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CHAPTER 1:  PURPOSE AND RATIONALE 

 

 The purpose of this study is to examine issues in modeling Learning Progressions 

(LPs) with Bayesian inference networks.  While there are many definitions for learning 

progressions, the underlying concept is that they provide information regarding the state 

of a student in their level of understanding of a given concept.  Learning progressions are 

broken down into levels, each of which should represent a given state of student’s 

learning with descriptions of the types of knowledge and skills required for student’s to 

display mastery of that level, or with descriptions of the types of concepts and ideas that 

students have at that level.  The levels are generally considered to be ordered in the sense 

that higher levels indicate deeper levels of understanding of the given concept. 

 For both studying LPs and for inferences about students’ progress in this light, we 

need to be able to create tasks that provide evidence about students’ capabilities through 

the lens of the targeted LP(s), and have a statistical/measurement model for interpreting 

this data.  This study focuses on the statistical modeling issues, in the framework of 

Bayesian inference networks (BINs).  It concerns the question of how a BIN can be used 

to model the relationship between tasks which have observable responses and levels of 

the LP (which is a latent construct).  Specifically, it will address the issues of recovery of 

the correct model as compared to similar incorrectly specified models, and the robustness 

of inferences about students from both the correctly and incorrectly specified models. 

 The study will first examine different models when all observables are modeled as 

depending on upon only one LP, and then it will address issues with how tasks can be 

modeled that depend on multiple LPs.  In both of these cases several models will be 
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proposed and compared through the use of simulation studies.  This study will also 

provide a real data example to demonstrate how these concepts can be expanded and used 

in practice.  

Learning Progressions:  Background Information 

 

 Currently there is a movement in the measurement community to create 

assessments that can generate more cognitively and instructionally relevant information 

in addition to providing an overview of ability level of students (Leighton & Gierl, 2007, 

National Research Council (NRC), Nichols, Chipman & Brennan, 1995, 2001, Rupp & 

Templin, 2008).  This information can be used to instruct learning in a classroom as well 

as to provide individualized information.    

 Some trace this movement back to the 1980’s when there was a call for greater 

collaboration between cognitive psychologists and assessments developers, and greater 

collaboration between assessment and instruction (Huff & Goodman, 2007).  This call 

was due in part to the fact that researchers have found that learning is optimized when 

there is an alignment among curriculum, assessment and some cognitive theory of 

learning (Huff & Goodman, 2007).  In addition it has been found that assessment based 

on cognitive theory can have a positive influence on instruction and learning (Huff & 

Goodman, 2007).   

 It is not only researchers that believe in the benefit from diagnostic assessment, 

but also a high percentage of teachers think it is important to collect diagnostic 

information, whether it be from classroom assessments or large scale assessments (Huff 

& Goodman, 2007).  Huff and Goodman (2007) also found that a large percentage of 



3 

 

teachers wished they had more diagnostic information and, in particular, more 

individualized diagnostic information at the large scale assessment level of testing.  

Mislevy (1993) has also stated the importance of creating assessments that are able to 

provide meaningful information regarding students or classes of students. 

 With the introduction of No Child Left Behind (NCLB) there has been a recent 

increase in the articulation of standards, and interest in having students meet these 

standards (NRC, 2001).  This in turn has increased the amount of testing (NRC, 2001).  

However, this testing generally does not give individualized information regarding the 

level of the student or information regarding methodology that will lead the students to 

meet the standards (Wilson & Scalise, 2006).     

 The NRC (2001) report stressed that formative and timely feedback is important 

to students in their development.  If students are not given feedback in a timely manner, 

then they may continue to practice incorrect methodologies.  The type of feedback that 

seems to be most beneficial is feedback regarding how the student is progressing towards 

the goal (versus feedback such as overall grade) (NRC, 2001).  Formative diagnostic 

information can lead to guidance regarding what type of practice or instruction a student 

might need next, which can help dramatically in the improvement of a student’s skill.     

 The National Research Council (2001) also states that while instructors often have 

set curriculum goals, they are responsible for any intermediate goals in the classroom.  

Having a theory of how to meet the curriculum goals based on knowledge of how 

students progress toward those goals can help in determining these intermediate goals, 

which in turn can influence how the curriculum is laid out. 
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 One type of diagnostic information revolves around the use of learning 

progressions (Corcoran, Mosher, & Rogat, 2009).   Learning progressions can be a useful 

tool when it comes to curriculum and assessment design.  Concepts similar to learning 

progressions have been around for some time.  For example, Piaget’s Stages of Cognitive 

Development (Piaget, 1928) can be thought of as a learning progression for a student’s 

ability to understand new material (Woolfolk, 2004).  Gagne’s work with learning 

hierarchies (Gagne, 1970) is another example of having a set of capabilities that have an 

ordered relationship to each other.  However, learning progressions themselves are still 

being developed and there is need for further work in addressing issues such as the 

design, assessment, use, and modeling of these learning progressions (Wilson, 2009).   

Learning Progressions:  Definition 

 There are several ways of describing learning progressions.  According to 

Popham (2007) learning progressions can be thought of as the building blocks for 

specific skills, or, put another way, the steps that one would take along the way to 

mastery of a task.  This is similar to Gagne and Driscoll’s (1988) concept of learning as a 

set of events that happen in sequence.  From this point of view there are certain steps that 

must be taken in order for students to arrive at some end state.  At the end of each step a 

student is in a given state and these states represent the learning progression. 

 Another way to define a learning progression is that it is a description of how 

students develop expertise over time (Stevens, Shin & Krajcik, 2009), which could 

incorporate the learning of new topics or gaining expertise from a basic level of facts to 

higher levels requiring more complex thinking.  Learning progressions can be structured 

so that the lowest level is a novice level, or the lowest level could represent students who 
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have a basic level of understanding.  Similarly, Wilson (2009) presents a definition of 

learning progression as descriptions of how students change their thinking about a topic 

over time.  White and Frederiksen (1990) discuss learning progressions as changes in the 

mental model.  In their work with electricity they find that students start with a very naïve 

qualitative model of how things work.  Their understanding progresses to incorporate 

more quantitative ideas and eventually they obtain expert models which incorporate both 

qualitative and quantitative concepts. 

 White and Frederiksen (1990) developed a progression of mental models for 

students understanding of circuits.  These models incorporated different physical 

structures of the circuit, behavior of devices and basic electrical principals in order to 

demonstrate how students move from a low level of understanding to a high level.  This 

can be further seen in Table 1. 

Table 1:  An example of a learning progression regarding circuits 

Level Learning Progression Levels 

1 

1)  Understand that there are two polarities of electrical force, and both 

forces must be applied to two ports of the device 

2)  Understand that devices have properties, such as conductivity 

3)  Understand that devices can have more than one state which can 

determine the properties 

2 

1)  Understand all Level 1 pieces   

2)  Understand series-parallel circuits 

3)  Understand the idea of a short 

4)  Refine their understanding of a conductive path into either a conductive-

resistive path and a purely conductive path 

3 

1)  Understand all Level 2 pieces 

2)  Understand and apply Kirchhoff's Voltage Law 

3)  Evaluate the effects of changes in conductivity on a device by device 

basis 

4 

1)  Understand all Level 3 pieces 

2)  Evaluate the effects of changes in conductivity by propagation of 

voltages.  

 



6 

 

 A similar concept of a learning progression can be seen in the Berkeley 

Evaluation and Assessment Research (BEAR) Assessment system (Draney, 2009, 

Wilson, 2009).  Wilson (2009) has discussed how a learning progression can be built 

based on how students change their thinking over time.  This includes not only how new 

knowledge is incorporated into a student’s mental model but provides information about 

limitations in a student’s understanding.  These limitations can be misconceptions or 

areas in which the student does not have a clear picture (see Table 2 as an example).   

Table 2:  Detailed view of the Tracing Matter LP (taken from Draney, 2009) 

Level Accomplishment Limitations 

1 
Macroscopic force-dynamic narratives 

about actors and events 

Focus on reasons or causes for events 

rather than mechanisms 

Vitalistic explanations for events 

involving plants and animals 

2 

Stories involving hidden mechanisms 
Matter not clearly distinguished from 

conditions or forms of energy. 

Recognition of events at microscopic 

scale 

Macroscopic events are associated with 

specific organs rather than cellular 

processes 

Tracing matter through most physical 

changes 

 
Coherent stories of food chains 

3 

Stories of events at atomic-molecular, 

macroscopic and large scales 
Mass of gases not consistently recognized 

  
Incomplete understanding of chemical 

identities of substances 

4 
Model-based accounts of all carbon 

transforming processes 
Difficulty with quantitative reasoning 

  

 In the recent report by the Center for Continuous Instructional Improvement 

(CCII), Corcoran, Mosher, and Rogat (2009) define a learning progression as a testable 

hypotheses regarding how a population of students’ understanding and ability grows over 
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time with appropriate instruction.  In addition to this definition, the panel that was 

convened to discuss learning progressions in science for this report also came up with the 

following characteristics that every learning progression must have: 

1)  Learning targets or clear end points that are defined by societal aspirations 

and analysis of the central concepts and themes in a discipline; 

2)  Progress variables that identify the critical dimensions of understanding 

and skill that are being developed over time; 

3)  Levels of achievement or stages of progress that define significant 

intermediate steps in conceptual/skill development that most children 

might be expected to pass through on the path to attaining the desired 

proficiency; 

4)  Learning performances which are the operational definitions of what 

children’s understanding and skills would look like at each of these stages 

of progress, and which provide the specifications for the development of 

assessments and activities which would locate where students are in their 

progress; and, 

5)  Assessments that measure student understanding of the key concepts or 

practices and can track their developmental progress over time.  

(Corcoran, Mosher, & Rogat, 2009) 
 

 This concept that learning progression should be based on research and testable is 

echoed in Stevens, Shin & Krajcik (2009).  This requirement helps ensure that a learning 

progression is based on cognitive theory and requires evidence of the validity of the 

learning progression.  If a learning progression is not able to be tested then there is no 

guarantee that having students follow the learning progression is an appropriate path.   

 The guidelines set by the CCII (Corcoran, Mosher, & Rogat, 2009) also directly 

tie the learning progression to curriculum and instruction by specifying activities that are 

most appropriate and by setting specific goals that can be reached.  In addition there is a 

link between the curriculum and assessments in the requirement for assessments to be 

developed.  This again helps to provide evidence for the validity of the assessment, when 

used to make inferences about the student’s ability on the learning progression, given that 

the learning progression itself has been validated. 
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 Behind any of these definitions of learning progressions is the concept that there 

are different stages students go through when obtaining a deep understanding of a 

subject.  Determining which stage a student is in can not only help determine what skills 

they have mastered, but also what steps they should take in order to progress to the next 

stage.  An instructor with information about the stage a student is in can then determine 

what they need to cover in their instruction to best help their students. 

 A distinction that is crucial to this dissertation arises at this point.  It is the 

difference between a learning progression and variables in statistical models that may be 

used to organize reasoning with evidence and uncertainty about individuals and groups 

with respect to performances and learning progressions.  Learning progressions, as they 

have been described in this section, are psychological schemas for the nature of cognitive 

development and its manifestation in task performance.  Measurement models are 

statistical overlays on top of the substantive psychological theory, for rigorous handling 

of evidence.  A key point is that there is no simple unique relationship between a 

psychological learning progression conception in general and a universal measurement 

model.   

It is clear from the previous discussion that there are variations of learning 

progressions as a psychological concept, and none are defined specifically enough to 

uniquely pinpoint the form and parameters of a specific measurement model to 

accompany it.  This is an applied engineering problem: Given a particular learning 

progression model and tasks and performances meant to provide evidence about it, 

alternative measurement models could be entertained.  Thus, when we speak of a learning 

progression, we should ideally indicate that we are speaking of the psychological 
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conception, and when we speak of learning progressions variables, we should indicate 

that we are speaking of the formal variables in a statistical model that are representing 

some aspects of students’ capabilities in the psychological model.    

 For example, the CCII report (Corcoran, Mosher, & Rogat, 2009) differentiates 

between the concept of a progress variable and a learning progression (also see Wilson, 

2009).  Progress variables are defined as variables that define growth points for students 

along the scale in a measurement model (Wilson & Scalise, 2006).  , Both incorporate the 

idea that students progress from low level attributes to high level attributes (NRC, 2001), 

although the progress variable is an instantiation of a particular modeling approach and 

definitions and procedures within it.  A learning progression may be made up of several 

progress variables, and the relationships among these variables could be complex 

(Wilson, 2009).   

Learning Progressions:  Background Research 

 When it comes to curriculum development, learning is not a straightforward 

march through a series of steps, but rather a dynamic path full of leaps forwards and 

setbacks (Corrigan et al., 2009).  Learning progressions can pinpoint landmarks in a 

students learning, and the development of the learning progression can provide 

information about what type of instruction would be best at these different stages 

(Corrigan et al., 2009). 

 Research that has been done in the field of expert-novice research (e.g., Ericsson 

et al., 2006) may be helpful in defining a learning progression.  This work examines 

differences between experts and novices, and helps to indicate some of the key attributes 

that should be included at different levels of the learning progression.  Included in these 
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findings is that a key difference is knowledge organization (NRC, 2001).  One example 

of this is a study by Chi, Feltovich, and Glaser (1981) in the field of physics.  Here 

students were asked to place particular problems into different groups.  Novices tended to 

group these problems by what type of device they were using (such as pulleys vs. planes).  

While experts tended to group based on the underlying principles (such as Newton’s first 

laws vs. conservation of energy) (NRC, 2001).  A learning progression for physics may 

then have at a low level that students are able to recognize similar problems by physical 

objects, while at a higher level students are able to recognize the principles of a problem.  

This is something that is testable, as it is conceivable to develop a problem that tests how 

students organize their knowledge and may be a useful way to determine the level of a 

student.  While this is one area of research that may reflect on the development of 

learning progressions further research into the development process is needed.   

 One issue with developing learning progressions is that often, not all students 

follow the same learning path (NRC, 2001, Stevens, Shin & Krajcik, 2009).  The 

concepts of learning paths will be discussed in more detail in Chapter 2 but it is important 

to note that in some cases it may be difficult to find a strict progression that students are 

expected to follow.  The different paths a student can take should be taken into account 

when developing the model for the learning progression (NRC, 2001).  In general the 

learning progression should cover the general pattern of learning, with concrete 

differences between the different levels of the learning progression, and should include 

information regarding how to help students progress through the levels, as well as how to 

measure the level of a student. (Stevens, Shin & Krajcik, 2009).    
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 For the purpose of this study, the term attributes will be used to describe the 

pieces that make up the layers of the learning progression.  As mentioned above the 

learning progression may give descriptions of knowledge a student has or skills the 

student should be able to display, but it may also contain information regarding 

misconceptions and frameworks that a student might have.  This study is not examining 

the specific pieces of individual learning progressions and therefore attributes will be 

used as a general term to describe what a typical student at a given level may look like. 

Assessment Triangle and Evidence Centered Design 

 One area of current research revolves around the generation of assessments that 

provide diagnostic information (Wilson & Scalise, 2006, Gotwals, Songer & Bullard, 

2009).  This literature addresses two sides of the story.  One is from the development 

point of view, where the question is how an assessment can be created in order to 

measure the attributes associated with the learning progression.  The other is from an 

analysis point of view, where one would determine how to analyze the assessment in 

order to obtain the desired information regarding the student’s level of ability.   

 When developing an assessment both of these questions should be considered 

jointly as it is important to determine how an assessment will be analyzed when it is 

created, and keeping the purpose in mind will help determine how an assessment should 

be analyzed.  The National Research Council (2001) defines three elements: cognition, 

observation and interpretation that make up what is referred to as an assessment triangle 

(see Figure 1).  These elements must work together in order to create valid assessments.  

Cognition is defined to be the theory of learning, or what it is we want to say about the 

student.  Observation is the kinds of tasks that allow the student to display information 



12 

 

regarding what it is we want to measure.  Interpretation is the link between the 

observations and cognition, or how information about the attributes of the task can 

provide information on the beliefs regarding the student (NRC, 2001). 

Cognition

ObservationInterpretation  
Figure 1:  A representation of the Assessment Triangle 

 

 These pieces of the assessment triangle are also developed using an evidence-

centered design (ECD) approach to creating assessments (Mislevy, Almond & Lukas, 

2003).  An ECD approach starts with the domain analysis stage, where information is 

gathered regarding the domain in question, moves to the domain modeling stage, where 

this information is organized, and then moves into the conceptual assessment framework 

(CAF) stage (Mislevy, Almond & Lukas, 2003).  It is at this stage that the three main 

models, the student model (what it is we want to say about the student), the task model 

(what type of tasks would allow the student to exhibit the behavior), and the evidence 

model (how we can use the information from the work products produced by the task 

model to make inferences regarding the student model) are developed (Mislevy, Almond 

& Lukas, 2003).   

Notice that these three models are very similar to those in the assessment triangle. 

The difference is that the models in the CAF layer of evidence-centered design are formal 

syntactic models for the operational elements of an assessment, as opposed to the 

psychological concepts that make up a substantive assessment argument.  For example, in 
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a student model to be used in conjunction with a learning progression, the learning 

progression itself is the substantive and psychological theory of the increasing states of 

knowledge, and the student model consists of latent variables in a psychometric model 

that are used to represent students’ standing within the frame of the psychological theory.     

 When developing an assessment, it is very important that these different models 

are coordinated.  Using the structures presented in the ECD framework helps ensure the 

validity of the assessment, as the reasoning for each of the decisions made for the 

elements of the assessment are laid out and the backing needed to support those decisions 

is explicit (Mislevy & Riconscente, 2006).   

 A learning progression should have specific targets in mind for each level, which 

provide information regarding the student model for tasks designed at each level of the 

learning progression.  One learning progression may lead to different student models but 

the information needed to determine what these models are should be provided.   In 

addition, the learning progression, as specified by the CCII report (Corcoran, Mosher, 

Rogat, 2009), should provide information regarding the type of tasks that can give insight 

into the student model, i.e. it should provide information regarding the task model.  Again 

many tasks may be developed to measure a given learning progression, but the 

information needed to create these tasks should be provided in the learning progression. 

 As noted above, there is a natural relationship between the theory of increasing 

capabilities in a learning progression with variables in a psychometric student model, and 

the former is the center of discussion in research on learning progressions.  Less explicit, 

however, from discussions of learning progressions is information regarding the evidence 

model, or how one uses the observations provided by the task to provide evidence with 
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regard to the learning progression.  In part this is because there are many different 

methods that can be used to formalize and operationalize the notion of learning 

progressions in psychometric models, and different models may be appropriate for 

different situations.   This research is targeted at examining one small piece in the area of 

the evidence model.   

Learning Progressions and Assessments 

 As mentioned above, a learning progression should provide insight into how an 

assessment can be structured.  The learning progression should have specific goals for 

each of its levels.  These goals can then be used as the student model for an assessment.  

For example, using the learning progression for circuits discussed above, several different 

student models may be conceptualized.  One student model may be regarding students’ 

ability to explain conductivity; while another may be that students can apply Kirchhoff’s 

Voltage Law. 

 Once the student model is determined then tasks can be developed that would 

measure the attributes specified by the student model.  The CCII report (Corcoran, 

Mosher, Rogat, 2009) states that information regarding tasks that can be used to measure 

the different levels of the learning progression should be included in the learning 

progression.  This information can be used to help develop assessment tasks.  In some 

cases, these tasks would reflect on one level of the learning progression.  For the learning 

progression on circuits, if the student model is one in which the student is able to explain 

conductivity, then since this attribute is included at Level 1 of the learning progression, 

the task designed to measure that attribute would be designed to help determine if the 

student has one of the attributes required to be at Level 1. 
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 Tasks can also be developed that would be geared towards multiple levels of the 

learning progression.  For example, in the matter learning progression described above 

(see Table 2) a student model could be:  the student is able to explain the relationship 

between molecular formulas and structural formulas.  This is an attribute that runs across 

multiple levels of the learning progression, as the higher the level of the learning 

progression, the higher the students’ ability is in this area.  The decision must be made 

when creating the task whether the task should provide the opportunity for students to 

answer at different levels (in which case the task could be used to determine the student’s 

level) or if it just allows for responses that are at a given level (in which case the task 

would only determine if the student has the attribute appropriate for that level or not).  

 For example, take the following task: 

 

―Both of the solutions have the same molecular formulas but butyric acid smells bad and 

putrid while ethyl acetate smells good and sweet.  Explain why these two solutions smell 

differently.‖   (Draney, 2009) 

 

Figure 2:  Sample task based on the matter learning progression 

 

For this task students are able to respond freely.  Students who are at Level 1 of 

the learning progression may give a reason such as maybe one of the solutions went bad 



16 

 

or is older which doesn’t use molecular chemistry concepts (Draney, 2009).  While 

students at level 2 may state the fact that they might have different structural formulas but 

not go into details regarding this difference (Draney, 2010).   

 In contrast an item such as a true/false item that states ―True or False:  if two 

solutions have the same molecular formula then they must also have the same structural 

formula‖ would be aimed at providing evidence on Level 2 of the learning progression, 

and does not have the opportunity for a student to display higher level attributes.  

Following this idea, tasks can be characterized as to what levels of the LP they can 

discriminate between. 

 It is up to the test developer to determine which type of task is more appropriate 

for the given assessment.  The developer may want to target the entire assessment at a 

particular level of the learning progression or they may want to use the assessment to 

determine a student’s level on the learning progression.  When using the assessment to 

determine a student’s level, both types of tasks are appropriate, as the assessment could 

contain several different tasks that are designed to measure different levels of the learning 

progression. 

 What will help in determining what items should be used is the evidence model, 

and in particular information regarding how the different pieces of evidence will be 

accumulated to reflect on the student model.  The evidence model is a key step in 

ensuring that the information gained from the tasks reflects accurately back onto the 

student model.  Currently the definition of a learning progression does not have 

information regarding appropriate evidence models, and for either a research program to 

investigate and refine a particular learning progression or an operational assessment to 



17 

 

character students’ standing with respect to the progression, it is up to the test developer 

to determine how evidence is acquired and accumulated. 

 For this research, the items are assumed to be items that are designed to measure 

specific levels of the learning progression.  In order to have evidence regarding the 

different levels of the learning progression, items that are targeted at the different levels 

are combined into one assessment.  The next section will discuss different evidence 

models. 

Modeling Learning Progressions 

 Standard measurement practices for assessments include developing the overall 

construct as a continuous unobserved variable and then creating the observables as 

categorical variables with numbers assigned to them (NRC, 2001).  For example, 0 and 1 

for incorrect and correct answers on dichotomous items, or a score between 0 and 4 on a 

rating scale for an open-ended performance.  Common ways of modeling performance on 

such tasks make use of classical test theory (CTT) or item response theory (IRT) 

(Hambleton & Swaminathan, 1985).  These methods are generally more applied to a 

summative type of feedback (versus formative), as they tend to give an overall summary 

of the student’s ability and not information about specific strengths and weaknesses.  

Generally in testing, particularly large scale testing, the concern is with the location of a 

person along the overall proficiency scale, or on specific subscores, or how much of some 

ability a subject has, instead of the cognitive background regarding why a student is at 

that location (Leighton & Gierl, 2007). 

 A more recent trend in modeling has been the development of cognitive diagnosis 

models (CDMs) (Rupp & Templin, 2008, Rupp, Templin & Henson, 2010).  These are 
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models that are used to connect categorical observable variables with latent classes with 

the ability to provide formative feedback (Rupp & Templin, 2008).  These types of 

models have been referred to by many different names in this growing area of research.   

Further discussion of these models will be given in Chapter 2, but it should be noted that 

these models seem to be more appropriate for modeling learning progressions than 

traditional CTT and IRT methods, as CDMs are designed to provide diagnostic 

information instead of information on ability level.   

 West et al. (2009) proposed the use of Bayesian inferences networks (BINs), a 

general modeling framework in which CDMs can be instantiated, to model data from 

tasks meant to evidence students’ status on learning progressions.  BINs have been 

applied in educational assessment as a particular class of psychometric models (Almond, 

Dibello, Moulder, & Zapata-Rivera, 2007) with latent student-model variables that 

represent aspects of students’ knowledge or skills, to determine probability distributions 

for the values of observable variables derived from students’ task performances. 

Although CDMs is itself a general approach that can be implemented in various ways, the 

use of BINs for this purpose is motivated by the advantages noted below. 

 This research will build on the work by West et al (2009) and examine in more 

detail the use of BINs.  While other methods have their own strengths, and further 

research can be performed to compare different methodologies, BINs have advantages 

that are of interest.  For instance, once the network has been set up, inferences can be 

drawn based on partial data.  BINs are very flexible, in that they can handle many 

different types of models and different types of observable variables (Mislevy, 1994, 

Schum, 1994).  As West et al (2009) mention, BINs have been used in educational 
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settings and allow for the user to model the structure of the variables as well as the nature 

of the probabilistic relationship between variables.  In addition BINs have the flexibility 

to be extended or concatenated when more elements are brought into the modeling 

problem, such as multiple learning progressions, new tasks, and additional observable 

variables from existing tasks.  The BIN framework can be used to instantiate other 

CDMs, and constraints can be placed onto the structure and conditional probabilities of a 

BIN so that it can provide discrete approximations of classical test theory and item 

response theory models. 

Multiple Learning Progressions 

 Students generally do not learn just one skill at a time.  Often these skills are 

related skills (e.g., prerequisites), and in some cases it may be hard to assess one skill 

without using tasks that also rely on another skill.  Thus it is important when developing 

a learning progression to also think about the relationships between different learning 

progressions (Corrigan et al., 2009), and when tasks involve multiple skills, the ways in 

which performance depends on those skills.  This thinking can be used to help improve 

curriculum and instruction, and must be taken into account when developing assessments. 

 While most of the recent work in the context of learning progressions has dealt 

with a single learning progression, the question of how to model multiple learning 

progressions is an important issue.  The development of multiple learning progressions 

may occur at different time points and the relationship between them may not be made 

clear.  While some LPs may surround skills that are not related, others may be directly 

related and others may have more complicated relationships.   
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 There is also the issue of how one assesses the learning progressions.  This again 

can be addressed from the assessment design point of view as well as the modeling point 

of view.  When it comes to design, the decision must be made regarding whether or not 

tasks are designed to measure multiple LPs or just one.  Some of this may depend on the 

relationship between the different skills as well as any constraints on the assessment.  

Based on how these tasks are designed different models may be used to analyze the 

assessment.  The choice of an appropriate model is important when it comes to the 

validity of the assessment.   

 The work by West et al (2009) only addressed the issue of one learning 

progression.  However, a BIN can be expanded to incorporate multiple learning 

progressions.  This adds new levels of complexity to the model, and questions such as 

how the learning progressions relate to each other, and how they relate to the observables 

when the observables are designed to provide evidence about both learning progressions 

must be addressed.     

Study Purpose and Overview 

 There are many choices for how to model data in order to obtain diagnostic 

information regarding students.  The choice regarding which model to use may depend on 

how the learning progression (if used) is set up, and could in fact influence the 

development of the learning progression.  One possibility for model choice is the use of a 

BIN.  In order to implement a BIN, decisions must be made regarding how to set up the 

network and how to model the relationship between the LP (or LPs) and the observable 

variables.   
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 This research will provide insight for some of these choices by exploring 

modeling options from the Bayesian network and cognitive diagnosis literature.  These 

options will be used to develop alternative BIN models, which will then be examined 

with respect to parameter recovery and robustness of inferences regarding individual 

students.  Of particular interest are implications for model choice, such as whether certain 

models are sufficiently robust to justify their use, even in cases when they may be 

misspecified.  The information from this research should help a practitioner who is using 

BIN for modeling learning progressions make appropriate model choices. 

Alternative models expressed in the BIN framework will be presented that will 

represent the relationship between observable variables and student model variables.  

This relationship is expressed through conditional probability distributions, specifically, 

probability distributions for possible outcomes on the observable variable, given values 

on the student model variable(s) posited to determine performance on the task.  The 

models chosen will highlight how different decisions may be reflected in the model.  The 

research will examine how different constraints on the relationship between observable 

variables and their corresponding learning progressions affect parameter recovery in 

estimation and the robustness of inferences from the model.  It will be assumed that the 

learning progressions are well defined and tasks are targeted at particular levels of these 

learning progressions.   

 Two kinds of constraints will be made on the conditional probabilities: (1) 

constraining them in a manner that reflects the hypothesis about the relationship between 

the learning progression and the observable variables and (2) using the latent class Rasch 
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model (Formann & Kohlmann, 1998) to approximate the unconstrained table of 

conditional probabilities.  A three part study is proposed: 

1. Study 1 will focus on the case where observable variables depend on only one 

learning progression.  There are a number of related but distinct BIN structures 

that are consistent with the general concept of a single learning progression.  The 

question addressed here is:  Are there circumstances in which it is beneficial, for 

purposes of classification, to model a learning progression in terms of latent 

variables for the levels of the proposed progress, as opposed to its one latent 

variable?  The study will compare a model with the learning progression 

represented as one categorical latent variable, and models in which the attributes 

of the learning progression are treated as separate categorical variables with 

varying hierarchical constraints amongst these variables.  The comparison will 

examine overall classification accuracy for different populations as well as 

parameter recovery and model fit.     

2. Study 2 will address the case where observable variables depend on two learning 

progressions (i.e., at least some observable variables have two student model 

―parents,‖ both of which embody a learning progression).  This research will 

address the question of whether or not putting constraints onto the relationship 

between the two learning progressions and the observable variables improves 

classification accuracy of the students.  Three different constraints, namely 

compensatory, conjunctive and disjunctive, will be taken into consideration along 

with an unconstrained model.  Again the models will be compared in terms of 

classification accuracy, parameter recovery and model fit.   
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3. In Study 3 two real data examples will be presented that will demonstrate the 

implications of using the above mentioned models in practice.  Comparisons of 

model fit as well as differences in the conclusions drawn from the application of 

the hypothesized relationships will be discussed, along with practical issues that 

may arise when using a BIN in practice. 

The first two studies, then, are simulation studies that generate data using 

different constraints under similar models, and compare the results to determine the 

performance of the individual models.  The results of these studies should give 

practitioners some insight into the consequences of different decisions that must be made 

when using a BIN.  In addition, the real data example will provide concrete information 

into how different BIN models can be used in practice.  The combination of the studies 

will highlight decisions that need to be addressed and the appropriateness of particular 

models. 
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CHAPTER 2:  LITERATURE REVIEW 

 While learning progressions are relatively new and the literature is still being 

developed, there is relevant research in related fields.  There are results both on the 

development side of learning progressions where concepts from learning paths can be 

beneficial when determining how students progress, and on the modeling side where 

latent class analysis and cognitive diagnostic modeling research can be applied.   

 A learning progression can be represented by a categorical latent variable.  An 

underlying concept that is being measured but cannot be observed directly; therefore it is 

latent.  The learning progression consists of (usually ordered) levels, such that students 

can be at any particular level of the learning progression.  These levels may consist of 

information from different progress variables but there is still a clear distinction between 

the given layers.  Since there are a finite number of levels, the variable is categorical.  

When observable variables in the form of evaluations of aspects of students’ 

performances (e.g., item responses, ratings of efficiency) are also categorical, research in 

latent class analysis is directly relevant.   

Also relevant is the field of cognitive diagnostic modeling (as discussed in 

Chapter 1).  This field investigates how to measure latent categorical variables in order to 

obtain diagnostic information regarding aspects of students’ knowledge and skills and 

therefore is also relevant.  Bayesian inference networks (BINs) described in Mislevy 

(1994) are another type of modeling approach that can be adapted to provide diagnostic 

information, and can be particularly useful when multiple attributes are being measured.   

This chapter will discuss learning paths and modeling techniques in relation to 

learning progressions.  The following section describes learning paths as they have been 
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studied in science and mathematics.  The subsequent sections draw on research in latent 

class analysis and cognitive diagnosis models to discuss modeling students’ movement 

through such paths and observable evidence of this movement. 

Learning Paths  

 

 One decision that needs to be made when determining a learning progression is 

what constitutes the different levels of the learning progressions.  In general, the higher 

levels of the learning progression should correspond to higher capabilities, whether these 

are higher order thinking skills or attributes that build on the lower level attributes.  The 

term learning progression also implies that students would obtain the lower level 

attributes first and then progress through the different levels (although there may be 

situations where this is not the case, as will be discussed below.)  Determining the 

relationship between the attributes required at each level of the learning progression can 

provide insight into how this relationship should be modeled.   

 The research carried out in this dissertation addresses performance at a single 

time-point; that is, it concerns cross-sectional rather than longitudinal observations.  Such 

data can provide insights into the structure of variables and variable states to describe a 

learning progression, and conditional probabilities of task performance given states.  

Cross-sectional data cannot, in and of themselves, provide direct evidence about the paths 

that students take through a learning progression.  For completeness, this section briefly 

notes work on learning paths and learning trajectories, because it has been associated 

with learning progressions in the literature.  
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 Stevens, Shin and Krajcik (2009) describe a learning trajectory as a subset of a 

learning progression in the sense that it addresses a specific learning goal, but 

additionally includes information regarding how students can meet that learning goal.  

This information may include possible difficulties for the student and different 

misconceptions the students may have.  A learning progression then is a collection of 

learning goals which can be attained through one or more learning trajectories.    

When developing a learning trajectory, an analyst can take different learning 

paths into account.  The learning trajectory is developed from a path that is deemed most 

appropriate (often based on research) and a model is built from that path.  Examining the 

learning path that is chosen can then determine the relationship between different 

skills/abilities associated with the specific learning trajectory or learning progression.  

Research in the field of learning paths can help to determine how skills and abilities may 

be modeled in the learning progression. In particular, key concepts or skills that re-appear 

in certain sequences across multiple learning paths are candidates for stages of a learning 

progression. 

  For example, Mohan and Anderson (2009) generated a learning progression for 

the carbon cycle by first creating a framework in which this learning took place, and then 

developing an understanding of typical paths that students took when going from a low 

level of understanding to a high level of understanding.  From these paths they were able 

to develop their learning progression.  In their work, Mohan and Anderson (2009) found 

that students start by developing a language to discuss the events they see in nature.  The 

progression to Level 2 involves the student’s ability to recognize hidden mechanisms, or 

constructs that are not seen by the human eye, as causes for certain events.  It was found 
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that there were two key cycles which when learned helped in the transition from Level 1 

to Level 2, although the ordering of learning these cycles was not noted as not important 

(Mohan & Anderson, 2009).   

 The transition from Level 2 to Level 3 involves the recognition that matter is 

transformed.  However, at this level students still do not have the sophistication in 

understanding chemical substances and the use of energy which can be seen in students in 

Level 4.  Again, students may take different paths, by learning about different subjects or 

learning different concepts in different orders to transition between these states, but in 

general it was found that these are the stepping stones for students (see Figure 3) 

Level 4:  Processes and Systems

Constrained by Principles

Level 3:  Chemical Change with

Unsuccessful Constraints

Level 2:  Hidden Mechanisms about

Events

Level 1:  Force-Dynamic Accounts of

Actors and Events

 
Figure 3:  Students’ movement through learning with regards to the carbon cycle (Taken 

from Mohan and Anderson, 2009) 
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 Haertel and Wiley (1993) discuss the acquisition of skills in reference to the 

creation of learning paths.   They describe the simple case where a particular skill that is 

being learned can be broken down into two subskills.  There are two main learning paths 

that the student could take in order to master the main skill.  The main difference between 

these two paths is the relationship between the subskills.  In one case, one skill is a 

logical prerequisite for the other skill (see Figure 4).  In the other case, learning of the 

skills could be only partially ordered (see Figure 5), in which case the student may learn 

either skill before the other (although the skills could still be statistically dependent; for 

example, although both (A, ~B) and (~A, B) can occur, (A, ~B) may be much more 

frequent).  These might be described as ―hard‖ and ―soft‖ prerequisition relationships, 

which would then be modeled differently. 

 
Figure 4:  Learning path where skill A is a prerequisite for skill B (Haertel & Wiley, 

1993) 

 

 
Figure 5:  Learning path where skills are independent of each other (Haertel & Wiley, 

1993) 

 

 A learning trajectory or progression can build from a learning path by examining 

the different steps that students may take and breaking those steps into different levels.  

At any given level there are specific attributes that the students would have.  In a learning 
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progression a person at a high level is generally believed to have not only the lower level 

attributes but to also have some additional attributes.  These attributes could build on 

lower level attributes, such as going from a lower level of understanding to a higher level 

of understanding, or could be separate attributes.   

 Consider for example a learning progression for addition.  While different 

researchers could theorize this progression in different ways, for the purpose of 

demonstrating features of learning progressions here addition will be modeled as 

consisting of four attributes: 

  Attribute 1:  Ability to recognize the problem as an addition problem 

  Attribute 2:  Ability to add two 1 digit numbers 

  Attribute 3:  Ability to carry  

  Attribute 4:  Ability to add two multi-digit numbers 

 Generally it may be believed that students would progress through the levels as 

they are laid out.  In this sense the learning trajectory could be broken down into 4 levels, 

with each level indicating that the student has obtained the attributes corresponding to the 

level number and all of the previous attributes.  However it may be the case that a student 

may be able to perform a carry operation before they have actually learned how to add 

two single digit numbers.  If this were the case then a different learning trajectory could 

be generated in which students at Level 2 would be able to recognize an addition problem 

and perform a carry operation and then Level 3 would correspond to being able to 

recognize an addition problem, perform a carry operation, and add two one digit 

numbers.   
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 The decision must be made which learning trajectory is more appropriate and then 

the learning progression will be built with that trajectory in mind.  However, when 

modeling the learning progression it must also be determined whether there is room for 

multiple paths or whether the relationship between the two skills should be kept as a strict 

hierarchy.  The learning progression could follow one of these learning trajectories, or if 

both were fairly common perhaps combine the two middle levels into one level, or define 

the second level as having either attribute 2 or attribute 3 (the first level still simply 

requiring the students to be able to recognize an addition problem) and then the third 

level would require the students have both attributes.   While this last approach precludes 

being able to distinguish between the two patterns that constitute the middle level of the 

progression, the resulting model may be more useful when classifying students. 

 Another possible way to define the levels of a learning progression is by 

determining different misconceptions a student may have (Wilson & Scalise, 2006).  In 

some areas, such as science, there are general misconceptions that students seem to have 

at various stages.  If the levels represent how the students move through those 

misconceptions, then being at a higher level doesn’t necessarily mean that the student has 

mastered the attributes at the level below, more that they have moved their understanding 

past that level.  In this case, while the learning path may be linear through the different 

levels, the relationship between the levels is not so linear.  Students could easily jump 

over a common misconception, therefore skipping a level in their understanding.  This 

again must be taken into account when designing the model as now the underlying 

attributes aren’t related to each other per se.   
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 In terms of learning trajectories and learning progressions, while the trajectory 

may specify how students normally transfer between the different states, and may give 

information regarding tasks and learning processes that will help the students transfer, the 

learning progression may be thought of as a state machine.  In this sense students are in 

one state at a time, and while over time there may be a relationship between how they 

transition, at any one point in time a student can only be in one state, and the probability 

of being in another state given they are in a first state would be zero.  The learning 

progression may then be represented as a categorical latent variable where the different 

categories represent each of the different states.   

