
ABSTRACT

Title of dissertation: MODELING DEPENDENCIES IN NATURAL
LANGUAGES WITH LATENT VARIABLES

Zhongqiang Huang, Doctor of Philosophy, 2011

Dissertation directed by: Professor Mary Harper
Department Computer Science

In this thesis, we investigate the use of latent variables to model complex de-

pendencies in natural languages. Traditional models, which have a fixed parameteri-

zation, often make strong independence assumptions that lead to poor performance.

This problem is often addressed by incorporating additional dependencies into the

model (e.g., using higher order N -grams for language modeling). These added de-

pendencies can increase data sparsity and/or require expert knowledge, together

with trial and error, in order to identify and incorporate the most important depen-

dencies (as in lexicalized parsing models). Traditional models, when developed for

a particular genre, domain, or language, are also often difficult to adapt to another.

In contrast, previous work has shown that latent variable models, which au-

tomatically learn dependencies in a data-driven way, are able to flexibly adjust the

number of parameters based on the type and the amount of training data available.

We have created several different types of latent variable models for a diverse set of

natural language processing applications, including novel models for part-of-speech

tagging, language modeling, and machine translation, and an improved model for

parsing. These models perform significantly better than traditional models. We

have also created and evaluated three different methods for improving the perfor-

mance of latent variable models. While these methods can be applied to any of our

applications, we focus our experiments on parsing.

The first method involves self-training, i.e., we train models using a combi-

nation of gold standard training data and a large amount of automatically labeled

training data. We conclude from a series of experiments that the latent variable

models benefit much more from self-training than conventional models, apparently

due to their flexibility to adjust their model parameterization to learn more accurate

models from the additional automatically labeled training data.

The second method takes advantage of the variability among latent variable

models to combine multiple models for enhanced performance. We investigate sev-

eral different training protocols to combine self-training with model combination.

We conclude that these two techniques are complementary to each other and can

be effectively combined to train very high quality parsing models.

The third method replaces the generative multinomial lexical model of latent

variable grammars with a feature-rich log-linear lexical model to provide a princi-

pled solution to address data sparsity, handle out-of-vocabulary words, and exploit

overlapping features during model induction. We conclude from experiments that

the resulting grammars are able to effectively parse three different languages.

This work contributes to natural language processing by creating flexible and

effective latent variable models for several different languages. Our investigation of

self-training, model combination, and log-linear models also provides insights into

the effective application of these machine learning techniques to other disciplines.

MODELING DEPENDENCIES IN NATURAL LANGUAGES
WITH LATENT VARIABLES

by

Zhongqiang Huang

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:
Dr. Philip Resnik, Chair
Dr. Mary Harper, Co-Chair/Advisor
Dr. Carol Espy-Wilson, Dean’s Representative
Dr. Hal Daumé III
Dr. Amol Deshpande

c© Copyright by
Zhongqiang Huang

2011

Dedication

To my parents, wife, and son.

ii

Acknowledgments

First and foremost I owe my deepest gratitude to my advisor Mary Harper.

This thesis would not have been possible without her invaluable support over the

last few years. I have benefited tremendously from her insightful guidance and her

persistent commitment to help me grow as a researcher. She keeps encouraging

me and has always made herself available for help and advice. The experience of

working with and learning from such an extraordinary individual is one that I will

cherish forever.

I would like to thank Philip Resnik, Carol Espy-Wilson, Hal Daumé III, and

Amol Deshpande for serving on my thesis committee. I sincerely appreciate their

suggestions and support of my research.

Thanks are due to Bowen Zhou, Martin Čmejrek, Evelyne Tzoukermann, and

Tony Davis for their guidance and support during my internships at IBM T. J.

Watson Research Center and StreamSage/Comcast. I thank my officemate Songfang

Huang at Watson Research Center for interesting conversations on various topics.

I thank all of the professors, postdocs, and students in the Laboratory for

Computational Linguistics and Information Processing for broadening my knowledge

about natural language processing and making my graduate life enjoyable. I would

like to especially thank Jimmy Lin for teaching me about cloud computing, Doug

Oard, Kristy Hollingshead Seitz, Denis Filimonov, Vladimir Eidelman, Ke Wu, and

Ferhan Ture for insightful discussions at the MT gang meeting, and Tamer Elsayed,

Hendra Setiawan, Yuval Martin, Asad Sayeed, Amit Goyal, Lidan Wang, Jagadeesh

iii

Jagarlamudi, Ke Zhai, Yuening Hu, and others for many useful conversations and

help on all sorts of things.

Thanks are also due to Slav Petrov for providing the source code of Berkeley

parser and for his collaboration on the product model, and to Lei Chen, Wen Wang,

Liu Yang, Spence Green, Izhak Shafran, Dustin Hillard, Heng Ji, and many others

for their help and collaboration on various papers.

Last but not least, I would like to thank my loving parents and my wife for

their faith in me and my son for bringing joy to my life.

iv

Table of Contents

List of Tables viii

List of Figures x

1 Introduction 1
1.1 Thesis Overview . 1
1.2 Structure of the Thesis . 5

2 Model Foundations 8
2.1 Overview . 8
2.2 A Markov Model . 8
2.3 A Hidden Markov Model . 11

2.3.1 Definition and Properties . 11
2.3.2 Inference and Learning . 14

2.3.2.1 Likelihood Computation 15
2.3.2.2 Inference . 16
2.3.2.3 Learning . 17

2.4 A Latent Hidden Markov Model . 20
2.4.1 Definition and Properties . 20
2.4.2 Inference and Learning . 23

2.4.2.1 Likelihood Computation 24
2.4.2.2 Inference . 25
2.4.2.3 Learning . 31

2.5 Probabilistic Context-Free Grammars and Latent Annotations 37
2.6 Synchronous Probabilistic Context-Free Grammars and Latent An-

notations . 38
2.7 Conclusions . 39

3 POS Tagging with Latent Variables 41
3.1 Overview . 41
3.2 Introduction to POS Tagging . 42
3.3 HMM POS Tagger . 44
3.4 Discriminative POS Taggers . 47
3.5 Latent Bigram POS Tagger . 50

3.5.1 Smoothing . 54
3.5.2 OOV Handling . 55
3.5.3 Decoding . 56

3.6 Self-Training . 56
3.7 Experiments . 59

3.7.1 Setup . 59
3.7.2 Chinese Results . 61
3.7.3 English Results . 63

3.8 Conclusions . 65

v

4 Language Modeling with Latent Variables 67
4.1 Overview . 67
4.2 Introduction to Language Modeling 68
4.3 N -gram Language Models . 70
4.4 Class-based Language Models . 75
4.5 Latent Language Model . 79
4.6 POS-based Latent Language Model 83
4.7 Experiments . 84

4.7.1 Setup . 84
4.7.2 Results . 85

4.8 Conclusions . 87

5 Improvement of PCFG Grammars with Latent Annotations 89
5.1 Overview . 89
5.2 Introduction to Parsing . 91
5.3 PCFG Grammars with Latent Annotations 94
5.4 Improving PCFG-LA Grammars . 99

5.4.1 Smoothing . 100
5.4.2 OOV Handling . 102
5.4.3 Self-Training . 104

5.5 Experiments . 106
5.5.1 Setup . 106
5.5.2 Rare Word Smoothing and OOV Word Handling 108
5.5.3 A Case Study: PCFG-LA Parser vs. Charniak’s Parser 109

5.5.3.1 Treebank Data Only 110
5.5.3.2 Treebank Data and Self-Labeled Data 112

5.5.4 Analysis . 114
5.6 Conclusions . 121

6 Improving PCFG-LA with Self-Training and Product Models 123
6.1 Overview . 123
6.2 Product Models . 124
6.3 Training Protocols . 126
6.4 Experiments . 128

6.4.1 Setup . 128
6.4.2 Newswire Results . 131

6.4.2.1 Regular Training . 131
6.4.2.2 ST-Reg Training . 132
6.4.2.3 ST-Prod Training . 133
6.4.2.4 ST-Prod-Mult Training 134

6.4.3 Analysis . 136
6.4.3.1 What Has Improved? 136
6.4.3.2 Over-Fitting vs. Smoothing 136
6.4.3.3 Diversity . 140

6.4.4 Broadcast News Results . 142

vi

6.4.5 Final Results . 145
6.5 Conclusions . 146

7 Improving PCFG-LA with Log-Linear Lexical Models 148
7.1 Overview . 148
7.2 Motivation for Using Feature Rich Models 149
7.3 Design of the Log-Linear Lexical Model 152
7.4 Model Training . 155
7.5 Experiments . 161

7.5.1 Setup . 161
7.5.2 Standard PCFG-LA Grammars 162
7.5.3 Log-Linear Lexical Models . 163
7.5.4 Analysis . 166

7.6 Conclusions . 168

8 Machine Translation with Latent Variables 169
8.1 Overview . 169
8.2 Introduction to Hierarchical Phrase-Based Translation 171
8.3 Our Approach . 175
8.4 Alignment-based Hierarchy . 179
8.5 Inducing Latent Syntactic Categories 184
8.6 Experiments . 188

8.6.1 Setup . 188
8.6.2 Results . 189
8.6.3 Discussion . 191

8.7 Conclusions . 192

9 Contributions and Future Work 193
9.1 Contributions . 193
9.2 Future Work . 195

Bibliography 212

vii

List of Tables

2.1 Notation Table . 9

3.1 Number of words by degree of ambiguity 43
3.2 Feature templates . 48
3.3 The number of sentences (and tokens in parentheses) in our experiments 60
3.4 The token accuracy (%) of the taggers on the CTB6 test set 63
3.5 The token accuracy (%) of the taggers trained on 4% and 100% of

the WSJ training set before and after self-training, evaluated on the
WSJ test set . 65

4.1 The perplexity of four language models on the development and
test set: word bigram model, word trigram model, the initial POS-
based latent language model, and the final POS-based latent language
model with smoothing . 87

5.1 The number of sentences (and tokens in parentheses) in our experiments107
5.2 Effects of rare word smoothing (no vs. yes) and OOV word handling

(simple vs. heuristic)10 on the test set as measured in parsing F score
(%) . 109

5.3 Final results on the test set in F score (%) 114

6.1 The number of words and sentences, together with average (Avg.)
sentence length and its standard deviation (Std.) in our experiments 130

6.2 Performance of the regular grammars and their products on the WSJ
development set in F score (%) . 131

6.3 Performance of the ST-Reg grammars and their products on the WSJ
development set in F score (%) . 132

6.4 Performance of the ST-Prod grammars and their products on the
WSJ development set in F score (%) 133

6.5 Performance of the ST-Prod-Mult grammars and their products on
the WSJ development set in F score (%) 134

6.6 F scores (%) for various models on the broadcast news development set143
6.7 Final test set accuracies on WSJ . 146

7.1 Gross statistics of the treebanks . 162
7.2 The effect of rare word smoothing and OOV handling on parsing F

scores evaluated on the respective development set 163
7.3 Predicate templates on word w . 163
7.4 The effect of features (wid vs. full) for training the latent lexical

model and the OOV handling methods (simple, heuristic, or the log-
linear model using the full feature set) on parsing performance on the
development set . 164

7.5 Final test set accuracies . 166

viii

8.1 The distribution of tag sequences forX1 inX → 〈give the pen to X1, · · ·〉177
8.2 Examples of similar and dissimilar tag sequences 190
8.3 BLEU scores of the English-to-German task (one reference) 191
8.4 BLEU scores of the English-to-Chinese task (two references) 191

ix

List of Figures

2.1 The generation process of a Markov chain 11
2.2 The generation process of an HMM 12
2.3 The generation process of a latent HMM 22

3.1 The number (in logarithmic scale) of tokens (blue) and types (red) for
each POS tag in the WSJ Penn treebank training set. The number
of latent tags induced by the split-merge training algorithm is also
displayed below each POS tag. 53

3.2 Self-Training . 57
3.3 The learning curves of the latent bigram tagger on the development set 60
3.4 The performance of three taggers evaluated on the Chinese develop-

ment set, before and after self-training with different sizes of gold
standard training data . 62

3.5 The performance of three taggers evaluated on the English develop-
ment set, before and after self-training with different sizes of gold
standard training data . 64

4.1 An example of learning contexts using latent tags 81
4.2 The perplexity of the POS-based latent language model with and

without smoothing on the training set over split-merge iterations.
The perplexities of the standard word bigram and trigram language
models with modified Kneser-Ney fixed smoothing are also included
for comparison. 85

4.3 The perplexity of the POS-based latent language model with and
without smoothing on the development set over split-merge iterations.
The perplexities of the standard word bigram and trigram language
models with modified Kneser-Ney fixed smoothing are also included
for comparison. 86

5.1 An example sentence with its syntactic parse tree 91
5.2 Two syntactic analyses for an ambiguous sentence 92
5.3 (a) original treebank tree, (b) with latent annotations 95
5.4 The performance of the PCFG-LA parser and Charniak’s parser when

trained with different amounts of labeled training data, with and
without self-training (ST), and evaluated on the test set 111

5.5 (a) The training/test accuracy of Charniak’s parser trained on vary-
ing amounts of WSJ treebank training data, with and without self-
training (ST). (b) The training/test accuracy of the PCFG-LA parser
trained on varying amount of WSJ treebank training data, with and
without ST; the numbers along the training curves indicate the split-
merge round of the grammars that are selected based on the perfor-
mance on the development set. 115

x

5.6 The training/test accuracy of the PCFG-LA grammars when trained
on 20% of the WSJ treebank training data, with and without ST,
and the number of nonzero rules. 117

5.7 (a) The training/test accuracy of Charniak’s parser trained on vary-
ing amounts of CTB treebank training data, with and without self-
training (ST). (b) The training/test accuracy of the PCFG-LA parser
trained on varying amount of CTB treebank training data, with and
without ST; the numbers along the training curves indicate the split-
merge round of the grammars that are selected based on the perfor-
mance on the development set. 118

5.8 The training/test accuracy of the PCFG-LA grammars when trained
on 20% of the CTB treebank training data, with and without ST,
and the number of nonzero rules. 118

5.9 The relative reduction of bracketing errors for different span lengths,
evaluated on the test set. The baseline model is the PCFG-LA parser
trained on 20% of the WSJ training data. The +AutoLabeled curve
corresponds to the parser trained with the additional automatically
labeled data, and the +GoldLabeled curve corresponds to the parser
trained with additional 20% treebank training data. The bracket
counts are computed on the gold reference. Span length ‘0’ denotes
preterminal POS tags to differentiate them from the non-terminal
brackets that span only one word. 119

6.1 Four training protocols . 127
6.2 Difference in F scores between various individual grammars and repre-

sentative product grammars. Each individual grammar is represented
by a unique color. 137

6.3 Learning curves of (a) the individual regular and (b) ST-Prod-Mult
grammars (average performance, with minimum and maximum values
indicated by bars) and their products before and after self-training
on the WSJ development set. The relative error reductions of the
products are also reported. The measured average empirical variance
among the grammars trained on WSJ is reported in (c). 138

6.4 Learning curves of (a) the individual regular and (b) ST-Prod-Mult
grammars (average performance, with minimum and maximum values
indicated by bars) and their products before and after self-training
on the broadcast news development set. The relative error reductions
of the products are also reported. The measured average empirical
variance among the grammars trained on broadcast news is reported
in (c). 144

xi

7.1 The conditional distribution P(tx|t, w) of latent tags for selected car-
dinal numbers (e.g., 0.26, million) that appear only once, 10 times,
or more frequently for standard PCFG-LA grammars trained with
(labeled rare) or without (labeled baseline) rare word smoothing, as
well as for PCFG-LA grammars with regularized feature-rich lexical
model using the wid feature set (labeled wid). The distribution is
represented by the four bars separated by dotted vertical lines, and
each bar represents the conditional probability of a latent tag. 166

7.2 The conditional distribution P(tx|t, w) of latent tags for selected coun-
try names (proper nouns) that are listed in order of decreasing fre-
quency from the Chinese treebank (The English translation and word
frequency are provided under each Chinese name), based on training
using the wid or the full feature set. The distribution is represented
by the four bars separated by dotted vertical lines, and each bar repre-
sents the conditional probability of a latent tag. The preferred latent
tag for country names is highlighted in black. 167

8.1 An example of a word-aligned sentence pair in (a) with tight phrase
pairs marked (in black) in a matrix representation shown in (b) . . . 172

8.2 A source side parse tree . 176
8.3 A decomposition tree of tight phrase pairs with all tight phrase pairs

listed on the right. As highlighted by the dotted curves, the two
non-maximal phrase pairs are generated by consecutive sibling nodes. 181

8.4 (a) decomposition tree for the English side of the example sentence
pair with all phrases underlined, (b) automatic parse tree of the En-
glish side, (c) two example binarized decomposition trees with syn-
tactic emissions depicted in (d). 182

8.5 An example of I(·) and O(·) that separate the forest into two parts . . 187

xii

Chapter 1

Introduction

1.1 Thesis Overview

This thesis investigates the use of latent variable models to better model com-

plex dependencies among units of natural languages, such as words, parts-of-speech

(POS) of words, syntactic constituents, and word-aligned phrase pairs. Tractable

models for natural language processing (NLP) often make independence assump-

tions, such as Markov assumptions for language modeling [2], hidden Markov as-

sumptions for POS tagging [34], context-free assumptions for parsing [12], and syn-

chronous context-free assumptions for machine translation [40]. For traditional mod-

els that have a fixed parameterization, overly strong independence assumptions often

lead to poor performance levels. A common approach to mitigate this problem is

to incorporate additional dependencies and use higher-order models. For N -gram

language models, it is a simple matter to replace bigrams with trigrams or even

higher-order N -grams; however, these models then suffer from greater data sparsity

issues and require more training data and/or more effective smoothing methods to

obtain reliable parameter estimates [38]. For models like lexicalized parsing gram-

mars [31, 48], expert knowledge is often required, together with trial and error, in

order to determine and incorporate the most important dependencies. Moreover,

traditional models, when developed for a particular genre, domain, or language, are

1

also often difficult to adapt to another, as a tremendous amount of effort would be

required to adjust the model parameterization to account for the change.

In contrast, latent variable models are able to capture complex dependencies

through latent variables in a data-driven way. Take factor analysis [5, 6, 11] for

example. A vector of mutually dependent continuous variables O = O1, · · · , Od

distributed according to a multivariate Gaussian distribution N (µ,Σ) can be ap-

proximated by a latent variable model:

O′ = WX + µ+ u

where X = X1, · · · , Xq (q < d) is a vector of mutually independent latent vari-

ables distributed according to a Gaussian distribution N (0, I), u is a noise model

N (0,Φ) with diagonal covariance Φ, and Φ and W are adaptive parameters. In

this approximation, O′1, · · · , O′d are independent of each other given X, i.e.,

P(O′|X) =
d∏
i=1

P(O′i|X)

however, these variables are actually interdependent on each other and their joint

distribution P(O′) calculated by:

P(O′) =

∫
P(O′|X)P(X)dX

is a Gaussian distribution with mean µ and covariance matrix Φ + WWT . By

learning proper values of Φ and W on the training data, the latent variable model is

2

able to capture the dependencies among O by approximating the covariance matrix

Σ of the true distribution with Φ + WWT .

Latent variable models are also able to flexibly adjust the number of parame-

ters based on the type and the amount of training data available to learn the most

important dependencies, as demonstrated by Petrov et al. [126] and Petrov [121]

for probabilistic context-free grammars with latent annotations (PCFG-LA) [106].

Building upon this previous work, we have created several different types of latent

variable models for a diverse set of natural language processing applications, in-

cluding novel models for part-of-speech tagging, language modeling, and machine

translation, and an improved model for parsing. The latent variable models are able

to capture dependencies which otherwise could not be captured using conventional

Markov, hidden Markov, context-free, and synchronous context-free assumptions,

and perform significantly better than traditional models. We have also created and

evaluated three different methods for improving the performance of latent variable

models. While these methods can be applied to any of our applications, we focus

our experiments on parsing with PCFG-LA grammars.

The first method involves self-training, a semi-supervised learning method to

utilize unlabeled training data in model training. In self-training, we first train

a model on some gold standard training data, then use it to automatically label

a large amount of unlabeled training data, and finally re-train a new model on

the combination of the gold standard training data and the automatically labeled

training data. In contrast to conventional models that only benefit from self-training

when the initial training data is small, our experiments on tagging and parsing show

3

that latent variable models consistently benefit from self-training regardless of the

size of the initial training data, apparently due to the flexibility to adjust their model

parameterization to learn more accurate models from the additional automatically

labeled training data. Our self-trained latent variable parsers achieve state-of-the-

art parsing accuracies for a single parser on the English Penn treebank (91.5% F)

and the Chinese Penn treebank (85.2% F).

The second method builds upon the work of Petrov [122] that takes advantage

of the variability among latent variable models to combine multiple models using a

product model for enhanced performance. Since the product model is more accurate

than the individual component models, it is able to generate more accurate auto-

matically labeled data for self-training. The models trained with this automatically

labeled data are also more accurate, and in turn, can be combined into a product

model to achieve even greater parsing accuracies. We investigate several different

training protocols to exploit the complementary effects of self-training and model

combination for parsing with latent variable models. We conclude that self-training

and product models can be effectively combined to train very high quality parsing

models with accuracies of 92.5% F on the English Penn treebank and 89.6% F on

the English Broadcast News treebank.

The third method replaces the generative multinomial lexical model of PCFG-

LA grammars with a feature-rich log-linear lexical model to provide a principled

solution to address data sparsity, handle out-of-vocabulary (OOV) words, and ex-

ploit overlapping features during model induction. We conclude from experiments

that the resulting grammars are able to effectively parse three different languages,

4

with absolute improvements of 1% F, 1.7% F, and 2.7% F on English, Chinese, and

Arabic, respectively.

In summary, this thesis contributes to natural language processing by creating

high quality latent variable models for a diverse set of applications over several

different languages. Our investigations using self-training, model combination, and

log-linear models to improve latent variable models also provides insight into the

effective application of these machine learning techniques to other disciplines.

1.2 Structure of the Thesis

The rest of the thesis is organized as follows:

• In Chapter 2, we describe the mathematical foundations of the latent variable

models studied in this thesis. We describe the development of Markov models,

hidden Markov models, and finally latent hidden Markov models, and then

discuss how latent variable models are able to capture complex dependencies

beyond the order of independence assumptions made by the other models.

Training and inference algorithms are also presented.

• In Chapter 3, we first review prior work on POS tagging, discuss issues related

to their strong independence assumptions, and then present our latent bigram

tagger to automatically learn dependencies from the training data. Our ex-

periments show that, compared to conventional bigram and trigram HMM

taggers, the latent variable tagger is significantly more accurate and is also

able to benefit much more from automatically labeled training data through

5

self-training.

• In Chapter 4, we first review prior work on N -gram language models and

class-based language models and then present a latent language model based

on the latent bigram tagger in order to circumvent the strong independence

assumptions of the standard N -gram models. Our experiments show that

the latent variable approach effectively learns dependencies among words in

the training data, achieves significantly lower perplexity than a conventional

word bigram language model, and outperforms a strong word trigram language

model.

• In Chapter 5, we review prior work on two parsing models, a lexicalized parser

with a fixed parameterization and a PCFG-LA parser, and compare how they

perform across languages with varying amounts of training data. Our exper-

iments show that the PCFG-LA parser achieves greater accuracy and also

benefits much more from automatically labeled training data through self-

training. Our analyses show that the success of the latent variable models

comes from their ability to adjust their model parameterization to learn more

accurate models from the additional automatically labeled training data.

• In Chapter 6, we review the prior work that exploits the variability among

latent variable models through the use of model combination and then inves-

tigate several different training protocols to exploit the complementary effects

of self-training and model combination for creating effective PCFG-LA gram-

mars. Our experiments show that these two approaches can be effectively

6

combined to train very high quality parsing models.

• In Chapter 7, we present a principled feature-rich log-linear lexical model to

address data sparsity, handle out-of-vocabulary (OOV) words, and exploit

overlapping features during model induction. Our experiments on three lan-

guages show that the resulting grammars are more flexible to train and achieve

greater accuracy than standard PCFG-LA grammars.

• In Chapter 8, we present a novel approach to induce latent syntactic categories

and use them as soft syntactic constraints for machine translation. Our experi-

ments show that this approach improves the baseline hierarchical phrase-based

translation system on both English-to-German and English-to-Chinese tasks.

• In Chapter 9, we summarize the contributions of this thesis and discuss direc-

tions for future work.

7

Chapter 2

Model Foundations

2.1 Overview

In this chapter, we describe the mathematical foundations of the latent vari-

able models studied in this thesis. We describe the development of Markov models,

hidden Markov models, and finally latent hidden Markov models, and discuss how

latent variable models are able to capture complex dependencies beyond the order

of independence assumptions made by the other models. We also describe the learn-

ing and inference algorithms for latent variable models. Context-free grammars for

syntactic parsing and synchronous context-free grammars for machine translation,

which can also be enriched with latent variables, are briefly described in this chap-

ter, with more specific details presented in Chapter 5 and Chapter 8, respectively.

Table 2.1 lists some key notation used throughout this chapter.

2.2 A Markov Model

Many language processing models operate on a sentence, which is a grammat-

ical unit of natural language consisting of a sequence of words. Let Σ be a finite

alphabet representing the set of words of a language. A sentence1 on1 can be viewed

as being generated by a stochastic process {Oi}. According to the chain rule, the

1We assume that a sentence on1 always ends with a special end-of-sentence word on = EOS OBS.

8

Notation Meaning

λ The model parameter
O, X, or Z The random variable for a single observation, state, or latent state
o, x, or z The single observation, state, or latent state
{Oi} The observation process, similarly for {Xi} and {Zi}
oi The i-th observation, similarly for xi and xi
oji The subsequence of observations oi, · · · , oj, similarly for xji and zji
Σ The inventory of observations
X (o) The state inventory of observation o
Z(x) The latent state inventory of state x
Z−1(z) The state corresponding to the latent state z of a latent HMM
E = {Pe(·|·)} The emission probabilities of an HMM or a latent HMM
T = {Pt(·|·)} The transition probabilities of an HMM or a latent HMM
π = {Pπ(·)} The prior (latent) state probabilities of an HMM (or latent HMM)
α(·, ·), α(·, ·, ·) The forward probability (defined differently for different tasks)
β(·, ·), β(·, ·, ·) The backward probability (defined differently for different tasks)
SOS OBS The universal value for o0

EOS OBS The universal value for on
SOS STATE The universal value for x0

EOS STATE The universal value for xn
SOS LSTATE The universal value for z0

EOS LSTATE The universal value for zn

Table 2.1: Notation Table

9

joint distribution of the words in a sentence can be computed as the product of

conditional probabilities2:

P(On
1 = on1) =

n∏
i=1

P(Oi = oi|Oi−1
1 = oi−1

1) (2.1)

in which the distribution of the i-th word oi depends on all of the preceding words.

This is appropriate for natural languages because sentences exhibit long-distance

dependencies [43]; however, it is not practical because a distribution conditioned

on the complete history cannot be estimated reliably given any reasonably sized

training data. Although tractable models that account for long-distance dependen-

cies exist [77, 109], the most widely used models are based on Markov indepen-

dence assumptions [78]. In the rest of this thesis, when clear from context, we will

omit the values of random variables and write, for example, On
1 = on1 as On

1 and

P(Oi = oi|Oi−1
1 = oi−1

1) as P(Oi|Oi−1
1) for brevity.

Definition 2.2.1 A stochastic process {Oi} is said to be a Markov chain of order

m, where m is finite, if the process satisfies:

P(Oi|Oi−1
1) = P(Oi|Oi−1

i−m) (2.2)

A Markov chain is said to be stationary if the probabilities P(Oi|Oi−1
i−m) do not

depend on the index i. All of the stochastic processes discussed in this chapter are

stationary. Figure 2.1 depicts the generation process of a Markov chain.

2P(O1 = o1|O0
1 = o01) represents the probability of the first word.

10

Oi−1 Oi Oi+1

Figure 2.1: The generation process of a Markov chain

Markov chain models are widely used in N -gram language models. When

modeled as a first-order Markov chain, the distribution of word oi in a sentence

is independent of everything else given the previous word oi−1. This is an overly

strong independence assumption that is unable to capture any dependency beyond

a word bigram. A common method to add more context is to use a higher order

Markov assumption; however, this greatly increases the data sparsity problem and

requires strong smoothing methods to obtain reliable parameter estimates [38]. We

next describe an alternative approach to capture dependencies among words using

the state process of a hidden Markov model.

2.3 A Hidden Markov Model

2.3.1 Definition and Properties

Definition 2.3.1 A first-order hidden Markov model (HMM) is a statistical Markov

model of two parallel stochastic processes {Oi} and {Xi}, where {Xi} is a first-order

Markov chain representing the hidden process and {Oi} is an observable process in

which each random variable Oi is independent of everything else when conditioned

on Xi. Each observation oi takes a value from Σ and each state xi takes a value

11

Oi−1 Oi Oi+1

Xi−1 Xi Xi+1

Figure 2.2: The generation process of an HMM

from X (oi), the state inventory3 of oi.

Figure 2.2 depicts the generation process of an HMM. The parameter λ =

{π, T, E} of an HMM comprises three components: π represents the prior state

distribution Pπ(x1|λ), T represents the state transition probabilities Pt(xi|xi−1, λ),

and E represents the emission probabilities Pe(oi|xi, λ) of observations given a state.

To ensure proper boundary conditions, we assume that there is always a start-of-

sequence state x0 = SOS STATE and the sequence on1 (or xn1) always ends with

an end-of-sequence observation (or state) on = EOS OBS (or xn = EOS STATE).

When clear from context, we omit λ from the condition and write, for example,

Pt(xi|xi−1, λ) as Pt(xi|xi−1) and Pπ(x1|λ) as Pt(x1|x0) for brevity.

When modeled by an HMM, the joint probability of a word sequence on1 and

its state sequence xn1 can be factored as follows:

P(On
1 , X

n
1) =

n∏
i=1

P(Xi|Oi−1
1 , X i−1

1)P(Oi|Oi−1
1 , X i

1) =
n∏
i=1

P(Xi|Xi−1)P(Oi|Xi) (2.3)

The joint probability of the word sequence on1 can then be computed by marginalizing

3It should be emphasized that each observation symbol has its own state inventory, which may
overlap with the state inventory of another observation symbol.

12

over the states. Despite the assumption that the words are independent of each other

given their states, the words themselves are dependent on each other when the states

are marginalized out, as shown below:

P(Oi|Oi−1
1) =

∑
xi−1∈X (oi−1)
xi∈X (oi)

P(Oi, Xi = xi, Xi−1 = xi−1|Oi−1
1)

=
∑

xi−1∈X (oi−1)
xi∈X (oi)

P(Xi−1 = xi−1|Oi−1
1)Pt(xi|xi−1)Pe(oi|xi) (2.4)

In Equation 2.4, the history’s impact on the distribution of word oi is represented

by the conditional distribution of state xi−1, which generally depends on all of the

previous words4. As a result, an HMM is able to capture longer dependencies than

can be captured by a Markov chain model.

Another advantage of using HMMs over Markov chain models for modeling

sequences is that the states can be viewed as clusters that abstract common phe-

nomena from the observations (e.g., singular or mass nouns are clustered to a NN

tag), thus providing smoothing [90] to alleviate the data sparsity problem that is

common in many NLP applications. As we will show later in Chapter 4, an HMM-

based language model is significantly better than a word bigram language model

(first order Markov chain) at capturing dependencies among words, as measured

by perplexity, and it can even outperform a strong word trigram language model

(second order Markov chain).

The modeling capability of HMMs increases with the size of the state space

4If |X (oi−1)| = 1, then P(Xi−1 = xi−1|Oi−1
1) would be consistently 1 for the only state, and all

of the history information before oi−1 would be ignored.

13

X (o) for each observation o; however, data sparsity could then become more severe

when the training data is limited in size. A higher m-th order (m > 1) HMM

is capable of capturing longer dependencies in general, but it can be equivalently

viewed as a first-order HMM with an expanded state inventory, in which each state

represents a concatenation of m states in the m-th order HMM.

2.3.2 Inference and Learning

Three natural problems [130] arise typically when using HMMs:

Likelihood Computation: given an HMM with model parameter λ = {π, T, E},

calculate the probability P(On
1 = on1 |λ) that sequence on1 is generated by the

HMM.

Inference: given an HMM with model parameter λ = {π, T, E}, find the most

probable state sequence x̂n1 that would have generated an observation sequence

on1 , i.e., x̂n1 = arg maxxn1 P(Xn
1 = xn1 |On

1 = on1 , λ).

Learning: given the topological structure5 of an HMM and a collection of ob-

servation sequences T , find model parameter λ̂ = {π, T, E} such that λ̂ =

arg maxλ P(T |λ).

These problems have been extensively studied in the literature. For example,

see (Rabiner [129]) for applications tailored to speech recognition and (Cappé et al.

[25]) for a mathematical treatment of HMMs. We will next briefly describe the

algorithms for solving these three problems.

5The topological structure defines the state inventory X (o) for each observation o and the
permissible state transitions.

14

2.3.2.1 Likelihood Computation

Given an HMM with parameter λ = {π, T, E} and an observation sequence on1 ,

we define the forward probability α(i, x) as the probability of observing subsequence

oi1 with oi being generated by xi = x, i.e., α(i, x) = P(Oi
1, Xi = x|λ). We also define

the backward probability β(i, x) as the probability of observing sequence oni+1 given

that xi = x, i.e., β(i, x) = P(On
i+1|Xi = x, λ). The forward probabilities can be

computed recursively by dynamic programming [49] as follows:

α(i, x) =
∑

x′∈X (oi−1)

P(Oi
1, Xi−1 = x′, Xi = x|λ)

=
∑

x′∈X (oi−1)

P(Oi−1
1 , Xi−1 = x′|λ)P(Xi = x|Xi−1 = x′)P(Oi|Xi = x)

=
∑

x′∈X (oi−1)

α(i− 1, x′)Pt(x|x′)Pe(oi|x) (2.5)

with base case α(0, SOS STATE) = 1. The backward probabilities can be computed

similarly as follows:

β(i, x) =
∑

x′∈X (oi+1)

P(On
i+1, Xi+1 = x′|Xi = x, λ)

=
∑

x′∈X (oi+1)

P(Xi+1 = x′|Xi = x)P(Oi+1|Xi+1 = x′)P(On
i+2|Xi+1 = x′, λ)

=
∑

x′∈X (oi+1)

Pt(x
′|x)Pe(oi+1|x′)β(i+ 1, x′) (2.6)

with base case β(n,EOS STATE) = 1. The likelihood of observing any sequence on1

15

can then be computed easily from the forward probabilities:

P(On
1 = on1 |λ) = P(On

1 = on1 , Xn = EOS STATE|λ) = α(n,EOS STATE) (2.7)

or from the backward probabilities:

P(On
1 = on1 |λ) = P(On

1 = on1 |X0 = SOS STATE, λ) = β(0, SOS STATE)

2.3.2.2 Inference

The decoding process searches for the most probable state sequence x̂n1 given

an observation sequence on1 :

x̂n1 = arg max
xn1

P(Xn
1 = xn1 |On

1 = on1 , λ)

= arg max
xn1

P(On
1 = on1 , X

n
1 = xn1 |λ)

= arg max
xn1

P(Xi|Xi−1)P(Oi|Xi)

This can be computed by the Viterbi algorithm [153]. We define the viterbi prob-

ability α′(i, x) as the joint probability of oi1 and its most probable state sequence

that ends with xi = x, i.e.,

α′(i, x) = max
1≤k≤i−1
xk∈X (ok)

P(Oi
1, X

i−1
1 , Xi = x|λ) (2.8)

Similarly to the forward probabilities, the viterbi probabilities can be com-

16

puted recursively:

α′(i, x)

= max
x′∈X (oi−1)

max
1≤k≤i−2
xk∈X (ok)

P(Oi
1, X

i−2
1 , Xi−1 = x′, Xi = x|λ)

= max
x′∈X (oi−1)

max
1≤k≤i−2
xk∈X (ok)

P(Oi−1
1 , X i−2

1 , Xi−1 = x′|λ)P(Xi = x|Xi−1 = x′)P(Oi|Xi = xi)

= max
x′∈X (oi−1)

α′(i− 1, x′)Pt(x|x′)Pe(oi|x) (2.9)

with base case α′(0, SOS STATE) = 1. The most probable state sequence x̂n1 can be

retrieved by back-tracing the decisions up to the computation of α′(n, SOS STATE):

x̂i−1 = arg max
x∈X (oi−1)

α′(i− 1, x)Pt(x̂i|x)Pe(oi|x̂i)

with base case x̂n = EOS STATE.

2.3.2.3 Learning

Given the topological structure of an HMM and a collection of independent

and identically distributed training samples T that are assumed to be generated by

an HMM, the goal of maximum likelihood estimation (MLE) is to find parameter λ̂

such that the likelihood of the training samples is maximized, i.e.,

λ̂ = arg max
λ

P(T |λ)

The likelihood function is unfortunately not concave with respect to the model

17

parameter and there is no approach that guarantees an optimal solution. A com-

mon solution is to use the Baum-Welch algorithm [7], a particular instance of the

generalized expectation-maximization algorithm (EM) [50], to iteratively increase

the lower bound of the likelihood function (see (Borman [13]) for a short tutorial).

The EM algorithm iterates between the E-step and the M-step.

