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Abstract: According to the Pipeline and Hazardous Material Safety Administration (PHMSA), third-

party damage is a leading cause of natural gas pipeline accidents. Although the risk of third-party 

damage has been widely studied in the literature, current models do not capture a sufficiently 

comprehensive set of up-to-date root cause factors and their dependencies. This limits their ability to 

achieve an accurate risk assessment that can be traced to meaningful elements of an excavation. This 

paper presents the construction, verification, and validation of a probabilistic Bayesian network model 

for third-party excavation risk assessment, BaNTERA. The model was constructed and its performance 

verified using the best available industry data and previous models from multiple sources. Historical 

industry data and nationwide statistics were compared with BaNTERA’s damage rate predictions to 

validate the model. The result of this work is a comprehensive risk model for the third-party damage 

problem in natural gas pipelines.  

 

 

1.  INTRODUCTION 

 
Between 2016 and 2020, third-party damage was responsible for an average of 21% of all pipeline 

failures per the Pipeline and Hazardous Safety Administration (PHMSA) [1, 2]. The resulting monetary 

and human losses have motivated a number of research projects and studies into the causes of third-

party damage. However, the context of an excavation scenario varies widely and industry preventative 

measures are constantly evolving making third-party damage a difficult problem to model. As a result, 

there is a lack of models that include an up-to-date and comprehensive set of causal factors for 

modelling the probability of a third-party excavation causing a pipeline failure. This paper presents a 

Bayesian Network for Third-Party Excavation Risk Assessment (BaNTERA), a probabilistic model for 

assessing the risk that third-party excavation poses to natural gas pipelines. BaNTERA utilizes a wide 

variety of sources to inform an up-to-date and comprehensive set of causal factors and can thus provide 

insight into the excavation process assisting decision makers in mitigating potential pipeline risks. 

 
The paper is structured as follows. The remainder of Section 1 discusses the basics of a third-party 

excavation process and the current state-of-the-art in modelling a third-party excavation. Section 2 

includes an introduction to Bayesian networks, a discussion of the hierarchical structure that organizes 

context factors within BaNTERA, and the data processing and model parameterization strategies. 

Section 3 presents the resulting BaNTERA structure, the prior node probabilities, and the process used 

to verify the model. Section 4 further discusses the results of Section 3 and also includes the challenges 

and opportunities for BaNTERA. Lastly, Section 5 presents the conclusions of this paper.  

 
1.1 Third-Party Excavation Process 

 

Defining and modeling an excavation process is a difficult task as no two excavations are the same. The 

Common Ground Alliance (CGA) was used as a reference for identifying modern damage prevention 

techniques and best dig-in practices to include in BaNTERA. CGA is an organization that encourages 

pipeline damage prevention through the use of an 811 One Call system [3]. At least two days prior to 
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digging, excavators are encouraged to call their local 811 Once Call notification center or submit an 

online ticket to notify the center of the upcoming excavation. A professional then checks the excavation 

area for any at-risk utilities and marks their location for the excavator's reference. After marking, the 

excavator is permitted to begin digging by safely exposing the underground utilities using hand tools in 

order to avoid any damage. This process is illustrated in Figure 1 and if not performed correctly, pipeline 

damage may ensue. If an underground utility is struck with enough force, third-party damage in the 

form of puncture failure can occur.  

 
The excavation process consists of several actors and objects. The actors in an excavation process are 

defined as the third-party excavators, the owner or manager of the pipeline, and the One Call notification 

center. Each of these actors directly interact with the excavation process and a failure of any one of 

these actors to perform their duties may increase the likelihood of a pipeline failure. Public and 

regulatory enforcement also interact with the excavation process but in indirect ways. For this reason, 

they were not included as a main actor in BaNTERA. The objects considered in an excavation process 

are facility maps/records and the notification ticket. All of these actors and objects interact with each 

other within the excavation environment which contains its own set of important factors including, 

geographical, regulatory, and site-specific contexts.  

