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Abstract

Dynamic programming suffers the “curse of dimensionality” when it is employed for complex control
systems. State aggregation is used to solve the problem and accelerate computation by looking for a sub-
optimal policy. In this paper, a new method, which converges much faster than conventional aggregated
value iteration based on TD(0), is proposed for computing the value functions of the aggregated system.
Preliminary results show that the new method increases the speed of convergence impressively. Aggre-
gation introduces errors inevitably. An adaptive aggregation scheme employing the new computation
method is also proposed to reduce the aggregation errors.

1 Introduction

Dynamic Programming (DP) plays an important role in intelligent control and optimal control. The “curse
of dimensionality” is a major obstacle to deploying DP algorithms for complex control systems. To make
the controller carry out the computation and achieve an acceptable performance within a finite time frame,
simplifications to the DP algorithms are greatly needed. Many approximate DP algorithms have been
developed in the past [1]-[6], [8], [11]-[13], [16], [18], [21]-[24], etc. The techniques include approximate policy
evaluation, policy approximation, approximate value iteration by state aggregation, etc.

A natural idea to deal with the “curse of dimensionality” is to use a low-dimensional system to approxi-
mate the original system by state aggregation. A continuous-state system can be approximated by a finite
number of discrete states, and the system equation is replaced by a set of transition equations between these
states. A discrete infinite-state system can be approximated by a finite-state system with dimension N , and
we let N 7→ ∞ [17] to reduce errors. A large-dimension finite-state system can be approximated by a smaller
dimension finite-state system. State aggregation for continuous-state systems can be found in [16] and [8].
Computational complexity of the aggregated system is less than the original system since less number of
“states” are involved. Because after discretization, a continuous-state system can be transformed into a
discrete-state system, we will focus on the state aggregation of discrete-state systems in this paper.

1.1 Problem Formulation

Consider a discrete-time finite state system S = {1, 2, ..., n}. The action space U(i) at state i ∈ S is also
finite. For a positive integer T , given a policy π = {µ0, µ1, ..., µT }, the sequence of states becomes a Markov
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chain with transition probabilities

P (xt+1 = j|xt = i, ..., x0 = i0, µt(i), ..., µ0(i0)) = Pi,j(µt(i)) (1)

The infinite horizon cost function is

Jπ(i) = lim
T 7→∞

E{
T−1∑
t=0

αtgt(xt, µt(xt), xt+1)|x0 = i} (2)

where 0 < α < 1 is the discount factor and gt(xt, µt(xt), xt+1) is the transition cost for taking action µt(xt)
at state xt and making a transition to state xt+1.

The DP problem is to solve:
J∗(i) = min

π
(J(i)) (3)

The state aggregation method is to aggregate states by certain principles into a smaller number of
macro-states (clusters). The state space S = {1, ..., n} is divided into disjoint subsets S1, ..., SK , with
S = S1 ∪ S2 ∪ ... ∪ SK and K < n. The value functions of the original states are approximated by the value
functions of the macro-states.

1.2 State Aggregation Algorithms

For a special system with strong and weak interactions, the states can be aggregated by the transition
probability matrix [1], [9], [15]. The system equations can be transformed into standard singular perturbation
forms. The transformed system has typically a slow part and a fast part with the fast part converging quickly.
The dimension of the slow part is small and the optimal control problem can be solved sub-optimally.
However, for general systems, such aggregation methods will fail.

Based on policy iteration, Bertsekas [5] developed an adaptive aggregation scheme for policy evaluation.
i.e., given a fixed policy, using state aggregation to find the corresponding cost-to-go. However, its selection
of the aggregation matrix is based on the assumption of ergodic processes and its number of aggregated
groups is fixed. Furthermore, no aggregation is applied to the policy improvement step, which may limit the
speed of the algorithm.

Tsitsiklis and Van Roy derived a TD(0) based two-level state aggregation for infinite horizon DP [6]. For
all states in a cluster Sk, k = 1, ...,K, the value functions of the states are approximated by a value function
J(Sk). Let γt > 0 be the learning rate that satisfies the condition

∑∞
t=0 γt = ∞ and

∑∞
t=0 γ

2
t < ∞. The

value iteration algorithm with look-up table is as follows. If i ∈ Sk,

Jt+1(Sk) := (1− γt)Jt(Sk) + γtmin
u

n∑
j=1

Pi,j(u)[gt(i, u, j) + αJt(Sk(j))], (4)

otherwise, Jt+1(Sk) := Jt(Sk).

