreases 80% at 1000C when compared from 00C. This reduction in vis-

cosity is a result of the increase in thermal energy of the fluid. The post-yield viscous

damping cpo is physically connected to the fluid viscosity and internal geometry of

the piston head such that

cpo =
12μl

bd3
(Ap − Ar)

2 (2.30)
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where the circumference of the active gap b = Af/d, and μ is the temperature-

dependent fluid viscosity which obeys an Arrhenius or Williams-Landel-Ferry model

[11], capturing the exponential decay seen in figure 3.6(e). The origin of the field-

dependent nature of cpo is not clear, but it may be capturing the fluid’s field-

dependent transition from pre-yield to fully post-yield flow, or may be attributed

to a reduction in the annular gap thickness d caused by truncated chains of iron

particales magnetically attached to the valve walls.

2.5.2.4 Yield Force, fy

Figure 3.6(f) shows the yield force fy decreases as temperature rises for large

applied fields but remains generally constant for fields corresponding to 0.25 and

0 A. The nonzero yield force for the field-off condition is due to passive friction that

exists due to contact between the damper piston and seals. At large applied fields,

the yield force can decrease by up to 30% over temperatures ranging from 00C to

1000C.

Iron (Fe) is a ferromagnetic material possessing a Curie temperature of 7700C.

Far below this Curie temperature, Morrish [57] shows the spontaneous magnetization

(that which exists in the absence of external magnetic field) of iron (Fe) decreases

by only 2% from 00C to 1000C, and alone can not explain the large 30% reduction

in yield force in figure 3.6(f). Indeed, Sheng et al. [66] have conducted static shear

mode testing of an MR fluid with a drag-cup type rheometer and stepper motor at

operating temperatures from 200C to 1400C and shown the change in yield stress of

the MR fluid due to temperature effects to be negligible.

49



Kciuk and Turczyn [46] suggests yield stress decreases as a result of the fluid’s

reduced volume fraction due to increases in temperature. Based on an 8% decrease

in fluid density from 00C to 1000C [80], the volume fraction would decrease 7.5%

from 0.32 to 0.296. Using an empirical model [12] relating yield stress to volume

faction, this temperature increase corresponds to an 11% decrease in yield stress.

Mao et al. [52] study MR damper behavior at high piston velocities (5 m/s)

and propose a Reynolds number dependent model that accurately captures the off-

state damper force for piston velocities up to 5 m/s, which include turbulent, or

transition, flows that develop for velocities > 2.5 m/s (or Re > 2, 000). However,

the model over-predicts the on-state damper force (viscous and MR yield force) at

high piston velocities (> 2.5 m/s) which Mao et al. attributes to a loss in yield force

due to the recirculation and turbulent nature of the flow. At a piston velocity of

5 m/s (Re ≈ 4, 000), Mao et al. shows the measured MR yield force is reduced by

approximately 20% from the value predicted by the model.

Reynolds number is defined as

Re = ρẋfDh/μ (2.31)

where ẋf is the average fluid velocity through the MR valve and Dh is the hydraulic

diameter, where Dh = 2d. The Reynolds number can increase due to both higher

fluid velocities as well as decreases in fluid viscosity, the latter of which can be

seen in figure 3.6(e) as a large 80% reduction in viscous damping. If we assume

that this reduction in viscous damping is purely due to a change in fluid viscosity
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μ and we hold ρ, ẋf , and Dh constant, then Reynolds number increases by 500%

from Re = 25 at 00C to Re = 125 at 1000C. Despite this large percentage increase,

the fluid is operating within the laminar region throughout the entire temperature

range, and may not explain the reduction in MR yield force seen in figure 3.6(f).

Further testing is necessary to accurately identify the mechanism to which the yield

force is most sensitive.

2.5.2.5 Shape parameters, λ1 and λ2

The hyperbolic tangent shape function in equation (2.16) is used to describe

the onset of the yield force using the two parameters λ1 and λ2. The λ1 term

is coupled with the piston displacement which lags piston velocity by 90 degrees,

thereby introducing the appropriate phase to the applied yield force. As the value

of λ1 increases the width of the low-velocity hysteresis loop increases due to the

piston displacement influencing the behavior of the shaping function. The λ2 term

is coupled with the overall value of the quantity (ẋ + λ1x), which thereby dictates

the rate at which the fluid becomes fully yielded. As the value of λ2 increases the

slope of the hysteresis loop becomes more steep.

Figure 3.7(a) shows a decrease in λ1 as temperature rises for all applied fields

except for the field-off condition. Physically this indicates a phase lead shift in the

on-set of the fluid yielding which can be attributed to the higher stiffness of the

accumulator forcing the fluid to pass through the active annulus. Graphically this

can be seen in the force/velocity plots (figure 2.13) as a reduction in the horizontal

width of the low-velocity hysteresis. As the applied field is increased, the value of λ1
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increases, indicating a phase lag shift in the on-set of the fluid yielding. This delay

can be physically attributed to a larger pressure required to build on the leading

face of the piston head before fluid may flow through the annulus.

Figure 3.7(b) reveals λ2 remains fairly constant as a function of temperature

for each applied field except for the field-off and 0.25 A condition, which both show

a large increase in value around the 100C to 600C range. However, this aberation

only has a small effect on the model fit as the yield force is not well developed at

these low applied fields. As the applied field is increased, the value of λ2 decreases,

which can be seen graphically in figure 2.13 as a clockwise rotation of the slope of

the low-velocity hysteresis. Physically, this reduction in λ2 indicates a longer period

of time required to develop a fully yielded fluid flow, and is expected considering a

larger pressure must develop before the yield stress of the fluid is overcome.

2.6 Conclusions

A linear stroke, MR fluid damper was built and characterized over tempera-

tures ranging from 00C to 1000C. The measured peak damper force, for a constant

applied field of 2.5 A, was shown to decrease by 37% as temperature increased from

00C to 1000C. Aside from external heating, an MR damper may internally self-heat

due to both resistive heating by the electromagnetic coil and, to a greater extent, by

dissipating mechanical energy into thermal energy. Temperature can significantly

alter damper behavior as the fluid viscosity and accumulator gas pressure are highly
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dependent on temperature. Several existing damper models exhibit the ability to

capture key features of the pre-yield and post-yield force behavior of an MR damper

that can be observed across a large temperature range, however few models have ad-

dressed the implications of temperature. In order to accurately model the damper

force over temperatures ranging from 00C to 1000C and to gain insight into how

temperature affects damper force behavior, a hydro-mechanical analysis of the MR

damper was developed which provided a lump parameter model with a physical

connection to damper geometry and MR fluid properties.

It was shown that the proposed model captured the pre-yield hysteresis with

the hyperbolic tangent function prescribing the onset of the yield force with the

shaping parameters λ1 and λ2. λ1 is dependent on temperature and is correlated

with the accumulator pressure, while λ2 is relatively insensitive to temperature but

correlated with the applied field. The yield force fy is shown to be dependent on

temperature and decreases by up to 30% as temperature increased from 00C to

1000C. Further investigation is required to better identify the mechanism causing

this temperature-related decrease in yield force.

The model also captured the post-yield force behavior which can dramati-

cally change over temperatures ranging from 00C to 1000C. The post-yield damping

cpo was shown to be directly proportional to fluid viscosity, which is highly tem-

perature dependent, and decreased up to 85%. The stiffness kd was shown to be

linearly porportional to temperature over the temperature range of 00C to 1000C

and increases significantly by several hundred percent. The fluid interia mf was

found to be fairly insensitive to temperature, but dependent on applied field. As
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temperature increased, the time at which the peak force occured during the stroke

cycle could shift. This was most evident at large applied fields (ie. 2.5 A) as the

peak force shifted from occuring before the maximum piston velocity was reached at

mid-stroke to ocurring after. This is due to stiffness and inertial effects. The param-

eter kd provides the mechanism to capture the damper stiffness from the pnuematic

accumulator and the parameter mf provides the mechanism to capture the effects

of fluid inertia. As kd increases, the peak force shifts toward occuring after the

maximum piston velocity, and as mf increases relative to kd the peak force shifts

toward occuring before the maximum piston velocity, causing the force overshoot

phenomenon at large applied fields.
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Chapter 3

Impact of Temperature on Magnetorheo-

logical Damper Vibration Control

3.1 Introduction

The isolation performance of a single degree-of-freedom magnetorheological

(MR) suspension, exposed to a broad frequency spectrum disturbance as tempera-

ture and payload mass vary, is analyzed. Aside from external environmental heating,

an MR damper may internally self-heat due to both resistive heating by the elec-

tromagnetic coil and, to a greater extent, by dissipating mechanical energy into

thermal energy. Temperature can significantly change damper behavior as the fluid

viscosity and accumulator gas pressure are highly dependent on temperature. The

analysis shows an MR suspension with an appropriately chosen control strategy,

subject to practical temperature and payload mass perturbations ranging from 00C

to 1000C and 46.5 kg to 96 kg, respectively, can provide robust, broadband vibration
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attenuation.

3.2 Background

Magnetorheological (MR) fluids are a type of material with rheological prop-

erties that can be quickly altered by the application of an external magnetic field,

offering adaptable damping characteristics. MR fluids consist of micron-sized fer-

rous particles suspended in a carrier fluid such as oil, water, or glycol [13]. The MR

fluid inside a damper can experience large variations in temperature due to resistive

heating of the electromagnetic coil and, to a greater extent, fluid agitation as the

damper dissipates mechanical energy into thermal energy by shearing the fluid as it

flows through an orifice in the piston traveling through the hydraulic cylinder.

Temperature can significantly affect the rheological properties of the MR fluid

[54]. Sahin et al. [64] measured the rheological properties of an MR grease with

a shear mode rheometer and proposed a temperature dependent Herschel-Bulkley

model, showing temperature has an appreciable effect on the field-induced dynamic

yield stress. Wilson et al. [79] developed an analysis that captures the temperature

dependent force behavior of an MR damper, and highlights significant losses in yield

force and viscous damping, and a significant increase in the pneumatic accumulator

pressure. Batterbee and Sims [7] showed feedback controllers for MR shock absorp-

tion applications can exhibit reduced force-tracking performance as temperature

increases due to a reduction in viscous damping and yield force.

Consequently, research has been conducted to study how to compensate for
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these temperature effects. Gordaninejad and Breese [31] developed an energy bal-

ance framework to predict the heat generation of MR fluid dampers as a function of

energy entering a defined control volume through mechanical and electrical work, or

leaving through termal conduction. Dogruoz et al. [26] attempted to enhance heat

transfer from an MR damper through the use of thermally conductive heat-sink fins

to minimize the loss of zero-field, viscous damping for fail-safe damper applications.

Liu et al. [49] investigated a control strategy for vibration reduction with an MR

damper and demonstrated improved isolation performance using temperature com-

pensation over uncompensated control. However, in a practical sense, additional

sensors and hardware for temperature measurement are undesirable because of the

added cost and maintenance requirements.

Temperature can indeed impact the isolation performance of an MR suspen-

sion. At elevated temperatures, a decrease in fluid viscosity may enhance isolation

for high frequency disturbances due to a larger dynamic force range between the on

and off state [51]. A loss in the MR yield stress reduces the maximum achievable

total damping force, equating to a loss in control authority at resonance. An in-

crease in damper stiffness may shift the natural frequency of the system higher and

degrade isolation.

This paper investigates the robust nature of a semi-active control law, without

temperature or payload mass compensation, applied to a single degree-of-freedom

system when the MR damper experiences perturbations in operating temperature

ranging from 00C to 1000C, and the suspension experiences perturbations in payload

mass ranging from 46.5 kg to 96 kg. The purpose of this study is to show that an ap-
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propriately chosen controller provides performance robustness to practical temper-

ature and payload mass perturbations that are encountered in magnetorheological

isolation systems.

3.3 A Review of Isolation

An isolation suspension is designed to attenuate vibration transmitted to a

payload from an external disturbance. There are several features a suspension must

possess to successfully meet this objective. These features impact the frequency

response of the system which is a ratio of the transmitted acceleration to the pay-

load from the base mount as a function of disturbance frequency. A representative

frequency response function (FRF) for a single-DOF, second order linear system is

shown in Fig. 3.1(a). Meirovitch [55] gives an excellent analysis on the subject.

Below the nondimensional crossover frequency, ω/ωn =
√
2, where ω is the distur-

bance frequency and ωn is the natural frequency, the transmissibility is greater than

or equal to unity (ie. Tr ≥ 1) and defined as amplification, and above the crossover

frequency, Tr ≤ 1 and defined as isolation. The largest amplification in the FRF is

defined as resonance and occurs at or below ω/ωn = 1, depending on the amount of

damping in the system.

Ideally, it is desired to have isolation (Tr ≤ 1) for all disturbance frequencies.

For a passive system, Fig. 3.1(a) shows that isolation is achieved only for frequencies

ω >
√
2ωn. Thus, in order to attain isolation for all disturbance frequencies, ωn must

hypothetically equal zero, causing the FRF in Fig. 3.2 to compress toward the left.
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The natural frequency ωn is purely a function of payload mass and suspension stiff-

ness. Assuming that for any application the payload mass is fixed, the suspension

stiffness is the only adjustable parameter in the design, and reducing the stiffness

toward zero would provide full spectrum isolation. However, a lower limit constraint

is placed on the suspension stiffness in order to satisfy a maximum allowable static

deflection. This deflection criteria is gravity dependent and often established to

ensure sufficient rattle space and avoid impingement with the surounding environ-

ment. Therefore, it is common practice to lower the suspension stiffness until the

maximum allowable static deflection is reached, shifting ωn as low as possible.

Second, it is desired to minimize the amplification at resonance. This is ac-

complished by adding damping to the system. As the damping ratio ζ increases,

where ζ is the non-dimensional ratio between the actual system damping and crit-

ical damping, the resonant transmissibility decreases, however, simultaneously the

transmissibility above
√
2ωn increases. As ζ approaches infinity the transmissibility

for all disturbance frequencies approaches unity. This is the trade-off when designing

an passive isolation suspension.

A suspension with adaptable damping can overcome the trade-off between

high or low damping faced by a passive system. Ideally, that suspension would

exhibit high damping at disturbance frequencies below
√
2ωn while exhibiting low

damping above
√
2ωn, thereby tracing the lower “semi-acitve” curve in Figure 3.1(a).

MR dampers can provide this adaptability. In the absence of magnetic field, only

passive viscous damping presists, establishing a lower damping limit. With the

application of field, the ferrous particles form chains due to magnetic attraction
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which must be severed before fluid may flow. This creates a yield stress, in addition

to the viscous stress, causing increased damping. In practice, high damping is

commanded when the direction of the payload’s absolute velocity is the same as the

relative velocity between payload and base, while low damping is commanded when

the two velocities are of opposite direction. This strategy stems from the phase

lag between the payload relative to the base, seen in Figure 3.1(b). Phase lag is

proportional to the duration of time it is desired to have high or low damping in the

suspension. A phase lag of zero indicates the two velocities share the same direction

100% of the vibratory cycle, causing high damping to be desired 100% of the cycle.

Conversely, a phase lag of π indicates the two velocities share the same direction

0% of the vibratory cycle, causing low damping to be desired 100% of the cycle. An

appropriately chosen control strategy can exploit the implications of phase lag and

achieve these desireable damping properties.

3.4 System Description

The robust nature of an MR damper’s ability to provide vibration attenuation

while experiencing large perturbations in operating temperature and payload mass

is investigated through analyzing the frequency response of a base excited system in

figure 3.3. This system is a model of an occupant seat suspension designed for the

US Marine Corps’s amphibious Expeditionary Fighting Vehicle (EFV) [42]. Figure

3.4 shows the MR damper designed for the EFV occupant seat suspension, which

was built at the University of Maryland. The EFV vehicle can encounter broad
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Figure 3.3: Single degree-of-freedom MR seat suspension system.

spectrum vibration and shock, in both land and sea mode operation, requiring low

transmissibility over a large frequency range. The highly nonlinear system prohibits

an analytical solution of the frequency response, thus a computational study is

conducted using a steady-state harmonic base excitation.

The EFV vehicle may be operated by seated occupants of varying mass, there-

fore three occupant weight-classes are considered which bound the study - a 95th

and 50th percentile male and a 5th percentile female, taken to weigh 96.0, 77.5, and

46.5 kg, respectively. It is assumed that 29% of the occupant’s weight (ie. the legs)

is being supported by the floor [34]. In addition to these masses, 11.4 kg of body

worn equipment is added to the upper torso, and 2.3 kg is added to the head to

account for a protective helmet.
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Figure 3.4: Magnetorheological (MR) seat damper.

3.4.1 Equation of Motion

The governing equation of the system dynamics is given as

mẍ = fk + fd + fg (3.1)

where m is the mass of the occupant and seat, and x is the absolute displacement

of the sprung mass. The force of the suspension’s coil spring is given as

fk = −kaq, (3.2)

where the axial stiffness ka = 55 kN/m, the compressive stroke displacement of the

piston q = (x− w) ≤ 0, and w is the base displacement. The gravitational force

fg = −mg, (3.3)
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Figure 3.5: Nonlinear model of the MR damper.

where g is the acceleration of gravity. The MR damper force on the sprung mass,

fd, is modeled as [79]

fd = fo − kdq − cpoq̇ −mf q̈ − fy tanh ((q̇ + λ1(q − q∗))λ2) . (3.4)

and illustrated in figure 3.5, where kd is the damper stiffness, cpo is the post-yield

damping, fy is the yield force, mf is the fluid inertia, fo is the force off-set, and q∗ is

the static equilibrium value of the compressed piston displacement. The temperature

dependence of the model parameters from chapter 2 is presented in figure 3.6 and

will be assumed for the analysis.

3.4.2 Control Law

Several semi-active control strategies have been used to govern an MR damper

for vibration and shock isolation [5, 17, 21, 28, 45, 60]. The Skyhook algorithm was
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Figure 3.6: Model parameters as a function of operating temperature.
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Figure 3.7: Model parameters as a function of operating temperature.

first proposed by Karnopp et al. [45] and aims to damp the absolute velocity of the

payload by establishing an ficticious connection with an inertial reference, such as

the sky, as seen in figure 4.5. Skyhook control is examined here due to its simple

implementation and effective disturbance supression ability. The Skyhook control

law uses velocity feedback to determine the desired damper force to apply on the

suspended payload, and is given as

f̂d =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−Cskyẋ ẋq̇ ≥ 0

0 ẋq̇ < 0

(3.5)

where Csky is the velocity feedback gain. This strategy commands a force from the

damper proportional to ẋ when the absolute and relative velocities of the payload

share the same sign, but switches to command zero force when the velocities have

opposite signs because the MR damper is only a passive device and cannot inject

energy into the system. Thus the magnitude of the commanded damper force f̂d
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Figure 3.8: Ideal Skyhook configuration.

is dependent upon both the absolute payload velocity ẋ and the relative velocity

between the payload and base, q̇.

This study considers a steady-state harmonic base excitation, maintaining a

constant velocity amplitude |ẇ| of 0.5 m/s across the frequency spectrum. Inde-

pendent of frequency, the payload velocity ẋ is directly proportionally to the base

velocity ẇ. Thus if the harmonic amplitude of the base velocity |ẇ| was to change as

a function of excitation frequency, then the magnitude of the absolute payload ve-

locity would change as well, independent of any system dynamics, thereby affecting

the magnitude of the commanded damper force f̂d. Additionally, the commanded

damper force is affected by system dynamics captured by q̇. The relative phase

shift between the payload and base velocities is a function of excitation frequency

and affects the sign of the relative velocity q̇, which thereby dictates the Skyhook

switching in equation (3.5).
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This study is interested in evaluating the robust ability of semi-active Sky-

hook control to attenuate vibration while the MR damper suspension is subject to

temperature and payload mass perturbations. To focus the study solely on damper

performance, and because the Skyhook control is a velocity feedback algorithm, the

harmonic amplitude of the base velocity |ẇ| is held constant. Changes in |ẇ| affect

the commanded damper force f̂d, thus this effect is decoupled from the analysis.