 Once the relationship between the different levels of the learning progression is 

determined, and any attributes that are part of this learning progression are defined then 

the question revolves around determining how to model the relationship between the 

latent variables and the observable variables.  This relationship will differ depending on 

the relationship of the levels of the learning progression.  In addition, the types of tasks 

needed to provide information to reflect on the learning progression may differ depending 

on the type of learning progression.  When determining how to measure the relationship 

between the learning progression and the observable variables, information from latent 

class analysis and cognitive diagnosis modeling can be applied. 

Methods to Obtain Diagnostic Information 

 As mentioned in chapter 1 typical methods to model data from an assessment 

include using classical test theory (CTT) or item response theory (IRT).  While generally 

this information has been used to determine where a student is along a given ability scale, 
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there are expansions to this work that are geared towards obtaining diagnostic 

information. 

 One method is to make use of subscores.  In this instance, an assessment would be 

developed in which different items reflect upon different attributes.  This can be as 

simple as adding up the points for each item that reflects upon the given attribute.  Or 

more complex methods can be used by using linear combinations of items (Haberman & 

Sinharay, 2010) 

 A more recent approach has been to use multidimensional  item response theory 

(MIRT) models (Reckase, 2009).  These models are extensions of the standard IRT 

models, but instead of an estimation for the ability on one attribute, ability parameters on 

multiple attributes are estimated (Haberman & Sinharay, 2010). 

 While these methods are useful for measuring levels of multiple abilities, in the 

case of learning progressions the attributes are generally related and the question being 

asked isn’t regarding a students’ ability on several different attributes but rather where 

the student lies along a single learning progression variable.  For this type of information 

latent class models are more appropriate. 

Latent Class Analysis 

 

 Latent class analysis (LCA) provides a methodology for modeling a categorical 

latent ability based on categorical observable data (McCutcheon, 1987).  In terms of 

learning progressions it is the methodology by which the level of the learning progression 

can be determined for particular students based on their responses to observables.  (The 

observables must be categorical.  Analogous techniques exist for situations in which the 
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latent variables are categorical and the observable variables are continuous but they fall 

under the realm of latent profile analysis; McCutcheon, 1987).   

 Latent class analysis is one method used to model the relationship between 

observable variables.  The general formula associated with latent class analysis is given 

by:  
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..   where A,B…E are categorical variables that are 

dependent on the latent variable X and i,j,…m,t are states corresponding to those 

variables and π is the probability associated with being in the given states (McCutcheon, 

1987).  This formulation assumes that the observable responses are locally independent 

(as latent variable psychometric models generally do).  In other words, that the 

probability of responses on the different items depends on one or more additional 

variables; conditional on the values of these variables, the responses are independent.  

For example, in a questionnaire with different questions about the government’s 

responsibility when it comes to the environment, the responses may depend on a person’s 

political affiliation.  Once this affiliation is known the probabilities of the individual 

questions responses are determined and are statistically independent.  Learning the 

response to one of the questions does not change the belief regarding the probability of 

the responses to other questions.     

 In latent class analysis, there is an overall ability (or attitude) that is assumed to 

exist but be latent (cannot be observed directly), it renders observed responses 

independent, and it is the overarching attitude or ability that the questions are designed to 

measure.  The latent variable is also assumed to be categorical and people are assumed to 

fall into one category (although there have been studies done with regard to what to do 

with people who can not be categorized.  This will be discussed briefly in Chapter 4).   
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 The general methodology behind latent class analysis is that data is collected 

regarding subject’s responses to the observables and (for at least a sample of people) 

estimates of the conditional probabilities are found by marginalizing over the 

probabilities that each subject is in each of the classes.  This data is then used to estimate 

the probability of class membership for the latent class variables and the probability of 

responses for each of the observables given the latent class membership. 

 Latent class analysis can be used in both a confirmatory and an exploratory 

approach.  In an exploratory setting, probabilities are estimated for several competing 

models which differ by the number of classes they contain.  The best fitting model, in 

terms of most probable model, is then selected (using for example, the likelihood ratio or 

a modified version of it such as AIC or BIC that takes sample size and/or number of 

parameters being estimated into account; see Burham & Anderson, 2004).  In a 

confirmatory approach different constraints can be placed on the probabilities and these 

constraints can be tested.  For this type of analysis the constraints can be tested by 

examining the overall fit of the model with these constraints in place.  In the context of 

learning progressions, the use of LCA will tend to be confirmatory because theory about 

the learning domain, how students move through it, and how their capabilities are 

evidenced in certain kinds of performance in certain kinds of tasks provides a strong 

initial hypothesis for the structure of the relationships of the variables.  Exploratory uses 

of LCA are more suited to very early stages in one approach to defining learning 

progressions, namely exploring patterns of responses to existing assessments to 

determine whether patterns that signal underlying learning progressions may be present 

in the data.  
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 The constraints in latent class models may be implemented by setting certain 

probabilities equal to a given value, setting equality constraints, setting inequality 

constraints, or modeling certain conditional probabilities in terms of parametric forms 

with fewer parameters.  For example, it may be posited that members of a given class do 

not ever respond in a particular manner, in which case the conditional probability of that 

type of response for members of that class can be set to zero.  One other type of 

constraint is used in latent class scaling analysis, in which the probability of certain 

responses must increase (or decrease) for a certain ordering of the class membership.  

Even within this type of analysis further constraints may be made such as setting error 

probabilities (the probability of answering in a manner not consistent with the given class 

membership) equal.   

 Since a learning progression can be represented as a categorical latent variable the 

methodology in latent class analysis can be directly applied.  However, within latent class 

analysis there is still a large choice of models that can be used.  The field of cognitive 

diagnostic modeling has taken many of these concepts developed in latent class analysis 

and applied them to the development of models that can provide diagnostic information.  

This type of information can be used to further help in identifying the attributes that 

students have and therefore the students’ level along the learning progression. Bayesian 

inference networks (BINs) are one type of cognitive diagnostic model that is particularly 

well suited for modeling learning progressions.  An overview of cognitive diagnostic 

modeling will be provided in the next section, followed by specific information regarding 

a BIN.   
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Cognitive Diagnosis Modeling 

 

 There has been much recent development of cognitive diagnosis models (CDMs).  

These models have been studied under many labels (such as cognitively diagnostic 

models, cognitive psychometric models, latent response models and structured located 

latent class models (Rupp & Templin, 2008)), but the use of the models to obtain 

information regarding diagnostic feedback remains the same.  One central concept 

regarding the development of these types of models is that they should be tied to theory 

developed from a cognitive psychology viewpoint (Rupp & Templin, 2008).  This theory 

is involved in determining what variables are best for the model at hand and the 

relationship between these variables.  Theory can also help determine the relationship 

between the observable variables and the latent variables. 

 CDM’s are a type of latent variable modeling in that they involve latent variables 

to be modeled.  These variables are generally the skills required by the assessment.  

However, they differ from the traditional univariate view of latent variable models used 

in large-scale testing (classical test theory and item response theory) in that they contain 

multiple latent variables (Rupp & Templin, 2008).  Note that in the equation for latent 

class analysis there was one latent variable state, X which corresponds to one latent trait.  

In a CDM the latent class c is defined by the students’ ability on multiple attributes.   

 While the number of latent variables and the hierarchical structure imposed on 

these variables in a CDM may vary for a diagnostic model, there is generally more than 

one attribute of interest and the model should help determine the set of attributes obtained 

by the student.  In the case of a learning progression, there may be one overarching 

attribute but this can still be broken down into different attributes, as each level may 
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represent different sets of attributes.  In this sense, the information obtained from the 

model is not simply what class a student is in, but instead what are the student’s 

attributes.  The decision of whether to break out attributes into variables, and if so how, is 

mainly an issue of grainsize.  Some of this may depend on the specificity of the 

conclusions that are to be drawn from the assessment, and whether or not those 

conclusions are about the specific attribute levels or a higher more general attribute level.  

In addition CDMs often also have complex loading structure (Rupp & Templin, 2008), 

since tasks may depend on multiple dimensions—that is, on some combination of 

attributes.  

 Another difference between CDMs and general latent class models is that the type 

of constraints that are placed on the model fix the number of latent classes to be estimated 

(in addition to, as stated above, defining  each class by the attributes required of a 

member of that class) (Templin & Henson, 2006).  Therefore, the model is used from a 

confirmatory approach and is not generally used as an exploratory tool. 

 This loading structure is often represented by a Q matrix.  This is a matrix that 

indicates for every item which attributes it requires.  For the addition example shown 

earlier in this chapter, an exam could be created that has 8 items, 2 items designed to 

measure each of the attributes (See Table 3).  Note that in this example, items that 

measure a particular attribute, also require the previous attributes.  This matrix can not 

only help with the analysis of the exam, as it is clear which attributes the items are 

designed to measure, but also in the creation of items for the assessment, as this type of 

information makes some of the requirements for each item clear. 
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Table 3:  An example Q-matrix for an exam with 8 items depending on 4 attributes 

Item 

Number 

Attributes 

1 2 3 4 

1 1 0 0 0 

2 1 0 0 0 

3 1 1 0 0 

4 1 1 0 0 

5 1 1 1 0 

6 1 1 1 0 

7 1 1 1 1 

8 1 1 1 1 

 

The general model for a CDM follows from a latent class model (for binary 

outcome variables) and is as follows: 
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)1()(   (Rupp, Templin, & Henson, 2010) where rx is the 

vector of response data for person r (responses are assumed to be binary), cv is the 

probability of being in class c, and ic is the probability of a correct response for item i 

given the student is in class c.  Different CDMs provide different parameterizations for 

calculating ic  (Rupp, Templin, & Henson, 2010).  

 CDMs can differ in several different ways.  Some of these include the type of 

observable variables that can be modeled, the type of latent variable model that can be 

used and/or how different skills can be combined.  The type of variables are generally 

either dichotomous or polytomous.  The relationship between different attributes, with 

regards to how each influences the probability associated with a particular observable 

variable that depends on multiple attributes, can be modeled in either a compensatory 

(having one attribute makes up for having a lack in the second attribute) or a non-
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compensatory manner as to how a given observable variable depends on their values.  

Some models may be more appropriate for certain designs.  Von Davier (2008) expanded 

this idea into a general diagnostic model.  This model follows the same principle as the 

CDMs described above regarding the fact that there is a mapping (the Q-matrix) of 

attributes to items.  The difference is that this general model allows for polytomous item 

response as well as polytomous attribute variables.  The general formula for this 

diagnostic model (following the parameterization specified above) is: 
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Where i indicates the item in question, g is the population, x is the response pattern, a is 

the attribute pattern, and β is the difficulty value of each item (which could vary across 

different populations).  The term )),(( aqh i

T

xig represents how the probability changes as 

a function of the attributes (a) the subject has.  For this formula, γ is a weight vector 

(transposed) and the ),( aqh i  indicates how much of the attribute the subject has based on 

the Q matrix.  The observable variable is a categorical variable.  This function can differ 

depending on different factors, such as the nature of the attribute variables and whether 

the model is compensatory or non-compensatory (Von Davier, 2008). 

 Many different CDMs have been developed and several papers have been written 

exploring some of the difference between these models (Rupp & Templin 2008, DiBello, 

Rousos & Stout, 2007).    However, similarly to the MIRT model the CDMs also are 

aimed at measuring multiple attributes.  While these attributes may provide information 

about the level of the learning progression, it does not provide direct information on the 

learning progression.  Extensions of CDMs that do reflect learning paths are being 
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developed under the appellation of the attribute hierarchy approach (Leighton, Gierl, & 

Hunka, 2004), which incorporates structures among student-model variables defined by 

attribute patterns, which can in turn be interpreted as levels in learning progressions.  

Bayesian Inference Networks 

 One type of model which has been considered a CDM is a Bayesian Inference 

Network (BIN).  BINs are different from other CDMs in that they are a framework versus 

a specific model.  Because of that, BINs are more flexible than other cognitive diagnostic 

models.  However, with the choice of using a BIN comes more decisions regarding how 

the network is modeled.   

 A BIN is a graphical representation of the relationships between variables.  It is 

based on a finite acyclic directed graph (Almond, Dibello, Moulder, & Zapata-Rivera, 

2007).  In general, a graph is a set of vertices (V) and edges (E), where an edge is a line 

between two vertices.  An edge can be represented by the two vertices it connects such as 

(V1, V2).   A finite graph is one with a finite number of vertices.  A directed graph is one 

in which the edges are directed i.e. the edge (V1, V2) is different from the edge (V2, V1) 

as these two edges would indicate a different type of dependency.  In graph theory the 

arrows imply direction, as in if the line (V1, V2) is included but not (V2, V1) then this 

would mean that starting at vertex V1 movement is allowed to V2.  However, starting at 

V2 movement is not allowed to V1 using the edge connecting the two vertices.  A path is 

a set of edges in which the starting vertex for an edge is the same as the ending vertex 

from the previous edge.  An acyclic graph is one in which there is no path that goes from 

one vertex back to itself.   
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 One example of a BIN with 5 variables in which variables 3, 4 and 5 are 

dependent on variables 1 and 2 can be seen in Figure 6. 

 

Figure 6:  A basic BIN with 5 variables, variables 3, 4 and 5 are dependent on variables 1 

and 2 

 

 In a BIN the vertices are thought of as categorical variables with values 

representing states.  A given person is thought to be in one state, represented by one 

possible value of the categorical variable.  The dependency represented by an edge is a 

probabilistic dependency, so the edge (V1, V3) (as seen in Figure 6) would imply that the 

probabilities associated with the states in V3 differ depending on the state of V1. Or put 

another way, the probability of V3 is conditionally dependent on V1.  For the edge (V1, 

V3) V1 is referred to as the parent node, and V3 is called the child node.   

 Nodes in a BIN may have no parents, one parent or multiple parent nodes.  The 

probability distribution associated with each node is conditionally dependent on all of its 

parents nodes: 

 ))(|()( iiiii XpaxXPxXP   

 For a given set of response states the joint probability is : 
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Here )( iXpa  represents the parents of node Xi.  A BIN is considered to be built when all 

of the probability distributions for the variables have been determined.  The joint product 

of the conditional probabilities of all variables given their parents (interpreted to include 

marginal distributions for variables that have no parents) is a joint probability distribution 

for the full set of variables.  At this point a person may enter any information they know 

and the probabilities will be updated (as shown in the examples below) to determine the 

probability of each of the unknown variables taking on different values. 

 In a very simple example, a BIN can be constructed to represent the relationship 

between the weather and whether or not I take an umbrella with me to work.  For this 

example there are two variables.  Variable A is the weather and for this example it can 

take on the values of sunny, rainy, cloudy, and snowy.  The other variable is the variable 

for if I take an umbrella with me and it can take on the values yes or no.  The graph for 

this is represented in Figure 7.  Notice in the graph that the umbrella variable is 

dependent on the weather variable (made clear by the arrow pointing from the weather 

variable to the umbrella variable).  This arrow indicates that whether or not I take an 

umbrella is dependent on the weather.  It would be a very different statement if the arrow 

pointed the other way.  Using that direction, the BIN would indicate that whether or not I 

take an umbrella has some influence on the weather.   
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Figure 7:  BIN for the relationship between two variables.  In this case the probability of 

an umbrella is dependent on the weather.  Shown is the starting conditions when neither 

value is known. 

 

 Each variable has its own probability table.  For the weather variable this is the 

probability of each type of weather occurring (see Table 4).  For the umbrella variable 

this is the conditional probability given the type of weather (see Table 5).  While this data 

is hypothetical, in general these probabilities would come from theory or they would be 

derived from real data.   

Table 4:  Probability of a given type of weather 

Weather Prob 

Sunny 25% 

Rainy 25% 

Cloudy 25% 

Snowy 25% 

 

Table 5:  Conditional probability of taking an umbrella given the type of weather. 

Weather 

Umbrella 

yes no 

sunny 10% 90% 

rainy 90% 10% 

cloudy 50% 50% 

snowy 20% 80% 

  

In the initial state the type of weather is not known and whether or not I took an 

umbrella is also not known.  The probability for the weather variable is simply the 

Weather

Sunny
Rainy
Cloudy
Snowy

25.0
25.0
25.0
25.0

Umbrella

Yes
No

42.5
57.5
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starting probability for this variable (which could be based on knowing the season, a 

current weather forecast, or simply looking out the window).  The probability that I took 

an umbrella is the marginal probability across the possible weather conditions and is  

calculated by: 

  
W
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Where u is the umbrella variable, ix is either yes or no, W is the weather variable and jw  

is either sunny, rainy, cloudy, or snowy.  Using Table 4 and Table 5 the probability of a 

yes is equal to:  (.10)(.25) + (.90)(.25) + (.50)(.25) + (.20)(.25) = .425.  And similarly the 

probability of a no is equal to (.90)(.25) + (.10)(.25) + (.50)(.25) + (.80)(.25) = .575. 

 Once the value of the weather variable is known then the umbrella variable can be 

updated by using the conditional probability table.  If for instance it is raining then the 

probability that I took an umbrella becomes a .90 and the probability that I did not take an 

umbrella is .10 (see Figure 8).  In general, once the value of a parent node is known the 

probabilities of the child node follow the conditional probability table for that value of 

the parent node.  Updating can also be done in reverse, if the child node is known then 

this can modify the probability of the parent node.  This type of updating will be 

discussed in the next example. 
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Figure 8:  BIN for the relationship between two variables when one is known.  In this 

case it is known that it is rainy, which then implies that the probability of taking an 

umbrella is 90 %. 

 

 In an educational setting a BIN may be constructed for an assessment.  In the 

simple case there is one attribute that is being measured, and each of the items on the 

exam are designed to measure an aspect of that attribute.  A traditional assumption in 

item response theory (IRT) is that items are locally independent, meaning that the 

responses to any two items are independent given the student’s ability.  This same 

assumption can be made in a BIN by having each of the items depend on the attribute 

without any direct dependencies among them (see Figure 9). 

 

Figure 9:  BIN for an IRT model with four items depending on one attribute 

 

 The probability of responses (for this example either correct or incorrect) depends 

on the attribute level of the student.  While in IRT this attribute is represented as a 
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continuous latent variable, for a BIN it should be categorical.  Different situations may 

call for different methods of categorizing this variable.  For this example, the attribute has 

been modeled as being able to take the values low, medium, and high.  The initial 

probability of a student being at any of these levels is the same across levels.  Items may 

have different probability structure from each other.  In this example we have four 

different items with different conditional probabilities (see Table 6).   

Table 6:  Conditional probabilities of correct responses given attribute level 

Attribute 
Item 1 Item 2 Item 3 Item 4 

correct incorrect correct incorrect correct incorrect correct incorrect 

low 25% 75% 20% 80% 10% 90% 1% 99% 

medium 80% 20% 40% 60% 20% 80% 20% 80% 

high 90% 10% 90% 10% 85% 15% 60% 40% 

 

 Notice that the overall probability of a correct response for the items decreases as 

the item number increases.  This can be seen in the conditional probabilities of the items 

as well.  For Item 1, most people at a medium or high level should get the item correct.  

For Item 2 a student can get the item correct if they are at a medium level but are still 

more likely to obtain an incorrect answer.  However, at a high level a student should be 

getting the item correct.  This indicates that the level required by Item 1 is only medium 

while Item 2 requires a high level of understanding.  Item 3 is similar to Item 2 in the 

level of attributes that it requires, but has slightly lower probabilities indicating that it 

may be more difficult than Item 2.  Item 4 is even more difficult still as even at a high 

level, the chance of getting this item correct is only slightly over 50%.   

 The overall probabilities of obtaining an item correct (see Figure 9) were found as 

noted in the previous example.  If the response to item 1 is now known to be correct then 

this would modify the overall probabilities as seen in Figure 10.  Notice that knowing 
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they got a correct response to Item 1 reduced the probability that the student is a low 

level and increased the probability that they are at a medium or high level.  This type of 

updating is performed using Baye’s rule. 

 

Figure 10:  BIN for an IRT model with 4 items, answer to one item is known 

 

 Baye’s rule states that for any two events A and C: 
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CAp   (Koski & Noble, 2009) 

For this example this can be written as 
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)|(  where iX  is the skill level of the student and jY  

is the outcome of the item in question. 

This is often written as: 

 )()|()|( iijji XPXYpYXp   which can be stated as the posterior distribution 

(the updated probabilities of the attribute level) is proportional to the likelihood (how 

likely is the outcome that has been received given the prior probabilities of the attribute 

level) times the prior distribution (the previous belief regarding the probabilities of each 

attribute level).  
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 For our example, once we know that a correct response was found, then the 

likelihood of the attribute level becomes the values from the table that correspond to a 

correct response.  This can then be multiplied by the initial probabilities and then 

normalized (by dividing by the total of this column) to obtain values that sum up to 1.  

The result gives the posterior probabilities (see Table 7).  Notice that these are the 

probabilities indicated as the probabilities for the skill level in Figure 10. 

Table 7:  Updating the attribute level probability based on a correct response to item 1 

Attribute 

Conditional 
probability 
of having 

item 1 
correct 

likelihood 
Prior 
Prob. 

likelihood 
*prior 

Norm. 
coeff. 

posterior 
(likelihood * 

prior/ 
normalizing 
coefficient) 

low 0.25 0.25 0.33 0.0825 0.6435 0.128 

medium 0.8 0.8 0.33 0.264 0.6435 0.41 

high 0.9 0.9 0.33 0.297 0.6435 0.462 

 

 This updating can be done as the response to each item is found.  In Figure 11 we 

see the resulting probabilities for a student who obtained correct responses to Items 1 and 

2 and incorrect responses to Items 3 and 4.  From this table, if we had to indicate a single 

category to categorize this student we would say that student has a medium level of 

ability as that is the category with the highest probability. 

 

 

 
Figure 11:  BIN for an IRT model with four items with known results. 
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 Notice also that when the answer to only one item was known the probabilities 

were updated for the other items.  This is due to the fact that the probability for the 

attribute level was modified which then modified the overall probabilities of each item 

(using the straightforward method seen in the previous example.) 

 This process is slightly more complicated when there are multiple parents but the 

general concept is the same.  One of the uses of a BIN is that the probabilities are updated 

even if only partial information (such as knowing the student’s responses to only some of 

the questions) is known.  Due to this fact, a student’s state can be estimated even if only 

partial information is known.  Examining the probabilities may also provide information 

on the strength of the belief in this estimate.  For example, if estimates for two different 

groups are fairly similar than one may not want to conclude that a student is in one group 

over the other even if the probability is slightly higher for one.  However, if the 

probability for a student being in one group is fairly high and for the others it is fairly 

low, then one would have more confidence in the categorization of that student. 

 Following Liu (2009), this example can be expanded to the case of learning 

progressions where the parent node is the learning progression or the attribute that is 

being measured and the child nodes are the item nodes (assuming again that there is one 

test with several items that measure the learning progression).  Again here the items are 

independent given the attribute level of the student.  This network would look the same as 

the one in the previous example, the difference being in the interpretation of the learning 

progression (as opposed to just one attribute).  Another way to represent a learning 

progression may be to break it up into different attributes and have each item depend on 

the attributes needed to complete this item.  This leads to further questions regarding how 
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to model the relationship between attributes.  These different techniques will be discussed 

in Chapter 3. 

 Liu (2009) creates GC (group by composite skills) matrices based on competence 

patterns; which are matrices similar to the Q matrix, except that while the Q matrix lists 

which attributes each item depends on, the competence patterns lists different type of 

people by what attributes they have.  These attributes could be basic (represented by a 

single letter) or composite (represented by multiple letters) (see Table 8).  The composite 

attributes indicate that students are able to integrate the basic attributes involved in the 

composite.  The columns represent the basic or composite attribute, while the rows 

represent different groups of students.  These groups are defined based on the possible 

learning trajectories of students.  For example, in Table 8 there are 7 possible groups.  

The first group represents students who have only mastered the first attribute (A).  In 

Group 2 students have mastered attribute A and B while in Group 3 students have 

mastered attributes A and C but not B.   Group 4 assumes students have mastered the first 

three attributes, while groups 5-7 display mastery of the final attribute (D).  These 

response patterns arise from three different learning trajectories:  one where students 

acquire attribute D by first acquiring A and then B, a second where they learn D by first 

acquiring A and then acquiring C, and a final trajectory where they acquire A and then 

both B and C (in either order) and then D.   
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Table 8:  An example GC matrix 

person 
pattern 

A B C D 
A 
B 

A 
C 

A 
D 

B 
C 

B 
D 

C 
D 

A 
B 
C 

A 
B 
D 

A 
C 
D 

B 
C 
D 

A 
B 
C 
D 

G1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

G2 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 

G3 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 

G4 1 1 1 0 1 1 0 1 0 0 1 0 0 0 0 

G5 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 

G6 1 0 1 1 0 0 0 0 0 0 0 0 1 0 0 

G7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

 

 This matrix relates to learning progressions by associating different competence 

patterns to given levels of a learning progression.  While it may be the case that there are 

multiple competence patterns allowable in the same level of the learning progression, 

each pattern should only fit at one level.  The relationship between levels of the learning 

progression would depend on the hypothesized competence patterns and how they relate 

to each other.  These patterns should represent how students grow with more complex 

competence patterns at higher levels of the learning progression.  This may be a very 

simple relationship, as in the case where each attribute is believed to be learned in 

progression.  Therefore the possible competence patterns would be if students have 

mastered an attribute then they should also have mastered any attributes at a lower level.  

In this case, the learning progression may have a single level for each of the attributes in 

the patterns.  For the example in Table 8, a three level learning progression may be 

hypothesized.  The first level would correspond to having attribute A, the second to 

having A and either B or C along with either composite AB or AC.  It could also include 

having both B and C and the composite BC.  The final level would add in attribute D as 

both a basic attribute and as part of the composite attributes.    
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 If everyone always responded correctly to items that the state they were in 

implied they should be able to answer, and always answered incorrectly to items they did 

not have the attributes for then the conditional probabilities would be 1 if they had the 

attribute needed and 0 if not.  This, however, is not often the case, as students tend to 

make errors sometimes and answer incorrectly to items they should be able to answer 

(which can be referred to as a slip (Liu, 2009)) or they could guess and answer correctly 

to an item for which they really do not have the underlying abilities (Liu, 2009).   

 This is similar to the concept of error in latent class scaling analysis.  In latent 

class scaling analysis the underlying latent ability has several different levels.  Depending 

on student’s level, there are expected responses to a certain set of items.  For example, a 

questionnaire that is designed to measure a person’s attitude regarding the death penalty 

might have questions that range from ―All criminals should be sentenced to death‖ to ―No 

criminals should be ever be given the death sentence‖.  It may be posited that there are 3 

types of people, those who believe the death penalty is never appropriate, those who 

believe it is appropriate in extreme circumstances, and those who think it should be the 

sentence more often.  For each of these three types of people (which would be interpreted 

in the model as a latent class with 3 ordered levels) there is an expected response pattern, 

with people in category 3 being more likely to agree with the more extreme statements 

and people in category 1 would be less likely to agree with those statements. 

 When dealing in latent class analysis it is common to put some constraints on the 

model such as setting the error probabilities to be equal to one another.  Similarly, in a 

BIN, models may be constrained in order to aid in estimation. Equality constraints may 

be used or particular probabilities may be set.  Other constraints may be regarding the 
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probability distribution for a given relationship.   One benefit in using BINs is that there 

is much flexibility in how these constraints could be set and which constraints could be 

used.  Their flexibility makes them very useful for diagnostic modeling (Almond et al, 

2007).  

 In fact, constraints can be made that could incorporate other CDMs into the 

Bayesian Network framework.  When estimating the conditional probabilities, constraints 

could be placed on the model that would incorporate the parameters associated with a 

specific CDM.  These parameters would be estimated and from their estimation the 

conditional probabilities can be calculated.   

 For example, one common CDM is the deterministic input, noisy-and-gate 

(DINA) model.  This is a non-compensatory model, which implies that a student must 

have all of the attributes required of an item in order to have a high probability of 

answering that item correctly.  The lack of one of the attributes cannot be made up for by 

having another attribute.  In this case: 

  icic

iiic gs
 


1

)1(  where ic is 1 if the student is in a class that has mastered all of the 

attributes required by the item, and 0 otherwise, is  is the slipping parameter which is the 

probability of getting the item incorrect given the student has the correct attributes, and 

ig  is the guessing parameter, which is the probability of getting the item correct given 

the student does not have the attributes required (Rupp, Templin, & Henson, 2010).  The 

Q-matrix can be used to find ic by matching the row in the Q matrix that corresponds to 

the item with a vector that contains the mastery of the attribute for the students.  If for all 

the 1’s in the Q-matrix the student also has mastery of that attribute then the result is a 1.  
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 A graphical representation of how this model would look in a BIN can be seen in 

Figure 11.  There are four attributes and four items, each item depending on a different 

set of attributes.  Each attribute can be thought of as a latent variable having two classes, 

one class indicating the student has the attribute and the other indicating that the student 

does not have the given attribute.  The lines indicate that whether or not the student has 

the attribute has an effect on the students’ probability of a correct response.  The guessing 

and slipping parameters can be estimated, and the conditional probabilities can be 

calculated using the formula for the DINA model ( icic

iiic gs
 


1

)1( ), where ic can 

be determined by the corresponding combination of attributes.   

 
Figure 12:  A BIN based on the DINA model 

 

 For example if the slipping parameter was .1 and the guessing parameter was .2 

then for Item 1 the corresponding conditional probability table can be seen in Table 9.  

Notice that the probabilities are the same if the student only has either one of the attribute 

or neither of the attributes as both attributes are required elements of the item. 

Table 9:  Probability of item responses to item 1 in a DINA model. 

Attribute 1 Attribute 2 
Item 1 

Correct Incorrect 

Yes Yes 0.9 0.1 

Yes No 0.2 0.8 

No Yes 0.2 0.8 

No No 0.2 0.8 

Item1

Correct
Incorrect

30.0
70.0

Item2

Correct
Incorrect

30.0
70.0

Item3

Correct
Incorrect

30.0
70.0

Item4

Correct
Incorrect

30.0
70.0

Attribute4

Yes
No

50.0
50.0

Attribute3

Yes
No

50.0
50.0

Attribute2

Yes
No

50.0
50.0

Attribute1

Yes
No

50.0
50.0
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 The disjunctive version of this model is the deterministic input, noisy-or-gate 

(DINO) model.  While this model is not as popular, it will be used here to demonstrate 

the differences between a compensatory (of which a disjunctive model is one type) and a 

non-compensatory model, as in Study 2 these two types of models will be compared.  

This model also uses the slipping and guessing parameters as described above.  The 

difference is that 

icic

iiic gs
 


1

)1(   where  
A

q

caic
iaa )1(1  where caa is 1 if the student is in a 

class which has the attribute in question and 0 otherwise and iaq  is 1 if the item requires 

that attribute, and 0 otherwise.  In other words, ic  is 1 if the student has at least one of 

the required attributes and 0 if they have none of the required attributes. 

 The graphical structure of this model is the same as that for the DINA model (as 

seen in Figure 13).  This model again uses guessing and slipping parameters which can be 

estimated.  The difference is that this estimation will produce different overall conditional 

probability tables.  The result of a conditional probability table where the slipping 

parameter is again .1 and the guessing parameter is .2 can be seen in  

Table 10.  

 
Figure 13:  A BIN based on the DINO model 
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Table 10:  The conditional probabilities for item 1 based on the DINO model 

Attribute 1 Attribute 2 
Item 1 

Correct Incorrect 

Yes Yes 0.9 0.1 

Yes No 0.9 0.1 

No Yes 0.9 0.1 

No No 0.2 0.8 

 

 While there may be many different choices in the realm of cognitive diagnostic 

models that can be used to measure learning progressions this research will focus on 

BINs.  Chapter 3 will provide specific information regarding how this type of model can 

be applied for the purpose of modeling learning progressions and how different Bayesian 

networks may be compared. 

MCMC Estimation 

 In recent years there has been an increase in the use of Markov Chain Monte 

Carlo (MCMC) estimation, in particular for complex models (Sinharay, 2004).  The 

mechanics of MCMC estimation make it particularly suitable to Bayesian estimation 

problems, although it can be applied to other non-Bayesian applications such as 

likelihood analysis or decision theory as well (Mignami & Rosa, 2001).  With the 

increase in sophistication of computer programs this technique can be fairly 

straightforward to implement as there are computer programs that have the MCMC 

algorithm already programmed into them (such as Winbugs and R).   

 Recall from previous in this chapter the application of Baye’s rule in a BIN: 
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  This equation holds when the range of possibilities for X is finite.  However, if the 

values that X can take are continuous then the equation becomes: 

dXXYpXp

XPXYp
YXp

X

iji

iij

ji




)|()(

)()|(
)|(  

If we examine the overall probability where D is the data that is observed, and θ is the 

distribution of values of the parameters then this would be represented as: 


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)|(  

When estimating values, a particular function of the distribution is of interest (such as 

examining the mean of the distribution, to obtain what are called ―expected a posteriori‖ 

or EAP estimates of the parameters).  This can be represented as f(θ) and the posterior 

expectation of this function is given by: 











dDpp

dDppf

DfE
)|()(

)|()()(

]|)([   (Gilks, Richardson, & Spiegelhalter, 1996). 

 This expectation can be quite difficult to compute.  Monte Carlo integration 

avoids this difficulty by producing a discrete approximation of the expected values.  It 

does this by drawing samples from the distribution and taking the average of these 

samples.  If the samples are independent then as the number of samples increase the 

approximation becomes more accurate (Gilks, Richardson & Spiegelhalter, 1996). 
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 In order to draw samples a Markov chain is used (hence the term Markov Chain 

Monte Carlo).  The definition of a Markov chain is a sequence of random variables          

(
t ,..., 21
) such that the distribution of t  given all previous  depends only on the 

most recent value, 1t  (Gelman et al., 2004).  Each chain starts at an initial value and 

then each t  is drawn from a transitional distribution ).|( 1 tt

tT   This transitional 

distribution is the conditional distribution for the parameter in focus, given the data and 

treating the previous draws of all other unknown parameters as true.  The concept is that 

each draw gets the accumulated distribution of all draws thus far thereby getting closer to 

the distribution of interest, and after a sufficient number of draws (or burn-in) the 

probability distribution for a draw from the chain will converge to the probability 

distribution of interest, and the accumulated distribution of draws converges to that 

distribution (Gilks, Richardson, & Spiegelhalter, 1996). 

 This study will use the Winbugs computer program (Spiegelhalter, Thomas, Best, 

& Lunn, 2003) to perform the MCMC estimation.  While there are other programs that 

could be used to estimate BINs (such as Netica (Norsys Software Corporation, 2007) and 

Genie (Decision Systems Laboratory, University of Pittsburgh, 2003)), Winbugs is a 

flexible program that will allow for the use of constraints when estimating the conditional 

probabilities.   

Winbugs uses the Gibbs sampling algorithm and various univariate samplers 

within Gibbs to generate the sample draws for the Markov chain.  This algorithm has 

been proven to converge to the distribution of interest under broadly satisfied conditions 

(Gilks, Richardson, & Spiegelhalter, 1996).  For each time point, the algorithm samples 

from the transitional distribution and the new sample is considered to be a candidate 
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point.  This candidate point is accepted or not accepted and if not accepted than the 

previous sample is used and the chain does not move (Gilks, Richardson, & 

Spiegelhalter, 1996). 
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CHAPTER 3:  MODELING LEARNING PROGRESSIONS WITH BAYESIAN 

INFERENCE NETWORKS 

 

 While the true underlying model of an assessment (i.e. the structure and nature of 

the relationships between the observable variables and the latent variables) may not be 

known, there are many different choices that can be used to try to approximate its true 

nature.  The theory behind the development of the learning progression can help guide 

the decisions regarding the structure of the model.  In addition, research can provide 

insights into the implications for different model choices by examining different models 

under known circumstances. This chapter will discuss different relationships and 

modeling techniques.    

Setting up the Bayesian Inference Network 

 

 As discussed in the previous chapter, a learning progression may follow from a 

learning path.  In the case of a learning path, where the levels are in a progression (as in 

Figure 4), a simple Bayesian model may have one latent variable representing the 

learning progression associated with the observable variables (see Figure 14).  Note that 

this model is a discrete approximation of a continuous unidimensional IRT model, where 

probability restrictions have been imposed to approximate the ability continuum as a 

categorical variable with four values. 
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Figure 14:  An example BIN with one variable representing the LP  

 

 The latent variable has different categories each associated with a different level 

of the learning progression.  A hierarchical structure may be imposed in this model by 

making the probability of obtaining a correct response higher for students in higher 

classes (see Table 11 for an example conditional probability table).  For this type of 

model, it is assumed that each student belongs to exactly one latent class and probabilities 

for a correct response depends on that class. 

Table 11:  An example of the probabilities for an item that depends on an LP.  (Note how 

the probabilities increase as the level of the student increases) 

Question 3 
Learning progression 

Level 1 Level 2 Level 3 Level 4 

Correct 20% 30% 80% 90% 

Incorrect 80% 70% 20% 10% 

 

 Another way of modeling the learning progression is to treat each level of the 

learning progression as independent (see Figure 15).  This may be more appropriate when 

the learning progression consists of different attributes, each associated with different 

levels of the learning progression, and which students may learn in varying orders.  In 

fact, modeling the attribute variables as independent posits that no path is any more likely 

than any other path.  (This assumption is usually not tenable, and more constrained 

versions with probabilistic associations will be discussed later.)  Items are then targeted at 

measuring specific levels of the learning progression.  This model would be equivalent to 

Question3

Correct
Incorrect

53.8
46.3

Question1

Correct
Incorrect

86.3
13.8

Question2

Correct
Incorrect

71.2
28.7

Question4

Correct
Incorrect

37.5
62.5

Learning Progression

Level1
Level2
Level3
Level4

25.0
25.0
25.0
25.0
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a discrete MIRT model with four dimensions (each dimension representing a level of the 

learning progression) and a simple structure. 

 
Figure 15:  An example BIN with separate variables representing each level of the LP 

 

 One place where this type of model may be more appropriate is in a facet based 

approach to a learning progression.  In this type of approach different facet clusters are 

identified, each with a goal level of understanding and including some problem levels of 

understanding (such as misconceptions) (DeBarger et al., 2009).  While there may be 

some belief regarding how students learn the given facets, there is not necessarily a strict 

progression.   

One example of a facet cluster for the model of an atom is shown in Table 12.  

Note that there is one main facet which consists of three goals (or attributes that are 

desirable in the student).  There are also four problems that the students may have.  Note 

that the problems can be associated with a lack of one (or more) of the goals.  (Problem 3 

would correspond to lacking parts of both goal 1 and goal 2). 