The following result is well-known for the above iteration.

Theorem 1 [6]

If each cluster is visited infinitely often, then the iteration (4) converges to a limit J∗(Sk). Let

ε(k) = max
i,j∈Sk

|J∗(i)− J∗(j)| (5)
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where J∗(i) is the optimal cost-to-go at state i, and let

ε = max
k

ε(k), (6)

then the error bound for the iteration is:

|J∗(Sk)− J
∗(i)| ≤

ε

1− α
with probability 1, for all i ∈ Sk. (7)

Theorem 1 gives a theoretical framework for computing the value functions of the aggregated system
based on TD(0). Unfortunately, TD(0) based iteration often suffers the drawback of slow convergence,
which limits its practical application. The slow convergence is caused by the diminishing step size (learning
rate) γt. Moreover, the authors assumed that the aggregation structure is fixed and did not give an efficient
aggregation scheme. State aggregation inevitably introduces errors. Inappropriate aggregation methods can
cause large aggregation errors.

In this paper, we derive a method to calculate the value functions of the aggregated system much faster
than iteration (4). An adaptive aggregation scheme is also proposed to reduce the aggregation errors.

2 A Fast Way to Calculate the Value Functions of the Aggregated
System

One important parameter in state aggregation is the sampling probability q(x|Sk). It is the conditional
probability that state x will be chosen if the current cluster is Sk. Given a fixed aggregation, different
sampling probability can lead to different aggregated value functions for iteration (4). Therefore, to ensure
the value iteration (4) converges, it is required that the sampling probability be consistent. It means that
there exists a positive number B, such that for iterations t > B, qt(x|Sk) = C, where C is a constant, for all
x ∈ S and partitions S1, ..., SK . In general, for a fixed aggregation, the sampling probability is also fixed.

The key idea of fast computation of the value functions for the aggregated system is to avoid using TD(0)
based iteration in (4). The following theorem shows that there are other ways to calculate the approximate
value functions.

Theorem 2

If we build a new system with state space X = {S1, S2, ..., SK}, transition probabilities PSk,S′k(u(Sk)) =∑
i∈Sk

∑
j∈S′k

q(i|Sk)Pi,j(u(i)) and transition costs g(Sk, u(Sk), S
′
k) =

∑
i∈Sk

∑
j∈S′

k
q(i|Sk)Pi,j(u)g(i,u,j)

PSk,S
′
k

(u(Sk)) , where

q(i|Sk) is the sampling probability used in iteration (4), then employing DP algorithms on the new system
will produce the same optimal value functions and optimal policy as those obtained by iteration (4).

Proof: 1) Iteration (4) can be shown to be a Robbins-Monro stochastic approximation of the equation
[6]:

J∗(Sk) =
∑
i∈Sk

q(i|Sk)min
u

n∑
j=0

Pi,j(u)[g(i, u, j) + αJ∗(S′k)] (8)

They have the same limit J∗(Sk).

2) For the new system, the Bellman’s equation is:

J∗(Sk) = min
u(Sk)

∑
S′k

PSk,S′k(u(Sk))[g(Sk, u(Sk), S
′
k) + αJ∗(S′k)] (9)
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It can be changed into:

J∗(Sk) = min
u(Sk)

∑
S′k

PSk,S′k(u(Sk))[

∑
i∈Sk

∑
j∈S′k

q(i|Sk)Pi,j(u)g(i, u, j)

PSk,S′k(u(Sk))
+ αJ∗(S′k)]

= min
u(Sk)

∑
S′k

[
∑
i∈Sk

∑
j∈S′k

q(i|Sk)Pi,j(u)g(i, u, j) + αPSk,S′k(u(Sk))J
∗(S′k)]

= min
u(Sk)