The E-step computes, Q(λ′, λ), the expected value of the complete log-likelihood

of the new model parameter λ′ with respect to the posterior distribution of the state

sequence xn1 given the observation sequence on1 under the current model parameter

λ. That is:

Q(λ′, λ) =
∑
on1∈T

EXn
1 |On1 ,λ log P(On

1 , X
n
1 |λ′) (2.10)

=
∑
on1∈T

∑
1≤k≤n
xk∈X (ok)

P(Xn
1 |On

1 , λ) log P(On
1 , X

n
1 |λ′)

=
∑
on1∈T

∑
1≤k≤n
xk∈X (ok)

P(Xn
1 |On

1 , λ) log(
n∏
i=1

P(Xi|Xi−1, λ
′)P(Oi|Xi, λ

′))

=
∑
on1∈T

∑
1≤k≤n
xk∈X (ok)

n∑
i=1

P(Xn
1 |On

1 , λ) log P(Xi|Xi−1, λ
′)

+
∑
on1∈T

∑
1≤k≤n
xk∈X (ok)

n∑
i=1

P(Xn
1 |On

1 , λ) log P(Oi|Xi, λ
′)

=
∑
on1∈T

n∑
i=1

∑
x′∈X (oi−1)
x∈X (oi)

P(Xi−1 = x′, Xi = x|On
1 , λ) log Pt(x|x′, λ′)

+
∑
on1∈T

n∑
i=1

∑
x∈X (oi)

P(Xi = x|On
1 , λ) log Pe(oi|x, λ′)

where the posterior state probabilities P(Xi = x|On
1 , λ) and state transition proba-

18

bilities P(Xi−1 = x′, Xi = x|On
1 , λ) can be computed from the forward (Equation 2.5)

and backward probabilities (Equation 2.6) as shown in Equation 2.11 and 2.12, re-

spectively:

P(Xi = x|On
1 , λ)

=
P(Oi

1, Xi = x,On
i+1|λ)

P(On
1 |λ)

=
P(Oi

1, Xi = x|λ)P(On
i+1|Xi = x, λ)

P(On
1 |λ)

=
α(i, x)β(i, x)

P(On
1 |λ)

(2.11)

P(Xi−1 = x′, Xi = x|On
1 , λ)

=
P(Oi−1

1 , Xi−1 = x′, Xi = x,Oi, O
n
i+1, |λ)

P(On
1 |λ)

=
P(Oi−1

1 , Xi−1 = x′|λ)P(Xi = x|Xi−1 = x′)P(Oi|Xi = x)P(On
i+1|Xi = x, λ)

P(On
1 |λ)

=
α(i− 1, x′)Pt(x|x′)Pe(oi|x)β(i, x)

P(On
1 |λ)

(2.12)

The M-step finds the new model parameter λ′ that maximizes Q(λ, λ′). It

can be shown that the maximum is achieved with the following parameter update

formulas [130]:

Pt(x|x′, λ′) =

∑
on1∈T

∑n
i=1 P(Xi−1 = x′, Xi = x|On

1 , λ)∑
on1∈T

∑n
i=1 P(Xi−1 = x′|On

1 , λ)

Pe(o|x, λ′) =

∑
on1∈T

∑n
i=1 δ(oi, o)P(Xi = x|On

1 , λ)∑
on1∈T

∑n
i=1 P(Xi = x|On

1 , λ)

19

where δ(·, ·) returns 1 if the two operands are identical and 0 otherwise.

2.4 A Latent Hidden Markov Model

2.4.1 Definition and Properties

HMMs have been extensively used in sequence labeling tasks such as part-of-

speech tagging, in which words are the observations and POS tags are the states.

Given a sentence on1 and an HMM with parameter λ = {π, T, E}, the tagging pro-

cess finds the most probable tag sequence x̂n1 , which can be solved by the Viterbi

algorithm described in Section 2.3.2.2:

x̂n1 = arg max
1≤i≤n
xi∈X (oi)

P(On
1 , X

n
1 = xn1 |λ)

One problem of using HMMs for sequence labeling is that the joint process

{Oi, Xi} is Markovian, as shown below:

P(Oi, Xi|Oi−1
1 , X i−1

1) = P(Xi|Oi−1
1 , X i−1

1)P(Oi|Oi−1
1 , X i

1)

= P(Xi|Xi−1)P(Oi|Xi)

= P(Oi, Xi|Oi−1, Xi−1)

This means any history information about the joint process of {Oi, Xi} is ignored

in the prediction of future observation/state pairs when the value of the current

observation/state pair is known, which is a problem similar to using Markov chain

20

models for language modeling. Just as latent variables can be introduced to Markov

chain models to capture longer dependencies, latent variables can also be introduced

to HMMs for the same purpose.

Definition 2.4.1 A latent hidden Markov model is an extension of a hidden Markov

model for statistical modeling of three parallel stochastic processes: {Oi}, {Xi}, and

{Zi}. {Oi} is the observation process, {Xi} is the state process. Each state x is

split by function Z(·) into a set of latent states such that P(X = x|Z = z) = 1 if

z ∈ Z(x) and 0 otherwise6. A latent state z can be mapped back deterministically by

function Z−1(·) to state x = Z−1(z). {Zi} is a first-order Markov process in which

each zi ∈ Z(xi) represents a latent state of state xi ∈ X (oi). Each observation oi is

independent of everything else given its latent state zi.

Figure 2.3 depicts the generation process of a latent HMM. The parameter

λ = {π, T, E} of a latent HMM comprises three components: π represents the prior

distribution of the latent states Pπ(z1|λ), T represents the latent state transition

probabilities Pt(zi|zi−1, λ), and E represents the emission probabilities Pe(oi|zi, λ)

of observations given the latent states. Latent HMMs are essentially HMMs for

modeling the joint process of {Oi, Zi} with the constraint that the latent states are

clustered into states, and the relationship between the {Oi} process and the {Xi}

process is mediated through the latent state process {Zi}. Such models were first

introduced in (Krogh [87, 88]) to describe HMMs in which states have shared labels

6It is possible to share latent states across different states; however, for the problems investigated
in this thesis, all states (e.g., the POS tags) have clear distinctions and so we choose to assign
latent states exclusively to a state.

21

Oi−1 Oi Oi+1

Zi−1 Zi Zi+1

Xi−1 Xi Xi+1

Figure 2.3: The generation process of a latent HMM

and have been applied successfully to sequence annotation tasks in bioinformat-

ics [19, 89, 96]. Different from the prior work, the latent states in our model are

automatically induced from the training data as we will describe in Section 2.4.2.3.

Given our definition, the joint distribution of the parallel process {Oi, Xi} is

computed as follows7:

P(On
1 , X

n
1) =

∑
1≤k≤n
zk∈Z(xk)

P(On
1 , X

n
1 , Z

n
1 = zn1)

=
∑

1≤k≤n
zk∈Z(xk)

P(On
1 , Z

n
1 = zn1)

=
∑

1≤k≤n
zk∈Z(xk)

n∏
i=1

P(Zi|Zi−1)P(Oi|Zi)

Unlike HMMs, the joint process {Oi, Xi} modeled by a latent HMM is no longer

7In terms of the boundary condition of latent HMMs, we do not split the SOS STATE nor the
EOS STATE, and their only latent state is SOS LSTATE and EOS LSTATE, respectively.

22

Markovian, as shown in the following equation:

P(Oi, Xi|Oi−1
1 , X i−1

1)

=
∑

zi−1∈Z(xi−1)
zi∈Z(xi)

P(Oi, Xi, Zi = zi, Zi−1 = zi−1|Oi−1
1 , X i−1

1)

=
∑

zi−1∈Z(xi−1)
zi∈Z(xi)

P(Zi−1 = zi−1|Oi−1
1 , X i−1

1)Pt(zi|zi−1)Pe(oi|zi) (2.13)

In Equation 2.13, like Equation 2.4, the history’s impact on the distribution of

observation/state pair (oi, xi) is represented by the conditional distribution of latent

state zi−1, which generally depends on all of the previous observation/state pairs8.

As a result, a latent HMM is able to capture longer dependencies than can be

captured by an HMM.

2.4.2 Inference and Learning

Since the relationship between {Oi} and {Zi} in latent HMMs is essentially

the same as the relationship between {Oi} and {Xi} in HMMs, the inference and

learning algorithms of HMMs can also be applied to latent HMMs. However, in

sequence labeling problems using latent HMMs9, we are more interested in utilizing

process {Zi} to better capture the dependencies in the joint process of {Oi, Xi}.

Hence, we are typically interested in the following three problems:

8If |Z(xi−1)| = 1, then P(Zi−1 = zi−1|Oi−1
1 , Xi−1

1) would be consistently 1 for the only latent
state, and all of the history information before (oi−1, xi−1) would be ignored.

9When applied to POS tagging, the states are the POS tags and the latent states are the fine-
grained latent POS tags. It is the POS tags that we want to recover accurately from an input
sentence at decoding time, not the latent states.

23

Likelihood Computation: given a latent HMM with model parameter λ = {π, T, E},

calculate the probability P(On
1 = on1 , X

n
1 = xn1 |λ) of observing sequence on1 with

state sequence xn1 .

Inference: given a latent HMM and its model parameter λ = {π, T, E}, find the

most probable state sequence x̂n1 given the observation sequence on1 .

Learning: given a collection T of observation sequences {on1} accompanied by their

state sequences {xn1}, find model parameter λ̂ = {π, T, E} of a latent HMM

such that λ̂ = arg maxλ P(T |λ).

We will next briefly describe the algorithms for solving these problems.

2.4.2.1 Likelihood Computation

This problem is similar to the likelihood computation problem in HMMs. We

define the forward probability α(i, z) as the probability of generating oi1 and xi1, with

the latent state of xi being z ∈ Z(xi), i.e, α(i, z) = P(Oi
1, X

i
1, Zi = z|λ). Similarly,

we define backward probability β(i, z) as the probability of generating oni+1 and xni+1

given that the latent state of xi is z ∈ Z(xi), i.e., β(i, z) = P(On
i+1, X

n
i+1|Zi = z, λ).

The forward probabilities can be computed recursively as follows:

α(i, z) =
∑

z′∈Z(xi−1)

P(Oi
1, X

i
1, Zi−1 = z′, Zi = z|λ)

=
∑

z′∈Z(xi−1)

α(i− 1, z′)Pt(z|z′)Pe(oi|z)

24

with base case α(0, SOS LSTATE) = 1. The backward probabilities can be com-

puted similarly as follows:

β(i, z) =
∑

z′∈Z(xi+1)

P(On
i+1, X

n
i+1, Zi+1 = z′|Zi = z, λ)

=
∑

z′∈Z(xi+1)

Pt(z
′|z)Pe(oi+1|z′)β(i+ 1, z′)

with base case β(n,EOS LSTATE) = 1. The joint probability of (on1 , x
n
1) can be

then computed easily from the forward probabilities:

P(On
1 , X

n
1 |λ) = P(On

1 , X
n
1 , Zn = EOS LSTATE|λ) = α(n,EOS LSTATE)

or from the backward probabilities:

P(On
1 , X

n
1 |λ) = P(On

1 , X
n
1 |Z0 = SOS LSTATE|λ) = β(n, SOS LSTATE)

2.4.2.2 Inference

Decoding with latent HMMs is more complicated than HMMs (see (Matsuzaki

et al. [106], Petrov and Klein [123]) for related problems and solutions for context-

free grammars with latent annotations). Recall that decoding with HMMs refers to

finding the most probable state sequence x̂n1 given an observation sequence on1 , i.e.,

x̂n1 = arg max
xn1

P(Xn
1 = xn1 |On

1 = on1 , λ) (2.14)

25

Decoding with latent HMMs could, however, involve any of the following three

different tasks:

1. Finding the most probable latent state sequence ẑn1 given the observation se-

quence on1 :

ẑn1 = arg max
zn1

P(Zn
1 = zn1 |On

1 = on1 , λ) (2.15)

2. Finding the most probable latent state sequence ẑn1 given both the observation

sequence on1 and the state sequence xn1 :

ẑn1 = arg max
zn1

P(Zn
1 = zn1 |On

1 = on1 , X
n
1 = xn1 , λ) (2.16)

3. Finding the most probable state sequence x̂n1 given the observation sequence

on1 :

x̂n1 = arg max
xn1

P(Xn
1 = xn1 |on1 = on1 , λ) = arg max

xn1

∑
1≤i≤n
zi∈Z(xi)

P(Zn
1 = zn1 |On

1 = on1 , λ)

(2.17)

Since the relationship between {Oi} and {Zi} in a latent HMM is essentially

modeled as an HMM, the first task can be solved by an algorithm similar to the

Viterbi algorithm for decoding with HMMs. The second task is similar to the first

task except that the search space is constrained by the state sequence, and it can also

be solved efficiently by a variant of the Viterbi algorithm. However, the third task is

intractable (see (Brejová et al. [17]) for a proof of its NP-hardness) because the search

space consists of combinatorially many xn1 sequences, each requiring summation over

26

probabilities of combinatorially many zn1 sequences.

Several approximate solutions exist for the third task. One method is to

first extract the N -best state sequences using a HMM, and then select the one

with the highest probability with respect to the latent HMM. Another method

is to first extract the best latent state sequence (the task in Equation 2.15) and

then simply apply the Z−1(·) function to retrieve the corresponding state sequence.

Both methods have obvious limitations. The quality of the HMM directly affects

the accuracy of the first method, while the second method relies on the assumption

that the most probable latent state sequence dominates the probability mass of the

corresponding state sequence, which is not necessarily true.

Note that the most probable state sequence minimizes the expected 0-1 loss

of a hypothesized state sequence xn1 . xn1 has loss 0 if it is exactly the same as the

unknown reference x̄n1 and loss 1 otherwise, regardless of the number of errors on

the individual states:

x̂n1 = arg max
xn1

EX̄n
1 =x̄n1 |On1 =on1

δ(xn1 , x̄
n
1)

= arg max
xn1

P(Xn
1 = xn1 |On

1 = on1)

Instead of taking 0-1 loss on the entire state sequence, we can take it on the

individual states, i.e., the hypothesized state xi has loss 0 if it is identical to the

unknown reference state x̄i and loss 1 otherwise. This gives the following most

27

probable state (MostProb-S) estimation:

x̂n1 = arg max
xn1

n∑
i=1

EX̄i=x̄i|On1 =on1
δ(xi, x̄i)

= arg max
xn1

n∑
i=1

P(Xi = xi|On
1 = on1)

The optimal state sequence x̂n1 under this decoding criterion can be calculated ef-

ficiently given the values of P(Xi = xi|On
1 = on1), which can be computed in a

way similar to HMMs as in Equation 2.11. We define the forward probability

α(i, x, z) = P(Oi
1, Xi = x, Zi = z|λ) as the probability of generating observation

sequence oi1 with the state and latent state at i being x and z ∈ Z(x), respectively,

and the backward probability β(i, x, z) = P(On
i+1|Xi = x, Zi = z, λ) as the proba-

bility of generating observation sequence oni+1 given that the state and latent state

at i are x and z ∈ Z(x), respectively. The forward probabilities can be computed

recursively as follows:

α(i, x, z) =
∑

x′∈X (oi−1)

∑
z′∈Z(x′)

P(Oi
1, Xi−1 = x′, Zi−1 = z′, Xi = x, Zi = z|λ)

=
∑

x′∈X (oi−1)

∑
z′∈Z(x′)

P(Oi
1, Xi−1 = x′, Zi−1 = z′|λ)Pt(z|z′)Pe(oi|z)

=
∑

x′∈X (oi−1)

∑
z′∈Z(x′)

α(i− 1, x′, z′)Pt(z|z′)Pe(oi|z)

with base case α(0, SOS STATE, SOS LSTATE) = 1. The backward probabilities

28

can be computed similarly as follows:

β(i, x, z) =
∑

x′∈X (oi+1)

∑
z′∈Z(x′)

P(On
i+1, Xi+1 = x′, Zi+1 = z′|Xi = x, Zi = z, λ)

=
∑

x′∈X (oi+1)

∑
z′∈Z(x′)

Pe(z
′|z)PO(oi|z′)P(On

i+2|Xi+1 = x′, Zi+1 = z′, λ)

=
∑

x′∈X (oi+1)

∑
z′∈Z(x′)

Pe(z
′|z)PO(oi|z′)β(i+ 1, x′, z′)

with base case β(n,EOS STATE,EOS LSTATE) = 1. Once the forward and back-

ward probabilities are computed, P(Xi = x|On
1 , λ) can be easily computed by:

P(Xi = x|On
1 , λ) =

P(On
1 , Xi = x|λ)

P(On
1 |λ)

=

∑
z∈Z(x)

α(i, x, z)β(i, x, z)

P(On
1 |λ)

where P(On
1 |λ) = α(n,EOS STATE,EOS LSTATE).

We can take this one step further and take 0-1 loss on the individual transitions.

A transition between a pair of states (xi−1, xi) has loss 0 if it matches the unknown

reference transition (x̄i−1, x̄i) and loss 1 otherwise. This gives the most probable

transition (MostProb-T) estimation:

x̂n1 = arg max
xn1

n∑
i=1

EX̄i−1=x̄i−1,X̄i=x̄i|On1 =on1
δ(xi−1, x̄i−1)δ(xi, x̄i)

= arg max
xn1

n∑
i=1

P(Xi−1 = xi−1, Xi = xi|On
1 = on1)

where P(Xi−1 = x′, Xi = x|On
1 , λ) can be computed from the forward and backward

29

probabilities:

P(Xi−1 = x′, Xi = x|On
1 , λ) =

P(On
1 , Xi−1 = x′, Xi = x|λ)

P(On
1 |λ)

=

∑
z′∈Z(x′)
z∈Z(x)

α(i− 1, x′, z′)Pt(z|z′)Pe(oi|z)β(i, x, z)

P(On
1 |λ)

and the optimal state sequence x̂n1 can then be computed using dynamic program-

ming.

A problem with both of the MostProb-S and MostProb-T approaches is that

the summation is dominated by high probability states and transitions, and so the

method could effectively ignore the existence of low probability states and tran-

sitions, which are more likely to cause errors. When parsing using context-free

grammars with latent variables, Petrov and Klein [123] showed that it is better to

use product instead of summation to discourage low probability components. Ap-

plying the same idea to latent HMMs, we obtain the MostProb-S-P method based

on individual states:

x̂n1 = arg max
xn1

n∏
i=1

P(Xi = xi|On
1 = on1)

and the MostProb-T-P method based on state transitions:

x̂n1 = arg max
xn1

n∏
i=1

P(Xi−1 = xi−1, Xi = xi|On
1 = on1) (2.18)

Our experiments show that the MostProb-T-P method is the most effective

30

method of all of the tractable decoding methods described above, and thus it will

be used in Chapter 3 for POS tagging.

2.4.2.3 Learning

Given a collection T of observation sequences {on1} accompanied by their state

sequences {xn1}, the goal of maximum likelihood estimation (MLE) is to find param-

eter λ̂ of a latent HMM such that the likelihood of the training samples is maximized,

i.e.,

λ̂ = arg max
λ

P(T |λ) (2.19)

Similarly to HMMs, this objective function is non-concave and can be optimized

indirectly by the EM algorithm. Let λ be the current parameter. At each EM iter-

ation, we find the new parameter λ′ that maximizes the auxiliary function Q(λ′, λ):

Q(λ′, λ) =
∑

(on1 ,x
n
1)∈T

EZn1 |On1 ,Xn
1 ,λ

log P(On
1 , X

n
1 , Z

n
1 |λ′)

which can be rewritten, in a way similar to Equation 2.10, as:

Q(λ, λ′) =
∑

(on1 ,x
n
1)∈T

n∑
i=1

∑
z∈Z(xi)

z′∈Z(xi−1)

P(Zi−1 = z′, Zi = z|On
1 , X

n
1 , λ) log Pt(z|z′, λ′)

+
∑

(on1 ,x
n
1)∈T

n∑
i=1

∑
z∈Z(xi)

P(Zi = z|On
1 , X

n
1 , λ) log Pe(oi|z, λ′)

Maximizing the above equation with respect to the new model parameter λ′

31

produces the following parameter update formulas for any z ∈ Z(x) and z′ ∈ Z(x′):

Pt(z|z′, λ′) =

∑
(on1 ,x

n
1)∈T

∑n
i=1 δ(xi−1, x

′)δ(xi, x)P(Zi−1 = z′, Zi = z|On
1 , X

n
1 , λ)∑

(on1 ,x
n
1)∈T

∑n
i=1 δ(xi−1, x′)P(Zi−1 = z′|On

1 , X
n
1 , λ)

Pe(o|z, λ′) =

∑
(on1 ,x

n
1)∈T

∑n
i=1 δ(xi, x)δ(oi, o)P(Zi = z|On

1 , X
n
1)∑

(on1 ,x
n
1)∈T

∑n
i=1 δ(xi, x)P(Zi = z|On

1 , X
n
1 , λ)

The above EM training algorithm assumes a given set of latent states for each

state, but how are these latent states induced? The goal of using latent states is

to model dependencies of the joint process {Oi, Xi} that cannot be modeled by a

hidden Markov model, and so it is desirable to allocate more latent states to states

that occur in more complex contexts than others. When applied to POS tagging,

we split each POS tag into a set of latent tags. The fact that some POS tags such

as NN (normal noun) and VB (base verb) appear in more complex contexts than

others like IJ (interjection) suggests that using a fixed number of latent tags for all

POS tags would be too limited (under-training) for some POS tags and too much

(over-training) for others. Metrics such as the frequency of a POS tag, the number

of unique words associated with a tag, or the conditional entropy of a tag all relate

to the complexity of a tag’s context, and might be used to decide the number of

latent tags for a POS tag. However, they do not directly relate to the likelihood

score of the training data, which is the training objective.

Finding the latent states that contribute most to the improvement of training

likelihood is a hard task, because there is no way to accurately measure how a set

of latent states contributes to an increase in the training likelihood until a sufficient

number of EM iterations is carried out. The hierarchical split-merge (SM) approach

32

taken in (Petrov et al. [126]) (for inducing latent syntactic categories in PCFG

grammars) gradually increases the number of latent categories while allocating them

adaptively to places where they would produce the greatest increase in training

likelihood. At each iteration, this approach first splits each current latent category

into two, followed by several rounds of EM to learn parameters associated with

the new latent categories. It then merges the least useful splits back (based on

an approximate loss in training likelihood if they are merged), again followed by

additional rounds of EM to re-adjust parameters. This approach was shown in

(Petrov et al. [126]) to significantly outperform a method that assigns the same

number of latent categories to each syntactic category [106]. We adopt the same

approach to induce latent states for latent HMMs and will next describe the splitting

and merging operations.

Splitting This operation splits each current latent state10 into two and initializes

the transition and emission probabilities associated with the new latent states.

Suppose latent state z is split into z1 and z2, and latent state z′ is split into z′1

and z′2. The transition probabilities from zi to z′j for i, j ∈ {1, 2} are initialized

as:

Pt(z
′
j|zi) =

1 + (−1)jδ

2
Pt(z

′|z) for i, j ∈ {1, 2}

where δ is a small random number between 0 and Pt(z′|z)
100

. The emission prob-

10Except SOS LSTATE and EOS LSTATE.

33

ability of observation o given latent state zi for i ∈ {1, 2} is initialized as:

Pe(w|zi) = Pe(w|z)

We could introduce some randomness into the emission probabilities as in

the transition probabilities, but it is not necessary because the randomness in

transition probabilities is sufficient to break the symmetry of model parameters

through iterations of EM training.

Merging This operation first calculates the approximate loss in training likelihood

if two recently split latent states are merged back to the original latent state,

and then merges a certain percentage of the splits with the least approximate

loss. Let xi−1, xi, and xi+1 be three consecutive states in a training example

(on1 , x
n
1), z1 and z2 be two latent states of state xi, and o be the observation

of state xi. The likelihood of the training example can be computed based on

the forward and backward probabilities:

Pold(On
1 , X

n
1) =

∑
z∈Z(xi)

αold(i, z)βold(i, z)

Now consider merging latent states z1 and z2 into a single latent state z1,2.

Before merging, the transition and emission probabilities associated with zk

34

(k ∈ {1, 2}) are:

Pt(zk|z′) =
c(z′, zk)

c(z′)
for z′ ∈ Z(xi−1)

Pt(z
′|zk) =

c(zk, z
′)

c(zk)
for z′ ∈ Z(xi+1)

Pe(o|zk) =
c(zk, o)

c(zk)

where c(·, ·) and c(·) are the expected counts accumulated in the previous E-

step of the EM iteration. If we only merge z1 and z2 of state xi in a particular

training example into z1,2, and maintain all of the other latent states, the

transition and emission probabilities associated with z1,2 become:

Pt(z1,2|z′) =
c(z′, z1) + c(z′, z2)

c(z′)
for z′ ∈ Z(xi−1)

Pt(z
′|z1,2) =

c(z1, z
′) + c(z2, z

′)

c(z1) + c(z2)
for z′ ∈ Z(xi+1)

Pe(o|z1,2) =
c(z1, o) + c(z2, o)

c(z1) + c(z2)

The new forward and backward probabilities for latent state z1,2 become:

αnew(i, z1,2) =
∑

z′∈Z(xi−1)

αold(i− 1, z′)Pt(z1,2|z′)Pe(o|z1,2)

βnew(i, z1,2) =
∑

z′∈Z(xi+1)

Pt(z
′|z1,2)Pe(o|z′)βold(i+ 1, z′)

35

Algorithm 1 Split-Merge Latent HMM Training Algorithm

Initialize λ based on the HMM estimated on the training data
for i = 1 to Nsm do

Do Splitting as described on Page 33
Run Ns iterations of EM
Do Merging as described on Page 34
Run Nm iterations of EM

and the new likelihood after merging these two latent tags becomes:

Pnew(On
1 , X

n
1)

= Pold(On
1 , X

n
1)−

2∑
k=1

αold(i, zk) ∗ βold(i, zk) + αnew(i, z1,2)βnew(i, z1,2)

The loss in log-likelihood can then be approximated by:

log
Pold(On

1 , X
n
1)

Pnew(On
1 , X

n
1)

For each pair of latent tags split from the same latent state, we accumulate its

approximate loss of log-likelihood across the training set and merge it back to

a single latent state if the approximate loss is less than 50% of the other split

pairs.

Algorithm 1 summarizes the procedure for training a latent HMM. The number

of split-merge iterations (Nsm) and the number of EM iterations after splitting (Ns)

and merging (Nm) are determined based on a development set.

36

2.5 Probabilistic Context-Free Grammars and Latent Annotations

A probabilistic context-free grammar (PCFG) [43] is a probabilistic model that

describes the hierarchical generation process of a sentence.

Definition 2.5.1 A PCFG grammar G is a tuple: G = (V ,Σ,R, S, P) where:

• V is a finite set of nonterminals representing different types of syntactic cate-

gories.

• Σ is a finite set of terminals, disjoint from V , representing the alphabet of a

language.

• R is a set of rewriting rules of the form X → γ, where X ∈ V and γ ∈ (V∪Σ)∗.

• S ∈ V is the unique root symbol that represents the whole sentence.

• P assigns a probability to each rule in R such that
∑

γ:X→γ∈R P(X → γ) = 1.

A PCFG generates a sentence as follows. Starting from the root node with

nonterminal S, any node that is on the left hand side of a rewriting rule is replaced

with the right hand side according to the probabilistic distribution P, until all leaf

nodes are terminals, which constitute the sentence. PCFGs make a similar indepen-

dence assumption as in HMMs, i.e., the probability that a nonterminal is expanded

via some rule is independent of everything else given the nonterminal itself. It is

well-known that the independence assumption in PCFGs is unrealistically strong

that they are unable to effectively model the dependencies in the generation process

37

of natural sentences. Matsuzaki et al. [106] addressed this problem by introduc-

ing latent annotations to the nonterminals, similar to the way that latent states are

introduced to HMMs in Section 2.4. The resulting grammar is called a PCFG gram-

mar with latent annotations (PCFG-LA). We will describe the details of PCFG-LA

grammars in Chapter 5 and then present a series of methods in Chapters 5, 6, and

7 to improve PCFG-LA grammars and obtain high quality parsing models for a

variety of languages.

2.6 Synchronous Probabilistic Context-Free Grammars and Latent

Annotations

Synchronous probabilistic context-free grammars (SPCFGs) [76] are an exten-

sion of PCFG grammars to model a pair of languages synchronously. SPCFGs are

formally defined as follows:

Definition 2.6.1 A SPCFG grammar G is a tuple: G = (V ,Σ1,Σ2,R, S, P) where

• V is a finite set of nonterminals representing the same set of different types of

syntactic categories in two languages.

• Σ1 is a finite set of terminals, disjoint from V , representing the alphabet of

the first language.

• Σ2 is a finite set of terminals, disjoint from V , representing the alphabet of

the second language.

38

• R is a set of rewriting rules of the form X → 〈γ1, γ2〉, where X ∈ V, γ1 ∈

(Σ1 ∪ (V ×N))∗, γ2 ∈ (Σ2 ∪ (V ×N))∗, and every (X,n) ∈ V ×N can occur at

most once in either γ1 and γ2 and whenever it occurs in γ1, it also occurs in

γ2, and vice versa.

• S ∈ V is the unique root symbol that represents the whole sentence.

• P assigns a probability to each rule in R such that
∑

γ1,γ2:X→〈γ1,γ2〉∈R P(X →

〈γ1, γ2〉) = 1.

SPCFGs suffer from the same independence problem as in PCFGs and HMMs,

and can also be enhanced by introducing latent categories to the nonterminals.

However, this addition would dramatically increase decoding cost when applied to

hierarchical phrase-based machine translation systems. In Chapter 8, we will de-

scribe an alternative approach to introduce latent annotations to SPCFG grammars

to capture and enforce syntactic constraints for machine translation in an efficient

and effective way.

2.7 Conclusions

In this chapter, we discussed the strong independence assumptions of Markov

models and HMMs and the problems that arise from making such strong assump-

tions. We then described how to address these problems by using HMMs and latent

HMMS. The inference and learning algorithms for HMMs and latent HMMs were

also presented. We also briefly discussed similar issues with PCFG grammars and

39

SPCFG grammars and how they can be addressed by introducing latent variables.

In the next chapter, we will develop and evaluate a latent bigram POS tagger based

on a latent HMM.

40

Chapter 3

POS Tagging with Latent Variables

3.1 Overview

Generative probabilistic part-of-speech (POS) tagging models typically make

an assumption that the assignment of tags to words is only dependent on local

factors and is independent of everything else given the local constraints. While

these models are practical and fairly effective, they are unable to utilize and benefit

from longer dependency constraints that are inherent in natural languages.

We model the intrinsic dependencies among words and tags using latent vari-

ables by splitting POS tags of a bigram HMM tagger into fine-grained latent tags

that are better able to capture contextual and lexical constraints. The proposed

approach has the ability to learn fine-grained latent tags at different levels of gran-

ularity, and so it is able to adjust the number of parameters based on the amount

of training data.

Our experiments on both Chinese and English show that the latent bigram

tagger significantly outperforms conventional bigram and trigram taggers. We also

observe that the latent bigram tagger is more effective than conventional models

when learning from additional training data that is automatically labeled.

This chapter is organized as follows. Section 3.2 provides a short introduction

to POS tagging. Section 3.3 and 3.4 briefly review previous research on generative

41

and discriminative POS taggers, respectively. Section 3.5 describes our approach to

building a bigram POS tagger with latent variables. Section 3.6 investigates the use

of self-training for POS tagging. Experimental results are presented in Section 3.7.

The last section concludes this chapter.

3.2 Introduction to POS Tagging

POS tagging is the process of assigning each word in a sentence with a POS

tag, e.g., NN for common nouns and JJ for adjectives. POS tagging is often a

prerequisite step for many natural language processing tasks such as named entity

detection [112], parsing [48], sentence boundary detection [98], and advanced systems

such as machine translation [75] and information retrieval [102].

POS tags are linguistic categories that are generally defined based on the

syntactic or morphological behaviors of words. The common POS tags in English

include noun, verb, article, adjective, preposition, pronoun, adverb, conjunction,

and interjection, and there are many more categories and subcategories. The set

of POS tags varies for different languages, as well as for different corpora of the

same language. For example, nouns in some languages can be further divided into

plural, possessive, and singular forms, and verbs in some languages can be marked

for tense, aspect, etc.

The challenge for POS tagging arises from the fact that many words have

multiple POS tags. Table 3.1 shows the breakdown of word types in the Brown

Corpus for English based on their degree of ambiguity in terms of POS tags [51]. It

42

Degree of ambiguity Number of word types

Unambiguous (1 tag) 35340
Ambiguous (2-7 tags) 4100
2 tags 3760
3 tags 264
4 tags 61
5 tags 12
6 tags 2
7 tags 1 (“still”)

Table 3.1: Number of words by degree of ambiguity

is reported that over 10% of the (unique) English vocabulary words and over 40%

of the tokens (running words) in the Brown Corpus are ambiguous. Words in other

languages can be more ambiguous than in English. For example, more than 29.9%

of the vocabulary words in the Chinese Penn treebank (CTB) [161, 162] have more

than one POS tag [151].

Many approaches have been developed in the literature for POS tagging, rang-

ing from rule-based methods [60, 83, 154] that rely on a dictionary to provide the

possible POS tags for a word and hand crafted rules to decide what categories can

co-occur, to transformation-based learning methods [18] that start with some simple

initial assignment of tags and then incrementally learn rules to recover errors based

on the training data, and to probabilistic methods [15, 79, 131, 147, 151].

We will next briefly describe two popular types of POS taggers, HMM-based

generative POS taggers and discriminative POS taggers, discuss their limitations,

and present our latent variable tagger.

43

3.3 HMM POS Tagger

Let Σ be the set of vocabulary words and X (o) be the set of possible POS

tags for each word o ∈ Σ. POS tagging using a hidden Markov model (HMM) can

be considered as an instance of Bayesian inference, wherein we observe a sequence

of words on1 = o1, · · · , on, and need to assign them the most likely tag sequence x̂n1 ,

i.e.,

x̂n1 = arg max
1≤k≤n
xk∈X (ok)

P(Xn
1 = xn1 |On

1 = on1)

= arg max
1≤k≤n
xk∈X (ok)

P(Xn
1 = xn1 , O

n
1 = on1)

In a bigram HMM tagger, the joint probability of (on1 , x
n
1) is factored as:

P(On
1 = on1 , X

n
1 = xn1) =

n∏
i=1

P(Xi|X i−1
1 , Oi−1

1)P(Oi|X i
1, O

i−1
1)

=
n∏
i=1

P(Xi|Xi−1)P(Oi|Xi)

The tagging performance of a bigram tagger is limited by its overly strong first-

order hidden Markov assumption. A common approach to address this problem is

to use a higher-order hidden Markov assumption. For example, the TnT tagger [15]

employs trigram transition probabilities and bigram emission probabilities11:

P(On
1 , X

n
1) =

n∏
i=1

P(Xi|Xi−1, Xi−2)P(Oi|Xi) (3.1)

11Equation 3.1 is slightly different from the original TnT tagger, which used a bigram transition
at the right boundary. We assume X−1 = SSOS STATE.

44

and the second-order HMM tagger developed by Thede and Harper [147] employs

both trigram transition and emission probabilities:

P(On
1 , X

n
1) =

n∏
i=1

P(Xi|Xi−1, Xi−2)P(Oi|Xi−1, Xi) (3.2)

In supervised tagging tasks, a corpus T of POS-tagged sentences are given

as the training data and the parameters of HMM taggers can be simply estimated

by normalizing observed counts on the training data according to the maximum

likelihood criterion. In the case of the bigram tagger in Equation 3.1, the maximum-

likelihood estimates are:

Pt(x|x′) =
c(x, x′)

c(x′)
(3.3)

Pe(o|x) =
c(o, x)

c(x)
(3.4)

where c(·, ·) and c(·) denote event counts in the training data. For example,

c(x, x′) =
∑

(xn1 ,o
n
1)∈T

n∑
i=1

δ(xi−1, x
′)δ(xi, x) (3.5)

in which δ(·, ·) returns 1 if the two operands are identical and 0 otherwise.

It is well know that maximum likelihood estimation suffers from the data

sparsity problem. The conditional probabilities are usually over-estimated for the

events observed in the training data and are under-estimated, actually set to zero,

for the events that are not observed in the training data but could occur in a test

45

sentence. Data sparsity becomes more severe for higher-order models, and so it is

essential to utilize effective smoothing techniques. For example, the trigram tagger

of Thede and Harper [147] uses a log-based smoothing method to smooth transition

(and similarly emission) probabilities:

PThede(Xi|Xi−1, Xi−2) = f(c(xii−2))P(Xi|Xi−1, Xi−2)

+(1− f(c(xii−2))PThede(Xi|Xi−1) (3.6)

with

f(x) =
loga(x+ 1) + b

loga(x+ 1) + (b+ 1)
(3.7)

where a and b are two parameters that need to be tuned.

The smoothing method in Equation 3.6 does not handle out-of-vocabulary

(OOV) words and would still assign a zero probability to them. A simple approach

to model OOV words is to uniformly estimate the emission probabilities of those

unseen words based on the statistics of rare words in the training data; however,

this totally ignores the morphological properties of words that could otherwise be

informative of the POS types of OOV words, especially for inflected languages [138].

As reported in (Brants [15]), 98% of the words in the Wall Street Journal (WSJ)

part of the Penn treebank ending in able are adjectives (e.g. fashionable, variable)

while the remaining 2% are nouns (e.g. cable, variable). The English trigram tagger

in (Thede and Harper [147]) combines suffix and three binary features, i.e., whether

46

the word is capitalized, whether the word is hyphenated, and whether the word

contains numbers, into a signature of the word and uses it to estimate the emission

probabilities of OOV words. Note that OOV words from different languages have

different characteristics and thus should be handled differently. For example, the

word formation process for Chinese words is very different from English words [120].

Indeed, the last characters in a Chinese word are, in some cases, most informative of

the POS type, while for others, it is the characters at the beginning. Furthermore,

it is not uncommon for a character in the middle of a word to provide some evidence

for the POS type of the word. In (Huang et al. [72]), we exploited this Chinese-

specific characteristic to estimate the emission probability of an OOV word based

on all of the characters and achieved improved tagging accuracy on Chinese.