Question1

Correct
Incorrect

62.0
38.0

Question2

Correct
Incorrect

56.0
44.0

Question3

Correct
Incorrect

50.0
50.0

Level 1

Yes
No

70.0
30.0

Level 2

Yes
No

60.0
40.0

Question4

Correct
Incorrect

38.0
62.0

Level 4

Yes
No

30.0
70.0

Level 3

Yes
No

50.0
50.0
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Table 12:  An example of a facet approach LP for the model of an atom (taken from 

DeBarger et al, 2009) 

Facet 
The student correctly uses a model for the atom to account 

for the structure of matter 

Goal 1 
The student knows most of the mass of the atom is in the 

nucleus, which is made up of protons and neutrons 

Goal 2 

The student knows that electrons move outside of the 

nucleus and that the space the electrons move in defines 

the volume of the atom 

Goal 3 
The student understands that atoms are electrically neutral 

when they have an equal number of protons and electrons 

Problem 1 
The student has an incorrect model for the charge of parts 

of the atom 

Problem 2 
The student has an incorrect model for the mass of the 

parts of an atom 

Problem 3 
The student has an incorrect model for the location of parts 

of the atom 

Problem 4 
The student has an incorrect model for the size of the parts 

of the atom 

 

 A learning progression could be generated from this model in the sense that at the 

highest level the student has all of the goal facets, while at the lower level the student is 

missing one or more of the goals (See Table 13 for an example).  However, the learning 

progression would then assume that students learn about atoms in a particular order, and 

in order to move into the next level in the learning progression, they go from an incorrect 

model to a correct model for one of the attributes.  This might not be the case, and in fact 

students may learn in different stages.  A more appropriate learning progression might 

then be one as seen in Table 14.  These two learning progressions are similar, with the 

main difference being that the levels of the learning progression in Table 14 do not state 

that the student has the attributes from the previous levels.  For this type of learning 

progression it might make more sense to model the individual pieces (as in Figure 15).  



64 

 

Table 13:  An LP for the model of an atom with a hierarchical structure   

LP       

Level 
Student's ability to model an atom 

1 
The student knows the location of the parts of 

an atom 

2 

The student has the level 1 attribute and the 

student knows most of the mass of the atom is 

in the nucleus, which is made up of protons 

and neutrons 

3 

The student has the level 2 attributes and the 

student knows that electrons move outside of 

the nucleus and that the space the electrons 

move in defines the volume of the atom 

4 

The student has the level 3 attributes and the 

student understands that atoms are electrically 

neutral when they have an equal number of 

protons and electrons 

 

 

Table 14:  An LP for the model of an atom with no hierarchical structure imposed 

LP       

Level 
Student's ability to model an atom 

1 The student knows the location of the parts of 

an atom 

2 
The student knows most of the mass of the 

atom is in the nucleus, which is made up of 

protons and neutrons 

3 
The student knows that electrons move outside 

of the nucleus and that the space the electrons 

move in defines the volume of the atom 

4 
The student understands that atoms are 

electrically neutral when they have an equal 

number of protons and electrons 

 

Having this type of structure (without a hierarchy) would change the probabilistic 

dependencies in the model.  In this case, the probability for a correct response would only 

depend on if the student has the attribute for the associated level (as seen in Table 15).  

Having the attributes for Level 3 does not influence the probability of a correct response 
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to an item that corresponds to Level 2.  This more closely follows the learning path 

shown in Figure 5, as there may not necessarily be a hierarchy in the learning 

progression.  Instead it may be possible that other patterns emerge, such as students 

having attributes that would correspond to Level 1 and Level 3 in the learning 

progression, but lacking the attributes required for Level 2.   

Table 15:  A conditional probability table for an item that depends on one level of an LP 

Question 2 
Level 2 

Yes No 

Correct 80% 20% 

Incorrect 20% 80% 

 

 To state this another way, if four levels of a learning progression could be 

represented as four different states, such that (0,0,0,0) represents not having any of the 

skills required for the given levels while (1,1,1,1) would represent a student having all of 

the skills required.  In the hierarchical case with just one latent variable representing the 

levels then the possible states are:  Level 1 would correspond to (0,0,0,0), Level 2 to 

(1,0,0,0), Level 3 to (1,1,0,0), Level 4 to (1,1,1,0) and Level 5 to (1,1,1,1).  In the case 

where the levels are treated as separate variables this would allow for other states such as 

(1,1,0,1) which may not have a high probability of occurring but is still possible. 

 Another instance in which separating out the learning progressions into separate 

variables may be appropriate is to address the ―messy middle‖ issue.  This issue deals 

with the fact that students do necessarily learn in one trajectory and may in fact display 

attributes related to a high level of a learning progression but not display attributes of a 

lower level (Gotwals & Songer, 2009).  While it may be straightforward to determine 

who the novices are, and who the students are that have mastered all levels, it is not 
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always straightforward to determine where a student is on a continuum (Gotwals & 

Songer, 2009).  In this case having information about attributes they display may provide 

more accurate information about where the student is along the learning progression. 

 In our addition example from Chapter 2, a student may be able to recognize 

addition problems and carry when they need to, but they may not be able to add numbers.  

Examining the overall probabilities for each attribute would determine for which levels 

the student displays mastery, which could then be used to determine the overall level of 

the student.   

 This model may not be very realistic as there generally should be some 

dependence between the different levels.  Another way to model the relationships 

between the levels is to add dependencies from the lower level to the higher level (see 

Figure 16).   

 
Figure 16:  An example BIN with a dependency between the levels of the LP 

 

 This dependence could be very strict, where if the student is not at Level 1 (or 

does not have the Level 1 attributes) then they cannot have the Level 2 attributes.  In this 

case, the conditional probability of having the Level 2 attributes given the student does 

not have the Level 1 skill set is 0 (see Table 16).  Or this dependence could be less strict 

and these conditional probabilities could be freely estimated.  When the dependence is 

strict this follows the learning path from Figure 4, as how levels are obtained is strictly 

Question1

Correct
Incorrect

62.0
38.0

Question2

Correct
Incorrect

45.2
54.8

Question3

Correct
Incorrect

32.6
67.4

Level 1

Yes
No

70.0
30.0

Level 2

Yes
No

42.0
58.0

Question4

Correct
Incorrect

23.8
76.2

Level 4

Yes
No

6.30
93.7

Level 3

Yes
No

21.0
79.0
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ordered, whereas if the dependency is lifted then this allows room for the learning path 

from Figure 5, as it may be possible to have Level 3 skills without having Level 2 skills. 

Table 16:  Conditional probability of Level 2 depending on Level 1 

Level 1 

Level  2 

Yes No 

Yes 60% 40% 

No 0% 100% 

 

 Whereas the model described above allows the probability of having the attributes 

for a given level depend solely on whether or not the student has the attributes for the 

previous level, a model could also be made that would have the attributes depend on all 

of the previous attributes (see Figure 17).   

 
Figure 17:  An example BIN with dependencies between each level of the LP 

 

 While this may not add much to the previous model, as in either case any 

combination of levels is possible, it does allow for the case where the absence of a low 

level attribute might have more effect on higher levels than would just be found by 

looking at the level immediately below (see Table 17).   

Question1

Correct
Incorrect

62.0
38.0

Question2

Correct
Incorrect

48.8
51.2

Question3

Correct
Incorrect

35.0
65.0

Question4

Correct
Incorrect

28.0
72.0

Level 4

Yes
No

13.2
86.8

Level 3

Yes
No

25.0
75.0

Level 2

Yes
No

48.0
52.0

Level 1

Yes
No

70.0
30.0
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Table 17:  The conditional probability for Level 3 which depends on Levels 1 and 2 

Level2 Level1 

Level 3 

Yes No 

Yes Yes 50% 50% 

Yes No 20% 80% 

No Yes 10% 90% 

No No 0% 100% 

 

 While these models may not be the only models that can be used to measure 

learning progressions, they reflect different theories regarding the relationship between 

attributes in a learning progression based on different possible learning paths students can 

take.  Study 1 will be a comparison between the four models presented above that will 

examine how well each model can recover parameters and classifications, as well as the 

consequences of misspecification of the model.  The details of this study are described in 

Chapter 4. 

Modeling Conditional Probabilities in a Bayesian Framework 

 

 For the first model described above, the probability that is to be estimated is 

)|( kjp where j is the response (for a binary observable variable this would be a 0 or 1, 

for a polytomous observable variable this may take on more values) given that the person 

is at level k of the learning progression.  This conditional probability can be estimated 

directly or constraints can be placed.  An unconstrained model is most flexible, but the 

number of conditional probabilities to estimate can become excessive and unstable in 

large problems (Mislevy et al., 2002).  One type of constraint with fewer parameters to 

estimate is to have the probability structure follow an IRT model.  This gives the 

additional benefit of putting the parameters on a familiar scale to experts in educational 

measurement (Mislevy et al, 2002).   
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 Almond & Mislevy (1999) describe how a BIN can be used to represent an IRT 

model.  While the graphical representation of an IRT model would look on the outset the 

same as the simple BIN described earlier (see Figure 14), the model used for estimation 

would include additional item parameters, although a smaller number of parameters 

would need to be estimated, as these item parameters would be used to determine the 

conditional probabilities (Almond & Mislevy, 1999).  The key difference between the 

BIN representation and an IRT model is that the BIN has only a finite set of ability 

parameters values, and is thus a structured latent class model (or in our case 

corresponding to levels of a strictly ordered learning progression).   

 The model they follow is the same as the use of the latent class Rasch model 

(LC/RM) in latent class analysis.  Formann and Kohlmann (1998) specify this model as: 

 
)exp(1

)exp(
)1(

ij

ij

ijXP







    

where i indexes the item, and j represents class j (which in our case is the level of the of 

the learning progression.)  The parameters to be estimated are then an item difficulty 

parameter (σ) and a class parameter (ξ) which is the ability associated with the given 

levels of the learning progression. 

 For the case where the item is polytomous this must be expanded in order to 

include the different possible levels of the item.  This can be done using the Samejima -

Dibello (Mislevy et al, 2002) model.  This model follows the Samejima graded response 

models, but instead of the person ability being a continuous variable it categorizes the 

ability into several levels (Mislevy et al., 2002). (Again, here that would correspond to 

the different levels of the learning progression). 
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 In a complex assessment there may be multiple skills required to complete a given 

task.  These skills could each have their own learning progressions.  For example, in 

networking, students may need to be able to perform binary addition as well as configure 

a router in order to troubleshoot a network activity.  Different tasks may require different 

levels of these two skills.   

 A very simple Bayesian network for a task that requires two skills is shown in 

Figure 18.  Each of the latent skills (labeled LP for learning progression) will have 

different stages which represent the different levels of the learning progression.  In this 

case, the probability of a given response on the observable variables (such as Question 1) 

will depend on the students’ level on each of the learning progression.   

 

 
Figure 18:  An example BIN with one question depending on two LPs 

 

 Here again the probabilities may be estimated directly or constraints can be added 

to place the parameters on an IRT scale.  There are several choices for how the ability of 

the student on the different skills may be combined to affect the overall probability of a 

LP1

Level1
Level2
Level3
Level4

25.0
25.0
25.0
25.0

LP2

Level1
Level2
Level3
Level4

25.0
25.0
25.0
25.0

Question1

Correct
Incorrect

40.3
59.7
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response.  Three common types of relationships the abilities can have are compensatory, 

conjunctive and disjunctive. 

 In a compensatory relationship the skills complement each other in the sense that 

having more of one skill makes up for a lack in another skill.  Generally the greater 

ability a person has in each of the skills the greater the probability of a correct response.  

This is demonstrated in the formula by adding the ability level parameters for each of the 

skills as follows: 
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 where J is the vector pertaining to whether or 

not the student has skill j (for the required skills for the item) (Mislevy et al, 2002).   

 In a conjunctive relationship the student should have all of the skills required in 

order to be able to solve the problem.  If one of the skills is missing this will hinder the 

student from solving the problem and having a higher ability in the other skills cannot 

make up for this lack of skill.  In this case the probability of obtaining a correct response 

is determined by the lowest ability skill as follows: 
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   (Mislevy et al, 2002) 

 A disjunctive relationship is one where the highest skill level determines the 

probability of a correct response.  In this sense the ability to solve the problem only 

depends on the student having one of the skills and does not require all skills.  This can 

be seen as follows: 
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 One note here is that the relationships discussed are conditional on levels of the 

LPs.  This does not address the possible relationships between how students progress 

through the learning progressions and how the learning of one skill may influence the 

learning of another skill.  The interest is in how the skill levels of the students jointly 

affect the probability of a correct response at one particular time point.  While other types 

of relationships exist and may be appropriate in different cases, this research will focus 

on these mentioned here. 

 There may be some indeterminacy as is typical in IRT analysis.  In IRT a shift in 

the ability measures along with a shift in the item difficulty will produce the same overall 

probability.  Therefore when estimating it is necessary to add a constraint in order to 

make the estimated values consistent over different runs.  There are two types of 

constraints that are normally used for the Rasch model, one is to center the ability 

estimates around zero, the other is to center the item difficulty estimates around zero.  

Following Almond, Yan, and Hemat (2008), this study will center the item difficulty. 

 While Study 1 will examine the different methods for modeling the structure of 

the learning progression, Study 2 will examine the different constraints that can be used 

to structure the relationship between two learning progressions and a set of items which 

will each be designed to measure both LPs.  Study 2 will compare an unconstrained 

model with the conjunctive, disjunctive and compensatory models for the relationship of 

the observable variables given two learning progression latent variables, to again examine 

parameter recovery and misspecification of the models.  More details can be found in 

Chapter 5. 
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 As noted previously, BINs were chosen for this study due to the flexibility they 

offer in allowing for different models and different constraints.  However, other models 

could have been used instead.  For Study 1, an IRT model could be compared to a MIRT 

model.  In the IRT framework cutoff points could be used along the ability framework 

that would separate students out into levels of the learning progression.  This idea could 

be compared to using the different levels as different attributes in the MIRT framework, 

each with their own cutoff as to if the student was at that level or not.  When multiple LPs 

are compared then using MIRT could be applied, or the formulas described above for the 

compensatory, conjunctive and disjunctive models could be applied directly to add 

constraints into the model. 

 In a DCM framework, different models could be compared, one that examines a 

categorical attribute, versus others that separates this attribute out into different binary 

attributes.  In addition, models could be applied (such as the DINA and DINO models) 

that would put compensatory, conjunctive, or disjunctive constraints onto models 

measuring two learning progressions. 

 These studies would be very similar in framework to the current study and may 

produce similar results.  Future studies may want to examine how models compare across 

frameworks given what model seems most appropriate within a framework.  This study 

chose to focus on BINs in part due to the fact that with a BIN there may be an added 

benefit in that a probability distribution for where a student is along the LP can be 

obtained even if the response patterns of the student are not known.  Again, follow-up 

studies may want to determine if this feature would be useful in classroom situations.  

Having this study would then provide the base for determine the setup of the BIN. 
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 In addition it should be noted that the question asked in Study 1 is different from 

that asked in Study 2.  While Study 1 examines the structure of the variables within a 

BIN, Study 2 examines the types of constraints that can be placed on a model in a 

Bayesian framework.  The reason why these are different is that having the two studies 

address different issues should give practitioners a broader view of the type of decisions 

that can be made when implementing a BIN. 
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CHAPTER 4:  MODELING ONE LEARNING PROGRESSION (STUDY 1) 

 The first study of this dissertation focuses on different representations of a single 

learning progression and the relation of the learning progression to the observable 

variables.  Four different representations will be modeled using a BIN framework.  Data 

will be generated by varying parameter settings for each of these models and then each 

model will be fit to the data sets.  The study will compare model fit and student 

classification rates. 

Study Overview 

As mentioned previously there are cases in which a hierarchical learning 

progression may not be the most appropriate representation, as students may follow 

different learning paths.  The question being addressed here is are there certain situations 

in which it would be beneficial for the purpose of classifying students, to model the 

learning path as one hierarchical learning progression as opposed to separating the 

learning progression into different variables and incorporating these variables into a 

multivariate model. 

The case that is examined is where there are multiple observable variables 

providing evidence about one learning progression.  A comparison was carried out 

among four models.  
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Table 18 describes the models and includes the probabilities that need to be estimated for 

each model (for both the latent and the observable variables).  Table 19 shows a graphical 

representation of the models.  Note that Model 2 is a constrained version of Model 3 with 

the constraints P(LP2=1|LP1=1)=P(LP2=1|LP1=0), P(LP3=1|LP2=1)=P(LP3=1|LP2=0) 

and P(LP4=1|LP3=1)=P(LP4=1|LP3=0).  Similarly Model 3 is a constrained version of 

Model 4, with P(LP3=1|LP2,LP1=1) = P(LP3=1|LP2,LP1=0)  and 

P(LP4=1|LP3,LP2=1,LP1=1)=P(LP4=1|LP3,LP2=1,LP1=0) = 

P(LP4=1|LP3,LP2=0,LP1=1)=P(LP4=1|LP3,LP2=0,LP1=0)   

 Also note that Model 1 can be thought of as a constrained version of Model 3 by 

adding in the constraints that P(LP2=1|LP1=0)=0, P(LP3=1|LP2=0)=0, and 

P(LP4=1|LP3=0)=0.  These constraints make it so that in Model 3 if a student is at a 

higher level they must have mastered the lower level skills and the probabilities for each 

level (as represented in Model 1) would be P(LP=0)=1-P(LP1=1), P(LP=1)=P(LP1=1)-

P(LP2=1) (i.e. they are at level 1 but not at level 2), P(LP=2)=P(LP2=1)-P(LP3=1), 

P(LP=3)=P(LP4=1)-P(LP3=1), and P(LP=4)=P(LP4=1).  As for the probabilities of the 

observable variables, knowing that a student had a certain level attributes (such as level 

3) in Model 3 would be the same as knowing that the student was at level 3 or above in 

Model 1. 
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Table 18:  Four models for modeling the relationship between one LP and OVs 

Model Description 
Latent variable 

probabilities 
Observable probabilities 

1 

One categorical latent variable 

representing the LP and the 

observable variables 

conditionally dependent on that 

variable 

P(LP=i) P(O(1-12)|LP) 

2 

4 latent variables representing 

the individual LP levels, and the 

observables conditionally 

dependent on the level they are 

designed to reflect on.  No 

conditional dependence between 

the latent variables. 

P(LP1=1)  P(O(1-3)|LP1) 

P(LP2=1)   P(O(4-6)|LP2) 

P(LP3=1)   P(O(7-9)|LP3) 

P(LP4=1) P(O(10-12)|LP4) 

3 

Same as model 2 except that 

each latent level variable is 

conditionally dependent on the 

previous, this dependence is 

freely estimated 

P(LP1=1)   P(O(1-3)|LP1)    

P(LP2=1|LP1)  P(O(4-6)|LP2)    

P(LP3=1|LP2)   P(O(7-9)|LP3)    

P(LP4=1|LP3) P(O(10-12)|LP4) 

4 

Same as model 2 except that 

each latent level variable is 

conditionally dependent on all 

previous, this dependence is 

freely estimated 

P(LP1=1)   P(O(1-3)|LP1)       

P(LP2=1|LP1)   P(O(4-6)|LP2)   

P(LP3=1|LP1,LP2)  P(O(7-9)|LP3)  

P(LP4=1|LP1,LP2,LP3) P(O(10-12)|LP4) 
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Table 19:  Representative diagram of the different models.  Please note that while these 

diagrams have one observable variable per level the actual simulation will have three 

observables per level. 

Model Diagram 

1 

 

2 

 

3 

 

 
 

4 

  



79 

 

 

In order to address the benefit of the models three sub-questions will be addressed: 

 1)  How well are parameters recovered under each model for the various 

conditions?  

 2)  How do inferences regarding students (i.e., posterior distributions for 

proficiency variable) compare across the different models under various 

conditions? 

3) How do goodness-of-fit tests perform at identifying the correct model under 

various conditions?  

 These questions were addressed by a simulation.   Data was simulated based on 

each of the different models and different parameter specifications using R (R 

Development Core Team, 2008), and then estimations were computed for each of the 

parameters using Bayesian inference via MCMC estimation, using Winbugs 

(Spiegelhalter, Thomas, Best & Lunn, 2003) The resulting parameters were passed back 

to R for comparison. 

 In order to estimate the parameters in a Bayesian network, posterior distributions 

for the variables used in the network are specified.  The parameters of interest here are 

unconstrained conditional probability matrices (or parameters that entail conditional 

probabilities in lower-order approximations) and distributions of student-model variables.  

These values for the structural parameters of the BIN model are then used to estimate the 

probability distributions for student-level variables and observed responses.  For each 

model the probability distributions were specified, the variables (both latent and 

observable) for a sample of subjects were generated, and then the model parameters were 

estimated. 
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Study Conditions 

The factors that are varied in the simulation are the sample size and the 

distribution of the students in the latent classes.  The factors that remain the same are the 

number of levels of the learning progression, the strength of the relationship between the 

observables and the latent variables, and the number of observables. 

 The number of levels of the learning progression will be four (with a fifth class 

representing the novice class for the case when there is just one latent variable).  This 

represents a fairly simple learning progression, while still leaving room for different 

learning paths.  In addition, four seemed to be a common number for the number of levels 

in a learning progression in the literature (Gunckel, Covitt & Anderson, 2009, Mohan & 

Anderson, 2009, and Schwarz et al, 2009).  Further research may be applied to LPs with 

more levels.   

 For each latent variable there are three observable variables that reflect upon the 

latent variable, making for a total of twelve observable variables.  If there are too few 

observables then the model will not be identifiable (Formann, 2003).  In order to keep the 

model simple but identified, this study followed the approach used by Almond, Mulder, 

Hemat and Yan (2008) and used three observables per level.  Each observable in this 

study will be dichotomous and will designed to measure a particular level of the learning 

progression.  For Model 1 this means that there will be a jump in the probability of a 

correct response between students who are at the level below the required level of the 

item and students who are at the level of LP required by the item or higher.  For Models 

2-4 this would mean that each observable only has one edge coming into it and that edge 

is from the level variable that the observable is designed to measure.  The relationship 
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between the observable and the latent variable will be set at a medium relationship, which 

will be represented by using .8 as the probability of a correct response given that the 

student has the attributes required by the item. 

 For Model 1 the probability of obtaining a correct response if the student is at a 

higher level than required is also addressed.  There are two conditions, one is that the 

probability is the same as if the student is at the level required and the other is that the 

probability increases by .05 (with a max of .95) if the student is at a higher level.  These 

two options reflect the concepts that knowing higher level skills either does (condition 2) 

or does not (condition 1) aid in solving items designed to measure lower levels of the 

learning progression.   

In addition, the probability of a correct response given the student is below the 

level required will be .2, which indicates that the student has some probability of 

answering the item correctly (this is equal to the probability of a multiple choice answer 

with 5 options).   (Other simulation studies have used values between 0 and .3 for this 

probability (de la Torre, 2009, Liu, Douglas & Henson, 2009) so .2 was deemed an 

acceptable value.)  For Models 2-4 the probability of the observables only depends on 

whether they have the attributes in question. For this case the probability of .2 will be 

used for a correct response if they do not have the attributes in question. See Table 20 for 

the conditional probabilities used for Model 1.   

 For Model 1, the latent variable parameters that will be used are the probabilities 

of class membership for each level of the learning progression.  In this case there is also a 

Level 0 that describes students who do not even have the Level 1 attributes.   
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Table 20:  Conditional probabilities for Model 1 

conditional probabilities given Level 0  

Cond 

Ob 

1 

Ob 

2 

Ob 

3 

Ob 

4 

Ob 

5 

Ob 

6 

Ob 

7 

Ob 

8 

Ob 

9 

Ob 

10 

Ob 

11 

Ob 

12 

1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

conditional probabilities given Level 1 

Cond 

Ob 

1 

Ob 

2 

Ob 

3 

Ob 

4 

Ob 

5 

Ob 

6 

Ob 

7 

Ob 

8 

Ob 

9 

Ob 

10 

Ob 

11 

Ob 

12 

1 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

2 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 

conditional probabilities given Level 2 

Cond 

Ob 

1 

Ob 

2 

Ob 

3 

Ob 

4 

Ob 

5 

Ob 

6 

Ob 

7 

Ob 

8 

Ob 

9 

Ob 

10 

Ob 

11 

Ob 

12 

1 0.85 0.85 0.85 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 

2 0.8 0.8 0.8 0.8 0.8 0.8 0.2 0.2 0.2 0.2 0.2 0.2 

conditional probabilities given Level 3 

Cond 

Ob 

1 

Ob 

2 

Ob 

3 

Ob 

4 

Ob 

5 

Ob 

6 

Ob 

7 

Ob 

8 

Ob 

9 

Ob 

10 

Ob 

11 

Ob 

12 

1 0.9 0.9 0.9 0.85 0.85 0.85 0.8 0.8 0.8 0.2 0.2 0.2 

2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.2 0.2 0.2 

conditional probabilities given Level 4 

Cond 

Ob 

1 

Ob 

2 

Ob 

3 

Ob 

4 

Ob 

5 

Ob 

6 

Ob 

7 

Ob 

8 

Ob 

9 

Ob 

10 

Ob 

11 

Ob 

12 

1 0.95 0.95 0.95 0.9 0.9 0.9 0.85 0.85 0.85 0.8 0.8 0.8 

2 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 

 

For this study four conditions will be examined (see Table 21) that represent 

different distributions of students.  The first condition will have equal probability of 

students being at any level, which may be the case when the exam is administered to a 

general population.  The next condition is one in which the students are mostly high 

ability, as in the case where most students have studied the material and students who are 

not prepared would not be taking the exam (such as for a certification exam).  A third 

condition is one where the students are mostly in the middle range of ability.  Here the 

target population is one where students have taken some courses and learned material but 

they may not have gone the extra step to develop their skills fully, but the exam is also 
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used to determine if there are students who have mastered the higher levels.  The last 

condition is one where students are mostly low ability, such as students who are taking a 

pre-test for a class and the exam may be used to determine if there are students that will 

need extra challenges throughout the course.   

Table 21:  The probability distributions to be used for the LP variable in Model 1 

Case # Description p(LP0) p(LP1) p(LP2) p(LP3) p(LP4) 

1 

Equal probability of any ability 

student 0.2 0.2 0.2 0.2 0.2 

2 Mostly high ability students 0.05 0.1 0.15 0.3 0.4 

3 Mostly middle ability students 0.1 0.15 0.3 0.3 0.15 

4 Mostly low ability students 0.05 0.4 0.3 0.15 0.1 

 

 For Model 2 the probabilities of the latent variable are the individual probabilities 

of having a given level.  The probabilities for Model 1 can be expressed in terms of the 

probabilities at a given level by accumulating the probability of being in the given class 

and all of the higher classes (so the probability of having Level 1 attributes is equal to the 

probability from Model 1 for being at Level 1, 2, 3, 4 or 5, since a student at the higher 

level should also have the attributes for the lower level).  For consistency these 

probabilities will be used.  The case in which students can follow different learning paths 

is addressed by switching the probabilities for Level 2 and Level 3.  Finally, two cases 

are added, one where there is an equal probability of having Level 2 or Level 3 and one 

where there is an equal probability of having any of the levels (see Table 22). 
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Table 22:  Probability distributions of having any of the individual level abilities for 

Model 2 

Case # Description p(L1) p(L2) p(L3) p(L4) 

1 

 

Equal probability of any ability 

student, following standard 

progression 0.8 0.6 0.4 0.2 

2 

Mostly high ability students, 

following standard progression 0.95 0.85 0.7 0.4 

3 

Mostly middle ability students, 

following standard progression 0.9 0.75 0.45 0.15 

4 

Mostly low ability students, 

following standard progression 0.95 0.65 0.25 0.1 

5 

Equal probability of any ability 

student, reversing levels 2 and 3 0.8 0.4 0.6 0.2 

6 

Mostly middle ability students, 

reversing levels 2 and 3 0.9 0.45 0.75 0.15 

7 

Equal probability of having either 

level 2 or level 3 skills 0.8 0.6 0.6 0.4 

8 

Equal probability of having any 

of the skills 0.6 0.6 0.6 0.6 

 

 

Model 3 follows similar patterns as Model 2, but now there is the additional 

condition of students who do not have the previous level attributes.  One way this could 

be modeled is a loose hierarchy, in which case there is a small probability of students 

having the next level attributes even if they don’t have the previous level attributes.  For 

this we would have P(L (X+1)|L(X)=0) > 0 but P(L (X+1)|L(X)=0) < P(L(X+1)|L(X)=1).  

Another type of condition is to enforce a strict hierarchy by making it so that if a student 

does not have a level attribute then that student cannot have a higher level attribute i.e. 

P(L(X+1)|Level(X)=0) = 0.  A third method is to make the probability the same of having 

a level attribute regardless of whether or not the student has the previous attribute i.e. 

P(L(X+1)|Level(X)=0) = P(L(X+1)|L(X)=1) (which makes this essentially the same as 

the Model 2).   
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 For this study two conditions will be used when generating data for the condition 

when the levels are designed to follow the standard progression: that of a loose hierarchy 

and that of a strict hierarchy.  For the case where Level 2 and Level 3 are allowed to 

switch, a loose hierarchy will be imposed between Levels 1 and 2 but no hierarchy will 

be imposed between Levels 2 and 3 or 3 and 4 (see Table 23). 

For the last model, the same probabilities will be used for the levels if the student 

has all of the previous levels as they were for Model 3 (see Table 24).  For the cases in 

which a standard progression is expected (Cases 1-4) the following hierarchical structures 

will be imposed:  a strict hierarchy, a loose hierarchy, a hierarchy where Level 1 is 

loosely required but Levels 2 and 3 are not, and a hierarchy where Level 1 is loosely 

required and either Level 2 or 3 is required for Level 4 but not both.  For the cases in 

which Levels 2 and 3 are allowed to switch (Cases 5-8) the latter two hierarchical 

structures will be imposed (see Table 25). 
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Table 23:  Probability distribution for the parameters in Model 3 
Case 

# 
Description p(L1) p(L2|L1) p(L3|L2) p(L4|L3) p(L2|~L1) p(L3|~L2)  p(L4|~L3) 

1 
Equal prob. of any ability, standard progression, strict 

hierarchy 
0.8 0.6 0.4 0.2 0 0 0 

2 
Equal prob of any ability, standard progression, loose 

hierarchy 
0.8 0.6 0.4 0.2 0.2 0.2 0.2 

3 Mostly high ability, standard progression, strict hierarchy 0.95 0.9 0.8 0.5 0 0 0 

4 Mostly high ability, standard progression, loose hierarchy 0.95 0.9 0.8 0.5 0.2 0.2 0.2 

5 
Mostly middle ability, standard progression, strict 

hierarchy 
0.9 0.75 0.45 0.15 0 0 0 

6 
Mostly middle ability, standard progression, loose 

hierarchy 
0.9 0.75 0.45 0.15 0.2 0.2 0.2 

7 Mostly low ability, standard progression, strict hierarchy 0.95 0.65 0.25 0.1 0 0 0 

8 Mostly low ability, standard progression, loose hierarchy 0.95 0.65 0.25 0.1 0.2 0.2 0.2 

9 
Equal probability of any ability, reversing levels 2 and 3, 

loose hierarchy 
0.8 0.4 0.6 0.2 0.2 0.2 0.2 

10 
Mostly middle ability, reversing levels 2 and 3, minimal 

hierarchy 
0.9 0.45 0.75 0.15 0.2 0.6 0.2 

11 
Mostly middle ability, reversing levels 2 and 3, loose 

hierarchy 
0.9 0.45 0.75 0.15 0.2 0.2 0.2 

12 
Equal prob. of having either level 2 or level 3 skills, 

minimal hierarchy 
0.8 0.6 0.6 0.4 0.2 0.6 0.4 

13 
Equal prob. of having either level 2 or level 3 skills, loose 

hierarchy 
0.8 0.6 0.6 0.4 0.2 0.2 0.2 

14 
Equal prob. of having either level 2 or level 3 skills, 

minimal hierarchy 
0.8 0.6 0.6 0.4 0.2 0.6 0.4 

15 Equal prob of having any of the skills, loose hierarchy 0.6 0.6 0.6 0.6 0.2 0.2 0.2 

16 Equal prob of having any of the skills, no hierarchy 0.6 0.6 0.6 0.6 0.6 0.6 0.6 
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Table 24:  Probabilities used for the states in which all of the previous levels are also 

obtained 
Case 

# 
Description p(L1) p(L2|L1) p(L3|L2L1) p(L4|L3L2L1) 

1 
Equal prob of any ability, 

standard progression 
0.8 0.6 0.4 0.2 

2 
Mostly high ability, standard 

progression 
0.95 0.85 0.7 0.4 

3 
Mostly middle ability, standard 

progression 
0.9 0.75 0.45 0.15 

4 
Mostly low ability, standard 

progression 
0.95 0.65 0.25 0.1 

5 
Equal prob. of any ability, 

reversing levels 2 and 3 
0.8 0.4 0.6 0.2 

6 
Mostly middle ability, reversing 

levels 2 and 3 
0.9 0.45 0.75 0.15 

7 
Equal prob. of having either 

level 2 or level 3 skills 
0.8 0.6 0.6 0.4 

8 
Equal prob. of having any of 

the skills 
0.6 0.6 0.6 0.6 

 

 

Table 25:  Probability structure for the states when one of the previous levels is not 

obtained 

  

P(L2|~L1) P(L3|~L1L2) 

P(L3|~L1~L2) 

P(L4|~L1L2L3) 

P(L4|~L1~L2L3) 

P(L4|~L1L2~L3) 

P(L4|~L1~L2~L3)  

P(L3|L1~L2) 

P(L4| 

L1~L2L3) 

P(L4| 

L1L2~L3) 

P(L4| 

L1~L2~L3) 

loose 

hierarchy 
0.2 0.2  0.2  0.2  

strict 

hierarchy 
0 0 0 0 

level 1 loose 

hierarchy 
0.2 =P(L3|L1L2) 

=P(L4| 

L1L2L3) 

=P(L4| 

L1L2L3) 

level 1 loose 

hierarchy, 

level 4 

loosely 

requires level 

2 or level 3 

0.2 =P(L3|L1L2) 
=P(L4| 

L1L2L3) 
.2  

 

 

 The sample sizes that will be used are 50, 200 and 500.  Examining a sample size 

of 50 might give some insight as to how useful this type of modeling might be for 
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classrooms.  After running selected pilot cells it was found that using a sample size of 

500 gave comparable results to those with a sample size of 1000 but could be completed 

in half the time; therefore it was deemed that using 500 would be a large enough sample.  

An additional sample size of 200 was chosen to use as the medium sample size.  

Comparing the results from different sample sizes may provide information regarding 

whether or not a given model is appropriate for the sample size in question or for how 

large a sample size may need to be to provide adequate results.   

 For each cell, 100 replications will be used, which is based on the study by 

Sinharay (2006).  (Note that other simulation studies have used fewer replications, as 

often the time it takes to run these is a factor.)  In each replication, data will be simulated 

according to the model.  This data will be used to estimate the parameters for each of the 

4 models, and the fit of these models will be compared along with classification rates.  

For the case where there is one categorical learning progression variable the transition to 

four latent variables will be fairly straightforward:  the student will have the individual 

latent variables for all levels less than or equal to the student’s overall latent variable.   

 The reverse direction however is not always as straightforward.  The problem 

arises in the case where students have attributes that do not follow the hierarchical model, 

such as having Level 1 and Level 3 attributes but not Level 2 attributes.  In the case 

where Models 2-4 are used to generate the data there may be students who do not fit 

nicely into one class in Model 1.  There is literature regarding how to handle this 

situation when the observables do not follow the appropriate pattern (Corcoran, Mosher, 

& Rogat, 2009).  However, in those cases there is still the belief that the students are at 

one level of the learning progression and there is error in their measurement.  In this case 
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there is no level that truly defines the student.  Instead the issue may be addressed by 

determining theoretically what it is we want to say about the student.  In the case where 

the student truly does not have Level 1 attributes, but does have Level 4 attributes, would 

we really want to say that they are at a higher level of ability or would we want to say 

they are a complete novice?  In the latent class analysis work there have been methods for 

dealing with intrinsically unscalable subjects.  One method is to just put them in their 

own class (Dayton & Macready, 1980).  However, this method would change what it is 

that class represents.  For this study, when this situation arises the student will be placed 

in the highest level for which they have those attributes and all of the attributes of the 

lower levels.  This follows from the position that if a student is at a given level they 

should have mastered all of the previous levels. 

 As discussed in Chapter 2, this study will use MCMC estimation for estimating 

the probabilities.  This study will use the WinBugs program (Spiegelhalter, Thomas, Best 

& Lunn, 2003) to perform the MCMC estimation.  Winbugs was chosen due to its 

flexibility in the type of models it can support.  While this need for flexibility might not 

be as important as in Study 2, for consistency it was decided that Winbugs would be used 

for both studies.  In Winbugs several chains can be started with different start values.  For 

this study 3 chains will be started (as similar to Levy & Mislevy, 2004 and Almond, Yan, 

& Hemat, 2008 ) with starting values at the low end of the distributions, the high end of 

the starting distributions and the middle range of the distribution.   

 It is important in MCMC estimation to check for convergence of the chains 

(Gelman et al., 2004).  One statistic that has been used to check the convergence of 

multiple chains is the Gelman-Rubin statistic (Cowles & Carlin, 1996).  This method 



90 

 

provides a potential scale reduction factor (PSRF) for each variable in the simulation, as 

well as a multivariate PSRF (MPSRF) which gives a statistic for all of the variables in the 

chain (Brooks & Gelman, 1997).  A recommendation is that a value of over 1.2 for the 

MPSRF indicates that the chains have not converged (de la Torre & Douglas, 2004).  In 

this case the simulation will be run for 10000 iterations with a burn-in of 6000.  Samples 

from all cells were checked and it was found that in all cases convergence was obtained 

using this many iterations. 

 In addition in MCMC prior distributions are specified for each of the variables.  

In this study non-informative priors were used because it was desired for the parameter 

estimates to be minimally influenced by the use of prior information.  For the probability 

of a correct response a beta prior with parameters a=2 and b=2 was used.  This implied 

that there was an equal probability of either a correct or incorrect response but the belief 

in this prior was not very strong – it is equivalent to the information of two observations, 

one in each of the two categories.  For Model 1 a Dirichlet prior was used with ai =2 for 

the probability of being at any of the levels of the learning progression.  Similarly a beta 

prior, again with parameters a=2 and b=2, was used for the latent variable in Models 2-4.  

This again indicates that the initial belief is that all levels of the learning progression are 

equally likely but the strength of that belief is not very strong.       

Model fit 

 For this analysis several models will be compared to determine how well each 

model can be estimated as well as which model may be best suited in different situations.   

In order to determine if one model outperforms another model there must be a method for 
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comparing these models.  Several different methods for examining model fit will be used 

depending on the question being addressed.   

 For a simulation study the parameters are known ahead of time and therefore the 

model can be checked to determine how close the resulting parameters are from the initial 

parameters.  In the Bayesian paradigm, in this case with MCMC estimation, inferences 

for the parameters are carried out through the posterior distribution.  One simple check is 

to see if the true value of the parameters is within the 95% confidence range of the 

estimated parameters (Almond, Yan & Hemat, 2008).  The number of parameters that are 

recovered can then be kept track of and averaged across different replications.  These 

averages can be compared across different simulation configurations as well as between 

different models. 

 Comparing how well parameters can be recovered does not provide information 

about which model is the best fit for a particular situation.  In order to determine how 

well the models fit the data, a comparison can be made by examining fit statistics for 

each model.  While methodologies exist for using replicated data based on the posterior 

predicted model in order to obtain some measure of fit (Gelman, 2003;Levy, Crawford, 

Fay, & Poole, 2011), these methodologies are still being developed and are not 

necessarily used as a hypothesis test for overall fit (Levy, Crawford, Fay, & Poole, 2011).  