[
∑
i∈Sk

n∑
j=1

q(i|Sk)Pi,j(u)g(i, u, j) + α
∑
S′k

PSk,S′k(u(Sk))J
∗(S′k)] (10)

since ∑
S′k

PSk,S′k(u(Sk))J
∗(S′k) =

∑
S′k

∑
i∈Sk

∑
j∈S′k

q(i|Sk)Pi,j(u)J
∗(S′k)

=
∑
i∈Sk

q(i|Sk)
n∑
j=1

Pi,j(u)J
∗(S′k) (11)

Substituting equation (11) into equation (10), we obtain:

J∗(Sk) =
∑
i∈Sk

q(i|Sk)min
u

n∑
j=1

Pi,j(u)[g(i, u, j) + αJ∗(S′k)], (12)

which is the same as equation (8). Hence, the theorem holds. �

In the theorem, u(Sk) is a combination of control actions u(i), ..., u(j) for i, ..., j ∈ Sk. This theorem gives
us a foundation to build a new system according to the sampling probability used in iteration (4). Employing
DP algorithms for the new system will give the same optimal value functions and optimal policy as those in
iteration (4). We can use policy iteration, Gauss-Seidel value iteration or successive over-relaxation methods
for the new system directly instead of TD(0) based iteration in (4). For example, we can use the following
value iteration to calculate the optimal value functions directly:

Jt+1(Sk) := min
u(Sk)

∑
S′k

PSk,S′k(u(Sk))[g(Sk, u(Sk), S
′
k) + αJt(S

′
k)] (13)

Since these DP algorithms usually converge faster than the iteration based on TD(0), we can achieve signif-
icant performance improvement. The error bound in inequality (7) still holds for the solutions of the new
system since the approximate value functions will be the same. The following example demonstrates the
effectiveness of this method.

Numerical Example

The example in Figure 1 was used in [23] to demonstrate the tightness of the error bound in (7). Four
states 1, 2, 3, and 4 are divided into two clusters S1 = {1, 2} and S2 = {3, 4}. State 1 is a zero cost absorbing
state. A transition from state 2 to state 1 with cost c is inevitable, and a transition from state 4 to state 3
with cost −c always occurs. In state 3, two actions “move” and “stay” are allowed. The labels on the arcs
in Figure 1 represent transition costs. All transition probabilities are one. The parameters in the example
satisfy: c > 0, b = 2αc−δ

1−α and 0 < δ < 2αc.

The optimal value functions for cluster 1 and cluster 2 are calculated. We will compare the convergence
speed for value iteration in (13) with the iteration in (4). Two different learning rates γt = log(t)/t and
γt = 1/t are used in iteration (4). In the comparison, parameters are set as follows: c = 5, b = 3, α = 0.9,
sampling probability q(x|S1) = 1/2 for x = 1, 2 and q(x|S2) = 1/2 for x = 3, 4. The initial values for each
cluster are J(S1) = J(S2) = 1.
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Figure 1: Example of a state aggregation
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Figure 2: Value iteration for the aggregated system in 100 runs

Figure 2 and 3 show the simulation results. In the figures, the curve with symbols “×” is for the iteration
(13), the solid line is for the iteration (4) with step size γt = 1/t and the dashed line is for the iteration (4)
with step size γt = log(t)/t.

It can be seen from Figure 2 that the value iteration (13) based on the aggregated system converges to
the limits within 60 runs, while the value iterations based on (4) have not converged to the limits in 100
runs. The iteration with step size γt = log(t)/t performs a lot better than the iteration using step size
γt = 1/t. Both of the iterations based on TD(0) converge much more slowly than the value iteration (13).
Figure 3 shows the result of value iterations in 2000 runs. The value functions in iteration (4) with learning
rate γt = log(t)/t are close to the limits in run 2000, but the value functions in iteration (4) with learning
rate γt = 1/t are still far away from the limits. In this example, there are only two policies. Therefore, if we
use policy iteration for the aggregated system, then we can obtain the optimal value functions within two
policy iterations. However, we have to pay the cost of policy evaluation.