 

Figure 1: Five Steps for Safe Digging According to the Common Ground Alliance  

 
 
1.2 Previous Third-Party Damage Models 

 
In an effort to identify third-party damage root-causes and the associated context factors, a variety of 

modeling approaches have been used in the literature. Chen and Nessim [4] developed a third-party 

damage model using fault trees which served as the basis for future modeling efforts. These future 

efforts expanded upon the list of modeled damage factors and safety barriers allowing for more accurate 

assessments of the probability of a third-party damage. However, fault tree models struggle with 

incomplete datasets (a common characteristic of third-party data) and are limited in their ability to 

represent complex dependencies given their basis in Boolean logic. To overcome this, researchers began 

mapping fault tree models to a Bayesian network structure. For instance, Xiang and Zhou [5] used an 

expected maximization algorithm to learn fault tree-based Bayesian network model parameters from 

incomplete datasets in order to predict third-party damage probability. Wang et al [6] leveraged the data 

fusion capabilities of Bayesian networks to overcome data limitations surrounding urban buried gas 

pipelines. Historical data was combined with expert knowledge to estimate fault tree failure 

probabilities which were then mapped to a Bayesian network structure. Fault tree-based Bayesian 

networks do address the problem of dealing with incomplete datasets but because their structure is built 

using a fault tree model, these models are still limited by their foundation in Boolean logic.  
 
In order to accurately model the complex dependency relationships inherent in an excavation process, 

a fully Bayesian network approach has been recently employed by researchers. Jackson and Mosleh [7] 

use a fully Bayesian network approach to model both the physical and human-related variables in an 

excavation process but this model is still in its development phase. Guo et al [8] developed a Bayesian 
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network model for the evolution of pipeline damage risk which focuses more on the consequences of 

the pipeline failure than the root-cause factors. Additionally, Cui et al [9] modeled unintentional third-

party damage using “3rd Party Disturbance Index,” a function based on the Bayesian network node 

values. 

 
The collection of these past works forms the foundation on which to expand the scope of third-party 

damage risk modeling. Additionally, given the evolution of damage prevention techniques, a 

comprehensive and up-to-date set of damage factors must be developed in order to accurately represent 

a modern excavation process. By leveraging modern datasets and by building upon the 

accomplishments of past modeling efforts, a decision support tool can be created to inform decision 

makers on how to reduce the risk of third-party damage. 

 

2.  METHODS 

 
2.1.  Bayesian Networks 

 

The third-party damage model is structured as a Bayesian network. These types of networks are 

probabilistic graphical models that represent causal relationships within a system. As such, they can be 

used to model third-party damage by representing how risk influencing and other causal factors interact 

at an excavation site and lead towards damage.  

  

Bayesian networks are widely used as causal models in risk and safety applications to express the joint 

probability distribution of a system's variables. Variables and their causal conditional dependencies are 

represented, respectively, by the nodes 𝑉 = {𝑉1, 𝑉2, … 𝑉𝑛} and arcs of a directed acyclic graph (DAG), 

also referred as a Bayesian network's structure. The dependency strength between two variables is 

quantified through a conditional probability table (CPT) or function (CPF) depending on whether the 

variables involved are discrete or continuous. The Bayesian network model corresponds to the prior 

joint probability distribution 𝑃𝑟0(𝑉1, 𝑉2, … , 𝑉𝑛). Mathematically, this distribution can by computed 

using the factorization formula in Equation (1): 

 

Pr0(𝑉1, … , 𝑉𝑛) = ∏ Pr(𝑉𝑖|𝑝𝑎(𝑉𝑖)) 
𝑛

𝑖=1
(1) 

 

where 𝑝𝑎(𝑉𝑖) corresponds to the parent nodes of 𝑉𝑖; that is, the set of nodes in the Bayesian network 

that have an outgoing edge directed at the node 𝑉𝑖.   

  

As Bayesian network structures are based on the conditional relationships between their nodes, joint 

probability distributions of system variables can be updated with new knowledge about the system via 

evidence on the nodes. Assigning observed evidence to a set of nodes 𝑉𝑘 = 𝑣𝑘 leads to a Bayesian 

update from which the posterior distribution 𝑃𝑟1(𝑉1, … , 𝑉𝑘 = 𝑉𝑛)  is obtained. In doing so, analysts can 

use Bayesian networks to perform probabilistic inference. 