The Skyhook control gain, Csky, was set to emulate a skyhook damper with

a damping ratio ζ = 1, which corresponds to values of 4.7, 5.2, and 5.5 kN s/m for

a 5th percentile female, 50th percentile male, and 95th percentile male, respectively.

This was found to be appropriate from previous work [39, 45]. A value of unity for

ζ corresponds to a critically damped system, where Csky = 2ζ
√
kam.

The model of the MR damper force on the body frame in equation (3.4) is

used to determine the command current, ϕ̂. The commanded force f̂d is equated to

the model force, and given here as

f̂d = fo − kdq − cpoq̇ −mf q̈ − fy tanh ((q̇ + λ1(q − q∗))λ2) (3.6)

where a quadratic relation between the model parameters and the command current
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ϕ̂ can be formed, with

fo = fo,2ϕ̂
2 + fo,1ϕ̂+ fo,0

kd = kd,2ϕ̂
2 + kd,1ϕ̂+ kd,0

cpo = cpo,2ϕ̂
2 + cpo,1ϕ̂+ cpo,0

mf = mf,2ϕ̂
2 +mf,1ϕ̂+mf,0

fy = fy,2ϕ̂
2 + fy,1ϕ̂+ fy,0

λ1 = λ1,2ϕ̂
2 + λ1,1ϕ̂+ λ1,0

λ2 = λ2,2ϕ̂
2 + λ2,1ϕ̂+ λ2,0 (3.7)

The coefficients of the quadratic relationships in equation (4.52) are determined from

the characterization in figure 3.6. These coefficients are temperature dependent, and

this analysis assumes the values in the control law are set a priori with the damper

characterized at 500C, unless otherwise noted. Substituting equation (4.52) into

equation (3.6), and rearranging, results in

0 = aϕ̂2 + bϕ̂+ c (3.8)
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where,

a = fo,2 − kd,2q − cpo,2q̇ −mf,2q̈ − fy,2 tanh
(
(q̇ + λ−1 (q − q∗))λ−2

)
b = fo,1 − kd,1q − cpo,1q̇ −mf,1q̈ − fy,1 tanh

(
(q̇ + λ−1 (q − q∗))λ−2

)
c = fo,0 − kd,0q − cpo,0q̇ −mf,0q̈ − fy,0 tanh

(
(q̇ + λ−1 (q − q∗))λ−2

)− f̂d,

(3.9)

and λ−1 and λ−2 are values from the previous discrete time step. The command

current is then found using the quadratic formula,

ϕ̂ =
−b+

√
b2 − 4ac

2a
. (3.10)

A saturation range of 0 ≤ ϕ̂ ≤ ϕmax is established to restrict the command current,

ϕ̂, to realistic values, where ϕmax is the maximum available current from an external

power supply. The condition ϕ̂ < 0 usually occurs when the magnitude of the

passive, field-off damper force is greater than the magnitude of the command force

f̂d. The command current is given as

ϕ̂ =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕmax, if ϕ̂ > ϕmax

0, if ϕ̂ < 0, or ϕ̂ /∈ R

ϕ̂ else

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

, (3.11)

and ϕ̂ serves as the control input to the system. Equation (3.11) is inserted into

equations (3.4) and (4.52), and the system dynamics in equation (4.8) are solved
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numerically with the stiff differential equation solver ODE15s in MATLAB R© [53].

3.5 Results of Isolation Study

3.5.1 Passive vs. Semi-active

Figure 3.9 shows the frequency response for a 50th percentile male seated in the

MR seat suspension system for both passive field-off and semi-active Skyhook con-

trol. For the passive system, as temperature increases from 00C to 1000C the peak

resonant amplification and crossover transmissibility shift higher in frequency due to

the increased damper stiffness, and the resonant peak assumes a larger value (225%

increase) due to the decrease in viscous damping. The semi-active system exhibits

similar passive phenomena, namely the crossover transmissibility shifts higher in fre-

quency due to increased stiffness and the high frequency isolation closely replicates

the passive system due to the decrease in viscous damping. However, the semi-active

Skyhook control offers robust attenuation capability at resonance despite the large

temperature perturbation, allowing only a 15% increase in peak transmissibility. By

quantifying the amount of damping in the isolation system we can gain some insight

into the mechanism behind the robustness of the semi-active skyhook control.

The transmissibility for a base-excited, second-order system with a linear

spring and viscous damper is given as [55]

Tr =
|ẍ|
|ẅ| =

[1 + 4ζ2( ω
ωn
)2]

1
2

[(1− ( ω
ωn
)2)2 + 4ζ2( ω

ωn
)2]

1
2

(3.12)
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Figure 3.9: Frequency response for a 50th percentile male seated in the MR seat
suspension system subjected to passive field-off and semi-active Skyhook control.

where |ẍ| and |ẅ| are the acceleration amplitudes of the sprung mass and base,

respectively, ζ is the damping ratio, ω is the excitation frequency of the base,

and ωn is the natural frequency of the system. By taking the partial derivative

of equation (3.12) with respect to ζ we obtain

∂Tr

∂ζ
=

4ζ( ω
ωn
)2(T−1r − Tr)

[1− ( ω
ωn
)2]2 + 4ζ2( ω

ωn
)2

(3.13)

Equations (3.12) and (3.13) are plotted versus damping ratio in figure 3.10

and show the influence damping ratio has on transmissibility, Tr, as well as the

transmissibility gradient, ∂Tr/∂ζ, which is the sensitivity of transmissibility to a

change in damping ratio. At system resonance (ω/ωn = 1), a low damping ratio

results in high transmissibility and great sensitivity to variations in damping ratio,

which is the case for off-state, passive control. However, a large damping ratio

allows the transmissibility to approach unity, where unity is the lower limit for
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Figure 3.10: Transmissibility, Tr, and the transmissibility gradient, ∂Tr/∂ζ, vs.
damping ratio.

attenuation at system resonance, and become nearly insensitive to variations in

damping ratio. At excitation frequencies far above resonance, a low damping ratio

results in excellent isolation, and some sensitivity to variations in ζ, however to a

lesser extent than at resonance. As ζ increases for ω/ωn = 3, the transmissibility

worsens and approaches unity, while the sensitivity approaches zero.

By using a standard linearization technique we can analyze the nonlinear

damping of the MR isolator as an equivalent viscous damping. Here, the damp-

ing force fd(t) is proportional to the relative piston velocity [ẋ(t)− ẇ(t)] as

fd(t) = Ceq[ẋ(t)− ẇ(t)] (3.14)

The equivalent viscous damping, Ceq, is found by equating the energy dissipated by
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the damper over a cycle, E, to that of a viscous damper, giving

Ceq(ω) =
E

πωQ2
(3.15)

where ω is the base excitation frequency, and Q is the steady-state amplitude of the

relative piston displacement given as Q = max[x(t)− w(t)]. The energy dissipated

over one cycle is given by

E =

∮
fd(t)dx =

∫ 2π/ω

0

fd(t)[ẋ(t)− ẇ(t)]dt (3.16)

and is computed numerically using an integration technique such as the trapezoidal

rule. We nondimensionalize the equivalent viscous damping to obtain the frequency-

dependent, equivalent damping ratio

ζeq(ω) =
Ceq(ω)

2
√
kam

, (3.17)

where ka is the axial stiffness of the mechanical coil spring, and m is the sprung

mass.

Figure 3.11 presents the equivalent damper ratio ζeq(ω) as a function of exci-

tation frequency for a 50th percentile male occupant computed for both passive and

semi-active Skyhook control operating at 00C and 1000C. The damping ratio for a

linear, second-order system is constant, however figure 3.11 shows the passive sys-

tem having a large damping ratio at low frequencies then leveling off to a constant

value at higher frequencies. This is due to the presence of passive friction in the
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system. At low frequencies below resonance the payload and base are essentially in

phase and the passive friction causes the damper to lock up, restricting the damper

to stroke. This reduction in relative motion between the payload and base causes

the denominator of equation (3.15) to decrease, thereby increasing the damping ra-

tio. By artificially removing the friction from the system the passive system exhibits

only linear viscous damping, resulting in a constant value of damping ratio for all

frequencies as expected in figure 3.12.

The semi-acitvely controlled system also exhibits high damping below reso-

nance partly due to passive friction but also as a result of the additional dissipated

energy attributed to the MR yield force as seen in figure 3.12, explaining the overall

larger damping ratio values compared to the passive system. As excitation frequency

increases above resonance the damping ratios for both passive and semi-active sys-

tems converge and level off to a constant value. At frequencies far above resonance

the payload and base are completely out of phase, causing the semi-active con-

troller to command nearly zero current, similar to the passive system, explaining

the convergence of the damping ratio values.

When the system is subjected to passive field-off control in figure 3.9(a), reso-

nance occurs at 3.2 Hz and 4.6 Hz for operation at 00C and 1000C, respectively. At

these resonant frequencies, a perturbation in temperature from 00C to 1000C causes

the damping ratio to drop 82% in value from 0.98 to 0.18 in figure 3.11, which cor-

responds to the highly sensitive region of ∂Tr/∂ζ versus damping ratio for ω/ωn = 1

in figure 3.10, and explains the large 225% increase in transmissibility at resonance

from 1.2 to 3.9 for the field-off case in figure 3.9(a).
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Figure 3.11: Equivalent damping ratio, ζeq, as a function of excitation frequency
with passive friction present in the system.

When the system is subjected to semi-active control in figure 3.9(b), the equiv-

alent damping ratios in figure 3.11 at operating temperatures of 00C and 1000C are

relatively large at system resonance (2.3 Hz and 3.2 Hz, respectively) compared to

the passive field-off system and drop off considerably as frequency increases, even-

tually converging with the values for the passive system. The semi-active system

provides equivalent damping ratios of 1.54 and 0.72 at system resonance when op-

erating at 00C and 1000C, respectively. This 53% drop in equivalent damping ratio

corresponds to an increase in transmissibility of only 15% from 1.1 to 1.27, as seen

in figure 3.9(b), which is due to Skyhook control providing equivalent damping ra-

tios in a relatively insensitive region of ∂Tr/∂ζ versus damping ratio for ω/ωn = 1

in figure 3.10. This explains why semi-active Skyhook control is robust to large

temperature variations.
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Figure 3.12: Equivalent damping ratio, ζeq, as a function of excitation frequency
without passive friction present in the system.

3.5.2 Perturbation in occupant mass

Figure 3.13 presents the frequency response of the system governed by semi-

active Skyhook control for both a 5th percentile female and 95th percentile male

at operating temperatures of 00C and 1000C. Comparing against the 5th percentile

female, the heavier 95th percentile male occupant causes the resonance peak of the

system to shift lower in frequency and assume a slightly larger peak value of trans-

missibility. The system with a 5th female occupant possesses greater damping across

the entire frequency spectrum compared to the system with a 95th male occupant as

seen in figure 3.14, explaining the better vibration attenuation at resonance. How-

ever, the damping ratios for both 5th female and 95th male are relatively large near

resonance, yielding insensitivity of the transmissibility to changes in damping ratio

and explaining only the minor degradation in vibration attenuation for the 95th male

occupant. At higher frequencies, the semi-active system approaches the behavior

of a passive system, explaining the superior isolation for the heavier occupant. It
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Figure 3.13: Frequency response for a 5th percentile female and a 95th percentile male
occupant seated in the MR seat suspension system subjected to Skyhook control
operating at two different temperatures.

is evident that changes in occupant weight (an over 100% increase), at both cold

and hot operating temperatures, have a benign effect on the frequency response at

resonance with Skyhook control, while also maintaining excellent high frequency

isolation.

3.5.3 Effect of damper characterization temperature

Figure 3.15 presents the frequency response of the system for a 50th percentile

male subjected to semi-active Skyhook control with the damper characterized at

two different temperatures: 00C and 500C. When the damper is characterized at

low temperature (00C) but operated at high temperature (1000C), relatively poor

isolation performance is realized at system resonance compared to the damper char-

acterized at high temperature as seen in figure 3.15(b). This is due to the controller

assuming it is applying more control authority than it actually is applying due

to a loss in yield force at higher temperatures. Figure 3.16(b) reiterates this fact
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Figure 3.14: Equivalent damping ratio as a function of excitation frequency for a 5th

percentile female and a 95th percentile male occupant subjected to Skyhook control
operating at two different temperatures.

as the system characterized at 00C applies less current across the entire frequency

spectrum compared to the system characterized at 500C. Futhermore, figure 3.17(b)

shows that near resonance the system characterized at 00C provides less damping

than the characterization at 500C and the low value of damping ratio causes high

sensitivity to changes in damping ratio as shown in figure 3.10, explaining the large

increase in transmissibility in figure 3.15(b). At high frequencies, both characteri-

zations converge to the same transmissibility as a result of little influence from the

semi-active control.

When the damper is characterized at high temperature (500C) but operated

at low temperature (00C), the frequency response of the system exhibits similar

behavior to when the damper is characterized at low temperature (00C), as seen in

figure 3.15(a). The controller characterized at 500C applies more current across the

entire frequency spectrum as shown in figure 3.16(a), however the damping ratios

for both characterizations are large, as shown in figure 3.17(a), so the system is
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Figure 3.15: Frequency response for a 50th percentile male when the MR damper
is characterized at 00C and 500C, while the system is subjected to Skyhook control
operating at two different temperatures.

relatively insensitive to a change in damping ratio, resulting in a negligible different

in frequency response between the two characterization temperatures. Again at

higher frequencies, both characterizations converge to the same transmissibility as

expected. These results suggest it is better to characterize the damper at high

temperature in order to obtain the best isolation performance.

3.6 Conclusions

The frequency response of an MR isolation suspension, subjected to pertur-

bations in temperature and payload mass, was evaluated. It was shown that an

appropriately chosen semi-active control law without temperature or payload mass

compensation can offer robust performance while encountering practical operating

temperatures ranging from 00C to 1000C and payload masses ranging from 46.5 kg

to 96 kg. Temperature compensation can enhance controller performance; however,

it is not necessary to ensure sufficient vibration attenuation as temperature-induced
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Figure 3.16: RMS applied current as a function of excitation frequency for a 50th

percentile male when the MR damper is characterized at 00C and 500C, while the
system is subjected to Skyhook control operating at two different temperatures.
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Figure 3.17: Equivalent damping ratio as a function of excitation frequency for a
50th percentile male when the MR damper is characterized at 00C and 500C, while
the system is subjected to Skyhook control operating at two different temperatures.
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changes in the damping of the system have a fairly benign impact on the frequency

response with an appropriately chosen control strategy. Indeed, in a practical sense,

additional sensors and hardware are undesirable because of the added cost and

maintenance requirements.

The parameters of the MR damper model were found to change significantly

over the investigated temperature range. As operating temperature increased from

00C to 1000C, the controllable yield force was found to decrease by up to 30% and

the post-yield damping was found to decrease up to 85%, while the damper stiffness

was found to increase significantly by several hundred percent. Despite these large

changes in damper behavior, the semi-active Skyhook control offers robust vibration

attenuation. For a 50th percentile male occupant, the transmissibility increases by

only 15% as temperature increases from 00C to 1000C. For varying occupant mass,

the worst degradation in resonant attenuation was less than 5% at 00C as payload

mass increased from 46.5 kg to 96 kg.

An equivalent damping analysis was shown to explain the robust nature of the

semi-active Skyhook control. The control law commands high damping at resonance,

causing the transmissibility to be insensitive to changes in damping. Therefore, even

though the damper behavior encounters rather large, temperature-induced changes,

the effect on resonant amplification is benign. Also, an elevated operating temper-

ature increases the damper stiffness, which increases the crossover frequency, de-

grading high frequency isolation. However, the control law significantly attenuates

the resonant amplification, thereby decreasing the crossover frequency and reversing

the effects of this phenomenon. Furthermore, a damper will always self-heat when
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excited, and an elevated temperature enhances high frequency isolation due to the

reduction in passive viscous damping.
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Chapter 4

6-DOF Modeling

4.1 Introduction

A mathematical model is developed to capture the mechanical dynamics of a

semi-actively controlled, 6-DOF suspension system. The model is generalized for N

suspension legs, and several control laws are presented to attenuate transmition of

vibratory loads to the payload. The philosophy of these traditionally 1-DOF control

laws is extended to a 6-DOF system, through both decentralized and centralized

strategies.

4.2 Model

4.2.1 Coordinate Frames

Figure 4.1 shows a visual representation of the mathematical model of the

system. The payload is assumed to be a rigid body supported from below by N

suspension legs which connect between the ground floor and the bottom of the
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payload. A single suspension leg will be defined here as one coil spring and one

MR damper, as seen in figure 4.2. The global coordinate frame (O, ê1, ê2, ê3) is set

with the orthonormal ê1 and ê2 axes parallel to the ground floor and the ê3 axis

normal to the ground floor, where the unit vectors ê1 = [1, 0, 0]T , ê2 = [0, 1, 0]T , and

ê3 = [0, 0, 1]T .

The origin of the body coordinate frame (B, b̂1, b̂2, b̂3) is located at the center

of gravity (CG) of the payload. The generalized displacement vector of the body

frame w.r.t. the global frame O is defined as

Ox(t) =

[
Oxt(t)
Oxr(t)

]
, (4.1)

where Oxt(t) = [xx(t), yx(t), zx(t)]
T is the translational displacement vector and

Oxr(t) = [φx(t), θx(t), ψx(t)]
T is the rotational displacement vector. The transla-

tional displacements xx(t), yx(t), and zx(t), and the angular displacements φx(t),

θx(t), and ψx(t), correspond to displacements and rotations about the b̂1, b̂2, and

b̂3 body axes, respectively. The superscript bar (ie. x) indicates the generalized

form of the variable, as in the generalized displacement vector includes both trans-

lational and rotational displacement, and the generalized stiffness matrix includes

both translational and rotational stiffness.

The generalized displacement vector of the base floor coordinate frame (A, â1,

â2, â3) w.r.t. the global frame O is defined as

Ow(t) =

[
Owt(t)
Owr(t)

]
, (4.2)

where Owt(t) = [xw(t), yw(t), zw(t)]
T is the translational displacement vector and

Owr(t) = [φw(t), θw(t), ψw(t)]
T is the rotational displacement vector. The transla-
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Figure 4.1: Coordinate frames of the 6-DOF system.

tional displacements xw(t), yw(t), and zw(t), and the angular displacements φw(t),

θw(t), and ψw(t), correspond to displacements and rotations about the â1, â2, and â3

body axes, respectively. The rotational displacements of the base Owr(t) = [0, 0, 0]T

for this analysis.

If the rotational displacements of the body frame w.r.t. the global frame O

are assumed small, and the body frame B and global frame O share the same initial

orientation, then the position vector of any point n fixed in the body frame can be

expressed w.r.t. the global frame as

OpnB(t) = BpnB − BpnB × Oxr(t)

= BpnB +

[
03×3 −BPnB

]
Ox(t), (4.3)

where 03×3 is a (3x3) matrix of zeros, BpnB =

[
px py pz

]T
is the position vector
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Figure 4.2: Single suspension leg.

to point n from B w.r.t. the body frame, and BPnB is the (3x3) skew-symmetric

matrix defined for vector cross product operations given as

BPnB =

⎡
⎣ 0 −pz py

pz 0 −px
−py px 0

⎤
⎦ . (4.4)

The translational displacement of any point n fixed in the body frame can be

expressed w.r.t. the global frame as

Oxn(t) = Oxt(t)− OpnB(t)× Oxr(t)

=

[
I3×3 −OPnB(t)

]
Ox(t), (4.5)

where I3×3 is the (3x3) identity matrix, OpnB(t) is the position vector of point n

w.r.t. the global frame, and OPnB(t) is the (3x3) matrix defined similarly for vector

cross product operations.