Proposition 1

Given an infinite horizon DP problem with discount factor 0 < α < 1, we aggregate the states with
the same optimal value functions into the same cluster. Let a new system have the transition probabilities
PSk,S′k(u(Sk)) =

∑
i∈Sk

∑
j∈S′k

q(i|Sk)Pi,j(u(i)) and transition costs

g(Sk, u(Sk), S
′
k) =

∑
i∈Sk

∑
j∈S′

k
q(i|Sk)Pi,j(u)g(i,u,j)

PSk,S
′
k

(u(Sk)) . Solve the optimal decision problem for the new system

using DP, then the states in the new system will have the same optimal value functions as the states in the
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Figure 3: Value iteration for the aggregated system in 2000 runs

old system, i.e., J∗(i) = ... = J∗(j) = J∗(Sk), for all i, ..., j ∈ Sk.

Proof: 1) For the discounted system, if we do value iteration according to (4), then by the error bound
in inequality (7), we have J∗(Sk) = J∗(i) = ... = J∗(j), for all i, ..., j ∈ Sk.

2) From Theorem 2, the conclusion follows immediately. �

By this proposition, if all the states in each cluster have the same optimal value functions for an aggregated
system, then the aggregation will not introduce any error. Such an aggregation is called a perfect aggregation.
According to the error bound in inequality (7) and this proposition, for general systems, we should aggregate
the states according to their value functions. The states with the same optimal value functions should be
aggregated together. However, it usually happens that we do not know the optimal cost-to-go value for each
state it apriori. A solution is to aggregate states according to the current estimated value functions. It leads
to the following adaptive aggregation scheme we are going to propose.

3 Adaptive Aggregation for Infinite Horizon DP

The basic idea of adaptive aggregation can be thought as an actor-critic structure. It is shown in Figure 4.
The aggregated system can be thought of as an actor that calculates the approximate value functions and
derives a sub-optimal policy for the original system. The block of aggregation and policy evaluation can be
thought as a critic that evaluates the effect of aggregation and policy. According to the evaluation from the
critic, we adjust the aggregation and re-calculate the approximate value functions.

Conventional aggregation methods do not have the critic part. When the actor finishes iteration, the
whole algorithm stops and the value functions of the states in a cluster are simply approximated by the value
function of the cluster:

J∗(i) := ... =: J∗(j) =: J∗(Sk) (14)

for i, ..., j ∈ Sk. The critic part can reduce the aggregation error significantly. It is realized by disaggregating
the macro-states based on the value functions of the macro-states. It will be introduced in detail in the next
section.
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Figure 4: Block diagram of the adaptive aggregation

3.1 Adaptive Aggregation Algorithm for Infinite Horizon DP

Consider an ergodic process whose stationary probability distributions are positive for a given policy. (The
algorithm applies to general processes. We choose an ergodic process to show how to calculate the sampling
probability in this case. Selection of sampling probability for general systems will be given in the next
section.) The following algorithm is proposed for a two-level aggregation. Multi-level aggregation can be
developed similarly. The algorithm is as follows.

Step 1. Initialize values for stationary probability distribution and cost-to-go functions for the system
with state space S and give an aggregation of the system with disjoint subsets S1, S2, ..., SK , K < |S| where
|S| is the cardinality of space S.

Step 2. Calculate sampling probability

q(i|Sk) =
πt(i)∑
i∈Sk

πt(i)
, for i ∈ Sk (15)

and calculate PSk,S′k(u(Sk)) and g(Sk, u(Sk), S
′
k) according to Theorem 2.

Step 3. Employ DP algorithm on the aggregated system. We have two choices in this step. a) Use
Gauss-Seidel asynchronous iteration to do one-step or several-step value iteration for the macro states.

Jt+1(Sk) := min
u(Sk)

n1∑
S′k=0

PSk,S′k(u(Sk))[g(Sk, u, S
′
k) + αJt(S

′
k)] (16)

b) Use policy evaluation/policy improvement to solve the DP equation for the aggregated system directly.
Since policy iteration usually finds the optimal policy with a small number of iterations, it can reduce the
iteration number of the whole algorithm significantly. The cost is the increasing complexity because of the
policy evaluation step. Because the policy evaluation is employed on the aggregated system, the computation
load is much less than the policy evaluation on the un-aggregated system.