3.4 Discriminative POS Taggers

Discriminative POS taggers model the conditional probability P(Xn
1 |On

1) in-

stead of the joint probability P(On
1 , X

n
1) as in HMM models. In maximum-entropy

based models [131], the conditional probability is typically approximated as follows:

P(Xn
1 |On

1) =
n∏
i=1

P(Xi|X i−1
1 , On

1)

≈
n∏
i=1

P(Xi|Hi) (3.8)

where Hi represents the approximate history. The conditional probability P(Xi =

47

Condition Features

oi is not rare oi = o & xi = x

oi is rare

p is the prefix of oi, |p| ≤ 4 & xi = x
s is the suffix of oi, |s| ≤ 4 & xi = x
oi contains number & xi = x
oi contains uppercase character & xi = x
oi contains hyphen & xi = x

∀oi

xi−1 = x′ & xi = x
xi−2 = x∗, xi−1 = x′ & xi = x
oi−1 = o & xi = x
oi−2 = o & xi = x
oi+1 = o & xi = x
oi+2 = o & xi = x

Table 3.2: Feature templates

x|Hi = h) is modeled by a log-linear model of k features:

P(Xi = x|Hi = h) = p(x|h) =
exp(

∑k
j=1 λjfj(x, h))∑

x′∈X exp(
∑k

j=1 λjfj(x
′, h))

(3.9)

where X is the tag inventory, fi is a typically a binary feature function, and λi

is the corresponding feature weight. Table 3.2 lists the feature templates used in

(Ratnaparkhi [131]). The benefit of modeling conditional probabilities with log-

linear models is that one can encode any overlapping information about the pair of

(h, x) as features to help predict POS tags. For example, Toutanova and Manning

[148] improved the model of Ratnaparkhi [131] by incorporating features that better

handle capitalization for OOV words, disambiguate the tense forms of verbs, and

discriminate particles from prepositions and adverbs.

The feature weights λ1, · · · , λk of the probability distributions p̂ that best fit

48

the training data can be obtained by maximum likelihood estimation:

Q = {p|p(x|h) =
exp(

∑k
j=1 λjfj(x, h))∑

x′∈X exp(
∑k

j=1 λjfj(x
′, h))

}

L(p) =
∑
x,h

p̃(x, h) log p(x|h)

p̂ = arg max
p∈Q

L(p) (3.10)

in which p̃ is the empirical distribution of (x, h) on the training data. Berger et al.

[9] showed that this is equivalent to maximizing the conditional entropy:

H(p) = −
∑
x,h

p̃(h)p(x|h) log p(x|h) (3.11)

under the following constraints:

∑
x,h

p̃(x, h)fj(x, h) =
∑
x,h

p̃(h)p(x|h)fj(x, h) (3.12)

Maximum entropy models suffer from the label bias problem [14] that results

from the fact that the scores of transitions going out of a state are locally normalized,

causing a bias toward states with fewer outgoing transitions. Conditional random

field (CRF) models [79] avoid this bias by normalizing the scores of the entire state

sequence instead of each single state:

P(Xn
1 = xn1 |On

1 = on1) =
exp

(∑n
i=1

∑k
j=1 λjfj(xi−1, xi, o

n
1)
)

Z(on1)
(3.13)

where fj(xi−1, xi, o
n
1) represents a feature involving states and observations and

49

Z(on1) is the partition function to ensure that P(Xn
1 = xn1 |On

1 = on1) is a proper

distribution over all possible xn1 sequences given the sentence.

Despite the fact that discriminative models have the flexibility to incorporate

overlapping features, including long distance features that relate non-local obser-

vations to local states, they are still subject to strong independence assumptions

among the states in order to keep model inference tractable. For example, the

feature function fj(xi−1, xi, o
n
1) of the CRF model in Equation 3.13 is only able to

capture dependencies among neighboring states. Although approaches like discrim-

inative reranking [72] are able to use long distance features, they are still built upon

base models that suffer from using only local constraints.

3.5 Latent Bigram POS Tagger

In POS tagging, we are interested in modeling the dependencies among the

word/tag sequence (on1 , x
n
1), not the word sequence on1 alone. When modeled by a

first-order HMM, the generation process of the word/tag pairs is Markovian and is

only able to capture dependencies among the neighboring pairs, as we have shown

in Section 2.4:

P(Oi, Xi|Oi−1
1 , X i−1

1) = P(Oi, Xi|Oi−1, Xi−1) (3.14)

The traditional approach to capture longer dependencies is to use a higher-

order hidden Markov assumption; however, higher-order taggers suffer from more

severe data sparsity issues and require more sophisticated smoothing methods to

50

make them effective, which itself is a challenging task. Using a fixed order of inde-

pendence assumption is also not likely to be optimal because it may be too strong

for some parts of the model where the training instances are sufficient but too weak

for other parts of the model where the training instances are sparse.

In order to effectively model dependencies among words and tags, we develop a

latent bigram tagger that splits each POS tag x into a set of fine-grained latent tags

Z(x) and model the word generation process using a latent hidden Markov model

described in Section 2.4. In this model, the joint process that generates the word/tag

pairs is no longer Markovian. Instead, all word/tag pairs are now dependent on each

other:

P(Oi, Xi|Oi−1
1 , X i−1

1)

=
∑

zi−1∈Z(xi−1)
zi∈Z(xi)

P(Oi, Xi, Zi = zi, Zi−1 = zi−1|Oi−1
1 , X i−1

1)

=
∑

zi−1∈Z(xi−1)
zi∈Z(xi)

P(Zi−1 = zi−1|Oi−1
1 , X i−1

1)Pt(zi|zi−1)Pe(oi|zi) (3.15)

and the impact of the complete history (oi−1
1 , xi−1

1) on the distribution of (oi, xi)

can be represented by the conditional distribution P(Zi−1 = zi−1|Oi−1
1 , X i−1

1) of the

latent tag zi−1. Note that if xi−1 has only one latent tag, P(Zi−1 = zi−1|Oi−1
1 , X i−1

1)

would be consistently 1 for the only latent tag, and thus it would not be able to

capture any history information in (oi−1
1 , xi−1

1). The number of latent tags split

from each POS tag directly affects the latent bigram tagger’s capability to capture

complex dependencies; however, it is also not desirable to excessively split the POS

51

tags because this would then cause severe data sparsity problems (and over-fitting).

Ideally, we would like to allocate more latent tags to POS tags that have more

context variation in order to better capture those contexts. Figure 3.1 illustrates

the number (in logarithmic scale) of tokens and types (i.e., unique words) associated

with each POS tag in sections 0-18 of the WSJ Penn treebank [104]. In general,

frequent tags and tags associated with many unique words tend to appear in a

variety of different contexts and thus should receive more latent tags than others.

However, this is not always true. It is easy to observe that the tag frequency follows

the Zipf’s Law [101]. However, determining the number of latent tags based on

the tag frequency is not an appropriate strategy because a frequent tag may only

appear in a few simple contexts. For example, a period (.) always appears at the

end of a sentence, and thus there is no need to use more than a few latent tags to

capture the limited contextual variation. Solely relying on the number of unique

words associated with each POS tag is also not a reliable strategy for determining

the number of latent tags because a POS tag associated with only a small number

of frequent words (e.g., comma (,) or determiner (DT)) can appear in very different

contexts and thus would benefit from using relatively more latent tags.

The data-driven split-merge latent HMM training algorithm described in Sec-

tion 2.4.2.3 is able to adaptively allocate latent tags to cases that are most beneficial

at increasing the training likelihood and so is used to train our latent bigram tagger.

As shown in Figure 3.1, the POS tags for nouns (NN, NNS, NNP, and NNPS)12,

12NN stands for singular or mass nouns, NNS for plural nouns, NNP for proper nouns, and
NNPS for proper plural nouns.

52

54 40 51 25 44 26 25 4 29 27 25 15 19 9 13 16 11 13 10 3 2 3 2 6 4 6 4 4 2 3 3 1 3 2 2 3 1 1 1 1 1 1 1 1 1

1E+01

1E+02

1E+03

1E+04

1E+05

1E+06

NN IN
NN

P DT JJ
NN

S , .
CD RB VB

D VB CC TO VB
Z

VB
N

PR
P

VB
G

VB
P

M
D

PO
S

PR
P$ $ `` '' :

W
DT JJ

R RP
NN

PS W
P

W
RB JJ

S
RB

R
-R

RB
-

-L
RB

-
EX

RB
S

PD
T

FW W
P$ #
UH SY

M LS

1E+00

1E+01

1E+02

1E+03

1E+04

1E+05

Nu
m

be
r o

f T
ok

en
s

Nu
m

be
r o

f T
yp

es

Figure 3.1: The number (in logarithmic scale) of tokens (blue) and types (red) for
each POS tag in the WSJ Penn treebank training set. The number of latent tags
induced by the split-merge training algorithm is also displayed below each POS tag.

verbs (VB, VBD, VBG, VBN, VBP, and VBZ)13, adjectives (JJ), prepositions (IN),

and determiners (DT) receive the most latent tags, while tags for interjections (UH),

symbol (SYM), and some others only receive one latent tag. This is consistent with

our discussion about which POS tags should be assigned the most latent tags and

which ones should not. For example, period (.) is the 8-th most frequent POS tag

in the figure but it receives only 4 latent tags, much fewer than the less frequent

POS tags such as the verb tags.

In our experiments, we always run 50 iterations of EM training after each

splitting operation and 20 iterations of EM training after each merging operation,

followed by 10 additional iterations of EM with smoothing, as described in the next

subsection.

13VB stands for the base form, VBD for past tense, VBG for gerund or present participle, VBN
for past participle, VBP for non-3rd person singular present, and VBZ for 3rd person singular
present.

53

3.5.1 Smoothing

As more latent tags are allocated using the split-merge training algorithm, the

modeling power of a latent bigram tagger increases. However, this would eventually

lead to over-fitting as EM is guaranteed to increase the training likelihood at each

iteration. In order to alleviate the over-fitting problem and support more latent

tags, we follow the approach introduced in (Petrov et al. [126]) to smooth the latent

tags split from the same POS tag. The smoothed emission probabilities P′e(o|z)

and transition probabilities P′t(z
′|z) for all z ∈ Z(x) of POS tag x are computed as

follows:

P̄e =
1

|Z(x)|
∑

z∗∈Z(x)

P(o|z∗)

P′e(o|z) = ε1P̄e + (1− ε1)Pe(o|z)

P̄t =
1

|Z(x)|
∑

z∗∈Z(x)

P(z′|z∗)

P′t(z
′|z) = ε2P̄t + (1− ε2)Pt(z

′|z)

where the smoothing parameters ε1 and ε2 are tuned on the development set.

The above smoothing approach can alleviate the data sparsity problem that

arises when fine-grained latent tags are introduced based on the maximum-likelihood

criterion; however, it is not sufficient to address the sparsity issue associated with

rare words because their co-occurrence with latent tags is much harder to estimate

reliably. To handle this problem, we tie the emission probabilities Pe(o|z) of words

whose frequency is less than threshold τ into a single parameter Pe(unk|z) in pro-

54

portion to the co-occurrence frequency of the word o and the corresponding POS

tag x = Z−1(z), i.e.,

Pe(o|z) =
c(x, o)∑

o′:c(o′)<τ c(x, o
′)

Pe(unk|z)

and tune Pe(unk|z) as a parameter in EM training.

3.5.2 OOV Handling

While the training algorithm to induce latent tags is language independent,

language dependent methods are needed to effectively handle OOV words. We ex-

periment with two languages, English and Chinese. For English, we estimate the

emission probability of an OOV word based on its suffixes, as well as several other

features such as whether the word is capitalized, whether the word is hyphenated,

and whether the word contains numbers [147]. However, this approach is not ef-

fective to handle Chinese OOV words for the reasons we discussed in Section 3.3.

Following (Huang et al. [72]), we use the geometric average of the emission proba-

bilities of all of the characters in an OOV Chinese word to estimate the emission

probability of the OOV word:

P(w|tx) = n

√∏
ck∈w,P(ck|t)6=0

P(ck|t)

where n = |{ck ∈ w|P(ck|t) 6= 0}|. Characters not seen in the training data are

ignored in the computation of the geometric average. We back off to use the rare

55

word statistics regardless of word identity when the above equation cannot be used

to compute the emission probability.

3.5.3 Decoding

As we discussed in Section 2.4.2.2, retrieving the most-likely POS sequence

given a test sentence is an intractable task for a latent bigram tagger, and thus

we must use approximate solutions or optimize on a different criterion. In our

experiments, we use the MostProb-T-P method of Equation 2.18 to return the POS

sequence that maximizes the product of the posterior probabilities of transitions

because it performs better than the other approaches.

x̂n1 = arg max
xn1

n∏
i=1

P(Xi−1 = xi−1, Xi = xi|On
1 = on1)

3.6 Self-Training

It is always desirable to have more high quality training data to train more

accurate taggers; however, gold standard hand-labeled training data is often quite

limited, because human annotation is both expensive and time-consuming. Recog-

nizing that unlabeled data is often ubiquitous and can be obtained in large quantities

at a low cost, semi-supervised learning methods such as self-training are naturally

exploited for improving tagging performance. Self-training, as shown in Figure 3.2,

proceeds as follows: we first train an initial model on some gold standard training

data, then use that model to label a large amount of unlabeled data, and finally train

56

Automatically
Labeled

Data

Unlabeled
Data

Hand
Labeled

Data

Label

Train New
Model

Train
Model

Figure 3.2: Self-Training

a new model on the combination of gold standard training data and automatically

labeled training data.

Early investigations of self-training on POS tagging have mixed outcomes.

Clark et al. [45] reported positive results with a small amount of gold standard

training data but negative results when the amount of gold standard training data

increases. Wang et al. [156] also reported improvement from self-training using a

trigram tagger with a small amount of gold standard data, but as we will show

in our experiments, the same tagger does not benefit from self-training when more

gold standard training data is available. The value of the latent variable approach

for tagging is that it can learn more fine grained tags to better model the training

data. Liang and Klein [94] analyzed errors of unsupervised learning using EM

and found that both estimation and optimization errors decrease as the amount of

unlabeled data increases. In our case, the learning of latent annotations through

EM may also benefit from a large set of automatically labeled data to improve

tagging performance. We will investigate self-training of the latent bigram tagger

and compare it with conventional bigram and trigram HMM taggers.

We next discuss two decisions associated with self-training. There are several

57

ways to automatically label the unlabeled data for self-training. A fairly standard

method is to tag the unlabeled sentences with a tagger trained on gold standard

training data, and then combine the automatically labeled data with the gold stan-

dard data to re-train the tagger. This is the approach we choose for self-training. An

alternative approach is to use the latent bigram tagger trained on the gold standard

training set as the initial model and perform unsupervised training on the unlabeled

training data. The problem is that this would slow down the training process be-

cause the POS tags would need to be determined in addition to the latent POS tags

at each EM iteration.

Another important decision is how to combine the gold standard and automat-

ically labeled data when training a new tagger. Errors in the automatically labeled

data could limit the accuracy of the self-trained model, especially when there is a

much greater quantity of automatically labeled data than the gold standard training

data. To balance the gold standard and automatically labeled data, one could dupli-

cate the gold standard training data to match the amount of automatically labeled

data, which is what is done to self-train the conventional bigram and trigram HMM

taggers. In order to avoid redundant EM computations over the same data when

self-training the latent bigram tagger, we weight the posterior probabilities com-

puted for the gold and automatically labeled data, so that they contribute equally

to the resulting model.

58

3.7 Experiments

3.7.1 Setup

We conduct experiments on two languages: Chinese and English. The Chi-

nese Penn treebank 6.0 (CTB6) [162] is used as the gold standard data in our study

on Chinese. CTB6 contains news articles, which are used as the primary source

of gold standard training data in our experiments, as well as broadcast news tran-

scriptions. Since the news articles were collected during different time periods from

different sources with a diversity of topics, in order to obtain a representative split

of train/development/test sets, we divide them into blocks of 10 files in sorted order

and for each block use the first file for development, the second for test, and the

remaining for training. The broadcast news data exhibits many of the character-

istics of newswire text (it contains many nonverbal expressions, e.g., numbers and

symbols, and is fully punctuated), and so it is also included in the training data

set. We also utilize a greater number of unlabeled sentences in the self-training

experiments. They are selected from sources similar to the newswire articles, and

are normalized [165] and word segmented [150].

The English experiments are conducted on the WSJ Penn treebank [104].

Following the data splits in (Toutanova et al. [149]), we use sections 0-18 for training,

19-21 for development, and 22-24 for testing. We also utilize a large number of

unlabeled sentences from the BLLIP corpus [35] for the self-training experiments.

Table 3.3 summarizes the data used in our experiments.

We evaluate the performance of the latent bigram tagger (denoted by Bi-

59

Train Dev Test Unlabeled

Chinese
24.4k 1.9k 2.0k 210k

(678.8k) (51.2k) (52.9k) (6,254.9k)

English
38.2k 5.5k 5.5k 210k

(912.3k) (131.8k) (129.7k) (5,082.1k)

Table 3.3: The number of sentences (and tokens in parentheses) in our experiments

50 100 150 200 250 300 350 400
91.5

92

92.5

93

93.5

94

94.5

Number of latent annotations

T
ok

en
 a

cc
ur

ac
y

(%
)

Bigram+LA:1
Bigram+LA:2
Trigram

Figure 3.3: The learning curves of the latent bigram tagger on the development set

gram+LA) compare it with a conventional bigram tagger without latent variables

(denoted by Bigram) and a state-of-the-art trigram HMM tagger (denoted by Tri-

gram) [72] that uses trigram transition and emission models together with bidi-

rectional decoding. Due to the randomness introduced in the split-merge training

algorithm, different random seeds produce latent bigram taggers with slightly dif-

ferent tagging performance. For each setup, we train 10 latent bigram taggers with

different seeds and select the tagger to evaluate based on its performance on the

development set. In Chapter 6, we will investigate methods to utilize the variability

among latent variable models for enhanced performance.

60

3.7.2 Chinese Results

Figure 3.3 plots the learning curves of two versions of the latent bigram tagger

and compares them with the performance of the trigram tagger. The first version

(labeled as Bigram+LA:1) does not implement the rare word smoothing method

described Section 3.5.1, while the second version (labeled as Bigram+LA:2) does.

Both of the latent bigram taggers initially have a much lower tagging accuracy

than the trigram tagger, due to their strong but invalid independence assumption.

As the number of latent annotations increases, the latent bigram taggers are able

to learn more from the context based on the latent annotations and eventually

outperform the trigram tagger. The performance gap between the two latent bigram

taggers suggests that over-fitting occurs in the word emission model when more

latent annotations are available for training and sharing the statistics among rare

words alleviates the data sparsity issue. In the later experiments, we use Bigram+LA

to denote the latent bigram tagger with rare word smoothing.

Figure 3.4 compares the effectiveness of self-training (ST) for three models (the

latent bigram tagger and the conventional bigram and trigram taggers) when trained

using different amounts of gold standard training data. The entire unlabeled data

set is used for self-training. There are two interesting observations that distinguish

the latent bigram tagger from the other two taggers.

First, although all of the taggers improve as more gold standard training data

becomes available, the performance gap between the latent bigram tagger and the

other two taggers also increases. This is because the additional training data sup-

61

89

90

91

92

93

94

95

0.2 0.4 0.6 0.8 1.0

To
ke

n
A

cc
ur

ac
y

(%
)

Fraction of CTB training data

Bigram+LA+ST
Bigram+LA
Trigram+ST
Trigram
Bigram+ST
Bigram

0.1

Figure 3.4: The performance of three taggers evaluated on the Chinese development
set, before and after self-training with different sizes of gold standard training data

ports an increased number of latent annotations that are able to learn more com-

plex dependencies. Second, the latent bigram tagger benefits much more from self-

training. Except for a slight improvement when there is a small amount of gold stan-

dard training data, self-training hurts the performance of the conventional bigram

tagger as the amount of gold standard data increases. The trigram tagger benefits

from self-training initially but eventually has a similar pattern to the bigram tag-

ger when it is trained on the entire gold standard training data. The performance

of the latent bigram tagger improves consistently with self-training. Although the

gain decreases for models trained on larger training sets because stronger models

are harder to improve, self-training still significantly improves tagging accuracy.

Table 3.4 reports the final tagging accuracies on the CTB6 test set for the

taggers trained on the entire gold standard training data. All of the improvements

are statistically significant (p < 0.005). The latent bigram tagger is significantly

more accurate than the conventional trigram tagger and it is able to further benefit

62

Tagger Test Accuracy

Bigram 92.25
Trigram 93.99
Bigram+LA 94.53
Bigram+LA+ST 94.78

Table 3.4: The token accuracy (%) of the taggers on the CTB6 test set

from self-training.

It is worth mentioning that we initially added latent annotations to a trigram

tagger, rather than a bigram tagger, to build from a stronger starting point; however,

this did not work well. A trigram tagger requires sophisticated smoothing to handle

data sparsity, and introducing latent annotations exacerbates the sparsity problem,

especially for trigram word emissions. The uniform extension of a bigram tagger to a

trigram tagger ignores whether the use of additional context is helpful and supported

by enough data, and it is unable to capture dependencies beyond the second-order

independence assumption. Furthermore, there is no mechanism to eliminate trigram

contexts that are not useful. In contrast, the latent bigram tagger is able to learn

different granularities for tags based on the training data.

3.7.3 English Results

Figure 3.5 compares the performance of the three English taggers using differ-

ent sizes of WSJ training data before and after self-training. The general observation

that the latent bigram tagger benefits more from self-training than the conventional

bigram and trigram taggers is similar to that of the Chinese experiment. When us-

63

93.5

94.0

94.5

95.0

95.5

96.0

96.5

97.0

0 0.2 0.4 0.6 0.8 1.0

To
ke

n
A

cc
ur

ac
y

(%
)

Fraction of WSJ training data

Bigram+LA+ST
Bigram+LA
Trigram+ST
Trigram
Bigram+ST
Bigram

0.04

Figure 3.5: The performance of three taggers evaluated on the English development
set, before and after self-training with different sizes of gold standard training data

ing only 4% of the training data, the latent bigram tagger scored at 94.03%, poorer

than 94.4% obtained by the trigram tagger. This is probably because we use a

simple smoothing method for the latent bigram tagger and the data is too sparse

to learn fine-grained latent tags without over-fitting. However, the accuracy of the

latent bigram tagger improves significantly to 95.98% after self-training, compared

to only 94.96% for the self-trained trigram tagger. Note that the accuracy of the

self-trained latent bigram tagger drops slightly when the size of the gold standard

training data increases from 4% to 8% of the WSJ training set. This is because the

performance of the latent bigram tagger is sensitive (due to over-fitting) to the num-

ber of latent tags when there is a small amount of training data and the split-merge

training algorithm may not get close to the optimal number of latent tags because

it increases the number of latent tags discretely14.

Table 3.5 reports the final results of the taggers on the WSJ test set. The

14Recall that each split-merge iteration splits every latent tag into two and then merges half of
them back.

64

Tagger 4% 100%

Bigram 93.83 96.13
Bigram+ST 94.09 95.94

Trigram 94.67 96.92
Trigram+ST 95.25 96.84

Bigram+LA 94.20 96.98
Bigram+LA+ST 95.99 97.05

Table 3.5: The token accuracy (%) of the taggers trained on 4% and 100% of the
WSJ training set before and after self-training, evaluated on the WSJ test set

conventional bigram and trigram taggers benefit from self-training when initially

trained on 4% of the gold standard training data but they are hurt by self-training

when initially trained on the entire gold standard training data. In contrast, the

latent bigram tagger is able to consistently benefit from self-training. It should be

noted that the improvement from 96.98% to 97.05% obtained by self-training the

latent bigram tagger trained on the entire gold standard training data is impressive

given the fact that the inter-annotator tagging agreement rate on the WSJ Penn

treebank is only around 97% [104].

3.8 Conclusions

In this chapter, we have developed and evaluated a latent bigram tagger based

on the latent hidden Markov model. Our experiments on Chinese and English

showed that the latent bigram tagger achieves significantly better tagging accuracies

than the conventional bigram and trigram taggers and is able to consistently benefit

from self-training. We will further study self-training in Chapter 5 for parsing and

65

analyze why it boosts the performance of latent variable models. In the next chapter,

we will develop and evaluate a language model that uses the latent bigram tagger

developed in this chapter.

66

Chapter 4

Language Modeling with Latent Variables

4.1 Overview

A statistical language model is used to determine how likely a given word

sequence comes from a language. The most commonly used word N -gram language

models suffer from severe data sparsity problems and require effective smoothing

methods to obtain reliable parameter estimates. Class-based language models are an

alternative that clusters similar words into classes to reduce data sparsity; however,

clustering removes much of the lexical information and tends to results in worse

performance than the word N -gram models.

We develop a latent language model that is able to capture the contextual

dependencies among words using latent variables. In this model, each word is as-

sociated with a set of latent tags that are induced automatically from the training

data. Different uses of a word under different contexts are represented by different

latent tags and similar uses of different words are represented by their shared latent

tags. The latent variable approach is able to flexibly adjust the model parameteriza-

tion to learn dependencies at different levels of granularity and so is able to achieve

better performance than conventional N -gram models.

The rest of the chapter is structured as follows. Section 4.2 provides some

background information on language models. Sections 4.3 and 4.4 briefly review

67

previous work on word N -gram language models and class-based language models,

respectively. Section 4.5 describes our approach to building language models with

latent tags, and Section 4.6 describes a special instantiation of latent language mod-

els based on POS tags. Experimental results for the POS-based latent language

model are presented in Section 4.7. The last section concludes this chapter.

4.2 Introduction to Language Modeling

A language model assigns a probability mass to any word sequence on1 =

o1, · · · , on of a language:

P(O1 = o1, · · · , On = on) (4.1)

and it is the backbone of many applications such as speech recognition [78], machine

translation [20], optical character recognition [74], spelling correction [81], handwrit-

ing recognition [142], and information retrieval [128]. A typical use of a language

model in these applications is as a component in a noisy channel model. Taking

speech recognition for example, the goal is to find the most likely word sequence Ŵ

given acoustic input A, which can be expressed as follows:

Ŵ = arg max
W

P(W |A) = arg max
W

P(W,A)

P(A)
= arg max

W
P(W)P(A|W) (4.2)

in which the conditional probability P(A|W) is computed by the acoustic model and

the probability P(W) is assigned by the language model.

68

The joint probability of any word sequence on1 can be factored by the chain

rule as follows:

P(On
1 = on1) =

n∏
i=1

P(Oi = oi|Oi−1
1 = oi−1

1) (4.3)

where each oi in the conditional distribution is the future word to predict, and oi−1
1

is the complete history for estimating the distribution of oi. The prediction of oi is

most accurate given the complete history oi−1
1 ; however, it is impossible to reliably

estimate probabilities conditioned on the complete history. This problem is usually

addressed by defining some mapping function H(·) that maps the observed history

into an equivalence class:

P(On
1) ≈

n∏
i=1

P(Oi|H(Oi−1
1)) (4.4)

Since language models are generally integrated with other models in various

different applications, the best way to compare performance of different language

models is to directly evaluate their performance on the application of interest. For

example, recognition word error rate (WER) [114] is the performance measurement

used to evaluate most modern speech recognition systems15, and thus different lan-

guage models can be compared on the WER of a speech recognition task. Alter-

natively, perplexity is a task-independent metric that measures a language model’s

ability to predict the next word, and it has been found to correlate well with in-

15There are alternative evaluation metrics, e.g., see (McCowan et al. [108]).

69

domain task performance [39]. The perplexity, PPL(on1), of text on1 for a language

model is calculated as:

PPL(on1) = 2Entropy(on1) (4.5)

Entropy(on1) = − 1

n
log2 P(On

1 = on1) (4.6)

where Entropy(·) measures the average number of bits to encode a word in a text

with the language model. An improved language model can better predict words in

a sequence and thus can encode each word using fewer bits. It should be noted that

a language model with a lower perplexity does not necessarily perform better on a

specific task. As noted in (Rosenfeld [135]), a reduction of 10% ∼ 20% in perplexity

is noteworthy, and often (but not always) translates into some improvement in

application performance.

In the next two sections, we briefly describe previous research on word N -

gram language models and class-based language models, and discuss the problems

associated with these two approaches to motivate our method of using latent vari-

ables. Note that there are many other language modeling approaches, and we refer

readers to (Goodman [58]) for an excellent review of statistical language modeling

techniques.

4.3 N -gram Language Models

In a word N -gram language model, the history equivalence classes are defined

as H(oi−1
1) = oi−1

i−N+1, following the (N − 1)-th order Markov assumption that the

70

prediction of word oi is independent of everything else given the preceding (N − 1)

words. Hence P(On
1 = on1) can be approximated as follows:

P(On
1) ≈

n∏
i=1

P(Oi|Oi−1
i−N+1) (4.7)

In particular, when N = 2 (or N = 3), it corresponds to the bigram (or trigram)

language model.

Let c(·) represent the count of an event denoted by · in the training data.

The maximum-likelihood estimates of the conditional probability P(Oi|Oi−1
i−N+1) of

an N -gram language model can be computed based on the statistics in the training

data:

P(Oi = oi|Oi−1
i−N+1 = oi−1

i−N+1) =
c(oii−N+1)

c(oi−1
i−N+1)

(4.8)

Although the Markov assumption greatly reduces the amount of history to

model, N -gram language models still suffer from severe data sparsity problems.

Maximum likelihood estimation usually over-estimates the probabilities of N -grams

observed in the training data while under-estimating the probabilities of unobserved

N -grams. In particular, it assigns a zero probability to unobserved N -grams, and

as a result, any word sequence that contains novel N -grams would receive a zero

probability from the language model, which is undesirable in real world applica-

tions [158]. Even in bigram language models, there could be a significant number

of bigrams in the test set that do not occur in the training data. It was reported

71

in (Rosenfeld [135]) that a third of the trigrams (i.e., consecutive word triplets) in

news articles of a test set selected from the same domain as a training set with 38

million words are not observed in the training set, and furthermore that the vast

majority of the observed trigrams occurred in the training set only once. The prob-

lem becomes more severe for larger N values. A common solution to this problem

is to apply smoothing techniques to allocate some of the probability mass of the

observed N -grams to unobserved N -grams. See (Chen and Goodman [38]) for a

comprehensive review of smoothing techniques for language modeling.

In order to provide a concrete example of how smoothing works, we next

describe one of the best performing smoothing methods, the modified Kneser-Ney

(KN) smoothing method from (Chen and Goodman [38]). The KN-smoothed N -

gram prediction probability PKN(Oi|Oi−1
i−N+1) takes the following form:

PKN(Oi|Oi−1
i−N+1) =

c(oii−N+1)−DN(c(oii−N+1))∑
oi
c(oii−N+1)

+ γ(oi−1
i−N+1)PKN(Oi|Oi−1

i−N+2) (4.9)

where

DN(c) =



0 if c = 0

D1
N if c = 1

D2
N if c = 2

D3+
N if c ≥ 3

(4.10)

This smoothing method subtracts a discounted value (controlled by DN(·) based

on N -gram counts) from the counts of the observed N -grams and recursively inter-

72

polates the resulting N -gram probability with lower-order smoothed probabilities.

The weighting parameter γ(oi−1
i−N+1) is chosen so that the conditional probability

PKN(Oi|Oi−1
i−N+1) sums to one:

γ(oi−1
i−N+1) =

∑
oi
Dn(c(oii−N+1))∑
oi
c(oii−N+1)

(4.11)

Special care is also taken to estimate the smoothed unigram probability PKN(O)

based on the observation that words that occur frequently in the training data do

not necessarily occur more often with a new history in the test set. For example,

although the word Francisco occurs a lot in the training data, it usually only ap-

pears in San Francisco and it is less likely to appear in other contexts in the test

set. Taking this into account, Kneser-Ney smoothing estimates unigram word prob-

ability based on the number of unique bigram histories in which a word occurs in

the training data:

PKN(O) =
c1+(·, o)∑
o′ c1+(·, o′) (4.12)

where c1+(·, o) denotes the number of different words that precede word o in the

training data.

There are different ways to determine the discounting parameters DN . In

modified Kneser-Ney fixed smoothing, these numbers are calculated based on the

73

statistics from the training data as follows:

Y =
N1

N1 + 2N2

D1 = 1− 2Y
N2

N1

D2 = 2− 3Y
N3

N2

D3+ = 3− 4Y
N4

N3

where Ni is the number of unique N -grams that occur exactly i times in the training

collection. In modified Kneser-Ney held-out smoothing, these values are tuned on a

held-out development set.

A problem associated with N -gram models is that given a fixed set of training

data, some N -grams are abundant enough to support a higher N value to achieve

more accurate prediction of words, while some other N -grams are sparse, or even

unobserved, so that a smaller N value would be preferred (as in these smoothing

approaches) in order to retain reliable probability estimation. A fixed N -gram model

does not have the flexibility to model dependencies with different granularities. The

common practice is to choose a reasonably large value of N depending on the amount

of training data and rely on smoothing techniques to handle the sparse N -grams.

Other approaches include variable-length N -gram models [84, 116] and class-based

language models that we describe next.

74

4.4 Class-based Language Models

N -gram language models directly model dependencies among individual words.

An alternative approach is to cluster words into classes, and then model dependen-

cies among words and classes. For example, Thursday and Friday tend to appear

in similar contexts, and thus clustering them together to one class would enable

the use of observed patterns of one word in the training data to help model novel

but similar contexts of the other word in a test sentence. The class-based language

model defined in (Brown et al. [21]) has the following form:

P(Oi|Oi−1
1) = P(Oi|X (oi))P(X (oi)|Oi−1

1)

≈ P(Oi|X (oi))P(X (oi)|H(Oi−1
1))

= P(Oi|Xi)P(Xi|X i−1
i−N+1) (4.13)

where X (·) is a many-to-one mapping that maps each word oi to a class xi, and the

word history equivalence function H(·) maps the complete history to the preceding

(N−1) classes. If a word can have multiple classes, i.e, X (·) maps a word to a set of

classes, the generation of the word sequence on1 can be viewed as a hidden Markov

process:

P(On
1) ≈

∑
1≤k≤n
xk∈X (ok)

n∏
i=1

P(Oi|Xi)P(Xi|X i−1
i−N+1) (4.14)

When N = 2, this reduces to a first-order HMM described in Section 2.2. The

75

conditional probability, P(Oi|Oi−1
1), of word oi given the complete history oi−1

1 , can

then be expressed as:

P(Oi|Oi−1
1) =

∑
xi−1∈X (oi−1)
xi∈X (oi)

P(Oi, Xi = xi, Xi−1 = xi−1|Oi−1
1)

=
∑

xi−1∈X (oi−1)
xi∈X (oi)

P(Xi−1 = xi−1|Oi−1
1)Pt(xi|xi−1)Pe(oi|xi) (4.15)

where the impact of the complete history oi−1
1 on the prediction of word oi is repre-

sented by the conditional distribution P(Xi−1 = xi−1|Oi−1
1) of xi−1.

Class-based language models use a smaller number of contexts and are less

affected by sparsity. The classes can be induced automatically based on statistical

distributional similarities as in (Brown et al. [21]) or chosen to represent linguistic

categories such as POS tags [4]. However, in spite of the benefits of class-based

language models, their performance has often not been on par with word N -gram

language models. Compared to a word trigram language model, Brown et al. [21]

reported an 11% relative increase on perplexity using a class-based trigram language

model with automatically induced classes. Bangalore [4] reported a 24.5% relative

increase on perplexity using a POS-based trigram language model when compared

to a word trigram language model. In general, these models must be combined with

word N -gram models to achieve perplexity reduction.

The number of classes is very important for class-based language models. Ney

et al. [115] found in an experiment with statistically induced word classes that, as

the number of classes increases, the perplexity on the test set decreases initially but

76

then increases. There is a trade-off between generalizability and discriminability as

the number of classes increases. Similar to word N -gram models, the discriminative

power of class-based language models increases by using higher-order N -grams, but

they usually suffer less from data sparsity than their word N -gram counterparts.

Niesler and Woodland [116] obtained a lower perplexity with a trigram POS-

based language model than a bigram POS-based language model, and an even lower

perplexity when using a variable length POS-based language model with a proper

smoothing method. However, their best performing POS-based model still had an

11.3% higher perplexity than a word trigram model. This suggests that word classes

such as POS tags over-generalize words and mask much of the lexical information

that is often helpful for predicting the next word. Recognizing this problem, Heeman

and Allen [66] proposed to add word context back into the POS-based language

model:

P(On
1 , X

n
1) =

n∏
i=1

P(Oi, Xi|Oi−1
1 , X i−1

1)

=
n∏
i=1

P(Oi|Oi−1
1 , X i

1)P(Xi|Oi−1
1 , X i−1

1)

≈
n∏
i=1

P(Oi|Oi−1
i−N+1, X

i
i−N+1)P(Xi|Oi−1

i−N+1, X
i−1
i−N+1) (4.16)

where they model the joint distribution of words and their classes based on contexts

involving both words and classes. The probability of the complete sentence can then

77

be obtained by summing over all possible classes for each word:

P(On
1) =

∑
1≤k≤n
xk∈X (ok)

P(On
1 , X

n
1) (4.17)

Significant improvements have been reported using this richer representation

of context. Using a trigram joint language model, Heeman and Allen [66] achieved

a 44.5% relative reduction in perplexity over a trigram POS-based language model,

and Heeman [65] achieved a 14.5% relative reduction in perplexity over a word

trigram language model. It should be noted that the enrichment of context in a

joint language model imposes an even greater data sparsity problem, and so these

successful investigations all used decision tree based approaches to effectively cluster

histories.

It is important to note that the use of stochastic classes in Equation 4.14

significantly differs from the use of deterministic classes in Equation 4.13. Using

deterministic classes ignores the fact that a word can have multiple distinctive us-

ages. For instance, it might be beneficial to cluster can together with might or could

when it is used as a modal word, but with bottle or cup when it is used as a noun;

however, such a difference cannot be captured by deterministic classes. In a bigram

class-based language model, the transition P(Xi|Xi−1) in Equation 4.13 only tells us

that the current word deterministically belongs to class xi and the model is unable

to capture anything from non-adjacent history oi−2
1 . In contrast, the assignment

of classes in Equation 4.13 is stochastic, and we show in Equation 4.15 that the

distribution of xi−1 depends on the complete word history oi−1
1 . A different history

78

would result in a different distribution of xi−1. For example, suppose oi−1 is can and

it occurs in the context of a noun, the distribution of xi−1 would be skewed toward

a noun rather than a modal verb, abstracting the history into a compact form that

is helpful for predicting oi.

Class-based language models utilizing stochastic classes often rely on POS tags,

which model different syntactic uses of words but not in a fine-grained manner. A

word can have different senses with the same POS. For example, bank can be a

financial institution or the raised ground bordering a lake or a river; it is a noun

in both cases. Different histories leading to different uses of a word cannot be

differentiated by POS tags when these usages share the same POS tag. Moreover,

even if the same word is used with the same sense, it would still be beneficial to

model the contexts in a fine-grained manner to improve word prediction. The joint

language model in Equation 4.16 is able to better predict words by adding lexical

cues; however, it is sill limited by the Markov assumptions and the fact that higher

order models have increased data sparsity.