Matrices and vectors expressed in one reference frame can be transformed to
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another frame through a transformation matrix. The transformation matrix TKiO

transforms a matrix or vector from the global frame O to the ith coil spring frame

Ki. The transformation for the ith coil spring can be described using Euler angles

φKi
, θKi

, and ψKi
corresponding to rotations about the k̂1i , k̂2i , and k̂3i axes of the

local stiffness matrix, respectively. For brevity, φ = φKi
, θ = θKi

, and ψ = ψKi
.

The elementary rotation matrices are

T1(φ) =

⎡
⎣1 0 0
0 c(φ) −s(φ)
0 s(φ) c(φ)

⎤
⎦ ,

T2(θ) =

⎡
⎣ c(θ) 0 s(θ)

0 1 0
−s(θ) 0 c(θ)

⎤
⎦ ,

T3(ψ) =

⎡
⎣c(ψ) −s(ψ) 0
s(ψ) c(ψ) 0
0 0 1

⎤
⎦ . (4.6)

Starting with the coordinate frames O and Ki aligned, sequentially rotate Ki by ψ,

then rotate Ki by θ, then rotate Ki by φ. This gives the rotation matrix from frame

Ki to frame O as TOKi
= T3(ψ)T2(θ)T1(φ), or

TOKi
=

⎡
⎣c(ψ)c(θ) (c(ψ)s(θ)s(ψ)− s(ψ)c(ψ)) (c(ψ)s(θ)c(φ) + s(ψ)s(φ)
s(ψ)c(θ) (s(ψ)s(θ)s(φ) + c(ψ)c(φ)) (s(ψ)s(θ)c(φ)− c(ψ)s(φ))
−s(θ) c(θ)s(φ) c(θ)c(φ)

⎤
⎦ ,

(4.7)

where c(θ) = cos(θ) and s(θ) = sin(θ). TOKi
is an orthogonal matrix, thus TKiO =

TT
OKi

, where TKiO is the transformation matrix from the global frame O to the local

fixed frame Ki. The transformation matrices TBO and TDiO are similarly defined.

88



4.2.2 Equation Of Motion

The equation of motion is given as

OMOẍ = Of̄K + Of̄D + Of̄g, (4.8)

where OM is the generalized global mass matrix, and Of̄K ,
Of̄D, and

Of̄g are the

generalized global forces on the body frame due to the coil springs, MR dampers,

and gravity, respectively.

The generalized mass matrix is given in the local body frame B as

BM =

⎡
⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ixx −Ixy −Izx
0 0 0 −Ixy Iyy −Iyz
0 0 0 −Izx −Iyz Izz

⎤
⎥⎥⎥⎥⎥⎥⎦
, (4.9)

where m is the mass of the payload and Iij are the elements in the inertia tensor.

The generalized mass matrix can be expressed in the global frame as

OM = T T
BO

BMTBO. (4.10)

The generalized force vector Of̄g due to gravity applied to the body frame B

is
Of̄g =

[
0 0 −mg 0 0 0

]T
, (4.11)

where g is the gravitational acceleration.

The stiffness of the ith coil spring is defined in its local coordinate frame

(Ki, k̂1, k̂2, k̂3) in figure 4.3(a) and assumed to have constant orthogonal stiffness
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(a) Ki coordinate frame. (b) Di coordinate frame.

Figure 4.3: Coordinates frames of the ith coil spring and MR damper.

values defined as

KiKi =

⎡
⎣kl 0 0
0 kl 0
0 0 ka

⎤
⎦ , (4.12)

where kl and ka are the lateral and axial stiffnesses of the coil spring, respectively.

The stiffness matrix can be expressed in the global frame as

OKi = T T
KiO

KiKiTKiO. (4.13)

The generalized force vector due to all N coil springs applied to the body

frame B can be expressed as

Of̄K =
N∑
i

Of̄Ki
, (4.14)

where,
Of̄Ki

=
[
OfKi

OtKi

]T
, (4.15)

and OfKi
and OtKi

are the force and torque vectors applied to the body frame B

due to the ith coil spring, respectively. The force vector is given as
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OfKi
= OKi(

OwKi
− Oxki)

= OKi(
Owt −

[
I3x3 −0PkiB

]
Ox)

= OKi

[
I3x3 −0PkiB

]
(Ow − Ox)

=
[
OKi −OKi

0PkiB

]
(Ow − Ox), (4.16)

assuming Owr = [0 0 0]T . The torque vector is given as

OtKi
= OpkiB × OfKi

=
[−OP T

kiB
OKi

OP T
kiB

OKi
OPkiB

]
(Ow − Ox). (4.17)

Therefore, the generalized force vector Of̄K can be expressed as

Of̄K = OK (w̄ − x̄) , (4.18)

where the combined generalized global stiffness matrix for all N coil springs

OK =
N∑
i

OKi (4.19)

and

OKi =

[
OKi −OKi

OPkiB

−OP T
kiB

OKi
OP T

kiB
OKi

OPkiB

]
. (4.20)

The MR dampers are connected to the payload and base frame by univer-

sal spherical joints which allows only axial forces to be transmitted through the

dampers. Thus, the force of the ith MR damper is defined in its local coordinate

frame (Di, d̂1, d̂2, d̂3) in figure 4.3(b) as
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DifDi
=
[
0 0 fdi

]T
, (4.21)

where, the damper force is modeled as

fdi = foi − kdiqi − cpoi q̇i −mfi q̈i − fyi tanh ((q̇i + λ1i(qi − q∗i ))λ2i) , (4.22)

and qi is the relative displacement of damper stroke, and q∗i is the static equilibrium

value of the damper stroke. The damper stroke is given as

qi =
[
0 0 1

]
TDiO

(
Oxdi − OwDi

)
=

[
0 0 1

]
TDiO

([
I3×3 −OPdiB(t)

]
Ox− Owt

)
=

[
0 0 1

]
TDiO

[
I3×3 −OPdiB(t)

]
(Ox− Ow)

= Λi(
Ox− Ow), (4.23)

where
Λi =

[
0 0 1

]
TDiO

[
I3×3 −OPdiB(t)

]
. (4.24)

The stroke velocity and acceleration can be approximated as follows

q̇i = Λi(
Oẋ− Oẇ), (4.25)

q̈i = Λi(
Oẍ− Oẅ). (4.26)

These results assume Owr = [0 0 0]T , so the translation of point Di equals that

of the base. Oxdi is the displacement of point di fixed to the body frame, OwDi
is

the displacement of point Di fixed to the frame A, and fdi is the damper force on

the body frame. The model parameters (fo, kd, cpo, mf , fy, λ1, and λ2) have been

defined previously in chapter 2.
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The generalized global force vector due to all N dampers applied to the body

frame B can be expressed as

Of̄D =
N∑
i

Of̄Di
, (4.27)

where the generalized force vector due to the ith MR damper

OfDi
=

[
I3×3 −OPT

diB

]T
T T
DiO

[
0 0 1

]T
fdi

= ΛT
i fdi . (4.28)

By inserting equations 4.22 and 4.51 into equation 4.27,

Of̄D =
N∑
i

ΛT
i foi −ΛT

i kdiΛi(
Ox− Ow)−ΛT

i cpoiΛi(
Oẋ− Oẇ)

−ΛT
i mfiΛi(

Oẍ− Oẅ)

−ΛT
i fyi tanh

(
(Λi(

Oẋ− Oẇ) + λ1i(Λi(
Ox− Ow)− q∗i ))λ2i

)
,

(4.29)

where a quadratic relation between the model parameters and the applied current
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ϕi is given as

foi = foi,2 ϕ
2
i + foi,1 ϕi + foi,0

kdi = kdi,2 ϕ
2
i + kdi,1 ϕi + kdi,0

cpoi = cpoi,2 ϕ
2
i + cpoi,1 ϕi + cpoi,0

mfi = mfi,2 ϕ
2
i +mfi,1 ϕi +mfi,0

fyi = fyi,2 ϕ
2
i + fyi,1 ϕi + fyi,0

λ1i = λ1i,2 ϕ
2
i + λ1i,1 ϕi + λ1i,0

λ2i = λ2i,2 ϕ
2
i + λ2i,1 ϕi + λ2i,0. (4.30)

The damper force vector can be separated into a passive component and an active

component as

Of̄D = Of̄D,0 +
Of̄D,a. (4.31)

The passive, zero-field component is given as

Of̄D,0 = Of̄o,0 − Ok̄d,0(
Ox− Ow)− Oc̄po,0(

Oẋ− Oẇ)

−Om̄f,0(
Oẍ− Oẅ)− Of̄y,0 (4.32)
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where

Of̄o,0 =
N∑
i

ΛT
i foi,0

Ok̄d,0 =
N∑
i

ΛT
i kdi,0Λi

Oc̄po,0 =
N∑
i

ΛT
i cpoi,0Λi

Om̄f,0 =
N∑
i

ΛT
i mfi,0Λi

Of̄y,0 =
N∑
i

ΛT
i fyi,0 tanh

(
(Λi(

Oẋ− Oẇ) + λ1i(Λi(
Ox− Ow)− q∗i ))λ2i

)
,

(4.33)

The active component is given as

Of̄D,a =
N∑
i

βi,1 ϕi +
N∑
i

βi,2 ϕ
2
i , (4.34)

where

βi,1 = ΛT
i foi,1 −ΛT

i kdi,1Λi(
Ox− Ow)−ΛT

i cpoi,1Λi(
Oẋ− Oẇ)

−ΛT
i mfi,1Λi(

Oẍ− Oẅ)

−ΛT
i fyi,1 tanh

(
(Λi(

Oẋ− Oẇ) + λ1i(Λi(
Ox− Ow)− q∗i ))λ2i

)
,

(4.35)
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and

βi,2 = ΛT
i foi,2 −ΛT

i kdi,2Λi(
Ox− Ow)−ΛT

i cpoi,2Λi(
Oẋ− Oẇ)

−ΛT
i mfi,2Λi(

Oẍ− Oẅ)

−ΛT
i fyi,2 tanh

(
(Λi(

Oẋ− Oẇ) + λ1i(Λi(
Ox− Ow)− q∗i ))λ2i

)
.

(4.36)

The active component can then be expressed as

Of̄D,a = β̄ ϕ (4.37)

where

β̄ =

[
β1 . . . βN

]
, (4.38)

βi = βi,1 + βi,2 ϕi, (4.39)

and

ϕ =
[
ϕ1 . . . ϕN

]T
. (4.40)

The equation of motion (equation 4.8) can now be written as

OMOẍ = OK (w − x) + Of̄o,0 − Ok̄d,0(
Ox− Ow)− Oc̄po,0(

Oẋ− Oẇ)

−Om̄f,0(
Oẍ− Oẅ)− Of̄y,0 + β̄ ϕ+ Of̄g. (4.41)
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A delay exists between commanding the control input ϕ̂i and the application

of the actual electrical current ϕi. The delay behaves as a first-order filter given as

ϕ̇i =
ϕ̂i − ϕi

τ
, (4.42)

where τ is the time constant of the response delay of the electro-magnetic coil and

power supply.

4.2.3 State Space

The equation of motion can be expressed in state space form, where the time

derivative of each state variable can be expressed in terms of the state variables as

ẋ = f(t,x,u), where x are the state variables and u are the system inputs. The

state equation describes a nonlinear system, however it can be cast into the familiar

linear form as

ẋ = A(t,x)x+Bu+ E(t,x)w(t), (4.43)

where A(t,x) is the n × n state matrix, and B is the n × r input matrix, E(t,x)

is the n × w disturbance matrix, and w(t) are the exogenous system disturbances.

The state matrix is given as

A(t,x) =

⎡
⎣ 06×6 I6×6 06×N
−μ̄−1(OK + Ok̄d,0) −μ̄−1 Oc̄po,0 μ̄−1 Oβ̄

0N×6 0N×6 −(1/τ)IN×N

⎤
⎦ , (4.44)

the input matrix as
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B =

⎡
⎣ 06×N

06×N
(1/τ)IN×N

⎤
⎦ (4.45)

the disturbance matrix as

E(t,x) = μ̄−1

⎡
⎣ 06×6 06×6 06×6 06×1
(OK + Ok̄d,0)

Oc̄po,0
Om̄f,0 (Of̄o,0 − Of̄y,0 +

Of̄g)
0N×6 0N×6 0N×6 0N×1

⎤
⎦ ,

(4.46)

the state vector as

x =

⎡
⎣Ox

Oẋ
ϕ

⎤
⎦ , (4.47)

the input vector as

u = ϕ̂, (4.48)

and the disturbance vector as

w =

⎡
⎢⎢⎣
Ow
Oẇ
Oẅ
1

⎤
⎥⎥⎦ , (4.49)

where μ̄ = (OM + Om̄f,0).

The system outputs, y, are the measured quantities of the system. The linear

output equation is written in the familiar form as

y = C(t,x)x+Du+ F (t,x)w(t), (4.50)

where y are the output variables, C(t,x) is the output matrix, D is the feedthrough
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matrix, and F (t,x) is the output disturbance matrix. The next section discusses

the control laws and the measured outputs used for feedback control.

4.3 Control Laws

Each control law specifies a (N × 1) command force f̂d, composed of the N

axial damper forces f̂di , at discrete time steps. The model of the MR damper force

on the body frame in equation 4.22 is used to determine the command current ϕ̂i

for the ith damper. The commanded force f̂di is equated to the model force, given

here as

f̂di = foi − kdiqi − cpoi q̇i −mfi q̈i − fyi tanh ((q̇i + λ1i(qi − q∗i ))λ2i) (4.51)

where a quadratic relation between the model parameters and the command current

ϕ̂i can be formed as

foi = foi,2ϕ̂
2
i + foi,1ϕ̂i + foi,0

kdi = kdi,2ϕ̂
2
i + kdi,1ϕ̂i + kdi,0

cpoi = cpoi,2ϕ̂
2
i + cpoi,1ϕ̂i + cpoi,0

mfi = mfi,2ϕ̂
2
i +mfi,1ϕ̂i +mfi,0

fyi = fyi,2ϕ̂
2
i + fyi,1ϕ̂i + fyi,0

λ1i = λ1i,2ϕ̂
2
i + λ1i,1ϕ̂i + λ1i,0

λ2i = λ2i,2ϕ̂
2
i + λ2i,1ϕ̂i + λ2i,0 (4.52)

99



Substituting equation 4.30 into equation 4.51, and rearranging, results in

0 = aϕ̂2
i + bϕ̂i + c (4.53)

where,

a = foi,2 − kdi,2qi − cpoi,2q̇i −mfi,2q̈i − fyi,2 tanh
(
(q̇i + λ−1 (qi − q∗i ))λ

−
2

)
b = foi,1 − kdi,1qi − cpoi,1q̇i −mfi,1q̈i − fyi,1 tanh

(
(q̇i + λ−1 (qi − q∗i ))λ

−
2

)
c = foi,0 − kdi,0qi − cpoi,0q̇i −mfi,0q̈i − fyi,0 tanh

(
(q̇i + λ−1 (qi − q∗i ))λ

−
2

)− f̂di ,

(4.54)

and λ−1 and λ−2 are values from the previous discrete time step.

The command current is then found using the quadratic formula,

ϕ̂i =
−b+

√
b2 − 4ac

2a
(4.55)

A saturation range is established to restrict the command current ϕ̂i below a max-

imum level of ϕmax available from an external power supply and above a realistic

minimum level of zero. The condition ϕ̂i < 0 usually occurs when the magnitude

of the passive, field-off damper force is greater than the magnitude of the command

force f̂di . The command current for the ith damper is given as

ϕ̂i =

⎧⎨
⎩
ϕmax, if ϕ̂i > ϕmax

0, if ϕ̂i < 0, or ϕ̂i /∈ R

ϕ̂i else

⎫⎬
⎭ , (4.56)
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and the vector

ϕ̂ =
[
ϕ̂1 ... ϕ̂N

]T
(4.57)

is the control input u to the system, with u = ϕ̂.

4.3.1 Decentralized Control

A decentralized control law considers only the states of the local control device

subsystem, and has no knowledge of the states of other subsystems or the system

as a whole. Figure 4.4 shows a block diagram of the closed-loop system dynam-

ics using decentralized control. For decentralized control, there is a single tri-axial

accelerometer and a single magnetostrictive, linear-stroke displacement sensor ded-

icated to each MR damper. The tri-axial accelerometer is fixed in the body frame

B at point di and provides measurements Bẍdi =
[
Bẍdi

B ÿdi
B z̈di

]T
. The dis-

placement sensor is installed inside the piston of each MR damper and provides the

measurement qi. The decentralized sensor suite vector ηi is given as

ηi =

[
BẍT

di
qi

(1× 3) (1× 1)

]T
(4.58)

Through numerical integration, Bẋdi and Bxdi can be calculated from the accel-

eration data, and through differentiation q̇i and q̈i can be determined from the

displacement sensor.

For decentralized control, the measured output for the ith damper is yi = ηi,
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Figure 4.4: Block diagram of the closed-loop system dynamics using decentralized
control.
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and the output equation is given as

yi = Ci(t,x)x+Diu+ Fi(t,x)w(t), (4.59)

where

Ci(t,x) =

[−�i(
OK + Ok̄d,0) −�i

Oc̄po,0 �i
Oβ̄

Λi 01×6 01×6

]
(4.60)

Di = 04×N (4.61)

Fi(t,x) =

[
�i(

OK + Ok̄d,0) �i
Oc̄po,0 �i

Om̄f,0 �i (
Of̄o,0 − Of̄y,0 +

Of̄g)
−Λi 01×6 01×6 0

]
(4.62)

and

�i = TBO

[
I3×3 −OPdiB(t)

]
μ̄−1. (4.63)

4.3.1.1 Skyhook (decentralized)

The Skyhook algorithm aims to damp the absolute velocity of the payload by

establishing an ficticious connection with an inertial reference, such as the sky, as

seen in figure 4.5. This algorithm was first proposed by Karnopp et al. [45] for a

single-DOF system, and is implemented previously for a semi-active suspension in

Chapter 3.

Here, the Skyhook concept is extended to a 6-DOF system. For decentralized
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Inertial 
Reference 

Figure 4.5: Ideal Skyhook configuration.

control, the Skyhook algorithm is applied locally where the control device connects

with the payload. The payload is able to translate and rotate with 6 DOFs, thus

it would be ideal to establish a Skyhook connection along each DOF. However, the

MR dampers are linear stroking devices and are limited to applying force along only

their axial direction. Therefore, the best option is to resolve the payload absolute

velocity along the axial direction of the damper and apply the Skyhook algorithm.

However, it is not possible to observe the orientation of each MR damper with the

defined decentralized sensor suite vector ηi. One solution is the orientation can be

approximated as its static orientation, assuming that each damper frame rotates

only by small angles. Alternatively, the local vertical velocity of the payload may

be chosen as most critical and used in the Skyhook control law, which is done here.