  

2.2.  Taxonomy and Hierarchical Structure of a Third-Party Damage Bayesian Network Model 

 

From the excavation processes described in the introduction, a detailed hierarchical taxonomy of third-

party excavation scenarios was built. This taxonomy consists of three categories of attributes at a 

conceptual excavation site. Terms and concepts in the “Actor" category are associated with the third-

party excavator, the facility owner and manager, and the One Call notification center. Equipment and 

physical items found at the excavation site are part of the “Objects” category. The final category, 

“Environment," provides further details about the context and background in which the excavation 

occurs.  

  

The third-party excavation taxonomy illustrates a wide range of context factors that were considered 

when creating BaNTERA. Figure 2 is a conceptual diagram of relevant factors, hierarchical structure, 
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and associated dependencies used to model third-party damage within BaNTERA. This diagram is 

based on expert knowledge and causal factors from PHMSA and CGA incident reports. At the bottom 

of BaNTERA are summary target variables that include the sufficiency of pipe hit preventive measures, 

the pipe hit itself, and subsequent damage. Target variables depend on the other node types existing in 

the excavation process space; one such type consists of the groups of root causes that contribute to third-

party damage. These groups capture accumulated relationships of similar pipeline damage root causes. 

These groups are similar to those expressed by the CGA's DIRT [3], which are based on distinct steps 

of the excavation process (that is, notifying, locating, and excavating).  

 

Figure 2: Conceptual Diagram of Third-Party Damage Model Outlining the Causal Flow from 

Excavation Context Nodes and Risk-Influencing Factors Context Nodes to Root Causes and 

Target Variables. 

 
  

The next level of model nodes to consider are the root causes and the context variables that affect them. 

This part of BaNTERA has the greatest number of variables that can vary during the excavation process, 

making this part of the model the most interactive. Root causes defined by the CGA DIRT are 

considered for its construction because of their wide use by utility companies. These root causes are 

mainly focused on the excavation process itself and not on its context. To expand the range of 

acknowledged factors that can contribute to third-party damage target variables and, in particular, its 

root causes, a set of risk-influencing factors (RIFs) were defined based on the context of an excavation. 

RIFs were distinguished in two categories by what kind of measures could be adopted to mitigate them: 

actor-based RIFs and object-based RIFs. These factors are themselves affected by a third RIF, the 

environment in which the excavation takes place. This environment can be physical, legal, or related to 

the excavation activities themselves. 

  

2.3.  Data Processing and Model Parameterization 

 

In order to parameterize BaNTERA, four distinct data sources were used. These are described as 

follows: 

 

1. Utility partner incident data: more than 7,000 third-party damage reports were provided. These 

reports were obtained between 2016 and 2020, and provide information on more than forty 

different fields, such as the root cause of an incident and the type of excavator involved in it.  

2. PHMSA gas transmission and distribution accident and incident data: U.S. federal regulation 

requires the submission of incident reports for all pipeline incidents that comply with the codes 

CFR parts 191 and 195, and PHMSA maintains a record of these data [1], providing relevant 

information on more than 200 incidents from 2016 to 2020, such as the material of the damaged 

pipeline and the class location in which the incident occurred.    
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3. CGA DIRT database: the CGA annual DIRT database contains summary statistics on multiple 

relevant features from historical excavation damages to underground infrastructure. Regarding 

natural gas pipelines, this dataset provides unique information that cannot be found in the data 

sources above, such as an excavator’s awareness of notification practices and the existence of 

previous damage or deterioration on a pipeline involved in an incident. Summary statistics from 

2018 and 2019 were used in this work.      

4. GTI Energy models and statistics: GTI Energy provided three different Bayesian network 

models for informing the construction and parameterization of BaNTERA [10, 11, 12]. Each 

model had a different outcome of interest, which were “locating and marking practices errors,” 

“third-party damage prevention practices errors,” and “puncture physics of failure,” which were 

built on data from multiple utility partners between 2016 and 2018. Summary statistics on third-

party damage root causes and puncture failure models were highly relevant to the construction 

of BaNTERA.   