Step 4. Disaggregate the aggregation and evaluate the current aggregation. This corresponds to the
critic part in Figure 4. Let Jt(i) := Jt+1(Sk), for all i ∈ Sk. Disaggregate the system by

Jt+1(i) := min
u
{
i−1∑
j=1

Pi,j(u)[g(i, u, j) + αJt+1(j)] +
n∑
j=i

Pi,j(u)[g(i, u, j) + αJt(j)]} (17)

Re-group states according to the new estimate of value functions Jt+1(i). There are two ways to re-group
the states. The simplest way is to re-order the states according to the current estimates of value functions,
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and then put adjacent states in one cluster. The number of states in a cluster is fixed for this approach. The
drawback is that we do not have the control over the error. It is possible that two adjacent states having
a large difference of value functions are put in the same cluster, so that the aggregation error can be large.
An improved approach is as follows. Let Lt = maxi,j∈S |Jt(i)− Jt(j)|, and the cardinality of S be N. Define
the aggregation distance εt = n Lt

N−1 , where n ≥ 1. Then we can aggregate states by the distance of εt. From
mini∈S Jt(i) to maxi∈S Jt(i), we divide the states by the distance of εt. If there are no states falling into
a division, then there is no such macro state corresponding to the division. Therefore, when the algorithm
converges, the error of aggregation is bounded by ε∞

1−α . By letting εt+1 ≤ εt, the aggregation error can be
reduced. In practice, the second approach will be employed.

Step 5. According to the optimal policy obtained from step 4, we obtain the new transition probability
matrix between states. If the optimal policy is different from before, then the transition probability matrix
is usually different too. Therefore, the stationary probability distributions have to be recalculated. When it
happens, we can calculate new stationary probability distributions πt+1(i) according to Takahashi’s algorithm
[7] or the Seelen algorithm [19]. Both methods are used to calculate the stationary probability distribution
by state aggregation. Given a partition of the system, they can find the solution in an impressive short time
period. Due to the limitation of space, readers are recommended to read related material in [7], [19].

Step 6. If aggregation adjustment happens in step 4, then update Jt+1(Sk) by

Jt+1(Sk) :=
∑
i∈Sk

πt(i)Jt+1(i)∑
i∈Sk

πt(i)
; (18)

otherwise, skip to next step. When states are re-aggregated, the aggregated value functions are adjusted
according to equation (18).

Step 7. Check final errors. If the result is not satisfactory, then let t := t + 1 and go back to step 2;
otherwise, stop.

In step 3 b), Bertsekas’s policy evaluation method can be combined to accelerate the computation [5].
The adaptive aggregation algorithm not only dynamically adjusts clusters according to current estimate of
the value functions, but also adjusts the sampling probabilities according to the new policy. The adaptive
aggregation algorithm is guaranteed to converge by limiting the number of adjustments on the sampling
probability and aggregation. Since when there is no adjustment of the sampling probability and aggregation,
the adaptive aggregation becomes fixed aggregation and Theorem 2 applies. The upper bound of state
aggregation in (7) applies to the approximate value functions of the adaptive aggregation. In practice, the
adaptive scheme is expected to introduce less error than fixed aggregation schemes because of the adaptive
feature.

In real life, there are many systems whose states have explicit values. Such systems usually have a very
good property: their value functions change monotonically or smoothly with respect to the values of the
states. Typical examples are semiconductor processes, machine repair problems and queueing systems, et
al. For these systems, initial aggregation is straightforward: adjacent states should be aggregated together.
Then the adaptive aggregation algorithm can be used to reduce the aggregation error.

3.2 Selection of Sampling Probability

How to sample the states in each aggregation is an important problem. Different sampling schemes can lead
to different value functions for the same aggregation. Inappropriate sampling methods can lead to large
errors. We made the following observations about sampling probability. 1) Under a non-consistent sampling
probability, the approximate value iteration (4) may not converge. Therefore, we are interested in consistent
sampling schemes which can minimize the approximation error. 2) For a perfectly aggregated system where
the states in each cluster have the same optimal value functions, sampling probability has no effect on the
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aggregation since no error is introduced. 3) For a biased sampling probability where some states are sampled
with 0 probability, the error bound in (7) still applies. 4) For an ergodic process whose stationary probability
distribution in each state is positive, sampling by equation (15) gives satisfactory result. 5) For a general
process, a fair sampling probability is desired. In a cluster, a state with higher probability to be visited
should be given a larger sampling probability compared with a state with a low probability to be visited.
However, how to select the sampling probability is still an open question and more theoretical work is greatly
needed.