The desired force input from the MR damper is given as

νi = −G B żdi , (4.64)
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Figure 4.6: Concept of the decentralized Skyhook control.

where G = Csky is the control gain, and
B żdi = [0 0 1] Bẋdi is the absolute velocity

of point di along the body frame b̂3 axis direction. By imposing the semi-active

clipping criteria, we arrive at the command force

f̂di =

{
νi, q̇i · B żdi ≥ 0
0, q̇i · B żdi < 0

}
(i = 1, 2, ..., N). (4.65)

4.3.1.2 Sliding Mode (decentralized)

Sliding mode control is a variable structure control law that assures robust

performance in the presence of external disturbances and system uncertainties. For

a practical suspension, perturbations in the damper stiffness, damper viscosity, pay-

load mass, and orientation of the damper, are all possible. Therefore, the following

parameter variations are considered in the control law design:
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ka,min ≤ ka ≤ ka,max
(4.66)

cmin ≤ c ≤ cmax
(4.67)

mN,min ≤ mN ≤ mN,max
(4.68)

θd,min ≤ θd ≤ θd,max
(4.69)

where ka is the coil spring axial stiffness, c is the viscous damping of the MR damper,

mN is 1/N of the total payload mass (N is the number of dampers), and θd is the

angle the damper makes with the horizon. Figure 4.7 shows these parameters in

the model of a single leg of the suspension. The estimation errors of the parameter

variations are bounded as follows

k̄a ≥
∣∣∣k̂a − ka

∣∣∣ (4.70)

c̄ ≥ |ĉ− c| (4.71)

μ ≥ m̂N

mN

(4.72)

where, k̂a, ĉ, and m̂N are the estimates, and k̄a, c̄, and μ are the bounds on the
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Figure 4.7: Concept of the decentralized Sliding Mode control (SMC).

estimation errors. The values are taken as

ka,min = 20 kN/m, cmin = 800 Ns/m, mN,min = 150 lb, θd,min = 45o,

ka,max = 30 kN/m, cmax = 2000 Ns/m, mN,max = 300 lb, θd,max = 90o,

k̂a = 25 kN/m, ĉ = cmax, m̂N = mN,max, θ̂d = 45o,

k̄a = 5 kN/m, c̄ = 1200 Ns/m. μ =
mN,max

mN,min
,

(4.73)

The control law is derived by considering only a single leg of the suspension,

and the payload is assumed only to translate in the vertical direction. The single

leg model is approximated as

mN
Oz̈di = −kaqi

1

sin(θd)
− cq̇i sin(θd) + νi sin(θd), (4.74)

where Oz̈di = [0 0 1] Oẍdi is the vertical translational acceleration of point di along
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the ê3 axis w.r.t the global frame O, qi is the damper stroke (where qi > 0 for

damper extension), and νi is the desired control force input. Assuming the rotational

displacement of the body frame B rotates by only small angles, Oẋdi ≈ Bẋdi . For

brevity, z = Ozdi .

The objective of the sliding mode control is to bring the absolute motion of

the payload to zero. To achieve this, a sliding surface function is defined as

σ = ż +Gz = 0, (4.75)

where the slope of the sliding surface G > 0 to guarantee that variable z(t) tends

toward zero as t tends to infinity. The rate of convergence is determined by the value

of G. The control law must drive the state of the system onto the sliding surface

σ and keep it there. In order to prove the ability of the control law to achieve this

task, a positive-definite, candidate Lyapunov function is chosen as

V =
1

2
σ2, (4.76)

with its time derivative as

V̇ = σσ̇. (4.77)

To ensure stable robust control, the control input νi must satisfy the inequality
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V̇ < 0. Therefore, we write

σσ̇ = σ [z̈ +Gż]

= σ

[
− ka
mN

qi
1

sin(θd)
− c

mN

q̇i sin(θd) +
1

mN

νi sin(θd) +Gż

]
. (4.78)

Similar to Choi and Wereley [18], by selecting the following control input

νi =
k̂aqi

sin2(θ̂d)
+ ĉq̇i + m̂NGż

−
[
(k̄a + k̂a) |qi|
sin2(θd,min)

+ c̄ |q̇i|+mN,max(1 + μ)G |ż|
]
sgn(σ), (4.79)

equation 4.78 becomes

σσ̇ = σ

[
−ka

sin(θd)

qi
mN

− c

mN

q̇i sin(θd) +Gż +
sin(θd)

mN

(
k̂aqi

sin2(θ̂d)
+ ĉq̇i

+ m̂NGż −
[
(k̄a + k̂a)|qi|
sin2(θd,min)

+ c̄|q̇i|+mN,max(1 + μ)G|ż|
]
sgn(σ)

)]

= σ

[(
k̂a

sin(θd)

sin2(θ̂d)
− ka

1

sin(θd)

)
qi
mN

+
ĉ− c

mN

q̇i sin(θd)

+

(
1 +

m̂N

mN

sin(θd)

)
Gż

−
(
(k̄a + k̂a)

sin(θd)

sin2(θd,min)

|qi|
mN

+
c̄

mN

|q̇i| sin(θd)

+
mN,max

mN

(1 + μ) sin(θd)G |ż|
)
sgn(σ)

]

= σ [α− ᾱsgn(σ)]

= σα− ᾱ |σ| , (4.80)
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where

α =

(
k̂a

sin(θd)

sin2(θ̂d)
− ka

1

sin(θd)

)
qi
mN

+
ĉ− c

mN

q̇i sin(θd) +

(
1 +

m̂N

mN

sin(θd)

)
Gż

(4.81)

ᾱ = (k̄a + k̂a)
sin(θd)

sin2(θd,min)

|qi|
mN

+
c̄

mN

|q̇i| sin(θd) + mN,max

mN

(1 + μ) sin(θd)G |ż| .

(4.82)

Now, it must be shown that ᾱ ≥ α. Considering the first terms of both

equations 4.81 and 4.82,

(
k̂a

sin(θd)

sin2(θ̂d)
− ka

1

sin(θd)

)
≤ (k̄a + k̂a)

sin(θd)

sin2(θd,min)
(4.83)

even with the most demanding case of θd = 90o and ka = ka,min, resulting in

2k̂a − ka,min ≤ 2(k̄a + k̂a)

−ka,min ≤ 2k̂a. (4.84)

Considering the second terms of both equations 4.81 and 4.82,

ĉ− c ≤ c̄ (4.85)

due to the parameter bounds in equation 4.71. Considering the third terms of both
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equations 4.81 and 4.82,

(
1 +

m̂N

mN

sin(θd)

)
≤ mN,max

mN

(1 + μ) sin(θd) (4.86)

even with the most demanding case of θd = θd,min and mN = mN,min, resulting in

(
1 +

m̂N

mN,min

sin(θd,min)

)
≤ mN,max

mN,min

(1 + μ) sin(θd,min)

1 + 2(.707) ≤ 2(1 + 2)(.707)

2.414 ≤ 4.242 (4.87)

Therefore, ᾱ ≥ α in equation 4.80, and the control input νi in equation 4.79

satisfies the sliding mode condition σσ̇ < 0. �

By imposing the semi-active clipping criteria on equation 4.79, we arrive at

the command force

f̂di =

{
νi, q̇i · Ożdi ≥ 0
0, q̇i · Ożdi < 0

}
(i = 1, 2, ..., N). (4.88)

4.3.2 Centralized Control

A centralized control law is defined as a single decision-making algorithm that

governs the behavior of the individual subsystems that compose the overall global

system. Each control device is operated with the knowledge of the operation of every

other control device. Figure 4.8 shows a block diagram of the closed-loop system

dynamics using centralized control.
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Figure 4.8: Block diagram of the closed-loop system dynamics using centralized
control.

For centralized control, there are a total of 6 + N sensors. There is a single

tri-axial accelerometer and a single tri-axial gyroscope located at the payload CG,

and a single magnetostrictive, linear-stroke displacement sensor installed inside the

piston of all N MR dampers. The tri-axial accelerometer provides translational

measurements Bẍt of the body frame B, the tri-axial gyroscope provides angular

velocities Bẋr of the body frame B, and each displacement sensor provides the stroke

displacement qi of the ith MR damper. By assuming the rotational displacement

of frame B to be small, the approximations Oẍt ≈ Bẍt and
Oẋr ≈ Bẋr are valid.

Therefore the centralized sensor suite η is given as

η =

[
OẍT

t
OẋT

r qT

(1× 3) (1× 3) (1×N)

]T
, (4.89)

and through numerical integration and differentiation, Oẋt can be determined from

Oẍt, and q̇ and q̈ can be determined from q. By taking the output y as
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y =

[
Oẋ
q

]
, (4.90)

the output equation is given as

y = C(t,x)x+Du+ F (t,x)w(t), (4.91)

where

C(t,x) =

[
06×6 I6×6 06×N
Λ 04×6 04×N

]
, (4.92)

D = 016×N (4.93)

F (t,x) =

[
06×6 06×6 06×6 0
−Λ 04×6 04×6 0

]
, (4.94)

and

Λ =

⎡
⎢⎢⎢⎣
Λ1

Λ2
...

ΛN

⎤
⎥⎥⎥⎦ . (4.95)

The centralized control law described here will identify a single control input,

Oν̄, which is a generalized force vector desired to be exerted on the body frame

to best attenuate base disturbances. For proper implementation, it is necessary to

know the orientation of each damper. This knowledge allows the centralized control

law to best delegate the desired forces f̂di to each damper.

The generalized force vector exerted on the body frame due to all N dampers

is given in equation 4.27 as
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OfD =
N∑
i=1

[
I3×3 −OPdiB(t)

]T
T T
DiO

DifDi
(4.96)

This expression can be written in a more compact form by defining the (6×N)

Jacobian matrix Γ, such that

OfD = Γfd, (4.97)

where fd = [fd1 ... fdN ]
T , and

Γ =

[
1

lD1

Old1D1 ... 1
lDN

OldNDN

− 1
lD1

OP T
d1B

Old1D1 ... − 1
lDN

OP T
dNB

OldNDN

]
. (4.98)

The Jacobian matrix Γ contains all of the damper orientation information,

which when pre-multiplied transforms the axial damper forces fdi into generalized

force vectors in the global frame O. The orientation vector OldiDi
(t) of the ith

damper, from point Di to point di, is given as

OldiDi
(t) = OpBA(t) +

OpdiB(t)− OpDiA. (4.99)

The length of the ith damper is given as lDi
(t) =

∥∥OldiDi
(t)
∥∥. The position vector

OpBA(t) to frame B from frame A is given as

OpBA(t) =
OpBA(0) +

[
I3×3 03×3

]
(Ox(t)− Ow(t)). (4.100)

The position vector OpdiB(t) to point di of the ith damper from the body frame B

is given as

OpdiB(t) =
BpdiB +

[
03×3 −BPdiB

]
Ox(t). (4.101)
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The position vector OpDiA(t) to frame Di from frame A is given as

OpDiA(t) =
ApDiA +

[
03×3 −APDiA

]
Ow(t), (4.102)

however, it is assumed that Owr(t) = [0 0 0]T , so

OpDiA(t) =
ApDiA. (4.103)

The position vectors OpBA(0),
BpdiB, and

ApDiA, and skew-symmetric matrix

BPdiB, are all independent of time and known a priori. However, obtaining the time-

dependent, absolute pose vectors Ox(t) and Ow(t) from sensor data proves difficult

in practice. Integrating measured acceleration data twice to obtain position and

orientation is prone to cumulative errors due to noise in the measured acceleration

signals. Using a high-pass filter or Kalman filter may improve the accuracy by

removing the ‘drift’ in the integrated signal. It may also be necessary to augment

this approach with addition sensors such as vision-base pose estimation or range

finding, sonar or laser sensors. The fildelity of these sensors must be robust in order

to operate in the vibratory environment.

Another approach would be to utilize the relative displacement sensors in

each MR damper. The dampers would have to be arranged so that the Jacobian

matrix decribing the 6-DOF motion of the payload rigid body with the relative

displacements of the damper is non-singular. The cubic Stewart platform is one

such arrangement [36]. By assuming the displacements of the base floor are small,

the generalized displacement of the payload could be indentified.
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A different approach is taken in this study. By assuming the dampers rotate

only by small angles, simplifications can be made which allow the orientation of the

dampers for all time to be approximated as the orientation at static equilibrium.

If at t = 0 the system is at the static equilibrium Ox(0) and the base disturbance

Ow(0) = 0, then Γ = Γ(0) is a constant matrix and is known a priori. This reduces

the number of sensors required to implement the control law as well as eliminate

the need for estimated output states not directly measured, which are subject to

uncertainty.

With the Jacobian matrix Γ known, it is then necessary for the centralized

control law to delegate the desired forces f̂di to each damper. MR dampers are

semi-active devices that can only dissipate energy from the system, causing the de-

sired control force to be ’clipped’ when the desired force and relative stroke velocity

have opposite signs. A further difficulty is the MR dampers are linear stroke devices

with spherical end joints. Therefore, they can only apply a force along their axial

direction, as the spherical end joints are incapable of transmitting torques. The

centralized control input Oν̄ specifies 3 orthogonal forces and 3 orthogonal moments

to be applied on the body frame. Ideally, the MR dampers would be able to ex-

actly satisfy each of the desired forces and moments, requiring the dampers to be

oriented so the system is fully controllable. One such configuration would orient

the dampers to resemble a cubic Gough-Stewart platform [36], which is a parallel

linkage mechanism with six supporting prismatic actuators connecting the base to

the payload platform. The cubic configuration orients adjacent dampers orthogonal

to one another, allowing the six dampers to apply decoupled forces and moments on
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the body frame. This feature would allow the dampers to exactly satisfy the desired

forces and moments specified by the control law.

However, alternative configurations may not be capable of exactly matching

the desired generalized force vector Oν̄ due to singularities existing when attempting

to resolve the (6× 1) generalized force vector into the N axial damper forces. The

matrix Γ may be singular and not invertible if the number of dampers does not

equal six (N �= 6) or the columns of Γ are not all linearly independent. Therefore,

we must determine the best possible control input, in a least-squares sense, using

the Moore-Penrose psuedo-inverse, indicated by the superscript +.

The best achieveble control input in the global O frame is then given as

O ˜̄ν = ΓΓ+ Oν̄

= Γf̃d (4.104)

where,

f̃d = Γ+ Oν̄, (4.105)

is the (N × 1) vector composed of the best achieveble scalar damper forces for all

N MR dampers.

Due to f̃d being a fully active control command, it does not consider the

necessary semi-active clipping. Clipping the force of one damper may impact the

decision to clip the other dampers, thus to find the optimal semi-active control

input, all possible clipping combinations are evaluated. This approach is similar
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to the centralized observer control proposed by Miller [56]. With four dampers,

there are 16 combinations in total. The diagonal matrix Hj identifies each jth

combination, where a value of 1 turns the desired force on, and a value of 0 sets the

damper force to zero. For example, Hj = diag(1, 1, 0, 1) if dampers 1,2, and 4 were

turned on, and damper 3 was turned off.

The desired control input for the jth clipping combination now becomes

O ˜̄νj = Γ(ΓHj)
+ Oν̄

= Γf̃d,j (4.106)

where,

f̃d,j = (ΓHj)
+ Oν̄, (4.107)

and
f̃d,j =

[
f̃d1,j f̃d2,j ... f̃dN ,j

]T
. (4.108)

An error metric is defined to select the clipping combination that provides the

control input closest to the desired control Oν̄. This error metric is defined as

ej =
∥∥Oν̄ − O ˜̄νj

∥∥ . (4.109)

Starting with the jth combination that has the smallest error ej, the optimal com-

mand force f̂d is selected as

f̂d =
{
f̃d,j, if f̃di,j q̇i ≤ 0 ∀ i = 1, 2, ..., N

}
(4.110)

If the expression does not hold for all N dampers, then the clipping combination
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with the next larger error metric is evaluated until the expression is met.

4.3.2.1 Skyhook (centralized)

The Skyhook strategy is again extended to a 6-DOF system, but here it is

applied in a centralized fashion. The rigid body payload is free to both translate

and rotate about three orthogonal axes, allowing six independent motions to exist.

The centralized Skyhook strategy attempts to damp these motions by attaching

ficticious Skyhook dampers to the payload CG and aligning them with each of the

six DOFs as seen in figure 4.9.

The desired control input Oν̄ is the (6×1) generalized force vector (forces and

moments) we wish to apply to the body frame and is given as

Oν̄ = −G Oẋ (4.111)

where G = diag(Csky,x, Csky,y, Csky,z, Csky,φ, Csky,θ, Csky,ψ) is the gain matrix. Using

the centralized delegation process described before, f̂d can be identified.
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Figure 4.9: Concept of the centralized Skyhook control.

120



Chapter 5

Experiment Testing

5.1 Introduction

The experimental setup and testing of the 6-DOF system is presented in this

chapter. The design of the suspension is discussed and the MR dampers and coil

springs are experimentally characterized. Several performance metrics are estab-

lished to select the control law gains and evaluate the ability of the system to

attenuate base disturbances. The 6-DOF experimental setup is described and the

test results are presented. The test results are used to validate the mathematical

model of the suspension system.
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5.2 Suspension Leg Design

5.2.1 MR Dampers

5.2.1.1 Damper Design

Several factors contribute to the design of the isolation suspension, such as:

high frequency isolation, static deflection, maximum achievable field-dependent yield

force, roll-over stability, and geometry constraints. Considering the trade-off be-

tween high frequency isolation and static deflection, the vertical translational reso-

nance of the system was chosen to occur at ωn = 2.2 Hz. Considering the trade-off

between obtaining a low zero-field damping ratio while maintaining an adequate

maximum field-dependent yield force, the zero-field damping ratio ζ was chosen to

be 0.16 and is expressed as

ζ =
Cm

2ωnmq

, (5.1)

where mq = 136 kg (300 lb) is one quarter of the full payload mass. This requires a

zero-field damping of Cm = 602 N s/m.

The piston heads are equipped with a mixed mode type MR valve, which

combines flow and shear modes of operation. A schematic of the MR valve is shown

in figure 5.2. The zero-field damping, Cm, of a mixed mode valve is given as [77]

Cm = Cf

(
1 +

Ad

2Ap

)
, (5.2)
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where Ap is the piston area, and Ad = bd is the annular gap area. The flow mode

damping, Cf , is given as

Cf =
12μolA

2
p

bd3
, (5.3)

where μo is the zero-field viscosity of the MR fluid, l is the total active gap length in

the direction of flow, b is the circumference of the piston head, and d is the separation

distance between the active gap walls. The term Dp is the piston diameter, the

circumference b = πDp, and the piston area Ap = πD2
p/4. A commercial bobbin

supplied by Lord Corp. was used, thus the following values were fixed: l = 30 mm,

b = 154 mm, and Ap = 18.86 cm2. The dampers were filled with MRF-126 MR fluid

supplied by Lord Corp., which has an experimentally measured zero-field viscosity

of μo = 0.14 Pa s for flow mode operation. Using these values, the gap thickness d

can be found by rearranging equation 5.2 as

ApCmb

6μolA2
p

d3 − bd− 2Ap = 0 (5.4)

and solving the cubic equation, giving d = 1.3 mm, requiring the inner diameter of

the damper cylinder to be 51.5 mm.

The MR dampers were designed to have a 6 in available stroke length and a

pneumatic accumulator to accomodate the increase in rod volume during damper

compression, shown in figure 5.1. The accumulator was filled with nitrogen gas and

pressurized to 300 psi. The overall length of the damper ld = 23.5 in, and the

cylinder housing was made of 1020 low carbon steel.
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Figure 5.1: Schematic of the MR damper.

d Housing 

Piston 

Magnetic coil 

/2 /2 

Dp 

Figure 5.2: Mixed mode MR valve cross-section.
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5.2.1.2 Characterization

All four MR dampers, seen in figure 5.3, were characterized on an MTS 810

material testing system. Based on the predicted stroking profile during a disturbance

to the full-scale system, the dampers were characterized at the dominate operating

level with a representative sinusoidal excitation of 0.25 in stroke amplitude at 2 Hz.

The dampers were evaluated at applied currents of 0, 0.25, 1.0, and 2.5 A. The

damper force f was modeled using

f = kdx+ cpoẋ+mf ẍ+ fy tanh ((λ1x+ ẋ)λ2) , (5.5)

where x is the piston displacement, kd is the linear damper stiffness, cpo is the post-

yield damping, mf is the fluid inertia, fy is the yield force, and λ1 and λ2 are shaping

parameters used inside the hyperbolic tangent function. This model is fitted to the

measured data for all four MR dampers.

Figures 5.4 and 5.5 show the measured force/velocity behavior of each damper

together with the fitted damper model at applied currents of 0 and 2.5 A, respec-

tively. The model matches the measured force data well for all dampers. The

dissipated energy error metric in figure 5.6(a) shows the model fits the data with

< 0.35% error, and the complex correlation coefficient (CCF) metric [23, 33] in

figure 5.6(b) is > 0.98 for all dampers.