In addition this research is concerned with relative fit of the models and therefore leaves 

absolute model fit to further studies.  The issue of absolute fit would be more of concern 

when comparing across different types of models, as the issue here assumes that BIN 

have already been picked as the overall model to use and the question is around the issue 
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of which BIN is the best BIN to use.  The relative fit of each model will be examined 

using the likelihood of the data and computing fit statistics.    

 For each subject in the simulated data set the probability of their given response 

pattern can be computed.  The resulting probability of the entire dataset can also be 

computed.  This results in the likelihood of the data given the parameters of the model.  

Using this likelihood, different information criteria can be computed.  Once these are 

computed they can be compared across models, with the lower statistic representing the 

model that is said to fit the best. 

 One statistic that can be used is Akaike’s information criterion (AIC, Burham & 

Anderson, 2004).  When using this with MCMC estimation it can be found by: 

pDAIC 2)(   where p is the number of estimated parameters. 

In this equation 

)(log(2)|(log(2)( yfypD   ) 

where y is the data,  is the posterior mean of the parameters and f(y) is a function of the 

data alone (and therefore is often not used in the calculation of the statistic, as when 

comparing two models on the same set of data this part would drop out of the equation) 

(Spiegelhalter et al., 2002, Li, Cohen, Kim & Cho, 2009). 

 The AIC has been criticized since it does not take in to account the sample size 

and so it does not always work as well compared to other fit statistics when the sample 

size is large (Henson, Reise, & Kim, 2007).  It is often compared to the Bayesian 

inference criterion which is specified as:  )(log)( NpDBIC    where N is the sample 

size, and p is the number of estimated parameters (Li, Cohen, Kim & Cho, 2009).  When 

the sample size is large AIC tends to indicate better fit (than may be appropriate) for 
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models with more parameters, while the BIC tends to indicate better fit for the models 

with fewer parameters (Burnham & Anderson, 2004).  Therefore, it has been suggested 

that a good approach is to use both of these statistics in order to determine which model 

to select (Kuha, 2004). 

 Another information criterion is the deviance information criterion (DIC).  This 

criterion is built into WinBugs and is designed to be used with MCMC estimation.  It 

uses the definition of the effective number of parameters which is the expected deviance 

minus the deviance evaluated at the posterior expectations (Spiegelhalter, Best & Carlin, 

1998) )(])[(][ ||   DDEDDEp yyD and DpDDIC 2)(   (Spiegelhalter, 

Best & Carlin, 1998).   

This study will record the AIC, BIC and DIC for each of the models and then 

determine which model has the lowest of these values which is an indicator of fit.  While 

it is expected that the generating model should fit the best it will also be of interest to 

determine if this is indeed the case, and which other models have similar fit. 

Classification Accuracy 

 In the case of learning progressions what may be of most interest is the resulting 

classification of students into levels of the learning progressions.  While the actual 

structural parameter values may not be of great importance, misclassification of students 

could lead to them being placed at a higher level than they are in which case they  may 

struggle to learn the material or at a lower level which would then lead them to repeat 

information they may already know. 

 In the study of classification two data sets were generated from the same set of 

starting parameters.  They distinguish classification accuracy from a run which 
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classification is carried out with structural parameters estimated from the same data set, 

and the other in which the structural parameters were estimated from one data set and 

used to carry out classification on a new set of students from the same population.  One 

data set was used to run the model and determine the resulting parameters.  These 

parameters were then used to classify the students in this data set.  Additionally, the 

second data set was used to check how well the resulting model was able to classify 

students.  This second data set was used to determine if there is a drop off in the rate of 

classification when a different sample of students is used. 

 In order to determine the classification accuracy, the percent of students correctly 

classified was recorded.  In addition the adjusted Rand index (Steinley, 2004) was used as 

an indicator of how well the classifications from each model match the original 

classifications.   

 In the case where the generating model was Models 2-4 but the model being 

estimated is Model 1 there may be students who do not fit into one of the levels of the LP 

in Model 1.  For example, if a student has the attributes of Level 2 and Level 4 but not 

Level 1 or Level 3 then there is no corresponding level of the learning progression that 

captures that behavior.  In this case the student will be labeled as misclassified regardless 

of which level of the learning progression they are assigned, because there is no class that 

truly represents their ability structure.  

 Each of the three presented methods (parameter recovery, relative model fit, and 

classification accuracy) answers a slightly different question and when combined should 

provide support for the benefit or drawback of using each of the models in the given 

situation.   Therefore it was deemed that these methods would be appropriate for this 
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study.  These model fit indices will be calculated for each replication, and then compared 

across cells to determine how well each model performed for the different possible 

parameter distributions. 

Results 

In general the parameters were able to be recovered on a fairly consistent basis for 

all models (see Table 26), with all cells recovering (on average across all repetitions of 

the cell) at least 90% of the parameters correctly.  For each cell in the model parameter 

recovery was determined by how well the model that was used to generate the data was 

able to recover the parameters (and did not consider how well a model that was not used 

to generate the parameters was able to recover parameters)..  The percent of parameters 

recovered (using the 95% central interval described above) for the probabilities 

associated with the latent class was within one standard deviation of each other for 

Models 1-3, but Model 4 was about 2 standard deviations below that of the other models.   

Examining the individual variable probabilities recovered showed that Models 2-4 

were all within one standard deviation from each other, but more than 5 standard 

deviations below Model 1.  One possible explanation for this is that the probability of 

students who have the lower level attributes tended to be high so there was not as many 

examples of students who did not have these attributes getting the answers correct when 

they did not have the appropriate attribute which could cause the estimation of those 

parameters to be incorrect.   
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Table 26: Parameter Recovery information, averaged across all cells for each Model 

Model 

% LP probs recovered across all 

cells 

% Obs probs recovered across all 

cells 

min max average std. dev. min max average std. dev. 

1 0.94 0.97 0.954 0.01 0.951 0.967 0.958 0.004 

2 0.933 0.98 0.955 0.013 0.913 0.958 0.934 0.015 

3 0.939 0.983 0.959 0.011 0.911 0.964 0.933 0.015 

4 0.908 0.993 0.956 0.013 0.913 0.961 0.935 0.014 

 

 In terms of model fit, Models 1 and 3 seemed to be the best fitting models, 

regardless of which model was used to generate the data.  In general the DIC favored 

Model 1 particularly as the sample size increased, which may be expected as the DIC 

penalizes more complex models (Wheeler, Hickson & Waller, 2010).  The one exception 

to that was the case where Model 4 was the generating model and in this case the DIC 

picked Model 3 as the model with the best fit instead.   

When Model 1 was the generating model and the sample size was low then the 

BIC picked Model 3 as the best fit and the AIC picked Model 3.  When the sample size 

was high then while the BIC still picked Model 3, the AIC was mixed between Model 1 

and Model 3 (see    

Table 27).  In particular it seemed to favor Model 3 when there was an unequal 

distribution of students along ability range and the probability of a correct response 

stayed the same as the ability level increased over the requirements for the item.  It could 

be that since Model 1 is a special case of Model 3 and since the probability of a correct 

response is the same if a student has the required attribute regardless of if a student has 

higher level attributes that Model 3 is able to capture this structure as well or better than 

Model 1.  For the small sample size, the DIC indicated Model 1 when there was an equal 
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probability of students in each class and Model 3 otherwise, but as sample size increased 

it indicated that Model 1 was the best fitting model.   

Table 27:  Proportion of replications in which each model was picked as the best fit for 

data generated by Model 1 

SS LP OV 

% of times chosen by 

AIC % of times chosen by BIC 

% of times chosen by 

DIC 

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 

50 1 1 0 0 1 0 0 0 1 0 0.63 0 0.37 0 

50 1 2 0 0 1 0 0 0 1 0 0.54 0 0.46 0 

50 2 1 0.01 0 0.99 0 0 0 1 0 0.35 0 0.65 0 

50 2 2 0 0 1 0 0 0 1 0 0.25 0 0.75 0 

50 3 1 0 0 1 0 0 0 1 0 0.32 0 0.68 0 

50 3 2 0 0 1 0 0 0 1 0 0.33 0 0.67 0 

50 4 1 0 0 1 0 0 0.05 0.95 0 0.15 0 0.85 0 

50 4 2 0 0 1 0 0 0.01 0.99 0 0.2 0 0.8 0 

200 1 1 0.68 0 0.32 0 0.15 0 0.85 0 1 0 0 0 

200 1 2 0.31 0 0.69 0 0.05 0 0.95 0 0.99 0 0.01 0 

200 2 1 0.16 0 0.84 0 0.1 0 0.9 0 0.97 0 0.03 0 

200 2 2 0.04 0 0.96 0 0 0 1 0 0.38 0 0.62 0 

200 3 1 0.19 0 0.81 0 0.17 0 0.83 0 1 0 0 0 

200 3 2 0.09 0 0.91 0 0.02 0 0.98 0 0.79 0 0.21 0 

200 4 1 0.03 0 0.97 0 0.02 0 0.98 0 0.92 0 0.08 0 

200 4 2 0.04 0 0.96 0 0 0 1 0 0.42 0 0.58 0 

500 1 1 1 0 0 0 0.3 0 0.7 0 1 0 0 0 

500 1 2 0.99 0 0.01 0 0.21 0 0.79 0 1 0 0 0 

500 2 1 0.9 0 0.1 0 0.04 0 0.96 0 1 0 0 0 

500 2 2 0.07 0 0.93 0 0.06 0 0.94 0 0.87 0 0.13 0 

500 3 1 0.99 0 0.01 0 0.1 0 0.9 0 1 0 0 0 

500 3 2 0.25 0 0.75 0 0.07 0 0.93 0 1 0 0 0 

500 4 1 0.57 0 0.43 0 0.07 0 0.93 0 1 0 0 0 

500 4 2 0.04 0 0.96 0 0.04 0 0.96 0 0.84 0 0.16 0 

 

 When Model 2 was the generating model the DIC picked Model 1 as the best 

fitting model in all cases.  The AIC and the BIC statistics picked Model 2 as the best 

fitting model most of the time when the sample was small (see Table 28).  As the sample 

size increased, the AIC started picking Model 1 as the best fitting model for all cases, 
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while BIC indicated Model 1 only in some cases, particularly those cases where a 

standard progression of attributes was not necessarily followed.   

This result seems surprising as one of the theorized reasons for choosing Model 2 

would be to allow for the attributes of the LP to not follow a standard progression.  

However, this indicates that Model 1 would be the best fitting model in these situations, 

which provides justification for the use of Model 1 even in situations for which the 

relationship between the attributes differ than that specified in Model 1.   An examination 

of select cells showed that the difference between the fit values was more than 10, which 

is one rule of thumb when selecting models (Burnham & Anderson, 2004). 

AIC tended to indicate Model 3 was the best fitting model when the data was 

generated using Model 3 and the sample sizes were small (see Table 29).  As the sample 

sizes increased the AIC picked Model 1 as the best fitting model, except in the cases 

where the data should have followed a strict hierarchy and the students were not equally 

distributed in ability levels, in which case Model 3 was picked.  For small sample sizes 

the BIC indicated that either Model 2 or Model 3 was the best fitting model while as 

sample sizes increased either Model 1 or Model 3 was chosen.  Interesting was that in the 

case where a strict hierarchy was followed Model 3 tended to be chosen over Model 1.  

The DIC indicated Model 1for large sample sizes and either Model 3 or Model 1 for 

small sample sizes. 
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Table 28:  Proportion of replications in which each model was picked as the best fit for 

data generated using Model 2 

SS LP OV 

% of times chosen by 

AIC 

% of times chosen by 

BIC 

% of times chosen by 

DIC 

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 

50 1 1 0.02 0.87 0.04 0.07 0 1 0 0 0.81 0.15 0.03 0.01 

50 2 1 0 0.91 0.03 0.06 0 1 0 0 0.31 0.53 0.05 0.11 

50 3 1 0.02 0.96 0.01 0.01 0 1 0 0 0.58 0.33 0.08 0.01 

50 4 1 0 0.98 0.01 0.01 0 1 0 0 0.59 0.33 0.08 0 

50 5 1 0.01 0.91 0.05 0.03 0 1 0 0 0.83 0.14 0.02 0.01 

50 6 1 0.01 0.93 0.02 0.04 0 1 0 0 0.72 0.21 0.06 0.01 

50 7 1 0.02 0.71 0 0.27 0 0.96 0 0.04 0.76 0.13 0.02 0.09 

50 8 1 0.12 0.6 0.04 0.24 0 0.96 0 0.04 0.86 0.08 0.04 0.02 

200 1 1 0.86 0.13 0 0.01 0.09 0.9 0 0.01 1 0 0 0 

200 2 1 0.16 0.77 0.01 0.06 0.01 0.99 0 0 0.72 0.22 0.03 0.03 

200 3 1 0.45 0.53 0 0.02 0.05 0.95 0 0 0.98 0.02 0 0 

200 4 1 0.38 0.58 0.04 0 0.05 0.95 0 0 0.97 0.02 0.01 0 

200 5 1 0.96 0.04 0 0 0.25 0.75 0 0 1 0 0 0 

200 6 1 0.73 0.27 0 0 0.03 0.97 0 0 1 0 0 0 

200 7 1 0.87 0.13 0 0 0.15 0.84 0 0.01 0.99 0 0 0.01 

200 8 1 0.99 0.01 0 0 0.39 0.6 0 0.01 1 0 0 0 

500 1 1 1 0 0 0 0.9 0.1 0 0 1 0 0 0 

500 2 1 0.8 0.17 0 0.03 0.03 0.97 0 0 1 0 0 0 

500 3 1 0.99 0.01 0 0 0.18 0.82 0 0 1 0 0 0 

500 4 1 0.99 0 0.01 0 0.06 0.94 0 0 1 0 0 0 

500 5 1 1 0 0 0 0.95 0.05 0 0 1 0 0 0 

500 6 1 1 0 0 0 0.47 0.53 0 0 1 0 0 0 

500 7 1 1 0 0 0 0.8 0.2 0 0 1 0 0 0 

500 8 1 1 0 0 0 1 0 0 0 1 0 0 0 
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Table 29: Proportion of replications in which each model was picked as the best fit for 

data generated using Model 3 

SS LP OV 

% of times chosen by 

AIC 

% of times chosen by 

BIC 

% of times chosen by 

DIC 

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 

50 1 1 0 0 1 0 0 0.02 0.98 0 0.56 0 0.44 0 

50 2 1 0.03 0.34 0.4 0.23 0 0.7 0.15 0.15 0.75 0.05 0.18 0.02 

50 3 1 0 0 1 0 0 0 1 0 0.16 0 0.84 0 

50 4 1 0.01 0.06 0.55 0.38 0 0.16 0.52 0.32 0.34 0.03 0.48 0.15 

50 5 1 0 0.03 0.97 0 0 0.09 0.91 0 0.43 0 0.57 0 

50 6 1 0.01 0.22 0.53 0.24 0 0.63 0.28 0.09 0.65 0.01 0.25 0.09 

50 7 1 0.01 0.36 0.63 0 0 0.77 0.23 0 0.27 0 0.73 0 

50 8 1 0.01 0.83 0.08 0.08 0 0.96 0.02 0.02 0.71 0.18 0.09 0.02 

50 9 1 0.05 0.23 0.45 0.27 0 0.54 0.26 0.2 0.8 0 0.19 0.01 

50 10 1 0.04 0.75 0.09 0.12 0 0.96 0.01 0.03 0.7 0.13 0.17 0 

50 11 1 0 0.1 0.58 0.32 0 0.29 0.46 0.25 0.68 0 0.28 0.04 

50 12 1 0.04 0.36 0.11 0.49 0 0.82 0.03 0.15 0.73 0.04 0.16 0.07 

50 13 1 0.04 0.02 0.49 0.45 0 0.3 0.38 0.32 0.78 0 0.18 0.04 

50 14 1 0.03 0.4 0.1 0.47 0 0.8 0.02 0.18 0.71 0.07 0.13 0.09 

50 15 1 0.08 0 0.43 0.49 0 0.02 0.46 0.52 0.88 0 0.09 0.03 

50 16 1 0.11 0.68 0.01 0.2 0 0.92 0 0.08 0.82 0.12 0.02 0.04 

200 1 1 0.27 0 0.73 0 0.02 0 0.98 0 0.98 0 0.02 0 

200 2 1 0.95 0 0.05 0 0.25 0.05 0.47 0.23 0.99 0 0.01 0 

200 3 1 0.05 0 0.95 0 0.01 0 0.99 0 0.5 0 0.5 0 

200 4 1 0.09 0 0.49 0.42 0.01 0 0.5 0.49 0.73 0 0.24 0.03 

200 5 1 0.12 0 0.88 0 0.01 0 0.99 0 0.78 0 0.22 0 

200 6 1 0.63 0 0.28 0.09 0.07 0.03 0.63 0.27 0.98 0 0.02 0 

200 7 1 0.03 0 0.97 0 0.01 0 0.99 0 0.47 0 0.53 0 

200 8 1 0.57 0.07 0.25 0.11 0.02 0.76 0.19 0.03 0.97 0 0.03 0 

200 9 1 0.94 0 0.05 0.01 0.27 0.01 0.5 0.22 1 0 0 0 

200 10 1 0.74 0.05 0.12 0.09 0.1 0.72 0.06 0.12 0.99 0 0.01 0 

200 11 1 0.74 0 0.19 0.07 0.09 0 0.67 0.24 0.99 0 0.01 0 

200 12 1 0.91 0 0.07 0.02 0.21 0.21 0.22 0.36 0.99 0 0.01 0 

200 13 1 0.89 0 0.03 0.08 0.21 0 0.38 0.41 1 0 0 0 

200 14 1 0.83 0 0.08 0.09 0.17 0.16 0.22 0.45 1 0 0 0 

200 15 1 0.98 0 0 0.02 0.33 0 0.37 0.3 1 0 0 0 

200 16 1 1 0 0 0 0.43 0.56 0 0.01 1 0 0 0 
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SS LP OV % of times chosen by AIC 

% of times chosen by 

BIC 

% of times chosen by 

DIC 

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 

500 1 1 0.99 0 0.01 0 0.19 0 0.81 0 1 0 0 0 

500 2 1 1 0 0 0 0.96 0 0.02 0.02 1 0 0 0 

500 3 1 0.06 0 0.94 0 0.06 0 0.94 0 0.87 0 0.13 0 

500 4 1 0.55 0 0.22 0.23 0.03 0 0.46 0.51 0.98 0 0.02 0 

500 5 1 0.26 0 0.74 0 0.08 0 0.92 0 1 0 0 0 

500 6 1 1 0 0 0 0.35 0 0.38 0.27 1 0 0 0 

500 7 1 0.02 0 0.98 0 0.02 0 0.98 0 0.86 0 0.14 0 

500 8 1 1 0 0 0 0.22 0.11 0.53 0.14 1 0 0 0 

500 9 1 1 0 0 0 0.88 0 0.07 0.05 1 0 0 0 

500 10 1 1 0 0 0 0.47 0.1 0.34 0.09 1 0 0 0 

500 11 1 1 0 0 0 0.47 0 0.4 0.13 1 0 0 0 

500 12 1 1 0 0 0 0.89 0 0.06 0.05 1 0 0 0 

500 13 1 1 0 0 0 0.83 0 0.11 0.06 1 0 0 0 

500 14 1 1 0 0 0 0.93 0 0.04 0.03 1 0 0 0 

500 15 1 1 0 0 0 1 0 0 0 1 0 0 0 

500 16 1 1 0 0 0 1 0 0 0 1 0 0 0 

 

In general, Model 4 was not picked to be the best fitting model even when it was 

the generating model (see Table 30).  For small sample sizes AIC and BIC tended to 

indicate Model 2 when there were mostly middle or low ability students, Model 4 when 

the probability was equal across all of the attributes, and Model 3 otherwise.  As the 

sample size increased the AIC indicated Model 1 was a better fit except in the cases 

where there was a strict hierarchy and the distribution of students was skewed.  The BIC 

indicated Model 1 was the best fitting model when the ability levels of the students were 

equally distributed and was split between the rest of the models otherwise, although 

Model 2 seemed to be picked more often when the ability level of the students was low 

and Model 4 was picked when there were mostly high ability students.  The DIC tended 

to pick Model 1 across sample size.   
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Table 30: Proportion of replications in which each model was picked as the best fit for 

data generated using Model 4 

SS LP OV 

% of times chosen by 

AIC % of times chosen by BIC 

% of times chosen by 

DIC 

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 

50 1 1 0.01 0 0.99 0 0 0.01 0.99 0 0.58 0 0.42 0 

50 2 1 0.03 0.43 0.34 0.2 0 0.76 0.15 0.09 0.81 0.04 0.12 0.03 

50 3 1 0.04 0.44 0.29 0.23 0 0.74 0.13 0.13 0.9 0.03 0.05 0.02 

50 4 1 0.03 0.47 0.32 0.18 0 0.81 0.1 0.09 0.75 0.06 0.18 0.01 

50 5 1 0 0 1 0 0 0 1 0 0.16 0 0.84 0 

50 6 1 0 0.11 0.53 0.36 0 0.36 0.42 0.22 0.39 0.01 0.42 0.18 

50 7 1 0 0.46 0.05 0.49 0 0.75 0.03 0.22 0.45 0.13 0.16 0.26 

50 8 1 0 0.12 0.55 0.33 0 0.35 0.45 0.2 0.34 0 0.47 0.19 

50 9 1 0 0 1 0 0 0.06 0.94 0 0.37 0 0.63 0 

50 10 1 0 0.43 0.47 0.1 0 0.81 0.16 0.03 0.66 0.05 0.26 0.03 

50 11 1 0.01 0.5 0.29 0.2 0 0.76 0.14 0.1 0.62 0.11 0.23 0.04 

50 12 1 0.01 0.36 0.42 0.21 0 0.77 0.13 0.1 0.65 0.06 0.24 0.05 

50 13 1 0 0.36 0.64 0 0 0.79 0.21 0 0.26 0.05 0.69 0 

50 14 1 0 0.91 0.04 0.05 0 1 0 0 0.64 0.25 0.07 0.04 

50 15 1 0.01 0.93 0.04 0.02 0 1 0 0 0.68 0.2 0.1 0.02 

50 16 1 0 0.9 0.03 0.07 0 1 0 0 0.67 0.22 0.08 0.03 

50 17 1 0.06 0.59 0.02 0.33 0 0.88 0 0.12 0.87 0.08 0.02 0.03 

50 18 1 0.03 0.18 0.5 0.29 0 0.54 0.28 0.18 0.83 0.01 0.14 0.02 

50 19 1 0.01 0.66 0.04 0.29 0 0.93 0 0.07 0.79 0.07 0.02 0.12 

50 20 1 0 0.09 0.72 0.19 0 0.29 0.55 0.16 0.66 0 0.3 0.04 

50 21 1 0.05 0.14 0.07 0.74 0 0.53 0.03 0.44 0.85 0.03 0.04 0.08 

50 22 1 0.02 0.06 0.5 0.42 0 0.26 0.39 0.35 0.77 0 0.19 0.04 

50 23 1 0.19 0 0 0.81 0 0.03 0 0.97 0.93 0 0 0.07 

50 24 1 0.03 0.01 0.38 0.58 0 0.07 0.34 0.59 0.77 0 0.16 0.07 
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SS LP OV 

% of times chosen by 

AIC 

% of times chosen by 

BIC 

% of times chosen by 

DIC 

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 

200 1 1 0.42 0 0.58 0 0.05 0 0.95 0 1 0 0 0 

200 2 1 0.97 0 0.03 0 0.14 0.06 0.34 0.46 1 0 0 0 

200 3 1 0.91 0 0.02 0.07 0.19 0.12 0.09 0.6 0.99 0 0.01 0 

200 4 1 0.92 0 0.04 0.04 0.25 0.01 0.4 0.34 1 0 0 0 

200 5 1 0.01 0 0.99 0 0 0 1 0 0.44 0 0.56 0 

200 6 1 0.15 0 0.26 0.59 0.01 0 0.29 0.7 0.93 0 0.03 0.04 

200 7 1 0.26 0.01 0 0.73 0.07 0.1 0 0.83 0.82 0 0.04 0.14 

200 8 1 0.22 0 0.42 0.36 0.02 0 0.48 0.5 0.75 0 0.22 0.03 

200 9 1 0.11 0 0.89 0 0.02 0 0.98 0 0.83 0 0.17 0 

200 10 1 0.61 0 0.25 0.14 0.08 0.03 0.61 0.28 0.97 0 0.03 0 

200 11 1 0.57 0 0.14 0.29 0.06 0.13 0.21 0.6 0.99 0 0 0.01 

200 12 1 0.59 0 0.31 0.1 0.04 0.02 0.76 0.18 0.99 0 0.01 0 

200 13 1 0.08 0 0.92 0 0 0 1 0 0.45 0 0.55 0 

200 14 1 0.51 0.21 0.25 0.03 0.05 0.87 0.08 0 0.99 0 0.01 0 

200 15 1 0.42 0.3 0.22 0.06 0.03 0.85 0.07 0.05 0.98 0 0.02 0 

200 16 1 0.37 0.25 0.32 0.06 0.02 0.89 0.09 0 0.97 0.02 0.01 0 

200 17 1 0.92 0 0 0.08 0.18 0.08 0 0.74 1 0 0 0 

200 18 1 0.94 0 0.04 0.02 0.22 0 0.43 0.35 1 0 0 0 

200 19 1 0.75 0.02 0 0.23 0.16 0.2 0 0.64 0.99 0 0 0.01 

200 20 1 0.62 0 0.29 0.09 0.11 0 0.66 0.23 1 0 0 0 

200 21 1 0.94 0 0 0.06 0.18 0 0 0.82 1 0 0 0 

200 22 1 0.87 0 0.08 0.05 0.15 0 0.35 0.5 1 0 0 0 

200 23 1 0.99 0 0 0.01 0.57 0 0 0.43 1 0 0 0 

200 24 1 0.99 0 0.01 0 0.36 0 0.16 0.48 1 0 0 0 
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SS LP OV % of times chosen by AIC 

% of times chosen by 

BIC 

% of times chosen by 

DIC 

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 

500 1 1 0.99 0 0.01 0 0.21 0 0.79 0 1 0 0 0 

500 2 1 1 0 0 0 0.94 0 0.02 0.04 1 0 0 0 

500 3 1 1 0 0 0 0.95 0 0 0.05 1 0 0 0 

500 4 1 1 0 0 0 0.91 0 0.08 0.01 1 0 0 0 

500 5 1 0.02 0 0.98 0 0.02 0 0.98 0 0.85 0 0.15 0 

500 6 1 0.91 0 0 0.09 0.07 0 0.03 0.9 1 0 0 0 

500 7 1 0.87 0 0 0.13 0.02 0 0 0.98 0.99 0 0 0.01 

500 8 1 0.81 0 0.12 0.07 0.08 0 0.48 0.44 1 0 0 0 

500 9 1 0.22 0 0.78 0 0.06 0 0.94 0 1 0 0 0 

500 10 1 1 0 0 0 0.33 0 0.28 0.39 1 0 0 0 

500 11 1 1 0 0 0 0.29 0 0.07 0.64 1 0 0 0 

500 12 1 1 0 0 0 0.29 0 0.54 0.17 1 0 0 0 

500 13 1 0.05 0 0.95 0 0.05 0 0.95 0 0.9 0 0.1 0 

500 14 1 1 0 0 0 0.21 0.42 0.33 0.04 1 0 0 0 

500 15 1 1 0 0 0 0.13 0.43 0.34 0.1 1 0 0 0 

500 16 1 1 0 0 0 0.12 0.41 0.37 0.1 1 0 0 0 

500 17 1 1 0 0 0 0.96 0 0 0.04 1 0 0 0 

500 18 1 1 0 0 0 0.94 0 0.03 0.03 1 0 0 0 

500 19 1 1 0 0 0 0.56 0 0 0.44 1 0 0 0 

500 20 1 0.99 0 0.01 0 0.43 0 0.44 0.13 1 0 0 0 

500 21 1 1 0 0 0 0.87 0 0 0.13 1 0 0 0 

500 22 1 1 0 0 0 0.81 0 0.06 0.13 1 0 0 0 

500 23 1 1 0 0 0 1 0 0 0 1 0 0 0 

500 24 1 1 0 0 0 1 0 0 0 1 0 0 0 

 

 Overall, it seems that Model 1 tends to be the best fitting model when the sample 

size is large, Model 2 might be as good or better when the students are mostly low ability 

students, and Model 3 might be a good model for the rest of the cases.  While in some 

cases Model 4 may be a good model if the ability levels of the students are high, it does 

not generally seem to be the best fitting model.   

 In terms of classification, when the same data that was used for generating the 

parameters of the model was used to classify the students then in all cases Model 1 had a 

higher classification rate (see Table 31)  although no model performed poorly.  When a 
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separate sample was used, overall classification dropped slightly (as would be expected 

due to differences in the sample that generated the parameters and the sample that was 

used to test the model).   

Table 31:  Average percent of students classified correctly across all cells for the data that 

was used to estimate the model 

Generated 

by 

 

Classified by M1 Classified by M2 Classified by M3 Classified by M4 

Ave. 

St. 

Dev. Ave. 

St. 

Dev. Ave. 

St. 

Dev Ave. 

St. 

Dev. 

Model 1 84.40% 2.40% 72.30% 3.50% 81.10% 1.50% 80.60% 1.50% 

Model 2 80.10% 3.40% 68.10% 4.60% 68.30% 4.50% 68.50% 4.40% 

Model 3 79.10% 1.90% 66.80% 4.70% 69.00% 6.20% 69.10% 6.10% 

Model 4 79.10% 1.60% 68.40% 4.50% 70.50% 5.50% 70.90% 5.10% 

 

 When Model 1 was the generating model and the same data was used to generate 

the parameters as to classify the students then Model 1 had a higher classification rate 

and the adjusted Rand index was largest for Model 1 (see Table 33).   

The Rand index is a number between 0 and 1 where numbers closest to 1 indicate 

a higher correspondence.  The answer space is first partitioned into different pieces such 

that no piece overlaps and the combination of pieces cover the entire answer space (i.e. 

for a categorical answer space this could be that each partition is one category).  A matrix 

is set up such where the rows and the columns are the partition and the cells are the total 

number of cases that occur in each partition.  For example, in Table 32, the cell t12 would 

be the number of times a student who was actually at level 1 was classified to be at level 

2. 
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Table 32:  Adjusted Rand partition table 

group q1 q2 … qC Total 

p1 t11 t12 … t1C t1+ 

p2 t21 t22 … t2C t2+ 

… … … .. … … 

pR tR1 tR2 … tRC tR+ 

Total t+1 t+2 … t+C N 

 

The Rand index then generates numbers that represent the different types of pairs 

as follows: 
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The adjusted Rand index is then found by using: 
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For this study, the resulting level of the student was compared to the generated 

(known true) level of the student.  For Models 2-4 students could have 16 possible 

outcomes for their level (they had two possibilities for each of the four level variables), 
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so a number from 1-16 was assigned based on their starting level and this was compared 

to their estimated level.  The level of the learning progression for Model 1 could also be 

converted to one of these numbers by assuming that they have all of the attribute 

variables for the level they were assigned and all of the previous levels.   

Table 33:  Classification information when Model 1 generated the data same data was 

used for classification 

SS LP OV 
Percent of students correctly classified adjusted Rand Index 

M1 M2 M3 M4 M1 M2 M3 M4 

50 1 1 87.98% 70.90% 80.80% 79.74% 0.726 0.501 0.606 0.599 

50 1 2 87.60% 67.78% 79.80% 78.72% 0.715 0.472 0.587 0.581 

50 2 1 89.10% 77.28% 84.30% 83.50% 0.729 0.607 0.666 0.667 

50 2 2 87.88% 74.34% 82.48% 81.52% 0.713 0.562 0.629 0.63 

50 3 1 86.86% 75.48% 81.56% 80.58% 0.688 0.555 0.602 0.599 

50 3 2 86.04% 72.62% 80.18% 78.82% 0.664 0.513 0.568 0.559 

50 4 1 87.38% 77.66% 83.30% 82.20% 0.693 0.569 0.621 0.616 

50 4 2 86.54% 74.62% 81.76% 80.52% 0.676 0.545 0.605 0.596 

200 1 1 83.52% 69.11% 80.02% 79.74% 0.643 0.475 0.589 0.588 

200 1 2 82.29% 65.13% 78.79% 78.46% 0.616 0.43 0.562 0.56 

200 2 1 85.32% 75.81% 83.07% 82.91% 0.674 0.593 0.649 0.65 

200 2 2 83.34% 71.73% 81.73% 81.45% 0.635 0.532 0.618 0.617 

200 3 1 82.52% 72.50% 79.83% 79.67% 0.6 0.506 0.564 0.564 

200 3 2 82.21% 70.12% 79.91% 79.63% 0.595 0.489 0.563 0.563 

200 4 1 84.15% 75.45% 82.13% 81.92% 0.638 0.547 0.605 0.604 

200 4 2 82.54% 73.32% 80.83% 80.35% 0.606 0.522 0.581 0.576 

500 1 1 82.71% 68.86% 79.54% 79.33% 0.625 0.47 0.578 0.577 

500 1 2 81.88% 65.01% 79.34% 79.11% 0.607 0.429 0.567 0.566 

500 2 1 83.53% 74.93% 82.50% 82.44% 0.642 0.575 0.632 0.632 

500 2 2 83.23% 72.07% 82.54% 82.40% 0.637 0.542 0.631 0.631 

500 3 1 81.71% 71.89% 80.19% 79.99% 0.586 0.498 0.566 0.565 

500 3 2 80.92% 69.07% 79.61% 79.26% 0.573 0.472 0.554 0.553 

500 4 1 83.14% 74.85% 81.92% 81.76% 0.618 0.535 0.598 0.597 

500 4 2 82.14% 73.67% 81.24% 81.05% 0.601 0.527 0.588 0.588 

 

 

When Model 1 was the generating model and a separate data set was used to test 

classification, then for small sample sizes Model 3 had the highest classification rates.  

With a sample size of 200, Model 1 had the highest classification rates when there was an 
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even distribution in the spread of the student’s ability while Model 3 had a higher 

classification rate for all other cases.  With the large sample size, Model 1 had the highest 

classification rates except when the students were mostly high ability students, in which 

case Model 3 had the highest classification rate (see Table 34).   For the most part, the 

adjusted Rand index followed this same pattern.  A few exceptions occurred when the 

sample size was 200, in which case the adjusted Rand index indicated that Model 4 was 

slightly more consistent with the original classifications.   

Table 34:  Classification information when Model 1 generated the data and a separate 

data set was used for classification 

SS LP OV 
Percent of students correctly classified adjusted Rand Index 

M1 M2 M3 M4 M1 M2 M3 M4 

50 1 1 74.50% 67.60% 77.60% 76.30% 0.495 0.46 0.551 0.543 

50 1 2 72.40% 63.60% 75.20% 73.50% 0.461 0.416 0.514 0.502 

50 2 1 76.80% 73.40% 80.30% 78.80% 0.558 0.557 0.616 0.608 

50 2 2 74.00% 70.10% 79.20% 77.80% 0.507 0.509 0.591 0.59 

50 3 1 72.90% 70.50% 76.60% 74.70% 0.449 0.476 0.523 0.513 

50 3 2 71.80% 67.70% 75.70% 74.20% 0.433 0.451 0.511 0.505 

50 4 1 74.00% 72.60% 78.30% 77.10% 0.479 0.501 0.546 0.538 

50 4 2 73.80% 70.70% 77.30% 76.10% 0.477 0.482 0.535 0.528 

200 1 1 80.40% 67.80% 79.10% 78.90% 0.585 0.457 0.576 0.575 

200 1 2 78.80% 64.20% 77.50% 77.30% 0.553 0.415 0.539 0.539 

200 2 1 81.00% 74.70% 82.20% 82.00% 0.61 0.579 0.634 0.635 

200 2 2 80.40% 71.00% 81.30% 80.90% 0.599 0.525 0.615 0.614 

200 3 1 79.10% 71.50% 79.30% 79.10% 0.542 0.495 0.557 0.558 

200 3 2 77.90% 67.90% 78.00% 77.90% 0.522 0.454 0.53 0.531 

200 4 1 80.30% 73.80% 80.80% 80.50% 0.57 0.518 0.582 0.579 

200 4 2 79.00% 72.00% 79.70% 79.40% 0.549 0.501 0.563 0.561 

500 1 1 81.60% 67.90% 79.10% 78.80% 0.604 0.457 0.569 0.567 

500 1 2 80.70% 63.90% 78.40% 78.10% 0.585 0.414 0.551 0.55 

500 2 1 82.10% 74.50% 82.40% 82.30% 0.621 0.569 0.626 0.627 

500 2 2 81.80% 71.90% 81.90% 81.80% 0.618 0.535 0.623 0.622 

500 3 1 80.30% 71.20% 79.80% 79.60% 0.562 0.486 0.559 0.558 

500 3 2 79.10% 68.00% 78.70% 78.40% 0.541 0.459 0.54 0.539 

500 4 1 81.70% 74.20% 81.40% 81.20% 0.597 0.527 0.59 0.589 

500 4 2 80.40% 72.90% 80.40% 80.20% 0.574 0.517 0.574 0.573 
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 When the data was generated by Model 2 and the same data set was used for 

classification then Model 1 always had the highest classification rate (see Table 35).  In 

addition, the adjusted Rand index was highest for Model 1.   

Table 35:  Classification information when Model 2 generated the data and the same data 

was used for classification 

SS LP OV 
Percent of students correctly classified adjusted Rand Index 

M1 M2 M3 M4 M1 M2 M3 M4 

50 1 1 83.20% 66.80% 67.30% 67.80% 0.613 0.454 0.462 0.468 

50 2 1 83.10% 75.30% 75.20% 75.30% 0.614 0.544 0.547 0.546 

50 3 1 83.10% 72.50% 72.50% 72.80% 0.605 0.503 0.505 0.51 

50 4 1 86.30% 75.90% 76.40% 75.90% 0.654 0.544 0.555 0.554 

50 5 1 85.50% 68.30% 68.90% 68.90% 0.671 0.483 0.491 0.495 

50 6 1 85.90% 71.30% 71.70% 72.00% 0.665 0.498 0.503 0.51 

50 7 1 82.20% 65.00% 65.60% 66.80% 0.603 0.426 0.433 0.447 

50 8 1 83.80% 60.80% 61.90% 63.30% 0.642 0.374 0.384 0.406 

200 1 1 77.70% 65.50% 65.60% 65.80% 0.517 0.439 0.44 0.442 

200 2 1 77.80% 71.80% 72.00% 72.20% 0.516 0.499 0.502 0.503 

200 3 1 78.10% 69.90% 70.00% 70.30% 0.523 0.486 0.49 0.494 

200 4 1 81.90% 73.70% 73.70% 73.80% 0.565 0.513 0.515 0.517 

200 5 1 79.70% 65.00% 65.10% 65.20% 0.564 0.43 0.431 0.432 

200 6 1 80.60% 69.60% 69.70% 70.00% 0.581 0.483 0.486 0.489 

200 7 1 76.60% 64.50% 64.60% 64.80% 0.51 0.421 0.421 0.423 

200 8 1 78.20% 60.40% 60.40% 60.80% 0.555 0.368 0.367 0.371 

500 1 1 76.30% 64.90% 65.00% 65.10% 0.495 0.43 0.431 0.433 

500 2 1 76.00% 71.70% 71.80% 71.90% 0.484 0.496 0.497 0.498 

500 3 1 76.90% 69.00% 69.10% 69.40% 0.502 0.474 0.476 0.48 

500 4 1 80.10% 73.00% 73.00% 72.90% 0.535 0.5 0.5 0.499 

500 5 1 78.30% 65.10% 65.20% 65.30% 0.549 0.436 0.437 0.439 

500 6 1 80.00% 69.10% 69.30% 69.50% 0.58 0.481 0.483 0.487 

500 7 1 75.10% 64.50% 64.50% 64.50% 0.486 0.423 0.423 0.423 

500 8 1 76.80% 59.90% 59.90% 60.10% 0.533 0.362 0.363 0.364 

 

 

When a separate data set was used for classification, Model 1 had the highest 

average classification rate across repetitions, except for the one case where the sample 

size was small and the students were mostly high ability students.  In this case, Model 2 

had a slightly better classification rate (see Table 36).  The adjusted Rand index, 
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however, did not always follow the classification rate pattern and, particularly when the 

sample size was small, indicated that Model 2 had the higher agreement.  