4.5 Latent Language Model

We develop a language model with latent variables that is able to capture

clustering information among words, as well as distinctive uses of words in different

contexts. We call it a latent language model or an LLM for short. On the one hand,

words with similar usages are clustered into the same class so that data sparsity can

be controlled. On the other hand, different classes are introduced for words that

79

have multiple usages so that it reduces the need for using higher order models to

capture contextual dependency. We focus on the conceptual ideas related to learning

latent classes in this section and will present a practical latent language model in

the next section. Our model is essentially a class-based first-order HMM model:

P(On
1) ≈

∑
1≤k≤n
xk∈X (ok)

n∏
i=1

P(Oi|Xi)P(Xi|Xi−1) (4.18)

This model differs from the traditional class-based language models in that the

classes are induced automatically on the training data. Rather than using higher

order models to capture more complex dependencies, this model simply induces

more fine-grained classes. We also call the classes in this model states in order to

emphasize that this model is essentially an HMM. The set of states can be induced

using the following two operations given some initial states:

Splitting: A state occurring in a variety of different contexts may be split into several

sub-states. For example, a state corresponding to a set of nouns may be split

into two states, one focusing on plural nouns and another on singular nouns.

Similarly, a state that often follows one state whose emitted words are mostly

nouns and another state whose emitted words are mostly verbs may also be

split into two states, one for each type of word distribution for the preceding

states.

Merging: States that share similar contexts may be combined together. For ex-

ample, two states with similar distributions of emitted words P(Oi|Xi) and

80

· · · A X R · · ·
=)

· · · A1 X1 R1 · · ·
=)

· · · A1 XY1 R1 · · ·
· · · B X S · · · · · · B1 X2 S1 · · · · · · B1 X2 S1 · · ·
· · · A Y R · · · · · · A1 Y1 R1 · · · · · · A1 XY1 R1 · · ·
· · · A Y T · · · · · · A1 Y1 T1 · · · · · · A1 XY1 T1 · · ·

Table 4.1: An example of learning contexts using latent tags.

In contrast, the merging operation merges states of words with similar patterns of

contexts together so that the associated parameters can be estimated more reliably.

Table 4.1 illustrates how a latent language model learns from contexts. On the

left are samples of word sequences involving words A, B, R, S, T, X and Y . Suppose

these word sequences occur equally frequently. A word bigram language model can-

not capture any dependency between A and R in word sequence “· · · A X R · · · ”.

Whether the word before X is A or B does not a↵ect the distribution of words after

X because the prediction of words after X is independent of everything else given

X in a word bigram model. This problem can be addressed by introducing states

to the words. In the middle of the table, we assign a unique state W1 to each word

W 2 {A, B, R, S, T, Y } and assign two states X1 and X2 to word X, one for each

context. In this latent language model, the presence of word A (or B) before word

X can influence whether the word following X is R (or S) because only X1 (or X2)

can follow A1 (or B1) and only R1 (or S1) can follow X1 (or X2). Observing that

states X1 and Y1 occur in similar contexts, i.e., preceded by word A and followed

by word R, it might be beneficial to merge these two states together as a new state

XY1, as on the right side of table. Merging states X1 and Y1 results in a more

robust model that is able to assign a non-zero probability to a novel word sequence

“· · · A X T · · · ”, which would otherwise receive a zero probability from the word

76

Figure 4.1: An example of learning contexts using latent tags.

· · · A X R · · ·
=)

· · · A1 X1 R1 · · ·
=)

· · · A1 XY1 R1 · · ·
· · · B X S · · · · · · B1 X2 S1 · · · · · · B1 X2 S1 · · ·
· · · A Y R · · · · · · A1 Y1 R1 · · · · · · A1 XY1 R1 · · ·
· · · A Y T · · · · · · A1 Y1 T1 · · · · · · A1 XY1 T1 · · ·

Table 4.1: An example of learning contexts using latent tags.

In contrast, the merging operation merges states of words with similar patterns of

contexts together so that the associated parameters can be estimated more reliably.

Figure 4.1 illustrates how a latent language model learns from contexts. On the

left are samples of word sequences involving words A, B, R, S, T, X and Y . Suppose

these word sequences occur equally frequently. A word bigram language model can-

not capture any dependency between A and R in word sequence “· · · A X R · · · ”.

Whether the word before X is A or B does not a↵ect the distribution of words after

X because the prediction of words after X is independent of everything else given

X in a word bigram model. This problem can be addressed by introducing states

to the words. In the middle of the table, we assign a unique state W1 to each word

W 2 {A, B, R, S, T, Y } and assign two states X1 and X2 to word X, one for each

context. In this latent language model, the presence of word A (or B) before word

X can influence whether the word following X is R (or S) because only X1 (or X2)

can follow A1 (or B1) and only R1 (or S1) can follow X1 (or X2). Observing that

states X1 and Y1 occur in similar contexts, i.e., preceded by word A and followed

76

Figure 4.1: An example of learning contexts using latent tags

similar distributions of following states P(Xi+1|Xi) may be merged together.

Suppose each word initially has a distinct state. The splitting operation splits

the state of words with complex contexts into multiple sub-states, each modeling a

certain type of context that enables non-adjacent words to impact word prediction.

In contrast, the merging operation merges states of words with similar patterns of

contexts together so that the associated parameters can be estimated more reliably.

Figure 4.1 illustrates how a latent language model learns from contexts. On the

left are samples of word sequences involving words A,B,R, S, T,X and Y . Suppose

these word sequences occur equally frequently. A word bigram language model can-

not capture any dependency between A and R in word sequence “· · · A X R · · · ”.

Whether the word before X is A or B does not affect the distribution of words after

X because the prediction of words after X is independent of everything else given

X in a word bigram model. This problem can be addressed by introducing states

to the words. In the middle of the table, we assign a unique state W1 to each word

W ∈ {A,B,R, S, T, Y } and assign two states X1 and X2 to word X, one for each

context. In this latent language model, the presence of word A (or B) before word

X can influence whether the word following X is R (or S) because only X1 (or X2)

can follow A1 (or B1) and only R1 (or S1) can follow X1 (or X2). Observing that

81

states X1 and Y1 occur in similar contexts, i.e., preceded by word A and followed

by word R, it might be beneficial to merge these two states together as a new state

XY1, as on the right side of table. Merging states X1 and Y1 results in a more

robust model that is able to assign a non-zero probability to a novel word sequence

“· · · A X T · · · ”, which would otherwise receive a zero probability from the word

bigram model without smoothing.

The above example is illustrative of what latent tags can do, but in order to

achieve these benefits we need to solve the following two problems:

1. How can we induce the states by splitting and merging?

2. How can we learn emission and transition parameters associated with the

states?

If all of the words are initialized to share a single state, then the splitting and

merging operations described in Section 2.4 for hidden HMMs can be employed to

induce the states for latent language models. If each word is initialized with a unique

state, the same splitting operation can still be employed to split states. However, in

order to merge states of different words, we need to employ a generalized version of

the merging operation to merge states of different words together. Both approaches

are totally data driven but very computationally expensive. The initial state of the

first approach is very coarse and requires extensive splitting, while the initial states

of the second approach are very specific and require extensive merging. In the next

section, we exploit POS tags to provide some linguistic guidance for inducing the

states.

82

4.6 POS-based Latent Language Model

In this section, we describe a POS-based latent language model, or POS-LLM

for short, that takes POS tags as the initial classes and learns fine-gained latent

POS tags based on a POS-annotated training corpus. Each training sentence on1 is

accompanied with a POS tag sequence xn1 . The joint probability of (on1 , x
n
1) according

to a POS-based bigram language model is:

P(On
1 , X

n
1) =

n∏
i=1

P(Oi|Xi)p(Xi|Xi−1) (4.19)

and accordingly, the probability of the word sequence on1 is:

P(On
1) =

∑
1≤k≤n
xk∈X (ok)

n∏
i=1

p(Oi|Xi)p(Xi|Xi−1) (4.20)

where X (o) denotes the set of POS tags associated with word o.

Our goal is to learn a set of latent tags Z(x) for each POS tag x such that

each latent tag z ∈ Z(x) is a refinement of POS tag x and the probability of

the POS-annotated training corpus is maximized by a POS-based latent bigram

language model. Let zn1 represent the sequence of latent tags. The joint probability

of (on1 , z
n
1) according to a POS-based latent language model is computed as follows:

P(On
1 , Z

n
1) =

n∏
i=1

P(Oi|Zi)P(Zi|Zi−1) (4.21)

83

Accordingly, the joint probability of (on1 , x
n
1) is computed as follows:

P(On
1 , X

n
1) =

∑
1≤k≤n
zk∈Z(xk)

P(On
1 , Z

n
1 = zn1) =

∑
1≤k≤n
zk∈Z(xk)

n∏
i=1

P(Oi|Zi)P(Zi|Zi−1) (4.22)

and the probability of the word sequence on1 is computed as follows:

P(On
1) =

∑
1≤j≤n
xj∈X (oj)

∑
1≤k≤n
zk∈Z(xk)

n∏
i=1

P(Oi|Zi)P(Zi|Zi−1) (4.23)

This POS-based latent language model is essentially a latent bigram tagger,

which is an instance of latent HMM, and can be trained in the same way as a latent

bigram tagger. The split-merge latent HMM training algorithm in Section 2.4.2.3

is able to split each POS tag into a set of fine-grained latent tags, each representing

a specific type of word usage that is helpful for word prediction. For example,

separating animal nouns such as cat, dog, or tiger from vehicle nouns such as car,

truck, or SUV is beneficial for predicting whether the following word is more likely

to be bite or battery.

4.7 Experiments

4.7.1 Setup

We evaluate the performance of the POS-based latent language model on the

POS-tagged WSJ Penn treebank [103]. We use sections 00-22 (∼1M words) for

training, section 24 (∼33k words) for development, and section 23 (∼57k words)

84

50

100

150

200

250

300

350

400

450

0 1 2 3 4 5 6 7 8 9 10

Pe
rp

le
xi

ty

Splitting-Merging Rounds

Word Bigram
Word Trigram
POS-LLM W/O Smoothing
POS-LLM W/ Smoothing

Figure 4.2: The perplexity of the POS-based latent language model with and without
smoothing on the training set over split-merge iterations. The perplexities of the
standard word bigram and trigram language models with modified Kneser-Ney fixed
smoothing are also included for comparison.

for testing perplexity. All words that occur no more than five times in the training

set are mapped to a special UNK token. For comparison, the SRI-LM toolkit [144]

is used to build standard bigram and trigram language models using the modified

Kneser-Ney fixed smoothing.

The POS-based latent language model is trained in the same way as the latent

bigram POS tagger, and we experiment with or without the smoothing operation

described in Section 3.5.1.

4.7.2 Results

Figure 4.2 reports the perplexity of the POS-based latent language model

with and without smoothing on the training set. Before splitting POS tags, this

model has a high perplexity of over 400. As the split-merge procedure proceeds, the

perplexity on the training data decreases quickly and eventually becomes lower than

85

100

150

200

250

300

350

400

0 1 2 3 4 5 6 7 8 9 10

Pe
rp

le
xi

ty

Splitting-Merging Rounds

Word Bigram
Word Trigram
POS-LLM W/O Smoothing
POS-LLM W/ Smoothing

Figure 4.3: The perplexity of the POS-based latent language model with and without
smoothing on the development set over split-merge iterations. The perplexities of
the standard word bigram and trigram language models with modified Kneser-Ney
fixed smoothing are also included for comparison.

the training perplexity of the word bigram language model with modified Kneser-

Ney fixed smoothing and gets close to that of the word trigram language model. This

suggests that the training algorithm can learn parameters associated with latent tags

to fit the training data as well as standard word bigram and trigram models. The

smoothing algorithm makes the POS-based latent language model fit the training

data less well, but as we will show later, it prevents the POS-based latent language

model from over-fitting the training data, and so it performs better on the test set.

Figure 4.3 reports the perplexity of the POS-based latent language model with

and without smoothing on the development set. This model initially has a high

perplexity of around 390 when no POS tags are split. As the split-merge procedure

proceeds, the perplexity of the POS-based latent language model decreases quickly

and eventually becomes lower than that of the word bigram model and gets close

to the word trigram model. It is interesting to note that smoothing hurts the

86

Model Dev Test

Word Bigram 178.00 156.20
Word Trigram 149.53 125.29

POS-LLM Initial 388.24 383.97
POS-LLM Final 138.08 120.85

Table 4.1: The perplexity of four language models on the development and test
set: word bigram model, word trigram model, the initial POS-based latent language
model, and the final POS-based latent language model with smoothing

performance of the POS-based latent language model initially because data sparsity

is not a severe issue when there are not many latent tags. However, as the number of

latent tags increases, smoothing becomes important. The performance of the POS-

based latent language model starts to degrade after the 8-th split-merge round when

the model parameters are not smoothed. In contrast, the performance continues

to improve with smoothing and achieves a perplexity that is lower than the word

trigram model at the 8-th split-merge round, with the lowest perplexity obtained

at the 9-th round. Table 4.1 reports the perplexity scores on the development and

test sets. The POS-LLM model after 9-th split-merge training is chosen for the final

results.

4.8 Conclusions

In this chapter, we briefly reviewed the traditional word N -gram models and

class-based language models, discussed their weaknesses, and presented a latent

language model that has the potential to address these issues. We implemented a

POS-based latent language model based on a latent bigram tagger to split POS tags

into fine-grained latent tags to learn contextual dependencies. Experimental results

87

showed that the POS-based latent language model performs slightly better than a

word trigram model with modified Kneser-Ney fixed smoothing when measured by

test perplexity. It is significantly better than the previously proposed class-based

language models that do not involve lexical dependencies and has the potential to

be interpolated with a word N -gram model to achieve higher perplexity reduction.

88

Chapter 5

Improvement of PCFG Grammars with Latent Annotations

5.1 Overview

There is an extensive research literature on building high quality probabilistic

parsers based on probabilistic context free grammars (PCFGs) by incorporating

lexical features and/or complex dependencies among treebank categories into the

hierarchical generation process for sentences [31, 48, 132]. PCFG grammars with

latent annotations (PCFG-LA) [106, 123, 126] are a recent enhancement that has

raised considerable interest in the research community. In contrast to traditional

models whose parameterization is predefined and fixed, PCFG-LA grammars model

complex syntactic dependencies among units of a parse tree through the use of fine-

grained latent syntactic categories that are automatically induced, and have been

proven to achieve high levels of parsing accuracies.

Since the latent annotations of PCFG-LA grammars are learned automatically

from the training data in a data-driven way, training PCFG-LA grammars is lan-

guage independent and the resulting models can better parse a variety of languages

than the traditional approaches that rely on expert knowledge for building language

specific parsing models [61, 121, 123]. However, several issues need to be carefully

addressed in order to train high quality PCFG-LA parsers, especially for those less

commonly studied languages whose training data is more limited in quantity.

89

Over-fitting and out-of-vocabulary (OOV) words are two important issues

when training PCFG-LA grammars. In order to address these issues, we investigate

heuristic approaches to handle rare words and OOV words that arise typically when

the amount of training data is limited. Our experiments on English and Chinese

show that the heuristic approaches we developed result in improved parsing perfor-

mance on both languages. In Chapter 7, we will present a principled approach to

address these two issues using a feature-rich log-linear lexical model.

While it is always desirable to have more human annotated treebank data to

train high quality parsing models, such treebank data is often limited in quantity,

especially for less commonly studied languages, because human annotation requires

expert knowledge and is both expensive and time-consuming to produce. Recogniz-

ing that unlabeled data is often ubiquitous and can be obtained in large quantities

at a low cost, we address the data sparsity issue by combining treebank data with

a large amount of automatically labeled training data to train PCFG-LA gram-

mars. Using a comparative study, we find that a PCFG-LA parser benefits much

more from self-training than a state-of-the-art lexicalized parser [31], and achieves

state-of-the-art parsing accuracies for a single parser on both English (91.5 F) and

Chinese (85.2 F). Analysis of results shows that the advantage of PCFG-LA gram-

mars with self-training comes from its flexibility to adjust model complexity based

on the amount and quality of the training data. In Chapter 6, we will also in-

vestigate a more effective self-training method that utilizes the variability among

the PCFG-LA grammars together with greater quantities of automatically labeled

training data.

90

The rest of this chapter is organized as follows. Parsing is briefly introduced

in Section 5.2, and PCFG-LA grammars are described in Section 5.3. Several is-

sues for PCFG-LA grammars are discussed together with our proposed solutions

in Section 5.4. Experimental results are presented and discussed in Section 5.5.

Section 5.6 concludes this chapter.

5.2 Introduction to Parsing

Syntactic parsing is the process of determining the grammatical structure of a

sentence with respect to a given grammar, which can be broadly classified as either

a phrase structure grammar introduced by Chomsky [44] or a dependency grammar

proposed in (Tesnière [146]). Syntactic parsing is helpful for understanding the

meaning of a sentence and has been applied to tasks such as machine translation [56,

99, 163], information extraction [113, 145], and sentence boundary detection [63].

She opened

the can

.PRP VBD

DT NN

.NP

NP

VP

S

Figure 5.1: An example sentence with its syntactic parse tree

Figure 5.1 gives an example syntactic analysis for sentence “She opened the

can .” given a phrase structure grammar. While this simple sentence has only one

unique correct analysis, many sentences are ambiguous. Figure 5.2 gives two mean-

91

ingful syntactic analyses of sentence “Salespeople sold the dog biscuits”16, which

can mean the salespeople are selling “dog biscuits” or selling “biscuits to dogs”.

In probabilistic parsing, a grammar assigns probabilities to ambiguous parses, both

meaningful and meaningless, and selects the most probable parse.

Salespeople sold

the dog biscuits

NN VBD

DT NN NNS

NP

NP

VP

S

Salespeople sold

the dog biscuits

NN VBD

DT NN NNS

NP

NP

VP

S

NP

(a) (b)

Figure 5.2: Two syntactic analyses for an ambiguous sentence

Probabilistic context-free grammars (PCFG) [12] are the simplest type of

grammar for probabilistic parsing. As formally defined in Section 2.5, a PCFG

grammar assigns a probability, P(r), to each of the grammar rules r, such as phrasal

rule “NP→ DT NN” and lexical rule “PRP→ She”. The probability of generating

a grammar rule at a node is assumed to be independent of everything else given

the label of the node, and the rule probabilities are typically obtained based on rule

frequencies on a treebank, a collection of gold standard parse trees. The probability,

P(T), of a parse tree, T , is computed as the product of the probabilities of the rules

in the tree, i.e.,

P(T) =
∏

r∈R(T)

P(r)

in which R(T) denotes the set of grammar rules in parse tree T .

16The example is taken from (Charniak [29]).

92

Parsing with PCFG grammars can be done efficiently using the CKY algorithm

[46, 80, 164]. The problem with PCFG grammars is that the context-free assump-

tion is too strong for natural languages, which exhibit strong contextual dependen-

cies [139], and as a result PCFG grammars achieve fairly low parsing accuracies [29].

More accurate parsers model lexical dependencies, as well as dependencies on other

constituents such as parents and grandparents [31, 48]. The model of Charniak [31]

assigns a probability to a parse tree T in a top-down fashion, in which for each

constituent c in T (C(T) denotes set of constituents in T) it first generates the head

preterminal t(c), then the lexical head h(c), and finally the sequence of constituents

e(c) expanded from c. In this model, the probability of a parse tree T is computed

as:

P(T) =
∏

c∈C(T)

P(t(c)|l(c), H(c)) · P(h(c)|t(c), l(c), H(c)) · P(e(c)|l(c), t(c), h(c), H(c))

in which l(c) denotes the label of a constituent and H(c) denotes the relevant history

information outside c that is important for determining the probability that is to

be estimated. For example, in order to determine the probability distribution of

preterminals of the head word of constituent c, it might be useful to include the

label, head preterminal, and head of the parent p(c), the label of the grandparent

g(c), as well as the label of c’s left sibling b(c) into H(c), i.e.,

P(t(c)|l(c), H(c)) = P(t(c)|l(c), l(p(c)), t(p(c)), h(p(c)), l(g(c)), l(b(c))) (5.1)

93

As more information is included in the conditional history, reliable estimation

of probabilities becomes more difficult. Charniak [31] employed a maximum entropy

inspired approach to deal with data sparsity. Equation 5.1 was approximated by:

P(t|l, lp, tp, hp, lg, lb)

≈ P(t|l)P(t|l, lp)
P(t|l)

P(t|l, lp, tp)
P(t|l, lp)

P(t|l, lp, tp, lb)
P(t|l, lp, tp)

P(t|l, lp, tp, lg)
P(t|l, lp, tp)

P(t|l, lp, tp, hp)
P(t|l, lp, tp)

(5.2)

where a simplified notation is used for brevity, e.g., l(p(c)) is abbreviated as lp.

Each conditional probability on the right-hand side of the equation is estimated by

deleted interpolation [28].

Lexicalized parsers [31, 48] achieve around 90% parsing F score on English and

have been used as the first-stage generative parsers for the better-performing dis-

criminatively trained reranking parsers [33, 47]. However, these lexicalized parsers

rely on human experts, together with trial and error, to decide which history infor-

mation to condition on as in Equation 5.1, how to factor the conditional probabilities

as in Equation 5.2, and how to smooth probabilities effectively. As a result, a con-

figuration that performs well on one genre, domain, or language may not be optimal

when applied to another. Substantial effort may be required to build a well-oiled

parser model for the new condition.

5.3 PCFG Grammars with Latent Annotations

While lexicalization has proven important for achieving highly accurate parsing

performance, Klein and Manning [82] showed that unlexicalized parsers can achieve

94

much higher performance than was previously expected by introducing linguistically

motivated annotations (e.g., parent annotation and tag splitting) to better model lin-

guistic dependencies. Matsuzaki et al. [106] extended this idea and proposed PCFG

grammars with latent annotations (PCFG-LA). PCFG-LA grammars augment the

observed parse trees from a treebank with a latent variable at each tree node. Each

latent variable effectively refines an observed category t into a set of latent subcat-

egories {tx|x = 1, · · · , |t|}, where |t| denotes the number of latent tags split from t.

For example, each syntactic category in the original tree in Figure 5.3(a) is split into

multiple latent subcategories, and that parse tree is decomposed into many deriva-

tion trees whose non-terminals are latent categories; Figure 5.3(b) depicts one such

derivation tree, where each grammar rule expands a latent non-terminal category

into a sequence of latent non-terminals and/or terminal words, e.g., VP-4→VBD-5

NP-6.

S

She

PRP

NP VP

VBD

heard DT

NP

NN

the noise

.

.

.

NP−2

VBD−5PRP−3

She heard DT−2

the noise

NN−6

NP−6

.−1

S−1

VP−4

(a) (b)

Figure 5.3: (a) original treebank tree, (b) with latent annotations

The objective of PCFG-LA training is to induce a grammar with latent vari-

ables that maximizes the probability of the training trees. Given a binarized PCFG-

LA grammar with model parameter θ, R denotes the set of grammar rules, Z(T) the

set of derivation trees for parse tree T , and R(T) and R(Z) the sets of rules com-

95

prising T and Z, respectively. The probability of T under the grammar is computed

as:

Pθ(T) =
∑

Z∈Z(T)

Pθ(Z) =
∑

Z∈Z(T)

∏
r∈R(Z)

Pθ(r)

The EM-algorithm can be used to train model parameter θ to maximize the

training likelihood. The E-step computes the expected count er of rule r over the

training set T under the current model parameter θ′:

er ←
∑
T∈T

∑
r′∈R(T)

δ(r′, r)Pθ′(r
′|T) (5.3)

where δ(·, ·) is an indicator function that returns 1 if the two operands are identi-

cal and 0 otherwise, Pθ′(r
′|T) is the posterior probability of having (latent) rule r′

in parse tree T and can be computed efficiently based on the inside-outside algo-

rithm [91]. The M-step aims to maximize the intermediate objective:

l(θ) =
∑
r∈R

er log Pθ(r) (5.4)

Given a binary phrasal rule tpx → tly t
r
z, the EM algorithm updates its expansion

probability θtpx→tly trz = Pθ(t
p
x → tly t

r
z) as:

Pθ(t
p
x → tly t

r
z) =

e(tpx → tly t
r
z)

e(tpx → ·)
(5.5)

where e(tpx → tly t
r
z) denotes the expected count of rule tpx → tly t

r
z and e(tpx → ·)

96

denotes the expected count of all rules expanded from tpx. The unary phrasal rule

probabilities are updated similarly. The lexical rule probability θtx→w = Pθ(w|tx) is

updated as:

Pθ(w|tx) =
etx,w∑
w′ etx,w′

(5.6)

where etx,w denotes the expected count of lexical rule r = tx → w.

In order to allocate grammar complexity to where it is most needed, Petrov

et al. [126] developed a simple split-merge (SM) procedure. In every split-merge

round, each latent category is first split into two, and the model is re-estimated using

several rounds of EM iterations. A likelihood criterion is then used to merge back

the least useful splits. The result is that categories, such as NP (noun phrase) and

VB (base verb), which occur frequently in different syntactic environments, are split

more heavily than categories such as UH (interjection). This approach also creates

a hierarchy of latent categories that enables efficient coarse-to-fine parsing [36, 123].

We call a grammar trained after n split-merge rounds an SMn grammar.

Given a PCFG-LA grammar with parameter θ and sentence s to be parsed,

the decoding algorithm searches for the best parse tree T̂ such that the product of

posterior probabilities17 of the original grammars rules is maximized, i.e.,

T̂ = arg max
T

∑
r∈R̂(T)

log Pθ(r|s) (5.7)

17Finding the most probable parse tree is NP-hard. Petrov and Klein [123] studied several
tractable alternative decoding methods, including the max-rule-product method in Equation 5.7.

97

where R̂(T) denotes the unsplit grammar rules comprising parse tree T and the

posterior rule probability Pθ(r|s) can be computed efficiently using the inside-outside

algorithm. We refer the readers to (Petrov et al. [126]) and (Petrov and Klein [123])

for more details on the learning and inference algorithms.

Note that at each splitting step, some randomness is introduced to break

symmetry to initialize model parameters for EM training, in a way similar to the

splitting operation in Section 2.4.2.3. EM is a local method, making no promises re-

garding the final point of convergence when initialized from different random seeds.

For experiments in this chapter, we always train grammars with multiple random

seeds and use the development set to pick the best grammar for evaluation. Petrov

[122] was able to take advantage of the variability among grammars using a prod-

uct model to achieve improved parsing accuracies. In Chapter 6, we will exploit

this variability among grammars together with self-training to train highly accurate

PCFG-LA grammars.

For this thesis, we implemented our own PCFG-LA parser, borrowing key ideas

from the Berkeley parser [123, 126], an implementation of PCFG-LA grammars. Our

parser implements a novel language-independent rare word smoothing method and

language-dependent OOV word handling methods, which we will describe next in

Section 5.4. Both the training and decoding algorithms are also parallelized to

take advantage of multi-core machines. The parallelization of the EM algorithm

is crucial for training a model with large volumes of data in a reasonable amount

of time, especially for the self-training experiments18 described in Section 5.5. Our

18The parallel version is able to train grammars with automatically labeled training data on

98

parser can also parse with a product of PCFG-LA grammars and implements the

feature-rich log-linear lexical model that we will discuss in Chapter 6 and Chapter

7, respectively.

5.4 Improving PCFG-LA Grammars

Previous studies have shown that PCFG-LA grammars outperform the state-

of-the-art lexicalized parsers and can be flexibly applied to a variety of languages [1,

61, 121, 123]; however, parsing accuracies on non-English languages are considerably

lower than for English; they are usually in the range of 80%∼85% compared to over

90% on the English WSJ treebank [121]. Take Chinese for example; there have been

several attempts to develop accurate parsers for Chinese [10, 93, 123], but the best

previously known accuracy, around 83% on Chinese Penn treebank achieved by the

Berkeley parser [123], falls far short of the performance on English. The intrinsic

characteristics of the languages, as well as annotation consistency of the treebanks,

may contribute to the challenge of parsing non-English languages, as discussed in

(Levy and Manning [93]) for Chinese and in (Green and Manning [61]) for Arabic.

Several issues need to be carefully addressed in order to train high quality PCFG-

LA parsers, especially for those less commonly studied languages whose available

treebanked materials are more limited than for English. We will next discuss these

issues and how we choose to address them.

an 8-core machine within a week, while the non-parallel version was unable to finish after even 3
weeks.

99

5.4.1 Smoothing

The Expectation Maximization (EM) algorithm used for training the PCFG-

LA grammars guarantees that each EM iteration will increase the training likeli-

hood [95]. As the number of latent annotations increases, a PCFG-LA grammar

has increasing power to fit the training data through EM training and eventually

begins to over-fit. For example, when trained on sections 2-21 of the WSJ Penn tree-

bank, the performance of the parser starts to drop after 5 split-merge rounds [126].

In order to counteract this behavior, Petrov et al. [126] introduced a linear smooth-

ing method to smooth rule probabilities. The lexical rule probabilities are smoothed

as follows:

P̄ =
1

|t|
∑
x

Pθ(w|tx)

Pθ(w|tx) ← εP̄ + (1− ε)Pθ(w|tx)

and the unary phrasal rule probabilities (and similarly for binary phrasal rule prob-

abilities) are smoothed as:

P̄ =
1

|t|
∑
x

Pθ(t
p
x → tcy)

Pθ(t
p
x → tcy) ← εP̄ + (1− ε)Pθ(t

p
x → tcy)

This smoothing procedure allows grammars (trained on sections 2-21 of WSJ

treebank) to go from 5 to 6 split-merge rounds with an increase in parsing accuracy

on a held-out set, due to the combination of more robust parameter estimates and

100

the increased expressiveness of the model.

Although the lexical smoothing method is able to make word emission proba-

bilities of the latent tags split from the same POS tag more alike, the EM training

algorithm still strongly discriminates among word identities and can cause unreli-

able probability estimates for rare words. Suppose word tag pairs (w1, t) and (w2, t)

both appear the same number of times in the training data. In a standard PCFG

grammar (without latent annotations), whose parameters are estimated based on

maximum likelihood estimation, the probabilities of emitting these two words given

the tag t would be the same, i.e., Pθ(w1|t) = Pθ(w2|t). After introducing latent

annotation x to tag t, the emission probabilities of these two words given a latent

tag tx may no longer be the same because Pθ(w1|tx) and Pθ(w2|tx) are two different

parameters that are trained independently by the EM algorithm. It is beneficial to

learn subcategories of POS tags to model different types of words, especially for fre-

quent words; however, it is not desirable to strongly discriminate among rare words

because unreliable probability estimates could be produced to distract the model

from learning about common phenomena.

Our solution to this problem is to tie the emission probabilities of rare words

together so that Pθ(w1|tx) = Pθ(w2|tx) for all x if both w1 and w2 are rare words and

Pθ(w1|t) = Pθ(w2|t). In this rare word smoothing method, words with a frequency

less than a threshold τ are considered rare words19 and are mapped to the rare

symbol, and their emission probabilities Pθ(w|tx) are set in proportion to their co-

19τ is tuned on the development set.

101

occurrences with the surface POS tag:

Pθ(w|tx) =
ct,w∑

w′:e·,w′<τ
ct,w′

Pθ(rare|tx)

where c·,w and ct,w are the observed counts of the word and word/tag pair, re-

spectively, and Pθ(rare|tx) is a free parameter tuned by the EM algorithm. This

smoothing method greatly reduces the number of free parameters and has been

found to significantly improve parsing accuracies.

5.4.2 OOV Handling

PCFG-LA grammars are trained to optimize likelihood on the training data

and the resulting lexical model Pθ(w|tx) can only generate words observed in the

training data. As typical of generative models, a separate module is needed to

handle the OOV words that can appear in test sentences. A simple approach is

to estimate the emission probability of an OOV word w based on how likely tx is

associated with a rare word in the training data:

Pθ(w|tx) = Pθ(rare|tx)

We call this the simple method. This method is used in the simple lexicon of the

Berkeley parser [126].

A better approach would exploit the morphology of the language. As with

other generative English parsers [31, 48], the Berkeley parser classifies OOV words

102

into a set of OOV signatures based on the presence of features such as capital

letters, digits, dashes, as well as a list of indicative suffixes (e.g., -ing, -ion, -er),

and estimates the emission probability of an OOV word w given a tag t as:

Pθ(w|tx) ∝ Pθ(s|tx)

where s is the OOV signature for w and Pθ(s|tx) is computed20 by etx,s/etx,·.

While this approach performs well for English, this English OOV model is

not appropriate for other languages since they have different word formation pro-

cesses [24]. Nevertheless, in the multi-language study of Petrov [121], the above

hand-crafted signature-based rules designed for English OOV words were used for

non-English languages. For non-English languages, this is clearly suboptimal and

further efforts must be expended to build appropriate methods for each language

investigated.

In order to build an effective OOV model for parsing Chinese, it is important

to take the Chinese morphology into account. As discussed in (Packard [120]),

the word formation process for Chinese words can be quite complex. Indeed, the

last characters in a Chinese word are, in some cases, most informative of the POS

type, while for others, it is the characters at the beginning. Furthermore, it is not

uncommon for a character in the middle of a word to provide some evidence for the

POS type of the word. Hence, we developed a character-based OOV model similar

to (Huang et al. [72]) to reflect the fact that characters in any position (prefix, infix,

20etx,s is computed based on the expected counts (i.e., etx,w) of words whose signature is s.

103

or suffix) can be predictive of the POS type for Chinese words. In our model, the

word emission probability of an OOV word w given the latent tag tx of POS tag t is

estimated by using the geometric average of the emission probabilities of all of the

characters chk in the word (where n = |{chk ∈ w|Pθ(chk|tx) 6= 0}|):

Pθ(w|tx) = n

√∏
chk∈w,Pθ(chk|tx) 6=0

Pθ(chk|tx) (5.8)

where Pθ(chk|tx) is computed in way similar to Pθ(s|tx) in the signature-based model

for English. In case Equation 5.8 cannot be used to compute the emission probability

(i.e., all characters are previously unknown), we back off to use the simple OOV

handling method.

We call this the heuristic method because it is unable to utilize overlapping

features and requires a nontrivial amount of work to develop an OOV handling

method for a new language. In Chapter 7, we will present a more principled approach

that uses a feature-rich log-linear lexical model to better handle OOV words, while

also addressing the over-fitting problem.

5.4.3 Self-Training

Similar to POS tagging as we discussed in Section 3.6, early investigations on

self-training for parsing had mixed results. Charniak [30] reported no improvements

from self-training his lexicalized parser on the standard WSJ training set. Steedman

et al. [143] reported some degradation using a lexicalized tree adjoining grammar

parser and minor improvement using Collins lexicalized PCFG parser; however, this

104

gain was obtained only when the parser was trained on a small treebank data set.

Reichart and Rappoport [133] obtained significant gains using Collins lexicalized

parser with a different self-training protocol, but again they only looked at small

treebank data sets. McClosky et al. [107] effectively utilized unlabeled data to

improve parsing accuracy on the standard WSJ training set, but they used a two-

stage parser comprised of Charniak’s lexicalized probabilistic parser with n-best

parsing and a feature-rich discriminative reranking parser [33], both requiring a

significant amount of time for feature engineering in order to work well. It is worth

noting that their attempts at directly self-training Charniak’s lexicalized parser

resulted in no improvement.

Here we provide one possible explanation of the mixed results of self-training

for parser models. As we pointed out in Section 5.2, the parameterization of tra-

ditional models, such as Charniak’s parser, is predetermined and fixed, as shown

in Equation 5.2, and is based on extensive development on a held-out set for mod-

els trained on the WSJ Penn treebank training data. The models are excessively

complex when the amount of training data is small, thus adding more data (even

if automatically labeled) can help alleviate the data sparsity problem and improve

the robustness of parameter estimation. However, as more and more training data

becomes available, those models’ ability to learn from the additional training data

is limited due to the fact that the model parameterization is fixed.

We argue that the parameterization of PCFG-LA grammars can be flexibly

adjusted to accommodate varying amounts of training data. In fact, we will show

that self-training is able to significantly improve the performance of the PCFG-LA

105

parser, a single generative parser, using both small and relatively large amounts of

treebank training data, for both English and Chinese. With self-training, a fraction

of the WSJ or CTB6 treebank training data is sufficient to train a PCFG-LA parser

that is able to achieve or even exceed the accuracies obtained using a single parser

trained on the entire treebank without self-training. When self-training using the

full training data, we are able to improve upon state-of-the-art parsing accuracies

for a single grammar parser on both English (91.5%) and Chinese (85.2%).

5.5 Experiments

5.5.1 Setup

For the English experiments, the WSJ Penn treebank [103] is used as the gold

standard data. We use sections 2-21 for training, section 22 for development, and

section 23 for final evaluation. We also use 210k sentences21 of unlabeled news

articles in the BLLIP corpus for self-training the English parsers.

For the Chinese experiments, the Chinese Penn treebank 6.0 (CTB6) [162] is

used as the gold standard data. CTB6 includes both news articles and transcripts

of broadcast news. We partition the news articles into train/development/test sets

in the same way as in the Chinese POS tagging experiments in Section 3.7. The

broadcast news section is also added to the training data because it shares many

of the characteristics of newswire text (e.g., fully punctuated, contains nonverbal

expressions such as numbers and symbols). In addition, 210k sentences of unlabeled

21This amount was constrained based on both CPU and memory.

106

Train Dev Test Unlabeled

English
39.8k 1.7k 2.4k 210k

(950.0k) (40.1k) (56.7k) (5,082.1k)

Chinese
24.4k 1.9k 2.0k 210k

(678.8k) (51.2k) (52.9k) (6,254.9k)

Table 5.1: The number of sentences (and tokens in parentheses) in our experiments

Chinese news articles are used for self-training. Since the Chinese parsers in our ex-

periments require word-segmented sentences as input, the unlabeled sentences need

to be word-segmented first. As shown in (Harper and Huang [62]), the accuracy of

automatic word segmentation has a great impact on Chinese parsing performance.

