
University of Maryland College ParkInstitute for Advaned Computer Studies TR{2003{89Department of Computer Siene TR{4521
MATRANA Fortran 95 Matrix Wrapper�G. W. StewartyAugust 2003ABSTRACTMatran is an wrapper written in Fortran 95 that implements matrix oper-ations and omputes matrix deompositions using lapak and the blas.This doument desribes a preliminary release of matran, whih treatsonly real matries. Its purpose is to get outside omments and suggestionsbefore the pakage jells. Consequently, this doumentation is slanted to-ward the experiened programmer familiar with both matrix omputationsand Fortran 90/95. User oriented doumentation will aompany the �nalrelease.

�This report is available by anonymous ftp from thales.s.umd.edu in the diretory pub/reportsor on the web at http://www.s.umd.edu/�stewart/.yDepartment of Computer Siene and Institute for Advaned Computer Studies, University of Mary-land, College Park, MD 20742 (stewart�s.umd.edu). This work was supported in part by the NationalSiene Foundation under grant CCR0204084.

MATRAN iContentsPrefae iii1 Overview and example 11.1 Overview . 11.2 A least squares solver . 32 The module MatranUtil m 83 The types Rmat and Rdiag 93.1 The type Rmat . 103.2 The type Rdiag . 144 Matrix Operations 164.1 Generalities . 164.2 The Transpose suite . 184.3 The Sum suite . 194.4 The Produt suite . 194.5 The Solve suite . 204.6 The Join suit . 224.7 The Border suit . 224.8 The Submatrix suite . 235 Matrix misellania 245.1 The Diag suite . 245.2 The Eye suite . 255.3 The Inverse suite . 265.4 The Norm and Norm2 suites . 275.5 The Pivot suite . 275.6 The Print suite . 285.7 The Rand suite . 306 Deompositions 316.1 Generalities . 316.2 The LU deomposition . 326.3 The Cholesky deomposition . 346.4 The QR deomposition . 356.5 The pivoted QR deomposition . 366.6 The spetral deomposition . 386.7 The singular value deomposition . 39

ii MATRAN6.8 The real Shur deomposition . 416.9 The eigendeomposition . 437 The real ore 448 Computing Arnoldi deompositions 449 Appendix: The Sun Fortran 95 6.2 Compiler 52

MATRAN iiiPrefaeThis doument introdues a preliminary version of matran (pronouned MAY-tran),a Fortran 95 wrpper that implements matrix operations and omputes matrix deom-positions using lapak and the blas. Although matran is not based on a formallyde�ned matrix language, it provides the avor and onveniene of oding in matrix ori-ented systems like matlab, otave, et. By using routines from lapak and theblas, matran allows the user to obtain the omputational bene�ts of these pakageswith minimal fuss and bother.Matran originated as follows. In 2002, my olleague Dianne O'Leary and I reeivedan NSF grant to work on new algorithms for large-sale eigenvalue problems. Somewhatrashly we promised to implement our algorithms in a standard high level language,even though we knew that we would develop them using matlab. A ouple of yearspreviously I had published a Java matrix pakage alled jampak. The response wasless than enthusiasti, owing in part to the awkward syntax fored on it by the abseneof operator overloading in Java. Sine Fortran 95 not only an overload operators butan also an de�ne new ones, it ourred to me that jampak would look a lot leanerin Fortran 95 and ould, in fat, provide natural and eÆient implementations of odefrom matrix oriented languages.At present matran implements only real matrix operations and deompositions.Consequently, it is still is small enough to survive signi�ant hanges, provided they rep-resent substantial improvements. The purpose of this release is to soliit omments andsuggestions before matran jells. For this reason, this doument is addressed largelyto experts|people well grounded in matrix omputations, Fortran 95, lapak, andthe blas. The formal release, whih will ontain omplex types, will be aompaniedby a more onventional user's manual.Matran may be obtained through my home pagehttp://www.s.umd.edu/~stewart/This projet has many benefators. I am supported by the National Siene Foun-dation at the Computer Siene Department and the Institute for Advaned ComputerStudies of the University of Maryland. I am also a faulty appointee at the Mathemat-ial and Computational Sienes Division of the National Institute for Standards andTehnology, where my division leader, Ron Boviert, has enouraged me to work on thisprojet.I am greatly indebted to John Reid, who patiently steered me through my initialfumblings with Fortran 95 and provided useful suggestions for the design of matran.His exellent book withMihael Metalf, Fortran 90/95 Explained, has been my onstantompanion during this projet. Bill Mithel, the resident NIST expert on Fortran 90/95,has made himself heerfully available on a drop-in basis to answer my questions. Finally,

iv MATRANmy student Che-Rung Lee, who ame in at the middle of the projet and quikly learnedthe ropes, has been a valuable assistant ever sine.