Table 36:  Classification information when Model 2 generated the data and a separate 

data set was used for classification 

SS LP OV 
Percent of students correctly classified adjusted Rand Index 

M1 M2 M3 M4 M1 M2 M3 M4 

50 1 1 67.60% 63.30% 62.90% 62.40% 0.363 0.412 0.407 0.405 

50 2 1 68.20% 69.80% 69.50% 69.70% 0.366 0.47 0.47 0.473 

50 3 1 69.10% 66.30% 65.50% 64.90% 0.382 0.437 0.427 0.426 

50 4 1 74.80% 71.90% 71.40% 70.30% 0.446 0.479 0.476 0.469 

50 5 1 70.90% 62.90% 62.80% 62.30% 0.432 0.404 0.401 0.4 

50 6 1 69.80% 67.20% 67.00% 66.40% 0.412 0.442 0.44 0.434 

50 7 1 66.00% 62.90% 62.50% 62.50% 0.356 0.415 0.408 0.412 

50 8 1 66.70% 55.60% 55.50% 54.70% 0.395 0.3 0.304 0.293 

200 1 1 73.30% 64.40% 64.40% 64.40% 0.449 0.429 0.43 0.431 

200 2 1 72.60% 70.70% 70.40% 70.20% 0.43 0.48 0.477 0.475 

200 3 1 73.80% 68.50% 68.30% 68.00% 0.458 0.465 0.464 0.463 

200 4 1 76.80% 71.80% 71.60% 70.90% 0.48 0.484 0.483 0.479 

200 5 1 75.00% 64.60% 64.60% 64.30% 0.498 0.433 0.432 0.43 

200 6 1 76.10% 68.10% 67.80% 67.70% 0.52 0.462 0.459 0.458 

200 7 1 71.60% 64.40% 64.20% 64.00% 0.431 0.42 0.417 0.415 

200 8 1 73.30% 59.20% 59.10% 58.70% 0.48 0.351 0.351 0.347 

500 1 1 74.60% 64.20% 64.10% 64.20% 0.471 0.426 0.426 0.428 

500 2 1 74.00% 71.10% 70.90% 70.80% 0.453 0.488 0.487 0.486 

500 3 1 75.00% 68.40% 68.30% 68.20% 0.477 0.47 0.469 0.47 

500 4 1 78.30% 72.90% 72.80% 72.50% 0.51 0.504 0.503 0.501 

500 5 1 76.20% 64.50% 64.50% 64.60% 0.516 0.432 0.432 0.434 

500 6 1 77.80% 68.30% 68.30% 68.20% 0.544 0.465 0.466 0.467 

500 7 1 72.90% 64.40% 64.40% 64.40% 0.451 0.421 0.421 0.421 

500 8 1 74.80% 59.60% 59.50% 59.40% 0.502 0.361 0.361 0.359 

 

 Model 1 had the highest classification rates and the highest adjusted Rand index 

when Model 3 was the generating model and the same data was used for classification as 

for generating the parameters (see Table 37).   
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Table 37:  Classification information when Model 3 generated the data and the same data 

was used for classification. 

SS LP OV 
Percent of students correctly classified adjusted Rand Index 

M1 M2 M3 M4 M1 M2 M3 M4 

50 1 1 86.60% 73.60% 79.70% 78.30% 0.671 0.503 0.559 0.549 

50 2 1 83.50% 66.70% 68.80% 68.80% 0.612 0.464 0.483 0.484 

50 3 1 87.60% 75.00% 82.20% 81.20% 0.694 0.557 0.611 0.605 

50 4 1 85.50% 75.30% 78.90% 79.10% 0.653 0.569 0.589 0.593 

50 5 1 86.40% 75.90% 81.90% 80.40% 0.67 0.555 0.6 0.596 

50 6 1 84.40% 71.40% 74.30% 74.00% 0.626 0.514 0.542 0.538 

50 7 1 86.30% 80.00% 82.10% 81.00% 0.646 0.562 0.577 0.568 

50 8 1 86.70% 74.10% 75.00% 74.70% 0.661 0.532 0.544 0.545 

50 9 1 85.70% 67.50% 69.20% 69.40% 0.66 0.476 0.493 0.501 

50 10 1 86.40% 71.30% 72.30% 72.00% 0.675 0.503 0.515 0.518 

50 11 1 86.10% 70.60% 73.50% 73.70% 0.676 0.515 0.555 0.561 

50 12 1 82.10% 65.30% 67.10% 68.00% 0.595 0.439 0.455 0.467 

50 13 1 83.20% 66.20% 69.40% 69.80% 0.621 0.461 0.493 0.497 

50 14 1 82.60% 65.70% 67.40% 68.00% 0.606 0.444 0.463 0.471 

50 15 1 84.30% 61.90% 67.80% 68.60% 0.643 0.419 0.491 0.505 

50 16 1 84.40% 61.90% 62.60% 64.40% 0.649 0.381 0.395 0.412 

200 1 1 82.30% 71.20% 78.90% 78.30% 0.588 0.472 0.532 0.528 

200 2 1 78.70% 65.20% 66.40% 66.60% 0.53 0.441 0.451 0.454 

200 3 1 83.50% 72.80% 81.80% 81.60% 0.619 0.536 0.602 0.601 

200 4 1 80.30% 72.40% 76.60% 76.70% 0.562 0.527 0.564 0.566 

200 5 1 82.40% 73.00% 79.80% 79.40% 0.591 0.511 0.553 0.551 

200 6 1 79.30% 68.50% 70.60% 71.00% 0.54 0.478 0.5 0.505 

200 7 1 83.10% 78.70% 81.40% 81.20% 0.583 0.538 0.556 0.557 

200 8 1 82.20% 71.60% 72.10% 72.30% 0.573 0.499 0.499 0.504 

200 9 1 79.50% 65.40% 66.60% 67.00% 0.559 0.451 0.463 0.467 

200 10 1 80.70% 69.00% 69.40% 69.70% 0.575 0.468 0.473 0.476 

200 11 1 81.40% 68.70% 70.20% 70.30% 0.6 0.496 0.517 0.521 

200 12 1 77.30% 64.00% 64.50% 64.90% 0.515 0.423 0.428 0.431 

200 13 1 78.40% 64.80% 67.00% 67.20% 0.538 0.44 0.464 0.466 

200 14 1 77.10% 65.10% 65.70% 66.00% 0.51 0.433 0.438 0.441 

200 15 1 79.50% 60.80% 64.80% 65.00% 0.577 0.394 0.456 0.458 

200 16 1 77.90% 59.40% 59.50% 59.80% 0.55 0.357 0.357 0.362 
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SS LP OV 
Percent of students correctly classified adjusted Rand Index 

M1 M2 M3 M4 M1 M2 M3 M4 

500 1 1 81.20% 70.70% 78.50% 78.30% 0.571 0.463 0.523 0.522 

500 2 1 78.40% 65.30% 66.20% 66.60% 0.529 0.448 0.456 0.459 

500 3 1 82.30% 72.30% 81.40% 81.30% 0.605 0.53 0.595 0.595 

500 4 1 79.40% 72.70% 76.40% 76.50% 0.554 0.537 0.567 0.567 

500 5 1 81.20% 72.80% 79.50% 79.20% 0.571 0.509 0.544 0.543 

500 6 1 78.40% 67.60% 69.70% 69.80% 0.527 0.469 0.49 0.491 

500 7 1 82.30% 78.60% 81.20% 81.10% 0.568 0.533 0.55 0.55 

500 8 1 81.00% 71.00% 71.50% 71.60% 0.551 0.485 0.484 0.487 

500 9 1 78.50% 65.00% 65.80% 65.90% 0.543 0.448 0.456 0.457 

500 10 1 79.50% 68.30% 68.80% 69.00% 0.562 0.468 0.475 0.477 

500 11 1 79.70% 68.20% 69.20% 69.30% 0.571 0.489 0.5 0.504 

500 12 1 76.10% 64.60% 64.90% 65.00% 0.495 0.428 0.43 0.431 

500 13 1 76.90% 64.60% 66.00% 66.20% 0.512 0.44 0.457 0.458 

500 14 1 75.80% 64.00% 64.20% 64.30% 0.492 0.421 0.423 0.423 

500 15 1 78.60% 60.00% 64.00% 64.20% 0.563 0.385 0.449 0.451 

500 16 1 76.90% 60.10% 60.20% 60.30% 0.535 0.366 0.366 0.368 

 

When a separate sample was used and the sample size was large, then Model 1 

had the highest classification rate (although there were two cases where Model 3 had the 

same classification rate) (see 
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Table 38 38).  However, when the sample size was small, Model 3 had similar or higher 

classification rates when there was a strict hierarchy, while Model 1 performed better 

when there was not a strict hierarchy.  The adjusted Rand index provided similar results, 

although when the sample size was small and the model would accept attributes of Levels 

2 or 3 in either order, this index was highest for Model 3. 
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Table 38: Classification information when Model 3 generated the data and a separate data 

set was used for classification. 

SS LP OV 
Percent of students correctly classified adjusted Rand Index 

M1 M2 M3 M4 M1 M2 M3 M4 

50 1 1 73.50% 70.60% 75.40% 74.10% 0.442 0.459 0.486 0.479 

50 2 1 69.80% 62.60% 63.00% 63.00% 0.397 0.415 0.415 0.417 

50 3 1 74.20% 70.00% 78.20% 77.00% 0.489 0.487 0.566 0.563 

50 4 1 72.50% 70.20% 74.20% 73.70% 0.452 0.505 0.539 0.539 

50 5 1 72.50% 69.60% 75.40% 73.90% 0.433 0.451 0.494 0.486 

50 6 1 69.90% 65.90% 66.70% 67.00% 0.396 0.442 0.45 0.462 

50 7 1 75.10% 76.40% 78.50% 77.50% 0.437 0.498 0.515 0.506 

50 8 1 73.70% 68.40% 68.60% 68.50% 0.422 0.454 0.454 0.455 

50 9 1 71.20% 62.70% 63.20% 62.70% 0.444 0.421 0.429 0.429 

50 10 1 71.30% 64.90% 65.30% 65.20% 0.437 0.427 0.433 0.433 

50 11 1 72.60% 64.80% 66.20% 65.80% 0.468 0.442 0.457 0.455 

50 12 1 66.70% 62.20% 62.60% 62.40% 0.354 0.397 0.399 0.397 

50 13 1 67.70% 62.00% 63.20% 62.80% 0.38 0.41 0.415 0.412 

50 14 1 65.40% 62.30% 62.30% 61.90% 0.341 0.396 0.39 0.389 

50 15 1 67.80% 57.40% 60.80% 60.40% 0.415 0.359 0.4 0.4 

50 16 1 67.30% 57.40% 56.90% 56.80% 0.398 0.328 0.328 0.326 

200 1 1 78.50% 70.00% 77.00% 76.50% 0.527 0.454 0.503 0.5 

200 2 1 74.70% 64.10% 64.30% 64.40% 0.468 0.428 0.429 0.43 

200 3 1 79.90% 71.40% 80.60% 80.30% 0.572 0.516 0.588 0.587 

200 4 1 76.60% 71.90% 75.50% 75.40% 0.51 0.526 0.555 0.555 

200 5 1 78.10% 71.60% 78.10% 77.70% 0.518 0.482 0.522 0.521 

200 6 1 75.10% 66.70% 68.70% 68.40% 0.475 0.455 0.472 0.472 

200 7 1 80.00% 78.00% 80.50% 80.10% 0.534 0.527 0.543 0.543 

200 8 1 78.00% 69.50% 69.50% 69.40% 0.505 0.466 0.465 0.466 

200 9 1 75.10% 63.80% 64.00% 64.00% 0.493 0.432 0.434 0.436 

200 10 1 76.90% 67.90% 68.10% 67.80% 0.517 0.46 0.463 0.463 

200 11 1 77.00% 67.20% 67.50% 67.60% 0.532 0.477 0.481 0.486 

200 12 1 71.90% 64.50% 64.50% 64.30% 0.425 0.425 0.425 0.424 

200 13 1 73.40% 63.90% 64.70% 64.50% 0.455 0.426 0.435 0.433 

200 14 1 72.40% 64.40% 64.40% 64.20% 0.438 0.425 0.425 0.424 

200 15 1 75.30% 59.70% 62.70% 62.40% 0.514 0.383 0.425 0.423 

200 16 1 73.30% 59.20% 59.10% 58.80% 0.479 0.354 0.354 0.35 
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SS LP OV 
Percent of students correctly classified adjusted Rand Index 

M1 M2 M3 M4 M1 M2 M3 M4 

500 1 1 80.10% 70.30% 78.10% 77.80% 0.556 0.461 0.52 0.519 

500 2 1 76.30% 64.60% 64.80% 64.70% 0.493 0.434 0.435 0.436 

500 3 1 81.10% 72.00% 81.10% 81.00% 0.595 0.53 0.596 0.596 

500 4 1 77.80% 72.40% 76.10% 76.00% 0.532 0.532 0.564 0.563 

500 5 1 78.80% 72.00% 78.10% 77.90% 0.533 0.494 0.523 0.523 

500 6 1 76.60% 67.10% 69.10% 68.80% 0.502 0.464 0.483 0.482 

500 7 1 80.50% 78.10% 80.50% 80.40% 0.541 0.524 0.539 0.54 

500 8 1 79.00% 69.30% 69.90% 69.80% 0.517 0.462 0.462 0.463 

500 9 1 76.10% 64.50% 64.70% 64.70% 0.506 0.443 0.443 0.443 

500 10 1 77.80% 68.00% 68.40% 68.30% 0.534 0.466 0.473 0.473 

500 11 1 77.60% 67.30% 67.90% 67.80% 0.538 0.479 0.485 0.487 

500 12 1 73.90% 64.10% 64.20% 64.20% 0.46 0.421 0.423 0.423 

500 13 1 75.40% 64.30% 65.20% 65.20% 0.486 0.437 0.447 0.447 

500 14 1 73.80% 64.00% 64.10% 64.00% 0.458 0.418 0.419 0.419 

500 15 1 77.50% 60.40% 63.20% 63.10% 0.548 0.387 0.436 0.433 

500 16 1 75.30% 60.10% 60.00% 59.80% 0.511 0.367 0.367 0.365 

 

 When Model 4 was the generating model and the same data was used for 

classification as for generating the data, then again Model 1 had the highest classification 

rates.  The adjusted Rand index also was highest for Model 1 except in the large sample 

size when there were mostly high ability students, and something other than a strict 

hierarchy was used.  In these cases the adjusted Rand index indicated Models 3 or 4 (see 

Table 39).   
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Table 39:  Classification information when Model 4 generated the data and the same data 

was used for classification 

SS LP OV 
Percent of students correctly classified adjusted Rand Index 

M1 M2 M3 M4 M1 M2 M3 M4 

50 1 1 86.60% 73.10% 79.70% 78.70% 0.674 0.502 0.558 0.555 

50 2 1 84.10% 67.20% 69.00% 69.10% 0.624 0.467 0.485 0.487 

50 3 1 84.60% 67.30% 68.70% 69.50% 0.638 0.458 0.472 0.483 

50 4 1 83.80% 68.50% 70.00% 70.30% 0.621 0.487 0.503 0.509 

50 5 1 87.50% 73.10% 82.30% 80.50% 0.702 0.535 0.617 0.604 

50 6 1 85.10% 73.50% 77.00% 76.90% 0.646 0.54 0.572 0.573 

50 7 1 84.10% 73.40% 74.40% 74.90% 0.625 0.53 0.536 0.536 

50 8 1 84.50% 73.20% 76.20% 76.10% 0.633 0.529 0.558 0.56 

50 9 1 86.60% 74.80% 80.30% 78.80% 0.669 0.518 0.563 0.558 

50 10 1 84.00% 71.50% 74.00% 73.90% 0.622 0.513 0.537 0.54 

50 11 1 84.20% 71.80% 73.40% 73.30% 0.633 0.523 0.539 0.543 

50 12 1 84.30% 72.60% 74.70% 74.50% 0.627 0.531 0.549 0.553 

50 13 1 87.10% 81.10% 83.50% 82.10% 0.659 0.57 0.591 0.577 

50 14 1 86.70% 76.30% 76.90% 76.70% 0.66 0.553 0.562 0.562 

50 15 1 86.40% 75.90% 77.00% 76.30% 0.649 0.541 0.56 0.554 

50 16 1 86.70% 75.90% 76.50% 75.70% 0.662 0.55 0.556 0.559 

50 17 1 84.60% 66.20% 66.50% 67.90% 0.631 0.441 0.442 0.461 

50 18 1 85.20% 68.20% 70.90% 71.20% 0.65 0.492 0.526 0.534 

50 19 1 85.90% 72.20% 72.60% 73.30% 0.66 0.519 0.526 0.534 

50 20 1 86.50% 70.70% 74.00% 73.40% 0.686 0.516 0.56 0.556 

50 21 1 84.20% 66.00% 67.40% 68.90% 0.641 0.443 0.455 0.472 

50 22 1 83.70% 65.40% 69.10% 69.10% 0.631 0.438 0.481 0.479 

50 23 1 86.60% 62.50% 64.90% 67.80% 0.712 0.418 0.459 0.491 

50 24 1 84.50% 62.90% 66.90% 68.00% 0.653 0.428 0.49 0.499 
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SS LP OV 
Percent of students correctly classified adjusted Rand Index 

M1 M2 M3 M4 M1 M2 M3 M4 

200 1 1 82.60% 71.60% 78.40% 77.90% 0.596 0.476 0.526 0.524 

200 2 1 79.20% 65.70% 67.10% 67.30% 0.537 0.441 0.456 0.458 

200 3 1 78.90% 65.50% 66.30% 67.10% 0.533 0.442 0.449 0.456 

200 4 1 79.50% 65.30% 66.60% 66.90% 0.545 0.445 0.456 0.459 

200 5 1 82.60% 71.30% 80.40% 80.20% 0.607 0.502 0.58 0.578 

200 6 1 79.70% 71.60% 74.40% 74.40% 0.55 0.519 0.544 0.545 

200 7 1 78.30% 71.20% 72.20% 72.90% 0.521 0.507 0.516 0.519 

200 8 1 79.40% 71.40% 74.50% 74.50% 0.546 0.515 0.541 0.542 

200 9 1 81.70% 72.70% 79.20% 78.80% 0.576 0.503 0.541 0.539 

200 10 1 79.40% 69.30% 71.40% 71.30% 0.544 0.492 0.511 0.51 

200 11 1 79.00% 69.40% 70.90% 71.20% 0.537 0.488 0.506 0.51 

200 12 1 79.70% 69.60% 71.70% 71.80% 0.547 0.49 0.509 0.513 

200 13 1 83.30% 78.60% 81.30% 80.90% 0.585 0.536 0.553 0.551 

200 14 1 82.10% 73.60% 74.00% 73.90% 0.57 0.512 0.517 0.518 

200 15 1 81.90% 73.20% 73.70% 73.60% 0.568 0.505 0.514 0.514 

200 16 1 82.10% 74.00% 74.50% 74.20% 0.573 0.519 0.523 0.524 

200 17 1 81.20% 66.00% 66.40% 67.30% 0.588 0.446 0.449 0.459 

200 18 1 79.80% 65.30% 66.70% 66.80% 0.566 0.449 0.463 0.463 

200 19 1 82.10% 69.30% 70.10% 71.40% 0.608 0.492 0.498 0.514 

200 20 1 81.60% 69.70% 71.20% 71.20% 0.604 0.511 0.53 0.534 

200 21 1 78.10% 64.50% 65.20% 66.50% 0.531 0.422 0.429 0.443 

200 22 1 77.80% 64.70% 66.70% 67.20% 0.524 0.444 0.464 0.468 

200 23 1 80.60% 60.40% 62.90% 65.30% 0.604 0.385 0.433 0.465 

200 24 1 79.70% 60.20% 64.40% 64.90% 0.578 0.387 0.451 0.457 
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SS LP OV 
Percent of students correctly classified adjusted Rand Index 

M1 M2 M3 M4 M1 M2 M3 M4 

500 1 1 80.70% 70.70% 78.00% 77.70% 0.562 0.46 0.514 0.513 

500 2 1 78.00% 65.00% 65.50% 65.90% 0.518 0.436 0.441 0.444 

500 3 1 77.90% 64.90% 65.30% 65.90% 0.518 0.437 0.441 0.447 

500 4 1 77.50% 64.40% 65.10% 65.30% 0.508 0.428 0.433 0.436 

500 5 1 81.70% 70.80% 80.40% 80.30% 0.591 0.5 0.574 0.574 

500 6 1 78.20% 70.80% 73.90% 74.00% 0.524 0.509 0.537 0.539 

500 7 1 76.20% 70.60% 71.40% 72.10% 0.487 0.499 0.506 0.507 

500 8 1 78.30% 70.90% 73.80% 73.90% 0.527 0.511 0.538 0.538 

500 9 1 80.90% 72.30% 79.00% 78.80% 0.564 0.501 0.536 0.535 

500 10 1 78.60% 69.10% 71.10% 71.30% 0.531 0.487 0.506 0.508 

500 11 1 77.30% 68.30% 69.70% 70.00% 0.507 0.476 0.492 0.495 

500 12 1 78.10% 68.40% 70.60% 70.80% 0.521 0.477 0.496 0.498 

500 13 1 82.20% 78.40% 81.10% 80.90% 0.565 0.524 0.545 0.544 

500 14 1 81.00% 73.60% 73.70% 73.70% 0.552 0.513 0.512 0.512 

500 15 1 80.80% 73.30% 73.30% 73.40% 0.549 0.511 0.511 0.512 

500 16 1 80.80% 73.60% 73.60% 73.70% 0.549 0.514 0.511 0.513 

500 17 1 79.60% 64.80% 65.00% 65.80% 0.563 0.432 0.433 0.44 

500 18 1 78.20% 64.80% 65.30% 65.60% 0.536 0.444 0.452 0.456 

500 19 1 80.50% 68.80% 69.20% 70.20% 0.579 0.482 0.485 0.496 

500 20 1 79.90% 68.80% 69.80% 70.00% 0.571 0.497 0.51 0.513 

500 21 1 76.70% 64.50% 64.80% 66.30% 0.506 0.428 0.431 0.447 

500 22 1 77.00% 64.80% 66.30% 66.60% 0.513 0.442 0.461 0.463 

500 23 1 79.10% 60.20% 62.20% 64.60% 0.585 0.38 0.43 0.462 

500 24 1 78.50% 59.90% 63.60% 64.10% 0.564 0.384 0.445 0.451 

 

When Model 4 was the generating model and a separate data set was used for 

classification then for large sample sizes, Model 1 seemed to have the highest 

classification rate (see Table 40).  When a sample size of 200 was used, Model 1 had the 

highest classification rate except for when the students’ ability distribution was skewed 

and a strict hierarchy was followed.  The small sample size also followed this trend, 

although Model 3 had a higher classification rate for a couple more cells in which a strict 

hierarchy was followed.  The adjusted Rand index seemed to indicate Models 3 or 4 more 
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often when the sample size was low, but tended to agree with the classification rates 

when the sample size was high. 

Table 40:  Classification information when Model 4 generated the data and a separate 

data set was used for classification 

SS LP OV 
Percent of students correctly classified adjusted Rand Index 

M1 M2 M3 M4 M1 M2 M3 M4 

50 1 1 73.00% 69.20% 75.20% 73.80% 0.438 0.444 0.48 0.472 

50 2 1 69.30% 63.80% 64.00% 63.90% 0.38 0.419 0.423 0.423 

50 3 1 69.10% 63.60% 63.20% 62.90% 0.376 0.406 0.4 0.4 

50 4 1 69.70% 63.60% 64.70% 64.40% 0.387 0.418 0.425 0.426 

50 5 1 72.00% 67.90% 76.50% 74.90% 0.438 0.453 0.517 0.513 

50 6 1 69.30% 67.80% 70.70% 70.10% 0.386 0.453 0.478 0.476 

50 7 1 69.00% 67.70% 68.50% 68.60% 0.371 0.457 0.463 0.461 

50 8 1 69.30% 67.30% 69.90% 70.10% 0.396 0.454 0.477 0.483 

50 9 1 72.30% 69.40% 74.90% 73.20% 0.423 0.452 0.486 0.48 

50 10 1 70.30% 66.90% 69.00% 68.50% 0.406 0.449 0.471 0.473 

50 11 1 70.70% 67.40% 68.30% 67.50% 0.412 0.469 0.474 0.469 

50 12 1 69.10% 65.80% 67.40% 66.50% 0.391 0.444 0.456 0.452 

50 13 1 75.00% 76.10% 78.00% 77.00% 0.432 0.49 0.503 0.497 

50 14 1 74.00% 70.10% 69.80% 69.00% 0.428 0.453 0.453 0.444 

50 15 1 74.80% 71.10% 70.60% 69.80% 0.45 0.473 0.47 0.469 

50 16 1 74.20% 69.90% 70.10% 68.60% 0.428 0.45 0.456 0.441 

50 17 1 70.50% 61.70% 61.10% 61.80% 0.424 0.388 0.383 0.39 

50 18 1 70.20% 63.20% 63.40% 63.10% 0.431 0.433 0.435 0.434 

50 19 1 73.50% 66.70% 66.70% 67.30% 0.468 0.463 0.457 0.463 

50 20 1 73.50% 67.60% 68.10% 67.00% 0.474 0.473 0.476 0.474 

50 21 1 68.10% 61.90% 62.60% 63.10% 0.372 0.393 0.397 0.405 

50 22 1 67.30% 63.30% 64.10% 63.60% 0.371 0.414 0.425 0.423 

50 23 1 69.50% 57.60% 60.10% 61.80% 0.453 0.365 0.403 0.427 

50 24 1 69.00% 57.20% 60.80% 61.00% 0.427 0.355 0.403 0.409 
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SS LP OV 
Percent of students correctly classified adjusted Rand Index 

M1 M2 M3 M4 M1 M2 M3 M4 

200 1 1 78.00% 69.50% 76.50% 75.90% 0.517 0.445 0.495 0.492 

200 2 1 74.50% 63.80% 64.30% 64.30% 0.458 0.42 0.424 0.424 

200 3 1 74.90% 64.20% 64.30% 64.60% 0.472 0.424 0.427 0.431 

200 4 1 74.70% 64.00% 64.20% 64.20% 0.467 0.422 0.423 0.427 

200 5 1 79.00% 69.60% 79.50% 79.40% 0.55 0.48 0.564 0.567 

200 6 1 75.30% 70.00% 72.90% 73.10% 0.476 0.49 0.521 0.524 

200 7 1 73.50% 69.30% 70.20% 70.60% 0.446 0.481 0.491 0.492 

200 8 1 75.40% 69.90% 73.00% 72.90% 0.482 0.493 0.524 0.523 

200 9 1 78.40% 72.00% 78.50% 78.10% 0.522 0.493 0.533 0.53 

200 10 1 75.40% 68.00% 69.90% 69.70% 0.476 0.468 0.483 0.483 

200 11 1 75.20% 68.60% 69.40% 69.30% 0.479 0.482 0.493 0.493 

200 12 1 75.30% 68.80% 70.20% 69.80% 0.482 0.481 0.492 0.492 

200 13 1 79.60% 77.30% 80.60% 80.30% 0.526 0.517 0.543 0.541 

200 14 1 78.60% 72.70% 73.00% 72.50% 0.515 0.502 0.503 0.501 

200 15 1 77.80% 72.00% 71.90% 71.40% 0.495 0.487 0.485 0.483 

200 16 1 77.90% 72.30% 72.40% 72.00% 0.504 0.495 0.497 0.495 

200 17 1 76.70% 64.90% 64.80% 65.40% 0.521 0.436 0.437 0.444 

200 18 1 75.40% 64.00% 64.50% 64.40% 0.501 0.433 0.438 0.44 

200 19 1 76.70% 67.80% 68.00% 68.20% 0.517 0.471 0.473 0.475 

200 20 1 76.30% 68.60% 68.20% 68.10% 0.519 0.495 0.489 0.492 

200 21 1 73.80% 64.20% 64.20% 65.10% 0.459 0.421 0.422 0.431 

200 22 1 74.10% 64.30% 65.30% 65.10% 0.466 0.436 0.447 0.446 

200 23 1 75.30% 59.30% 61.10% 62.90% 0.527 0.372 0.41 0.44 

200 24 1 75.40% 58.90% 62.60% 62.80% 0.516 0.373 0.43 0.432 
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SS LP OV 
Percent of students correctly classified adjusted Rand Index 

M1 M2 M3 M4 M1 M2 M3 M4 

500 1 1 79.70% 70.00% 77.70% 77.50% 0.548 0.454 0.513 0.512 

500 2 1 76.70% 64.30% 64.40% 64.50% 0.498 0.426 0.427 0.428 

500 3 1 75.80% 64.40% 64.60% 64.80% 0.484 0.429 0.431 0.434 

500 4 1 76.10% 64.00% 64.30% 64.40% 0.489 0.426 0.429 0.431 

500 5 1 80.40% 69.70% 80.00% 79.80% 0.574 0.485 0.57 0.57 

500 6 1 76.80% 70.20% 73.00% 73.10% 0.506 0.5 0.528 0.529 

500 7 1 74.50% 70.20% 70.80% 71.30% 0.461 0.493 0.5 0.5 

500 8 1 76.60% 70.60% 73.40% 73.50% 0.503 0.506 0.533 0.534 

500 9 1 79.60% 72.40% 78.80% 78.50% 0.549 0.505 0.536 0.536 

500 10 1 76.60% 68.50% 70.10% 69.90% 0.501 0.479 0.492 0.492 

500 11 1 75.90% 68.50% 69.50% 69.40% 0.491 0.483 0.492 0.493 

500 12 1 76.50% 68.40% 70.10% 69.80% 0.5 0.48 0.494 0.493 

500 13 1 80.40% 78.00% 80.50% 80.40% 0.539 0.522 0.538 0.538 

500 14 1 78.90% 72.70% 72.70% 72.70% 0.518 0.497 0.496 0.497 

500 15 1 79.00% 72.90% 72.80% 72.70% 0.521 0.506 0.505 0.505 

500 16 1 79.10% 73.00% 73.00% 72.90% 0.523 0.503 0.502 0.503 

500 17 1 77.70% 64.30% 64.30% 64.70% 0.534 0.426 0.427 0.431 

500 18 1 76.00% 64.10% 64.30% 64.30% 0.505 0.434 0.435 0.437 

500 19 1 78.50% 68.40% 68.70% 69.30% 0.551 0.479 0.481 0.489 

500 20 1 77.70% 68.20% 68.60% 68.50% 0.538 0.491 0.494 0.496 

500 21 1 75.10% 64.40% 64.50% 65.60% 0.48 0.426 0.427 0.438 

500 22 1 75.30% 64.40% 65.30% 65.20% 0.484 0.438 0.448 0.447 

500 23 1 76.70% 59.90% 61.70% 63.50% 0.545 0.377 0.419 0.444 

500 24 1 77.30% 59.50% 62.70% 62.80% 0.549 0.38 0.436 0.434 

 

Discussion 

 Under all the conditions for which the data was generated, Model 1 performed 

well both when it was the correct model and when it was incorrectly specified.  

Parameters for this model were recovered a high percentage of the time, often this was 

the best fitting model and this model often had the highest classification rates, 

particularly when the sample size was large and/or the students were equally distributed 

along the ability spectrum.  Even when Model 1 did not have the highest classification 

rate, it still had classification rates that were fairly close to the other models. 
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Model 3 also performs well, particularly when the sample size is small or the 

ability distribution of the students is skewed.  While Models 2 and 4 also had high 

parameter recovery rates and high classification rates, their classification rates were not 

generally quite as high as Model 1 or Model 3 and the fit statistics did not often pick 

these models as the best fitting models.   

Conclusion 

 Overall, a practitioner would want to use Model 1 or Model 3.  When making the 

choice between these models, a practitioner should take into account the theoretical 

background of the learning progression as well as the target subject.  Their decision 

should be influenced by their belief on the true underlying structure of the levels of the 

learning progression and the relationships between different attributes.  Practitioners 

should also take into account the interpretation of the attributes and how that would affect 

the students.  When using Model 1 when the true model is not strictly linear, students 

may be classified in a low level, even if they have some of the attributes at the higher 

level.  It is important to consider how these misclassifications would affect the student 

and the importance of being able to distinguish students who follow different learning 

paths. 

In addition, this research indicated that Model 3 might provide more accurate 

classifications when the ability levels of the student was skewed, or when the sample size 

was small.  Practitioners who are working in these types of environments may want to 

consider the tradeoffs involved in using a model with more variables (Model 3) versus a 

model that may not classify as many students correctly (Model 1).  In general, the 
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recommendation is to use Model 1, even in cases where a strict hierarchy might not be 

followed and where students are allowed to follow multiple paths.   
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CHAPTER 5: MODELING TWO LEARNING PROGRESSIONS 

 This second study will focus on issues surrounding the use of two learning 

progression variables in an assessment, particularly issues surrounding the structure of 

observable variables’ dependence on latent variable student-model parents.  While there 

may be hypotheses regarding how the influence of multiple learning progression 

variables on task performance can combine (based on the underlying substantive theory 

of the learning progressions), the structure of this relationship may not be known in 

advance in a real data situation.   This study will address a question of robustness; 

whether there are certain situations in which a more constrained or less constrained 

model would provide comparable or more accurate results than the generating model, 

from among a set of paradigmatic model structures. 

Study Overview 

This study will focus on the conditional probabilities of observables variables 

given values of (latent) proficiency variables that reflect learning progressions.  Note that 

while the first study contained models that had different graphical structures, in this study 

the nature of the learning progression will be the same across all of the different models.  

They will all follow Figure 18, and have one latent variable representing each LP and all 

items depending on both of these LPs.  Instead this study examines a second question 

which may come up when using a BIN, which involves examining benefits and/or 

drawbacks to placing constraints on the conditional probabilities for observable variables 

given the LP variables.  It will compare the unconstrained estimation of these conditional 

probabilities (i.e., a hyper-Dirichlet conditional probability matrix) and the 
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compensatory, conjunctive and disjunctive models (see Table 41).  The research sub-

questions here will be the same as in study 1: 

 1)  How well are parameters recovered under each model for the various 

conditions? 

 2)  How do inferences regarding students (i.e., posterior distributions for 

proficiency variable) compare across the different models under various 

conditions? 

 3)  How do goodness-of-fit tests perform at identifying the correct model under 

various conditions? 

Table 41:  Probability constraints for the different models.  J is the vector containing the 

level on LP1 and LP2 

Model Probability constraints 

1:  Unconstrained 

 

2:  Compensatory 

 

                 3:  Conjunctive 

 

                 4:  Disjunctive 

 

 

 These questions will again be addressed by a simulation.   Data will be simulated 

based on each of the different models, then estimation results will be computed for each 

of the given models and the results will be compared.  The overall conditional 

probabilities will be compared, along with the categorization of each student on both of 
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the learning progressions. The simulation will again examine how sample size, number of 

observables and different parameter structures affect the different models. 

Study Conditions 

 This study will again use four levels for each learning progression, with a novice 

level for students who do not any attributes (for a total of five levels).  As noted before, 

four levels is a common number of levels used in practice, and four levels provide 

enough flexibility to allow for differentiation between the models without overly 

complicating the situation. 

 This study will examine the case where the probability of membership for each of 

the levels of the learning progression is equal (or .2).  In condition 1 the two learning 

progressions will be independent of each other, marking the case where students may be 

at any combination of levels of the two LPs.  The second condition will have the two 

learning progressions highly related, indicating a relationship between the two learning 

progressions.  In this case, students have high probability of being at the same level in 

both of the learning progressions, a lower probability of being at levels one away from 

each other, and an even lower probability of being at levels that are further apart (see 

Table 42).  The Pearson correlation between these two LPs is 0.73. 

Table 42:  Probability that a student is at a combination of levels of each of the LPs 

Level 

of LP2 

Level of LP 1 
Total 

1 2 3 4 5 

1 0.15 0.02 0.01 0.01 0.01 0.2 

2 0.02 0.14 0.02 0.01 0.01 0.2 

3 0.01 0.02 0.14 0.02 0.01 0.2 

4 0.01 0.01 0.02 0.14 0.02 0.2 

5 0.01 0.01 0.01 0.02 0.15 0.2 

Total 0.2 0.2 0.2 0.2 0.2 1 
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 Two possibilities for the number of observables will be used.  In the first there are 

3 observables for each combination of levels of the LPs (not counting the novice level as 

items are not designed to measure that level) (16 total combination of levels, for a total of 

48 items).  In the second there are 30 observable variables, which will have three 

observables for each pairing of level skills that are either the same or one off (for 

example, there will be an observable designed to measure level 2 of LP1 and level 3 of 

LP2, level 3 of LP1 and level 2 of LP2, and one to measure level 2 of LP1 and LP2, but 

not one to measure level 1 of LP1 and level 3 of LP2).  This follows the possible situation 

in which the two skills are used together and it may be hard to design observables which 

vary drastically on the level they require of both skills.  For this study each of the 

observable variables will be binary.   

 Models 2 through 4 do not have items that depend directly on given levels of the 

learning progression.  Instead while the effective probabilities are associated with the 

combination of levels, the IRT structure provides a convenient lower-dimensional 

structure for calculating those probabilities.  The effective probabilities are calculated 

from the difficulty of the item and the ability associated with the students’ level of the 

LP.  The ability parameter is where the association with the levels of the LP comes into 

play.  Each level of a LP is associated with a particular ability parameter (while for an 

IRT model the ability parameters are on a continuum, the BIN would categorize this 

continuum and provide one ability parameter for each level of the LP.)  The ability 

parameters for each of the LPs, along with the item difficulty parameter are then used to 

determine the probabilities for a correct response.  For these models only the case where 

there are 30 items will be used.  Additional items would allow for more observations on 
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different IRT difficulty values, but would not necessarily change the range of values used 

and would not be expected to provide much more insight into the nature of the models.     