 

Figure 3: Data Processing and Model Parameterization Process 

 
 

Then, as shown in the process of Figure 3, the data sources, taxonomy, and hierarchical structure 

presented above were processed in order to build two datasets, an observational and expert-based 

dataset. These are described as follows:  

 

• Observational dataset: this dataset consists of historical third-party-caused incident statistics 

that were processed into a format consistent with the conditional probability tables present in 

BaNTERA’s structure. For instance, the utility partner incident data source showed that 23.04% 

of excavators involved in an incident were non-professionals and that, as shown in the CGA 

DIRT database, only 51.72% of them notified their intent to excavate.          

• Expert-based dataset: this dataset consists of subject-matter expert knowledge on different 

variables on BaNTERA, including physics of failure models and expert-elicited correlations 

between variables. For instance, Brooker’s puncture model [13] was included in the expert-

based dataset to inform the probability of a puncture in an excavation. This model assumes that: 

 

𝑄𝑝 = 7.0074 × 10−4𝑡(𝜎𝑢 + 410.4)(𝐿 + 22.41)
𝑊

(3.142+𝑊)
(2)  

 

In non-plastic materials. Here, 𝑄𝑝  is the pipe material puncture resistance, 𝑡 [𝑚𝑚] is the pipe wall 

thickness, 𝜎𝑢 [𝑀𝑃𝑎] is the ultimate strength of the pipe material, and 𝑊 [𝑚𝑚] and 𝐿 [𝑚𝑚] are the 

excavation tool tooth width and length, respectively.  

 

These two datasets were processed into a format consistent with BaNTERA’s model structure, enabling 

its direct parameterization. It is important to note, however, that multiple data sources are being fused 

into a single model. As such, relevant statistics present in the data sources used to parameterize 

BaNTERA are prone to change if the model is not well defined. Given this, it is highly important to 

verify that BaNTERA reflects the damage rates present in the data sources used in its parameterization.  
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The resulting BaNTERA structure, prior node probabilities, and model verification results are shown 

in Section 3. 

 

3.  RESULTS 

 

3.1.  BaNTERA Structure 

 

BaNTERA was structured using the node relationships and dependencies identified in Figure 2. The 

result is a comprehensive model that captures not only the root causes of third-party damage, but also 

provides a method of expressing failure through context described within the taxonomy and the 

overarching RIFs. Figure 4 shows BaNTERA's structure. 

  

Figure 4: BaNTERA's Structure. Visualization Made in GeNIe. Color Legend: Gray - Target 

Summary Nodes; Red - DIRT Root Cause Group; Pink - DIRT Root Cause Subgroup; White - 

DIRT Root Cause; Light Blue - Non-DIRT Root Cause; Blue - Third-Party Excavation Actor 

Context; Yellow - Environment Context; Purple - Facility Context; Green - Excavation Context. 

  
 

BaNTERA's structure consists of nodes that provide different functions within the model and different 

types of information. At the bottom of the structure are the summary target nodes that combine root 

cause information with excavation-related context. These provide information into potential 

occurrences of pipe contact, puncture, and damage during a third-party excavation. The parents of the 

target nodes are the large root cause sub-group and group nodes, which capture accumulated 

relationships of similar root causes. These groups are similar to those expressed in the DIRT report, 

which are based on distinct steps of the excavation process (i.e., notifying, locating, excavating). The 

next step up in the structure contains specific root causes and the risk-influencing nodes that affect 

them. This part of the structure has the greatest number of nodes that can vary during the excavation 

process, making it highly interactive. Lastly, the top of the structure consists of overarching context 

nodes, representing the environment in which the excavation is taking place.   