MATRANA Fortran 95 Wrapper for Matrix OperationsG. W. Stewart1. Overview and exampleMatran is an open wrapper written in Fortran 95 that implements matrix operationsand omputes matrix deompositions using lapak and the blas. Matran is ablending of \matrix" and \Fortran," and is pronouned MAY-tran. This doumentdesribes a preliminary release of matran whih treats only real matries. Its purposeto get outside omments and suggestions before the pakage jells. Consequently, it isslanted toward the experiened programmer familiar with both matrix omputationsand Fortran 90/95. User oriented doumentation will aompany the �nal release.1.1. OverviewMatran is a olletion of derived types and generi subprograms in Fortran 95 thatimplements matrix operations and omputes matrix funtions and deompositions. Al-though matran is not based on a formally de�ned matrix language, the results of usingmatran are akin to oding in a subset of matrix oriented programming languages likematlab, otave, et. By using routines from lapak and the blas, matran al-lows the user to obtain the omputational bene�ts of these pakages with minimal fussand bother.Here are some of the features of matran.� This preliminary release of matran provides only two matrix types. The Rmat rep-resents matries stored in retangular arrays. The Rdiag implements diagonal matriesstored in a linear array.1 However, this poverty of types is illusory. The type Rmatontains a tag �eld that subdivides the type into general, upper triangular, lower trian-gular, symmetri, and symmetri positive de�nite matries. The �rst formal release willalso inlude omplex versions of the two types. Ultimately, I would like to see matransupport band and sparse matries.� There are single and double versions of matran, orresponding to the single anddouble preision versions of lapak and the blas. The default result of ompilation isdouble preision; but ompilation of a single preision pakage an be fored by settinga ag in the ompilation ommand line. Unfortunately, one annot mix or math: the1In Fortran 95 these arrays are said to have rank two and one respetively. However, sine the wordrank has other meanings in matrix omputations, we use the terms retangular and linear instead.1

2 MATRANpakage is all single preision or all double preision. Inidently, if lapak quad odesbeome avaliable, it will be easy to extend matran to a quad pakage.� Matrix operations are provided by overloaded and de�ned operators. For exampleA + B ompute the sum of the matries A and B, while A.xhy.B omputes AHB. Asuite of subprograms omputes produts like A�1B or A�HB. In addition, matrande�nes operations for ombining matries and extrating submatries.� Matran provides ommon matrix funtions|e.g., norms|as well as onstrutorsfor speial matries like the identity.� Matrix types in matran are allowed to be void (aka empty)|that is, they mayhave zero row or olumn dimension (or both). This feature is useful in starting matrixalgorithms that build up matries by bordering.� Matran provides types for the following deompositions: the pivoted LU deom-position, the Cholesky deomposition, the pivoted and unpivoted QR deompositions,the spetral deomposition of a symmetri matrix, the singular value deomposition,and the Shur and eigendeompositions of a general square matrix. Matran providesmeans for reusing deompositions, as, for example, when one wishes to solve severallinear systems all having the same matrix.� Matran is modularized at a �ne-grained level. This means that the programmer anpik and hoose among matran's apabilities without linking to the entire pakage.� Storage management in matran requires only a minimal assist from the user. How-ever, matran provides additional means by whih the user an fore the reuse ofstorage already alloated, thus reduing alls to the alloator. These features may beuseful to people doing large omputations with small matries, in whih the alloationof intermediate matries an amount to a signi�ant part of the omputational load.� Many of matran's more advaned features are implemented via optional arguments,so that when they are not needed they do not lutter the ode.� Matran is an open pakage in the sense that its modules and types have no privateomponents. This fat has two useful onsequenes.1. The programmer an use the resoures of Fortran 95 to manipulate matries inways not provided by matran. This ability is espeially important for matrixomputations, sine the number of things people want to do with matries farexeeds the number of methods that a losed, objet-oriented pakage an provide.2. Closely related to the �rst is the fat that the programmer an do things in away that failitates ompiler optimization. To give a single example, a Rmat holdsits matrix in an array alled a. In matran, the standard way to referene the