We choose to use the Stanford segmenter [27] in our experiments because it is trained

to be consistent with the treebank segmentation and provides the best performance

among the segmenters tested in (Harper and Huang [62]). To minimize the dis-

crepancy between the self-training data and the treebank data, we normalize both

CTB6 and the self-training data using the UW Decatur text normalization22 [165].

Table 7.1 summarizes the data set sizes used in our experiments. We use

slightly modified versions of the treebanks with empty nodes and nonterminal-yield

unary rules23 (e.g., NP→VP) deleted using tsurgeon [92]. We train parsers on 20%,

40%, 60%, 80%, and 100% of the treebank training data to evaluate the effect of

the amount of treebank training data on parsing performance, as well as to compare

22This normalization largely maps full-width punctuation to half-width, collapsing some of the
punctuation distinctions available in the former representation. Decatur normalization results in
a slight degradation (around 0.1%) in F measure when measured on CTB6. We consider this
acceptable in order to be consistent with the normalization that is applied to the unlabeled data.

23As nonterminal-yield unary rules are less likely to be posited by a statistical parser, it is
common for parsers trained on the standard Chinese treebank to have substantially worse recall
than precision. This gap between bracket recall and precision is alleviated without loss of parse
accuracy by deleting the nonterminal-yield unary rules.

107

how self-training impacts models trained with different amounts of treebank data.

This allows us to simulate scenarios where a language has limited gold standard

resources. The development set is used to select the best random seed and split-

merge round for the PCFG-LA parser and to tune the smoothing parameters for

Charniak’s parser.

5.5.2 Rare Word Smoothing and OOV Word Handling

We first study the effect of rare word smoothing and OOV word handling for

the PCFG-LA parsers trained on 100% of the treebank training data. The results

are shown in Table 5.2. The no+heuristic row for WSJ represents the baseline

performance of our parser as a reimplementation of the Berkeley parser. The rare

word smoothing method (the yes+heuristic row) significantly improves the parsing

F score from 90.0 to 90.6 on English. The no+simple row for CTB6 represents the

baseline performance of our Chinese parser. The heuristic OOV word handling and

the rare word smoothing improve the parsing F score of Chinese by 0.5 and 0.6,

respectively, and their combination achieves an even better improvement of 0.9 F.

All the improvements are statistically significant24.

We found in our experiments that the rare word smoothing method is more

effective when more latent annotations are allocated. This is probably because data

sparsity becomes a more severe problem with a larger amount of latent annotations

and so sharing statistics of rare words helps alleviate this problem in order to produce

24We use Bikel’s randomized parsing evaluation comparator to determine the significance (p <
0.05) of the difference between two parsers’ output.

10We do not evaluate the simple OOV handling method on English because it was already shown
in the Berkeley parser that the heuristic signature-based method works better.

108

Rare Word
OOV WSJ CTB6

Smoothing

no simple n/a 83.2
no heuristic 90.0 83.7
yes simple n/a 83.8
yes heuristic 90.6 84.2

Table 5.2: Effects of rare word smoothing (no vs. yes) and OOV word handling
(simple vs. heuristic)10 on the test set as measured in parsing F score (%)

more robust grammars. For a similar reason, the impact of rare word smoothing is

also more significant when trained on a smaller data set. When trained on 20% of

CTB6, rare word smoothing improves the best performing grammar (SM4 grammar

with heuristic OOV handling) from 78.1 to 79.7, a 1.6 absolute improvement in F

score, in contrast to the smaller improvement of 0.4 when trained on 100% of CTB6

(see Table 5.2).

Similar to rare word smoothing, the OOV word handling method also pro-

vides greater improvements on grammars trained on smaller amounts of training

data, producing a 1.2 absolute improvement in F score for the best performing

grammar (SM4 grammar with rare word smoothing) when trained on 20% of the

CTB6 training data compared to the smaller improvement of 0.3 when trained on

100% of CTB6 (see Table 5.2).

5.5.3 A Case Study: PCFG-LA Parser vs. Charniak’s Parser

We next conduct a series of studies to compare the PCFG-LA parser with

Charniak’s parser on both English and Chinese.

109

5.5.3.1 Treebank Data Only

In this section, we compare the performance of the PCFG-LA parser and

Charniak’s parser when trained on treebank data alone. As shown by the dotted

lines in Figure 5.4, it is clear that both parsers perform much better on English

than Chinese when trained on the treebank data alone,. It is true that English

treebank has more trees than the Chinese treebank, however, Chinese appears to

be more challenging than English [93]. In fact, the English parsers trained on 20%

(8.0k trees) of the WSJ training data have much higher parsing accuracies (>87 vs.

<83) than the Chinese parsers trained on 100% (24.4k trees) of the CTB6 training

data. The comparison between the two parsing approaches provides two interesting

insights.

First, the PCFG-LA parser always performs significantly better than Char-

niak’s parser on Chinese, although both model English well. Admittedly, Charniak’s

parser has not been optimized26 on Chinese, but neither has the PCFG-LA parser27.

The parameterization of Charniak’s lexicalized parser was originally optimized for

English and required sophisticated smoothing to deal with data sparsity. In con-

trast, the PCFG-LA parser automatically learns latent annotations from the data

without any specification of what precisely should be modeled and how it should be

modeled. This flexibility may help it to model new languages more effectively than

Charniak’s parser.

26The Chinese port includes modification of the head table, implementation of a Chinese punc-
tuation model, etc.

27The PCFG-LA parser without the OOV word handling method still outperforms Charniak’s
parser on Chinese.

110

 87

 88

 89

 90

 91

 92

 0.2 0.4 0.6 0.8 1
F

 s
co

re
Number of Labeled WSJ Training Trees

x 39,832

PCFG-LA
PCFG-LA.ST

Charniak
Charniak.ST

(a) English

 76

 78

 80

 82

 84

 86

 0.2 0.4 0.6 0.8 1

F
 s

co
re

Number of Labeled CTB Training Trees

x 24,416

(b) Chinese

Figure 5.4: The performance of the PCFG-LA parser and Charniak’s parser when
trained with different amounts of labeled training data, with and without self-
training (ST), and evaluated on the test set

Second, while both parsers benefit from increased amounts of treebank train-

ing data, the PCFG-LA parser gains more. The PCFG-LA parser is initially poorer

than Charniak’s parser when trained on 20% of the WSJ treebank data. This is prob-

ably because this data is too small for it to learn fine-grained annotations without

over-fitting given that the smoothing method is fairly simple, while the predefined

parameterization of Charniak’s parser is heavily smoothed and so can get by with

less data. As more treebank training data becomes available, the performance of

the PCFG-LA parser improves quickly and it finally outperforms Charniak’s parser

significantly. This is because more latent annotations can be allocated to learn more

111

complex dependencies. Moreover, the performance of the PCFG-LA parser contin-

ues to grow as the amount of treebank training data increases, while the performance

of Charniak’s parser levels out at around 80% of the treebank training data. The

PCFG-LA parser improves by 3.5 absolute in F score when moving from 20% to

100% training data, compared to a 2.2 F gain for Charniak’s parser. Similarly for

Chinese, the PCFG-LA parser also gains more than Charniak’s parser (4.5 vs 3.6 F).

It is expected that if more gold training data would become available, the PCFG-LA

parser would be able to continue to benefit from that additional data while the gain

for Charniak’s parser would probably be marginal.

5.5.3.2 Treebank Data and Self-Labeled Data

We next compare the effect of self-training on the performance of the two

parsers. As shown by the solid lines in Figure 5.4, it is also clear that the PCFG-LA

parser is able to benefit more from self-training than Charniak’s parser. On the

English data set, Charniak’s parser benefits from self-training initially when there

is little treebank training data, but the improvement levels out quickly as more

treebank training trees become available. In contrast, the PCFG-LA parser benefits

consistently from self-training28, even when using 100% of the treebank training

data. Similar trends are also found for Chinese.

It should be noted that the PCFG-LA parser trained on a fraction of the

28One may notice that the self-trained PCFG-LA parser with 100% WSJ training data has a
slightly lower test accuracy than the self-trained PCFG-LA parser with 80% WSJ treebank data.
This is due to the variance in parser performance when initialized with different seeds and the
fact that the development set is used to pick the best model for evaluation. In Chapter 6, we
will take advantage of the variability among the random grammars to better self-train PCFG-LA
grammars.

112

treebank training data plus a large amount of automatically labeled training data,

which comes at a much lower cost, performs comparably to or even better than

grammars trained with additional treebank training data. For example, the PCFG-

LA parser trained on the automatically labeled training data in addition to 60%

of the treebank training data is able to outperform the grammar trained on 100%

treebank training data alone for both English and Chinese. With self-training, even

40% of the WSJ treebank training data is sufficient to train a PCFG-LA parser that

is comparable to the model trained on the entire WSJ training data alone. This

result is of significant importance, especially for languages with limited human-

labeled resources.

One might conjecture that the PCFG-LA parser benefits more from self-

training than Charniak’s parser because its automatically labeled data has a higher

accuracy. However, as shown in Figure 5.4 (a), the PCFG-LA parser trained on

40% of the WSJ treebank data alone has a much lower performance than Char-

niak’s parser trained on the full WSJ training set (88.6 vs 90.0 F). With the same

amount of automatically labeled training data (labeled by each parser), the result-

ing PCFG-LA parser obtains a much higher F score than the self-trained Charniak’s

parser (90.5 vs 90.2 F). Similar patterns are also found on Chinese.

Table 5.3 reports the final test results when each parser is trained on the en-

tire WSJ or CTB6 training set. For English, self-training contributes a 0.8 absolute

improvement in F score to the PCFG-LA parser, which is comparable to the im-

provement obtained from self-training using the two-stage parser in (McClosky et al.

[107]). Note that McClosky et al. [107]’s improvement is achieved with the addi-

113

English Chinese

PCFG-LA 90.6 84.2
+ Self-training 91.5 85.2

Table 5.3: Final results on the test set in F score (%)

tion of 2,000k unlabeled sentences using the combination of a generative parser and

a discriminative reranker, compared to using only 210k unlabeled sentences with a

single generative parser in our approach. For Chinese, self-training results in a state-

of-the-art parsing model with 85.2 parsing F score (a 1.0 absolute improvement) on

a representative test set. Both improvements are statistically significant.

5.5.4 Analysis

We next perform a series of analyses to investigate why the PCFG-LA parser

benefits more from additional data, most particularly automatically labeled data,

than Charniak’s parser.

Charniak’s parser is a lexicalized PCFG parser that models lexicalized de-

pendencies explicitly observable in the training data and relies on smoothing to

avoid over-fitting. Although it is able to benefit from more training data because

of broader lexicon and rule coverage and more robust estimation of parameters, its

ability to benefit from the additional data is limited in the sense that it is unable

to automatically update its parameterization to model more complex dependencies.

In contrast to the PCFG-LA model, nontrivial human effort would be required to

improve the model formulation. As shown in figure 5.5(a), the parsing accuracy of

Charniak’s parser on the WSJ test set improves as the amount of treebank train-

114

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 98

 0.2 0.4 0.6 0.8 1

F
 s

co
re

Number of Labeled WSJ Training Trees

x 39,832

Test
Test.ST

Train
Train.ST

 87

 88

 89

 90

 91

 92

 93

 94

 95

 96

 97

 0.2 0.4 0.6 0.8 1

F
 s

co
re

Number of Labeled WSJ Training Trees

x 39,832

Test
Test.ST

Train
Train.ST

5

6
6

6 6

6
7

7
7

7

(a) Charniak (b) PCFG-LA

Figure 5.5: (a) The training/test accuracy of Charniak’s parser trained on varying
amounts of WSJ treebank training data, with and without self-training (ST). (b)
The training/test accuracy of the PCFG-LA parser trained on varying amount of
WSJ treebank training data, with and without ST; the numbers along the training
curves indicate the split-merge round of the grammars that are selected based on
the performance on the development set.

ing data increases; however, the training accuracy29 degrades as more data is added.

Note that the training accuracy of Charniak’s parser also decreases after the addition

of self-training data30. This is expected for models with a fixed parameterization; it

is harder to model more data with greater diversity. The addition of the automati-

cally labeled training data initially helps to improve the performance of Charniak’s

parser on the test set, but it provides little gain when the treebank training data

becomes relatively large.

Figure 5.5 (b) plots the training and test curves of the English PCFG-LA

parser with varying amounts of treebank training data, with and without self-

training. This figure differs substantially from Figure 5.5 (a) for Charniak’s parser.

29This is the accuracy of the parser when parsing the treebank training data.
30The automatically labeled training trees are combined with the treebank trees in a weighted

manner; otherwise, the training accuracy would be even lower.

115

First, as mentioned earlier, the PCFG-LA parser benefits much more from self-

training than Charniak’s parser with moderate to relatively large amounts of tree-

bank training data. Second, in contrast to Charniak’s parser for which training

accuracy degrades consistently as the amount of treebank training data increases,

when trained on more treebank training data, the training accuracy of the PCFG-

LA parser sometimes improves by using more latent annotations (more split-merge

rounds) without over-fitting. For example, the best model trained on 40% treebank

training data alone, i.e., the SM6 grammar, has a higher training accuracy than the

best model (at SM5) trained on 20% treebank training data. Third, the addition of

automatically labeled data supports more accurate PCFG-LA grammars with more

latent annotations than those trained without self-training, as evidenced by scores

on both the training and test data. This suggests that the self-trained grammars

are able to utilize more latent annotations to learn more complex dependencies.

In contrast to Charniak’s parser, the PCFG-LA training algorithm is able to

adapt the granularity of the grammar to the amount of training data available.

Fewer latent annotations are allocated when the training set is small. As the size of

the training data increases, it is able to allocate more latent annotations to better

model the data. As shown in Figure 5.6, for a fixed amount of treebank training

data (20%), the accuracy of the model on the training data (see the red curves)

continues to improve as the number of latent annotation increases. Although it is

important to limit the number of latent annotations to avoid over-fitting, the ability

to accurately model the training data given sufficient latent annotations is desirable

when more training data is available. When trained on 20% of the treebank data

116

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 1 2 3 4 5 6 7
103

104

105

106

107

F
 s

co
re

N
um

be
r

of
 R

ul
es

 (
lo

g
sc

al
e)

Split-Merge Roundsfewer latent states more latent states

Test
Test.ST

Train
Train.ST

Rules
Rules.ST

Figure 5.6: The training/test accuracy of the PCFG-LA grammars when trained on
20% of the WSJ treebank training data, with and without ST, and the number of
nonzero rules.

alone, the SM5 grammar (selected using the development set) achieves its optimal

test set performance and begins to degrade afterwords (see the blue curves). With

the addition of the automatically labeled training data, the SM5 grammar achieves

an greater accuracy on the test set and its performance continues to increase31 with

the increased number of latent annotations of the SM6 an SM7 grammars.

We have also compared the PCFG-LA parser to Charniak’s Parser on Chinese

and observed patterns similar to English. As shown in Figure 5.7, the training

accuracy of Charniak’s parser always decreases when more training data is added,

due to its fixed parameterization. In contrast, the PCFG-LA parser has the potential

to achieve very high training accuracies when using sufficient quantities of latent

annotations, as shown in Figure 5.8. The PCFG-LA training algorithm has the

flexibility to allocate latent annotations sufficient to account for varying amounts of

31Although the 20% self-trained grammar has a higher test accuracy at the 7-th round than the
6-th round, the development accuracy was better at the 6-th round, and thus we report the test
accuracy of the 6-th round grammar in Figure 5.5 (b).

117

 76

 78

 80

 82

 84

 86

 88

 90

 92

 94

 0.2 0.4 0.6 0.8 1

F
 s

co
re

Number of Labeled CTB Training Trees

x 24,416

Test
Test.ST

Train
Train.ST

 78

 80

 82

 84

 86

 88

 90

 92

 94

 0.2 0.4 0.6 0.8 1

F
 s

co
re

Number of Labeled CTB Training Trees

Train/Test Performance of the PCFG-LA Parser (CTB)

x 24,416

Test
Test.ST

Train
Train.ST

4

5 5

6 6

6

6

6

7
7

(a) Charniak (b) PCFG-LA

Figure 5.7: (a) The training/test accuracy of Charniak’s parser trained on varying
amounts of CTB treebank training data, with and without self-training (ST). (b)
The training/test accuracy of the PCFG-LA parser trained on varying amount of
CTB treebank training data, with and without ST; the numbers along the training
curves indicate the split-merge round of the grammars that are selected based on
the performance on the development set.

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 1 2 3 4 5 6 7
103

104

105

106

107

F
 s

co
re

N
on

ze
ro

 R
ul

es
 (

lo
g

sc
al

e)

Split-Merge Roundsfewer latent states more latent states

Test
Test.ST

Train
Train.ST

Rules
Rules.ST

Figure 5.8: The training/test accuracy of the PCFG-LA grammars when trained on
20% of the CTB treebank training data, with and without ST, and the number of
nonzero rules.

118

 2
 4
 6
 8

 10
 12
 14
 16
 18
 20
 22

 0 2 4 6 8 10 12 14 16
 0

 1.2

 2.4

 3.6

 4.8

 6

R
el

at
iv

e
re

du
ct

io
n

of
 F

 e
rro

r (
%

)

N
um

be
r o

f b
ra

ck
et

s

Span Length

x 1e+4

+Labeled +Unlabled #Brackets+GoldLabeled +AutoLabeled

Figure 5.9: The relative reduction of bracketing errors for different span lengths,
evaluated on the test set. The baseline model is the PCFG-LA parser trained on
20% of the WSJ training data. The +AutoLabeled curve corresponds to the parser
trained with the additional automatically labeled data, and the +GoldLabeled curve
corresponds to the parser trained with additional 20% treebank training data. The
bracket counts are computed on the gold reference. Span length ‘0’ denotes preter-
minal POS tags to differentiate them from the non-terminal brackets that span only
one word.

training data. When the amount of treebank training data increases from 20% to

40% and then to 80%, the optimal number of split-merge iterations increases from

4 to 5 and then to 6, with increasingly higher accuracies on both the training and

test sets. The addition of automatically labeled data also supports more accurate

PCFG-LA grammars with more latent annotations than those trained without self-

training. For example, compared to the initial grammar that achieves its optimal

performance on the development set at the 4-th split-merge round when trained

on 20% of the CTB treebank training data, the corresponding self-trained grammar

achieves its best performance at the 6-th split-merge round with improved accuracies

on both the training and test data sets.

Figure 5.9 compares the effect of additional treebank and automatically la-

beled data on the relative reduction of bracketing errors for different span lengths

on English. It is clear from the figure that the improvement in parsing accuracy

119

from self-training is the result of better bracketing across all span lengths32. How-

ever, even though the larger amount of automatically labeled training data provides

more improvement than the smaller amount of additional treebank data in terms of

parsing accuracy, this data is less effective at improving tagging accuracy (see span

length ‘0’) than the additional treebank training data.

So, why does self-training improve rule estimation when training the PCFG-

LA parser with more latent annotations? One possibility is that the automatically

labeled data smooths the parameter estimates in the EM algorithm, enabling ef-

fective use of more parameters to learn more complex dependencies during model

training. Let P(a→ b|r, T) be the posterior probability of expanding subcategories

a to b given a expansion rule r on a treebank parse tree T . Tl and Tu are the sets

of gold and automatically labeled parse trees, respectively. The update of the rule

expansion probability P(a → b) in self-training (with weighting parameter α) can

be expressed as:

∑
T∈Tl

∑
r∈R(T)

P(a→ b|r, T) + α
∑
T∈Tu

∑
r∈R(T)

P(a→ b|r, T)∑
b′(
∑
T∈Tl

∑
r∈R(T)

P(a→ b′|r, T) + α
∑
T∈Tu

∑
r∈R(T)

P(a→ b′|r, T))
(5.9)

Since the automatically labeled data is produced by a grammar with fewer latent

annotations, the expected counts from the automatically labeled data can be thought

of as counts from a lower-order model33 that smooth the higher-order (with more

32There is a slight degradation in bracketing accuracy for some spans longer than 16 words, but
the effect is negligible due to their low counts.

33We also trained models using only the automatically labeled data without combining it with
treebank training data, but they were no more accurate than those trained on the treebank training
data alone without self-training.

120

latent annotations) model.

We observe that many of the rule parameters of the grammar trained on WSJ

training data alone have zero probabilities (rules with extremely low probabilities

are also filtered to zero), as was also pointed out in (Petrov et al. [126]). On

the one hand, this is what we want because the grammar should learn to avoid

impossible rule expansions. On the other hand, this might also be a sign of over-

fitting. As shown in Figure 5.6 (see the black curves), the grammar obtained with

the addition of automatically labeled data contains many more non-zero rules, and

its performance continues to improve with more latent annotations. Similar patterns

also appear when using self-training for other amounts of treebank training data. As

is partially reflected by the zero probability rules, the addition of the automatically

labeled data enables the exploration of a broader parameter space with less danger of

over-fitting the data. Also note that the benefit of the automatically labeled data is

less clear in the early training stages (i.e., when there are fewer latent annotations),

as can be seen in Figure 5.6. This is probably because there is a small number

of free parameters and the treebank data is sufficiently large for robust parameter

estimation.

5.6 Conclusions

In this chapter, we have studied several ways to enhance a state-of-the-art

PCFG-LA parser that are especially useful for less common languages. We presented

a heuristic rare word smoothing method to address data-sparsity and a heuristic

121

language-dependent OOV word handling method to better model OOV words in

Chinese. We have also investigated the self-training capability of PCFG-LA parsers

through a comparative study with Charniak’s parser and showed that PCFG-LA

parsers benefit more significantly from self-training than Charniak’s parser, even

when they are trained on relatively large amounts of treebank training data. We

conjecture based on our analyses that the EM training algorithm is able to exploit

the information available in both treebank and automatically labeled data to learn

more complex grammars while being less affected by over-fitting than when training

on the treebank data alone.

We would expect further improvement by combining the PCFG-LA parser

with discriminative reranking approaches [33, 68] for self-training. We also expect

that self-training would benefit discriminatively trained parsers with latent annota-

tions [124], although training would be much slower compared to using generative

models. In the next two chapters, we continue to investigate the issues discussed

in this chapter and present two approaches to obtain further improvements in the

accuracy of the PCFG-LA grammars: one that takes advantage of the variability

among the PCFG-LA grammars to improve model accuracy using multiple gram-

mars together with self-training, and one that is a more principled approach to

address data sparsity and handle OOV words using a feature-rich log-linear lexical

model.

122

Chapter 6

Improving PCFG-LA with Self-Training and Product Models

6.1 Overview

The EM algorithm is a local method that may converge to different local

maxima when initialized with different random seeds. Indeed, PCFG-LA grammars

trained with different random seeds perform differently. Petrov [122] took advantage

of this variability among PCFG-LA grammars by parsing with multiple grammars

using a model combination method called product model, which is defined formally

in Section 6.2, and obtained significant improvement in parsing accuracy. As we

discussed in Chapter 5, self-training is an effective method to train accurate parsing

models using automatically labeled training data. The natural question to ask is

whether self-training and product models are complementary to each other and can

be effectively used together.

On the one hand, self-training improves the accuracy of individual grammars,

which can be further combined into a product model to achieve even higher per-

formance. On the other hand, the product model has higher accuracies than in-

dividual grammars and thus can produce more accurately labeled training data to

train more accurate self-trained grammars. In this chapter, we investigate several

different training protocols to exploit the complementary effect of self-training and

product models and find that the following two factors contribute to the significant

123

improvements of PCFG-LA grammars:

1. the accuracy of the grammar used to parse the unlabeled data for retraining

(single grammar versus product of grammars)

2. the diversity of the grammars that are being combined (self-trained grammars

trained using the same automatically labeled subset or different subsets)

We conclude from experiments on both English newswire and English broadcast

news that self-training and product models can be effectively combined to create

very high quality parsing models.

The rest of this chapter is organized as follows. We briefly describe the product

model introduced by Petrov [122] in Section 6.2 and discuss several different training

protocols in Section 6.3. We then present experiments and analysis in Section 6.4.

Section 6.5 concludes this chapter.

6.2 Product Models

As we discussed in Chapter 5, the EM algorithm is guaranteed to increase the

training likelihood at each iteration and can eventually over-fit a PCFG-LA gram-

mar with an increasing number of latent annotations. In addition, the EM algorithm

is a local method that may converge to different local maxima when initialized with

different random seeds. The smoothing methods described in Section 5.4.1 help to

address the over-fitting issue and create models with more robust parameter esti-

mates, but we still observed substantial differences between the learned grammars

in Chapter 5 and had to use a development set to select the “best” performing

124

grammar. However, the best-performing grammar on the development set does not

necessarily generate the most accurate parses on the test set [122].

The observation of variation is not surprising; EM’s tendency to get stuck

in local maxima has been studied extensively in the literature, resulting in various

proposals for model selection methods [23]. What is perhaps more surprising is that

PCFG-LA grammars trained only using different random seeds seem to capture

complementary aspects of the data. As shown in (Petrov [122]), some grammars

perform better on some syntactic categories than the other grammars, but there

is not a single grammar that performs consistently better on all categories. Quite

serendipitously, instead of choosing one grammar and decoding with Equation 5.7,

shown below:

T̂ = arg max
T

∑
r∈R̂(T)

log Pθ(r|s)

these grammars can be combined into an unweighted product model that substan-

tially outperforms the individual grammars:

T̂ = arg max
T

∑
r∈R̂(T)

∑
G∈G

log P(r|s,G) (6.1)

where G = {G1, · · · , Gn} denotes the set of random grammars. The product model

in Equation 6.1 searches for the parse tree that maximizes the product of the pos-

terior rule probabilities under all of the grammars.

As discussed in Section 5.5.3, self-training of PCFG-LA parsers can mitigate

125

the data sparsity issue and significantly improve parsing accuracy, but variability

still remains in self-trained grammars. Hence, we explore the use of product models

together with self-training.

6.3 Training Protocols

In order to investigate the complementary effect of self-training and product

models, we consider four training protocols, as illustrated in Figure 6.1.

Regular Training Train regular grammars on the treebank data alone. See Fig-

ure 6.1 (a).

ST-Reg Training Use a single regular grammar selected based on development

set performance to parse a single subset of the unlabeled data and train n

self-trained grammars using this single set. See Figure 6.1 (b).

ST-Prod Training Use the product of regular grammars to parse a single subset

of the unlabeled data and train n self-trained grammars using this single set.

See Figure 6.1 (c).

ST-Prod-Mult Training Use the product of regular grammars to parse all k sub-

sets of the unlabeled data and train k self-trained grammars, each using a

different subset. See Figure 6.1 (d).

The resulting individual grammars can be either used individually or combined in

a product model. We use n = k = 10 in our experiments.

126

G1

Gn

 
Train Product

Hand
Labeled
Data

(a) Regular Training

Automatically
Labeled

Data

Unlabeled
Data

Train
G New

G1

New
Gn

 
Train Product

Label

Hand
Labeled

Data

(b) ST-Reg Training

G1

Gn

 

Automatically
Labeled

Data

Unlabeled
Data

Train
New
G1

New
Gn

 
Train Product

Label

Product Hand
Labeled

Data

(c) ST-Prod Training

G1

Gn

 

Automatically
Labeled
Data 1

Unlabeled
Data 1

Train

New
G1

New
Gk

 

Train

Product

Label

Product

Automatically
Labeled
Data k

Unlabeled
Data k

 

Train

Label

Hand
Labeled

Data

(d) ST-Reg-Mult Training

Figure 6.1: Four training protocols

127

These four protocols provide different insights. The first two protocols al-

lows us to investigate the effectiveness of product models for regular and standard

self-trained grammars. The third protocol enables us to quantify how important

the accuracy of the baseline parser is for self-training. Finally, the fourth protocol

provides a method for injecting some additional diversity into the individual gram-

mars to determine whether a product model is more successful when there is greater

variance among the individual models.

6.4 Experiments

6.4.1 Setup

We conduct experiments on two genres: newswire text and broadcast news

transcripts. For the newswire studies, we use the standard setup (sections 02-21 for

training, 22 for development, and 23 for final test) of the WSJ Penn treebank [104]

for supervised training. The BLLIP corpus [35] is used as the source of unlabeled

data for self-training the WSJ grammars. We ignore the parse trees contained in

the BLLIP corpus and retain only the sentences, which are already segmented and

tokenized for parsing (e.g., contractions are split into two tokens and punctuation

is separated from the words). We partition the 1,769,055 BLLIP sentences into 10

equally sized subsets34.

For broadcast news, we utilize the Broadcast News treebank from Ontonotes

34We corrected some of the most egregious sentence segmentation problems in this corpus, and
so the number of sentences is different than if one simply pulled the fringe of the trees. It was not
uncommon for a sentence split to occur on abbreviations, such as Adm.

128

[157] together with the WSJ Penn treebank for supervised training because their

combination results in better parser models compared to using the limited-sized

broadcast news corpus alone (86.7 F vs. 85.2 F). The files in the Broadcast News

treebank represent news stories collected during different time periods with a diver-

sity of topics. In order to obtain a representative split of train/development/test

sets, we divide them into blocks of 10 files sorted by alphabetical filename order. We

use the first file in each block for development, the second for test, and the remain-

ing files for training. This training set is then combined with the entire WSJ Penn

treebank. We also use 10 equal size subsets from the Hub4 CSR 1996 utterances [57]

for self-training. The Hub 4 transcripts are markedly noisier than the BLLIP corpus

is, in part because it was produced by human transcription of spoken language, but

also because there is no punctuation indicating sentence boundaries and so sentence

segmentation is less precise.

The treebanks are preprocessed differently for the two genres. For newswire,

we use a slightly modified version of the WSJ treebank: empty nodes and func-

tion labels are deleted and auxiliary verbs are replaced with AUXB, AUXG, AUXZ,

AUXD, or AUXN to represent infinitive, progressive, present, past, or past partici-

ple auxiliaries35. The targeted use of the broadcast models is for parsing broadcast

news transcripts for language models in speech recognition systems [53]. Therefore,

in addition to applying the transformations used for newswire, we also replace sym-

bolic expressions with verbal forms (e.g., $5 is replaced with five dollars) and remove

35Parsing accuracy is marginally affected. The average over 10 SM6 grammars with the trans-
formation is 90.5 compared to 90.4 F without it, a 0.1 F average improvement.

129

Genre Stats Train Dev Test Unlabeled

Newswire
sentences 45.1k 1.7k 2.4k 1769.1k

words 1149.8k 40.1k 56.7k 43057.0k
Length Avg./Std. 25.5/12.2 25.1/11.8 25.1/12.0 24.3/10.9

Broadcast
News

sentences 59.0k 986 1.1k 4386.5k
words 1281.1k 17.1k 19.4k 77687.9k

Length Avg./Std. 17.3/11.3 17.4/11.3 17.7/11.4 17.7/12.8

Table 6.1: The number of words and sentences, together with average (Avg.) sen-
tence length and its standard deviation (Std.) in our experiments

punctuation and case. The Hub4 data is segmented into utterances, punctuation

is removed, words are down-cased, and contractions are tokenized for parsing. Ta-

ble 7.1 summarizes the data set sizes used in our experiments, together with average

sentence length and its standard deviation.

Parses from all models are compared with respective gold standard parses us-

ing SParseval bracket scoring [134]. This scoring tool produces scores that are

identical to those produced by EVALB for WSJ. For broadcast news, SParseval

applies Charniak and Johnson’s scoring method [32] for EDITED nodes36. Using

this method, broadcast news scores were slightly (.05-.1) lower than if EDITED

constituents were treated like any other, as in EVALB. We use Dan Bikel’s random-

ized parsing evaluation comparator to determine the significance (p < 0.05) of the

difference between two parsers’ outputs.

Our initial set of experiments and analysis will focus on the development set

of WSJ. We will then follow up with an analysis of broadcast news to determine

whether the findings generalize to a second, less structured type of data. It is

36Non-terminal subconstituents of EDITED nodes are removed so that the terminal constituents
become immediate children of a single EDITED node, adjacent EDITED nodes are merged, and
they are ignored for span calculations of the other constituents.

130

Regular Best Average Product

SM6 90.8 90.5 92.0
SM7 90.4 90.1 92.2

Table 6.2: Performance of the regular grammars and their products on the WSJ
development set in F score (%)

important to construct grammars capable of parsing this type of data accurately

and consistently in order to support structured language modeling [53, 155].

6.4.2 Newswire Results

We compare single grammars and their products that are trained in the stan-

dard way on the WSJ treebank training data, as well as the three self-training

protocols discussed in Section 6.3. We report the F scores of both SM6 and SM7

grammars on the development set in order to observe the effect of model complex-

ity on the performance of the self-trained and product models. Note that we use

6th round grammars to produce the automatic parse trees for the self-training ex-

periments. Parsing with the product of the SM7 grammars is slow and requires a

large amount of memory (32GB). Since we have limited access to machines with

this amount of memory, it was infeasible to parse all of the unlabeled data with the

product of SM7 grammars.

6.4.2.1 Regular Training

We begin by training ten PCFG-LA grammars initialized with different ran-

dom seeds using the WSJ treebank training data. Results are presented in Table 6.2.

131

ST-Reg Best Average Product

SM6 91.5 91.2 92.0
SM7 91.6 91.5 92.4

Table 6.3: Performance of the ST-Reg grammars and their products on the WSJ
development set in F score (%)

The best F score attained by the individual SM6 grammars on the development set

is 90.8 F, with an average score of 90.5 F. The product of grammars achieves a

significantly improved accuracy at 92.0 F. Note that the individual SM7 grammars

perform worse on average (90.1 vs. 90.5 F) due to over-fitting, but their product

achieves higher accuracy than the product of the SM6 grammars (92.2 vs. 92.0 F).

We will further investigate the causes for this effect in Section 6.4.3. Given the

ten SM6 grammars from this experiment, we next investigate the three self-training

protocols.

6.4.2.2 ST-Reg Training

In the first self-training regime (ST-Reg), we use the best single grammar

(90.8 F) chosen based on the development set to parse a single subset of the BLLIP

data. We then train ten grammars from different random seeds, using an equally

weighted combination of the WSJ training set with this single set. These self-trained

grammars are then combined into a product model. As reported in Table 6.3, the

use of additional automatically labeled training data enables the individual SM6 ST-

Reg grammars to perform significantly better than the individual SM6 grammars

(91.2 vs. 90.5 F on average), and the individual SM7 ST-Reg grammars to perform

132

ST-Prod Best Average Product

SM6 91.7 91.4 92.2
SM7 91.9 91.7 92.4

Table 6.4: Performance of the ST-Prod grammars and their products on the WSJ
development set in F score (%)

even better, achieving an average F score of 91.5.

The product of ST-Reg grammars performs significantly better than the in-

dividual grammars; however, the improvement is much smaller than that obtained

by the product of regular grammars. In fact, the product of ST-Reg grammars

performs quite similarly to the product of regular grammars despite the higher av-

erage accuracy of the individual grammars. This is probably caused by the fact that

self-training on the same data tends to reduce the variability among the self-trained

grammars, as we will confirm in Section 6.4.3. The diversity among the individual

grammars is an important contributor to the improvements attained by product

models.

6.4.2.3 ST-Prod Training

Since products of PCFG-LA grammars perform significantly better than indi-

vidual PCFG-LA grammars, it is natural to utilize the product model for parsing

the unlabeled data. To investigate whether the higher accuracy of the automatically

labeled data translates into a higher accuracy of the self-trained grammars, we used

the product of SM6 grammars to parse the same subset of the unlabeled data as in

the previous experiment. We then trained ten self-trained grammars, which we call

133

ST-Prod-Mult Best Average Product

SM6 91.7 91.4 92.5
SM7 91.8 91.7 92.8

Table 6.5: Performance of the ST-Prod-Mult grammars and their products on the
WSJ development set in F score (%)

ST-Prod grammars. As can be seen in Table 6.4, using the product of the regular

grammars for labeling the self-training data results in improved individual ST-Prod

grammars when compared with the ST-Reg grammars, with 0.2 and 0.3 improve-

ments for the best SM6 and SM7 grammars, respectively. Interestingly, the best

individual SM7 ST-Prod grammar (91.9 F) performs comparably to the product of

the regular grammars (92.0 F) that was used to label the BLLIP subset used for

self-training. This is very useful for practical reasons because a single grammar is

faster to parse with and requires less memory than the product model.

The product of the SM6 ST-Prod grammars also achieves a 0.2 higher F score

compared to the product of the SM6 ST-Reg grammars, but the product of the SM7

ST-Prod grammars has the same performance as the product of the SM7 ST-Reg

grammars. This could be partially due to the fact that the ST-Prod grammars are

no more diverse than the ST-Reg grammars, as we will confirm in Section 6.4.3.

6.4.2.4 ST-Prod-Mult Training

When creating a product model of regular grammars, Petrov [122] used a dif-

ferent random seed for each model and conjectured that the effectiveness of the

product grammars stems from the resulting diversity of the individual grammars.

134

Two ways to systematically introduce bias into individual models are to either mod-

ify the feature sets [3, 140] or to change the training distributions of the individual

models [16]. Petrov [122] attempted to use the second method to train individual

grammars on either disjoint or overlapping subsets of the treebank, but observed a

performance drop in individual grammars resulting from training on less data, as

well as in the performance of the product model. Rather than reducing the amount

of gold training data (or having treebank experts annotate more data to support

the diversity), we employ the self-training paradigm to train models using a combi-

nation of the same gold training data with different sets of the self-labeled training

data, each of which has the same size of the single set used in the other self-training

protocols. This approach also allows us to utilize a much larger amount of low-cost

automatically labeled data than can be used to train one model37 by partitioning

the data into smaller subsets and then training models with individual subsets.

Hence, in the fourth training protocol, we use the product of the regular grammars

to parse all ten subsets of the unlabeled data and train ten grammars, which we call

ST-Prod-Mult grammars, each using a different subset.

As shown in Table 6.5, the individual ST-Prod-Mult grammars perform sim-

ilarly to the individual ST-Prod grammars. However, the product of the ST-Prod-

Mult grammars achieves significantly higher accuracies than the product of the

ST-Prod grammars, with 0.3 and 0.4 improvements in F score for SM6 and SM7

grammars, respectively, suggesting that the use of multiple self-training subsets

37The amount of automatically labeled training data used to self-train a PCFG-LA grammar is
constrained by CPU and memory because self-training PCFG-LA grammars on large quantities of
automatically labeled training data can be very slow and would require a lot of memory.