  

BaNTERA's structure captures different causal contexts and root causes for third-party damage. The 

color of the nodes reflects what kind of information they provide. As shown in Figure 4's legend, white, 

light blue, red, pink, and gray nodes describe specific and general root causes for third-party damage 

during an excavation. White and light blue nodes are individually described root causes of damage, 

while red nodes indicate the formation of a root group based on a number of similar root causes. Pink 

nodes provide an initial amalgamation of root causes into smaller root cause groups, which are then 

joined to form a root cause group. Gray nodes describe the summary target nodes that BaNTERA is 
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trying to represent. The other nodes represented in BaNTERA's structure describe the context in which 

the third-party damage occurs. Yellow nodes describe the overall excavation environment nodes that 

are specific to the context of the excavation site, while the blue, green, and purple nodes relate to context 

factors associated with the specific excavation site scenario. Blue nodes describe the context associated 

with the third-party excavation actors, which includes both the excavator itself and the utility locator. 

Green nodes describe the context of the excavation site, while purple nodes are used to represent 

pipeline characteristics. These causal context factors can also be placed within the overarching RIFs 

described earlier. 

 

3.2.  BaNTERA’s Prior Nodes’ Probabilities and Verification Results 

 

BaNTERA’s parameterization resulted in a mean joint probability distribution for third-party damage 

risk. BaNTERA’s parameterization result can be found in Figure 4 in which there is a combination of 

both discrete and continuous nodes. Here, discrete nodes result in the expected probabilities of the 

different states it can take, whereas continuous nodes result in a histogram of 10,000 simulated values 

based on logic sampling [14]. All of these calculations were made using BayesFusion’s PySMILE 

wrapper and visualized through the software GeNIe [15].  

 

The obtained prior expected probabilities for BaNTERA’s summary target nodes can be found in Table 

1.  

 

Table 1: BaNTERA’s Prior Expected Probabilities on Summary Target Nodes 

Summary target node Node states Prior expected probability 

T1: Preventive Measures Sufficient 0.8883 

Insufficient 0.1117 

T2: Pipe Hit No 0.9969 

Yes 0.0031 

T3: Punc. Force > 

Resistance 

No 0.9975 

Yes 0.0025 

T4: Damage (Puncture) No 0.9975 

Yes 0.0025 

 

BaNTERA’s results presented in Table 1 show that 3.1 out of 1,000 excavations in the U.S. are expected 

to result in a pipe hit, and that 2.5 of those excavations will result in a punctured pipe.  

 

In order to verify a successful parameterization of BaNTERA, it was necessary to compare its target 

summary statistics to the sources with which they were parameterized. In particular, BaNTERA’s 

predicted third-party puncture damage rates per 1,000 notified excavations were compared with the 

utility partner incident damage rate per 1,000 notified excavations and with GTI Energy statistics (see 

Section 2.3). This comparison is shown in Table 2.  

 

Table 2: BaNTERA’s Verification with Respect to the Utility Partner’s and GTI Energy’s 

Third-Party Damage Rates per 1,000 Notified Excavations  

 Damage rate per 1,000 

notified excavations 

Utility partner incident data 

(average for 2017-2020) 
1.41 

GTI Energy  
(average for 2016-2018) 

1.62 

BaNTERA 1.53 
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4.  DISCUSSION 

 

4.1.  BaNTERA Structure 

 

BaNTERA’s structure was created following a methodical examination of current practices and root 

causes outlined in the structure taxonomy; as such, it provides a clear and logical flow of excavation 

events. The Bayesian network structure is adjustable allowing for expanding, restricting, adding and 

deleting new nodes depending on the purpose and interests of the model users. From a structural 

perspective, this would just impact the conditional probabilities of the changed nodes and its children. 

This is a very useful tool for as dynamic an environment as excavation regulations and policies. It 

should be noted though that in this current version BaNTERA, puncture damage is the only damage 

type considered for modeling third-party damage.  

 

4.2.  Prior Node Probabilities and Model Verification 

 

BaNTERA is composed of a number of heterogeneous data sources, which is expected for a complex 

engineering system such as the U.S. natural gas underground infrastructure. Further, these data had 

inconsistent fields and naming, which hindered the parameterization process of BaNTERA. For 

instance, PHMSA incident data only considers 20 root cause variables for third-party damage, whereas 

the CGA DIRT database considers 26. As such, the model predictive performance can become sensitive 

to its parameterization strategy and data processing practices.  