MATRAN 3(i,j)-element of a Rmat M is M%a(i,j), whih means the the ompiler knows thatit is working with referenes to a retangular array and an optimize the odeaordingly. If aess were exlusively through funtions, the ompiler would notbe able to optimize.However, there is a downside to being open. Matran annot enfore its own onven-tions. Thus the matran programmer must be more both knowledgeable and moredisiplined than the asual user of objet-oriented pakages.1.2. A least squares solverIn this setion we will illustrate some of matran's features and onventions by a simpleleast squares solver. Suppose we are given an m�n matrix A of full olumn rank n.Given an m-vetor b we want to ompute an n-vetor x suh thatkb�Axk22 = min;where kuk22 = Pi u2i . In addition, we want to ompute the residual r = b � Ax at theminimum, and the residual sum of squares krk22.The QR deomposition furnishes an elegant way of solving this problem. Spei�ally,we an write A in the form A = QR; (1.1)where Q has orthonormal olumns and R is upper triangular. It an be shown thatx = R�1QTb:Hene, given the QR deomposition of A, one an �nd x by simple operations involvingb, Q, and R.The ode in Figure 1.1 implements this algorithm. The statementuse MatranRealCore_minvokes a blanket module onsisting of use statements invoking the ore modules of ma-tran (x7).2 The seond use statement gets the module de�ning the QR deompositionand its onstrutor.The variables A, b, x, and r have hanged to the Rmats A, b, x, and r. A Rmat is ade�ned type that implements a matrix as a set of numbers stored in a retangular arrayin the usual way. We will have more to say about Rmats later. But note that matranmakes no distintion between matries and vetors. The are all represented by the samederived type|the Rmat.2In matran all modules are suÆxed with m.

4 MATRANsubroutine qrlsq(A, b, x, r, RSS)use MatranRealCore_muse RmatQR_mimpliit nonetype(Rmat), intent(in) :: A, btype(Rmat), intent(out) :: x, rreal(wp), intent(out) :: RSStype(RmatQR) :: qra!Protet temporaries.all GuardTemp(A); all GuardTemp(b)! Get the QR deomposition of A.all QR(qra, A)! Solve the least squares problem.x = qra%R.xiy.(qra%Q.xhy.b)r = b - A*xRSS = NormF(r)**2! Clean up.all Clean(qra)all CleanTemp(A); all CleanTemp(b)end subroutine qrlsqFigure 1.1: QR least squares�The residual sum of squares is returned via the paramenter RSS. It is delared to bea real salar of kind wp. The parameter wp (for Working Preision) is de�ned at ompile

MATRAN 5time in the module MatranUtil_m.Let begin with the omputational heart of the algorithm. The statementall QR(qra, A)omputes the QR deomposition of A. In matran this deomposition has the formtype RmatQRtype(Rmat) :: Qtype(Rmat) :: Rlogial :: ompanionend type RmatQRThe �rst two omponents are Rmats ontaining the Q- and R-fators of A [f. (1.1)℄. Thethird omponent will be disussed later (x6.1).The omputation in the statementx = qra%R.xiy.(qra%Q.xhy.b)onsists of two parts. The �rst part, qra%Q.xhy.b omputes t = QTb. The operator.xhy. is to be read, \x onjugate transpose y," and it means just what it says: theonjugate transpose of the �rst operand multiplies the seond operand. This, of ourse,is the same as multiplying by the transpose. But matran prefers to speify the onju-gate transpose for both real and omplex matries to aid in generalizing programs fromreal to omplex arithmeti. (The pratie is similar to the use of the supersript `�' todenote the adjoint of a matrix or operator, whatever the underlying �eld.)The seond part omputes R�1t. The operation .xiy. reads \x inverse y." But the\inverse" is there only for brevity, and in fat it is never omputed. Instead matransolves the system Rx = t. Matran is smart enough to reognize that R is uppertriangular and use the appropriate algorithm.The omputation ofr = b - A*xuses the overloaded operators - and * and is straightforward. However, you an getunexpeted results if you ombine de�ned operators with overloaded operators beausethe latter bind more tightly than the former. For example, the expression a + B.xhy.omputes (a + B)T, not a + BT as expeted. To get the latter you must write a +(B.xhy.). In matran the wathword is: When in doubt, parenthesize.33There is another reason for being areful with parentheses. Suppose A B and C are respetively n x 1,1 x n and n x n Rmats, and we wish to ompute A*B*C. For de�ned or overloaded operators, Fortran 95evaluates left to right| i.e., (A*B)*C, an expression whih requires O(n3) oating-point operations toompute. On the other hand, the expression A*(B*C) requires only O(n2) operations. Thus, in thisase, the expression A*B*C should be parenthesized in the form A*(B*C).