135

plays an important role in model combination.

6.4.3 Analysis

We conducted a series of analyses to develop an understanding of the factors

affecting the effectiveness of combining self-training with product models.

6.4.3.1 What Has Improved?

Figure 6.2 (a) depicts the difference between the product and the individual

SM6 regular grammars on overall F score, as well as individual constituent F scores.

As can be observed, there is significant variation among the individual grammars,

and the product of the regular grammars improves almost all categories, with a few

exceptions (some individual grammars do better on QP and WHNP constituents).

Figure 6.2 (b) depicts the difference between the product of the SM6 regular

grammars and the individual SM7 ST-Prod-Mult grammars. Self-training dramat-

ically improves the quality of the single SM7 ST-Prod-Mult grammars. In most

of the categories, some individual ST-Prod-Mult grammars perform comparably or

slightly better than the product of SM6 regular grammars used to automatically

label the unlabeled training set.

6.4.3.2 Over-Fitting vs. Smoothing

Figure 6.3 (a) and 6.3 (b) depict the learning curves of the regular and the ST-

Prod-Mult grammars. As more latent variables are introduced through the iterative

136

-3-2-10123

To
ta

l
V

P
Q

P
N

P
SB

A
R

PP
A

D
V

P_
PR

T
S

W
H

N
P

A
D

JP

Difference in F

G
0

G
1

G
2

G
3

G
4

G
5

G
6

G
7

G
8

G
9

(a
)

D
iff

er
en

ce
in

F
sc

or
e

b
et

w
ee

n
th

e
p
ro

d
u
ct

of
S
M

6
re

gu
la

r
gr

am
m

ar
s

an
d

th
e

in
d
iv

id
u
al

S
M

6
re

gu
la

r
gr

am
m

ar
s.

-3-2-10123

To
ta

l
V

P
Q

P
N

P
SB

A
R

PP
A

D
V

P_
PR

T
S

W
H

N
P

A
D

JP

Difference in F

G
0

G
1

G
2

G
3

G
4

G
5

G
6

G
7

G
8

G
9

(b
)

D
iff

er
en

ce
in

F
sc

or
e

b
et

w
ee

n
th

e
p
ro

d
u
ct

of
S
M

6
re

gu
la

r
gr

am
m

ar
s

an
d

th
e

in
d
iv

id
u
al

S
M

7
S
T

-P
ro

d
-M

u
lt

gr
am

m
ar

s.

F
ig

u
re

6.
2:

D
iff

er
en

ce
in

F
sc

or
es

b
et

w
ee

n
va

ri
ou

s
in

d
iv

id
u
al

gr
am

m
ar

s
an

d
re

p
re

se
n
ta

ti
ve

p
ro

d
u
ct

gr
am

m
ar

s.
E

ac
h

in
d
iv

id
u
al

gr
am

m
ar

is
re

p
re

se
n
te

d
b
y

a
u
n
iq

u
e

co
lo

r.

137

83

85

87

89

91

93

2 3 4 5 6 7
5%

9%

13%

17%

21%

25%

Regular Grammars

F

(a) SM Rounds

R
el

at
iv

e
Er

ro
r R

ed
uc

tio
n

83

85

87

89

91

93

2 3 4 5 6 7
5%

9%

13%

17%

21%

25%

ST-Prod-Mult Grammars

F
(b) SM Rounds

R
el

at
iv

e
Er

ro
r R

ed
uc

tio
n

Product Mean Error Reduction

0.1

0.2

0.3

0.4

0.5

2 3 4 5 6 7

Test

A
ve

ra
ge

 V
ar

ia
nc

e

(c) SM Rounds

Regular
ST-Prod-Mult
ST-Prod
ST-Reg

Figure 6.3: Learning curves of (a) the individual regular and (b) ST-Prod-Mult
grammars (average performance, with minimum and maximum values indicated by
bars) and their products before and after self-training on the WSJ development
set. The relative error reductions of the products are also reported. The measured
average empirical variance among the grammars trained on WSJ is reported in (c).

138

split-merge training algorithm, the modeling capacity of the grammars increases,

leading to improved performance. However, the performance of the regular gram-

mars drops after 6 split-merge rounds, as was also previously observed in (Huang and

Harper [71], Petrov [121]), suggesting that the regular SM7 grammars have over-fit

the treebank training data. In contrast, the performance of the self-trained gram-

mars continues to improve on the 7th split-merge round. As discussed in Chapter 5,

this improvement may be due to the fact that the additional self-labeled training

data adds a smoothing effect to the grammars, supporting an increase in model

complexity without over-fitting.

Although the product model consistently helps both regular and self-trained

grammars, there is a non-negligible difference between the improvement achieved

by the product model over its component grammars. The regular product model

improves upon its individual grammars more than the ST-Prod-Mult product does

in the later split-merge rounds, as illustrated by the relative error reduction curves

in Figures 6.3 (a) and (b). In particular, the product of the SM7 regular grammars

gains a remarkable 2.1 absolute improvement in F over the average performance of

the individual regular SM7 grammars and a 0.2 absolute improvement in F over the

product of the regular SM6 grammars, despite the fact that the individual regular

SM7 grammars perform less accurately than the SM6 grammars. This suggests that

the product model is able to effectively exploit less smooth, over-fit grammars. We

will further examine this issue next.

139

6.4.3.3 Diversity

For effectiveness of Products of Experts [67] or Logarithmic Opinion Pools [141],

it is important that each individual expert learns complementary aspects of the

training data. The product model [122] enforces that the joint prediction of their

product has to be licensed by all individual experts. One possible explanation of the

high accuracy achieved by a product of over-fit grammars is that with the addition

of more latent annotations, the individual grammars become more deeply special-

ized on certain aspects of the training data. This specialization leads to greater

diversity in their prediction preferences, especially in the presence of a small train-

ing set. On the other hand, the self-labeled training set size is much larger, and so

the specialization process is therefore slowed down.

Petrov [122] showed that the individually learned grammars are indeed very

diverse by looking at the distribution of latent annotations across the treebank

categories, as well as the variation in overall and individual category F scores (e.g.,

see Figure 6.2). However, these measures do not directly relate to the diversity of

the prediction preferences of the grammars, as we have observed similar patterns in

the regular and self-trained models.

Given a sentence s and a set of grammars G = {G1, · · · , Gn}, recall that

parsing with a product model searches for the best tree T such that the following

objective function is maximized:

∑
r∈R̂(T)

∑
G∈G

log P(r|s,G)

140

where log P(r|s,G) is the log posterior probability of rule r given sentence s and

grammar G. The power of the product model comes directly from the diversity in

log P(r|s,G) among individual grammars. If there is little diversity, the individual

grammars would make similar predictions and there would be little or no benefit

from using a product model. We use the average empirical variance of the log

posterior probabilities of the rules among the learned grammars on a held-out set S

as an approximate measure of the diversity among the grammars:

∑
s∈S

∑
G∈G

∑
r∈R̂(G,s)

P(r|s,G)VAR(log(P(r|s,G)))∑
s∈S

∑
G∈G

∑
r∈R̂(G,s)

P(r|s,G)

where R̂(G, s) represents the set of rules extracted from the chart when parsing sen-

tence s with grammar G, and VAR(log(P(r|s,G))) is the variance of log(P(r|s,G))

among all grammars G ∈ G.

Note that the average empirical variance is only an approximate of the diver-

sity among grammars. It tends to be biased to produce larger numbers when the

posterior probabilities of rules are smaller because small differences in probability

produce large changes in the log scale. This happens for coarser grammars produced

in early split-merge stages because there is more uncertainty about what rules to

apply and thus many low probability rules remain in the parsing chart.

As shown in Figure 6.3 (c), the average variances all start at a high value

and then drop, probably due to the aforementioned bias. However, as the split-

merge iterations continue, the average variances increase despite the bias. More

141

interestingly, the variance among the regular grammars grows at a much faster

rate and is consistently greater when compared to the self-trained grammars. This

suggests that there is greater diversity among the regular grammars than among the

self-trained grammars, and it explains the larger absolute improvement obtained by

the regular product model. It is also important to note that there is more variance

among the ST-Prod-Mult grammars, which were trained on disjoint self-labeled

training data, and a greater improvement in their product model relative to the ST-

Reg and ST-Prod grammars, further supporting the diversity hypothesis. Finally,

the trend seems to indicate that the variance of the self-trained grammars would

continue increasing if EM training was extended by a few more split-merge rounds,

potentially resulting in even better product models. It is currently impractical to

test this due to the dramatic increase in computational requirements for an SM8

product model, and so we leave it for future work.

6.4.4 Broadcast News Results

We conducted a similar set of experiments on the broadcast news data set38.

While the development set results in Table 6.6 show trends similar to the WSJ

results, the benefit from the combination of self-training and product models is

more pronounced in this domain. The best single ST-Prod-Mult grammar (89.2

F) alone is able to outperform the product of SM7 regular grammars (88.9 F), and

38We chose to not run the full ST-Reg experiment on broadcast news in order to focus our
computing resources on the ST-Prod and ST-Prod-Mult experiments for achieving high-quality
parsing models on broadcast news. As a result, we do not report the ST-Reg results. However,
our preliminary experiments showed that the broadcast news ST-Reg grammars are indeed more
accurate than the regular grammars but less accurate than the ST-Prod grammars, similar to the
observation on the newswire data set.

142

Model Rounds Best Product

Regular
SM6 87.1 88.6
SM7 87.1 88.9

ST-Prod
SM6 88.5 89.0
SM7 89.0 89.6

ST-Prod-Mult
SM6 88.8 89.5
SM7 89.2 89.9

Table 6.6: F scores (%) for various models on the broadcast news development set

their product achieves another 0.7 absolute improvement, resulting in a significantly

better accuracy of 89.9 F.

Figure 6.4 shows again that the benefits of self-training and product mod-

els are complementary and can be stacked. As can be observed, the self-trained

grammars have increasing F scores as the split-merge rounds increase, while the

regular grammars have a slight decrease in F score after round 6. In contrast to the

newswire models, it appears that the individual ST-Prod-Mult grammars trained on

broadcast news always perform comparably to the product of the regular grammars

at all split-merge rounds, including the product of SM7 regular grammars. This is

noteworthy, given that the ST-Prod-Mult grammars are trained on the output of

the product of the SM6 regular grammars, which are less accurate than the product

of SM7 regular grammars. Although we used more treebank trees for training the

initial broadcast news grammars, the greatest number of trees are taken from the

WSJ treebank, which is different in many ways than broadcast news. It is possible

that the addition of the genre-matched automatically labeled broadcast news data

(from Hub4 CSR) provides some adaptation guidance that enables learning of en-

143

79

81

83

85

87

89

91

2 3 4 5 6 7
3%

6%

9%

12%

15%

Regular Gramamrs

F

(a) SM Rounds

R
el

at
iv

e
Er

ro
r R

ed
uc

tio
n

79

81

83

85

87

89

91

2 3 4 5 6 7
3%

6%

9%

12%

15%

ST-Prod-Mult Gramamrs

F
(b) SM Rounds

R
el

at
iv

e
Er

ro
r R

ed
uc

tio
n

Product Mean Error Reduction

0.1

0.2

0.3

0.4

0.5

2 3 4 5 6 7

Test

A
ve

ra
ge

 V
ar

ia
nc

e

(c) SM Rounds

Regular
ST-Prod-Mult
ST-Prod

Figure 6.4: Learning curves of (a) the individual regular and (b) ST-Prod-Mult
grammars (average performance, with minimum and maximum values indicated
by bars) and their products before and after self-training on the broadcast news
development set. The relative error reductions of the products are also reported.
The measured average empirical variance among the grammars trained on broadcast
news is reported in (c).

144

hanced grammars for broadcast news. The product of the ST-Prod-Mult grammars

also provides a further and significant improvement in F score.

6.4.5 Final Results

We evaluated the best single self-trained grammar (SM7 ST-Prod), as well as

the product of the SM7 ST-Prod-Mult grammars on the WSJ test set. Table 6.7

compares these two grammars to a large body of related parsing results grouped into

single parsers (SINGLE), discriminative reranking approaches (RE), self-training

(SELF), and system combinations (COMBO).

Our best single grammar achieves an accuracy that is only slightly worse (91.6

vs. 91.8 in F score) than the product model in (Petrov [122]). This is made possible

by self-training using the output of a high quality product model. The higher quality

of the automatically parsed data results in a 0.3 point higher final F score (91.6 vs.

91.3) over the self-training results in (Huang and Harper [71]), which used a single

regular grammar for parsing the unlabeled data. The product of the self-trained

ST-Prod-Mult grammars achieves significantly higher accuracies with an F score of

92.5, a 0.7 improvement over the product model in (Petrov [122]).

Although our models are based on purely generative PCFG grammars, our

best product model performs competitively to the self-trained two-step discrimina-

tive reranking parser of McClosky et al. [107], which makes use of many non-local

reranking features. Our parser also performs comparably to other system combina-

8Our ST-Reg grammars are trained in the same way as in (Huang and Harper [71]) and Chap-
ter 5 except that we keep all unary rules. The reported numbers are from the best single ST-Reg
grammar in this work.

145

Type Parser LP LR EX

S
IN

G
L

E Charniak [31] 89.9 89.5 37.2
Petrov and Klein [123] 90.2 90.1 36.7
Carreras et al. [26] 91.4 90.7 -

R
E Charniak and Johnson [33] 91.8 91.2 44.8

Huang [68] 92.2 91.2 43.5

S
E

L
F 8Huang and Harper [71] 91.6 91.1 40.4

McClosky et al. [107] 92.5 92.1 45.3
C

O
M

B
O Petrov [122] 92.0 91.7 41.9

Sagae and Lavie [136] 93.2 91.0 -
Fossum and Knight [55] 93.2 91.7 -
Zhang et al. [167] 93.3 92.0 -

ST-Prod-Mult
Single Grammar 91.8 91.4 40.3
Product Model 92.7 92.2 43.1

Table 6.7: Final test set accuracies on WSJ

tion approaches [55, 136, 167] with a higher recall and a lower precision, but again

without using a discriminative reranking step. We expect that replacing the first-

step generative parsing model in (McClosky et al. [107]) with a product of latent

variable grammars would produce even higher parsing accuracies.

On the broadcast news test set, our best performing single and product gram-

mars (bolded in Table 6.6) obtained F scores of 88.7 and 89.6, respectively. While

there is no prior work using our setup, we expect these numbers to set a high base-

line.

6.5 Conclusions

In this chapter, we extended the self-training approach described in Chapter 5

to build high accuracy products of PCFG-LA grammars with large amounts of genre-

matched data. We demonstrated empirically on newswire and broadcast news genres

146

that very high accuracies can be achieved by self-training products of PCFG-LA

grammars on disjoint sets of automatically labeled data. Two factors appear to play

an important role. First, the accuracy of the model used for parsing the unlabeled

data contributes directly to the accuracy of the resulting individual self-trained

grammars. Second, the diversity of the individual grammars affects the gains that

can be obtained when combining multiple grammars into a product model. Our most

accurate single grammar achieves an F score of 91.6 on the WSJ test set, rivaling

discriminative reranking approaches [33] and products of latent variable grammars

[122], despite being a single generative PCFG. Our most accurate product model

achieves an F score of 92.5 without the use of discriminative reranking and comes

close to the best known numbers on this test set [167].

While self-training allows more training data to be exploited during grammar

training, it does not change the way a grammar learns from the training data. In the

next chapter, we will present a feature-rich log-linear lexical model for PCFG-LA

grammars that not only provides a principled solution to address data sparsity and

OOV words, but also a means to learn from arbitrary local features that are helpful

for further improving parsing performance.

147

Chapter 7

Improving PCFG-LA with Log-Linear Lexical Models

7.1 Overview

Context-free grammars with latent annotations (PCFG-LA) are effective for

parsing a variety of languages; however, as we discussed in Chapter 5, their lexical

model may be subject to over-fitting and requires language engineering to handle

OOV words. The rare word smoothing and OOV word handling methods stud-

ied in Chapter 5 were effective at improving parsing performance; however, both

approaches may be suboptimal due to fact that they are based on heuristics, and

expert tailoring of a language-specific OOV module may also be unavailable for new

languages.

Inspired by the previous studies [8, 37] that have incorporated rich features into

generative models, we have developed a feature-rich log-linear lexical model that can

be easily adapted to new languages. Our lexical model has three advantages: over-

fitting is alleviated via regularization, OOV words are modeled using rich features,

and lexical features are exploited during grammar induction. Our approach results in

significantly more accurate PCFG-LA grammars that are easy to apply to different

languages and achieve significant absolute improvements of 1%, 1.7%, and 2.7% in

F score on English, Chinese, and Arabic, respectively.

The rest of this chapter is structured as follows. We first review the related lit-

148

erature and motivate the use of feature rich models in Section 7.2. We then describe

our proposed feature rich log-linear lexical model in Section 7.3 and the training

algorithm in Section 7.4. Experiments are presented in Section 7.5. Section 7.6

concludes this chapter.

7.2 Motivation for Using Feature Rich Models

The lexical model of a standard PCFG-LA grammar is represented as a gen-

erative multinomial distribution Pθ(w|tx) that only models the word identity itself,

and so is incapable of taking advantage of the rich morphological features of the

word. Moreover, it is not explicitly regularized and may be subject to over-fitting.

The rare word smoothing method and OOV handling method introduced in Chap-

ter 5 partially address these problems to improve parsing performance; however,

both are heuristic and are likely to be suboptimal. A more principled model should

be able to learn in a data-driven fashion from over-lapping rich features in order to

handle data sparsity and model OOV words.

Some previous research [54, 124] addressed this problem by completely re-

placing the generative models with a discriminative model, so that overlapping

features can be incorporated. For discriminative log-linear grammars with latent

variables [124, 125], the conditional probability of a parse tree T given a input

sentence s is parametrized by the following log-linear model:

Pλ(T |s) =
∑

T ′∈Z(T)

Pλ(T
′|s) =

∑
T ′∈Z(T)

exp〈λ, f(T ′)〉
Z(λ, s)

(7.1)

149

where Z(T) is the set of derivation trees of T , f(T ′) is a feature vector extracted

from the derivation tree T ′, λ is the vector of feature weights, 〈·, ·〉 represents the

dot product of two vectors, and Z(λ, s) is the partition function that ensures that

Pλ(T |s) is a proper distribution over all derivation trees for sentence s. In the lexical

part of the discriminative grammar, Petrov and Klein [124] used simple prefixes and

suffixes of up to length 3 in addition to universal features such as the presence

of digits and dashes to handle OOV words. An advantage of applying this type

of model to new languages is that the focus is on feature-engineering rather than

how to develop a heuristic method that is appropriate for the language. On the

other hand, discriminative training is much slower than generative training because

the partition function Z(λ, s) requires an expensive summation over all possible

derivations trees of all possible parse trees over a sentence. Moreover, as shown in

(Petrov and Klein [124]), a discriminatively trained parser is less accurate than its

strong generative counterpart on WSJ. Nevertheless, it does perform better on some

other languages, possibly due to the use of regularization and multi-scale grammars

to alleviate data sparsity and rich features to improve OOV word handling.

Berg-Kirkpatrick et al. [8] recently demonstrated that log-linear models with

rich features can be successfully applied to unsupervised learning of generative mod-

els such as HMM POS taggers. In an unsupervised generative learning task, the

joint probability of a sequence of observed random variables Y are computed with

150

reference to a sequence of hidden random variables Z,

P(Y = y) =
∑

z∈Z(y)

P(Z = z,Y = y) (7.2)

Let X = (Z,Y). The joint probability of P(X) can be factored into the product of

conditional probabilities:

P(X = x) =
∏
i∈I

Pλ(Xi = xi|Xπ(i) = xπ(i)) (7.3)

where Xπ(i) denotes the parents of Xi and I is the set of indexes of the variables in X.

In an HMM-based unsupervised POS tag learning task, if xi represents a word, then

xπ(i) represents the hidden POS tag that generates the word. Instead of modeling the

conditional probability Pλ(Xi = xi|Xπ(i) = xπ(i)) using a multinomial distribution,

as is commonly done in natural language processing tasks, Berg-Kirkpatrick et al.

[8] treated the distribution as the output of a local log-linear model:

Pλ(Xi = d|Xπ(i) = c) = Pλ(d|c) =
exp〈λ, f(d, c)〉∑
d′ exp〈λ, f(d′, c)〉 (7.4)

and integrated rich features into the model learning process by optimizing on the

regularized likelihood of the training data:

L(λ) = log Pλ(Y = y)− κ||λ||2

This approach was found to significantly outperform the traditional generative mod-

151

els on several unsupervised learning tasks.

Inspired by the work of Berg-Kirkpatrick et al. [8], we propose a locally nor-

malized log-linear lexical model for generative PCFG-LA grammars. Our log-linear

lexical model maintains the advantages of generative models, while providing a prin-

cipled way to: 1) alleviate over-fitting via regularization, 2) handle OOV words using

rich features, and 3) incorporate lexical features into grammar induction.

7.3 Design of the Log-Linear Lexical Model

When designing a log-linear lexical model based on the work of Berg-Kirkpatrick

et al. [8], someone might try to model Pθ(w|tx), where θ is the full grammar param-

eter, directly using a log-linear model:

Pφ(w|tx) =
exp〈φ, f(tx, w)〉∑
w′ exp〈φ, f(tx, w′)〉

(7.5)

where f(tx, w) represents the feature vector extracted from the pair (tx, w), φ rep-

resents the feature weight vector, and the denominator sums over all words that

appear on the training data. Note that θ is the parameter set presenting all of

the free parameters of the grammar that must be tuned, but as a convention that

we will apply throughout this chapter, we replace the subscript θ in Pθ(w|tx) with

φ in Pφ(w|tx) to emphasize that the parameter φ in θ fully controls the emission

probability of word w given latent tag tx.

The model formulation in Equation 7.5 does not have the ability to estimate

the probability of OOV words given a latent tag; however, for parsing, we must

152

model OOV words that will undoubtedly appear in new sentences. One might

compute the numerator for an OOV word based on its features and divide it by

a denominator approximated using the words in the training data, but such an

estimate did not perform well in our preliminary experiments.

An alternative is to model Pθ(tx|w) directly using a log-linear model:

Pφ(tx|w) =
exp〈φ, f(tx, w)〉∑

t′
∑

x′ exp〈φ, f(t′x′ , w)〉

and compute Pθ(w|tx) via Bayes’ rule. However, such a model cannot guarantee

that the probability Pθ(t|w) computed by
∑

x Pθ(tx|w) is equal to the maximum

likelihood estimate, which is a reasonable constraint. Moreover, it is difficult to

initialize the feature weights to reflect the prior knowledge that each word has its

own preferences for POS tags. Simply setting the initial weights to zero is not a

good choice because it forces the conditional distribution of latent tags to be uniform

across the POS tags.

Hence, we choose to model Pθ(w|tx) in multiple steps. We first model the

conditional probability of latent tag tx given the surface POS tag t and word w

using a log-linear model:

Pφ(tx|t, w) =
exp〈φ, f(tx, w)〉∑
x′ exp〈φ, f(tx′ , w)〉 (7.6)

where f(tx, w) represents the feature vector extracted from the pair (tx, w), φ is the

feature weight vector, and the denominator sums over all latent tags for POS tag t.

153

This model is applicable to both known and OOV words as long as there are active

features; otherwise, a uniform latent tag distribution is assumed. We call Pφ(tx|t, w)

of Equation 7.6 the latent lexical model because it models the distribution of latent

tags.

The conditional probability of tx given word w is expressed as:

Pθ(tx|w) = Pθ(tx, t|w) = Pφ(tx|t, w)P(t|w)

and the word emission probability given a latent tag is computed via Bayes’ rule:

Pθ(w|tx) =
Pφ(tx|t, w)P(t|w)P(w)∑
w′ Pφ(tx|t, w′)P(t|w′)P(w′)

(7.7)

Our new lexical model Pθ(w|tx) shown in Equation 7.7 is composed of the latent

lexical model Pφ(tx|t, w) and two other terms: P(t|w) and P(w), which are computed

differently for known and OOV words.

For words observed in the training data, both P(t|w) and P(w) are computed

using the maximum-likelihood estimation (based on the observed training trees)

so that Pθ(w|tx) forms a proper distribution of observed words during grammar

induction.

For OOV words, we use a log-linear OOV model to estimate the POS tag

distribution:

Pγ(t|w) =
exp〈γ,g(t, w)〉∑
t′ exp〈γ,g(t′, w)〉 (7.8)

where g(t, w) represents the feature vector extracted from the pair (t, w), γ is the

154

feature weight vector, and the denominator sums over all POS tags with active

features. The simple approach (described in Section 5.4.2) is used when no feature

is active. P(w) is approximated by one over the number of training tokens. It should

be noted that Pγ(t|w) may use different features than Pφ(tx|t, w).

Compared with modeling Pθ(w|tx) directly as a multinomial distribution, the

new lexical model separates P(t|w) and Pφ(tx|t, w), offering three important advan-

tages:

• The parameter φ of the latent lexical model Pφ(tx|t, w) can be smoothed

through regularization to address data sparsity.

• Rich features can be utilized in the OOV model Pγ(t|w) to estimate POS

tag distributions for OOV words. This is important when working on new

languages as it provides a rich and unified model to address OOV words.

• Rich features can also be utilized in the latent lexical model Pφ(tx|t, w) to

guide the induction of latent POS tags.

7.4 Model Training

The parameter θ for our parser model is a tuple consisting of φ for the log-

linear latent lexical model, γ for the log-linear OOV model, and ψ for the phrasal

rule expansion probabilities. The other parameters (e.g., P(t|w) and P(w) for known

words and P(rare|tx)) can be computed based on observable or fractional counts once

θ is determined.

155

Because the parameter γ of the OOV model is independent of the latent cat-

egories, we simply use a gradient-based optimization approach to maximize the

following objective:

l′(γ) =
∑
t,w

ct,w log Pγ(t|w)− κ′||γ||2

where ct,w is the count of the pair (t, w) in the training data, and κ′ is the regular-

ization weight.

For parameters ψ and φ, we apply the split-merge training procedure in (Petrov

et al. [126]) to induce latent categories. Given a set of latent categories, the goal is

to find θ that maximizes the regularized training likelihood:

L(θ) =
∑
T∈T

log Pθ(T)− κ||φ||2 (7.9)

where κ||φ||2 is the regularization term40 for the feature weights of the latent lexical

model.

The two optimization approaches described in (Berg-Kirkpatrick et al. [8])

can be extended naturally to our problem. The first approach is EM-based with

an E-step identical to Equation 5.3 in Section 5.3. The objective of the M-step

40Both κ′ and κ are tuned on the development set. We could have also used L1 regularization,
but leave this alternative to future work.

156

becomes:

l(θ) =
∑

w→tx∈Rl

etx,w log Pφ(w|tx)− κ||φ||2

+
∑
r∈Rp

er log Pψ(r)

where we separate the set of rules R into lexical rules Rl and phrasal rules Rp.

Note that we replace the subscript θ in Pθ(w|tx) (Equation 7.7) with φ in Pφ(w|tx)

because φ fully controls the emission probability of words on the training data. The

phrasal rule parameter ψ is updated as before by normalizing the expected rule

counts and is smoothed in the same way as in (Petrov et al. [126]). Let l(φ) be the

part of l(θ) that depends on φ, i.e.,

l(φ) =
∑

w→tx∈Rl

etx,w log Pφ(w|tx)− κ||φ||2 (7.10)

The gradient of l(φ) with respect to φ can be computed as follows. We first compute

the derivative of Pφ(tx|t, w) (Equation 7.6) with respect to the i-th parameter φi:

∂

∂φi
Pφ(tx|t, w) =

∂

∂φi

exp〈φ, f(tx, w)〉∑
x′ exp〈φ, f(tx′ , w)〉

=
exp〈φ, f(tx, w)〉fi(tx, w)∑

x′ exp〈φ, f(tx′ , w)〉

− exp〈φ, f(tx, w)〉∑
x′ exp〈φ, f(tx′ , w)〉

∑
x′ exp〈φ, f(tx′ , w)〉fi(tx′ , w)∑

x′ exp〈φ, f(tx′ , w)〉

= Pφ(tx|t, w)(fi(tx, w)−
∑
x′

Pφ(tx′|t, w)fi(tx′ , w)) (7.11)

then the derivative of Pφ(w|tx) (Equation 7.7) with respect to φi can be computed

157

as:

∂

∂φi
Pφ(w|tx) =

∂

∂φi

Pφ(tx|t, w)P(t|w)P(w)∑
w′ Pφ(tx|t, w′)P(t|w′)P(w′)

=

∂
∂φi

Pφ(tx|t, w)P(t|w)P(w)∑
w′ Pφ(tx|t, w′)P(t|w′)P(w′)

− Pφ(tx|t, w)P(t|w)P(w)∑
w′ Pφ(tx|t, w′)P(t|w′)P(w′)

∑
w′

∂
∂φi

Pφ(tx|t, w′)P(t|w′)P(w′)∑
w′ Pφ(tx|t, w′)P(t|w′)P(w′)

= Pφ(w|tx)(fi(tx, w)−
∑
x′

Pφ(tx′ |t, w)fi(tx′ , w))

−Pφ(w|tx)
∑
w′

Pφ(w′|tx)(fi(tx, w′)−
∑
x′

Pφ(tx′ |t, w′)fi(tx′ , w′))

and finally the derivative of l(φ) (Equation 7.10) with respect to φi can be computed

as:

∂

∂φi
l(φ) =

∑
w→tx∈Rl

etx,w
∂

∂φi
log Pφ(w|tx)− 2κφi

=
∑

w→tx∈Rl

etx,w
1

Pφ(w|tx)
∂

∂φi
Pφ(w|tx)− 2κφi

=
∑

w→tx∈Rl

etx,w(fi(tx, w)−
∑
x′

Pφ(tx′ |t, w)fi(tx′ , w))

−
∑

w→tx∈Rl

etx,w
∑
w′

Pφ(w′|tx)(fi(tx, w′)−
∑
x′

Pφ(tx′ |t, w′)fi(tx′ , w′))− 2κφi

Now take a look at the underlined term on the right hand side of the above

equation. First, it can be written as follows because the inner summation is inde-

pendent of w,

∑
tx

etx,·
∑
w′

Pφ(w′|tx)(fi(tx, w′)−
∑
x′

Pφ(tx′ |t, w′)fi(tx′ , w′))

158

Second, since Pφ(w′|tx) forms a proper conditional distribution of words in the

training data that co-occur with POS tag t, Pφ(w′|tx) = 0 if w′ → tx /∈ Rl and thus

the two summations
∑

tx
and

∑
w′ can be merged into

∑
w′→tx∈Rl and this term can

be further simplified to:

∑
w′→tx∈Rl

etx,·Pφ(w′|tx)(fi(tx, w′)−
∑
x′

Pφ(tx′ |t, w′)fi(tx′ , w′))

Hence, ∂
∂φi
l(φ) can be simplified to:

∂

∂φi
l(φ) =

∑
w→tx∈Rl

(etx,w − etx,·Pφ(w|tx))(fi(tx, w)−
∑
x′

Pφ(tx′ |t, w)fi(tx′ , w))− 2κφi

=
∑

w→tx∈Rl

e∗tx,w(fi(tx, w)−
∑
x′

Pφ(tx′ |t, w)fi(tx′ , w))− 2κφi (7.12)

where e∗tx,w = etx,w − etx,·Pφ(w|tx).

In summary, the gradient of l(φ) with respect to φ has the following form:

∇l(φ) =
∑

w→tx∈Rl

e∗tx,w∆tx,w(φ)− 2κ · φ

∆tx,w(φ) = f(tx, w)−
∑
x′

Pφ(tx′ |t, w)f(tx′ , w)

and l(φ) can be optimized by a gradient descent optimization algorithm, such as

LBFGS [97] that we use in our experiments.

It can be shown that l(φ) is not a concave function with respect to φ, but

this created no problems in our experiments. It should be noted that if we set the

regularization weight κ to 0, the maximum of l(φ) is achieved when Pφ(w|tx) is set

159

to etx,w/etx,·, which is identical to the update formula in Equation 5.6, and would

thus be unable to use rich features. This is less of an issue when regularization takes

effect, as it favors common discriminative features to reduce the penalty term.

The second approach, which was found to outperform the EM-based approach

in (Berg-Kirkpatrick et al. [8]), optimizes on the regularized log-likelihood (Equa-

tion 7.9) directly by updating both ψ and φ using a gradient descent approach. This

is a constrained optimization problem because the elements of ψ are constrained to

form proper probability distributions. In order to convert this to an unconstrained

optimization problem, we set each phrasal rule expansion probability ψi as the out-

put of a log-linear model, i.e., ψi = exp(ψ′i)/Z with Z being the normalization factor,

and treat ψ′ as the parameter for the phrasal rules to be optimized. The gradient

of L(θ) with respect to φ turns out to be the same as in the first approach [137].

The gradient of L(θ) with respect to ψ′ can be derived similarly.

In the original EM-based training approach [126], many of the rule expansion

probabilities become very small and are pruned to dramatically reduce the gram-

mar size. The phrasal rule probabilities computed from the log-linear model with

parameter ψ′ are not usually low enough to be pruned, due to the fact that a large

decrease in ψ′i results in a much smaller change in ψi when ψi is already relatively

small. In order to address this problem, we combine the two optimization approaches

together: we first run rounds of EM-based optimization to initialize the grammar

parameters and prune many of the useless phrasal rules, and then switch to the di-

rect gradient descent optimization approach. This combined approach outperforms

the standalone EM-based approach in our study and is used in the experiments

160

reported in this chapter.

7.5 Experiments

7.5.1 Setup

We experiment with three different languages: English, Chinese, and Arabic.

For English, we use the WSJ Penn treebank [104] and the commonly used data

splits [31], i.e., sections 02-21 for training, 22 for development, and 23 for final test.

For Chinese, we use the Penn Chinese treebank 6.0 (CTB6) [162] and the preparation

steps and data splits in Section 5.5. For Arabic, we use the Penn Arabic treebank

(ATB) [100] and the preparation steps and data splits41 in (Chiang et al. [42], Green

and Manning [61]).

Table 7.1 provides gross statistics for each treebank. As can be seen, CTB6

and ATB both have a higher OOV rate than WSJ, and hence have greater need for

effective OOV handling.

Due to the variability (caused by random initialization) among the gram-

mars [122], we train 10 grammars with different seeds in each experiment and report

their average F score on the development set. The best grammar selected using the

development set is used for evaluation on the test set.

41The ATB corpus is split into 80% for training, 10% for development, and the remaining 10% for
evaluation. The preprocessing steps include: removing function tags, traces, and trees dominated
by X, collapsing unary chains that expand non-terminals to themselves, mapping preterminal
morphological analyses to “Bies” tags, adding “DT” to the tags for definite nouns and adjectives,
and performing orthographic normalization. We did not remove clitic marks, which results in
about 0.3 degradation in F score.

161

Statistics Train Dev Test

English
(WSJ)

#sents 39832 1700 2416
#tokens 950.0k 40.1k 56.7k
%oov types - 12.8% 13.2%
%oov tokens - 2.8% 2.5%

Chinese
(CTB6)

#sents 24416 1904 1975
#tokens 678.8k 51.2k 52.9k
%oov types - 20.6% 20.9%
%oov tokens - 5.0% 5.3%

Arabic
(ATB)

#sents 18818 2318 2313
#tokens 597.9k 70.7k 70.1k
%oov types - 15.6% 16.7%
%oov tokens - 3.2% 3.4%

Table 7.1: Gross statistics of the treebanks

7.5.2 Standard PCFG-LA Grammars

In Section 5.5.2, we investigated the effect of heuristic rare word smoothing

(see Section 5.4.1) and OOV handling (see Section 5.4.2) for the standard PCFG-LA

grammars on English and Chinese. In order to establish baselines for the feature

rich log-linear model, we re-evaluate these methods in a more detailed manner for

all the three languages studied in this chapter.

The results are presented in Table 7.2. The no+simple row represents the

baseline, for which the grammars are trained without rare word smoothing and

OOV words are handled by the simple method. Each language-dependent heuristic-

based OOV word handling method improves parsing accuracies, and the rare word

smoothing method provides even greater improvement across the languages. Their

combination results in further improvement. This reconfirms that both over-fitting

and OOV words are issues to consider for training accurate PCFG-LA grammars.

162

Rare Word
OOV WSJ CTB6 ATB

Smoothing

no simple 89.9 82.5 79.1
no heuristic 90.1 83.0 79.4
yes simple 90.5 83.3 80.3
yes heuristic 90.7 83.7 80.6

Table 7.2: The effect of rare word smoothing and OOV handling on parsing F scores
evaluated on the respective development set

Predicate Explanation

δ(w = ·) word identity (wid)

δ(hasDigit(w) = ·) contains a digit?
δ(hasHyphen(w) = ·) contains a hyphen?
δ(initCap(w) = ·) first letter capitalized?
δ(prefixk(w) = ·) prefix of length k ≤ 3
δ(suffixk(w) = ·) suffix of length k ≤ 3

Table 7.3: Predicate templates on word w

7.5.3 Log-Linear Lexical Models

A core set of features that have proven effective for POS tagging will be applied

to demonstrate the effectiveness of our model and its robustness across languages.

Table 7.3 lists the templates we use to extract predicates on words. For the log-

linear OOV model, we use the full feature set, i.e., (t, pred) pairs extracted using all

of the predicates. For the log-linear latent lexical model, we experiment with two

feature sets: 1) the word identity (wid) feature set containing only (tx,wid) pairs,

which are the same as those used in the standard PCFG-LA grammars, 2) the full

feature set using all of the predicates.

We first evaluate the effectiveness of regularization and the log-linear OOV

model by training the latent lexical model using the wid feature set with regulariza-

163

Latent
OOV WSJ CTB6 ATB

Lexical

wid simple 90.5 83.2 80.3
wid heuristic 90.7 83.6 80.7
wid full 90.8 83.9 81.4
full full 90.9 84.2 81.8

Table 7.4: The effect of features (wid vs. full) for training the latent lexical model
and the OOV handling methods (simple, heuristic, or the log-linear model using the
full feature set) on parsing performance on the development set

tion and examining different OOV handling methods. As shown in Table 7.4, the

wid+simple and wid+heuristic approaches42 produce results comparable to the cor-

responding PCFG-LA grammars trained with rare word smoothing and respective

OOV handling. This suggests that regularizing the latent lexical model alleviates

data sparsity, however, we will illustrate in Subsection 7.5.4 that this is achieved in

a different way than rare word smoothing.