 

To show that BaNTERA’s predictions on third-party damage were not hindered by the issues described 

above, the model was verified by (1) asking both GTI Energy and the utility partner if the predictions 

were consistent with their knowledge on the system, and (2) by comparing BaNTERA’s predicted 

damage rates to the damage rates present on the data sources used in its construction. These verification 

steps were done with BaNTERA’s third-party damage rate prediction over 1,000 excavation activities, 

as is common in the U.S. pipeline industry. As shown in Table 1, BaNTERA predicted a prior of 3 pipe 

hits and 2.5 third-party puncture damages per 1,000 excavations. These predictions were consistent with 

both GTI Energy and the utility partner knowledge. Furthermore, to ensure the resulted prior 

probabilities were consistent with the damage rate statistics for GTI Energy and the utility partner, we 

compared their historical damage rates per 1,000 notified excavations to BaNTERA’s. The results 

presented in Table 2 show BaNTERA’s predictions had an 8.6% and 5.5% absolute percent points 

difference with the utility partner and GTI Energy damage rates, respectively. Therefore, BaNTERA 

demonstrates a correct integration of data sources for its parameterization. However, BaNTERA’s 

predictions have yet to be validated through comparison with nationwide statistics, which will be done 

in future work.    

    

4.3.  Challenges and Opportunities 

 

BaNTERA is built as a proof-of-concept model for third-party risk management and thus, model 

performance can still be improved with future work. The first improvement opportunity is to balance 

the complexity of modeling an excavation scenario with the intended scope of the model. BaNTERA 

was designed to capture a wide variety of potential excavation scenarios and as a result, some network 

nodes are intentionally broad in scope. By delving deeper into these broad network nodes, researchers 

may gain key insight into how specific excavator actions or context details affect the rest of an 

excavation scenario. 

 

The second improvement opportunity is related to the damage types modeled in BaNTERA. Currently, 

puncture damage is the only damage type modeled in BaNTERA. Other such damage types include 

dents and gouges but often result in latent failures making it more difficult to obtain data on dent/gouge 

root causes. Using puncture damage, BaNTERA can predict the lower bound of pipeline damage rates 
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but in order to narrow in on the actual damage rates, further work in predicting these other damage 

types is required.  

 

The final improvement opportunity for BaNTERA is tied to the limited availability of success space 

data for third-party excavations. Success space data is defined as information about excavations that 

did not result in a damage. In general, utilities do not collect granular enough information on 

excavations that don’t result in incidents. For example, many ticket datasets do not specify the 

responsible party for an excavation. In order to compensate for this lack of data, many third-party 

models, including BaNTERA, must rely on the use of expert knowledge to parametrize key nodes that 

cannot be parameterized using historical data. Although expert knowledge can provide valuable insight, 

the lack of success space data nevertheless restricts the depth of insight that BaNTERA can provide and 

future work by the industry and regulatory agencies in obtaining success space data will strengthen 

third-party damage modeling efforts.  

 

5.  CONCLUSION 

 

This paper presents a probabilistic model for third-party excavation risk assessment, BaNTERA. By 

leveraging a variety of modern data sources, expert judgement, and insight from previous models, 

BaNTERA can assist decision-makers in gaining insight into the root-causes of third-party damage and 

the context factors that surround these incidents. As a result, more effective preventative measures can 

be identified to lower the risk of future third-party incidents. BaNTERA’s verification results indicate 

a successful first step in creating a comprehensive model for third-party risk assessment. These results 

also highlight a number of promising improvement opportunities, specifically, adding specificity to key 

network nodes, expanding the number of modeled damage types to include latent failures, and collecting 

additional data specifically of excavations that do not result in failure. Working to expand the 

capabilities of BaNTERA may in turn expand the capabilities of third-party excavation management to 

provide more effective policies aimed at improving pipeline safety. 
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