6 MATRANAnother soure of onfusion arises from the fat that Fortran makes no distintionbetween upper and lower ase letters. Thus we ould have just as well writtenR = B - a*XThis an easily lead to programming errors in matrix omputations, where apital lettersfrequently denote matries and small letters denote vetors. For example, onsiderwriting ode based on a paper in whih u represent a olumn of a matrix U .Finally, the residual sum of squares is omputed as the square of the Frobeniusnorm of r. The funtion NormF is one of a suite of generi futions that ompute matrixnorms.Matran automatially takes are of �nding storage to hold the results of its ompu-tations. Unfortunately, the user must help with dealloation. This is beause matranuses pointer arrays, whih are not dealloated automatially, to hold its matries.4 Therules for dealloation this are simple. The �rst rule isBefore returning from a subprogram use the Clean subroutine to dealloatethe storage of all loally de�ned matrix objets and deompositions. (1.2)For example, the statementall Clean(qra)in our sample program dealloates storage for the Rmats qra%Q and qra%R.The seond rule addresses a more subtle problem. Consider one again the state-ment r = b - A*xThe �rst thing that must be omputed is the quantity A*x, whih in matran is a Rmat.This temporary Rmat|all it t|is no longer needed after it is used to ompute b - t,and matran silently dealloates it. Likewise another temporary Rmat is needed to holdb - t before it is opied to r. One again, matran silently alloates and dealloatesthe temporary.The problem omes when you invoke a subprogram with a temporary for an atualargument. For example, one might all qrlsq as follows.all qrlsq(A, -d, x, r)4The reason is that strit Fortran 95 does not allow alloatable arrays appear in de�ned types.There is an extension of Fortran 95, guaranteed to be in the Fortran 200x standard, that allows suhonstrutions; but it is not everywhere implemented. In the future matran will use alloatable arrays,and the extension will be bakward ompatible with ode written in aordane with the onventionsof the present version.

MATRAN 7In this ase -d will be a temporary Rmat|but one that has ut free from matran,whih therefore annot dealloate it. The ure is ontained in the following rule.Just after entering a subprogram all GuardTemp with eah dummy matrixobjet of the subprogram having the intent in. Just before leaving, allCleanTemp with eah of the same dummy arguments. (1.3)Thus in qrlsq we have the statementsall GuardTemp(A); all GuardTemp(b)at the beginning and the statementsall CleanTemp(A); all CleanTemp(b)at the end.Matran routines are not the only ones that generate temporary variables. When-ever a user de�ned funtion returns a matran matrix type, the returned value must beregarded as temporary, sine it an only our in an expression or as an atual param-eter in an argument list. The subroutine SetTemp delares a matrix to be a temporary.If a funtion returns a matrix objet M, then exeuteall SetTemp(M)before returning. (1.4)Although these rules may seem involved, they generate very little ode. Moreover,the alls to GuardTemp our only at the beginning of the routine in question. If theroutine is oded to have only one point of return (presumably at the end), the alls toClearTemp and SetTemp our only at that point.Finally, as we have noted above, matran uses pointer arrays to store matries.Eventually, when the Fortran world is suÆiently settled, the pointer arrays will bereplaed by alloatable arrays, whih will obviate the need for the onvention (1.2){(1.4). However, to be onsistent with the hange to alloatable arrays, you should notdo things with the pointer array of a matrix objet that annot be done with alloatablearrays. In partiular, you should observe the following stritures.Neither hange the assoiation of nor assign a pointer to the array in amatrix objet. (1.5)You may, however, alloate and dealloate the pointer arrays of a matrix objet. Justmake sure you know what you are doing.Owing to bug in Sun WorkShop 6 update 2 Fortran 95 6.2 2001/05/15, additionalinitialization has to be done on the result of a funtion. See x9

8 MATRAN2. The module MatranUtil mThe module MatranUtil_m is the root matran module. It ontains a parameter forde�ning the preision of real types, error handlers, and proedures for reshaping rawarrays.MatranUtil de�nes the parameter wp by#ifdef snglinteger, parameter :: wp = kind(1.0e0)#endif#ifdef dblinteger, parameter :: wp = kind(1.0d0)#endifThus the spei�ationreal(wp) :: <variable list>delares the variables in the list to be of the preision seleted for this version of Matran.The default is double preision. The seletion is done by de�ning one of the Fortranpreproessor parameters sngl or dbl, whih an be done at ompilation time in theommand line. (Atually, if you do nothing, you get double preision.)The general error handler for matran issubroutine MatranError(ErrorMessage)whereharater(*), intent(in) :: ErrorMessageThe subroutine prints the error message and stops.As we have mentioned, matran uses lapak and the blas to perform most ofits alulations. The former returns error indiations via a standard parameter info.In ase of suh an error, matran uses the following error handler.\begin{frag}subroutine SupportError(ErrorMessage, infonum)\end{frag}whereharater(*), intent(in) :: ErrorMessageinteger, intent(in) :: infonumThe subroutine prints the error message followed by