Figure 5.7 shows the optimized model parameter values for each damper. The

damper stiffness kd is relatively constant as a function of applied current at 10 kN/m

and mostly dependent upon the accumulator pressure. The fluid inertiamf generally

125



Figure 5.3: Characterized MR dampers.

increases as a function of applied current, suggesting dependence to the yield stress

of the fluid. The post-yield damping cpo and yield force fy of all the dampers

show clear increasing trends with applied current, offering field-off (0 A) values near

500 N s/m and 150 N, respectively. The shaping parameters λ1 and λ2 show clear

increasing and decreasing trends as a function of applied current, respectively, with

λ1 indicating the low-velocity hysteresis loop widens with increased applied current

and λ2 indicating the slope of the low-velocity hysteresis loop becomes less steep

with increasing applied current.

5.2.2 Coil Spring

The coil spring is selected by first defining the desired mechanical properties

of the spring, then choosing geometric properties which satisfy those mechanical

properties. The best high frequency isolation is obtained when the natural frequen-

cies of the system are lowered as much as possible. The lower limit for the vertical
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(c) Damper 3.
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(d) Damper 4.

Figure 5.4: Measured and modeled force vs. piston velocity curves of the MR
dampers at 0 A of applied current.
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Figure 5.5: Measured and modeled force vs. piston velocity curves of the MR
dampers at 2.5 A of applied current.
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Figure 5.6: MR damper model correlation metrics.
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(a) Damper stiffness kd.
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(b) Fluid Inertia mf .
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(c) Post-yield damping cpo.
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(d) Yield force fy.
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(e) Shaping parameter λ1.
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Figure 5.7: Damper model parameters evaluated at select applied currents and
corresponding linear regression trends.
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translational natural frequency (ie. stiffness) is set by the maximum allowable static

deflection due to gravity, as the coil spring and MR damper must have adequate

rattle space to move in without impinging on themselves or with the surrounding en-

vironment under normal operation. The natural frequency for a single DOF system

is defined as

ωn =
√
kv/mq, (5.6)

and with a mass mq = 136 kg (300 lb) and a target natural frequency for translation

in the vertical direction of ωn = 2.2 Hz, the required vertical stiffness kv = 26 kN/m.

The MR damper has an average stiffness kd = 10 kN/m in figure 5.7(a), which when

the damper is oriented at θd = 45o to the horizontal, contributes 7.1 kN/m to the

vertical direction. By taking the difference, the axial stiffness of the coil spring

ka = 18.9 kN/m (108 lb/in).

Knowing both the desired axial stiffness of the coil spring ka, and the static

stroke of the damper to be half of the total available stroke, a third consideration

is roll-over stability. Crede [25] provides the following stability criteria for a spring-

supported-mass system in order to prevent the mass from collapsing to the side:

kl
ka

≥ 1.2

(lo/δs)− 1
, (5.7)

where kl is the lateral coil spring stiffness, lo is the free (unloaded) length of the

spring, and δs is the axial static deflection of the spring. Considering these three

design criteria, the geometry of the coil spring is determined.

Figure 5.8 illustrates the configuration of the suspension leg. Static equilibrium
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θ

δs

Figure 5.8: Suspension leg at static equilibrium.

of the payload occurs when the sum of the forces equals zero, so in the vertical

direction

∑
F = 0 = −mqg + Fspring + Fdamper

0 = −mqg + kaδs − kdq sin(45
o) (5.8)

The relation between the static spring deflection δs (positive for compression)

and the damper stroke q (negative for compression) is established by equating the

vertical height of both the spring and damper, giving the following constraint:

lb + lo − δs = (ld + q) sin(45o), (5.9)

where lo is the free (unloaded) length of the spring, lb is the height of any necessary

mounting structure for the spring, and ld is the fully extended damper length. The

damper should statically rest at mid-stroke (q = −3 in, for a total available stroke of

6 in) to ensure adequate stroking in both compression and extension. Substituting
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equation 5.9 into equation 5.8 and rearranging,

lb + lo =
mqg + kdq sin(45

o)

ka
+ (ld + q) sin(45o). (5.10)

Additionally, the axial stiffness of a coil compression spring is given by [59, 73]

as

ka = cs
Gd4w
8nD3

, (5.11)

where G is the torsional modulus of elasticity of steel (11.5 × 106 psi), dw is the

wire diameter, n is the number of coils, D is the average coil diameter, and cs is

the stress or curvature correction factor. The lateral stiffness of a coil compression

spring is given by [73] as

kl =
1

cl

Ed4w
15nD(0.408(lo − δs)2 + 0.53D2)

, (5.12)

where E is the tensile modulus of elasticity of steel (30 × 106 psi), lo is the free

(unloaded) length of the spring, and δs is the axial static deflection of the spring,

and cl is the lateral stiffness correction factor.

While observing the contraints imposed by equations 5.7, 5.10, 5.11, and 5.12,

the spring’s geometric properties dw, n, D, lo, and lb can be found, given ka, kd,

ld, q, and mq are all known. This is typically an iterative process which terminates

once the stability criteria is satisfied.

The following properties were chosen for this design: dw = 0.5 in, n = 7.8,

D = 5.18 in, lo = 10.9 in, and lb = 5.25 in. These values offer an axial stiffness of
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ka = 16.7 kN/m (95.3 lb/in), and lateral stiffness kl = 8.5 kN/m (48.5 lb/in), using

a static deflection of δs = 1.66 in, and correction factors cs = 1.15, and cl = 1.3.

5.2.2.1 Characterization

The axial stiffness of the coil spring was measured on an MTS 810 material

testing system and was found to equal 19.6 kN/m (112 lb/in). This is larger than the

theoretical axial value, but closely matches the desired value. The lateral stiffness

was measured by installing the spring on a single-axis, lateral shake table seen in

figure 5.9. The upper and lower sliding surfaces were constrained to only allow

lateral motion. Figure 5.10 shows the lateral transmissibility of the suspension leg

with only the coil spring installed (ie. no MR damper). This curve was obtained

by exciting the base with a random white noise signal and measuring the relative

accerleration magnitudes between the top and bottom sliding surfaces. Using this

method, the undamped natural frequency of the leg, when loaded with a 300 lb mass,

was determined to be 1.29 Hz, which corresponds to a lateral stiffness of 8.9 kN/m

(51.0 lb/in), which is approximately the calculated theoretical value.

5.3 Performance Metrics

The ability of the suspension to attenuate base disturbances is evaluated using

multi-objective performance criteria. The acceleration the payload is exposed to is

important as it establishes a threshold to which the payload must be rated. The

payload’s CG and top corner were the two locations chosen to measure the accel-
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Figure 5.9: Lateral 1-DOF shake table test stand.

Figure 5.10: Lateral transmissibility of suspension leg, without the MR damper, for
300 lb mass.
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eration along the body-fixed x, y, and z axes. The CG is of interest due to the

sensitive payload being centered around this point, while the payload’s top corner is

also significant because the rotations of the payload are resolved through this point.

However, for evaluating performance, the measured data at the CG was found to be

qualitatively redundant with the data measured at the cabinet top corner. There-

fore, only the data measured at the cabinet top corner will be discussed without any

sacrifice to the analysis.

The total RMS acceleration is of interest because it gives an idea of the overall

acceleration exposure, but all the frequency content is lumped into this single value.

It is also desired to consider the RMS acceleration at the individual modal frequen-

cies of the system. These can be determined by calculating the area under the x, y,

and z axis PSD plots between specified frequency bands shown in figure 5.11. The

width of the frequency bands was chosen to be 0.4 Hz wide for each mode. Ad-

ditionally, the isolation performance at high frequency (≈ 8 Hz) can be evaluated

similarly. Each of these frequency-specific RMS acceleration values form a perfor-

mance metric as defined in table 5.1. The frequency-specific metrics (m1 - m7) are

simply a detailed look at the total RMS acceleration, metric m8.

Several of the metrics incorporate data from multiple axes by combining the

data together into a single value using either the function f(x, y) or f(x, y, z) in

table 5.1, the latter of which refers to either the expression
√

x2
rms + y2rms + z2rms

when considering the RMS value, where the subscript rms denotes the root mean

square value along the corresponding axis, or the maximum value of the set {xmax, ymax, zmax}

when considering the maximum value, where the subscript max denotes the maxi-
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Table 5.1: Performance metrics of the system.

Symbol Description Axis Units Type Location 
m1 1st Rocking Mode x (g) 

RMS accel. 
Cabinet top 

corner 

m2 1st Rocking Mode y (g) 
m3 2nd Rocking Mode x (g) 
m4 2nd Rocking Mode y (g) 
m5 Vertical Translation Mode z (g) 
m6 Yaw Mode f(x, y) (g) 
m7 High Frequency f(x, y, z) (g) 
m8 Overall RMS accel. f(x, y, z) (g) 
m9 Overall Max. accel. f(x, y, z) (g) Max. accel. 

m10 Impingement f(x, y, z) (in) Max. relative 
displacement 

mum value along the corresponding axis. The function f(x, y) is defined similarly.

Furthermore, the maximum acceleration and maximum relative displacement

of the payload’s top corner are also of interest. The maximum acceleration of the

payload’s top corner (metric m9) establishes a threshold to which the payload must

be rated above. Metric m10 is the maximum relative displacement of the payload’s

top corner in either the x, y, or z axis, which relates to the possibility of a col-

lision between the payload and surrounding objects; however, this metric was not

measured experimentally.

5.4 Control Gain Selection

Decentralized control was pursued for experimental testing, which was moti-

vated by several factors. Decentralized control affords a modular design to accomo-

date payloads of varying mass and geometric size, allowing any number of suspension
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Figure 5.11: Representative PSD of the cabinet top corner along the x, y, and z
axes illustrating the portions of data considered for each mode specific performance
metric in the radar plots.
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legs to be placed under the payload without concern about the full system dynamics,

only the local dynamics. A decentralized system provides a fail-safe design, so the

failing of one leg doesn’t affect operation of the other components. Also, a decen-

tralized system allows for a compact layout and packaging of the system’s sensors

and electronics.

The two decentralized control algorithms evaluated were the ‘Skyhook’ con-

trol, and ‘Sliding Mode’ control (SMC), which have been described in the previous

chapter. The absence of control (ie. zero magnetic field) will be the third control

condition and refered to as the ‘Control Off’ control.

Before testing the full 6-DOF system, the control laws were calibrated with

a single suspension leg. The control law gains were determined from single-DOF

testing in the vertical z axis direction. While this single-axis test condition does not

fully represent the full system motion (ie. 6 DOF), it provided a simplified method

to evaluate the control laws. Figure 5.12 shows the 1-DOF testing apparatus to

constrain a single suspension leg to motion only in the veritcal direction.

The full system is designed with four suspension legs, so with a full system

payload mass of 544 kg (1,200 lb), each suspension leg ideally supports a mass of

136 kg (300 lb), which is used for single-DOF testing.

The control gains were selected experimentally by minimizing performance

metrics m5 and m7. Figure 5.13 shows the experimentally measured transmissibility

of the single-DOF system obtained by exciting the test stand base with a transient

signal. The minimized performance metrics are identified in figure 5.14 which cor-

respond to control gains of G = 7,000 and G = 7.5 for the Skyhook and Sliding
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Figure 5.12: Vertical 1-DOF vibration test stand.

Mode control laws, respectively. Metric m5 shows the controlled systems provide

significant resonance attenuation over the Control Off system, however, metric m7

is smallest for the Control Off system, which is a result of the parasitic damping

induced by the control laws.

Figure 5.15 shows both the command electrical current and actual applied

current signals, where the delay between the two signals was determined to behave

as a first-order filter with a time constant of 25 ms. This time response delay

causes undesired damping and is due to limitations of the electromagnetic circuit

and power supply [30]. By reducing the delay the semi-active system would approach

the performance of the Control Off system at high frequency. This is the standard

trade-off between passive and semi-active control. Semi-active control is chosen
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to enhance performance at resonance while sacrificing some performance at higher

disturbance frequencies. Indeed, a passive system would require large damping

to match the resonance attenuation capabilities of the semi-active system, causing

horrible high frequency performance as a consequence.

Figure 5.13 also shows the modeled transmissibility for the single-DOF system

and captures the trend seen in the experimental data for each control law. Using

the model, figure 5.16 shows the transmissibility of a passive system with large

damping (ζ = 2.2) that offers similar attenuation to that of the controlled systems

at resonance (metric m5 in figure 5.17). The large damping causes the performance

metric m7 in figure 5.17 to be much worse than the controlled systems.

Figure 5.16 also shows the response of a passive suspension, labeled ‘Klem-

bczyk’, similar to one currently installed on the MLP [47], with a vertical natural

frequency of 3.5 Hz and a damping ratio of 0.22. Here, the baseline ‘Klembczyk’ sys-

tem has higher vertical stiffness than the semi-active system, increasing the resonant

frequency and worsening both metrics.

5.5 6-DOF Experimental Testing

5.5.1 Suspension Configuration

The configuration of the semi-active suspension was selected considering sev-

eral design criteria. A scalable design was desired to accommodate payloads of

varying weight and geometric size. Cubic hexapod configurations are frequently

used in 6-DOF manipulators and isolation devices [36, 70, 71], however a hexapod
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configuration requires exactly six control linkages, which does not foster a scalable

design and allow the addition or subtraction of support linkages. The ability to

add or subtract individual leg subsystems from the suspension accommodates pay-

loads of varying size and mass without the need to redesign a fixed number of MR

dampers or springs. Furthermore, it was desired to govern the semi-active suspen-

sion with decentralized control to promote scalability and provide robust operation

in the event of a subsystem failure.

A modular design approach was chosen and comprises of several individual

suspension legs (one coil spring and one MR damper), each one governed with

decentralized control. A modular approach entertains several ways the dampers and

coil springs can be oriented underneath the payload. The following were the key

criteria used to select the orientations: (1) It is desired to provide a geometrically

compact design by keeping the suspension legs and hardware inside the payload
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planform footprint. (2) The springs should maximize the restoring moment of the

system to resist against roll-over instability. (3) The MR dampers should be oriented

in such a way to provide the maximum control authority over the motion of the

payload. (4) Furthermore, the dampers should be oriented in a symmetric fashion

to balance the stiffness forces associated with each. This is to ensure the dampers

statically rest at mid-stroke to avoid an end-stop impact during operation.

Figure 6.1 shows the semi-active suspension, with four MR damper and coil

spring pairs, installed underneath the payload. The four MR dampers are oriented

at at right angles to one another and at 45 degree angles to the horizontal. This

provides damping in all three orthogonal directions and symmetrically balances the

static stiffness forces from each damper. The four coil springs are installed ver-

tically at each corner of the payload to maximize the roll-over restoring moment.

The semi-active MR dampers are not force generators unlike fully active actuators,

necessitating the need for restoring springs. To avoid the possibility of the suspen-

sion collapsing to one side, the coil springs are not concentric with the linear-stroke

dampers due to the spherical joint end connections of the damper, which allow only

axial forces to be transmitted. Instead, the coil springs are oriented vertically with

clamped end conditions to utilize the three-dimensional axial and lateral stiffness of

each spring.

5.5.2 Experimental Setup

Full scale experimental testing was conducted using the GW-NSF Shake Ta-

ble at the Earthquake Engineering Laboratory at George Washington University
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Figure 5.18: Pyramid configuration of suspension.

in Ashburn, VA, USA. This hydraulic powered shaker table, seen in figure 5.19, is

equipped with six actuators (three oriented vertically and three oriented horizon-

tally) that can apply dynamics loads (up to 80 kN), causing the platform to move.

The platform surface measures 10 ft by 10 ft, and is capable of 6 DOF motion:

translation and rotation in three-dimensional space.

A ENC21710S Hoffman seismic cabinet (with overall dimensions as 84.05 x

27.55 x 39.37 in) was selected as a representative GSE enclosure for the space shuttle,

shown in figure 5.20(a), and was equipped to mount several 50 lb steel plates shown

in figure 5.20(b), serving as the representative payload mass. Several mounting

positions gave flexibility to adjusting the payload weight and center of gravity (CG)

location. The mass of the payload was set as 544 kg (1,200 lb) and symmetrically
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distributed throughout the cabinet so that the center of gravity was located at 1/3

the cabinet height, measured from the bottom, and to give a diagonal moment

of inertia tensor in the body frame such that Ixx = 200 kgm2, Iyy = 214 kgm2,

Izz = 68 kgm2, and the off-diagonal entries Iij = 0, for i �= j. Figure 5.21 shows

the entire full-scale, semi-active suspension system installed underneath the GSE

cabinet, where the MR dampers are oriented at 450 from vertical, sharing a common

attachment point at the floor and attach toward the outer corners of the cabinet.

Figure 5.22 shows the integrated circuit (IC) control electronics boxes, or ‘IC

boxes’. These IC boxes monitor the displacement and acceleration sensors for each

MR damper and serve to regulate the applied electric current to the damper coils.

These IC boxes each have a fixed-point microcontroller, 6 g MEMS accelerome-

ter, 70 g MEMS accelerometer, a damper stroke sensor circuit, an applied current

monitoring circuit, data logging capability to a microSD card, and a digital signal

processor which processes the necessry control algorithms based on the acceleration

and displacement values and generates the required current for the MR damper.

There is a current conditioning circuit that takes care of the rise and fall times of

the current flowing through the damper so that optimum results are achieved. The

power supply input passes through a current sensor before going to the boards, and

as a result current is continuously monitored and appropriate action can be taken if

the current increases beyond the desired value. An external buzzer is used to warn

against any fault condition.

The data acquisition (DAQ) setup used for the experimental testing is shown

in figure 5.23. Accelerations in all three x, y, and z axes were measured at three
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Figure 5.19: GW-NSF hydraulic shake table at George Washington University.

locations shown in figure 5.20(b): the shaker table floor, the CG of the cabinet,

and the top left rear corner of the cabinet. PCB Piezoelectronic, model #356A14,

ICP R© tri-axial accelerometers were used to measured acceleration. The measured

acceleration data was read by a National Instruments R© BNC-2110 DAQ adaptor and

USB-6259 multifunction DAQ module, and recorded using the Data Acquisition

toolbox available in Matlab R©. The four MR dampers each had a decentralized

integrated circuit (IC) control electronics box (or, ‘IC box’) which served to govern

the applied current to the damper as well as record data specific to the damper.

The data recorded by the four individual IC boxes was all synchronized in time

together through a common power supply, in addition to being synchronized with

the measured cabinet and floor acceleration data through the use of an additional

accelerometer that was collocated with the accelerometer inside one of the IC boxes.
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Figure 5.20: Fully instrumented GSE cabinet at test facility.
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Figure 5.21: Semi-active suspension and IC control electronics underneath the GSE
cabinet.

Figure 5.22: Integrated Circuit (IC) control boxes.
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Figure 5.23: Data acquisition and experimental setup.
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5.5.3 System Disturbances

Acceleration data measured on NASA’s Space Shuttle Mobile Launch Platform

(MLP) during the STS-31 (61-B) Shuttle launch was chosen as a representative vi-

bration disturbance for the system. The acceleration data is from the floor structure

to which a HIM (Hardware Interface Module) equipment rack is mounted inside the

MLP (MLP-2, rm. 7A, mean), and the PSD of the data is shown in figure 5.24 for

the three orthogonal x, y, and z axes. The ‘Desired’ line is the original PSD profile,

where the ‘Measured’ line is the profile experimentally measured during the current

testing which tries to match the ‘Desired’. The power spectra is defined from 1 to

10 Hz, but the dominate frequency content lies between 4 to 10 Hz. Figure 5.25

shows the time domain displacement signals derived from the x, y, and z PSD pro-

files which are used as input floor disturbances to the system and will be referred

to as the ‘Representative (Rep.) Launch’ excitation.

An additional disturbance is chosen to more uniformly characterize the sys-

tem’s behavior over a broader frequency range. White noise provides a uniform

power spectra, without any dominant frequency content, over a wide frequency

band, which is a desirable feature, allowing all frequencies to be excited with equal

power. Using white noise as the input to the system is often performed to charac-

terize the frequency response of a linear system for system identification. However,

most real systems have nonlinearities (ie. friction), causing the output of the system

to not be linearly proportional to the input. The behavior of a nonlinear system

may be completely different depending on the magnitude of the frequency content.
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Therefore it is important to characterize the system near the operating point of

interest.