The log-linear OOV model using the full feature set results in improved parsing

performance over all languages, with the greatest improvement seen on Arabic (0.7

F), followed by Chinese (0.3 F), confirming that the log-linear OOV model is more

accurate than the heuristic approach, and can be flexibly used for different languages.

The improvement on English is marginal possibly because our simple features are not

significantly better than the signature-based OOV features that are quite effective

at handling English unknown words after years of expert crafting.

We next investigate the effect of training the latent lexical model using the full

feature set. Compared with the wid+full model, the full+full model improves 0.4

42Training the latent lexical model using the wid feature set and handling OOV words using the
simple or heuristic approach.

164

F on Arabic and 0.3 F on Chinese, despite the fact that the additional features are

very simple, mostly prefixes and suffixes of words. The improvement on English is

again marginal possibly because the features do not provide insight on fine-grained

syntactic subcategories (e.g., suffix -ed is indicative of past tense verbs, but not

their sub-categories). Admittedly, many of the features are noisy, but as we will

show in Subsection 7.5.4, some of the features are able to guide the learning of the

latent categories to reflect the similarity among syntactically similar words of the

same POS type.

Compared with the baseline (no+simple in Table 7.2), the feature-rich full+full

model significantly improves parsing F scores by 1, 1.7, and 2.7 absolute on English,

Chinese, and Arabic, respectively.

Table 7.5 compares the final test results of our best grammars (the full+full

approach) with the literature43. Our PCFG-LA grammars with a feature-rich lexical

model significantly outperform the standard PCFG-LA grammars of Petrov and

Klein [123] for all of the three languages, especially on Chinese (+1.6 F) and Arabic

(+2.2 F). Compared to the discriminatively trained PCFG-LA grammar of Petrov

and Klein [124], which is 0.7 F worse than its generative counterpart on English

(89.4 vs. 90.1 F), our grammar achieves a significantly higher accuracy of 90.5 and

improves upon the standard PCFG-LA grammar of Petrov and Klein [123] by 0.4

F.

43All of the parsers from the referenced papers are trained and evaluated using the data splits
in our experiments.

165

TB Parser LP LR F

W
S

J

Charniak [31] 89.9 89.5 89.7
Petrov and Klein [123] 90.2 90.1 90.1
Petrov and Klein [124] - - 89.4
Huang and Harper [71] 90.4 89.9 90.1
PCFG-LA with Feature Rich Lexical Model 90.8 90.3 90.5

C
T

B
6 Charniak [31] 80.5 79.5 80.0

Petrov and Klein [123] 84.0 82.9 83.4
Huang and Harper [71] 85.1 83.2 84.1
PCFG-LA with Feature Rich Lexical Model 85.9 84.2 85.0

A
T

B Petrov and Klein [123] 80.5 78.9 79.7
PCFG-LA with Feature Rich Lexical Model 82.7 81.2 81.9

Table 7.5: Final test set accuracies

7.5.4 Analysis

0 1 2 30 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

ba
se

lin
e

ra
re

w
id

0.26 0.23 14.95 18.8 5.1 4.1 83 84 million billion two three

once 10 times most frequent

Figure 7.1: The conditional distribution P(tx|t, w) of latent tags for selected cardinal
numbers (e.g., 0.26, million) that appear only once, 10 times, or more frequently
for standard PCFG-LA grammars trained with (labeled rare) or without (labeled
baseline) rare word smoothing, as well as for PCFG-LA grammars with regularized
feature-rich lexical model using the wid feature set (labeled wid). The distribution
is represented by the four bars separated by dotted vertical lines, and each bar
represents the conditional probability of a latent tag.

Figure 7.1 shows the effect of regularization and rare word smoothing on the

learned rules by depicting the distribution P(tx|t, w) for PCFG-LA grammars trained

in three different ways45. For standard PCFG-LA grammars trained without rare

word smoothing (labeled baseline), rare words have sparse distributions of latent

45For standard PCFG-LA grammars, P(tx|t, w) is simply computed by etx,w/et,w; whereas, for
the feature-rich lexical model, P(tx|t, w) is computed from the latent lexical model.

166

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
	

�

�
�

�
�
�

�
�

�

�
�
�

�
�
�
�
�

fu
ll

w
id

China US
Korea

France UK
Germany

Thailand
Russia

Bangladesh

Malaysia

Mongolia
Isra

el
Brunei

Palestin
e

0 1 2 30 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

3082
1685 200 182 181 88 58 42 4 1 1 1 1 1

Figure 7.2: The conditional distribution P(tx|t, w) of latent tags for selected country
names (proper nouns) that are listed in order of decreasing frequency from the
Chinese treebank (The English translation and word frequency are provided under
each Chinese name), based on training using the wid or the full feature set. The
distribution is represented by the four bars separated by dotted vertical lines, and
each bar represents the conditional probability of a latent tag. The preferred latent
tag for country names is highlighted in black.

tags, which are determined by the EM algorithm solely based on limited contexts

and are thus unreliable. The rare word smoothing approach (labeled rare) collapses

all rare words into a single token so that P(tx|t, w) = P(tx|t, rare) is identical for

any rare word w. This constraint greatly reduces data sparsity; however, treating

all rare words as one token could eliminate too much lexical information (e.g., the

distribution of latent tags is the same for all rare cardinal numbers no matter whether

they appear only once or 10 times). Regularization of the log-linear latent lexical

model (labeled wid) favors a uniform distribution (zero penalty when all feature

weights are zero). There is not much evidence to skew the distribution from uniform

for rare words. However, when more evidence is available, the distribution becomes

smoothly skewed to reflect the different syntactic preferences of the individual words,

and it can eventually become as spiky as in the other approaches given sufficient

evidence.

In order to provide some insight into why parsing accuracies are improved for

167

Chinese by using the full feature set when training the latent lexical model, we

look at the country names that end with the character 国 (country) in the Chinese

treebank. These names appear in similar contexts in the treebank and would be

expected to favor a certain latent tag or tags (which are highlighted in black in

Figure 7.2 for illustration purposes). When training using the wid feature set,

however, this is only true for the frequent names as shown in Figure 7.2. For the

rare names, since each word is modeled independently from others, they are unable

to share any statistics with each other and thus there is not much evidence to divert

the distribution away from uniform. When training with the full feature set, the

suffix1=国 predicate is active for all country names and has a large feature weight

associated with the preferred latent tag. As a result, the distribution of latent tags

for the rare names is skewed more toward the preferred latent tag due to strong

evidence from that suffix feature.

7.6 Conclusions

In this chapter, we have presented a feature-rich lexical model for PCFG-LA

grammars to: 1) alleviate over-fitting via regularization, 2) handle OOV words using

rich features, and 3) exploit lexical features for grammar induction. Experiments

show that this approach allows us to train more effective PCFG-LA grammars for

more accurate and robust parsing of three different languages.

168

Chapter 8

Machine Translation with Latent Variables

8.1 Overview

Syntax-based translation models have recently shown promising progress at

improving translation quality, thanks to the incorporation of phrasal translation

adopted from the widely used phrase-based models to handle local fluency and

the engagement of synchronous context-free grammars (SCFG) to handle non-local

phrase reordering. Approaches to syntax-based translation models can largely be

categorized into linguistic syntax-based models that utilize structures defined based

on linguistic theory and human annotation (e.g., Penn treebank) to guide the deriva-

tion of SCFG rules with explicit parsing on at least one side of the parallel corpus,

and formal syntax-based models that extract synchronous grammars from paral-

lel corpora based on the hierarchical structure of natural language pairs without

any explicit linguistic knowledge or annotation. In this chapter, we aim to bring

the advantages of both types of models together and focus on learning a set of

linguistically-guided latent syntactic categories to enrich hierarchical phrase-based

models, a type of formal syntax-based model.

We augment rules in hierarchical phrase-based translation models with novel

syntactic features. Unlike previous studies that directly use explicit treebank cate-

gories such as NP, NP/PP (NP missing a PP on the right) to annotate phrase pairs,

169

we induce a set of latent categories to capture the syntactic dependencies inherent

in the hierarchy of phrase pairs, and derive a real-valued feature vector for each

X nonterminal of an SCFG rule based on the distribution of the latent categories.

Moreover, we replace the equality test of two sequences of syntactic categories, which

are either identical or different, with a similarity score between their correspond-

ing feature vectors. In our model, two symbolically different sequences of syntactic

categories could have a high similarity score in the feature vector representation if

they are syntactically similar, and a low score otherwise. In decoding, these feature

vectors are utilized to measure the similarity between the syntactic analysis of the

source side and the syntax of the SCFG rules that are applied to derive translations.

Our approach maintains the advantages of hierarchical phrase-based translation sys-

tems, while at the same time incorporating soft syntactic constraints. To the best

of our knowledge, this is the first use of real-valued syntactic feature vectors for

machine translation.

The rest of the chapter is organized as follows. Section 8.2 briefly reviews

hierarchical phrase-based translation models and motivates our proposed approach,

which is summarized in Section 8.3. Section 8.4 describes the hierarchy of aligned

phrase pairs, and Section 8.5 describes how to induce latent syntactic categories.

Experimental results are reported in Section 8.6. Section 8.7 concludes the chapter.

170

8.2 Introduction to Hierarchical Phrase-Based Translation

An SCFG is a synchronous rewriting system that generates source and target

side string pairs simultaneously based on a context-free grammar. Each synchronous

production (i.e., rule) rewrites a nonterminal into a pair of strings, γ and α, where

γ (or α) contains terminal and nonterminal symbols from the source (or target)

language, and there is a one-to-one correspondence between the nonterminal symbols

on both sides. The hierarchical model of Chiang [40] explores hierarchical structures

of natural language and utilizes only a single nonterminal symbol X in the grammar,

X → 〈γ, α,∼〉

where ∼ is the one-to-one correspondence between X’s in γ and α, which is indi-

cated by subscript co-indexes. Two example English-to-Chinese translation rules

are represented as follows:

X → 〈give the pen to me,钢笔 给 我〉 (8.1)

X → 〈giveX1 to me, X1给 我〉 (8.2)

The SCFG rules of hierarchical phrase-based models are extracted automat-

ically from corpora of word-aligned parallel sentence pairs [22, 118]. An aligned

sentence pair is a tuple (E,F,A), where E = e1 · · · en can be interpreted as an En-

glish sentence of length n, F = f1 · · · fm is its translation of length m in a foreign

language, and A is a set of links between words of the two sentences. Figure 8.1

171

1
give

2
the

3
pen

4
to

5
me

6
.

把
1

钢笔
2

给
3

我
4

。
5

6

5

4

3

2

1

1 2 3 4 5
(a) (b)

Figure 8.1: An example of a word-aligned sentence pair in (a) with tight phrase
pairs marked (in black) in a matrix representation shown in (b)

(a) shows an example of an aligned English-to-Chinese sentence pair. As is widely

adopted in phrase-based models [119], a pair of consecutive sequences of words from

E and F is a phrase pair if all words are aligned only within the sequences and not

to any word outside of them. We call a sequence of words a phrase if it corresponds

to either side of a phrase pair, and a non-phrase otherwise. Note that the boundary

words of a phrase pair may not be aligned to any other word. We call the phrase

pairs with all boundary words aligned tight phrase pairs [166]. A tight phrase pair is

the minimal phrase pair among all phrase pairs that share the same set of alignment

links. Figure 8.1 (b) highlights the tight phrase pairs in the example sentence pair.

The extraction of SCFG rules proceeds as follows. In the first step, all phrase

pairs below a maximum length are extracted as phrasal rules. In the second step46,

abstract rules are extracted from tight phrase pairs that contain other tight phrase

pairs by replacing the sub-phrase pairs with co-indexed X-nonterminals. In our

earlier example, rule (8.2) can be extracted from rule (8.1) with the following sub-

46Chiang [40] also introduced several requirements (e.g., there are at most two nonterminals on
the right hand side of a rule) to safeguard the quality of the abstract rules, as well as keeping
decoding efficient.

172

phrase pair:

X → 〈the pen,钢笔〉

Each SCFG rule is associated with a set of features such as rule and lexicalized

rule translation probabilities [40] that describe the quality of the rule. When trans-

lating an input foreign sentence F using an SCFG, the goal is to find the English

sentence E with derivation D such that the following objective is maximized:

l(D) = λLMfLM(E) +
∑

X→〈γ,α,∼〉∈D

∑
i

λiφi(X → 〈γ, α,∼〉) (8.3)

where fLM(E) is the language model score, each φi is a feature defined on an SCFG

rule, and the λ’s are the feature weights, which can be optimized on a development

set using, for example, minimum-error-rate training [117].

Despite the complete lack of linguistic guidance, the performance of hier-

archical phrase-based models is competitive with linguistic syntax-based models,

which are unavoidably affected by errors in syntactic annotations. As shown in

(Mi and Huang [110]), hierarchical phrase-based models significantly outperform

tree-to-string models [70, 99], even when attempts are made to alleviate parsing

errors using either forest-based decoding [111] or forest-based rule extraction [110].

However, when properly used, syntactic constraints can provide invaluable guidance

to improve translation quality. The tree-to-string models of Mi and Huang [110]

significantly outperforms hierarchical phrase-based models when using forest-based

173

rule extraction together with forest-based decoding. Chiang [41] also obtained a

significant improvement over his hierarchical baseline by inducing fuzzy (inexact)

tree-to-tree rules based on syntactic parse trees on both source and target sides and

by allowing syntactically mismatched substitutions.

The use of a single X nonterminal makes hierarchical phrase-based models

flexible at capturing non-local reordering of phrases. However, such flexibility also

comes at the cost that it is unable to differentiate between different syntactic usages

of phrases. Suppose rule X → 〈give the pen toX1, · · · 〉 is extracted from a phrase

pair with “give the pen to me” on the source side where X1 is abstracted from the

pronoun phrase pair. If this rule is used to translate “give the pen to the boy over

there”, it would be better to apply it over the entire string or the sub-string “give

the pen to the boy” than other sub-strings such as “give the pen to the boy over”.

This is because the nonterminal X1 in the rule was abstracted from a pronoun on

the source side of the training data and would thus be better (more informative) if

it were applied to phrases of similar type, e.g., a noun phrase. However, hierarchical

phrase-based models are unable to distinguish syntactic differences like this.

Zollmann and Venugopal [169] attempted to address this problem by anno-

tating phrase pairs with treebank categories based on automatic parse trees. They

introduced an extended set of categories (e.g., NP+V for “she went” and DT\NP

for “great wall”, a noun phrase with a missing determiner on the left) to annotate

phrase pairs that do not align with syntactic constituents. Their hard syntactic

constraint requires that the nonterminals should match exactly to rewrite a nonter-

minal. As a result, potentially correct derivations could be ruled out due to data

174

sparsity and errors in the parse trees. For example, NP cannot be instantiated with

phrase pairs of type DT+NN, despite their syntactic similarity. Venugopal et al.

[152] addressed this problem by directly introducing soft syntactic preferences into

SCFG rules using a preference grammar, but this came with the computational

challenge of processing large preference vectors. Chiang [41] also avoided hard con-

straints by taking a soft alternative that directly models the cost of mismatched

rule substitutions. This solution, however, requires a large number of parameters

to be tuned on a generally small-size held-out set, and it could thus suffer from

over-tuning.

8.3 Our Approach

We take a different approach to improve a hierarchical phrase-based translation

system by introducing linguistic syntax to SCFG rules and using soft syntactic

constraints between derivation rules and the parse tree of the source side at decoding

time. In this section, we describe how to enrich each X nonterminal of an SCFG rule

with a feature vector computed based on a given set of latent syntactic categories

and how to impose soft syntactic constraints. The set of latent syntactic categories

are automatically induced from a source-side parsed, word-aligned parallel corpus

based on the syntax-enriched hierarchy among phrase pairs. We defer the details

on how to obtain latent syntactic categories until Sections 8.4 and 8.5.

For each phrase pair extracted from a sentence pair of a source-side parsed

parallel corpus, we represent its syntax using a tag sequence, which is the sequence

175

PP
VBP DT NN TO PRP .

NP

VP
S

give the pen to me .

Figure 8.2: A source side parse tree

of highest syntactic categories of the source-side parse tree that exactly dominates

the source-side phrase47. Figure 8.2 shows the source-side parse tree of a sentence

pair. The tag sequences for “the pen” and “give the pen” are “NP” and “VBP

NP”, respectively, because the former is simply a noun phrase while the latter is

dominated by a verb followed by a noun phrase. Let TS = {ts1, · · · , tsm} be the

set of all tag sequences extracted from a parallel corpus. The syntax of each X

nonterminal48 in an SCFG rule can then be characterized by the distribution of

tag sequences ~PX(TS) = (pX(ts1), · · · , pX(tsm)), based on the phrase pairs it is

abstracted from. Table 8.1 shows an example distribution of tag sequences for X1

in X → 〈give the pen to X1, · · · 〉.

Instead of directly using tag sequences, given the disadvantages discussed in

Section 8.2, we represent each of them by a real-valued feature vector. Suppose49 we

have a collection of n latent syntactic categories C = {c1, · · · , cn}, and we know how

they are distributed for each tag sequence ts, i.e., ~Pts(C) = (pts(c1), · · · , pts(cn)).

For example, ~P“NP VP”(C) = {0.5, 0.2, 0.3} means that the latent syntactic categories

47In case of a non-tight phrase pair, we only consider its largest tight part.
48There are three X nonterminals (one on the left and two on the right) for binary abstract

rules, two for unary abstract rules, and one for phrasal rules.
49Details about how the latent syntactic categories are induced and how they are distributed for

each tag sequence ts will be presented in Sections 8.4 and 8.5.

176

Tag Sequence Probability

PRP 0.40
NP 0.35

NP IN 0.25

Table 8.1: The distribution of tag sequences for X1 in X →
〈give the pen to X1, · · · 〉

c1, c2, and c3 are distributed as p(c1) = 0.5, p(c2) = 0.2, and p(c3) = 0.3 for tag

sequence “NP VP”. We convert each distribution ~Pts(C) to a normalized feature

vector ~F (ts):

~F (ts) = (f1(ts), · · · , fn(ts))

=
(pts(c1), · · · , pts(cn))

‖(pts(c1), · · · , pts(cn))‖

The degree of similarity between any pair of tag sequences ts and ts′ in the space of

the latent syntactic categories C can then be computed as a dot-product50 of their

feature vectors:

~F (ts) · ~F (ts′) =
∑

1≤i≤n

fi(ts)fi(ts
′)

which ranges between 0 (totally syntactically different) and 1 (completely syntacti-

cally identical).

Similarly, we can represent the syntax of each X nonterminal of a rule by a

50Other measures such as KL-divergence in the probability space would also be feasible.

177

feature vector ~F (X) based on its distribution of tag sequences:

~F (X) =
∑
ts∈TS

pX(ts)~F (ts)

Now we can impose soft syntactic constraints using these feature vectors when

an SCFG rule is used to translate a parsed source sentence. We compute the follow-

ing syntactic similarity score on the fly when an X nonterminal of a rule is applied to

a span whose tag sequence is ts as determined by parse tree of the source sentence51:

SynSim(X, ts) = − log(~F (X) · ~F (ts)) (8.4)

We denote φSYN(X → 〈γ, α,∼〉) as the sum of the above syntactic similarity score

(Equation 8.4) for all of the nonterminals in rule X → 〈γ, α,∼〉 and add it to the

decoding objective l(D) of Equation 8.3, which now becomes:

l(D) = λLMfLM(E) +
∑

X→〈γ,α,∼〉∈D

∑
i

λiφi(X → 〈γ, α,∼〉)

+
∑

X→〈γ,α,∼〉∈D

λSYNφSYN(X → 〈γ, α,∼〉)

Even though the feature φSYN is computed on the fly, it can be used in the same

way as the standard features in a hierarchical translation system to determine the

best translation, and its feature weight λSYN can be tuned together with the other

feature weights on a held-out data set.

51A normalized uniform feature vector is used for tag sequences (of parsed test sentences) that
are not seen in the training corpus.

178

In what follows, we will describe the two central aspects of our approach to

obtain the latent syntactic categories, i.e., 1) how to construct the syntax-enriched

hierarchy among all phrase pairs in a source-side parsed sentence pair, and 2) how

to induce the latent syntactic categories from the hierarchy to capture the syntactic

dependencies among the phrase pairs.

8.4 Alignment-based Hierarchy

Given two non-disjoint tight phrase pairs that share at least one common

alignment link, there are only two relationships: either one completely includes the

other or they do not include one another but have a non-empty overlap, which

we call a non-trivial overlap. In the second case, the intersection, differences, and

union of the two phrase pairs are also tight phrase pairs (see Figure 8.1 (b) for an

example), and the two phrase pairs, as well as their intersection and differences, are

all sub-phrase pairs of their union. This property implies that there is a hierarchy of

phrase pairs. We next describe how to identify the hierarchy of phrase pairs and how

to annotate the hierarchy with linguistic information that is necessary for inducing

latent syntactic categories, which we will describe in Section 8.5.

Our hierarchy construction algorithm follows Heber and Stoye [64]. Let P be

the set of tight phrase pairs extracted from a sentence pair. We call a sequentially-

ordered list52 L = (p1, · · · , pk) of unique phrase pairs pi ∈ P a chain if every two

successive phrase pairs in L have a non-trivial overlap. A chain is maximal if it

52The phrase pairs are sequentially ordered first by the boundary positions of the source-side
phrase and then by the boundary positions of the target-side phrase.

179

cannot be extended to its left or right with other phrase pairs. Note that any sub-

sequence of phrase pairs in a chain generates a tight phrase pair. In particular,

chain L generates a tight phrase pair that corresponds exactly to the union of the

alignment links in p ∈ L. We call the phrase pairs generated by maximal chains

maximal phrase pairs and call the other phrase pairs non-maximal. Non-maximal

phrase pairs have non-trivial overlaps with some other phrase pairs while maximal

phrase pairs do not, and it can be shown that any non-maximal phrase pair can

be generated by a sequence of maximal phrase pairs. Note that the largest tight

phrase pair that includes all alignment links in A is also a maximal phrase pair.

Lemma 8.4.1 follows directly from the definition of maximal phrase pairs.

Lemma 8.4.1 Given two different maximal phrase pairs p1 and p2, exactly one of

the following alternatives is true: p1 and p2 are disjoint, p1 is a sub-phrase pair of

p2, or p2 is a sub phrase pair of p1.

According to Lemma 8.4.1, there is a unique decomposition tree T = (N,E)

that covers all of the tight phrase pairs of a sentence pair, where N is the set of

maximal phrase pairs and E is the set of edges that connect pairs of maximal phrase

pairs if one is a sub-phrase pair of another. All of the tight phrase pairs of a sentence

pair can be either extracted directly from the nodes of the decomposition tree (these

phrase pairs are maximal) or generated by a sequence of consecutive sibling nodes53

(these phrase pairs are non-maximal). Figure 8.3 shows the decomposition tree as

well as all of the tight phrase pairs that can be extracted from the example sentence

53Unaligned words may be added.

180

give
给

me
我

.
。

the pen
钢笔

give the pen
钢笔 给

give the pen to me .
钢笔 给 我 。

Maximal phrase paris:
!give the pen to me . , 钢笔 给 我 。"

!give the pen , 钢笔 给"
!give , 给"

!the pen , 钢笔"
!me , 我"
!. , 。"

Non-maximal phrase paris:
!give the pen to me , 钢笔 给 我"

!me . , 我 。"

Figure 8.3: A decomposition tree of tight phrase pairs with all tight phrase pairs
listed on the right. As highlighted by the dotted curves, the two non-maximal phrase
pairs are generated by consecutive sibling nodes.

pair in Figure 8.1.

In our current approach, we only consider the syntactic constraints on the

source side and thus focus on the source side of the decomposition tree54. In order

to include all of the source words into the decomposition tree, we attach each non-

phrase single word as a child of the lowest node of the decomposition tree that

contains the word. Now there are two types of nodes in the parse tree. We abstract

them with two symbols, X for phrases and B for non-phrases, and call the result the

decomposition tree of the source side phrases. Figure 8.4 (a) depicts such a tree for

the English side of our example sentence pair in Figure 8.1. We further recursively

binarize the decomposition tree into a binarized decomposition forest such that each

phrase is directly represented as a node in the forest55. Figure 8.4 (c) shows two of

the many binarized decomposition trees in the forest. The binarized decomposition

forest compactly encodes the hierarchy among phrases and non-phrases. The coarse

54We leave it to future work to consider syntactic constraints on both sides.
55The intermediate binarization nodes are also labeled as either X or B based on whether they

exactly cover a phrase or not.

181

give the pen to me .
X B B B X X

X

X

X

PP
VBP DT NN TO PRP .

NP

VP
S

give the pen to me .

(a) (b)

X
X B B B X X

X
X

X
X

X
X B B B X X

X
X

X
X

VBP

X
X B B B X X

X
X

X
X

DT NN TO PRP .

NP PP
CR

VP
S

X
X B B B X X

X
X

X
X

VBP DT NN TO PRP .

S
CR

NP PP
CR

(c) (d)

Figure 8.4: (a) decomposition tree for the English side of the example sentence pair
with all phrases underlined, (b) automatic parse tree of the English side, (c) two
example binarized decomposition trees with syntactic emissions depicted in (d).

182

abstraction of phrases with X and non-phrases with B provides little information

on the constraints of the hierarchy. In order to bring in syntactic constraints, we

annotate each node in the decomposition forest with a syntactic observation based

on the automatic parse tree of the source side. If a node aligns with a constituent

in the parse tree, we add the syntactic category (e.g., NP) of the constituent as an

emitted observation of the node; otherwise, it crosses constituent boundaries, and we

add a designated crossing category CR as its observation. We call the resulting forest

a syntactic decomposition forest. Figure 8.4 (d) shows two syntactic decomposition

trees of the forest based on the parse tree in Figure 8.4 (b).

In summary, we have constructed a syntax-enriched hierarchy that describes

how longer phrases are composed of shorter phrases and non-phrases using the

following steps:

1. Construct the decomposition tree of phrase pairs based on word alignment

(see Figure 8.3).

2. Take the source side of the decomposition tree, attach the non-phrase single

words, abstract the tree nodes with X for phrases and B for non-phrases (see

Figure 8.4 (a)), and binarize the decomposition tree to obtain the binarized

decomposition forest (see Figure 8.4 (c)).

3. Annotate each node of the binarized decomposition forest with a syntactic

observation based on the source-side parse tree (see Figure 8.4 (d)).

We will next describe how to induce latent syntactic categories to capture the hier-

archical syntactic constraints among phrases.

183

8.5 Inducing Latent Syntactic Categories

If we designate a unique symbol S as the new root of the syntactic decomposi-

tion forests introduced in the previous section, it can be shown that these forests can

be generated by a probabilistic context-free grammar G = (V,Σ, S,R,Pφ), where

• V = {S,X,B} is the set of nonterminals,

• Σ is the set of terminals comprising treebank categories plus the CR tag (the

crossing category),

• S ∈ V is the unique start symbol,

• R is the union of the set of product rules each rewriting a nonterminal to

a sequence of nonterminals and the set of emission rules each generating a

terminal from a nonterminal,

• Pφ assigns a probability score to each rule r ∈ R.

In contrast to the grammars for syntactic parsing described in Chapter 5, where ter-

minals are only generated by preterminals, each internal nonterminal of our grammar

also emits a terminal. Such a grammar can be derived from the set of syntactic de-

composition forests extracted from a source-side parsed parallel corpus, with rule

probabilities estimated as the relative frequencies of the product and emission rules.

The X and B nonterminals in the grammar are coarse representations of

phrases and non-phrases and do not carry any syntactic information at all. In

an attempt to introduce syntax to these nonterminals, we incrementally split each

184

of them into a set of latent categories ({X1, · · · , Xn} for X and {B1, · · · , Bn} for

B) and then learn a set of rule probabilities56 Pφ on the latent categories so that the

likelihood of the training forests is maximized. As we will describe next, the latent

categories are induced in a similar way to the fine-grained syntactic categories for

the latent bigram tagger in Chapter 3 and for the PCFG-LA grammar in Chap-

ter 5. The motivation is to allow the latent categories to learn different preferences

of (emitted) syntactic categories as well as structural dependencies along the hier-

archy so that they can carry syntactic information. We call these latent syntactic

categories. The induced latent categories for the X nonterminal, i.e., the Xi’s, rep-

resent syntax-enriched fine-grained categories of phrases and correspond to the set

of latent syntactic categories C in Section 8.3. In this study, we induce 16 latent

categories for both X and B nonterminals57.

We use a variant of Expectation-Maximization (EM) algorithm to optimize

the likelihood of the training forests. Our EM algorithm is similar to the inside-

outside algorithm [126] for training PCFG-LA grammars in Chapter 5 (and also

the forward-backward algorithm for training latent bigram taggers in Chapter 3),

except that we work with forests instead of trees and each internal nonterminal also

emits a terminal in addition to expanding to a sequence of nonterminals.

Recall that our decomposition forests are fully binarized (except for the root).

In the hypergraph representation [69], the hyperedges of our forests all have the

56Each binary production rule is now associated with a 3-dimensional matrix of probabilities,
and each emission rule is associated with a 1-dimensional array of probabilities.

57We incrementally split each nonterminal to 2, 4, 8, and finally 16 categories, with each splitting
followed by several EM iterations to tune model parameters. Based on our preliminary experiments,
we choose to use 16 latent categories, not too few so that they can differentiate among different
syntactic uses and not so many that computational and storage costs become exorbitant.

185

same format58 〈(V,W), U〉, meaning that node U expands to nodes V and W with

production rule U → VW . Given a forest F with root node R, we denote e(U) as

the emitted syntactic category at node U and LR(U) (or PL(W), or PR(V))59 as the

set of node pairs (V,W) (or (U, V), or (U,W)) such that 〈(V,W), U〉 is a hyperedge

of the forest. Now consider node U , which is either S, X, or B in the forest. Let

Ux be the latent syntactic category60 of node U . We define I(Ux) as the part of the

forest (includes e(U) but not Ux) inside U , and O(Ux) as the other part of the forest

(includes Ux but not e(U)) outside U , as illustrated in Figure 8.5. Given this, the

inside-outside probabilities are defined as:

PIN(Ux) = P(I(Ux)|Ux)

POUT(Ux) = P(O(Ux)|S)

They can be computed recursively as:

PIN(Ux) =
∑

(V,W)∈LR(U)

∑
y,z

Pφ(Ux → e(U))Pφ(Ux → VyWz)PIN(Vy)PIN(Wz)

POUT(Ux) =
∑

(V,W)∈PL(U)

∑
y,z

Pφ(Vy → e(V))Pφ(Vy →WzUx)POUT(Vy)PIN(Wz)

+
∑

(V,W)∈PR(U)

∑
y,z

Pφ(Vy → e(V))Pφ(Vy → UxWz)POUT(Vy)PIN(Wz)

58The hyperedge corresponding to the root node has a different format because it is unary, but
it can be handled similarly. When clear from context, we use the same variable to present both a
node and its label.

59LR stands for the left and right children, PL for the parent and left children, and PR for the
parent and right children.

60We never split the start symbol S, and denote S0 = S.

186

VBP

X
X B B B X X

X
X

X
X

DT NN TO PRP .

NP PP
CR

VP
S

I(⋅)

O(⋅)

X
X B B B X X

X
X

X
X

VBP DT NN TO PRP .

S
CR

NP PP
CR

O(⋅)

I(⋅)

Figure 8.5: An example of I(·) and O(·) that separate the forest into two parts

In the E-step, the posterior probability of the occurrence of production rule61 Ux →

VyWz is computed as:

P(Ux → VyWz|F) =
Pφ(Ux → e(U))Pφ(Ux → VyWz)POUT(Ux)PIN(Vy)PIN(Ww)

PIN(R)

and it is accumulated into the expected count c(Ux → VyWz).

In the M-step, the probability estimation of Pφ(Ux → VyWz) is updated by normal-

izing the expected count:

Pφ(Ux → VyWz) =
c(Ux → VyWz)∑

(V ′,W ′)

∑
y,z

c(Ux → VyWz)

Recall that each node U labeled as X in a forest is associated with a phrase

whose syntax is represented by a tag sequence ts. Once a grammar is learned, we

61The emission rules can be handled similarly.

187

can compute the posterior probability that the latent category of node U is Xi as

follows:

P(Xi|ts) =
POUT(Ui)PIN(Ui)

PIN(R)

and add this probability to the expected count c(Xi, ts) that the tag sequence ts

belongs to latent category Xi. The probability that the latent category of ts is Xi

is then calculated as follows:

pts(Xi) =
c(Xi, ts)∑
i c(Xi, ts)

As described in Section 8.3, the distributions of latent categories for tag sequences

are used to compute the syntactic feature vectors for the X nonterminals of SCFG

rules.

8.6 Experiments

8.6.1 Setup

We conduct experiments on two tasks, English-to-German and English-to-

Chinese, both involving speech-to-speech translation. The training data for the

English-to-German task is a filtered subset of the Europarl corpus [85], containing

∼300K parallel bitext with ∼4.5M tokens on each side. The development and test

sets both contain 1K sentences with one reference for each. The training data for

the English-to-Chinese task is collected from transcription and human translation

of conversations in travel domain. It consists of ∼500K parallel bitext with ∼3M

188

tokens62 on each side. Both development and test sets contain ∼1.3K sentences, each

with two references. Both corpora are also preprocessed with punctuation removed

and words down-cased to make them suitable for speech translation.

The baseline system is our implementation of the hierarchical phrase-based

model of Chiang [40], and it includes basic features such as rule and lexicalized rule

translation probabilities, language model scores, rule counts, etc. We use 4-gram

language models in both tasks, and conduct minimum-error-rate training [117] to

optimize feature weights on the development set. Our baseline hierarchical model

has 8.3M and 9.7M rules for the English-to-German and English-to-Chinese tasks,

respectively.

The English side of the parallel data is parsed using our PCFG-LA parser

trained on the combination of Broadcast News treebank from Ontonotes [157] and

a speechified63 version of the WSJ treebank [104] to achieve higher parsing accu-

racy [73].

8.6.2 Results

Our algorithm identifies ∼180K unique tag sequences for the English side

of phrase pairs in both tasks. Table 8.2 shows examples for which our syntactic

feature vector representation is able to identify similar and dissimilar tag sequences.

For instance, it determines that the sequence “DT JJ NN” is syntactically very

similar to “DT ADJP NN” and very dissimilar to “NN CD VP”. Note that our

62The Chinese sentences are automatically segmented into words. However, BLEU scores are
computed at character level for tuning and evaluation.

63Symbolic expressions are replaced with verbal forms (e.g., $5 was replaced with five dollars),
and punctuation and case are removed.

189

Very similar Not so similar Very dissimilar
~F (ts) · ~F (ts′) > 0.9 0.4 ≤ ~F (ts) · ~F (ts′) ≤ 0.6 ~F (ts) · ~F (ts′) < 0.1

DT JJ NN
DT NN DT JJ JJ NML NN PP NP NN

DT JJ JJ NN DT JJ CC INTJ VB NN CD VP
DT ADJP NN DT NN NN JJ RB NP IN CD

VP
VB VP PP JJ NN JJ NN TO VP

VB RB VB PP VB NN NN VB JJ WHNP DT NN
VB DT DT NN VB RB IN JJ IN INTJ NP

ADJP
JJ ADJP JJ JJ CC ADJP IN NP JJ

PDT JJ ADJP VB JJ JJ AUX RB ADJP
RB JJ ADVP WHNP JJ ADJP VP

Table 8.2: Examples of similar and dissimilar tag sequences

latent categories are learned automatically to maximize the likelihood of the training

forests extracted based on alignment and are not explicitly instructed to discriminate

between syntactically different tag sequences. Our approach is not guaranteed to

always assign similar feature vectors to syntactically similar tag sequences; however,

as shown in Table 8.3 for the English-to-German task and in Table 8.4 for the

English-to-Chinese task, the latent categories are able to capture some similarities

among tag sequences that are beneficial for translation. The addition of the syntactic

feature achieves a statistically significant improvement of 0.6 (p ≤ 0.01) in BLEU on

the test set of the English-to-German task. This improvement is substantial given

that only one reference is used for each test sentence. On the English-to-Chinese

task, the syntax feature achieves a smaller improvement of 0.41 BLEU on the test

set. One potential explanation for the smaller improvement is that the sentences

on the English-to-Chinese task are much shorter, with an average of only 6 words

per sentence, compared to 15 words in the English-to-German task. The hypothesis

190

Baseline +Syntax ∆

Dev 16.26 17.06 0.80
Test 16.41 17.01 0.60

Table 8.3: BLEU scores of the English-to-German task (one reference)

Baseline +Syntax ∆

Dev 46.47 47.39 0.92
Test 45.45 45.86 0.41

Table 8.4: BLEU scores of the English-to-Chinese task (two references)

space of translating a longer sentence is much larger than that of a shorter sentence;

therefore, there is more potential gain from using syntactic features to rule out

unlikely derivations of longer sentences. On the other hand, phrasal rules may be

adequate for shorter sentences, leaving less room for syntax to help in the case of

the English-to-Chinese task.

8.6.3 Discussion

The incorporation of the syntactic feature into the hierarchical phrase-based

translation system increases the memory load and computational cost. In the worst

case, our algorithm must store one feature vector for each tag sequence and one

feature vector for each nonterminal of an SCFG rule, with the latter using the

majority of the extra memory storage. We observed that about 90% of the X

nonterminals in the rules have only one tag sequence, and thus the required memory

space can be significantly reduced by only storing a pointer to the feature vector

of the tag sequence for these nonterminals. Our algorithm also requires computing

one dot-product of two feature vectors for each nonterminal when an SCFG rule

191

is applied to a source span. This cost can be reduced, however, by caching the

dot-products of the tag sequences that are frequently accessed.

There have been other successful approaches that impose soft syntactic con-

straints to hierarchical phrase-based models by either introducing syntax-based rule

features such as the prior derivation model of Zhou et al. [168] or by imposing con-

straints on translation spans at decoding time, e.g., (Marton and Resnik [105], Xiong

et al. [159, 160]). These approaches are all orthogonal to ours, and it is expected

that they could be combined with our approach to achieve greater improvement.