MATRAN 9subroutine ReshapeAryD2(Ary, m, n)real(wp), pointer :: Ary(:,:)integer, intent(in) :: m, ninteger :: shp(2)if (assoiated(Ary)) thenshp = shape(Ary)if (m>shp(1) .or. n>shp(2)) thendealloate(Ary)alloate(Ary(m, n))end ifelsealloate(Ary(m, n))end ifAry = 0.0end subroutine ReshapeAryD2Figure 2.1: An inarnation of ReshapeAry�<infonum>and stops. (However, this proedure an be overridden. See x6.1.)In managing storage, matran always attempts to �t things into existing arrays.Only if the array is too small is it realloated. The alloation is managed by a generisubroutine ReshapeAry. Its funtion is best illustrated by an example. Figure 2.1 givesan inarnation of this subroutine that reshapes a retangular double preision array.The arguments m and n speify the minimal extents of the array. If the array is largeenough, the subroutine does nothing, exept set the array to zero. If not it dealloatesthe array, if neessary, alloates it to have shape (m,n), and sets it to zero. The moduleMatranUtil_m provides subroutines to reshape linear and retangular arrays of typeinteger, double preision, and double omplex.3. The types Rmat and RdiagIn this setion we will onsider the two matrix types urrently implemented inmatran:the Rmat and the Rdiag. It is important to keep in mind that a matran matrix type isreally a storage type. In partiular, the type Rmat implements double preision oating-point matries that an be represented in natural order in a retangular array. In

10 MATRANtype Rmatreal(wp), pointer & ! The matrix array:: a(:,:) => null() !integer :: nrow = 0 ! Number of rows in the matrixinteger :: nol = 0 ! Number of olumns in the matrixinteger :: narow = 0 ! Number of rows in the arrayinteger :: naol = 0 ! Number of olumns in the arrayharater(2) & ! Type of matrix:: tag = 'GE' !logial :: adjustable =.true. ! Adjustable arrayinteger, pointer ! Intermediate value:: temporary => null() !end type Rmat Figure 3.1: The type Rmat�priniple, this means any double preision matrix; but if we add the requirement thatthe representation use storage eÆiently, the set of andidates for a Rmat shrinks. Forexample, a diagonal matrix ould be written as a Rmat. But that would be an ineÆientuse of storage, sine a diagonal matrix of order n has at most n nonzero elements,all lying on its diagonal. Therefore, matran provides a type Rdiag whih stores thenonzero elements in a linear array.3.1. The type RmatThe type Rmat in Figure 3.1 is de�ned in the module Rmat_m. Let us look at theomponents in order.� a(:,:). This is the array ontaining the matrix. It an be alloated and dealloated,so that over time the array of a Rmat an vary in size.The reason for using a single letter a for the array of a Rmat is that the elementsof the matrix are referened through the array. If X is a Rmat, then X%a(i,j) is the(i,j)-element of the orresponding matrix. This is easier to read in a program than alengthier alternative like X%Array(i,j).The array a of a Rmat is always retangular. This means, as we have noted earlier,that matran has no vetor types as suh. Instead, an n�1 matrix represents a olumnvetor and an 1�n matrix represents a row vetor.The initial status of a is unassoiated. An important onvention of matran is thefollowing.

MATRAN 11If the array of a Rmat A is assoiated, then A is a well-formed Rmat; i.e.,a has the dimensions narow and naol and 0 � nrow � narow and 0 �nol � naol. (3.1)� nrow, nol, narow, naol. The onvention (3.1) shows that matran makes adistintion between a matrix and the array that ontains it. The dimensions of thelatter an be greater than the former. Thus a Rmat must have two pairs of dimensions,one for the matrix and one for the array that ontains it. The matrix of a Rmat is alwaysin the northwest orner of the orresponding array, and all entries of the array outsidethe matrix are zero.It is permissible for nrow or nol (or both) to be zero. Suh a matrix is alled anull matrix . Null matries are espeially useful in starting o� matries that expand asan algorithm progresses.� tag. We have already mentioned that Rmats an represent di�erent kinds of om-monly used matries. The tag omponent spei�es the kind of matrix, as shown in thefollowing table. Matrix type TagGeneral GEUpper triangular UTLower triangular LTSymmetri SYSymmetri positive (semi) de�nite SPThe tag of a Rmat tells programs that manipulate the Rmat that there is speial struturepresent. For example, if the tag of A is UT, the routine in the Solve suite that omputesA�1B uses a speial blas algorithm to ompute its result.The tags UT and LT apply to retangular matries as well as square ones. In ma-tran, a matrix A, regardless of its dimensions, is upper triangular ifi > j =) aij = 0and is lower triangular if i < j =) aij = 0:Retangular triangular matries are sometimes alled trapezoidal in the literature.Matries with the tag SP are usually generated in a way that mathematially guar-antees that they are positive de�nite, or at least positive semide�nite (e.g., as withthe ross-produt ATA). However, it should be kept in mind that rounding error mayause the matrix to not be de�nite. In suh ases the onstrutor for the Choleskydeomposition will fail See x6.3).