Three criteria were established to ensure the system was characterized near its

operating point but to also ensure the system would not become unstable, causing

the cabinet payload to toppled onto its side. These criteria were:

(1) The MR dampers must stroke a minimum of ± 0.25 in from their static position,

(2) the cabinet CG must not laterally translate beyond the horizontal perimeter

established by the coil spring attachment points to the base floor,

(3) and the coil springs must not be extended or compressed more than their outer

diameter (5.68 in).

With these criteria in mind, the mathematical model was used to select a

qualifying disturbance and the PSD is shown in figure 5.26. Again, the ‘Desired’

line is the original PSD profile, where the ‘Measured’ line is the profile experimen-

tally measured during the current testing. The magnitude of the PSD is linearly

proportional to frequency, with the lowest frequency content defined at 0.2 Hz as

5 × 10−5 g2/Hz and the highest frequency content defined at 10 Hz as 0.1 g2/Hz.

The positive slope of the PSD magnitude does not have a constant dB/octave value,

unlike white noise (0 dB/octave) or blue noise (3 dB/octave), therefore this exci-

tation will be referred to as ‘Colored’ noise. Figure 5.27 shows the time domain

displacement signals derived from the x, y, and z PSD profiles which are used as

input floor disturbances to the system.
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Figure 5.24: PSD of the Rep. Launch excitation: desired and measured.
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Figure 5.25: Measured floor displacement signal of the Rep. Launch excitation.
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Figure 5.26: PSD of the Colored excitation: desired and measured.

155



0 10 20 30 40 50 60 70 80 90
−2

−1

0

1

2

Time (s)

x 
(in

)

 

 

(a) x axis.

0 10 20 30 40 50 60 70 80 90
−2

−1

0

1

2

Time (s)

y 
(in

)

 

 

(b) y axis.

0 10 20 30 40 50 60 70 80 90
−2

−1

0

1

2

Time (s)

z 
(in

)

 

 

(c) z axis.

Figure 5.27: Measured floor displacement signal of the Colored excitation.
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5.6 Results

The goal of the full-scale 6-DOF experimental testing was to both character-

ized the system behavior and demonstrate the isolaton performance of the semi-

active suspension. Figure 5.21 shows the suspension instrumented with the control

electronics underneath the GSE cabinet.

The system was characterized with the Colored disturbance, measuring the

outputs while exciting the floor one axis at a time, allowing the full input/output

response of the system to be identified. This was in order to decouple the system

response from the behavior experienced when all three directions are excited simul-

taneously. Only the characterization tests required single floor axis excitation. All

the other performance tests excited all three floor axes simultaneously. The Col-

ored disturbance was used to characterize the system because it has a wide band of

frequency content spanning all the natural frequencies of the system.

5.6.1 System Characterization

Figure 5.28 shows the measured transmissibility of the system along the x, y,

and z axes at the cabinet top corner, in response to the Colored noise disturbance,

with a cabinet weight of 1200 lb and the CG located at 1/3 of the cabinet height,

capturing the full input/output response of the baseline GSE system.

There are several pronounced resonant features measured at the cabinet top

corner in figure 5.28, the first of which is along the x axis at 0.4 Hz where neither

Skyhook or SMC control algorithms are capable of attenuating this mode. This
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is the 1st rocking mode of the system along the x axis and is attributed to a lack

of damper stroke as the cabinet pivots about the common connection the dampers

make with the floor instead of stroking the dampers. This motion, depicted in

figure 5.32(e), degrades the control authority the dampers have on the payload and

the ability to damp this mode.

At 1.9 Hz all three x, y, and z axes shows large resonances, where both control

algorithms show modest attenuation along x and y directions and excellent attenu-

ation along the z direction, with the Skyhook algorithm offering the best. The res-

onance along the z axis is the vertical translational mode, depicted in figure 5.32(a)

and similar to a single-DOF system, while the x and y resonances are due to the

same yawing mode, depicted in figure 5.32(d), which is excited by the vertical mo-

tion of the cabinet and caused by any dissymmetry in the moments applied by the

dampers. It can be seen that the yaw mode is caused due to excitation along the

vertical z axis.

Around 2.5 Hz the x and y axes show a less pronounced resonance where

both control algorithms offer modest attenuation over the Control Off case. These

resonances are the 2nd rocking modes of the system, depicted in figures 5.32(f) and

5.32(c), respectively, and the dampers are capable of damping this mode due to the

bottom of the cabinet moving in such a manner that requires the dampers to stroke,

thus allowing a large amount of control authority.

The 1st rocking mode along the y axis, depicted in figure 5.32(b), is not ob-

served from the data in figure 5.28. This is attributed to that mode having a fre-

quency below the frequency spectrum of the Colored disturbance, causing the mode
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to not be excited.

5.6.2 Performance Evaluation

5.6.2.1 Colored Disturbance

Figure 5.33 shows the measured PSD of the cabinet top corner along the

x, y, and z axes in response to the Colored disturbance with a cabinet weight

of 1,200 lb and the CG located at 1/3 the cabinet height (from here forward, all

three base axes are excited simultaneously unless otherwise stated). Both controlled

systems attenuate four out of the five excited modes defined in figure 5.32. The 1st

rocking mode along the x axis is the only excited mode not attenuated by the

controlled system, resulting in similar acceleration magnitudes for both controlled

and uncontrolled systems. Both SMC and Skyhook controls show similar amounts

of attenuation at the resonant peaks in figure 5.33.

Figure 5.34 presents the performance metrics of the system in the form of a

radar graph, which is a graphical method to display multivariate data. The data

is categorized into performance metrics, as defined in table 5.1, and each metric

corresponds to a radial spine of the radar graph which serves as the data axis for

each metric, labeled mi (for i = 1, 2, ...). The radial length of each data point along

a spine is proportional to the magnitude of the data. Each set of data is connected

with a line resulting in a polygon-type appearance. Metric m2 is not included in

figure 5.34 because the 1st rocking mode along the y axis was not excited during

testing.
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Figure 5.28: Measured transmissibility at the cabinet top corner from the floor input
along the x, y, and z axes in response to the Colored excitation with a cabinet weight
of 1200 lb and the CG located at 1/3 the cabinet height.
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Figure 5.29: Expanded view of figure 5.28. Excitation along only the floor x axis.
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Figure 5.30: Expanded view of figure 5.28. Excitation along only the floor y axis.
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Figure 5.31: Expanded view of figure 5.28. Excitation along only the floor z axis.
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Figure 5.32: Mode shapes of the system.
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Figure 5.34 shows the controlled systems have a smaller radar footprint at

resonant disturbances (m1, m3, m4, m5, m6), showing up to a 57% reduction in the

performance metrics over the Control Off system, highlighting the enhanced vibra-

tion attenuation they offer. Also, the radar footprint for metric m1 reiterates that

both controlled systems have minimal control authority over the 1st rocking mode

along the x axis, sharing nearly the same level of acceleration as the Control Off

system. However, the Control Off system has a smaller radar footprint for metric

m7 (up to 45% smaller compared to Skyhook control) due to better isolation at high

frequency disturbances (> 4 Hz) compared to the controlled systems which inherit

a level of parasitic damping and degrade performance. The high frequency perfor-

mance of each system has a more significant impact on the overall RMS acceleration

transmitted to the cabinet because the Colored disturbance PSD is high frequency

weighted. This explains why the Control Off system provides only slightly worse

total RMS attenuation (m8) compared to either controlled system. Indeed, this

difference in performance would be even further magnified if the disturbance was

low frequency weighted (< 4 Hz), allowing the controlled systems to exhibit even

greater attenuation compared to the Control Off system.

Table 5.2 shows the measured RMS and maximum accelerations along each

axis, as well as the composite f(x, y, z) values m8 and m9, respectively. The Rigid

case represents the measured floor acceleration, or a fictitious rigid system with

infinite stiffness. The Sliding Mode control offers the best isolation performance,

providing the smallest total RMS and maximum acceleration at the cabinet top

corner. In terms of the composite f(x, y, z) values, the Control Off system offers

165



Table 5.2: Measured performance of the system in response to the Colored excitation
with a cabinet weight of 1,200 lb and CG location at 1/3 the cabinet height (red
indicating the control with largest reduction).

Cabinet Top Corner 

RMS  Maximum  

Control Axis (g) % Reduction 
from Rigid (g) % Reduction 

from Rigid 

Rigid 

x 0.786 0 3.46 0 
y 0.608 0 2.98 0 

z 0.394 0 2.11 0 

f(x,y,z) 1.07 0 3.46 0 

Off 

x 0.307 60.9 1.38 60.1 

y 0.302 50.3 1.14 61.7 
z 0.233 40.9 0.863 59.1 

f(x,y,z) 0.489 54.3 1.38 60.1 

Sky 

x 0.306 61.1 1.26 63.6 

y 0.282 53.6 1.52 49.0 
z 0.217 44.9 2.48 -17.5 

f(x,y,z) 0.469 56.2 2.48 28.3 

SMC 

x 0.287 63.5 1.04 69.9 
y 0.26 57.2 1.08 63.8 
z 0.196 50.3 0.715 66.1 

f(x,y,z) 0.434 59.4 1.08 68.8 

the worst RMS isolation at the top corner, albeit only slightly worst (within 5%

of the controlled systems). The SMC control reduced the total transmitted RMS

acceleration (m8) to the cabinet top corner by 59%, and in terms of maximum

acceleration (m9), the SMC control provided reductions to the cabinet top corner

by 69%. The Skyhook control offers the worst maximum acceleration at the top

corner due to a single, large, transient z axis acceleration shown in figure 5.35.
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Figure 5.33: Measured PSD of the cabinet top corner along the x, y, and z axes
in response to the Colored excitation with a cabinet weight of 1,200 lb and the CG
located at 1/3 the cabinet height.
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Figure 5.34: Radar plot of the performance metrics in response to the Colored
excitation with a cabinet weight of 1,200 lb and the CG located at 1/3 the cabinet
height.
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Figure 5.35: Measured z axis acceleration signals at the cabinet top corner for
Skyhook control.
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5.6.2.2 Representative Launch

Figure 5.36 shows the measured PSD of the cabinet top corner along the x,

y, and z axes in response to the Rep. Launch excitation with a cabinet weight of

1,200 lb and the CG located at 1/3 the cabinet height. It can be seen that both

the Skyhook and SMC controlled systems provided similar performance and showed

improved attenuation compared to the Control Off system near 2 Hz, along all three

x, y, and z axes. Again, the controlled systems do not attenuate the 1st rocking

mode along the x axis, and the Control Off system provides better high frequency

(> 4 Hz) isolation.

Figure 5.37 shows the controlled systems (Skyhook and SMC) have a smaller

radar footprint at resonant disturbances (m1, m3 - m6), highlighting the enhanced

vibration attenuation they offer at resonance compared to the Control Off system.

However, the Control Off system again has a smaller radar footprint for metric m7

due to better isolation at high disturbance frequencies (> 4 Hz) compared to the

controlled systems. Also, the radar footprint for metric m1 reiterates that both

controlled systems have minimal control authority over the 1st rocking mode along

the x axis, sharing nearly the same level of acceleration as the Control Off system.

Table 5.3 shows the measured RMS and maximum accelerations along each

axis, as well as the composite f(x, y, z) values m8 and m9, respectively. Both con-

trolled and uncontrolled systems provide substantial attenuation along all three axes

from the ‘Rigid’ floor excitation, while the Control Off system offers the best perfor-

mance in terms of the composite f(x, y, z) values. The Control Off system reduced
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the transmitted RMS acceleration (m8) to the cabinet top corner by 72%, and the

maximum acceleration (m9) by 76%. The Sliding Mode control offers the next best

performance (only slightly worse than Control Off), while the Skyhook control offers

the worst performance for metrics m8 and m9.

The Control Off system provides the best total RMS acceleration (m8) because

the Rep. Launch disturbance is dominated by high frequency content above 4 Hz

(larger than the Colored disturbance), which is above all of the resonant frequencies

of the system (< 3 Hz). However, this obfuscates the benefits of the controlled

system. The semi-actively controlled system approaches the level of isolation of

the lightly damped passive system at high frequency, but has the added benefit

of attenuating vibration at the resonant frequencies of the system. At frequencies

far above resonance the semi-actively controlled system tries to mimic the behavior

of the Control Off system; however, due to the algorithm of the control law and

time delays in the application of the desired control, the controlled system adds

parasitic damping and degrades isolation. The Rep. Launch excitation considered

here is only a single disturbance to which the system may be exposed, while another

disturbance may contain more lower frequency content (ie. different Shuttle launch,

or during ground transportation of the Shuttle), allowing the controlled system to

offer superior isolation.
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Figure 5.36: Measured PSD of the cabinet top corner along the x, y, and z axes in
response to the Rep. Launch excitation with a cabinet weight of 1,200 lb and the
CG located at 1/3 the cabinet height.
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Figure 5.37: Radar plot of the performance metrics in response to the Rep. Launch
excitation with a cabinet weight of 1,200 lb and the CG located at 1/3 the cabinet
height.
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Table 5.3: Measured performance of the system in response to the Rep. Launch
excitation with a cabinet weight of 1,200 lb and the CG location at 1/3 the cabinet
height(red indicating the control with largest reduction).

Cabinet Top Corner 
RMS  Maximum  

Control Axis (g) % Reduction 
from Rigid (g) % Reduction 

from Rigid 

Rigid 

x 1.59 0 5.71 0 
y 1.3 0 5.2 0 
z 0.494 0 1.87 0 

f(x,y,z) 2.11 0 5.71 0 

Off 

x 0.408 74.3 1.36 76.2 
y 0.348 73.2 1.32 74.6 
z 0.244 50.6 0.807 56.8 

f(x,y,z) 0.59 72.0 1.36 76.2 

Sky 

x 0.437 72.5 1.51 73.6 
y 0.396 69.5 1.73 66.7 
z 0.258 47.8 0.84 55.1 

f(x,y,z) 0.644 69.5 1.73 69.7 

SMC 

x 0.426 73.2 1.41 75.3 
y 0.385 70.4 1.48 71.5 
z 0.247 50.0 0.802 57.1 

f(x,y,z) 0.625 70.4 1.48 74.1 
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5.7 Model Validation

The mathematical model was validated using the experimental data measured

in response to the Colored disturbance. Figure 5.38 shows the PSD of the base

disturbances for both the model and experiment along the x, y, and z axes. The

‘Experiment’ curve is from acceleration data measured at the base of the shake ta-

ble. The ‘Model’ curve is calculated from displacement data measured by sensors

installed on the hyraulic actuators of the shake table. Both PSD curves match

closely, but are not exactly the same because they originate from different mea-

surements. For simulation, the mathematical model requires knowledge of the base

velocity and displacement, in addition to acceleration. It was found that integrating

the acceleration signal to obtain displacement resulted in poor accuracy due to small

levels of noise in the measured acceleration signal causing large cumulative errors

in displacement (ie. drift effect). Alternatively, it was found that differentiating

the measured base displacement signal to obtain acceleration gave accurate results.

Thus, the measured base displacement was chosen as the input to the model.

Figure 5.42 summarizes the performance metric values in table 5.4 for the rigid

system and gives a detailed comparison of the agreement between the model and

experiment. The agreement is good for all metrics. Furthermore, the difference in

total RMS acceleration (m8) is only 2%. This error is due to measurement noise,

and since the base disturbance is the input into the system, indicates a level of

accuracy between model and experiment.

Figures 5.39 - 5.41 show the measured PSD of the cabinet top corner along the
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x, y, and z axes for the Control Off, Skyhook, and Sliding Mode systems, respec-

tively, in response to the Colored disturbance. The PSD plots show good agreement

between the frequency responses of the model and experiment. The translational

mode, yaw mode, 2nd rocking modes, and high frequency behavior all occur at the

same frequency and have similar PSD profiles. The model accurately predicts the

magnitude of 1st x-axis rocking mode, but suggests it occurs at a slightly higher

frequency of 0.55 Hz, rather than the measured 0.4 Hz. The model predicts the

1st y-axis rocking mode to occur at 0.4 Hz, however this mode was not measured

experimentally because it was not excited by the disturbance spectrum. The dis-

crepancy between model and experiment for the 1st rocking modes may be due to

the modeling of the coil springs. Perhaps extending the axial and lateral linear

stiffness model to include bending and rotation of the coil spring would improve the

model agreement.

Figures 5.43 - 5.45 summarize the performance metrics in table 5.4 for the

Control Off, Skyhook, and SMC systems. The radar plots indicate the agreement

between model and experiment is good for some metrics and less good at others.

The model underpredicts the magnitude of the PSD at several of the system modes,

however the model does a good job of predicting metrics m1, m5, and m7 for the

Control Off system, and metrics m5, m6, and m9 for the SMC controlled system.

Furthermore, the difference in total RMS acceleration (m8) is 18%, 10%, and 3%

for the Control Off, Skyhook, and SMC systems, respectively. While there is some

discrepancy between model and experiment, the model is considered a good repre-

sentation of the physical system and will be used for further investigation.
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Figure 5.38: Measured PSD of the floor input along the x, y, and z axes for the
Colored excitation.
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Figure 5.39: Measured PSD of the cabinet top corner along the x, y, and z axes for
the Control Off system, in response to the Colored excitation with a cabinet weight
of 1,200 lb and the CG located at 1/3 the cabinet height.
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Figure 5.40: Measured PSD of the cabinet top corner along the x, y, and z axes for
the Skyhook control system, in response to the Colored excitation with a cabinet
weight of 1,200 lb and the CG located at 1/3 the cabinet height.
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Figure 5.41: Measured PSD of the cabinet top corner along the x, y, and z axes
for the SMC control system, in response to the Colored excitation with a cabinet
weight of 1,200 lb and the CG located at 1/3 the cabinet height.
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Figure 5.42: Performance metrics of a system rigidly attached to the base distur-
bance, for both model and experiment. In response to the Colored excitation.

Table 5.4: Performance metrics for both model and experiment. In response to the
Colored excitation with a cabinet weight of 1,200 lb and CG location at 1/3 the
cabinet height.

Metric 
Rigid Control Off Skyhook Control SMC Control 

Units 
Experiment Model Experiment Model Experiment Model Experiment Model 

m1 0.013 0.012 0.125 0.124 0.113 0.089 0.121 0.094 g 

m3 0.060 0.058 0.115 0.077 0.069 0.045 0.072 0.052 g 

m4 0.062 0.059 0.102 0.079 0.055 0.040 0.063 0.043 g 

m5 0.046 0.046 0.129 0.125 0.052 0.041 0.058 0.056 g 
m6 0.059 0.058 0.241 0.124 0.115 0.091 0.150 0.131 g 

m7 0.284 0.266 0.040 0.040 0.072 0.105 0.059 0.074 g 

m8 1.016 0.996 0.494 0.406 0.449 0.492 0.431 0.417 g 

m9 34.346 30.633 13.559 7.547 24.290 11.984 10.591 10.861 g 
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Figure 5.43: Performance metrics of the Control Off system, for both model and
experiment. In response to the Colored excitation with a cabinet weight of 1,200 lb
and CG location at 1/3 the cabinet height.
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Figure 5.44: Performance metrics of the Skyhook controlled system, for both model
and experiment. In response to the Colored excitation with a cabinet weight of
1,200 lb and CG location at 1/3 the cabinet height.
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Figure 5.45: Performance metrics of the SMC controlled system, for both model and
experiment. In response to the Colored excitation with a cabinet weight of 1,200 lb
and CG location at 1/3 the cabinet height.
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5.8 Conclusions

The experimental design, setup, and testing of a semi-active 6-DOF suspen-

sion was presented in this chapter. Both the MR dampers and coil springs were

characterized and a simplified, quarter-scale suspension was used to calibrate the

control law gains. Several performance metrics were established to evaluate the iso-

lation performance of the system. The system was evaluated with two disturbance

spectrums and the measured data was used to validate a mathematical model of the

system.