 For Model 1, the conditional probabilities will be estimated directly.  Similarly to 

study 1, the generating probabilities are as follows: a probability of .8 will be used for a 

correct response if the student has the appropriate skill level, and a probability of .2 will 

be used for a correct response if they do not.  Model 1 also requires the decision to be 

made regarding if the student has the requisite combination of skill levels.  Three 

different conditions will be made for this decision, each of which will follow from a 

different dependence relationship between the observable variables and the relationships 

with the LPs.  These conditions will follow the compensatory, conjunctive and 

disjunctive model.  In Model 1 this will be implemented by saying a student has the 

appropriate skill if the sum of the levels of the LPs they have is greater than or equal to 

the sum of the levels required by the item.  The second type will be that a student has the 

skills required if they are at the levels of LP required (or higher) for both LPs, while the 

third will only require the student to be at the level of the LP (or higher) for one of the 

LPs (see Table 43).  

Table 43:  OV probabilities for each model type for data generated with Model 1 

Condition Initial Observable Probability = .8 if:  (.2 probability otherwise) 

1 LP 1 level + LP 2 level >= LP 1 level req + LP 2 level req 

2 LP 1 level >= LP 1 level req and LP 2 level >= LP 2 level req 

3 LP 1 level >= LP 1 level req or LP 2 level >= LP 2 level req 

 

 Models 2 through 4 will each have the same specified parameters.  What changes 

between these is how the parameters are combined to construct the probability models (as 

seen in Table 41).  These parameters are based on the use of the LC/RM model (Formann 

& Kohlmann, 1998) as discussed in Chapter 3.  The initial parameters that are required 
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are the ability parameters (or theta value), which are on an IRT scale, associated with 

each level of the learning progression. In this method, students who are at different levels 

of the learning progression are thought to have different IRT ability estimates, although 

students at the same level of the learning progression should have the same ability 

estimates.   

 In this case only one distribution of ability parameters will be considered.  This 

distribution will follow the use of quantiles of the normal distribution (Almond, Yan, & 

Hemat, 2008).  The values of (-1, -.5, 0, .5 and 1) will be used for each of the levels of the 

LP respectively.  These same values will be used for both of the learning progressions.  

 For the item difficulty parameters two distributions will be used.  For the first 

distribution, numbers between -2 and 2 will be randomly generated and then ordered such 

that item 1 is the easiest item and item 30 is the hardest item (see Table 44).  The second 

distribution will use values between -1.5 and 1.5 and the difficulty values will be based 

on the levels of the LPs that the item was designed to measure, in such a matter that items 

that are geared towards lower levels will be easier than items that are geared towards 

higher levels (see Table 44).  Both of these distributions reflect the concept that items that 

reflect upon lower levels are easier, but the first distribution allows items to vary in their 

difficulty.  
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Table 44:  The b values for items based on which levels of the LPs they depend upon 

Item 
LP 1 
level 

LP 2 
level 

b value 
for 

Cond. 1 

b value 
for 

Cond. 2 

1 1 1 -1.73 -1.5 

2 1 1 -1.71 -1.5 

3 1 1 -1.67 -1.5 

4 1 2 -1.55 -1 

5 1 2 -1.52 -1 

6 1 2 -1.5 -1 

7 2 1 -1.44 -1 

8 2 1 -1.35 -1 

9 2 1 -1.25 -1 

10 2 2 -1.1 -0.05 

11 2 2 -1.07 -0.05 

12 2 2 -0.8 -0.05 

13 2 3 -0.8 0 

14 2 3 -0.71 0 

15 2 3 -0.64 0 

16 3 2 -0.63 0 

17 3 2 -0.59 0 

18 3 2 -0.27 0 

19 3 3 -0.12 0.5 

20 3 3 0.01 0.5 

21 3 3 0.19 0.5 

22 3 4 0.42 1 

23 3 4 0.62 1 

24 3 4 0.9 1 

25 4 3 1.03 1 

26 4 3 1.2 1 

27 4 3 1.27 1 

28 4 4 1.35 1.5 

29 4 4 1.37 1.5 

30 4 4 1.71 1.5 

 

 

 Similarly to the previous study, the sample sizes that will be used are 100 and 

500.  For this model, more items will be used and therefore a sample size of 50 was not 

deemed appropriate.  A sample size of 500 was chosen to represent a large sample.  In the 

previous study most of the insights came from the results with the small sample and the 

large sample, so only two samples were chosen for this study.     
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 The total number of cells in this study was 48.  Each cell was run 10 times, a 

number that is feasible given the long running times required in MCMC estimation. (For 

a sample size of 500 the minimum time it took a cell to run was 7 hours, for a sample size 

of 100 the minimum time was 1.5 hours.  Using 10 replications and the minimum values, 

the total number of days the simulation would take to run is 85 days.)   We will thus be 

able to examine main effects and qualitative differences, but not be able to estimate fine 

details of distributions of estimates.  MCMC estimation will also be used for this study 

with three chains, one at the low end of the distribution, one at the middle and one at the 

high end of the distribution.  Initial results showed that while sometimes convergence 

was reached with 10,000 iterations; other times more iterations were needed, therefore 

the study used 15,000 iterations with a burn in of 13,500.  Again the Gelman-Rubin 

statistic was used to check for convergence.  

This study also used uninformative priors in order to minimize the influence of 

priors on the parameter estimates.  Similarly as for Study 1, Model 1 used a Dirichlet 

prior with ai =2 for all the probability of being at a level of the learning progression 

variables and a beta distribution with a=2 and b=2 was used for the probability of the 

observable variables.  In both of these cases, this would imply that the probability 

associated with the level of the learning progressions or the possible response to the items 

was equal for all possibilities and that the belief surrounding this was very low.   

In Models 2-4 the Dirichlet prior with ai =2 was again used for the levels of the 

learning progression.  The item difficulty parameters associated with the learning 

progressions as well as the ability estimation of the students were all given priors that 
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followed a normal distribution centered at 0 with a variance of 4.  Typically IRT 

parameters are on a scale from -2 to 2, so having a variance of 4 is a fairly weak prior. 

Model fit 

 

 This study will follow the same methods used for model fit as in Study 1.  For 

each cell, data will be generated based on the model parameters and then all four models 

will be used to estimate parameters.  For parameter recovery each of the models will be 

compared to the generating model to determine how well each model recovered 

parameters.  The parameters that will be compared will be the probability for each level 

of the LPs as well as the probabilities for each observable given the different levels.  For 

the case of Models 2-4 this will require these probabilities be computed from the ability 

and difficulty parameters that are recovered. 

 This study will again use the AIC, BIC and DIC statistics for comparing model 

fit.  For each replication these statistics will be computed for each of the models and then 

the best model will be picked based on which model had the lowest value of these.  

Results will be compared across the statistics to determine which model seems to fit the 

data best. 

 Also included will be an examination of student-level classification; for each 

simulee in a given data set, the BIN built from the estimated parameters will be used to 

determine the most likely level for each person.  This will be used to determine how well 

each model was able to classify the subjects.  This classification will again be used on the 

original data used for generating the parameter estimates as well as a separate data set 

generated using the same parameters as the first data set.  In addition, the adjusted Rand 
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index will be used as a measure for how well the model was able to capture the correct 

classifications of the students. 

Results  

 When Model 1 was the generating model, all models did a very good job at 

recovering the overall probability associated with the levels of the learning progression, 

with all cells recovering parameters over 90% of the time.  Model 1 and Model 2 also had 

a high recovery rate for the observable variables both in the 48 observable case (see 

Table 45) and in the case where 30 observable variables were used (see Table 46).  

Models 3 and 4 were not able to recover the probabilities associated with the observable 

variables as well.  For Models 2, 3 and 4 the recovery of the observable variable 

probabilities was based on using the estimates for the IRT values to calculate the 

conditional probabilities of responses on the observable variables.  This followed from 

the previous study and checked to see if the 95
th

 percentile range contained the generating 

value of the parameter.  
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Table 45:  Percent of parameters recovered when Model 1 was the generating model and 

there were 48 observable variables 

SS 

LP 

probs 

OP 

cond 

 % params rec for the LP levels  % params rec. for the OV 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

100 1 1 97.0% 97.0% 98.0% 98.0% 93.7% 99.9% 70.4% 67.8% 

100 1 2 96.0% 98.0% 98.0% 97.0% 94.2% 99.8% 75.4% 68.2% 

100 1 3 95.0% 95.0% 96.0% 96.0% 92.6% 99.6% 64.3% 74.9% 

100 2 1 97.0% 96.0% 96.0% 97.0% 92.9% 99.9% 71.6% 70.6% 

100 2 2 98.0% 97.0% 97.0% 98.0% 94.7% 98.9% 77.7% 72.9% 

100 2 3 98.0% 98.0% 97.0% 98.0% 92.3% 99.3% 73.9% 77.7% 

500 1 1 96.0% 95.0% 96.0% 96.0% 96.2% 96.9% 57.8% 56.2% 

500 1 2 96.0% 96.0% 96.0% 97.0% 96.2% 95.6% 63.6% 68.0% 

500 1 3 94.0% 94.0% 94.0% 94.0% 96.2% 96.1% 70.1% 58.1% 

500 2 1 94.0% 95.0% 95.0% 95.0% 95.0% 97.8% 62.9% 64.9% 

500 2 2 95.0% 94.0% 96.0% 96.0% 95.1% 93.7% 62.4% 81.5% 

500 2 3 90.0% 90.0% 90.0% 90.0% 94.4% 93.1% 74.8% 58.1% 

 

 

Table 46:  Percent of parameters recovered when Model 1 was the generating model and 

there were 30 observable variables 

SS 

LP 

probs 

OP 

cond 

 % params rec for the LP levels  % params rec. for the OV 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

Model 

1 Model 2 

Model 

3 

Model 

4 

100 1 1 98.0% 98.0% 98.0% 98.0% 94.00% 100.0% 86.5% 88.3% 

100 1 2 94.0% 94.0% 94.0% 94.0% 94.30% 100.0% 93.3% 84.4% 

100 1 3 94.0% 94.0% 94.0% 94.0% 94.20% 100.0% 84.1% 93.1% 

100 2 1 95.0% 89.0% 89.0% 88.0% 94.60% 100.0% 88.5% 87.4% 

100 2 2 92.0% 96.0% 95.0% 95.0% 95.40% 99.9% 92.0% 84.3% 

100 2 3 97.0% 92.0% 92.0% 93.0% 94.80% 100.0% 84.4% 96.4% 

500 1 1 93.0% 93.0% 94.0% 93.0% 95.70% 100.0% 74.1% 81.9% 

500 1 2 96.0% 96.0% 96.0% 96.0% 96.40% 100.0% 83.3% 81.3% 

500 1 3 97.0% 97.0% 97.0% 97.0% 96.30% 100.0% 94.5% 76.5% 

500 2 1 93.0% 96.0% 96.0% 96.0% 95.40% 100.0% 75.9% 73.9% 

500 2 2 95.0% 99.0% 99.0% 99.0% 95.20% 99.7% 88.0% 86.1% 

500 2 3 96.0% 91.0% 92.0% 91.0% 95.60% 99.3% 92.9% 78.9% 

 

 

 One note is that when Model 1 was the generating model, Models 3 and 4 had a 

higher percentage recovery rate when there were 30 variables than in the case where there 

were 48 variables.  From examining the individual cell results Models 3 and 4 varied in 
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where they had difficulty from each.  In the case where the probability was based on the 

summative levels of both of the LPs (case 1), Model 3 had difficulty when the item did 

not require one of the LP attributes (note that there were less of these items in the 30 

variable case).  Model 4 also had some difficulties when one of the LPs was not required, 

but only when the overall ability was not as high.  Model 4 also had some difficulties 

when the overall ability was equal to or higher than the overall requirements. 

In the case where the requirements of the item was based on having enough 

ability on both of the LPs (case 2), Model 3 had difficulties when one of the levels of the 

learning progression was at or one level above what the item required but the other level 

of the learning progression was not equal to the requirement of the item.  Model 4 had 

difficulties when one or more of the attribute levels required were high when the item 

requirements were close to each other and had difficulties in recovering parameters 

across levels of the attributes when the requirements were further apart from each other. 

In the case where the requirements of the item depended on the highest level of 

the LP (case 3) then both Model 3 and Model 4 had difficulty recovering the parameters 

when the attribute levels were low but more so when the items requirements were further 

apart from each other. 

When Models 2 through 4 were the generating models then all models had a 

recovery rate of higher than 90%.  The observable variable parameters were able to be 

recovered every time using Model 2.  Models 3 and 4 also had a 100% recovery rate with 

their own generating OV parameters (see Table 47 - Table 49).   
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Table 47:  Percent of parameters recovered when Model 2 was the generating model and 

there were 30 observable variables 

SS 
LP 

probs 

OP 

cond 

 % params rec for the LP levels  % params rec. for the OV 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

100 1 1 98.0% 98.0% 98.0% 98.0% 95.5% 100.0% 98.9% 99.3% 

100 1 2 93.0% 94.0% 94.0% 94.0% 95.8% 100.0% 99.0% 99.4% 

100 2 1 98.0% 98.0% 98.0% 98.0% 96.5% 100.0% 96.3% 96.7% 

100 2 2 95.0% 95.0% 94.0% 95.0% 96.5% 100.0% 96.2% 96.5% 

500 1 1 96.0% 96.0% 96.0% 97.0% 95.9% 100.0% 95.5% 98.1% 

500 1 2 100.0% 100.0% 100.0% 100.0% 95.9% 100.0% 92.8% 91.6% 

500 2 1 95.0% 95.0% 95.0% 95.0% 96.0% 100.0% 93.4% 94.2% 

500 2 2 93.0% 94.0% 93.0% 93.0% 96.2% 100.0% 96.0% 95.0% 

 

 

Table 48: Percent of parameters recovered when Model 3 was the generating model and 

there were 30 observable variables 

SS 
LP 

probs 

OP 

cond 

 % params rec for the LP levels  % params rec. for the OV 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

100 1 1 97.0% 97.0% 97.0% 97.0% 95.6% 100.0% 100.0% 99.1% 

100 1 2 92.0% 94.0% 93.0% 93.0% 96.1% 100.0% 100.0% 99.2% 

100 2 1 98.0% 98.0% 98.0% 98.0% 96.3% 100.0% 100.0% 96.6% 

100 2 2 96.0% 96.0% 95.0% 96.0% 96.9% 100.0% 100.0% 96.3% 

500 1 1 97.0% 97.0% 97.0% 97.0% 95.9% 100.0% 100.0% 98.7% 

500 1 2 96.0% 96.0% 95.0% 95.0% 95.9% 100.0% 100.0% 99.3% 

500 2 1 96.0% 96.0% 96.0% 96.0% 96.0% 100.0% 100.0% 94.5% 

500 2 2 99.0% 99.0% 99.0% 99.0% 96.1% 100.0% 100.0% 94.5% 
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Table 49: Percent of parameters recovered when Model 4 was the generating model and 

there were 30 observable variables 

SS 
LP 

probs 

OP 

cond 

 % params rec for the LP levels  % params rec. for the OV 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

Model 

1 

Model 

2 

Model 

3 

Model 

4 

100 1 1 99.0% 100.0% 100.0% 100.0% 95.9% 100.0% 98.8% 100.0% 

100 1 2 97.0% 97.0% 98.0% 97.0% 95.7% 100.0% 99.1% 100.0% 

100 2 1 92.0% 92.0% 92.0% 92.0% 96.7% 100.0% 95.4% 100.0% 

100 2 2 92.0% 92.0% 92.0% 92.0% 96.9% 100.0% 95.3% 100.0% 

500 1 1 93.0% 94.0% 93.0% 92.0% 95.9% 100.0% 98.0% 100.0% 

500 1 2 97.0% 96.0% 96.0% 97.0% 95.8% 100.0% 97.9% 100.0% 

500 2 1 95.0% 96.0% 95.0% 95.0% 96.2% 100.0% 97.2% 100.0% 

500 2 2 92.0% 92.0% 91.0% 91.0% 95.6% 100.0% 90.7% 100.0% 

 

 When it came to fit, in the case where Model 1 was the generating model and 

there were 48 observables, with the small sample size the AIC and BIC tended to pick the 

constrained model that most closely fit with how the observable variable probability was 

structured (i.e.  Model 2 was picked as the best fitting model when Model 1 was the 

generating model and the condition in which the probability of a correct response for the 

observables was based on a compensatory model was used.  The DIC was split between 

this model and Model 1.  When the sample size was large the BIC continued this pattern 

but the AIC and DIC shifted to pick Model 1 (see Table 50).   
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Table 50:  Proportion of replications that each fit index picked each model for the best 

fitting model for the case where Model 1 was the generating model and there were 48 

OVs 

SS 

LP 

probs 

OP 

cond 

AIC BIC DIC 

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 0 1 0 0 0 1 0 0 0 1 0 0 

100 1 2 0 0 1 0 0 0 1 0 0.7 0 0.3 0 

100 1 3 0 0 0 1 0 0 0 1 0 0 0 1 

100 2 1 0 1 0 0 0 1 0 0 0.9 0.1 0 0 

100 2 2 0 0 1 0 0 0 1 0 1 0 0 0 

100 2 3 0 0 0 1 0 0 0 1 0.2 0 0.1 0.7 

500 1 1 1 0 0 0 0 1 0 0 1 0 0 0 

500 1 2 1 0 0 0 0 0 1 0 1 0 0 0 

500 1 3 1 0 0 0 0 0 0 1 1 0 0 0 

500 2 1 1 0 0 0 0 1 0 0 1 0 0 0 

500 2 2 1 0 0 0 0 0 1 0 1 0 0 0 

500 2 3 1 0 0 0 0 0 0 1 1 0 0 0 

 

 When Model 1 was the generating model and 30 variables were used then the AIC 

and BIC tended to pick the constrained model in both the small and the large sample size 

cases.  The DIC again shifted to pick Model 1 more often when the sample size was large 

(see Table 51). 
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Table 51:  Proportion of replications that each fit index picked each model for the best 

fitting model for the case where Model 1 was the generating model and there were 30 

OVs 

SS 

LP 

probs 

OP 

cond 

AIC BIC DIC 

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 0 1 0 0 0 1 0 0 0.2 0.8 0 0 

100 1 2 0 0 1 0 0 0 1 0 0.2 0 0.8 0 

100 1 3 0 0 0 1 0 0 0 1 0.1 0 0.1 0.8 

100 2 1 0 1 0 0 0 1 0 0 1 0 0 0 

100 2 2 0 0 1 0 0 0 1 0 0.6 0 0.2 0.2 

100 2 3 0 0 0 1 0 0 0 1 0.6 0 0.1 0.3 

500 1 1 0 1 0 0 0 1 0 0 1 0 0 0 

500 1 2 0 0 1 0 0 0 1 0 1 0 0 0 

500 1 3 0 0 0 1 0 0 0 1 1 0 0 0 

500 2 1 0 1 0 0 0 1 0 0 1 0 0 0 

500 2 2 0 0 1 0 0 0 1 0 0.8 0 0 0.2 

500 2 3 0 0 0 1 0 0 0 1 0.6 0 0.4 0 

 

 When Model 2 was the generating model then the AIC and the BIC picked Model 

2 as the best fitting model.  The DIC picked model 2 most of the time, although when the 

learning progressions were highly correlated it sometimes picked one of the other 

constrained model (see Table 52). 

Table 52:  Proportion of replications that each fit index picked each model for the best 

fitting model for the case where Model 2 was the generating model and there were 30 

OVs 

SS 

LP 

probs 

OP 

cond 

AIC BIC DIC 

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 0 1 0 0 0 1 0 0 0 1 0 0 

100 1 2 0 1 0 0 0 1 0 0 0 1 0 0 

100 2 1 0 1 0 0 0 1 0 0 0 0.5 0.3 0.2 

100 2 2 0 1 0 0 0 1 0 0 0 0.9 0 0.1 

500 1 1 0 1 0 0 0 1 0 0 0 1 0 0 

500 1 2 0 1 0 0 0 1 0 0 0 1 0 0 

500 2 1 0 1 0 0 0 1 0 0 0 0.9 0.1 0 

500 2 2 0 1 0 0 0 1 0 0 0 0.5 0.4 0.1 

 

 The AIC and BIC picked Model 3 as the best fitting model when Model 3 was the 

generating model for both the small sample size cases and the large sample size cases.  
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The DIC shifted between Model 3 and Model 4 as the best fitting model in all cases (see 

Table 53). 

Table 53: Proportion of replications that each fit index picked each model for the best 

fitting model for the case where Model 3 was the generating model and there were 30 

OVs 

SS 

LP 

probs 

OP 

cond 

AIC BIC DIC 

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 0 0 1 0 0 0 1 0 0 0 0.8 0.2 

100 1 2 0 0 1 0 0 0 1 0 0 0 0.8 0.2 

100 2 1 0 0 1 0 0 0 1 0 0 0 0.8 0.2 

100 2 2 0 0 1 0 0 0 1 0 0 0 0.7 0.3 

500 1 1 0 0 1 0 0 0 1 0 0 0 0.4 0.6 

500 1 2 0 0 1 0 0 0 1 0 0 0 0.2 0.8 

500 2 1 0 0 1 0 0 0 1 0 0 0 0.5 0.5 

500 2 2 0 0 1 0 0 0 1 0 0 0 0.6 0.4 

 

 When Model 4 was the generating model then the AIC and the BIC picked Model 

4 as the best fitting model.  The DIC shifted between Model 4 and Model 3 as the best 

fitting model (see Table 54).  In general, the constrained model that most closely matched 

how the data was generated was picked to be the best fitting model. 

Table 54:  Proportion of replications that each fit index picked each model for the best 

fitting model for the case where Model 4 was the generating model and there were 30 

OVs 

SS 

LP 

probs 

OP 

cond 

AIC BIC DIC 

M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 0 0 0 1 0 0 0 1 0 0 0.1 0.9 

100 1 2 0 0 0 1 0 0 0 1 0 0 0.1 0.9 

100 2 1 0 0 0 1 0 0 0 1 0 0 0.1 0.9 

100 2 2 0 0 0 1 0 0 0 1 0 0 0.2 0.8 

500 1 1 0 0 0 1 0 0 0 1 0 0 0.8 0.2 

500 1 2 0 0 0 1 0 0 0 1 0 0 0.8 0.2 

500 2 1 0 0 0 1 0 0 0 1 0 0 0.6 0.4 

500 2 2 0 0 0 1 0 0 0 1 0 0 0.3 0.7 

 

 

 When Model 1 was used to generate the data and 48 OVs were used, Model 1 had 

classification rates over 70% for each individual LP (see   
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Table 55 55) and over 69% for both LPs (see Table 56) when the same sample that was 

used to generate the data was used for classification. The minimum classification value 

occurred when the total attribute level required was dependent on the addition of the 

individual attribute levels (case 1).  Also of note was that classification rates dropped 

from 20% to 30% when moving from the small sample size to the large sample size.  This 

could be a similar ―overfitting‖ effect as found in regression where sometimes small 

samples can take advantage of random chance assignment and appear to fit better than 

larger samples (Drasgow, Dorans, & Tucker, 1979).   

Models 2, 3 and 4 had much lower classification rates, ranging from 25% to 66% 

for the individual LPs and from 7% to 47% for the combination of both LPs. Among 

these models each had the highest classification rate when the generated data was similar 

to the constraints within each model, although overall Model 2 seemed to outperform the 

other two models.  In addition, the classification rates were higher when the two LPs 

were correlated.   

The adjusted Rand statistic had a similar pattern (see Table 57 and Table 58), in 

that it indicated that Model 1 had a higher classification rate.  However, the pattern 

between Models 2, 3 and 4 did not appear the same.  For the classification of both LPs, 

Model 4 was the highest (from among these models) for most of the cells, but this pattern 

did not occur for each of the individual LPs.  
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Table 55:  Classification rates for the individual LPs when Model 1 was used to generate 

the sample of 48 OVs and the same sample was used to generate the parameters as to 

estimate classification. 

SS 
LP 

probs 

OP 

cond 

correctly classified on LP 1 correctly classified on LP 2 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 86.6% 39.9% 36.6% 35.5% 85.7% 39.4% 34.6% 35.1% 

100 1 2 94.4% 42.7% 49.2% 35.4% 94.6% 42.1% 46.9% 34.7% 

100 1 3 86.1% 45.5% 33.8% 48.4% 87.3% 46.3% 35.4% 49.3% 

100 2 1 91.2% 52.2% 50.5% 42.0% 91.0% 53.4% 53.7% 51.9% 

100 2 2 95.5% 51.8% 61.3% 53.1% 94.3% 47.3% 58.3% 35.2% 

100 2 3 92.5% 56.7% 56.4% 66.5% 91.6% 54.0% 35.5% 61.8% 

500 1 1 73.1% 35.5% 36.1% 31.4% 72.6% 36.2% 34.9% 34.4% 

500 1 2 84.1% 41.5% 44.6% 27.1% 84.3% 38.5% 44.0% 29.8% 

500 1 3 84.7% 45.1% 27.0% 47.7% 85.6% 43.9% 32.8% 46.0% 

500 2 1 84.2% 49.4% 54.3% 45.2% 83.7% 48.4% 53.8% 49.5% 

500 2 2 89.6% 44.8% 59.5% 28.6% 89.4% 45.9% 60.4% 35.0% 

500 2 3 91.7% 47.5% 35.9% 65.4% 92.7% 49.9% 44.6% 63.7% 
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Table 56:  Classification rates for the combination of LPs when Model 1 was used to 

generate the sample of 48 observable variables and the same sample was used to generate 

the parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

correctly classified on both LPs 

M1 M2 M3 M4 

100 1 1 85.2% 20.2% 11.2% 11.0% 

100 1 2 91.5% 16.7% 16.0% 10.3% 

100 1 3 80.6% 18.6% 11.4% 14.0% 

100 2 1 89.0% 35.5% 30.5% 22.0% 

100 2 2 92.5% 28.8% 40.3% 18.9% 

100 2 3 85.9% 35.8% 15.7% 45.7% 

500 1 1 69.4% 12.9% 11.0% 7.4% 

500 1 2 74.1% 11.7% 13.7% 7.3% 

500 1 3 73.1% 14.5% 8.3% 12.7% 

500 2 1 80.0% 35.2% 35.1% 24.7% 

500 2 2 83.9% 26.7% 44.0% 8.3% 

500 2 3 86.6% 31.8% 16.1% 46.9% 

 

 

Table 57:  The adjusted Rand statistic for the individual LPs when Model 1 was used to 

generate the sample of 48 observable variables and the same sample was used to generate 

the parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

LP 1 classification LP 2 classification 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 0.687 0.275 0.305 0.110 0.498 0.162 0.119 0.097 

100 1 2 0.864 0.466 0.404 0.120 0.530 0.104 0.154 0.137 

100 1 3 0.675 0.292 0.210 0.146 0.573 0.139 0.102 0.141 

100 2 1 0.791 0.387 0.433 0.324 0.716 0.349 0.336 0.317 

100 2 2 0.893 0.466 0.463 0.314 0.678 0.316 0.398 0.334 

100 2 3 0.816 0.398 0.350 0.371 0.705 0.358 0.361 0.217 

500 1 1 0.445 0.041 0.091 0.098 0.519 0.143 0.120 0.127 

500 1 2 0.638 0.242 0.131 0.130 0.521 0.111 0.123 0.124 

500 1 3 0.637 0.258 0.078 0.156 0.565 0.134 0.097 0.118 

500 2 1 0.655 0.245 0.311 0.295 0.705 0.318 0.385 0.349 

500 2 2 0.772 0.369 0.358 0.313 0.720 0.298 0.360 0.370 

500 2 3 0.808 0.427 0.386 0.358 0.754 0.338 0.252 0.310 
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Table 58:  The adjusted Rand statistic for the combination of LPs when Model 1 was 

used to generate the sample of 48 observable variables and the same sample was used to 

generate the parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

both LPs classification 

M1 M2 M3 M4 

100 1 1 0.561 0.107 0.096 0.166 

100 1 2 0.523 0.086 0.091 0.118 

100 1 3 0.557 0.161 0.178 0.145 

100 2 1 0.791 0.279 0.338 0.381 

100 2 2 0.777 0.324 0.194 0.361 

100 2 3 0.798 0.425 0.378 0.386 

500 1 1 0.565 0.103 0.126 0.136 

500 1 2 0.512 0.066 0.097 0.102 

500 1 3 0.514 0.168 0.157 0.131 

500 2 1 0.780 0.291 0.330 0.327 

500 2 2 0.774 0.208 0.270 0.337 

500 2 3 0.809 0.400 0.392 0.372 

 

 The classification rate for Model 1 decreases when the sample moves from the 

sample that was used to generate the parameters, to a separate sample that was generated 

in the same manner and with the same constraints as the previous sample (see Table 59 

and Table 60).  This decrease is particularly noticeable in the small sample case where 

the difference was as much as a 50% decrease.  Model 1 still seemed have higher 

classification rates when the two LPs were correlated.  In addition Model 2 did not 

consistently have a higher classification rate than the other constrained models.  Instead 

Model 3 seemed to be highest in the cases where the data followed a compensatory or 

conjunctive model, while Model 4 was the best performing model (from among Models 

2, 3, and 4) for the disjunctive model. While the Rand statistic did not always provide the 

exact same evidence regarding which model had better classifications (or better matching 

to the original classifications) it still showed the same pattern of drop off (see Table 61 

and Table 62). 
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Table 59:  Classification rates for the individual LPs when Model 1 was used to generate 

the sample of 48 observable variables and a separate sample was used to generate the 

parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

correctly classified on LP 1 correctly classified on LP 2 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 34.1% 32.8% 34.8% 34.3% 32.0% 35.6% 35.2% 31.0% 

100 1 2 63.2% 37.2% 42.8% 29.1% 61.7% 39.0% 45.9% 25.8% 

100 1 3 60.2% 39.3% 27.3% 44.4% 64.2% 39.6% 30.6% 44.6% 

100 2 1 67.0% 48.4% 50.9% 37.2% 69.2% 48.9% 45.6% 46.2% 

100 2 2 75.2% 46.0% 59.9% 45.6% 73.6% 42.1% 53.3% 29.2% 

100 2 3 83.5% 51.0% 54.4% 60.4% 82.9% 47.7% 29.5% 59.4% 

500 1 1 34.2% 33.4% 33.7% 30.2% 33.9% 34.3% 34.8% 31.6% 

500 1 2 73.1% 40.1% 44.3% 25.7% 71.4% 35.6% 42.0% 28.4% 

500 1 3 75.6% 42.9% 26.3% 46.0% 76.5% 42.7% 28.9% 46.3% 

500 2 1 67.6% 50.0% 53.0% 45.5% 67.7% 47.8% 53.7% 47.4% 

500 2 2 81.5% 42.1% 58.3% 27.9% 82.5% 43.9% 59.8% 33.9% 

500 2 3 86.3% 46.3% 34.0% 64.3% 87.3% 48.3% 42.0% 63.4% 

 

 

Table 60:  Classification rates for the combination of LPs when Model 1 was used to 

generate the sample of 48 observable variables and a separate sample was used to 

generate the parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

correctly classified on both LPs 

M1 M2 M3 M4 

100 1 1 23.6% 14.6% 11.7% 9.9% 

100 1 2 44.4% 13.6% 15.0% 6.7% 

100 1 3 42.6% 13.4% 8.6% 11.1% 

100 2 1 61.7% 31.2% 27.2% 17.1% 

100 2 2 64.0% 25.4% 38.7% 13.7% 

100 2 3 72.3% 32.3% 11.9% 39.8% 

500 1 1 27.3% 11.4% 9.7% 6.4% 

500 1 2 56.2% 10.8% 12.8% 6.2% 

500 1 3 59.0% 13.5% 6.9% 12.7% 

500 2 1 60.8% 35.1% 34.6% 24.4% 

500 2 2 72.1% 26.0% 43.4% 7.5% 

500 2 3 77.4% 30.9% 13.7% 46.1% 
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Table 61:  The adjusted Rand statistic for the individual LPs when Model 1 was used to 

generate the sample of 48 observable variables and a separate sample was used to 

generate the parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

LP 1 classification LP 2 classification 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 0.090 0.083 0.164 0.095 0.407 0.150 0.126 0.133 

100 1 2 0.312 0.179 0.193 0.092 0.435 0.114 0.112 0.141 

100 1 3 0.281 0.209 0.159 0.136 0.419 0.136 0.102 0.098 

100 2 1 0.404 0.243 0.344 0.265 0.596 0.310 0.323 0.302 

100 2 2 0.543 0.323 0.359 0.302 0.577 0.305 0.359 0.296 

100 2 3 0.645 0.337 0.321 0.348 0.593 0.359 0.336 0.212 

500 1 1 0.074 0.077 0.133 0.098 0.416 0.143 0.122 0.126 

500 1 2 0.441 0.217 0.179 0.134 0.408 0.110 0.128 0.109 

500 1 3 0.469 0.284 0.163 0.138 0.460 0.131 0.094 0.103 

500 2 1 0.401 0.203 0.395 0.304 0.616 0.324 0.383 0.361 

500 2 2 0.629 0.347 0.378 0.312 0.619 0.300 0.346 0.356 

500 2 3 0.695 0.412 0.304 0.355 0.652 0.332 0.245 0.300 

 

Table 62:  The adjusted Rand statistic for the combination of LPs when Model 1 was 

used to generate the sample of 48 observable variables and a separate sample was used to 

generate the parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

both LPs classification 

M1 M2 M3 M4 

100 1 1 0.465 0.112 0.119 0.154 

100 1 2 0.421 0.076 0.098 0.120 

100 1 3 0.449 0.152 0.128 0.128 

100 2 1 0.678 0.252 0.305 0.362 

100 2 2 0.638 0.289 0.201 0.347 

100 2 3 0.698 0.384 0.389 0.361 

500 1 1 0.462 0.101 0.125 0.139 

500 1 2 0.409 0.064 0.087 0.103 

500 1 3 0.415 0.156 0.159 0.128 

500 2 1 0.679 0.304 0.345 0.347 

500 2 2 0.675 0.204 0.262 0.330 

500 2 3 0.694 0.384 0.392 0.366 

 

 

 When Model 1 was used to generate the parameters and 30 observable variables 

were used the classification patterns were very similar as to the case when 48 observable 

variables was used.  The classification rate was again lower in the case where there was a 
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large sample size, the LPs were uncorrelated, and the OV probabilities were based on an 

additive model, at between 61% and 62%.  The remaining classification rates for the 

individual LPs with Model 1 are between 70% and 94% (see Table 63).  The 

classification rates for the combination of both LPs for Model 1 ranged from 76% to 89% 

for the small sample size and 51% to 72% for the large sample size (see  
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Table 64 64).  The classification rates for Models 2-4 were at least 25% lower than that of 

Model 1, and were as low at 6% for the combination of both LPs.  The pattern among 

Models 2-4, where they had the highest classification rates when the data was generated 

similar to their underlying model assumptions, continued. 

 The adjusted Rand statistic followed a similar pattern in that it was higher for 

Model 1 than for Models 2-4 for both the individual LPs (see Table 65) and the 

combination of LPs (see Table 66).  This statistic also followed the pattern of indicating a 

better match for Model 1 when the sample size was small than when it was large. 

Table 63:  Classification rates for the individual LPs when Model 1 was used to generate 

the sample of 30 observable variables and the same sample was used to generate the 

parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

correctly classified on LP 1 correctly classified on LP 2 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 85.3% 38.0% 36.1% 34.3% 86.3% 35.8% 35.8% 32.5% 

100 1 2 87.0% 41.8% 44.0% 37.6% 87.7% 41.0% 43.2% 29.1% 

100 1 3 85.4% 44.4% 32.6% 47.6% 85.7% 44.4% 34.0% 48.1% 

100 2 1 89.0% 52.9% 47.1% 51.1% 87.3% 49.8% 44.9% 49.1% 

100 2 2 87.9% 47.1% 53.1% 36.4% 89.6% 52.5% 57.0% 46.7% 

100 2 3 92.8% 50.2% 45.1% 61.7% 93.5% 51.2% 43.9% 54.9% 

500 1 1 61.7% 36.7% 34.9% 32.9% 61.3% 36.5% 34.3% 32.1% 

500 1 2 70.3% 40.2% 43.8% 24.7% 71.5% 40.8% 43.9% 30.7% 

500 1 3 72.9% 43.7% 31.6% 46.4% 73.4% 41.8% 25.1% 46.4% 

500 2 1 74.9% 45.4% 48.3% 42.0% 75.0% 48.8% 47.6% 53.9% 

500 2 2 80.1% 49.1% 59.9% 36.1% 79.5% 52.6% 58.7% 27.4% 

500 2 3 83.3% 49.7% 29.2% 61.9% 82.5% 48.8% 36.7% 62.3% 
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Table 64:  Classification rates for the combination of LPs when Model 1 was used to 

generate the sample of 30 observable variables and the same sample was used to generate 

the parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

correctly classified on both LPs 

M1 M2 M3 M4 

100 1 1 81.4% 13.7% 11.3% 8.3% 

100 1 2 79.9% 14.0% 12.9% 11.5% 

100 1 3 76.9% 14.6% 10.2% 14.9% 

100 2 1 83.9% 31.8% 21.2% 26.3% 

100 2 2 83.0% 29.8% 34.1% 18.6% 

100 2 3 88.9% 30.9% 20.0% 37.4% 

500 1 1 52.7% 12.6% 10.1% 8.5% 

500 1 2 51.2% 11.8% 12.7% 7.8% 

500 1 3 52.6% 12.3% 6.8% 14.1% 

500 2 1 66.6% 33.9% 26.1% 26.9% 

500 2 2 68.4% 35.2% 42.9% 10.2% 

500 2 3 71.7% 32.1% 11.4% 46.1% 

 

Table 65:  The adjusted Rand statistic for the individual LPs when Model 1 was used to 

generate the sample of 30 observable variables and the same sample was used to generate 

the parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

LP 1 classification LP 2 classification 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 0.665 0.280 0.226 0.099 0.472 0.097 0.107 0.088 

100 1 2 0.693 0.306 0.206 0.123 0.498 0.078 0.119 0.107 

100 1 3 0.652 0.261 0.129 0.144 0.548 0.095 0.057 0.095 

100 2 1 0.749 0.312 0.314 0.308 0.668 0.263 0.263 0.219 

100 2 2 0.724 0.358 0.311 0.252 0.708 0.290 0.279 0.313 

100 2 3 0.830 0.447 0.414 0.284 0.697 0.294 0.194 0.266 

500 1 1 0.282 0.275 0.286 0.105 0.403 0.102 0.106 0.105 

500 1 2 0.390 0.312 0.164 0.117 0.418 0.082 0.115 0.118 

500 1 3 0.432 0.337 0.176 0.143 0.434 0.094 0.099 0.046 

500 2 1 0.495 0.398 0.431 0.296 0.603 0.273 0.284 0.304 

500 2 2 0.586 0.474 0.450 0.305 0.611 0.271 0.325 0.321 

500 2 3 0.633 0.516 0.476 0.323 0.620 0.287 0.172 0.228 
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Table 66:  The adjusted Rand statistic for the individual LPs when Model 1 was used to 

generate the sample of 30 observable variables and the same sample was used to generate 

the parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

both LPs classification 

M1 M2 M3 M4 

100 1 1 0.407 0.098 0.082 0.102 

100 1 2 0.384 0.110 0.043 0.079 

100 1 3 0.380 0.152 0.158 0.102 

100 2 1 0.552 0.272 0.269 0.271 

100 2 2 0.543 0.205 0.257 0.268 

100 2 3 0.599 0.333 0.306 0.268 

500 1 1 0.404 0.107 0.096 0.092 

500 1 2 0.388 0.041 0.077 0.071 

500 1 3 0.363 0.144 0.137 0.095 

500 2 1 0.572 0.266 0.313 0.296 

500 2 2 0.571 0.232 0.161 0.267 

500 2 3 0.524 0.340 0.341 0.288 

 

 When the sample used for classification rates was a separate sample than the one 

used for generating the parameters then the classification rate dropped for Model 1.  