12 MATRANMatran does not support paked versions of the matries in the table above. Thusan upper triangular matrix is represented in a retangular array zeros and all. So thateveryone is sure what is in the array of a Rmat, we adopt the following onvention.A matries is fully represented in the array of its Rmat. Elements of the arrayoutside the matrix are zero.Thus, in a symmetri Rmat both the upper and lower part of the matrix are present.5� adjustable. This omponent addresses the following problem. It may sometimeshappen that a result to be stored in a Rmat is larger than the array of the Rmat. If theRmat is adjustable, then matran is permitted to realloate the array to ontain theresult. We will return to this point at the end of this setion.� temporary. This omponent is used in onjuntion with SetTemp, GuardTemp, andCleanTemp to dealloate temporary Rmats. If temporary is null(), the Rmat is nottemporary. If temporary is one or greater the Rmat is temporary. As long as you followthe onventions (1.3) and (1.4), your temporary arrays will be dealloated at the propertime. Note that temporary should be manipulated only by SetTemp, GuardTemp, andCleanTemp.6 |Asmentioned above, he module Rmat_m de�nes the three generi subroutines SetTemp,GuardTemp, and CleanTemp used to dealloate temporaries. It also de�nes a sanitizerClean that restores a Rmat to its pristine ondition.The module Rmat_m overloads the assignment operator for Rmats in four ways.Rmat A = Rmat BThe statement A = B opies B to A. It is not quite an exat opy: A%temporaryand A%adjustable are unhanged whatever the values of the orrespondingomponents of B. Moreover, the shape of A%a may be di�erent from B%a, aswe will see in a moment.5All this is onsistent with the fat that matran segregates matries by storage type. A pakedsymmetri matrix, for an example, would be a new storage type and would have to have its own de�nedtype.6For those who want the full story, here it is. The real problem with temporaries is knowing whento dealloate them. If, for example, a subprogram with a temporary argument passes it on to anothersubprogram, the seond subprogram should not dealloate it, sine the invoking program may needto use it on return. To avoid premature dealloation, GuardTemp simply inreases temporary by one,provided it is nonnull. CleanTemp dereases temporary by one provided it is greater than one, but itdoes not dealloate the array a unless temporary is one after derementation. You an easily onvineyourself that if the onvention (1.3) is followed religiously then only the �rst subprogram invoked withthe temporary Rmat will dealloate its storage.

MATRAN 13Rmat A = Array B(:,:)The statement A = B auses A to be a Rmat whose matrix is the ontents ofB. A%tag is set to GE, The omponents A%temporary A%adjustable remainunhanged.Rmat A = integer ve(:)If ve = (/m,n/), then A beomes an m x n zero matrix an an array whosesize is determined as desribed below. If ve = (/m,n, ma,na/), then Abeomes an m x n zero matrix ontained in an ma x na array. The omponentadjustable remains unhanged, but the array will be adjusted, whetheror not the Rmat A is adjustable. The array A%a is set to zero. The arrayA%temporary is unhanged.Rmat A = real(wp) sThe statement A = s produes a 1 x 1 Rmat whose single element is s.Three of these overloaded assignments have operator forms, generially written .dm.,for use in expressions..dm.aryProdues a Rmat C de�ned by C = ary, where ary is a retangular array..dm.veProdues a Rmat C de�ned by C = ve, where ve=(/m,n/) orve=(/m,n, ma,na/)..dm.sProdues a Rmat C de�ned by C = s, where s is of type real(wp).The Rmats reated by Rmat A = ve and .dm.ve are initialized to zero. Henematran does not provide speial routines to onstrut zero matries.It is now time to be more preise about how matran treats arrays. When matranmust transfer an m x n matrix to a Rmat A, it always tries to use the spae available inA%a. If A%a an ontain the matrix matran uses A%a as is. If A%a is too small andA is adjustable, matran realloates A%a to be m x n. Otherwise, matran gives anerror return. A good way of summing this up is to say: Left to itself matran mayinrease the size of a Rmat array, but it will not derease it. The only exeptions are thesubroutine Clean, whih dealloates the array, and the assignment Rmat = ve whihhanges the array shape aording to the ontents of ve.The above reipe for adjusting arrays is implemented by the generi subroutinesubroutine ReshapeAry(A, n, m)Here m and n are the row and olumn dimensions of the matrix to be plaed in A. The�nal array is always set to zero. We have already seen an example of this subroutine in

14 MATRANinterfae assignment (=)module proedure RmEqualsRm, RmEqualsAry, RmEqualsRowColend interfae...ontains...subroutine RmEqualsRm(A, B)type(Rmat), intent(inout) :: Atype(Rmat), intent(in) :: Ball GuardTemp(B)all ReshapeAry(A, B%nrow, B%nol)A%a = 0A%a(1:A%nrow, 1:A%nol) = B%a(1:B%nrow,1:B%nol)A%tag = B%tagall CleanTemp(B)end subroutine RmEqualsRm... Figure 3.2: Implementation of Rmat = Rmat�Figure 2.1, where the onern was with reshaping a raw array, rather than the array ofa matrix type.We onlude this subsetion with the implementation in Figure 3.2 of the assignmentRmat = Rmat, whih illustrates some of the points above. Many of the subprogramsimplementing matran are as simple as this. When in doubt about what matrandoes in a partiular situation, try looking at the ode.3.2. The type RdiagThe type Rdiag implements a diagonal matrix. It is de�ned in the module Rdiag_mby