3.3 Numerical Example

The example in Figure 1 is used here to show the effectiveness of the adaptive aggregation algorithm. In the
beginning of the algorithm, we still form two clusters as in Figure 1. For the fixed aggregation scheme, the
approximation error reaches the upper bound in (7). It is easy to verify that the optimal cost-to-go values
at state 1, 2, 3 and 4 are 0, c, 0 and −c respectively. The fixed aggregation method gives the approximate
values: J∗(S1) = c

1−α and J∗(S2) = −c
1−α .

The following is the result using the adaptive aggregation scheme. Because state 1 is an absorbing state
and a transition from state 2 to state 1 is inevitable, there are more chances to visit state 1 than state 2
in cluster S1. The sampling probabilities in cluster S1 are set as: q(1|S1) = 0.9 and q(2|S1) = 0.1. For
a similar reason, we set q(3|S2) = 0.8 and q(4|S2) = 0.2. There are only two possible policies in this
example. Define um = {action “move” is chosen in state 3} and us = {action “stay” is chosen in state 3}.
Then the corresponding transition probabilities and transition costs for the aggregated system are: PS1,S1 =
1, PS1,S2 = 0, PS2,S1(um) = 0.8, PS2,S2(um) = 0.2, PS2,S1(us) = 0, PS2,S2(us) = 1, g(S1, S1) = 0.9 × 0 +
0.1× c = 0.1c, g(S2, um, S1) = 0, g(S2, um, S2) = −c and g(S2, us, S2) = 0.8b− 0.2c.

We let c = 5, b = 3 and α = 0.9 as before. Policy iteration is used here for simplicity and gives results
in two iterations: J1(S1) = 5, J1(S2) = −1.707 and um should be taken in cluster S2. Then we apply the
aggregation evaluation step: Let J1(1) := J1(2) := J1(S1) and J1(3) := J1(4) := J1(S2), then

J1(1) := 0 + αJ1(1) = 4.5

J1(2) := c+ αJ1(1) = 9.5

J1(3) := min{0 + αJ1(1), b+ αJ1(3)} = 1.464

J1(4) := −c+ αJ1(3) = −3.683

Therefore, the distance L1 = max{J1(i)−J1(j)} = 13.183, for i, j ∈ S. Define ε1 = L1

|S|−1 = 13.183
3 = 4.4,

we re-group the states according to step 4 in the adaptive aggregation algorithm. The new clusters are:
S1 = {1, 3}, S2 = {2} and S3 = {4}. Let the sampling probabilities be q(1|S1) = 0.6 and q(3|S1) = 0.4,
and we have: PS1,S1 = 1, PS2,S1 = 1 and PS3,S1 = 1 and g(S1, um, S1) = 0, g(S1, us, S1) = 0.4b = 1.2,
g(S2, S1) = c = 5, g(S3, S1) = −c = −5. Apply policy iteration again, we obtain: J2(S1) = 0, J2(S2) = c = 5
and J2(S3) = −c = −5. Evaluate the aggregation, and the result is J2(1) = J2(3) = 0, J2(2) = c = 5 and
J2(4) = −c = −5. The disaggregated states have the same optimal cost-to-go values as the clusters containing
them. Therefore, in this example, the adaptive aggregation algorithm finds the optimal solutions without
error.

4 Conclusions

In this paper, a new method is proposed to calculate the value functions for the aggregated system. Numeric
examples show that it speeds up the convergence significantly over conventional value iterations based on

9



TD(0). Inappropriate aggregation can cause large errors. Therefore, an adaptive aggregation scheme is
proposed to reduce the errors. The adaptive scheme can be applied to general systems. Numerical examples
show the effectiveness of the adaptive aggregation algorithm. In the selection of sampling probability,
theoretical work is needed. Also, the example in this paper is rather simple. We plan to apply the algorithm
to more complex systems.
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