However, the classification rates were similar between the two samples for Models 2, 3 

and 4 (see Table 67 and Table 68).  The inflation of the classification rates for the small 

sample size did not appear with this sample.  The adjusted Rand statistics were low for 

this sample (see Table 69 and Table 70).  The highest value for the match between the 

combination of the LPs was .336 and the highest value was .484 for the individual LPs.   
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Table 67: Classification rates for the individual LPs when Model 1 was used to generate 

the sample of 30 observable variables and a separate sample was used to generate the 

parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

correctly classified on LP 1 correctly classified on LP 2 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 32.8% 33.6% 32.7% 34.3% 30.6% 30.9% 32.3% 28.9% 

100 1 2 49.6% 35.8% 40.4% 32.9% 47.6% 35.7% 40.8% 24.4% 

100 1 3 50.5% 36.5% 26.4% 43.7% 51.7% 38.6% 27.4% 43.6% 

100 2 1 61.1% 47.6% 43.5% 43.9% 61.4% 47.3% 41.4% 48.5% 

100 2 2 64.7% 41.0% 50.4% 26.0% 65.8% 47.7% 52.8% 42.1% 

100 2 3 71.6% 41.0% 39.2% 56.1% 74.3% 45.2% 37.8% 53.9% 

500 1 1 33.8% 35.7% 34.4% 32.8% 33.7% 35.2% 33.6% 31.9% 

500 1 2 57.9% 38.9% 42.9% 23.1% 57.7% 40.3% 43.5% 28.3% 

500 1 3 61.3% 42.8% 30.2% 48.2% 60.8% 40.7% 23.9% 45.2% 

500 2 1 58.3% 45.2% 47.7% 40.1% 59.0% 48.9% 46.5% 55.2% 

500 2 2 71.2% 49.0% 58.2% 33.9% 70.8% 50.6% 57.7% 26.6% 

500 2 3 75.0% 46.7% 27.3% 59.6% 74.6% 47.1% 36.4% 61.2% 

 

 

Table 68:  Classification rates for the combination of LPs when Model 1 was used to 

generate the sample of 30 observable variables and a separate sample was used to 

generate the parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

correctly classified on both LPs 

M1 M2 M3 M4 

100 1 1 18.4% 11.3% 9.6% 9.8% 

100 1 2 22.9% 9.4% 10.6% 7.0% 

100 1 3 23.6% 11.3% 6.6% 12.1% 

100 2 1 51.3% 29.3% 16.1% 24.7% 

100 2 2 48.6% 26.5% 30.5% 11.7% 

100 2 3 57.6% 25.3% 13.7% 34.6% 

500 1 1 22.2% 12.1% 10.3% 9.2% 

500 1 2 30.2% 11.8% 13.3% 6.2% 

500 1 3 32.8% 12.1% 6.2% 14.3% 

500 2 1 47.8% 33.6% 25.3% 26.2% 

500 2 2 54.4% 35.0% 42.3% 9.0% 

500 2 3 58.4% 30.0% 10.0% 43.7% 
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Table 69: The adjusted Rand statistic for the individual LPs when Model 1 was used to 

generate the sample of 30 observable variables and the same sample was used to generate 

the parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

LP 1 classification LP 2 classification 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 0.088 0.056 0.160 0.106 0.073 0.103 0.106 0.082 

100 1 2 0.170 0.158 0.143 0.104 0.086 0.079 0.102 0.097 

100 1 3 0.171 0.202 0.154 0.107 0.121 0.088 0.055 0.065 

100 2 1 0.338 0.345 0.401 0.293 0.258 0.271 0.265 0.226 

100 2 2 0.360 0.381 0.381 0.238 0.269 0.262 0.270 0.279 

100 2 3 0.433 0.471 0.470 0.274 0.302 0.282 0.166 0.263 

500 1 1 0.076 0.078 0.158 0.108 0.108 0.109 0.107 0.118 

500 1 2 0.235 0.230 0.172 0.118 0.119 0.083 0.112 0.114 

500 1 3 0.281 0.274 0.192 0.151 0.128 0.099 0.101 0.046 

500 2 1 0.284 0.295 0.413 0.299 0.315 0.282 0.281 0.299 

500 2 2 0.440 0.432 0.459 0.308 0.304 0.274 0.312 0.311 

500 2 3 0.484 0.479 0.440 0.302 0.314 0.280 0.168 0.225 

 

Table 70:  The adjusted Rand statistic for the individual LPs when Model 1 was used to 

generate the sample of 30 observable variables and the same sample was used to generate 

the parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

both LPs classification 

M1 M2 M3 M4 

100 1 1 0.102 0.106 0.080 0.096 

100 1 2 0.079 0.099 0.037 0.083 

100 1 3 0.068 0.119 0.136 0.103 

100 2 1 0.270 0.255 0.263 0.297 

100 2 2 0.226 0.213 0.231 0.263 

100 2 3 0.297 0.310 0.311 0.267 

500 1 1 0.109 0.110 0.117 0.098 

500 1 2 0.084 0.041 0.074 0.068 

500 1 3 0.069 0.154 0.129 0.104 

500 2 1 0.272 0.257 0.318 0.299 

500 2 2 0.272 0.237 0.158 0.269 

500 2 3 0.237 0.316 0.336 0.276 

 

 

 When the generated data was based on Model 2 and the sample used for 

classification was the same as the sample used for generating the data, the same issue, as 

when the data was based on Model 1, of having higher classification rates for Model 1 
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with the small sample size than with the large sample size, occurred (see Table 71).  In 

addition, except for two cases with Model 1 and the low sample size, the classification 

rates were lower for the cases where the LPs were uncorrelated than when the LPs were 

correlated.  When the LPs were uncorrelated the classification rate for Models 2-4 was in 

the high 30% low 40% range, and when the LPs were correlated this range was in the 

high 40% to low 50% range (see Table 71).  For the large sample size Model 1 had 

classification rates about 10% higher than the other models.  Among Models 2-4, Model 

2 had the highest classification rate.   

 The classification rates for this sample with regards to the combination of LPs 

were lower with a range of 10% to 15% for Models 2-4 when the LPs were uncorrelated 

and 20%-30% when the LPs were correlated.  The classification rate for Model 1 under 

the large sample size condition was in the low 30% when the LPs were uncorrelated and 

the high 40% when the LPs were correlated (see Table 72).  Model 2 had the highest 

classification rate among Models 2-4 when the LPs were correlated.  The classification 

rates were all very similar when the LPs were uncorrelated. 

Table 71:  Classification rates for the individual LPs when Model 2 was used to generate 

the data and the same sample was used to generate the parameters as to estimate 

classification. 

SS 
LP 

probs 

OP 

cond 

correctly classified on LP 1 correctly classified on LP 2 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 79.2% 41.7% 39.8% 38.4% 77.1% 41.5% 37.5% 34.5% 

100 1 2 77.9% 39.4% 34.5% 36.3% 79.7% 42.3% 39.2% 39.1% 

100 2 1 75.8% 52.2% 45.6% 50.2% 76.2% 52.3% 46.2% 41.2% 

100 2 2 81.0% 53.7% 47.6% 46.8% 81.2% 54.3% 49.4% 48.6% 

500 1 1 53.5% 40.8% 36.7% 37.0% 53.7% 41.1% 36.4% 35.4% 

500 1 2 53.4% 41.0% 35.2% 36.8% 53.0% 41.9% 37.5% 36.4% 

500 2 1 61.6% 52.3% 52.1% 50.7% 61.7% 51.3% 47.0% 47.1% 

500 2 2 62.7% 53.2% 48.8% 46.0% 62.3% 53.3% 52.9% 50.7% 
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Table 72:  Classification rates for the combination of LPs when Model 2 was used to 

generate the data and the same sample was used to generate the parameters as to estimate 

classification. 

SS 
LP 

probs 

OP 

cond 

correctly classified on both LPs 

M1 M2 M3 M4 

100 1 1 67.9% 14.2% 14.4% 12.7% 

100 1 2 69.0% 11.6% 10.9% 12.5% 

100 2 1 68.2% 36.5% 23.1% 24.3% 

100 2 2 73.5% 36.8% 25.3% 24.6% 

500 1 1 31.2% 11.7% 12.1% 11.9% 

500 1 2 30.5% 11.9% 11.9% 12.5% 

500 2 1 47.3% 36.6% 30.1% 30.2% 

500 2 2 48.9% 38.1% 33.8% 32.1% 

 

 The adjusted Rand statistic showed similar patterns to the classification rates; the 

individual LPs had a higher rate in some cases for the low sample size than for the high 

sample size (see Table 73), although this was not seen in the statistic for the combination 

of both LPs (see Table 74).  The pattern where there seemed to be a better match when 

the LPs were correlated than when they were uncorrelated was also reflected in the 

adjusted Rand statistic. 

Table 73: The adjusted Rand statistic for the individual LPs when Model 2 was used to 

generate the data and the same sample was used to generate the parameters as to estimate 

classification 

SS 
LP 

probs 

OP 

cond 

LP 1 classification LP 2 classification 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 0.546 0.494 0.395 0.123 0.116 0.090 0.112 0.104 

100 1 2 0.509 0.551 0.419 0.098 0.111 0.092 0.087 0.106 

100 2 1 0.515 0.512 0.487 0.281 0.275 0.257 0.238 0.212 

100 2 2 0.599 0.599 0.569 0.296 0.292 0.269 0.209 0.271 

500 1 1 0.210 0.212 0.130 0.133 0.138 0.094 0.112 0.109 

500 1 2 0.208 0.203 0.133 0.139 0.135 0.100 0.104 0.115 

500 2 1 0.359 0.345 0.387 0.295 0.286 0.254 0.282 0.246 

500 2 2 0.370 0.371 0.427 0.309 0.314 0.277 0.258 0.310 
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Table 74:  The adjusted Rand statistic for the combination of LPs when Model 2 was used 

to generate the data and the same sample was used to generate the parameters as to 

estimate classification  

SS 
LP 

probs 

OP 

cond 

both LPs classification 

M1 M2 M3 M4 

100 1 1 0.079 0.107 0.073 0.074 

100 1 2 0.094 0.080 0.098 0.083 

100 2 1 0.235 0.243 0.184 0.246 

100 2 2 0.249 0.197 0.248 0.226 

500 1 1 0.084 0.116 0.104 0.084 

500 1 2 0.083 0.113 0.110 0.084 

500 2 1 0.255 0.274 0.224 0.248 

500 2 2 0.290 0.244 0.293 0.286 

 

 When the sample that was being classified was not the same as the sample used to 

generate the models, then the classification rates for the small sample size was very 

similar to that of the large sample size for all models.  The classification rates for all 

models were very similar to each other.  When the LPs were not correlated the 

classification rate for the individual LP had values between 29% and 41%, while the 

values when the LPs were correlated were between 37% and 53% (see Table 75).  The 

classification rates dropped for the combination of both LPs with the rate being in-

between 8% and 14% when the LPs were uncorrelated and between 21% and 38% when 

the LPs were correlated (see Table 76). 

 The adjusted Rand statistic did not indicate a good match for any of the models, 

although it also displayed the pattern of better matching when the LPs were correlated 

than when they were uncorrelated.  The values were slightly higher for the individual LPs 

(see Table 77) than for the combination of LPs (see Table 78) but in either case the 

highest value was below .4 indicating that there was not a good match between the 

classifications. 
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Table 75:  Classification rates for the individual LPs when Model 2 was used to generate 

the sample of 30 observable variables and a separate sample was used to generate the 

parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

correctly classified on LP 1 correctly classified on LP 2 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 34.6% 39.5% 37.1% 32.8% 32.9% 36.2% 33.1% 31.3% 

100 1 2 30.1% 38.2% 29.7% 34.0% 33.9% 40.8% 35.5% 36.2% 

100 2 1 49.2% 52.5% 44.6% 47.8% 49.3% 50.9% 43.1% 37.2% 

100 2 2 50.4% 53.3% 43.4% 43.1% 51.8% 53.1% 45.0% 46.3% 

500 1 1 35.6% 39.2% 35.7% 35.7% 37.3% 41.2% 35.5% 34.7% 

500 1 2 37.0% 40.8% 34.9% 35.6% 36.9% 40.1% 36.0% 35.5% 

500 2 1 51.5% 52.4% 50.3% 49.1% 49.5% 52.6% 45.5% 47.4% 

500 2 2 48.5% 51.5% 47.7% 44.8% 49.8% 50.8% 51.2% 49.0% 

 

Table 76:  Classification rates for the combination of LPs when Model 2 was used to 

generate the sample of 30 observable variables and a separate sample was used to 

generate the parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

correctly classified on both LPs 

M1 M2 M3 M4 

100 1 1 12.1% 11.4% 11.8% 9.1% 

100 1 2 9.3% 12.4% 8.8% 10.2% 

100 2 1 37.0% 38.0% 23.8% 22.7% 

100 2 2 36.4% 37.6% 21.9% 23.6% 

500 1 1 13.0% 11.6% 11.7% 11.3% 

500 1 2 13.3% 12.3% 12.0% 12.6% 

500 2 1 35.1% 37.7% 29.0% 29.9% 

500 2 2 33.3% 37.1% 33.3% 31.5% 

 

Table 77:  The adjusted Rand statistic for the individual LPs when Model 2 was used to 

generate the sample of 30 observable variables and a separate sample was used to 

generate the parameters as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

LP 1 classification LP 2 classification 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 0.072 0.076 0.074 0.132 0.119 0.096 0.104 0.099 

100 1 2 0.043 0.094 0.079 0.116 0.124 0.094 0.078 0.118 

100 2 1 0.269 0.292 0.352 0.306 0.303 0.305 0.243 0.222 

100 2 2 0.276 0.296 0.365 0.314 0.331 0.294 0.197 0.276 

500 1 1 0.090 0.110 0.103 0.123 0.146 0.095 0.100 0.114 

500 1 2 0.106 0.100 0.103 0.140 0.124 0.095 0.101 0.103 

500 2 1 0.289 0.266 0.389 0.311 0.319 0.285 0.285 0.264 

500 2 2 0.261 0.260 0.377 0.313 0.300 0.279 0.266 0.296 
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Table 78:  The adjusted Rand statistic for the combination of both LPs when Model 2 was 

used to generate the sample, and a separate sample was used to generate the parameters 

as to estimate classification. 

SS 
LP 

probs 

OP 

cond 

both LPs classification 

M1 M2 M3 M4 

100 1 1 0.098 0.095 0.080 0.081 

100 1 2 0.091 0.102 0.106 0.090 

100 2 1 0.269 0.269 0.169 0.276 

100 2 2 0.274 0.178 0.263 0.241 

500 1 1 0.080 0.105 0.109 0.090 

500 1 2 0.083 0.109 0.095 0.081 

500 2 1 0.278 0.284 0.243 0.275 

500 2 2 0.291 0.248 0.282 0.284 

 

 When data was generated using Model 3 and the same sample was used for 

classification as for parameter generation Model 1 again had higher classification rates 

than the other models and the classification rates for the small sample size for Model 1 

was higher than for the large sample size.  Model 4 had the lowest classification rate for 

the individual LPs (see Table 79) and for most of the cells with the combination of LPs 

(see Table 80).  In addition the classification rates were again higher for the cases when 

the LPs were correlated than when they were not correlated. 

Table 79:  Classification rates for the individual LPs when Model 3 was used to generate 

the sample, and the same sample was used to generate the parameters as to estimate 

classification. 

SS 
LP 

probs 

OP 

cond 

correctly classified on LP 1 correctly classified on LP 2 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 75.2% 33.1% 34.9% 27.5% 72.3% 36.7% 35.6% 33.8% 

100 1 2 79.2% 38.0% 37.9% 30.6% 79.1% 39.4% 39.2% 33.8% 

100 2 1 69.6% 42.5% 42.4% 31.0% 71.9% 45.9% 44.4% 38.1% 

100 2 2 75.6% 45.1% 43.9% 35.0% 76.4% 46.9% 46.8% 37.6% 

500 1 1 47.7% 35.3% 35.5% 24.1% 47.3% 35.0% 35.7% 28.4% 

500 1 2 47.9% 34.9% 35.9% 26.7% 47.8% 36.1% 36.5% 24.2% 

500 2 1 53.4% 44.5% 43.9% 26.0% 52.7% 44.4% 44.0% 33.9% 

500 2 2 54.3% 45.2% 45.4% 28.6% 54.1% 44.6% 44.7% 34.5% 
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Table 80:  Classification rates for the combination of LPs when Model 3 was used to 

generate the sample, and the same sample was used to generate the parameters as to 

estimate classification. 

SS 
LP 

probs 

OP 

cond 

correctly classified on both LPs 

M1 M2 M3 M4 

100 1 1 62.8% 10.3% 10.4% 10.1% 

100 1 2 70.0% 12.9% 11.5% 11.9% 

100 2 1 62.8% 29.0% 24.2% 13.0% 

100 2 2 69.8% 27.9% 26.9% 13.1% 

500 1 1 24.8% 9.5% 9.9% 6.7% 

500 1 2 25.8% 10.0% 10.0% 6.6% 

500 2 1 36.7% 33.6% 26.5% 10.0% 

500 2 2 38.2% 30.4% 28.3% 7.2% 

 

 The adjusted Rand statistic when the data was generated based on Model 3 and 

the same parameters were used for generating the parameters and classification followed 

a similar pattern as the classification rates.  Model 1 had higher adjusted Rand statistic in 

the small sample size than the large sample size (see Table 81).  The adjusted Rand 

statistic also indicated a better match when the LPs were correlated than when they were 

not correlated for both the individual LPs and for the combination of LPs.  The adjusted 

Rand statistic was very low for the combination of LPs with a maximum value of .161 

(see Table 82). 

Table 81:  The adjusted Rand statistic for the individual LPs when Model 3 was used to 

generate the sample, and the same sample was used to generate the parameters as to 

estimate classification. 

SS 
LP 

probs 

OP 

cond 

LP 1 classification LP 2 classification 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 0.454 0.410 0.301 0.065 0.094 0.047 0.066 0.090 

100 1 2 0.531 0.538 0.415 0.096 0.115 0.061 0.092 0.111 

100 2 1 0.388 0.415 0.367 0.156 0.195 0.179 0.187 0.192 

100 2 2 0.498 0.505 0.478 0.179 0.208 0.180 0.177 0.205 

500 1 1 0.139 0.133 0.076 0.089 0.088 0.052 0.088 0.088 

500 1 2 0.144 0.142 0.084 0.090 0.094 0.057 0.091 0.095 

500 2 1 0.218 0.221 0.211 0.183 0.183 0.162 0.178 0.191 

500 2 2 0.237 0.224 0.229 0.201 0.189 0.185 0.197 0.188 
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Table 82: The adjusted Rand statistic for the combination of LPs when Model 3 was used 

to generate the sample, the same sample was used to generate the parameters as to 

estimate classification. 

SS 
LP 

probs 

OP 

cond 

both LPs classification 

M1 M2 M3 M4 

100 1 1 0.041 0.031 0.088 0.037 

100 1 2 0.059 0.052 0.086 0.053 

100 2 1 0.150 0.086 0.151 0.144 

100 2 2 0.151 0.107 0.161 0.136 

500 1 1 0.050 0.019 0.057 0.033 

500 1 2 0.053 0.050 0.032 0.034 

500 2 1 0.155 0.076 0.119 0.139 

500 2 2 0.159 0.099 0.129 0.157 

 

 When a separate sample was used, the classification rates for the individual LPs 

were fairly similar to those of the previous sample for Models 2-4, but were lower for 

Model 1 (see Table 83).  The highest classification rate was in either Model 2 or Model 3, 

although it was never higher than 45%.  For the combination of LPs the cases in which 

the LPs were correlated had higher classification rates than the cases in which the LPS 

were not correlated, but was not higher than 33.1% in any case (see Table 84).   

Table 83:  Classification rates for the individual LPs when Model 3 was used to generate 

the sample, and a separate sample was used to generate the parameters as to estimate 

classification rates 

SS 
LP 

probs 

OP 

cond 

correctly classified on LP 1 correctly classified on LP 2 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 24.2% 31.8% 32.1% 22.5% 28.6% 31.4% 31.6% 28.1% 

100 1 2 29.4% 33.4% 34.5% 23.4% 28.5% 32.9% 34.2% 25.8% 

100 2 1 38.9% 40.9% 42.1% 26.1% 37.0% 43.9% 38.7% 37.3% 

100 2 2 39.9% 40.4% 43.0% 30.0% 37.6% 40.8% 41.6% 31.1% 

500 1 1 32.0% 34.6% 34.3% 21.9% 32.4% 33.5% 34.1% 27.1% 

500 1 2 31.8% 34.4% 34.7% 24.5% 32.0% 33.8% 33.6% 23.1% 

500 2 1 41.7% 43.9% 42.8% 24.7% 41.6% 43.5% 42.7% 32.5% 

500 2 2 39.9% 45.1% 44.5% 28.3% 40.9% 43.5% 43.5% 33.8% 
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Table 84: Classification rates for the combination of LPs when Model 3 was used to 

generate the sample, and a separate sample was used to generate the parameters as to 

estimate classification 

SS 
LP 

probs 

OP 

cond 

correctly classified on both LPs 

M1 M2 M3 M4 

100 1 1 5.8% 7.1% 6.5% 7.4% 

100 1 2 8.5% 9.9% 9.6% 7.5% 

100 2 1 23.4% 28.8% 22.1% 12.7% 

100 2 2 24.4% 23.6% 25.3% 9.3% 

500 1 1 8.8% 9.4% 9.3% 5.8% 

500 1 2 9.2% 9.4% 9.1% 6.2% 

500 2 1 24.3% 33.1% 26.6% 9.2% 

500 2 2 22.4% 30.2% 27.9% 6.8% 

 

The adjusted Rand statistic also indicated a poor match between the original 

classification and the classification from the models, as it was below .2 for the individual 

LPs (see Table 85) as well as the combination of LPs (see Table 86).  For both the 

individual LPs and the combination of LPs the pattern of the Rand statistic being lower 

for the cases in which the LPs were uncorrelated was found here as well. 

Table 85: The adjusted Rand statistic for the individual LPs when Model 3 was used to 

generate the sample, and a separate sample was used to generate the parameters as to 

estimate classification 

SS 
LP 

probs 

OP 

cond 

LP 1 classification LP 2 classification 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 0.021 0.040 0.028 0.073 0.075 0.058 0.079 0.064 

100 1 2 0.037 0.036 0.038 0.099 0.090 0.064 0.099 0.093 

100 2 1 0.112 0.111 0.120 0.192 0.210 0.196 0.205 0.207 

100 2 2 0.127 0.103 0.149 0.162 0.162 0.156 0.165 0.172 

500 1 1 0.061 0.066 0.056 0.097 0.088 0.055 0.089 0.089 

500 1 2 0.065 0.064 0.056 0.091 0.090 0.057 0.093 0.088 

500 2 1 0.146 0.151 0.180 0.193 0.180 0.166 0.182 0.183 

500 2 2 0.135 0.134 0.170 0.194 0.182 0.172 0.198 0.184 
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Table 86:  The adjusted Rand statistic for the combination of LPs when Model 3 was 

used to generate the sample, and a separate sample was used to generate the parameters 

as to estimate classification  

SS 
LP 

probs 

OP 

cond 

both LPs classification 

M1 M2 M3 M4 

100 1 1 0.044 0.032 0.065 0.047 

100 1 2 0.056 0.044 0.060 0.052 

100 2 1 0.167 0.074 0.194 0.180 

100 2 2 0.147 0.084 0.128 0.127 

500 1 1 0.051 0.017 0.054 0.036 

500 1 2 0.052 0.048 0.028 0.033 

500 2 1 0.155 0.072 0.112 0.139 

500 2 2 0.160 0.089 0.138 0.159 

 

 Much of the same patterns can be seen when the data was generated following 

Model 4.  When the same sample was used for generating the data as for classifying 

students then Model 1 had a high classification rate in the small sample size for both the 

individual LPs (see Table 87) as well as for the combination of LPs (see Table 88).  For 

the individual LPs as well as the combination of LPs, Model 3 had the lowest 

classification rate. 

Table 87:  Classification rates for the individual LPs when Model 4 was used to generate 

the sample, and the same sample was used to generate the parameters as to estimate 

classification 

SS 
LP 

probs 

OP 

cond 

correctly classified on LP 1 correctly classified on LP 2 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 76.7% 37.5% 31.2% 37.0% 77.7% 37.3% 29.8% 38.1% 

100 1 2 77.8% 34.2% 28.5% 35.8% 76.9% 37.7% 31.9% 35.6% 

100 2 1 74.5% 45.6% 39.2% 45.5% 74.5% 43.9% 34.3% 42.9% 

100 2 2 72.7% 46.9% 37.3% 44.5% 73.5% 48.2% 38.9% 46.3% 

500 1 1 47.3% 34.7% 25.3% 35.1% 47.9% 36.3% 24.3% 36.9% 

500 1 2 49.1% 35.7% 26.7% 36.9% 48.8% 36.2% 23.8% 37.3% 

500 2 1 53.0% 44.5% 32.0% 44.8% 53.9% 44.0% 25.2% 45.0% 

500 2 2 53.4% 44.4% 33.9% 45.2% 54.6% 45.0% 33.6% 45.3% 
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Table 88:  Classification rates for the combination of LPs when Model 4 was used to 

generate the sample, and the same sample was used to generate the parameters as to 

estimate classification 

SS 
LP 

probs 

OP 

cond 

correctly classified on both LPs 

M1 M2 M3 M4 

100 1 1 67.0% 10.7% 9.4% 10.9% 

100 1 2 68.5% 8.4% 8.5% 9.1% 

100 2 1 67.1% 27.3% 13.3% 25.9% 

100 2 2 63.9% 31.5% 15.2% 26.3% 

500 1 1 25.6% 9.9% 6.7% 10.4% 

500 1 2 26.4% 10.4% 6.6% 10.4% 

500 2 1 37.8% 32.2% 7.5% 29.7% 

500 2 2 37.6% 32.5% 13.0% 28.3% 

 

 The adjusted Rand statistic indicated a poor match between the original 

classifications and the classifications indicated from the application of each model.  

While there were some cases for LP1 when the sample size was small that had values 

around .5 (see Table 89), for LP2 and the high sample size case the highest value was .23.  

For the combination of LPs all adjusted Rand statistics were below .2 (see Table 90). 

Table 89:  The adjusted Rand statistic for the individual LPs when Model 4 was used to 

generate the sample, and the same sample was used to generate the parameters as to 

estimate classification  

SS 
LP 

probs 

OP 

cond 

LP 1 classification LP 2 classification 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 0.490 0.510 0.374 0.089 0.087 0.052 0.063 0.040 

100 1 2 0.507 0.491 0.389 0.081 0.103 0.055 0.051 0.067 

100 2 1 0.471 0.471 0.433 0.183 0.160 0.177 0.124 0.106 

100 2 2 0.445 0.455 0.413 0.208 0.207 0.200 0.129 0.128 

500 1 1 0.129 0.151 0.080 0.077 0.102 0.053 0.030 0.040 

500 1 2 0.152 0.150 0.087 0.096 0.097 0.061 0.057 0.033 

500 2 1 0.222 0.219 0.213 0.187 0.182 0.165 0.110 0.059 

500 2 2 0.219 0.237 0.230 0.175 0.197 0.178 0.098 0.114 
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Table 90:  The adjusted Rand statistic for the combination of LPs when Model 4 was 

used to generate the sample, and the same sample was used to generate the parameters as 

to estimate classification  

SS 
LP 

probs 

OP 

cond 

both LPs classification 

M1 M2 M3 M4 

100 1 1 0.045 0.088 0.091 0.050 

100 1 2 0.047 0.083 0.086 0.051 

100 2 1 0.155 0.170 0.169 0.157 

100 2 2 0.160 0.175 0.205 0.155 

500 1 1 0.030 0.077 0.101 0.052 

500 1 2 0.039 0.096 0.098 0.058 

500 2 1 0.128 0.187 0.179 0.152 

500 2 2 0.162 0.181 0.192 0.151 

 

 When a separate sample was used to classify the students then the pattern of lower 

classification rates when the LPs were correlated was found both in with the 

classifications for the individual LPs and the combination of LPs. The classification rates 

for the individual LPs were all under 45% and were lowest for Model 3 (see Table 91).  

The highest classification rates for the combination of LPs were found in the correlated 

LP case under Models 1, 2, and 4 with the rates varying from 22% to 33% (see Table 92).  

The highest rate among the other cases was 11.1% for the combination of LPs. 

Table 91:  Classification rates when Model 4 was used to generate the sample of 30 

observable variables and a separate sample was used to generate the parameters as to 

estimate classification 

SS 
LP 

probs 

OP 

cond 

correctly classified on LP 1 correctly classified on LP 2 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 28.1% 33.4% 30.9% 33.5% 27.4% 33.8% 24.1% 33.2% 

100 1 2 25.5% 32.4% 22.4% 32.1% 28.2% 35.4% 28.2% 34.1% 

100 2 1 36.3% 35.9% 31.2% 39.3% 39.1% 43.1% 29.6% 41.9% 

100 2 2 36.7% 42.3% 33.2% 38.7% 40.4% 44.5% 30.0% 40.5% 

500 1 1 31.0% 35.2% 22.9% 35.2% 33.0% 34.7% 23.9% 35.5% 

500 1 2 32.4% 34.1% 25.2% 34.5% 31.2% 34.4% 22.5% 34.8% 

500 2 1 41.2% 44.0% 31.8% 44.4% 40.3% 44.4% 23.3% 44.4% 

500 2 2 40.4% 44.3% 31.7% 44.0% 40.3% 44.8% 32.2% 43.8% 



164 

 

 

Table 92: Classification rates when Model 4 was used to generate the sample of 30 

observable variables and a separate sample was used to generate the parameters as to 

estimate classification 

SS 
LP 

probs 

OP 

cond 

correctly classified on both LPs 

M1 M2 M3 M4 

100 1 1 8.0% 8.2% 9.3% 8.2% 

100 1 2 7.8% 8.2% 6.4% 6.7% 

100 2 1 24.2% 22.9% 8.0% 22.0% 

100 2 2 23.1% 27.9% 9.5% 21.2% 

500 1 1 9.4% 10.1% 5.7% 10.0% 

500 1 2 8.6% 9.3% 6.0% 9.6% 

500 2 1 22.9% 32.8% 7.3% 30.2% 

500 2 2 22.4% 32.6% 11.1% 27.8% 

   

The adjusted Rand statistic again indicated a poor match with again all values 

under .2 for both the individual LPs (see Table 93) and the combination of LPs (see 
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Table 94 94).  It also indicated a better match when the LPs were correlated. 

Table 93:  The adjusted Rand statistic for the individual LPs when Model 4 was used to 

generate the sample, and a separate sample was used to generate the parameters as to 

estimate classification 

SS 
LP 

probs 

OP 

cond 

LP 1 classification LP 2 classification 

M1 M2 M3 M4 M1 M2 M3 M4 

100 1 1 0.040 0.030 0.036 0.087 0.080 0.053 0.063 0.034 

100 1 2 0.022 0.039 0.034 0.076 0.118 0.067 0.033 0.069 

100 2 1 0.094 0.108 0.111 0.158 0.180 0.161 0.101 0.090 

100 2 2 0.100 0.130 0.130 0.174 0.204 0.174 0.094 0.108 

500 1 1 0.058 0.072 0.055 0.095 0.094 0.056 0.030 0.044 

500 1 2 0.068 0.061 0.062 0.090 0.091 0.061 0.051 0.029 

500 2 1 0.150 0.129 0.171 0.197 0.186 0.176 0.113 0.058 

500 2 2 0.137 0.133 0.166 0.191 0.190 0.181 0.096 0.108 
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Table 94:  The adjusted Rand statistic for the combination of LPs when Model 4 was 

used to generate the sample, and a separate sample was used to generate the parameters 

as to estimate classification 

SS 
LP 

probs 

OP 

cond 

both LPs classification 

M1 M2 M3 M4 

100 1 1 0.044 0.084 0.077 0.048 

100 1 2 0.051 0.082 0.107 0.065 

100 2 1 0.141 0.147 0.187 0.138 

100 2 2 0.162 0.170 0.199 0.165 

500 1 1 0.031 0.092 0.095 0.055 

500 1 2 0.038 0.092 0.089 0.057 

500 2 1 0.133 0.192 0.185 0.161 

500 2 2 0.159 0.186 0.175 0.150 

 

Discussion 

 While the constrained model most closely associated with the generating model 

was most often picked to be the best fitting model, Model 2 and Model 1 seemed to be 

able to best reproduce the generating LP and OV probabilities overall.  All models were 

able to reproduce their own generating parameters, but Models 3 and Model 4 had lower 

rates of parameter recovery when a different model was used for data generation.  This 

makes sense, particularly for the case where Model 3 was used for generating the data 

and Model 4 was used to generate the parameters (and vice versa).  For Models 3 and 4 

the probability of a correct response only depends on students’ ability on one of the LPs.  

Model 3 depends on the student’s ability for the LP in which they have the lower ability, 

while Model 4 depends on the student’s ability for the LP in which they have the higher 

ability, which means that these models depend on the ability level for the opposite LP as 

each other, therefore it would make sense that they would have difficulty estimating each 

other’s probabilities, or probabilities that would depend on the ability level for both LPs.   
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In general the models tended to perform better (in terms of classification) when 

the LPs were correlated.  That may be due to the fact that there was less probability of 

certain combinations of levels of the learning progressions, so items tended to provide 

information regarding one ability estimate instead of having to parse out two different 

abilities.  While Model 1 seemed to have high classification rates when the sample size 

was low and the sample used to generate the parameters was also used to classify 

students, this could be due to chance as the classification rates dropped when the sample 

size increased. 

When a separate sample was used to estimate the classification then Model 1 and 

Model 2 tended to produce comparable results.  When Model 1 and Model 2 were the 

models underlying the data generation then Models 3 and 4 also provided comparable 

results.  However, when Model 3 was the generating model then Model 4 did not have as 

high a classification rate, and vice versa.  

Conclusion 

  While parameter recovery for these models was fairly high the results of this 

study show that classification rates were not very high.  These models did better when the 

two learning progressions were related to each other but still most of the time they 

classified more people incorrectly than correctly.   

 Of these models, Model 1 and Model 2 had the highest rate of classification 

overall.  Even in the cases where these were not the generating model these models did a 

comparable job at classification.  Model 2 may be appropriate in situations where it is 

important to keep the number of parameters low or there is a need to generate item IRT 

parameters along with the BIN.  Model 1 may be used in other situations. 
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 However, the overall results for this study demonstrated that the way the model 

was set up resulted in poor classifications and therefore a practitioner may not want to 

use a BIN for classifying students when they have only items are designed to measure 

two LPs.  One possible reason for this is that there were no items that solely measured 

one LP.  Therefore it may be the case that the LPs were reversed which would lead to low 

classification rates.  Further studies are necessary to determine if there are ways to 

improve the classification rates of the BINs with multiple LPs. 
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CHAPTER 6:  APPLICATION OF MODELS 

 This third study provides real-data applications in order to further explore the 

similarities and differences between the models in terms of fit and inferences.  The data 

used is from a course offered through the Cisco Networking Academy.  The Cisco 

Networking Academy is a global academy with several courses designed to help students 

obtain the knowledge and skills required for expertise in computer networking (Behrens 

et al, 2007).   

 This study is consists of two parts.  Part A examines data focusing on one learning 

progression for IP addressing, while part B examines data that depends on two learning 

progressions, one for IP addressing and the other for Routing.  

Part A:  Real data that is designed to measure one LP 

For part A the data set that was used was 36 items that depend on the IP 

addressing learning progression.  While these items were not all from the same exam they 

were all taken on exams within the same month.  The total sample size is 3827, which 

was partitioned into two subsamples.  One sample of 1800 was used to estimate the 

conditional probabilities associated with the BIN and the remaining students were used as 

a cross-validation sample to test out the BIN.  The learning progression for IP addressing 

has 5 levels (see Appendix A).  However, for this study there were 4 items that are 

designed to provide evidence about whether a student is either below or at-or-above 

Level 1, 9 items that provide analogous evidence for Level 2, 12 items for Level 3, and 

11 items for Level 4.  As no items (as determined by content experts) were designed to 

measure the top level the LP was treated as only having 4 levels (with a 0 level as having 

no skill – i.e., below Level 1).   
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The overall process of this study was to first run a LCA to classify students into 

levels of the learning progression.  Once students were classified, each of the four models 

from Study 1 (see Table 18 for a review of the models) was used to estimate parameters.  

Similarly to Study 1, fit statistics for each model were obtained and the estimated 

parameters were used to classify students both in the sample that generated the data and 

the separate sample.  Results were then compared across models. (Note that unlike the 

simulations, this classification criterion is not a known true generating value, but rather 

an estimate from another, less constrained, model.  Implications of this difference will be 

discussed in a subsequent section.) 

The first decision that needed to be made was to determine how to assign subjects 

to levels of the learning progression.  This study followed the approach used by West et 

al (2009) and used a latent class analysis.  A five class model was fit which resulted in 

each student being assigned to a particular class, however, these classes, while labeled 1 

through 5, did not necessarily correspond to levels of the learning progression.  In order 

to determine the correct class, a mapping was made by examining the probabilities of a 

correct response to each of the items.  By placing the probabilities in approximate order, 

the classes were able to be labeled with the group that had the lowest probabilities on 

items being labeled as Class 1 and the group with the highest probabilities being labeled 

as Class 5 (see Table 95 for the resulting classifications).  Also note that while the 

probabilities for each individual item was not always in the same order (i.e. sometimes a 

higher class had a lower probability of a correct response than a lower class), the 

classifications tended to followed the content experts mapping of which items depend on 

which level by having the jump in probability be at the level for which the item was 
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designed to provide evidence.  For example, if an item was stated to be providing 

evidence on Level 1 then the probability for a student in Class 1 to obtain a correct 

response was relatively low compared to students with higher classifications.  If an item 

was designed to provide evidence on Level 3 then the probabilities for students in Class 1 

and Class 2 would be relatively lower than students in Class 3 or 4.      

It should also be noted that the probabilities did not always fit into the expected 

pattern, in that some items had jumps in their probability at places other than where the 

content experts would have placed them.  For example, item 18 has a high probability of 

a correct response for students in Class 2 but a low probability of a correct response for 

students in Class 3.  This type of item is an example of an item that may not follow the 

hierarchical model and may in fact be indicative of the ―messy middle‖ problem (as 

discussed in Chapter 3) and therefore Model 3 may be a more appropriate model than 

Model 1.    