MATRAN 15type Rdiagreal(wp), pointer & ! The matrix array:: a(:) => null()integer :: order = 0 ! The order of the matrixinteger :: na = 0 ! The length of the arraylogial :: adjustable = .true. ! Adjustable arrayinteger, pointer& ! Intermediate value:: temporary => null()end type RdiagThe omponents of Rdiag are analogous to those of Rmat.� a(:). Sine a diagonal matrix is nonzero only on its prinipal diagonal, it an berepresented by a linear array, whih in a Rdiag, as with a Rmat, is alled a.� order, na. The order of the diagonal matrix represented by a Rdiag an be lessthan the size na of the array ontaining its diagonal.� adjustable, temporary. These omponents serve the same funtions as they do ina Rmat. |The module Rdiag_m de�nes the usual generi subroutines SetTemp, GuardTemp,and CleanTemp for dealing with temporaries. It also de�nes ReshapeAry, whose allingsequene isall ReshapeAry(Rdiag, n)to realloate the array a, if neessary. As with a Rmat, Clean(D) restores the Rdiag Dto its default state.Rdiag_m also overloads the assignment operator. The implementing funtions alluse ReshapeAry to get storage. The omponents temporary and adjustable are un-hanged.Rdiag D = Rdiag EThe statement D = E opies E to D.Rdiag D = Array E()The statement D = E auses D to be a Rmat, whose diagonal is the ontentsof E. The omponent adjustable remains unhanged.Rdiag D = veIf ve = (/n/), then D is a zero Rdiag of order n in an array obtained byreshaping D%a. If ve = (/n, na/) then D is a zero Rdiag of order n in anarray of length na. Note that the array will be adjusted regardless of thestatus of the omponent adjustable, whih remains unhanged.

16 MATRANRdiag D = real(wp) sThe statement D = x produes a Rdiag of order one whose single diagonalelement is s.Rmat A = Rdiag DA is the Rmat orresponding to D.Note that there is no operator orresponding to Rdiag D = Rmat A to extrat thediagonal of a Rmat. See the RmatDiag suite.The Rdiag suite also has onversion operators..dd.aryProdues a Rdiag D de�ned by D = ary, where ary is a linear array..dd.veProdues a Rdiag D de�ned by D = ve, where ve = (/order/) orve = (/order, na/)..dd.sProdues a Rdiag D de�ned by D = s, where s is of type real(wp)..dm.DProdues a Rmat A de�ned by A = D, where D is a Rdiag.4. Matrix OperationsIn this setion we introdue the basi matrix operations supported by matran. Other,less basi operations are gathered together in a loose grab bag alled matrix misellany.4.1. GeneralitiesMatrix operations in matran are divided into suites of related generi subroutines andoperators. Here is a list of the operator suites desribed in this setion.Transpose AH, ATSum A+B, A�B, �AProdut �A, AB, ATB, . . .Solve A�1B, AB�1, A�TB, . . .Join (A B), �AB�Border A = (A B), A = (B A), . . .Submatrix A(i1:i2; j1:j2), A(:; j), . . .Eah suite is implemented by a sequene of modules orresponding to the derivedmatrix types in the wrapper. The types are arranged in a hierarhy, and eah module

MATRAN 17is responsible for providing operations for both its type and for types lower in thehierarhy.For example, suppose matran has three types, Rmat, Rdiag, and Cmat, arrangedhierarhially in that order. Then the module RmatSum_m is responsible for all sumoperations between Rmats. The module RdiagSum_m is responsible for all sum operationsbetween Rdiags and Rdiags and Rmats. CmatSum_m is responsible for all sums betweenCmats and Cmats, Rdiags, and Rmats.In addition the type that is higher in the hierarhy has the responsibility for imple-menting mixed assignment operators involving itself and types lower in the hierarhy.That is why the assignment Rmat = Rdiag is implemented in Rdiag_m instead of Rmat_m.This system has the advantage of learly delineating who is responsible for what, sothat it is oneptually easy to add new types to the wrapper. However, the ode neededto implement a new type grows at least quadratially with the number of types. For-tunately, it may not be neessary to implement all possible ombinations of operations.For example, if someone deides to introdue a type Dband for band matries, it maybe deided that while we need a produt between Dbands and Rmats, we do not need aprodut between Dbands and Dbands.Exept for the Border suite, matrix operations are implemented in two forms: as anoperator (or funtion) and as a subroutine. For example, the * operator is overloadedso that the expressionC = A*B (4.1)results in a Rmat C ontaining the produt of the matries A and B. This is the formone would ordinarily use. However, it has some hidden storage alloation in the formof a temporary Rmat to hold the produt A*B before it is assigned to C.Temporary objets are a potential soure of ineÆieny, sine in a loop they arerepeatedly alloated and dealloated. For programs involving large matries this willnot usually be a problem; the arithmeti alulations will tend to dominate. For smallmatries, however, alls to the alloator may slow things down. To address this problemmatran shadows eah operation with a subroutine that performs the operation andplaes the result in a Rmat of your hoosing. Suppose, for example, we have a loop ofthe formdo i=1, maxi...r = b - A*x...end doIf we make the delarationtype(Rmat) :: temp