The semi-active suspension provided significant reductions in vibration trans-

mitted to the payload from the floor input disturbance. Each of the excited resonant

modes of the system were attenuated with the semi-active control laws, with the

only exception being the 1st rocking mode along the x axis. The controlled cases

reduced the performance metrics m3 - m6 up to 57% over the Control Off system.

Only the rocking mode metric m1 was similar for both controlled and uncontrolled

systems, due to the orientation of the dampers. The pivoting phenomenon caused

a lack in damper stroke, offering little control authority over the 1st rocking mode

of the system.

The Control Off system provides better high frequency isolation due to the

induced parasitic damping of the semi-active clipping associated with the control

laws. This fact is reflected through metric m7, with the Control Off system hav-

ing up to a 45% lower value compared to the worst controlled system. This is a

consequence of the power limitations of the power supply and the inductance of
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the electromagnetic coil, which affect the response time of the applied control com-

mands. By either improving the power supply or improving the semi-active clipping

algorithm the controlled system will approach the high frequency performance of a

passive system.

The overall broadband isolation performance of the system is a combination of

metricsm1 -m7. In response to the Colored Noise disturbance, metricm8 shows that

both the Skyhook and SMC semi-actively controlled systems improved broadband

RMS acceleration isolation by 4% and 11%, respectively, compared to the zero-field

system without control. This is a result of the Colored disturbance having lower

frequency content. However, when excited by the Rep. Launch disturbance, the

zero-field system without control provided slightly better broadband RMS accelera-

tion isolation than the controlled systems because the disturbance has predominately

high frequency content (> 4 Hz), above all the resonant frequencies of the system,

where the Control Off system excels. At frequencies far away from resonant behav-

ior the semi-actively controlled system tries to mimic the behavior of the Control

Off system, however, due to the algorithm of the control law and time delays in the

application of the desired control, the controlled system adds parasitic damping and

degrades isolation. This is the standard trade-off between passive and semi-active

control. We choose semi-active to gain resonance performance while sacrificing some

high frequency performance. Indeed, a passive system would require a large damp-

ing ratio to match the resonance attenuation capabilities of the semi-active system,

causing poor high frequency performance. The semi-actively controlled system ex-

cels at attenuating resonance behavior while also nearly enjoying the full benefits of
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a lightly-damped passive system.

The Rep. Launch excitation considered here is only a single disturbance to

which the system may be exposed, while another disturbance, such as the Colored

Noise, may contain greater lower frequency content (ie. different Shuttle launch, or

during ground transportation of the Shuttle), allowing the controlled system to offer

superior isolation and reveal the advantages to having an adaptable system that can

better attenuate the lower frequency modes, while also providing the high frequency

advantages of a passive system. Nevertheless, the semi-active suspension was shown

to reduce the transmitted RMS acceleration to the cabinet top corner by up to 72%

and maximum acclerations up to 76%, considering the Rep. Launch disturbance,

and reduce the RMS acceleration by up to 59% and maximum acclerations up to

69%, considering the Colored Noise disturbance.

The mathematical model developed in chapter 4 was validated with the ex-

perimental data, and good agreement was found for the uncontrolled and controlled

systems. The translational mode, yaw mode, 2nd rocking modes, and high frequency

behavior all occur at the same frequency and show similar magnitudes in the fre-

quency responses. The model captures both the 1st rocking modes, but suggest they

occur at slightly higher frequencies compared to the measured data. This discrep-

ancy may be due to the modeling of the coil springs, and perhaps extending the axial

and lateral linear stiffness model to include bending and rotation of the coil spring

would improve the model agreement. The error in total RMS acceleration (m8)

between model and experiment is 18%, 10%, and 3% for the Control Off, Skyhook,

and SMC systems, respectively. While there is some discrepancy between model and
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experiment, the model is considered a good representation of the physical system.
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Chapter 6

Analysis of a 6-DOF Magnetorheological

Suspension

6.1 Introduction

The semi-active 6-DOF suspension system is analyzed here by investigating

several features of the system. First, modal analysis is used to study the orientation

of the MR dampers and determine a configuration that best attenuates all six modes

of the system. Second, the control laws are revisited to compare centralized and

decentralized control. Last, the performance of the system is studied when it is

subjected to perturbations in payload mass, center of gravity, and temperature.

6.2 Damper Orientation

The suspension studied in the previous chapter orients the MR dampers un-

derneath the payload such that the dampers attach to each of the cabinet’s four
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Coil Spring 

MR Damper 

Figure 6.1: Pyramid configuration of suspension.

corners and nearly share a common attachment point at the base floor, forming an

upside-down, square pyramid. This configuration of the MR dampers, shown in

figure 6.1 is refered to as the Pyramid configuration. This configuration was chosen

so that the dampers could provide damping along each of the x, y, and z axes.

However, it was found that the Pyramid configuration has little control authority

over the 1st rocking modes along the x and y axes. This is due to the payload piv-

oting about the common connection point shared by all four dampers, prohibiting

the dampers from stroking and providing attenuation. It is desired to improve the

suspension design by orienting the dampers such that the suspension has control

authority over all six modes.
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6.2.1 Controllability

One property of the system that is of interest is whether or not the system

is controllable. Controllability describes the ability of an external input to move

the internal state of a system from any initial state to any final state in finite time

[58]. This notion of controllability can be determined by finding the controllability

matrix Qc of a linear, time-invariant system and evaluating the rank of the matrix.

However, the system studied here is nonlinear. Linearization is a useful approach

to study nonlinear systems in which a system is linearized about some nominal

operating point, allowing linear analysis to be used to study the local behavior of

the system.

A further complication is the external control input is semi-active, requiring

motion for the MR dampers to apply resistive control forces. The system may not

be controllable if there is no motion (ie. Ox − Ow = Oẋ − Oẇ = Oẍ − Oẅ = 0).

Therefore, the controllability will be evaluated for each mode of the system, as these

are the most critical operating points.

The state space model from chapter 4 is linearized about the static equilibrium

position Ox = Ox∗. The damped natural frequencies and mode shapes of the system

are identified from the state matrix A, assuming zero applied current. Here, the

system will be evaluated with a cabinet weight of 1,200 lb and CG location at 1/3

the cabinet height. The jth column of the normalized eigenvector matrix
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V =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 0 −.336 0 0 0
0 1 0 .356 0 0
0 0 0 0 1 0
0 −.909 0 1 0 0

.854 0 1 0 0 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦

(6.1)

is the mode shape Vj corresponding to the jth damped natural frequency in the set

{0.58, 0.45, 2.79, 2.78, 1.93, 1.88} Hz. It is assumed Oẋ = Vj, giving a constant state

matrix A and input matrix B. The mode shapes identified from the state matrix A

may be complex-valued, indicating the relative phase shift between each DOF. For

undamped systems, or systems with proportional damping (ie. proportional to the

mass or stiffness), each DOF will either be in phase or 180o out of phase relative

to each other, meaning each DOF experiences its maximum absolute displacement

at exactly the same time, behaving according to what are called the real normal

modes [24]. The zero-field damping of the system studied here is not proportional

damping and instead the eigenvectors are called complex modes, where each DOF

will not necessarily be in phase or 180o out of phase relative to each other. However,

the relative phase shift between each DOF for all six modes was found to deviate

no more than ±6o from either 0o or 180o, and cos(6o) ≈ 1, so the complex modes in

equation 6.1 will be used for analysis as if they were the real normal modes.

The controllability matrix is given as [58]

Qc =
[
B AB A2B ... An−1B

]
(6.2)

where n is the number of states. The system is controllable if the controllability

matrix Qc has full rank (ie. rank(Qc) = n). For the Pyramid configuration, the
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controllability matrix is of full rank for all six modes, indicating the ability of the

external control to locally move all the states of the system toward a desired state,

assuming the motion of the system is described by one of its modal shapes.

The rank of the controllability matrix indicates whether or not the system

in controllable, but the amount of control influence the system has on each mode

is also of interest. Despite the Pyramid configuration being controllable, the 1st

rocking modes along the x and y axes are not well damped. The control influence is

defined here as how well the suspension can attenuate transmitted vibration. If the

motion of the system is such that the dampers stroke very little, then the dampers

have limited control influence to attenuate that motion. However, if the motion of

the system causes the dampers to stroke significantly, then the dampers can provide

effective attenuation.

To quantify the amount of control influence the system has for each mode, the

motion of the dampers at each mode is evaluated. The resulting motion of the top

connection point of the ith damper (point di) due to the jth natural mode is given

as

Ovdi,j =
[
I3×3 −OPdiB

]
Vj, (6.3)

The amount of control authority the suspension has for the jth mode can be evalu-

ated by defining an effectiveness factor εj given as

εj =
1

N

N∑
i=1

∣∣OvT
di,j

Ol∗diDi

∣∣
‖Ovdi,j‖

∥∥Ol∗diDi

∥∥ , (6.4)
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where N is the number of dampers, and Ol∗diDi
is the orientation vector of the ith

damper when the system is at the static equilibrium position. A value of εj = 1

means the suspension has a large amount of control authority over the jth mode,

and a value of εj = 0 means the suspension has no control authority. More simply,

εj indicates the extent the jth mode causes motion along the axial directions of the

dampers. If the motion is parallel to the damper axis, then the term inside the

summation in equation 6.4 will equal unity, and if the motion is perpendicular to

the damper axis, then that same term will be zero. A total effectiveness factor ε

can be defined as

ε =
1

6

6∑
j=1

εj, (6.5)

to give the average effectiveness of the system’s ability to attenuate all six modes.

The effectiveness factors of Pyramid suspension configuration are given in

table 6.1 and confirm this orientation of the dampers has little control authority

over the 1st rocking modes along the x and y axes with ε1 = 0.2 and ε2 = 0.33,

and even less influence for the yaw mode ε6. The effectiveness terms ε3, ε4 and

ε5 are much better, giving an average effectiveness of ε = 0.43 for the Pyramid

configuration. While this analysis only holds for the local behavior of the model

near the linearization at static equilibrium, it provides very clear, useful information

for suspension design.
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Table 6.1: Effectiveness factor for several suspension configurations with a cabinet
weight of 1,200 lb and CG location at 1/3 the cabinet height (red indicating largest
value for a given mode).

Damper Configuration 

Mode Effectiveness 
Factor 

Pyramid Vertical Trapezoid Vee Hexapod 

1st rock. x axis ε1 0.20 0.66 0.61 0.23 0.41 

1st rock. y axis ε2 0.33 0.82 0.76 0.70 0.39 

2nd rock. x axis ε3 0.64 0.20 0.36 0.72 0.57 

2nd rock. y axis ε4 0.64 0.25 0.30 0.21 0.59 

Vertical translation ε5 0.74 1.00 0.99 0.84 0.57 

Yaw ε6 0.01 0.00 0.05 0.39 0.71 

Average ε 0.43 0.49 0.51 0.52 0.54 

6.2.2 Damper Orientation Evaluation

Several other damper configurations are now proposed and evaluated in an

effort to improve on the Pyramid configuration and provide more uniform control

authority over all six modes.

The pivoting phenomenon exhibited by the Pyramid configuration (figure 6.1)

is due to the dampers pivoting about the common connection point at the base floor,

prohibiting the dampers to stroke. This explains why the Pyramid configuration has

poor control authority over the 1st rocking modes along both x and y axes. This can

be corrected by eliminating the common base connection and orienting the dampers

in a vertical fashion seen in figure 7.2(a). This forces the dampers to stroke when

1st rocking modes are excited. Table 6.1 confirms this as the effectiveness factors

ε1 and ε2 are dramatically increased, giving an average effectiveness of ε = 0.49 for
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the Vertical configuration. However, ε3 and ε4 indicate the system now has poor

attenuation capability over the 2nd rocking modes with the Vertical configuration.

In order to provide enhanced control authority over both the 1st and 2nd rock-

ing modes, a compromise between the Pyramid and Vertical configurations is made.

The base floor connections of the dampers are made toward the center similar to

the Pyramid configuration but with greater separation among each damper as seen

in figure 6.3, thus reducing the amount the payload can pivot. This configuration

visually looks like the frustum of a truncated square pyramid with trapezoidal faces

and consequently is refered to as the Trapezoid configuration. Table 6.1 shows that

ε1, ε2 and ε5 nearly match those of the Vertical configuration while also enhancing

ε3 and ε4, giving an average effectiveness of ε = 0.51 for the Trapezoid configu-

ration. However, the yaw mode control authority is still neglected with all three

configurations described thus far.

In order to address the yaw mode, a fourth configuration is established which

maintains the inclined orientation of the dampers relative to the horizon but posi-

tions the dampers in-plane with two opposing sides of the cabinet payload as seen

in figure 7.2(b). Each pair of dampers share a common base floor connection point,

forming a shape similar to the alphebetic letter V, and is consequently refered to as

the Vee configuration. Table 6.1 shows the yaw mode effectiveness ε6 is dramatically

enhanced, while also providing excellent values for ε2, ε3 and ε5, giving an average

effectiveness of ε = 0.52. However, ε1 and ε4 are quite poor due to the shared base

connection point of each pair of dampers.

For comparison purposes, it is interesting to consider a cubic hexapod con-

195



figuration seen in figure 6.5. This is because the cubic configuration provides in-

dependent damping for all six DOFs, providing control authority for all six modes

of the system. Table 6.1 shows the cubic hexapod configuration offers the most

uniform control authority for all six modes, including the best effectiveness ε6 over

the yaw mode. This gives the hexapod configuration the best average effectiveness

of ε = 0.54, but at a cost. A cubic hexapod configuration was not pursued because

it was desired to have a modular suspension design that could scale with payload

mass and geometric size by either adding linkages to the suspension, or increasing

the separation between the linkages. A cubic hexapod suspension is not modular in

the sense that it requires exactly six linkages. Adding linkages would disrupt the

orthogonality of the cubic configuration. The ability to add or subtract individual

legs from the suspension accommodates payloads of varying size and mass without

the need to redesign a fixed number of MR dampers or springs. Furthermore, reduc-

ing the amount of hardware and the number of linkages (ie. MR dampers) equates

to reducing the cost and maintanance of the suspension.

The Trapezoid and Vee configurations show that all six modes can be control-

lable with the modular semi-active suspension. There may still exist some singu-

larities in the controllability matrix (unlike a cubic hexapod), but no singularities

when the system motion is described by one of the six modes. For a payload with a

larger footprint, the rocking modes would be less of a concern as the dampers could

have greater separation, resulting in more control leverage (larger ε1 - ε4).
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Figure 6.2: Vertical configuration of suspension.
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Figure 6.3: Trapezoid configuration of suspension.
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Figure 6.4: Vee configuration of suspension.
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Figure 6.5: Hexapod configuration of suspension.
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6.2.3 Performance of Configurations

The performance of each damper configuration was evaluated in response to

the Colored disturbance with a cabinet weight of 1,200 lb and the CG located at 1/3

the cabinet height. Figure 6.6 shows a radar graph of the performance metrics m1 -

m10 from table 6.2 for all five damper configurations governed by Skyhook control.

For the cubic hexapod, the damper forces were scaled by a factor of 4/6 to make an

equivalent comparison with the other modular, 4-damper leg configurations.

The radar graph supports the assertions made with the effectiveness factors

ε1 - ε6 in table 6.1. The Pyramid configuration offers the worst attenuation for

the 1st rocking modes and yaw mode. The Vertical and Vee configurations offer

poor 2nd rocking mode attenuation as indicated by metrics m3 and m4, respectively.

The Hexapod configuration generally provides the best attenuation for metrics m1

through m6. The Trapezoid configuration provides similar performance to the cubic

hexapod, with the exception of metric m4 and the yaw mode metric m6. Further-

more, the Trapezoid configuration also provides excellent high frequency isolation

with metric m7, the lowest total RMS acceleration with m8, and minimizes the

maximum relative displacement of cabinet top corner with metric m10. The Trape-

zoid configuration offers good overall performance as well as provides the lowest

RMS acceleration (m8), thus one could argue it is a good candidate for the modular

semi-active suspension.

It is interesting to compare the semi-active Trapezoid suspension with a passive

suspension. Klembczyk and Mosher [47] describe an established passive 6-DOF
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suspension installed on NASA’s MLP for isolation of ground support equipment.

The vertical damping ratio (0.22) and vertical natural frequency (3.5 Hz) of the

suspension were adapted to the system modeled here to give a baseline level of

performance. Figure 6.7 summarizes the performance metrics in table 6.3 for both

the Trapezoid configuration and passive Klembczyk and Mosher [47] suspensions.

The Trapezoid suspension, even in its passive state without any semi-active control,

provides much better isolation performance than the passive Klembczyk and Mosher

suspension, with the only exceptions being the 2nd rocking mode metrics m3 and m4.

Applying semi-active control (Skyhook or SMC control) improves the performance

further, offering large improvements over the Klembczyk and Mosher design for all

ten metrics, including a 62% improvement in the RMS acceleration experienced at

the payload top corner. Only the high frequency metric m7 is the best for the

Trapezoid suspension in its passive state due to the control response delay from the

semi-active clipping.

It is concluded here that a modular semi-active suspension (with only 4 dampers)

can provide control authority and attenuation for all six modes, as well as for high

frequency disturbances. The semi-active suspension can provide superior perfor-

mance compared to the baseline passive suspension described by Klembczyk and

Mosher [47] as well as a similarly designed passive suspension.
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Figure 6.6: Performance metrics of all the damper configurations.

Table 6.2: Performance metrics of all the damper configurations.

Metric Pyramid Vertical Trapezoid Vee Hexapod Units 

m1 0.089 0.054 0.053 0.084 0.056 g 
m2 0.042 0.026 0.027 0.027 0.027 g 
m3 0.045 0.096 0.046 0.046 0.047 g 
m4 0.040 0.070 0.062 0.103 0.041 g 
m5 0.041 0.050 0.045 0.038 0.040 g 
m6 0.091 0.083 0.072 0.068 0.047 g 
m7 0.105 0.067 0.065 0.102 0.111 g 
m8 0.492 0.421 0.390 0.501 0.485 g 
m9 11.984 10.805 11.415 11.645 10.099 g 
m10 7.791 5.114 5.039 6.346 5.457 in 
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Figure 6.7: Performance metrics of the Trapezoid configuration and the passive
suspension described by Klembczyk and Mosher [47].

Table 6.3: Performance metrics of the Trapezoid configuration and the passive sus-
pension described by Klembczyk and Mosher [47].

Metric Klembczyk, 
Control Off 

Trapezoid, 
Control Off 

Trapezoid, 
Sky Control 

Trapezoid, 
SMC Control Units 

m1 0.351 0.080 0.053 0.055 g 
m2 0.181 0.039 0.027 0.025 g 
m3 0.157 0.168 0.046 0.078 g 
m4 0.172 0.244 0.062 0.101 g 
m5 0.156 0.086 0.045 0.047 g 
m6 0.206 0.085 0.072 0.091 g 
m7 0.175 0.028 0.065 0.051 g 
m8 1.037 0.505 0.390 0.399 g 
m9 26.294 12.479 11.415 10.317 g 
m10 8.654 6.579 5.039 5.154 in 
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6.3 Centralized Control

Centralized control considers the entire state of the system and commands

control inputs correspondingly. This is different from decentralized control where

each control device operates without knowledge of the other control devices. But-

suen [10] notes, with a simplified ground vehicle suspension, that centralized and

decentralized control laws can yield similar perfromance when the commanded con-

trol inputs are highly correlated due to minimal coupling between each leg of the

suspension. The performance of both control philosophies is compared here using

the centralized and decentralized Skyhook control laws defined in chapter 4.