First BIN analysis 

Once the assignment of classes was determined for each of the students the data 

was randomly split into two groups.  One of these groups was used to determine the 

parameters for each of the four models discussed in Study 1 and the other group was used 

to examine the classifications.  The data was then analyzed using the four models 

discussed in Study 1.  All fit statistics indicated that Model 1 was the best fitting model 

(see Table 96).  The percent of students correctly classified (i.e. classifications matched 

the LCA classification used as input when estimating probabilities in the BIN)  reflected 

this as well (see Table 97).   
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Table 95:  Probability of a correct response based on the latent class analysis.  A change 

in shading reflects a jump in the probability  The jumps were at least .05. 
Level 

of the 

item 

Item 

number 

Class 1 Class 2 Class3 Class 4 Class 5 

1 1 0.619 0.913 0.842 0.686 0.983 

1 2 1.000 1.000 1.000 1.000 1.000 

1 3 0.296 0.765 1.000 0.968 0.964 

1 4 0.296 0.792 0.870 0.899 0.934 

2 5 0.325 0.747 0.944 0.767 0.950 

2 6 0.152 0.444 0.561 0.845 0.955 

2 7 0.273 0.555 0.495 0.714 0.898 

2 8 0.393 0.539 0.162 0.706 0.988 

2 9 0.341 0.597 0.695 0.749 0.826 

2 10 0.598 0.954 0.924 0.984 0.952 

2 11 0.115 0.408 0.727 0.828 0.920 

2 12 0.508 0.872 0.816 0.983 0.980 

2 13 0.284 0.663 0.214 0.863 0.930 

3 14 0.116 0.481 0.188 0.733 0.848 

3 15 0.253 0.231 0.000 0.331 0.838 

3 16 0.233 0.522 0.123 0.798 0.866 

3 17 0.210 0.293 0.229 0.557 0.919 

3 18 0.447 0.915 0.098 0.968 0.991 

3 19 0.266 0.723 0.525 0.919 0.855 

3 20 0.156 0.600 0.698 0.955 0.989 

3 21 0.480 0.778 1.000 0.982 0.971 

3 22 0.200 0.456 0.670 0.772 0.980 

3 23 0.190 0.597 0.726 0.904 0.931 

3 24 0.051 0.135 0.280 0.445 0.821 

3 25 0.117 0.621 0.735 0.565 0.868 

4 26 0.335 0.705 0.261 0.566 0.794 

4 27 0.325 0.864 0.879 0.838 0.976 

4 28 0.274 0.471 0.211 0.888 0.974 

4 29 0.188 0.296 0.894 0.804 0.964 

4 30 0.044 0.232 0.620 0.674 0.919 

4 31 0.186 0.354 0.850 0.821 0.994 

4 32 0.154 0.255 0.307 0.378 0.877 

4 33 0.130 0.191 0.648 0.709 0.910 

4 34 0.105 0.536 0.333 0.872 0.952 

4 35 0.212 0.382 0.604 0.590 0.983 

4 36 0.246 0.285 0.240 0.629 0.900 
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Table 96:  Fit statistics for first BIN analysis of Part A of study 1:  full data set 

Fit 

Statistic 
Model 1 Model 2 Model 3 Model 4 

AIC 24219.3 33519.9 31248.5 31276.3 

BIC 25230.5 33739.7 31484.8 31556.6 

DIC 24172.0 35880.8 30968.9 30980.2 

 

Table 97:  Percent of students correctly classified for the first BIN analysis of Part A, 

study 1:  full data set 

Model 

Percent classified Correctly 

Parameter 

generating data 

Separate 

data 

1 69.7% 68.0% 

2 30.7% 9.5% 

3 30.2% 29.5% 

4 28.9% 29.8% 

 

Second BIN analysis 

The percent classified consistently with the LCA by the first BIN analysis seemed 

low, especially for Models 2-4.  Further examination of the data revealed that there was a 

large amount of missing data, and in fact a high percent of students had missing data for 

all items that were designed to provide evidence for particular levels of the learning 

progression.  In those cases there was no direct information regarding whether or not the 

student has the particular attributes for that level.  Due to this fact it was decided to 

remove any cases for which the student did not have responses to at least 2 items on 

every level.  This resulted in a new sample size of 324.  A latent class analysis was again 

run on this sample and class membership was computed in the same manner as before 

(see Table 98).   
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Table 98:  Probability of a correct response based on the latent class analysis for the 

second BIN study.  A change in shading reflects a jump in the probability 
Level 

of the 

item 

Item 

number 
Class 1 Class 2 Class3 Class 4 Class 5 

1 1 0.613 0.858 0.891 0.074 0.977 

1 2 1.000 1.000 1.000 1.000 1.000 

1 3 0.309 0.735 0.978 0.965 0.953 

1 4 0.289 0.751 0.946 0.827 0.905 

2 5 0.311 0.743 0.783 0.802 0.936 

2 6 0.151 0.394 0.788 0.942 0.962 

2 7 0.297 0.534 0.648 0.837 0.903 

2 8 0.351 0.456 0.773 0.425 0.981 

2 9 0.341 0.574 0.724 0.885 0.798 

2 10 0.568 0.938 0.991 0.960 0.954 

2 11 0.108 0.384 0.753 0.999 0.925 

2 12 0.472 0.859 0.965 1.000 0.976 

2 13 0.336 0.629 0.792 1.000 0.933 

3 14 0.091 0.442 0.643 0.953 0.850 

3 15 0.204 0.226 0.291 0.422 0.804 

3 16 0.174 0.489 0.711 0.961 0.875 

3 17 0.205 0.290 0.453 0.774 0.910 

3 18 0.352 0.848 0.946 0.986 0.992 

3 19 0.235 0.682 0.874 0.981 0.862 

3 20 0.141 0.560 0.915 0.989 0.991 

3 21 0.472 0.756 0.980 0.983 0.972 

3 22 0.190 0.423 0.789 0.642 0.979 

3 23 0.173 0.570 0.858 0.958 0.940 

3 24 0.056 0.128 0.341 0.691 0.815 

3 25 0.119 0.572 0.679 0.322 0.853 

4 26 0.329 0.642 0.664 0.258 0.771 

4 27 0.305 0.852 0.833 0.921 0.958 

4 28 0.251 0.412 0.830 0.942 0.973 

4 29 0.187 0.312 0.709 1.000 0.968 

4 30 0.044 0.203 0.636 0.720 0.922 

4 31 0.184 0.354 0.740 1.000 0.994 

4 32 0.156 0.226 0.433 0.123 0.871 

4 33 0.135 0.186 0.603 0.958 0.909 

4 34 0.096 0.474 0.814 0.944 0.946 

4 35 0.212 0.363 0.609 0.447 0.986 

4 36 0.249 0.249 0.564 0.730 0.895 
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The probabilities of item responses were slightly different between when the full 

data set was used and when a subset of the data was used, but the general pattern of 

probabilities was very similar.  One difference is that while in the full data set there were 

11 items that had large drops in probabilities when moving into a higher level, with the 

small sample there were only 5 of these items.  

The data was then split into two samples.  A sample of 200 was used to generate 

the parameters and the other sample of 124 was used to cross validate the generated 

parameters.  With the smaller sample size Model 3 was found to fit better (which follows 

along from some of the results that we saw in Study 1) (see Table 99).  Again though, the 

percent of students whose classifications were consistent with the LCA was very low (see 

Table 100).  This low classification rate may be due to the fact that the sample size was 

very small when compared to the number of items.   

Table 99:  Fit statistics for the second BIN analysis of Part A of study 1:  Subset 1 
Fit 

Statistic 
Model 1 Model 2 Model 3 Model 4 

AIC 7444.1 7283.1 7146.2 7173.1 

BIC 8051.0 7415.0 7288.0 7341.3 

DIC 7213.7 7240.5 7097.7 7108.7 

 

Table 100:  Percent of students correctly classified for the second BIN analysis of Part A 

of study 1:  Subset 1 

Model 

Percent classified Correctly 

Parameter 

generating data 
Separate data 

1 12.0% 33.1% 

2 12.5% 18.5% 

3 5.5% 19.4% 

4 37.0% 17.7% 
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Third BIN Analysis 

To test the theory that the sample size was not large enough for the number of 

items, a subset of items was picked from the total number of items.  Three items from 

each level were picked such that the probabilities based on the latent class analysis had 

the largest jumps between the class that was one lower than the level the item was 

designed to measure and the class that was at the level the item was designed to measure.  

The items picked were 1, 3, 4, 6, 9, 10, 13, 14, 23, 29, 30 and 36. 

With this subsample the fit statistics seemed to indicate that Model 1 was the best 

fitting model (see Table 101).  This was supported with the classification rates (see Table 

102).  However, the classifications rates were still fairly low.  The data was examined 

again and it was found that there were still some items with a fairly high number of 

students with missing data (for example item 1 for had missing data for 158 students 

while several other items had missing data for 197 students).   

Table 101:  Fit statistics for the third BIN analysis of Part A of study 1:  Subset 2 

Fit 

Statistic 
Model 1 Model 2 Model 3 Model 4 

AIC 3326.8 4069.1 3936.7 3948.0 

BIC 3537.9 4161.5 4039.0 4050.3 

DIC 2806.7 2926.6 2783.6 2794.9 

 

Table 102:  Percent of students correctly classified for the third BIN analysis of Part A of 

study 1:  Subset 2 

Model 

Percent classified Correctly 

Parameter generating 

data 
Separate data 

1 46.0% 26.0% 

2 7.5% 25.8% 

3 25.0% 22.6% 

4 24.5% 23.4% 
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Fourth Bin Analysis 

For the fourth BIN analysis a different subset of items was chosen in which the 

highest number of missing data points was 14.  These items were 2, 3, 4, 5, 10, 11, 19, 

22, 24, 30, 35, 36.  The data was again split into two samples with 200 in the sample for 

generating the parameters and 124 in the sample for testing out these parameters.  The 

AIC and BIC fit statistics indicated Model 1 was the best fitting model.  The DIC 

indicated Model 3 (see Table 103).  The classification rates also indicated that Model 1 

was the best fitting model as it had the highest classification rate (about 20% higher than 

the other models) (see Table 104).  However, even Model 1 misclassified more students 

then classified correctly.   

Table 103:  Fit statistics for the fourth BIN analysis of Part A of study 1:  Subset 3 

Fit 

Statistic 
Model 1 Model 2 Model 3 Model 4 

AIC 3201.6 4165.7 4019.3 4036.6 

BIC 3412.7 4258.0 4121.5 4138.8 

DIC 3054.8 3157.4 3014.9 3026.1 

 

Table 104:  Percent of students correctly classified for the fourth BIN analysis of Part A 

of study 1:  Subset 3 

Model Percent classified Correctly 

  
Parameter generating 

data 
Separate data 

1 42.0% 44.4% 

2 11.0% 29.8% 

3 22.5% 24.2% 

4 22.0% 23.4% 

 

Discussion of Part A 

The results of this study indicate that of these models Model 1 performs the best.  

However further studies are needed to justify the use of a BIN.  One factor in this study 
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was the amount of missing data.  Further studies may want to examine how much missing 

data is acceptable before the model does not perform well in terms of classification.  

Studies may want to examine missing data when generating the parameters and/or 

missing data when trying to determine the correct classification of students. 

Another issue with this study may be from the assignment of students to classes.  

For this study the only information that was available regarding each of the students was 

the current data set.  Therefore it is not guaranteed that the assignment to levels of the 

learning progression is correct, in which case trying to determine how well the models 

matched the original classification may not provide the most accurate information on how 

well students would be correctly classified.  Also, while this study assumed that there was 

an underlying hierarchical structure as described by the content experts, some of the 

items did not follow this pattern as can be seen by the decrease in probability of correct 

response as the level increased.  Results might have been different if classifications for 

the individual levels were available.   Further studies may want to find other sources of 

information to use to determine correct levels for each student in the sample used to learn 

parameters of the models.  In addition it may be interesting to determine how well the 

LCA is able to classify students, as part of this study is a comparison between two 

models that can be used for classification and it is not clear that the classifications from 

the BIN would be any better than the classifications from an LCA. 

Overall, while Model 1 and Model 3 seemed acceptable based on the simulation 

study, the real data example demonstrates that there are situations in which neither of 

these models would provide acceptable classification rates.  Further information into how 

these models would behave in real-data situations may be desired.   
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Part B:  Real Data Study with Two LPs 

For part B a data set was used that took items from a final exam in the Cisco 

Networking Academy.  The data set included 6 items designed to measure students 

ability with regards to IP addressing, 6 items that were designed to measure students 

skills in routing and 10 items that were designed to measure both.  For this data set there 

was no missing data and the total sample size was 831.   

Each LP had 5 levels (see Appendix A for discussion of the levels).  The levels 

that each of the items was designed to provide evidence on can be seen in Table 105.  

The number of items that were designed to measure each level of the learning progression 

was determined (see Table 106).  Since there were no items at level 1 of the IP addressing 

LP and only 2 items at level 5, a LP with 3 levels (plus a novice level) was used.  These 

three levels would correspond to level 2 of the original LP, level 3 of the original LP, and 

levels 4 and 5 of the original LP.  Similarly for the Routing IP 3 levels were used, level 1 

corresponding to levels 1 and 2 of the original LP, level 2 corresponding to level 3 of the 

original LP, and level 3 corresponding to level 4 of the original LP.  
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Table 105:  The levels of each LP that the items are designed to measure 

Item 

Number 

Level of IP 

Add. LP 

Level of 

Router LP 

1 4 3 

2 4 2 

3 5 3 

4 3 3 

5 2 2 

6 2 3 

7 3 3 

8 3 2 

9 2 2 

10 2 3 

1 4 - 

2 4 - 

3 5 - 

4 3 - 

5 3 - 

6 3 - 

1 - 1 

2 - 3 

3 - 4 

4 - 4 

5 - 4 

6 - 4 

 

 

Table 106:  The number of items designed to measure each level of the LPs 

Level of the 

LP 
Items on               

IP Add. 

Items on 

Routing 

1 0 1 

2 4 4 

3 6 7 

4 4 4 

5 2 0 

 

Two latent class analyses were used to determine how to assign levels to each 

student.  The first analysis used the items that were designed to provide evidence on IP 
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addressing and the items measuring both LPs and the second analysis used the items that 

were designed to provide evidence on routing and both LPs.  The items that were 

designed to measure both LPs were used, as the items measuring just one learning 

progression did not always provide information on all levels of the learning progression 

and so it was deemed that these items would not provide enough information for 

classification purposes.  Using these items was not ideal, as this part of the study was 

trying to classify students on the individual LPs but the response probabilities for these 

items are based on student’s ability on both the LPs.  A better approach would have been 

to determine the level of the students outside of this assessment; however this type of 

information was not available. 

Once the latent class analysis was run the resulting classes were arranged in order 

to best reflect the content experts mapping of the items to the level of the learning 

progression that it is aimed at measuring and to order the probabilities so that lower 

classes had lower probability of responses (see Table 107 and Table 108).  For both of 

these analyses the items that only depended on one of the LPs were arranged so that the 

probabilities increased as the levels increased.  In this arrangement the probabilities for 

items measuring both of the LPs did not always increase as the level increased.  This 

could be in part due to the fact that these items also depended on another skill, or it could 

be part due to the fact that students might not obtain all of the level attributes in order.    
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Table 107:  Probability associated with each class based on the latent class analysis for IP 

addressing 

Items 

Measuring 

Item 

Number 

Level of 

IP Add. 

LP 

Class 1 Class 2 Class 3 Class 4 

Both LPs 

5 2 0.365 0.854 0.740 0.834 

6 2 0.234 0.076 0.493 0.410 

9 2 0.337 0.516 0.735 0.715 

10 2 0.354 0.468 0.444 0.694 

4 3 0.210 0.904 0.693 0.922 

7 3 0.321 0.261 0.423 0.320 

8 3 0.385 0.405 0.685 0.829 

1 4 0.198 0.910 0.503 0.968 

2 4 0.091 0.765 0.180 0.823 

3 5 0.054 0.900 0.323 0.937 

IP Add. 

4 3 0.450 0.374 0.856 0.757 

5 3 0.194 0.107 0.297 0.411 

6 3 0.422 0.408 0.670 0.736 

1 4 0.388 0.422 0.463 0.864 

2 4 0.314 0.308 0.753 0.798 

3 5 0.414 0.367 0.843 0.785 
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Table 108:  Probability associated with each class based on the latent class analysis for 

Routing 

Items 

Measuring 

Item 

Number 

Level of 

Routing.  
Class 1 Class 2 Class 3 Class 4 

Both LPs 

2 2 0.365 0.854 0.740 0.834 

5 2 0.234 0.076 0.493 0.410 

8 2 0.337 0.516 0.735 0.715 

9 2 0.354 0.468 0.444 0.694 

1 3 0.210 0.904 0.693 0.922 

3 3 0.321 0.261 0.423 0.320 

4 3 0.385 0.405 0.685 0.829 

6 3 0.198 0.910 0.503 0.968 

7 3 0.091 0.765 0.180 0.823 

10 3 0.054 0.900 0.323 0.937 

Routing. 

1 1 0.450 0.374 0.856 0.757 

2 3 0.194 0.107 0.297 0.411 

3 4 0.422 0.408 0.670 0.736 

4 4 0.388 0.422 0.463 0.864 

5 4 0.314 0.308 0.753 0.798 

6 4 0.414 0.367 0.843 0.785 

 

 

The data was then split into two samples, a sample size of 400 was used to 

generate parameters and a sample size of 431 was used to test the classification results.  

The four models described in Study 2 were each applied (see Table 41 for description of 

the models).  The AIC and DIC indicated that Model 1 was the best fitting model (see 

Table 109).  The BIC indicated that Model 4 was the best fitting model. 

Table 109:  Fit statistics for each model in Part B of study 3 
Fit 

Statistic 
Model 1 Model 2 Model 3 Model 4 

AIC 11579.8 12201.7 12134.2 12127.5 

BIC 12434.0 12349.4 12281.9 12275.2 

DIC 11271.6 12161.6 12094.6 12088.0 
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Classification results from first set of items 

 The percent of students whose classification matched the classification generated 

from the LCA was calculated for both the sample that generated the parameter and the 

separate sample (see Table 110).  In all cases, the classification rates for Model 1 were at 

least 15% higher than all of the other models.  Models 2-4 had classification rates in the 

range 45.5% to 68.2% which was higher than those found in the simulation study.  One 

possible explanation for this is that in this study there were items that were only 

dependent upon the individual LPs  The adjusted Rand statistic followed the same 

pattern, with Model 1 having higher rates and in general the rates were higher than in the 

simulation study (see Table 111).   

Table 110:  Classification rates for Study 3, Part B when all items were used 

Model 

Generating Parameters Sample Separate Sample 

LP1 LP2 Both LP1 LP2 Both 

1 89.5% 90.5% 82.0% 88.4% 83.5% 74.0% 

2 68.0% 65.8% 54.0% 64.5% 66.1% 51.3% 

3 66.5% 56.3% 45.5% 67.1% 59.4% 47.8% 

4 64.5% 68.0% 48.5% 68.2% 68.2% 49.4% 

 

Table 111:  The adjusted Rand index Study 3, Part B when all items were used 

Model 

Generating Parameters Sample Separate Sample 

LP1 LP2 Both LP1 LP2 Both 

1 0.741 0.767 0.782 0.727 0.614 0.680 

2 0.418 0.396 0.464 0.390 0.373 0.423 

3 0.493 0.302 0.459 0.513 0.353 0.474 

4 0.431 0.442 0.494 0.461 0.406 0.449 

 

 

Classification results from using a subset of items 

To determine if having the items that measured both LPs increased classification 

rates over only using items that measured one LP the classification rate was calculated for 
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the samples using only the information from the items that measure one LP (see Table 

112).  The classification rates for Models 3 and 4 decreased slightly; about a 2% decrease 

on the classifications for both LPs.  Models 1 and 2 had much higher decreases of around 

20%-30%.  Overall the classification rates were more similar to each other than they were 

when all the items were used, which makes sense as the only difference between the 

models is how they handle the situation when items depend on multiple LPs and items 

that only depend on one LP would have the same structure across the models.  It also 

implies that when there are items that depend on multiple LPs, Model 3 and Model 4 may 

not be appropriate as the use of these items do not improve the classification of students 

for these models.  Model 1 had the highest gain in classification rate which may indicate 

that practitioners would want to use Model 1.   

Table 112:  Classification rates for Study 3, Part B when only items measuring one LP 

were used 

Model 

Generating Parameters Sample Separate Sample 

LP1 LP2 Both LP1 LP2 Both 

1 61.8% 59.8% 44.3% 64.0% 58.0% 45.0% 

2 54.8% 51.8% 40.5% 51.3% 54.3% 39.0% 

3 54.8% 56.5% 44.3% 55.0% 59.4% 45.7% 

4 57.5% 55.0% 46.3% 58.9% 58.5% 47.3% 

 

The adjusted Rand indices had a decrease for all of the models, with Model 1 

having the largest decrease (see Table 113).  The statistics were also very similar across 

models, although Model 1 did have the highest statistic (except for the when matching 

the classification on LP2 for the separate sample in which case it was .001 below that of 

Model 4).  This indicates that having the items that depend on two LPs increased the 

match between the resulting classification and the starting classification.  This increase 

was largest for Model 1 which again may indicate that when having items that measure 
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multiple LPs, Model 1 may be the model that would provide the highest classification 

rate.   

Table 113:  The adjusted Rand index Study 3, Part B when only items measuring one LP 

was used 

Model 

Generating Parameters Sample Separate Sample 

LP1 LP2 Both LP1 LP2 Both 

1 0.318 0.341 0.389 0.379 0.327 0.403 

2 0.281 0.301 0.359 0.308 0.346 0.364 

3 0.283 0.296 0.343 0.296 0.353 0.345 

4 0.281 0.285 0.343 0.307 0.328 0.353 

 

 Discussion of Part B 

While the results from study 2 did not show promise in the use of a BIN when 

measuring multiple LPs, the results of this study demonstrate that there may be situations 

for which this type of model would be appropriate.  Of the four models used Model 1, 

which did not constrain the relationship between the two LPs, had much higher 

classification rates than the constrained models when all of the data was used.   

 As with the previous example there is some concern regarding how students were 

assigned to groups.  The only information provided was the current data set, which had 

limited coverage in the items that were designed to measure one skill.  In follow up 

studies it may be useful to have other information to be used to classify students such as 

teacher ratings and previous coursework.   

 One highlight of this study is that is seems that the use of items that measure just 

one LP along with items that measure both LPs can help the accuracy of the 

classification.  Follow up studies may want to examine this issue to determine if there is 

an optimal or minimum number of items for measuring one skill and items measuring 

multiple skills.  
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Conclusion 

 Overall this study highlighted some of the issues with using a BIN in practice.  

The first issue is the determination of the classification of students for the sample that 

will be used to generate the parameters.  Ideally information outside of the results of the 

exam would be used such as teacher input and results from previous assessments.  The 

accuracy of the BIN depends in part on the accuracy of these classifications. 

 Another highlight from this study is the issue of missing data.  Part A 

demonstrated that having a large amount of missing data can decrease the classification 

rates for a BIN.  Further studies may be needed to determine how much missing data and 

the types of missing data that would most affect the situation, but overall practitioners 

may want to be careful if they are using a data set with a large amount of missing data to 

estimate the BIN parameters. 

 Part B demonstrated that using a combination of variables that are designed to 

measure one LP and variables that are designed to measure multiple LPs can help 

improve classification rates over just variables that are designed to measure multiple LPs.  

Practitioners may want to incorporate both types of variables when they are designing 

their assessment. 
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CHAPTER 7:  CONCLUSIONS 

Summary of Findings 

 This research was designed to address different modeling issues with regards to 

using BINs to model LPs.    The work included three studies, the first to examine 

modeling issues when each observable variable is designed to measure levels on one 

learning progression, the second to address issues when the observable variables measure 

two learning progressions, and the third study to provide real data examples of how these 

techniques can be applied in practice. 

 The goal of the research was to provide insight into the cases in which different 

models may be more appropriate in practical applications.  When dealing with one 

learning progression, four models were compared.  The first model treated the LP as one 

latent categorical variable, while the other models treated the LP as having separate 

binary variables for each level.  In this latter case, three models were compared, one in 

which the binary variables were independent of each other, one in which each variable 

was dependent on the variable associated with the previous level of the LP, and the last in 

which each latent variable was dependent on the variables associated with all of the 

previous levels of the LP. 

 The simulation study indicated that treating the LP as one categorical latent 

variable was the only model in which the classification rates were higher than 75% in all 

cases when the generating sample was used for classification rates, and 65% when a 

separate sample was used.  Treating the LP as independent level variables generally 

resulted in the lowest classification rates of all models.  Treating the LP as different level 
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variables with a dependency between adjacent levels, seemed to produce comparable or 

higher classification rates, compared to treating the LP as one categorical latent variable 

under two conditions:  when the sample size was small, or the ability distribution of 

students was skewed.   The real data example, while not providing high classification 

rates (where the classifications were based on LCA results, so may not be the correct 

classifications) did indicate that treating the LP as one categorical latent variable may 

provide the highest classification rates among the models being compared.   

The issue of whether or not there was a benefit in adding in constraints regarding 

the structure of the dependence relationship of an OV that is modeled as depending on 

two LPs, was addressed in Study 2.  The benefits of adding in constraints would be that 

there would be fewer parameters to estimate and that constraints could be made such that 

items could be placed on a familiar IRT scale to represent their difficulty.  Study 2 

compared an unconstrained model with three constrained models that used compensatory, 

conjunctive and disjunctive relationships. 

 The results of the simulation study indicate that while an unconstrained model or 

a compensatory model would provide comparable or higher classification rates than the 

conjunctive or disjunctive model, neither the constrained nor the unconstrained model 

were able to consistently classify students correctly over 50% of the time.    The 

conjunctive and disjunctive models were not as robust to model misspecification and 

therefore would not be recommended, at least not at the sample sizes used in this study.  

The real data example seemed to indicate that the addition of variables that measured 

only one of the LPs might increase the classification rates of the models particularly for 
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the unconstrained model.  However, further studies would be needed to validate this 

indication. 

Limitations 

This study is only a beginning of investigations into applying BINS to LPs.  One 

limitation with Study 1 and Study 2 is that a couple of the assumptions about the models 

may not reflect real world situations.  For one, the relationship between the OV and LPs 

was fixed to specify a strong relationship of the OVs with the level they were designed to 

measure.  Also, the probability of a correct response was the same (and low) for levels 

below where an item was designed to measure, then jumped to the higher value and did 

not change.  These assumptions may not be true in a real world example as items may 

display a more gradual change in probability across levels.  Additionally, in these studies 

there were multiple indicators of each level of the learning progression.  As can be seen 

from the real data example, this might not always be the case.   

The real data examples in this study also had some limitations.  The main issue 

was the method in which the students were assigned to classes.  For this study the only 

information that was given with regards to the student was the test scores, and therefore 

the classifications were derived from the same data that was used for the analysis.  One 

issue with this approach, particularly in the first example, was that this method attempted 

to impose a hierarchical structure on the LP which might have biased the analysis 

towards the model that closely matched that structure.  Also, in the real data example it 

was not known if the classifications assigned were correct.  The study was then 

comparing classifications from the BIN to classifications that may or may not be correct, 

and the poor results may be due to differences in the methods versus an issue with a BIN. 
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The missing data in Part A of the real data example was an additional limitation. 

While this data set provided insight into how missing data might affect the results, it did 

not provide an opportunity to examine a data set that was close to the situation found in 

the simulation study.   

Another limitation with Part B of the real data example is that there were not 

enough items on every level of the learning progression, in particular on level 1.  The 

study was not able to separate students who were at level 1 from students who were at 

level 2 for either of the LPs.  

Implications for Practice 

A practitioner who is using a BIN for measuring an LP may want to decide how 

important is it obtain information on the individual levels of the learning progression 

versus the learning progression as a whole.  In addition a practitioner may want to 

determine if they believe the sample they are using has a skewed ability distribution.  If 

that is the case then they may want to split up the learning progression into individual 

level variables.  Otherwise they can just use one variable to represent the entire LP.   

When designing an assessment that is used to measure two LPs, a practitioner 

would want to include items that solely measure each individual skill in addition to items 

that may measure both.  In this situation an unconstrained model is recommended.  

However, a practitioner may want to be cautious about using the results of a BIN for high 

stakes situations as there may be a high level of misclassification. 

In addition, a practitioner needs to decide how they are going to gather data to 

learn the parameters of the BIN.  They will want to use a data set that already has 

classification information associated with each student – that is, ―supervised learning‖ 
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rather than ―unsupervised learning‖ for the conditional probabilities in the BIN.  In this 

case, the decision must be made as to how this gold-standard information will be 

determined.  (One example may be from teacher judgments based on extensive 

information from classroom and hands-on performances.) 

Directions for Future Research 

This research can be extended in several ways, such as examining the case where 

the data is polytomous, including different types of relationships between the latent 

variables and the observables, examining how the number of items used affects 

classification rates, and examining more complex learning progressions. In particular it 

would be useful to examine the situation in which two LPs are being measured and to 

vary the number of items that are measuring each LP as well as measuring both LPs. 

 Another area of interest would be to compare the performance of BINs with other 

models adapted to be used with LPs.  One possibility is instead of breaking out the 

attributes into separate LP level variables, breaking them out into different attributes as 

input to a CDM.  Another possibility is to apply an IRT model and to set cutpoints that 

would separate out the levels of the LP.  In particular since this study did not indicate 

that, within the conditions studied here, BIN would be a good model to use in the case 

where multiple LPs are being measured one could investigate whether there are other 

models that would do better, or if the less-than-satisfactory performance should be 

attributed to the carrying capacity of the data; that is, whether given the data, any model 

can recover underlying progress levels.  It may be the case that the numbers and the 

structures of tasks needed to assess students’ levels on learning progressions are larger 

than are needed for more familiar kinds of overall proficiency assessments.   
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 This study provided some insight into when particular BINs would be appropriate 

(or not appropriate).  However there is still room for more research in this field and the 

field of modeling LPs.  As LPs become more popular there will be a greater need to 

develop models that provide the accuracy required to provide useful information from 

assessments designed to measure LPs.  Further work can be done in order to provide 

practitioners with insight that will help them develop and model assessments for LPs. 
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APPENDIX A 

A1:  IP Addressing Learning Progression 

Level Knowledge and skills 

1:             

Novice 

1. Student can navigate the operating system to get to the appropriate screen 

to configure the address.   

2. Student knows that four things need to be configured:  IP address, subnet 

mask, default gateway and DNS server. 

3. Student can enter and save information. 

4. Student can use a web browser to test whether or not network is working. 

5. Student can verify that the correct information was entered and correct 

any errors. 

6. Student knows that DNS translates names to IP addresses. 

7. Student understands why a DNS server IP address must be configured. 

2:                    

Basic 

1. Student understands that an IP address corresponds to a source or 

destination host on the network. 

2. Student understands that an IP address has two parts, one indicating the 

individual unique host and one indicating the network that the host resides 

on. 

3. Student understands how the subnet mask indicates the network and host 

portions of the address. 

4. Student understands the concept of local –vs- remote networks. 

5. Student understands the purpose of a default gateway and why it must be 

specified. 

6. Student knows that IP address information can be assigned dynamically. 

7. Student can explain the difference between a broadcast traffic pattern and 

a unicast traffic pattern. 

3:          

Intermediate 

1. Student understands the difference between physical and logical 

connectivity. 

2. Student can explain the process of encapsulation. 

3. Student understands the difference between Layer 2 and Layer 3 

networks and addressing. 

4. Student understands that a local IP network corresponds to a local IP 

broadcast domain. (both the terms and the functionality) 

5. Student knows how a device uses the subnet mask to determine which 

addresses are on the local Layer 3 broadcast domain and which addresses 

are not. 

6. Student understands the concept of subnets and how the subnet mask 

determines the network address. 

7. Student understands why the default gateway IP address must be on the 

same local broadcast domain as the host. 

8. Student understands ARP and how Layer 3 to Layer 2 address translation 

is accomplished. 

9. Student knows how to interpret a network diagram in order to determine 

the local and remote networks. 

10. Student understands how DHCP dynamically assigns IP addresses. 
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4:          

Advanced 

1. Student can use the subnet mask to determine what other devices are on 

the same local network as the configured host. 

2. Student can use a network diagram to find the local network where the 

configured host is located. 

3. Student can use a network diagram to find the other networks attached to 

the local default gateway. 

4. Student can use the PING utility to test connectivity to the gateway and 

to remote devices. 

5. Student can recognize the symptoms that occur when the IP address or 

subnet mask is incorrect. 

6. Student can recognize the symptoms that occur if an incorrect default 

gateway is configured. 

7. Student can recognize the symptoms that occur if an incorrect DNS 

server (or no DNS server) is specified. 

8. Student knows why DNS affects the operation of other applications and 

protocols, like email or file sharing. 

9. Student can use NSlookup output to determine if DNS is functioning 

correctly. 

10. Student can configure a DHCP pool to give out a range of IP addresses. 

11. Student knows the purpose of private and public IP address spaces and 

when to use either one. 

12. Student understands what NAT is and why it is needed. 

5:                       

Expert 

1. Student can recognize a non-functional configuration by just looking at 

the configuration information, no testing of functionality required. 

2. Student can interpret a network diagram to determine an appropriate IP 

address/subnet mask/default gateway for a host device. 

3. Student can recognize the symptoms that occur if an incorrect subnet 

mask is configured on the intermediate routers or destination host. 

4. Student can interpret a network diagram in order to determine the best 

router to use as a default gateway when more than one router is on the local 

network. 

5. Student can evaluate a connectivity problem to determine if it could 

possibly be caused by an incorrect setting configured on the host. 

6. Student can propose changes to a host configuration to solve a 

connectivity problem. 

7. Student can make and test proposed changes to a host configuration to 

solve an identified connectivity problem. 

8. Student can implement NAT to translate private to public addresses. 
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A2:  Routing Learning Progression 

Level Knowledge and skills 

1:  Novice 

1. Differentiate Layer 2 networks from Layer 3 networks. 

2. Understand the difference between local and remote networks 

3. Understand the relationship of IP network address to local physical network. 

4.Understand how a host uses its own subnet mask to determine if a destination 

address is on the same local network 

5.Explain network broadcast messages and their purpose in a network. 

6. Understand that ARP messages do not leave the local Layer 3 network. 

7. Understand that the function of a gateway is to forward packets from one 

network to another. 

8. Understand that the routing process is required to get packets from the source 

local network to the destination network. 

9. Understand that routers use network layer addresses to get packets from the 

source local network to the destination network. 

10. Interpret a network diagram to determine when routing is necessary for a 

packet to be sent from one host to another. 

2:   Basic 

1.  Realize that routing is a function, not a device, and that any computer with two 

NICs can perform the routing function. 

2.  Understand that routers do not normally forward broadcasts from one network 

to another, so routers form the boundary of a broadcast network. 

3.  Realize that transmission media and Layer 2 protocol can change from one 

router interface to another. 

4.  Explain the differences between LAN and WAN. 

5.  Understand that routers remove the frame headers and re-frame the packet for 

transmission. 

6.  Realize that a router LAN interface is another host on the local network and 

operates in many of the same ways that other hosts do. (responds to ARPs, 

originates and respond to PINGs, processes broadcasts, has MAC address. 

7.  Understand that a routing device may also perform other functions, such as 

running management, client/server, and configuration software 

8.  Differentiate between directly connected, static, and default routes. 

9.  Understand how routers keep tables containing destination networks and the 

router interfaces to use to reach them. 

10.  Explain  classful networking  and how some functions still rely on network 

classes (example: default subnet mask, "network x is subnetted" output in a routing 

table) 

11.  Perform a basic router configuration. 

12.  Use show commands to display router configurations and the contents of the 

routing table 

13.  Interpret a routing table that contains directly connected, static, and default 

routes. 

14. Configure simple static and default routes. 

15.  Understand the relationship between the status of an interface and the contents 

of the routing table 
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16.  Use the "show interface" command output to determine the status of an 

interface. 

3:    Intermediate 

1.  Understand the concept of segmented networks and the meaning  of the term 

"hops". 

2.  Explain the benefits of network segmentation. 

3.  Understand the concept of a point-to-point network and why connections 

between routers are often point-to-point 

4.  Understand the role of the subnet mask in the destination network path selection 

process. 

5.  Explain the concept of "longest match". 

6.  Know that routing protocols enable routers to exchange Layer 3 information. 

7.  Know that routers use broadcasts and multicasts to exchange information 

8.  Know that Cisco Discovery Protocol is not a Layer 3 routing protocol, that it 

uses a Layer 2 frame to enable the exchange of device specific information 

between directly connected Cisco devices 

9.  Explain the advantages of statically configured and dynamically learned routes, 

including the fact that static routes take priority over dynamically learned routes 

10.  Interpret a network diagram in order to select the appropriate default route. 

11.  Explain the concept of route metrics, using distance vector examples 

12.  Interpret a routing table to determine which route will be used for any 

destination address 

13.  Configure a dynamic routing protocol (RIPv2) to advertise directly connected 

routes 

14.  Verify the operation of a dynamic routing protocol (RIPv2) using show 

commands 

15.  Troubleshoot routing problems related to network statement configuration 

errors 

4:            

Advanced 

1. Describe the differences between different routing protocols. (IGP/EGP,distance 

vector/link state,classful/classless,EIGRP, OSPF,RIPv1/v2) 

2.  Understand how RIPv2, EIGRP and OSPF exchange information and select 

routes 

3. Understand the concept of neighbor routers and the various roles routers may 

perform in a complex network 

4.  Interpret a network diagram to determine how a specific routing protocol will 

select the best route to a destination (example:  given this diagram, OSPF will use 

this route...) 

5.  Explain why some routing protocols require other tables to be stored on the 

router (topology, neighbor, successor, etc.) 

6.  Understands the concept of administrative distance and how it can be 

manipulated and verified to ensure a specific route is installed in the routing table 

7.  Understands that multiple routing protocols can be active on a router at the 

same time and that information learned using one method can be redistributed 

(shared) through another 
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8.  Understands the concept of route summarization and the importance of a 

hierarchical addressing structure 

9.  Understand when static routing is preferable to dynamic routing and why 

10.  Configure a combination of static and dynamic routing using RIPv2, EIGRP 

or single area OSPF 

11.  Use show and debug commands to determine if routing information is being 

correctly sent and received 

5:                

Expert 

1.  Understand the importance of authenticating routing protocol neighbors in 

order to trust the routing updates 

2.  Understand how routing loops can cause network instability and the 

mechanisms that routing protocols use to prevent them 

3.  Explain how floating static routes work and when they should be used 

4.  Understand the difference between how Interior Gateway Protocols exchange 

information and how Exterior Gateway Protocols exchange information 

5.  Understand the concept of network area borders and the function of a border 

router 

6.  Interpret a network diagram to determine which routing method will best meet  

needs 

7.  Predict which routes will be installed in a routing table given a network 

diagram and show run output from network routers 

8.  Configure optimal route summarization 

9.  Configure a routing protocol to appropriately redistribute static and default 

routes 

10.  Adjust features of routing protocols to suit communication needs. 

11.  Troubleshoot common issues with RIPv2, EIGRP, and OSPF 
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