8.7 Conclusions

We have presented a novel method to enhance hierarchical phrase-based ma-

chine translation systems with real-valued linguistically motivated feature vectors.

Our method maintains the advantages of hierarchical phrase-based translation sys-

tems, while at the same time naturally incorporating soft syntactic constraints.

Experimental results show that this approach improves the baseline hierarchical

phrase-based translation models on both English-to-German and English-to-Chinese

tasks.

192

Chapter 9

Contributions and Future Work

In this chapter, we summarize our contributions and outline directions for

future work.

9.1 Contributions

We have discussed the strong independence assumptions made by traditional

models for natural language processing and discussed how these independence as-

sumptions can be corrected at least in part by introducing latent variables. In

contrast to traditional models that often have a fixed parameterization, latent vari-

able models are able to automatically learn complex dependencies in a data-driven

way and have the flexibility to adjust the number of parameters based on the type

and the amount of training data available to learn the most important dependencies.

We have created several different types of latent variable models to capture depen-

dencies that otherwise could not be captured using the conventional Markov, hidden

Markov, context-free, and synchronous context-free assumptions, and applied these

models to a diverse set of natural language processing applications, including POS

tagging, language modeling, parsing, and machine translation.

POS Tagging: We have created a latent bigram POS tagger that significantly out-

performs conventional bigram and trigram HMM taggers when evaluated on

193

both the Chinese Penn treebank and the English WSJ Penn treebank.

Language Modeling: We have created a latent language model that achieves a lower

perplexity than a strong trigram word language model when evaluated on the

English WSJ Penn treebank.

Parsing: We have improved a state-of-the-art PCFG-LA parser by developing a

language-independent rare word smoothing method and a heuristic Chinese

OOV word handling method.

Machine Translation: We have created a novel approach to induce latent syntactic

categories to capture the syntactic dependencies inherent in the hierarchi-

cal structure of phrase pairs. We have also developed an effective method

to improve hierarchical phrase-based translation models using soft syntactic

constraints based on the latent syntactic categories.

To further improve our models, we have also created and evaluated three

different methods for improving the performance of latent variable models. Although

our experiments focused on parsing with PCFG-LA grammars, these methods can

be applied to any of the other applications of latent variable modeling.

• We have investigated self-training for our latent bigram taggers and PCFG-

LA grammars and found that these models benefit more significantly from

self-training than conventional models whose parameterization is fixed. We

conclude that the success of latent variable models with self-training is due

to their flexibility to adjust their model parameterization to learn more accu-

194

rate models from the additional automatically labeled training data. Using

self-training, we have obtained state-of-the-art parsing accuracies for a single

parser on the English WSJ treebank (91.5% F) and the Chinese Penn treebank

(85.2% F).

• We have created methods to effectively combine product models, which take

advantage of the variability among latent variable models, and self-training

to further improve parsing accuracy. We have found that the combination of

these two approaches provides an effective avenue to utilize large quantities

of automatically labeled data to train very high quality parsing models with

accuracies of 92.5% F on the English WSJ treebank and 89.6% F on the English

Broadcast News treebank.

• We have created a feature-rich log-linear lexical model for PCFG-LA gram-

mars to provide a principled solution to address data sparsity, handle out-

of-vocabulary (OOV) words, and exploit overlapping features during model

induction. With this additional method, we found the resulting PCFG-LA

grammars have the flexibility to incorporate overlapping features and are able

to more accurately model different languages, achieving significant absolute

improvements of 1%, 1.7%, and 2.7% in F score on English, Chinese, and

Arabic, respectively.

9.2 Future Work

There are several possible directions for future research based on this thesis.

195

• Given that self-training is effective for training more accurate individual PCFG-

LA grammars and the product model is able to exploit the variability among

individual grammars for enhanced performance, it should be possible to iter-

ate the process of self-training new PCFG-LA grammars based on the output

of the product model of the self-trained grammars trained at the current itera-

tion . We attempted this using the full WSJ Penn treebank training data and

a large amount of unlabeled data and found that the second iteration does not

provide further improvement. However, we observed that the second iteration

does provide a significant improvement in a preliminary experiment that uses

a much smaller set of gold standard training data (i.e., sections 2 and 3 of the

WSJ Penn treebank). This bootstrapping training method is worth further

investigation, especially for low-resource languages.

• The feature-rich log-linear lexical model for PCFG-LA grammars supports any

local features that can be extracted from the pair (tx, w). In addition to the

basic features that we studied, language-dependent features studied in [1] and

features related to word semantics (e.g., using WordNet [52]) or word clusters

(e.g., using unsupervised clustering [21, 59, 86]) might also be beneficial for

improving performance. Features extracted from (t, w) could also provide

smoothing across the latent tags. Moreover, it might be beneficial to perform

feature selection prior to training. It is also expected that even more accurate

parsers can be produced by using this approach together with self-training

and/or product models.

196

• The methods for improving the PCFG-LA parser can also be applied to im-

prove the other latent variable models that we have developed. The latent

bigram tagger, which has been found to benefit from self-training like the

PCFG-LA parser, can also directly benefit from both product models and the

feature-rich log-linear lexical model. While the latent language model uses

POS tags as the initial classes for learning fine-grained tags, the training sen-

tences do not have to be manually labeled. Indeed, automatically induced

word clusters can also be used as the initial classes. This would make it pos-

sible to train a latent language model on a large amount of training data for

different languages. These methods can also be applied to other latent variable

models, e.g., in speech recognition [78, 127].

• While our PCFG-LA grammars are able to achieve very high parsing accuracies

for a variety of languages, the performance levels do not come without a cost.

Despite the fact that we have already parallelized both the training and parsing

algorithms using multi-threading, the self-trained product models require a

significant amount of memory and time to train and to parse larger data sets.

On the one hand, cloud computing techniques could be utilized to speed up

training and decoding. On the other hand, it is also possible to exploit methods

to reduce the size of the grammars with minimal loss in parsing accuracy. This

could be potentially achieved by using the multi-scale approach [124] to tie

rule parameters during grammar induction or by merging similar latent tags

after a grammar is trained.

197

• Our work on using latent syntactic categories to enhance hierarchical phrase-

based translation models can be continued in many directions. First, while the

current approach imposes soft syntactic constraints between the parse struc-

ture of the source sentence and the SCFG rules used to derive the translation,

the real-valued syntactic feature vectors can also be used to impose soft con-

straints between SCFG rules during rule rewrite. In this case, target side

parse trees could also be used alone or together with the source side parse

trees to induce the latent syntactic categories. Second, instead of using single

parse trees during both training and decoding, our approach is likely to ben-

efit from utilizing parse forests as in [110]. Third, in addition to the treebank

categories obtained by syntactic parsing, lexical cues [170] directly available in

sentence pairs could also be exploited using the feature-rich approach to guide

the learning of latent categories. Last but not the least, it would be interest-

ing to investigate discriminative training approaches to learn latent categories

that directly optimize on translation quality.

198

Bibliography

[1] Mohammed Attia, Jennifer Foster, Deirdre Hogan, Joseph Le Roux, Lamia
Tounsi, and Josef van Genabith. Handling unknown words in statistical latent-
variable parsing models for Arabic, English and French. In Proceedings of the
North American Chapter of the Association for Computational Linguistics
Conference, 2010.

[2] Lalit Bahl, James Baker, Paul Cohen, Frederick Jelinek, Burn Lewis, and
Robert L. Mercer. Recognition of continuously read natural corpus. In IEEE
International Conference on Acoustics, Speech, and Signal Processing, 1978.

[3] Jason Baldridge and Miles Osborne. Active learning and logarithmic opinion
pools for HPSG parse selection. Natural Language Engineering, 2008.

[4] Srinivas Bangalore. ‘Almost parsing’ technique for language modeling. In
Proceedings of the International Conference on Spoken Language Processing,
1996.

[5] David J. Bartholomew and Martin Knott. Latent variable models and factor
analysis. Charles Griffin & Co. Ltd, 1987.

[6] Alexandria T. Basilevsky. Statistical factor analysis and related methods. John
Wiley & Sons, Inc., 1994.

[7] Leonard E. Baum, Ted Petrie, George Soules, and Norman Weiss. A maximiza-
tion technique occurring in the statistical analysis of probabilistic functions of
markov chains. Annals of Mathematical Statistics, 1970.

[8] Taylor Berg-Kirkpatrick, Alexandre Bouchard-Côté, John DeNero, and Dan
Klein. Painless unsupervised learning with features. In Proceedings of the Con-
ference of the North American Chapter of the Association for Computational
Linguistics on Human Language Technology, 2010.

[9] Adam L. Berger, Vincent J. Della Pietra, and Stephen A. Della Pietra. A
maximum entropy approach to natural language processing. Computational
Linguistics, 1996.

[10] Daniel M. Bikel and David Chiang. Two statistical parsing models applied to
the chinese treebank. In Proceedings of the Second Chinese Language Process-
ing Workshop, 2000.

[11] Christopher M. Bishop. Latent variable models. Learning in Graphical Models,
1999.

[12] Taylor L. Booth and Richard A. Thompson. Applying probability measures
to abstract languages. IEEE Transactions on Computers, 1973.

199

[13] Sean Borman. The expectation maximization algorithm: A short tutorial,
2004.

[14] Léon Bottou. Une Approche théorique de l’Apprentissage Connexionniste:
Applications à la Reconnaissance de la Parole. PhD thesis, Université de
Paris XI, 1991.

[15] Thorsten Brants. TnT a statistical part-of-speech tagger. In Proceedings of
the Conference on Applied Natural Language Processing, 2000.

[16] Leo Breiman. Bagging predictors. Machine Learning, 1996.

[17] Broňa Brejová, Daniel G. Brown, and Tomáš Vinař. The most probable la-
beling problem in HMMs and its application to bioinformatics. Algorithms in
Bioinformatics, 2004.

[18] Eric Brill. Some advances in transformation-based part of speech tagging. In
Proceedings of the National Conference on Artificial Intelligence, 1994.

[19] Daniel G. Brown and Jakub Truszkowski. New decoding algorithms for hidden
markov models using distance measures on labellings. BMC Bioinformatics,
2010.

[20] Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra,
Fredrick Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roossin. A
statistical approach to machine translation. Computational Linguistics, 1990.

[21] Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, Jenifer C. Lai,
and Robert L. Mercer. Class-based n-gram models of natural language. Com-
putational Linguistics, 1992.

[22] Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della Pietra, and
Robert L. Mercer. The mathematics of statistical machine translation: pa-
rameter estimation. Computational Linguistics, 1993.

[23] Kenneth P. Burnham and David R. Anderson. Model selection and multimodel
inference: a practical information-theoretic approach. Springer Verlag, 2002.

[24] Hadumod Bussmann. Routledge dictionary of language and linguistics. Rout-
ledge, 1996.

[25] Olivier Cappé, Eric Moulines, and Tobias Ryden. Inference in hidden markov
models. Springer Verlag, 2005.

[26] Xavier Carreras, Michael Collins, and Terry Koo. TAG, dynamic program-
ming, and the perceptron for efficient, feature-rich parsing. In Proceedings of
the Conference on Computational Natural Language Learning, 2008.

200

[27] Pi-Chuan Chang, Michel Gally, and Christopher Manning. Optimizing chinese
word segmentation for machine translation performance. In Proceedings of the
Workshop on Statistical Machine Translation, 2008.

[28] Eugene Charniak. Expected-frequency interpolation. Technical report, De-
partment of Computer Science, Brown University, 1996.

[29] Eugene Charniak. Statistical techniques for natural language parsing. AI
Magazine, 1997.

[30] Eugene Charniak. Statistical parsing with a context-free grammar and word
statistics. In Proceedings of the National Conference on Artificial Intelligence,
1997.

[31] Eugene Charniak. A maximum-entropy-inspired parser. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics, 2000.

[32] Eugene Charniak and Mark Johnson. Edit detection and parsing for tran-
scribed speech. In Proceedings of the Conference of the North American Chap-
ter of the Association for Computational Linguistics, 2001.

[33] Eugene Charniak and Mark Johnson. Coarse-to-fine n-best parsing and max-
ent discriminative reranking. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics, 2005.

[34] Eugene Charniak, Curtis Hendrickson, Neil Jacobson, and Mike Perkowitz.
Equations for part-of-speech tagging. In Proceedings of the National Confer-
ence on Artificial Intelligence National Conference on Artificial Intelligence,
1993.

[35] Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall, John Hale, and Mark
Johnson. BLLIP 1987-89 WSJ corpus release 1. Linguistic Data Consortium,
2000.

[36] Eugene Charniak, Mark Johnson, Micha Elsner, Joseph Austerweil, David El-
lis, Isaac Haxton, Catherine Hill, R. Shrivaths, Jeremy Moore, Michael Pozar,
and Theresa Vu. Multilevel coarse-to-fine PCFG parsing. In Proceedings of
the North American Chapter of the Association for Computational Linguistics
Conference, 2006.

[37] Stanley F. Chen. Conditional and joint models for grapheme-to-phoneme con-
version. In Proceedings of the European Conference on Speech Communication
and Technology, 2003.

[38] Stanley F. Chen and Joshua Goodman. An empirical study of smoothing
techniques for language modeling. Technical report, Harvard University, 1998.

201

[39] Stanley F. Chen, Douglas Beeferman, and Ronald Rosenfeld. Evaluation met-
rics for language models. In DARPA Broadcast News Transcription and Un-
derstanding Workshop, 1998.

[40] David Chiang. Hierarchical phrase-based translation. Computational Linguis-
tics, 2007.

[41] David Chiang. Learning to translate with source and target syntax. In Proceed-
ings of the Annual Meeting of the Association for Computational Linguistics,
2010.

[42] David Chiang, Mona Diab, Nizar Habash, Owen Rambow, and Safiullah Sha-
reef. Parsing Arabic dialects. In Conference of the European Chapter of the
Association for Computational Linguistics, 2006.

[43] Noam Chomsky. Three models for the description of language. IRE Transac-
tions on Information Theory, 1956.

[44] Noam Chomsky. Aspects of the theory of syntax. MIT Press, 1965.

[45] Stephen Clark, James R. Curran, and Miles Osborne. Bootstrapping POS tag-
gers using unlabelled data. In Proceedings of the Conference on Computational
Natural Language Learning, 2003.

[46] John Cocke and Jacob T. Schwartz. Programming languages and their compil-
ers: Preliminary notes. Technical report, Courant Institute of Mathematical
Sciences, New York University, 1970.

[47] Michael Collins and Terry Koo. Discriminative reranking for natural language
parsing. Computational Linguistics, 2005.

[48] Michael John Collins. Head-driven statistical models for natural language pars-
ing. PhD thesis, University of Pennsylvania, 1999.

[49] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein. Introduction to Algorithms. MIT Press, 2nd revised edition edition,
2001.

[50] Arthur P. Dempster, Nan M. Laird, and Donald B. Rubin. Maximum like-
lihood from incomplete data via the EM algorithm. Journal of the Royal
Statistical Society, 1977.

[51] Steven J. DeRose. Grammatical category disambiguation by statistical opti-
mization. Computational Linguistics, 1988.

[52] Christiane Fellbaum. WordNet: An Electronic Lexical Database. MIT Press,
1998.

202

[53] Denis Filimonov and Mary Harper. A joint language model with fine-grain
syntactic tags. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 2009.

[54] Jenny Rose Finkel, Alex Kleeman, and Christopher D. Manning. Efficient,
feature-based, conditional random field parsing. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics, 2008.

[55] Victoria Fossum and Kevin Knight. Combining constituent parsers. In Pro-
ceedings of the Conference of the North American Chapter of the Association
for Computational Linguistics, 2009.

[56] Michel Galley, Jonathan Graehl, Kevin Knight, Daniel Marcu, Steve DeNeefe,
Wei Wang, and Ignacio Thayer. What’s in a translation rule. In Proceedings
of the Conference of the North American Chapter of the Association for Com-
putational Linguistics on Human Language Technology, 2004.

[57] John Garofolo, Jonathan Fiscus, William Fisher, and David Pallett. CSR-IV
HUB4. Linguistic Data Consortium, 1996.

[58] Joshua T. Goodman. A bit of progress in language modeling. Computer Speech
and Language, 2001.

[59] Amit Goyal and Hal Daume. Approximate scalable bounded space sketch for
large data NLP. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 2011.

[60] Barbara B. Green and Gerald M. Rubin. Automated grammatical tagging of
english. Technical report, Depart of Linguistics, Brown University, 1971.

[61] Spence Green and Christopher D. Manning. Better Arabic parsing: Baselines,
evaluations, and analysis. In Proceedings of the International Conference on
Computational Linguistics, 2010.

[62] Mary Harper and Zhongqiang Huang. Chinese statistical parsing. In Joseph
Olive, Caitlin Christianson, and John McCary, editors, Handbook of Natural
Language Processing and Machine Translation. Springer Verlag, 2011.

[63] Mary P. Harper, Bonnie J. Dorr, John Hale, Brian Roark, Izhak Shafran,
Matthew Lease, Yang Liu, Matthew Snover, Lisa Yung, Anna Krasnyanskaya,
and Robin Stewart. Johns Hopkins summer workshop final report on pars-
ing and spoken structural event detection. Technical report, Johns Hopkins
Summer Workshop, 2005.

[64] Steffen Heber and Jens Stoye. Finding all common intervals of k permutations.
In Proceedings of the Annual Symposium on Combinatorial Pattern Matching,
2001.

203

[65] Peter A. Heeman. POS tags and decision trees for language modeling. In
Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing, 1999.

[66] Peter A. Heeman and James F. Allen. Speech repairs, intonational phrased
and discourse markers: Modeling speakers’ utterances in spoken dialogue.
Computational Linguistics, 1999.

[67] Geoffrey E. Hinton. Products of experts. In Proceedings of the International
Conference on Artificial Neural Networks, 1999.

[68] Liang Huang. Forest reranking: Discriminative parsing with non-local fea-
tures. In Proceedings of the Annual Meeting of the Association for Computa-
tional Linguistics, 2008.

[69] Liang Huang and David Chiang. Better k-best parsing. In International
Workshop on Parsing Technology, 2005.

[70] Liang Huang, Kevin Knight, and Aravind Joshi. A syntax-directed trans-
lator with extended domain of locality. In Proceedings of the Workshop on
Computationally Hard Problems and Joint Inference in Speech and Language
Processing, 2006.

[71] Zhongqiang Huang and Mary Harper. Self-training PCFG grammars with
latent annotations across languages. In Proceedings of the Conference on Em-
pirical Methods in Natural Language Processing, 2009.

[72] Zhongqiang Huang, Mary Harper, and Wen Wang. Mandarin part-of-speech
tagging and discriminative reranking. In Proceedings of the Conference on
Empirical Methods in Natural Language Processing, 2007.

[73] Zhongqiang Huang, Mary Harper, and Slav Petrov. Self-training with products
of latent variable. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 2010.

[74] Jonathon Hull. Combining syntactic knowledge and visual text recognition:
A hidden markov model for part of speech tagging in a word recognition algo-
rithm. In AAAI Symposium: Probabilistic Approaches to Natural Language,
1992.

[75] W. John Hutchins and Harold L. Somers. An introduction to machine trans-
lation. Academic Press, 1992.

[76] Philip M. Lewis II and Richard E. Stearn. Syntax directed transduction.
Journal of the ACM, 1968.

[77] Rukmini M. Iyer and Mari Ostendorf. Modeling long distance dependence in
language: topic mixtures versus dynamic cache models. IEEE Transactions
on Speech and Audio Processing, 2002.

204

[78] Frederick Jelinek. Statistical methods for speech recognition. MIT Press, 1997.

[79] Fernando Pereira John Lafferty, Andrew McCallum. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In
Proceedings of the International Conference on Machine Learning, 2001.

[80] Tadao Kasami. An efficient recognition and syntax-analysis algorithm for
context-free languages. Technical report, Air Force Cambridge Research Lab,
1965.

[81] Mark D. Kernighan, Kenneth W. Church, and William A. Gale. A spelling
correction program based on a noisy channel model. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics, 1990.

[82] Dan Klein and Christopher D. Manning. Accurate unlexicalized parsing. In
Proceedings of the Annual Meeting of the Association for Computational Lin-
guistics, 2003.

[83] Sheldon Klein and Robert F. Simmons. A computational approach to gram-
matical coding of english words. Journal of the ACM, 1963.

[84] Reinhard Kneser. Statistical language modeling using avariable context length.
In Proceedings of the International Conference on Spoken Language Process-
ing, 1996.

[85] Philipp Koehn. Europarl: A parallel corpus for statistical machine translation.
In MT Summit, 2005.

[86] Terry Koo, Xavier Carrera, and Michael Collins. Simple semi-supervised de-
pendency parsing. In Proceedings of the Annual Meeting of the Association
for Computational Linguistics, 2008.

[87] Anders Krogh. Hidden markov models for labeled sequences. In Proceedings
of the International Conference on Computer Vision Image Processing, 1994.

[88] Anders Krogh. Two methods for improving performance of an hmm and their
application for gene finding. In Proceedings of the International Conference
on Intelligent Systems for Molecular Biology, 1997.

[89] Anders Krogh, Björn Larsson, Gunnar von Heijne, and Erik L. Sonnhammer.
Predicting transmembrane protein topology with a hidden markov model: Ap-
plication to complete genomes. Journal of Molecular Biology, 2001.

[90] Thomas Kuhn, Heinrich Niemann, and Ernst G. Schukat-Talamazzini. Er-
godic hidden markov models and polygrams for language modeling. In Pro-
cessing of the International Conference on Acoustics, Speech and Signal Pro-
cessing, 1994.

205

[91] Karim Lari and Steve J. Young. The estimation of stochastic context-free
grammars using the inside-outside algorithm. Computer Speech and Language,
1990.

[92] Roger Levy and Galen Andrew. Tregex and tsurgeon: Tools for querying and
manipulating tree data structures. In Proceedings of the Language Resources
and Evaluation Conference, 2006.

[93] Roger Levy and Christopher Manning. Is it harder to parse chinese, or the
chinese treebank. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics, 2003.

[94] Percy Liang and Dan Klein. Analyzing the errors of unsupervised learning.
In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, 2008.

[95] Percy Liang, Slav Petrov, Michael I. Jordan, and Dan Klein. The infinite
PCFG using hierarchical dirichlet processes. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing, 2007.

[96] Pietro Liò, Nick Goldman, Jeffrey L. Thorne, and David T. Jones. Passml:
combining evolutionary inference and protein secondary structure prediction.
Bioinformatics, 1998.

[97] Dong C. Liu and Jorge Nocedal. On the limited memory BFGS method for
large scale optimization. Mathematical Programming, 1989.

[98] Yang Liu, Andreas Stolcke, Elizabeth Shriberg, and Mary Harper. Using con-
ditional random fields for sentence boundary detection in speech. In Proceed-
ings of the Annual Meeting of the Association for Computational Linguistics,
2005.

[99] Yang Liu, Qun Liu, and Shouxun Lin. Tree-to-string alignment template for
statistical machine translation. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics, 2006.

[100] Mohamed Maamouri, Ann Bies, Sondos Krouna, Fatma Gaddeche, and Basma
Bouziri. Penn Arabic treebank guidelines. Technical report, Linguistic Data
Consortium, 2009.

[101] Christopher D. Manning and Hinrich Schütze. Foundations of statistical nat-
ural language processing. MIT Press, 1999.

[102] Christopher D. Manning, Prabhakar Raghavan, and Hinrich Schütze. Intro-
duction to information retrieval. Combridge University Press, 2008.

[103] Mitchell P. Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Build-
ing a large annotated corpus of english: the penn treebank. Computational
Linguistics, 1993.

206

[104] Mitchell P. Marcus, Beatrice Santorini, Mary Ann Marcinkiewicz, and Ann
Taylor. Treebank-3. Linguistic Data Consortium, 1999.

[105] Yuval Marton and Philip Resnik. Soft syntactic constraints for hierarchical
phrased-based translation. In Proceedings of the Annual Meeting of the Asso-
ciation for Computational Linguistics, 2008.

[106] Takuya Matsuzaki, Yusuke Miyao, and Jun’ichi Tsujii. Probabilistic CFG with
latent annotations. In Proceedings of the Annual Meeting of the Association
for Computational Linguistics, 2005.

[107] David McClosky, Eugene Charniak, and Mark Johnson. Effective self-training
for parsing. In Proceedings of the Conference of the North American Chapter
of the Association for Computational Linguistics on Human Language Tech-
nology, 2006.

[108] Iain A. McCowan, Darren Moore, John Dines, Daniel Gatica-Perez, Mike
Flynn, Pierre Wellner, and Hervé Bourlard. On the use of information retrieval
measures for speech recognition evaluation. Technical report, IDIAP, 2004.

[109] Marie Meteer and J. Robin Rohlicek. Statistical language modeling combin-
ing n-gram and context-free grammars. In Processing of the International
Conference on Acoustics, Speech and Signal Processing, 1993.

[110] Haitao Mi and Liang Huang. Forest-based translation rule extraction. In Pro-
ceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing, 2008.

[111] Haitao Mi, Liang Huang, and Qun Liu. Forest-based translation. In Proceed-
ings of the Annual Meeting of the Association for Computational Linguistics,
2008.

[112] Andrei Mikheev, Marc Moens, and Claire Grover. Named entity recognition
wihtout gazetters. In Proceedings of the Conference on European Chapter of
the Association for Computational Linguistics, 1999.

[113] Scott Miller, Heidi Fox, Lance Ramshaw, and Ralph Weischedel. A novel
use of statistical parsing to extract information from text. In Proceedings of
the North American Chapter of the Association for Computational Linguistics
Conference, 2000.

[114] Roger K. Moore. Evaluating speech recognizers. IEEE Transactions on Acous-
tics, Speech, and Signal Processing, 1977.

[115] Hermann Ney, Ute Essen, and Reinhard Kneser. On structuring probabilistic
dependences in stochastic language modelling. Computer Speech and Lan-
guage, 1994.

207

[116] Thomas Niesler and Phil Woodland. Variable-length category-based n-gram
language model. In Processing of the International Conference on Acoustics,
Speech and Signal Processing, 1996.

[117] Franz Josef Och. Minimum error rate training in statistical machine transla-
tion. In Proceedings of the Annual Meeting of the Association for Computa-
tional Linguistics, 2003.

[118] Franz Josef Och and Hermann Ney. Improved statistical alignment models.
In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, 2000.

[119] Franz Josef Och and Hermann Ney. The alignment template approach to
statistical machine translation. Computational Linguistics, 2004.

[120] Jerome Packard. The Morphology of Chinese. Cambridge University Press,
2000.

[121] Slav Petrov. Coarse-to-fine natural language processing. PhD thesis, Univer-
sity of California at Bekeley, 2009.

[122] Slav Petrov. Products of random latent variable grammars. In Proceedings of
the Conference of the North American Chapter of the Association for Compu-
tational Linguistics on Human Language Technology, 2010.

[123] Slav Petrov and Dan Klein. Improved inference for unlexicalized parsing. In
Proceedings of the Conference of the North American Chapter of the Associa-
tion for Computational Linguistics on Human Language Technology, 2007.

[124] Slav Petrov and Dan Klein. Sparse multi-scale grammars for discriminative
latent variable parsing. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, 2008.

[125] Slav Petrov and Dan Klein. Discriminative log-linear grammars with latent
variables. In Advances in Neural Information Processing Systems, 2008.

[126] Slav Petrov, Leon Barrett, Romain Thibaux, and Dan Klein. Learning accu-
rate, compact, and interpretable tree annotation. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics, 2006.

[127] Slav Petrov, Adam Pauls, and Dan Klein. Learning structured models for
phone recognition. In Proceedings of the Joint Conference on Empirical Meth-
ods in Natural Language Processing and Computational Natural Language
Learning, 2007.

[128] Jay M. Ponte and W. Bruce Croft. A language modeling approach to in-
formation retrieval. In Proceedings of the ACM International Conference on
Research and Development in Information Retrieval, 1998.

208

[129] Lawrence R. Rabiner. A tutorial on hidden markov models and selected ap-
plications in speech recognition. Readings in Speech Recognition, 1990.

[130] Lawrence R. Rabiner and Biing-Hwang Juang. An introduction to hidden
markov models. IEEE ASSP Magazine, 1986.

[131] Adwait Ratnaparkhi. A maximum entropy model for part-of-speech tagging.
In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, 1996.

[132] Adwait Ratnaparkhi. A linear observed time statistical parser based on maxi-
mum entropy models. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, 1997.

[133] Roi Reichart and Ari Rappoport. Self-training for enhancement and domain
adaptation of statistical parsers trained on small datasets. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics, 2007.

[134] Brian Roark, Mary Harper, Yang Liu, Robin Stewart, Matthew Lease,
Matthew Snover, Izhak Shafran, Bonnie J. Dorr, John Hale, Anna Krasnyan-
skaya, and Lisa Yung. Sparseval: Evaluation metrics for parsing speech. In
Proceedings of the Language Resources and Evaluation Conference, 2006.

[135] Ronald Rosenfeld. Two decades of statistical language modeling: where do
we go from here? Proceedings of the IEEE, 2000.

[136] Kenji Sagae and Alon Lavie. Parser combination by reparsing. In Proceed-
ings of the Conference of the North American Chapter of the Association for
Computational Linguistics, 2006.

[137] Ruslan Salakhutdinov, Sam Roweis, and Zoubin Ghahramani. Optimization
with EM and expectation-conjugate-gradient. In Proceedings of the Interna-
tional Conference on Machine Learning, 2003.

[138] Christer Samuelsson. Morphologial tagging based entirely on bayesian infer-
ence. In Nordic Conference on Computational Linguistics, 1993.

[139] Stuart M. Shieber. Evidence against the context-freeness of natural language.
Linguistics and Philosophy, 1985.

[140] Andrew Smith and Miles Osborne. Diversity in logarithmic opinion pools.
Lingvisticae Investigationes, 2007.

[141] Andrew Smith, Trevor Cohn, and Miles Osborne. Logarithmic opinion pools
for conditional random fields. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics, 2005.

[142] Rohini Srihari and Charlotte Baltus. Combining statistical and syntactic
methods in recognizing handwritten sentences. In AAAI Symposium: Proba-
bilistic Approaches to Natural Language, 1992.

209

[143] Mark Steedman, Miles Osborne, Anoop Sarkar, Stephen Clark, Rebecca Hwa,
Julia Hockenmaier, Paul Ruhlen, Steven Baker, and Jeremiah Crim. Boot-
strapping statistical parsers from small datasets. In Proceedings of the Confer-
ence on European Chapter of the Association for Computational Linguistics,
2003.

[144] Andreas Stockle. SRILM – an extensible language modeling toolkit. In Pro-
ceedings of the International Conference on Spoken Language Processing, 2002.

[145] Mihai Surdeanu, Sanda Harabagiu, John Williams, and Paul Aarseth. Using
predicate-argument structures for information extraction. In Proceedings of
the Annual Meeting of the Association for Computational Linguistics, 2003.

[146] Lucien Tesnière. Éléments de syntaxe structurale. Klincksieck, 1959.

[147] Scott M. Thede and Mary P. Harper. A second-order hidden markov model
for part-of-speech tagging. In Proceedings of the Annual Meeting of the Asso-
ciation for Computational Linguistics, 1999.

[148] Kristina Toutanova and Christopher D. Manning. Enriching the knowledge
sources used in a maximum entropy part-of-speech tagger. In Proceedings of
the Conference on Empirical Methods in Natural Language Processing, 2000.

[149] Kristina Toutanova, Dan Klein, Christopher Manning, and Yoram Singer.
Feature-rich part-of-speech tagging with a cyclic dependency network. In Pro-
ceedings of the Conference of the North American Chapter of the Association
for Computational Linguistics on Human Language Technology, 2003.

[150] Huihsin Tseng, Pichuan Chang, Galen Andrew, Daniel Jurafsky, and Christo-
pher Manning. A conditional random field word segmenter. In Proceedings of
the SIGHAN Workshop on Chinese Language Processing, 2005.

[151] Huihsin Tseng, Daniel Jurafsky, and Christopher Manning. Morphological
features help pos tagging of unknown words across language varieties. In
Proceedings of the SIGHAN Workshop on Chinese Language Processing, 2005.

[152] Ashish Venugopal, Andreas Zollmann, Noah A. Smith, and Stephan Vogel.
Preference grammars: softening syntactic constraints to improve statistical
machine translation. In Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics, 2009.

[153] Andrew Viterbi. Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory,
1967.

[154] Atro Voutilainen. A syntax-based part-of-speech analyser. In Proceedings of
the Conference on European Chapter of the Association for Computational
Linguistics, 1995.

210

[155] Wen Wang and Mary P. Harper. The SuperARV language model: Inves-
tigating the effectiveness of tightly integrating multiple knowledge sources.
In Proceedings of the Conference on Empirical Methods in Natural Language
Processing, 2002.

[156] Wen Wang, Zhongqiang Huang, and Mary Harper. Semi-supervised learning
for part-of-speech tagging of mandarin transcribed speech. In Processing of the
International Conference on Acoustics, Speech and Signal Processing, 2007.

[157] Ralph Weischedel, Sameer Pradhan, Lance Ramshaw, Martha Palmer, Ni-
anwen Xue, Mitchell Marcus, Ann Taylor, Craig Greenberg, Eduard Hovy,
Robert Belvin, and Ann Houston. OntoNotes release 2.0. Linguistic Data
Consortium, 2008.

[158] Ian H. Witten and Timothy C. Bell. Estimating the probabilities of novel
events in adaptive text compression. IEEE Transactions on Information The-
ory, 1991.

[159] Deyi Xiong, Min Zhang, Aiti Aw, and Haizhou Li. A syntax-driven bracketing
model for phrase-based translation. In Proceedings of the Joint Conference of
the Annual Meeting of the Association for Computational Linguistics and the
International Joint Conference on Natural Language Processing, 2009.

[160] Deyi Xiong, Min Zhang, and Haizhou Li. Learning translation boundaries
for phrase-based decoding. In Proceedings of the Conference of the North
American Chapter of the Association for Computational Linguistics on Human
Language Technology, 2010.

[161] Nianwen Xue, Fu-dong Chiou, and Martha Palmer. Building a large-scale
annotated chinese corpus. In Proceedings of the International Conference on
Computational Linguistics, 2002.

[162] Nianwen Xue, Fei Xia, Fu-dong Chiou, and Marta Palmer. The Penn Chinese
Treebank: Phrase structure annotation of a large corpus. Natural Language
Engineering, 2005.

[163] Kenji Yamada and Kevin Knight. A syntax-based statistical translation model.
In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, 2001.

[164] Daniel H. Younger. Recognition and parsing of context-free languages in time
n3. Information and Control, 1967.

[165] Bin Zhang and Jeremy G. Kahn. Evaluation of decatur text normalizer for
language model training. Technical report, University of Washington, 2008.

[166] Hao Zhang, Daniel Gildea, and David Chiang. Extracting synchronous gram-
mar rules from word-level alignments in linear time. In Proceedings of the
International Conference on Computational Linguistics, 2008.

211

[167] Hui Zhang, Min Zhang, Chew Lim Tan, and Haizhou Li. K-best combination
of syntactic parsers. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, 2009.

[168] Bowen Zhou, Bing Xiang, Xiaodan Zhu, and Yuqing Gao. Prior deriva-
tion models for formally syntax-based translation using linguistically syntactic
parsing and tree kernels. In Proceedings of the Workshop on Syntax and Struc-
ture in Statistical Translation, 2008.

[169] Andreas Zollmann and Ashish Venugopal. Syntax augmented machine transla-
tion via chart parsing. In Proceedings of the Workshop on Statistical Machine
Translation, 2006.

[170] Andreas Zollmann and Stephan Vogel. A word-class approach to labeling
pscfg rules for machine translation. In Proceedings of the Annual Meeting of
the Association for Computational Linguistics, 2011.

212

	List of Tables
	List of Figures
	Introduction
	Thesis Overview
	Structure of the Thesis

	Model Foundations
	Overview
	A Markov Model
	A Hidden Markov Model
	Definition and Properties
	Inference and Learning

	A Latent Hidden Markov Model
	Definition and Properties
	Inference and Learning

	Probabilistic Context-Free Grammars and Latent Annotations
	Synchronous Probabilistic Context-Free Grammars and Latent Annotations
	Conclusions

	POS Tagging with Latent Variables
	Overview
	Introduction to POS Tagging
	HMM POS Tagger
	Discriminative POS Taggers
	Latent Bigram POS Tagger
	Smoothing
	OOV Handling
	Decoding

	Self-Training
	Experiments
	Setup
	Chinese Results
	English Results

	Conclusions

	Language Modeling with Latent Variables
	Overview
	Introduction to Language Modeling
	N-gram Language Models
	Class-based Language Models
	Latent Language Model
	POS-based Latent Language Model
	Experiments
	Setup
	Results

	Conclusions

	Improvement of PCFG Grammars with Latent Annotations
	Overview
	Introduction to Parsing
	PCFG Grammars with Latent Annotations
	Improving PCFG-LA Grammars
	Smoothing
	OOV Handling
	Self-Training

	Experiments
	Setup
	Rare Word Smoothing and OOV Word Handling
	A Case Study: PCFG-LA Parser vs. Charniak's Parser
	Analysis

	Conclusions

	Improving PCFG-LA with Self-Training and Product Models
	Overview
	Product Models
	Training Protocols
	Experiments
	Setup
	Newswire Results
	Analysis
	Broadcast News Results
	Final Results

	Conclusions

	Improving PCFG-LA with Log-Linear Lexical Models
	Overview
	Motivation for Using Feature Rich Models
	Design of the Log-Linear Lexical Model
	Model Training
	Experiments
	Setup
	Standard PCFG-LA Grammars
	Log-Linear Lexical Models
	Analysis

	Conclusions

	Machine Translation with Latent Variables
	Overview
	Introduction to Hierarchical Phrase-Based Translation
	Our Approach
	Alignment-based Hierarchy
	Inducing Latent Syntactic Categories
	Experiments
	Setup
	Results
	Discussion

	Conclusions

	Contributions and Future Work
	Contributions
	Future Work

	Bibliography