Figure 6.8 shows the performance metrics of both the decentralized and cen-

tralized Skyhook control laws. The vertical translational mode, m5, performance

is the same for both, while the centralized strategy provides better attenuation for

each rotational mode (ie. m1 - m4, m6). If the system experienced only the verti-

cal translation mode, the entire suspension would act as a single DOF system and

each damper would symmetrically stroke in unison. This would cause both the cen-

tralized and decentralized control laws to command similar control inputs to each

damper, explaining the same value for m5 in figure 6.8. However, when the cabinet

rotates, as it does for the remaining modes, the stroking can be different for each

damper. Differences in stroking between each damper will cause the decentralized

control to command different inputs for each, without knowledge of the effect it

has on the rest of the system. However, the centralized strategy applies control

commands to each damper based on the state of the entire system, explaining the
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enhanced performance it offers for the rotational modes (ie. m1 - m4, m6).

The high frequency isolation (m7) is the same for both strategies, and is at-

tributed to both having the same time response delay for the semi-active control

clipping. Also, the RMS and maximum acceleration metrics (m8 - m9) are ap-

proximately the same. The maximum relative displacement (m10) is better for the

centralized control law, which is attributed to the enhanced attenuation of the ro-

tational modes.

While the centralized Skyhook control provides improved resonance suppres-

sion, the algorithm is dependent on the placement of the dampers, which detracts

from the modularity of the design. Also, centralized control is more complex than

decentralized control and is less robust to a loss in control of a single damper. There-

fore, a trade-off must be established when selecting the control strategy. Importance

must be placed on either optimal full-system performance, or on the modularity and

robustness of the suspension that decentralized control provides.

6.4 System Perturbations

A key feature of the suspension design is it’s adaptability to practical system

perturbations. A passive suspension can possess either high damping for excellent

resonance suppression, or low damping for excellent high frequency isolation; how-

ever, it can not have both. A semi-active suspension has the ability to provide both

high and low damping, and it is this essential feature that allows the semi-active

suspension to adapt to broad spectrum disturbances. This ability to provide both
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Figure 6.8: Performance metrics of both centralized and decentralized Skyhook
control laws. Payload weight of 1,200 lb, CG located at 1/3 the cabinet height,
Trapezoid configuration, and Colored disturbance.
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high and low damping also allows the suspension to adapt to perturbations in the

inertia properties (ie. mass and moment of inertia) and operating temperature of

the system. A passive suspension has a fixed amount of damping, and can only be

optimized for a fixed set of system properties. A semi-active suspension can increase

or decrease the amount of damping in response to a change in the system.

Mass perturbations could be the consequence of adding hardware to an equip-

ment rack cabinet, or the addition of passengers of varying mass to an occupant

vehicle. Perturbations in CG could result from installing equipment hardware in

different vertical locations or from passengers sitting or standing. Perturbations in

operating temperature of the MR damper are simply due to the dissipation of me-

chanical energy, or electrical energy (from the MR damper’s electromagnetic coil),

into thermal energy. This section investigates the behavior of the semi-active suspen-

sion (Trapezoid configuration) subjected to perturbations in payload mass, center

of gravity, and temperature.

The performance metrics m1 - m7 that have been used for analysis up to this

point are derived from the output PSD measured at the cabinet top corner. The

magnitude of the output PSD is dependent on the magnitude of the input distur-

bance PSD, and if the magnitude of the input PSD is frequency dependent, as is

the case with the Colored Noise disturbance, then the magnitude of the output

will also be frequency dependent. Perturbations in payload mass and CG location

will shift the natural frequencies of the system, so comparing the shifted resonant

modes of two systems, simply using the PSD curves, does not give a fair compari-

son. Instead, alternative performance metrics, m̂i, will be used in place of metrics
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mi, where i = 1, 2, ... 7. These alternative metrics are similar to the originals, but

are determined from calculating the area under the transmissibility curves instead

of the PSD curves. Since the transmissibility is normalized relative to the input

disturbance, these alternative metrics allow for a proper comparison between sys-

tems with shifted natural frequencies due to perturbations in payload mass or CG

location.

The transmissibility curves considered here are not exactly proper transmis-

sibility curves, rather psuedo-transmissibilities or normalized PSD curves. Proper

transmissibility curves for a multiple-input/multiple-output (MIMO) system specify

the frequency response of output j due solely to input k, creating a m × n matrix

of curves, where j = 1, ... m and k = 1, ... n. However, the outputs considered here

are in response to all the inputs excited simultaneously. It is assumed here that the

coupling between axes is minimal, meaning the output response j is primarily due

to input k = j, and the off-diagonal entries of the transmissibility matrix (j �= k)

are negligible. Therefore, only the diagonal entries of the psuedo-transmissibility

matrix are evaluated. These diagonal entries are simply the x, y, and z output PSD

curves from the cabinet top corner normalized by the x, y, and z input PSD curves

from the base, respectively, resulting in three psuedo-transmissibility curves from

which the alternative performance metrics m̂1 − m̂7 are derived. These alternative

metrics m̂i are very similar to the original metrics derived from the PSD curves,

except now the psuedo-transmissibility curves are used.
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6.4.1 Mass Perturbation

Two payload masses are considered here, 272 kg (600 lb) and 544 kg (1,200 lb),

both with a center of gravity located at 1/3 the payload height measured from the

bottom. The moment of inertia tensor of the payload

BI =

⎡
⎣ Ixx −Ixy −Izx
−Ixy Iyy −Iyz
−Izx −Iyz Izz

⎤
⎦ (6.6)

has values of either Ixx = 162 kgm2, Iyy = 176 kgm2, and Izz = 51 kgm2, or

Ixx = 200 kgm2, Iyy = 214 kgm2, and Izz = 68 kgm2, respectively. The mass

distribution is sysmetric, so the off-diagonal entries Iij = 0, for i �= j.

Figure 6.9 summarizes the performance metrics in table 6.4 for both payload

weights of 600 lb and 1,200 lb. With the Control Off system, doubling the payload

weight from 600 lb to 1,200 lb worsens all the resonant mode metrics, m1 - m6.

Despite this 100% increase in weight, the Skyhook controlled system experiences

only a 5% degradation in the vertical translation mode metric, m̂5, compared to the

13% degradation for the Control Off system. This is the same result discussed in

chapter 3 for a single DOF system, where the Skyhook control is able to provide high

damping to the suspension, reducing the sensitivity to a change in damping ratio.

The Skyhook control also offers robust performance for metrics m̂3, m̂4, and m̂6.

It appears that while the dampers apply more damping to the system, metrics m̂1

and m̂2 worsen as the payload weight increases. Nevertheless, the Skyhook control

still provides greatly improved values for m̂1 and m̂2 over the passive Control Off

system.
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Figure 6.9: Performance metrics of the system with payload weights of 1,200 lb or
600 lb, using Control Off or Skyhook control.

As payload mass increases from 600 lb to 1,200 lb, the high frequency isola-

tion improves, as shown with metric m̂7, which is expected due to the higher inertia

and also noted in chapter 3 for a single DOF system. For Skyhook control, metric

m8 shows that increasing the payload mass improves RMS acceleration. This is

attributed to the better high frequency isolation of the 1,200 lb system. The re-

sults for metric m9 are scattered and no clear trend is shown. Metric m10 shows

that increasing payload mass worsens the maximum relative displacement, however

the controlled system still provides improved performance compared to the passive

Control Off system.
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Table 6.4: Performance metrics of the system with payload weights of 1,200 lb or
600 lb, using Control Off or Skyhook control.

Metric Control Off, 
1200 lb 

Control Off, 
600 lb 

Skyhook, 
1200 lb 

Skyhook, 
600 lb Units 

m1 2.66 2.41 1.51 1.08 - 

m2 1.87 1.80 1.09 0.85 - 

m3 1.22 0.87 0.31 0.28 - 

m4 1.63 1.23 0.41 0.32 - 

m5 0.79 0.70 0.37 0.35 - 

m6 0.86 0.66 0.74 0.80 - 

m7 0.09 0.14 0.25 0.34 - 

m8 0.52 0.54 0.39 0.45 g 

m9 12.48 12.62 11.42 13.91 g 

m10 9.84 6.06 5.04 3.88 in 

^ 

^ 

^ 

^ 

^ 

^ 

^ 

6.4.2 CG Perturbation

Two vertical CG positions are considered here, both with a payload weight

of 1,200 lb. The CG is located at a distance of either 1/3 or 1/2 of the cabinet

height, as measured from the bottom of the cabinet, and results in a moment of

inertia tensor of either Ixx = 200 kgm2, Iyy = 214 kgm2, and Izz = 68 kgm2, or

Ixx = 311 kgm2, Iyy = 325 kgm2, and Izz = 68 kgm2, respectively. The mass

distribution is sysmetric, so the off-diagonal entries Iij = 0, for i �= j.

Figure 6.10 summarizes the performance metrics of the system in table 6.5

with the CG at 1/3 or 1/2 payload height, using Control Off or Skyhook control.

Regardless of whether the suspension is controlled or uncontrolled, the system with

the CG at 1/2 the payload height has an elevated CG position and larger moments

of inertia Ixx and Iyy, causing the payload to be more resistive to rotation. This
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explains the uniformly improved performance of the 1/2 height CG systems across all

ten performance metrics, which is seen in figure 6.10 with the 1/2 height CG metrics

closer to the origin than the 1/3 height CG metrics. Metric m̂5 is the only purely

translational mode, and the performance for either controlled or uncontrolled is

roughly the same regardless of CG position. The Skyhook control provides superior

resonance attenuation for all the resonant modes at both 1/3 and 1/2 CG height

compared to the Control Off system, with the yaw mode at 1/2 CG being the only

exception.

The high frequency isolation metric m̂7 is worse for the controlled system and

improves with an increase in inertia. For both CG positions, the controlled system

improves the RMS and maximum acceleration metrics m8 and m9, respectively.

Despite an elevated CG position, the controlled suspension maintains improved

attenuation of the relative maximum displacement of the payload (m10) over the

passive Control Off system. It must be noted that although raising the CG location

generally improves attenuation performance, consideration must be given to the

static stability of the system. An asymmetry in the suspension stiffness could cause

the payload to lean to one side, which could worsen with an elevated CG location.

6.4.3 Temperature Perturbation

Figure 6.11 summarizes the performance metrics in table 6.6 of the system

operating at temperatures of 00C and 1000C, with either Control Off or Skyhook

control, and a payload weight of 1,200 lb and the CG located at 1/3 the payload

height. Considering the amount the performance metrics change in value, the sys-
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Figure 6.10: Performance metrics of system with the CG at 1/3 or 1/2 payload
height, using Control Off or Skyhook control.
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Table 6.5: Performance metrics of system with the CG at 1/3 or 1/2 payload height,
using Control Off or Skyhook control.

^ 

^ 

^ 

^ 

^ 

^ 

^ 

Metric Control Off, 
1/3 CG 

Control Off, 
1/2 CG 

Skyhook, 
1/3 CG 

Skyhook, 
1/2 CG Units 

m1 2.66 2.15 1.51 1.32 - 

m2 1.87 1.47 1.09 0.97 - 

m3 1.22 0.80 0.31 0.24 - 

m4 1.63 1.12 0.41 0.32 - 

m5 0.79 0.76 0.37 0.36 - 

m6 0.86 0.48 0.74 0.57 - 

m7 0.09 0.07 0.25 0.24 - 

m8 0.52 0.36 0.39 0.31 g 

m9 12.48 8.64 11.42 9.84 g 

m10 9.84 6.04 5.04 4.85 in 

tem shows greater robust operation with semi-active Skyhook control compared to

without control, especially with metrics m5 and m8 - m10. The metrics for the rota-

tional modes (m1 - m4, and m6) are less robust to the change in temperature, but

the controlled system is still more robust than with the Control Off. These results

are similar to those found in chapter 3 for a single-DOF system excited along its

vertical axis. With Skyhook control, the metric m5 increases only 50% compared to

a 130% increase for the Control Off system. The performance of the controlled sys-

tem is more robust to temperature perturbations than the Control Off system, and

the high frequency isolation (m7) benefits from an increased operating temperature.
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Control Off, 0 C 
Control Off, 100 C 
Skyhook, 0 C 
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Figure 6.11: Performance metrics of system operating at temperatures of 00C and
1000C, with either Control Off or Skyhook control.
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Table 6.6: Performance metrics of system operating at temperatures of 00C and
1000C, with either Control Off or Skyhook control.

Metric Control Off, 
0oC 

Control Off, 
100oC 

Skyhook, 
0oC 

Skyhook, 
100oC Units 

m1 0.065 0.131 0.046 0.079 g 
m2 0.025 0.051 0.019 0.037 g 
m3 0.081 0.290 0.041 0.135 g 
m4 0.116 0.361 0.051 0.162 g 
m5 0.058 0.133 0.042 0.063 g 
m6 0.083 0.091 0.072 0.124 g 
m7 0.044 0.022 0.071 0.035 g 
m8 0.384 0.691 0.393 0.459 g 
m9 9.481 16.243 10.812 13.050 g 
m10 6.500 12.807 4.531 7.783 in 

6.5 Conclusions

The configuration of the semi-active suspension was investigated further in

this chapter. Effectiveness factors were defined to assess the control authority the

suspension had over a practicular system mode. It was shown that the dampers could

be oriented in the suspension to provide control authority over all six resonant modes

of the system. A performance analysis showed the cubic hexapod configuration

offers the best attenuation over all six modes, however at the expense of additional

dampers. Reducing the number of linkages (ie. MR dampers) and supporting

hardware equates to reducing the cost and maintanance of the suspension. The semi-

active suspension can provide control authority over all six modes with less than

six dampers. Furthermore, the modular design allows for a scalable suspension, in
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that dampers and spring elements can be added to the suspension to accommodate

a large spectrum of payload masses and geometric sizes.

The performance of centralized and decentralized control philosophies were

compared. Centralized control considers the entire state of the system and com-

mands control inputs accordingly, which explains why the performance is superior to

decentralized control. While the centralized control provides enhanced performance,

the algorithm is dependent on the placement of the dampers, which adds complexity

to the implementation. Also, the centralized algorithm is less robust to a loss in

control of a signle damper, where decentralized control would be unaffected. There-

fore, a trade-off must be established when selecting the control strategy. Importance

must be placed on either optimal full-system performance, or on the simplicity and

robustness of the suspension that decentralized control provides.

The ability of the semi-active suspension to provide robust performance when

the system experiences perturbations in payload mass, CG location, and operating

temperature was investigated. Despite a 100% increase in payload mass, a shift

in CG from 1/3 to 1/2 the payload height, or a change in operating temperature

from 00C to 1000C, the change in most of the performance metrics is small for the

controlled system compared to the passive system without control.
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Chapter 7

Conclusions

7.1 Original Contributions

A semi-active suspension (Pyramid configuration) was developed and built to

provide 6-DOF vibration control for seismic equipment racks for the Mobile Launch

Platform. This body of work expands on previous studies of passive suspensions [47]

and semi-active, cubic hexapod suspensions [2, 43]. This work considers a modular

design with eccentric coil springs and MR dampers, providing the ability to scale

the suspension with payload mass and geometric size. The suspension benefits

from semi-active, MR fluid technology due to its adaptive capabilities, low power

consumption (< 75 W), and stable, fail-safe operation.

7.1.1 MR damper, hydro-mechanical analysis considering temperature

A hydro-mechanical analysis was developed to model MR damper behavior

considering temperature, and provides a lump parameter force model with a physi-
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cal connection to damper geometry and fluid properties. The model was capable of

capturing measured force behavior as the operating temperature of the damper in-

creased from 00C to 1000C. Across this temperature range, the yield force decreased

up to 30% and the post-yield viscous damping decreased up to 85%. The model

captured the effects of the fluid inertia and the pneumatic accumulator pressure,

which impacted the post-yield flow of the damper.

7.1.2 Robust operation of MR suspensions to perturbations in temper-

ature, mass, and center of gravity

It was demonstrated that MR suspensions governed by semi-active control are

robust to perturbations in temperature, mass, and center of gravity. As tempera-

ture increased from 00C to 1000C, the peak transmissibility of a 1-DOF system at

resonance increased by only 15%, despite the large reductions in force from the MR

damper. As payload mass increased from 46.5 kg to 96 kg, the peak transmissibil-

ity at system resonance increased by only 2%. This robust nature of semi-acitve

control was explained with equivalent damping, ζeq. By maintaining ζeq > 0.7, the

transmissibility had low sensitivity to a change in damping, Δζeq.

The ability of the semi-active 6-DOF suspension to provide robust perfor-

mance when the system experiences perturbations in payload mass, CG location,

and operating temperature was investigated. A 100% increase in payload mass, a

shift in center of gravity from 1/3 to 1/2 the payload height, or a change in operating

temperature from 00C to 1000C can alter the performance of the system; however,

semi-active control provides superior performance over the Control Off system for
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each perturbation.

7.1.3 Effectiveness of semi-active decentralized control compared to semi-

active centralized control

Semi-active decentralized and centralized control laws were established for 6-

DOF vibration control. It was demonstrated that centralized control can provide

enhanced performance beyond that of decentralized control (specifically for the ro-

tational system modes), however at the expense of algorithm complexity and loss

of the robust, fail-safe, independent operation that decentralized control provides.

Furthermore, semi-active decentralized control is nearly as effective as semi-active

centralized control for many of the multi-objective performance metrics, such as

metrics m5 and m7 - m10.

7.1.4 Multi-objective performance improvement of the vibration control

system

The multi-objective performance of the vibration control system was enhanced

with a semi-active MR suspension compared to the state-of-the-art, passive suspen-

sion. Experimentally, the suspension (Pyramid configuration) was shown to reduce

the transmitted RMS acceleration measured at the cabinet top corner, caused by

rocket-induced base disturbances, up to 72%. It was demonstrated that the MR

dampers could be oriented in such a way to attenuate all six modes of the system

with fewer than 6 dampers. The Trapezoid configuration was shown to improve the

RMS acceleration experienced at the payload top corner by 62% over the state-of-
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Figure 7.1: MR yield force vs. fluid temperature.

the-art suspension described by Klembczyk and Mosher [47].

7.2 Future Work

This section identifies several topics of research that are suggested by this

dissertation for future work.

7.2.1 MR yield force temperature dependence

Future research could investigate the physics behind the loss in MR yield force

as fuild temperature increases. Figure 7.1 shows the yield force decreasing up to

30% at an applied current of 2.5 A. This large decrease could not be explained by

a change in iron magnetization, MR volume fraction, or Reynolds number alone.
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7.2.2 Additional 6-DOF testing

The analysis discussed in chapter 6 was not conducted experimentally due

to a lack of testing facility availability. Future work could include experimentally

evaluating the alternative damper configurations for a 6-DOF suspension discussed

in chapter 6. Figure 7.2 shows both the Vertical and Vee suspension configurations

that were built, but never tested. Also, a centralized control strategy could be imple-

mented experimentally and the performance could be compared with decentralized

control.

This body of work could also be extended to other applications as well. Similar

6-DOF isolation suspensions can be implemented into systems that are not rigidly

attached to the disturbance source, such as high-performance off-road vehicles or

marine-based vessels operating in severe disturbance environments (ie. bumpy off-

road terrain, or rough ocean conditions).

7.2.3 Multi-body systems

This study could extend the analysis to multi-body systems, such as a system

with “ganged” cabinets that are connected to one another, as shown in figure 7.3.

7.2.4 High frequency isolation of the semi-active system

Furthermore, efforts can be made to eliminate the parasitic damping intro-

duced by the semi-active clipping algorithms in order to improve high frequency

isolation. Figure 7.4 shows the time delay between the desired and actual applied
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(a) Vertical configuration. (b) Vee configuration.

Figure 7.2: 6-DOF MR suspensions that were built, but not tested.

Figure 7.3: Multi-body system of “ganged” cabinets.
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Origin of parasitic damping 

Figure 7.4: Origin of parasitic damping. Time history of desired and actual applied
electrical current to the MR damper.

current to the MR damper, and the windows of time when the actual current is

greater than the desired current are when unwanted parasitic damping is introduced

to the system. Possible approaches to tackle this challenge could include control al-

gorithm improvements to anticipate sharp changes in desired electrical current, or

reductions in response time for iron particle chain formation, or implementing a

more responsive electro-magnetic circuit between the MR coil and power supply.
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