18 MATRANOperation Operator SubroutineC = AH C = .tp.A all Ctp(C, A)C = AT C = .trp.A all Trp(C, A)� These operations are not available for RdiagsFigure 4.1: The Transpose Suite�then we an writedo i=1,maxi...all Times(temp, A, x)all Minus(r, b, temp)...end doThis does not get rid of the need for the temporary temp to hold the intermediate valueA*x, but temp's storage is reused rather than being alloated and dealloated with eahiteration of the loop.It is reommended that one initially use operators to write and debug programs,after whih they an be �ne tuned by using the subroutine forms where neessary.4.2. The Transpose suiteThe Transpose suite has two operations: the onjugate transpose and the transpose,as given in Figure 4.1. The format of the table is the desired matrix operation, theoperator version, and the subroutine version.We have already observed that de�ned binary operators bind so loosely that it maybe neessary to use parentheses to make an expression parse orretly. The operators inthis suite are unary operators. By Fortran 95 onvention they have preedene over allother operators. Thus A + .pt.B does not have to be reast in the form A + (.tp.B)to work as expeted.It is important to note that for real matries the transpose and the onjugate trans-pose are the same. It is strongly reommended that the onjugate transpose be usedin working with real matries. In the overwhelming majority of ases, when a programdealing with real matries is rewritten for omplex matries, the onjugate transpose iswhat you want. The transpose operator should be used exlusive with omplex matries.This onvention a�ets the nomenlature of some of matran's operations. Forexample, for real matries the operator that omputes ATB is .xhy., not .xty. asmight be expeted. See the Produt and Solve suites.

MATRAN 19Operation Operator SubroutineC = A+B C = A + B all Plus(C, A, B)C = A�B C = A - B all Minus(C, A, B)C = �A C = -A all Minus(C, A)� These operations are de�ned for any ombination of Rmats and Rdiags.Figure 4.2: The Sum suite�4.3. The Sum suiteThe Sum suite overloads the operators + and - to provide the sum and di�erene of twomatrix objets. In addition the suite implements the unary minus. Figure 4.2 showsthe usage.The operations set the tags of the results appropriately. For example if A and B areagged UT, so is C. The other suites do the same.4.4. The Produt suiteThe produt suite implements produts of matries and their transposes, as shown inFigure 4.3All the operations in the suite involving transposes ould be implemented using theoperator * and .tp. operator from the Transpose suite. For example, to omputeC = AHB one ould writeC = .tp.A*Bwhere .tp. is the matran unary operator that omputes the onjugate transpose(the same as the transpose for real matries). However, one an also writeC = A.xhy.Bwhere by onvention xhy is shorthand for XHY . The seond form is superior to the�rst, sine the seond alls a blas subroutine that alulates AHB diretly from A andB without forming the transpose.The Rmats produed by .xhx. and .xxh. are tagged SP. Mathematially, these ma-tries have to be at least semide�nite; however, rounding error may ause the omputedmatries to be inde�nite.Ordinarily, the operands in a produt must be onformable for matrix multiplia-tion|that is, the number of olumns of the �rst operand must be the same as thenumber rows of the seond. However, if one of the operands represents a 1�1 matrix,

20 MATRANOperation Operator SubroutineC = sA C = s*A all Times(C, s, A)C = As C = A*s all Times(C, s, A)C = AB C = A*B all Times(C, A, B)C = AHB C = A.xhy.B all TimesXhy(C, A, B)C = ABH C = A.xyh.B all TimesXyh(C, A, B)C = AHA C = .xhx.A all TimesXhx(C, A)C = AAH C = .xxh.A all TimesXxh(C, A)� In the above s is a salar.� The operations s*A, A*s, and A*B are de�ned for any ombinations ofRmats and Rdiags.� The operations A.xhy.B, A.xyh.B, .xhx.A, and .xxh.A are de�ned forRmats only. Figure 4.3: The Produt suite�whih is essentially a salar, this requirement is dropped. A ommon example of this isthe statementxp = x - (q.xhy.x)*qwhih orthogonalizes the vetor x against the vetor q of 2-norm one.74.5. The Solve suiteThe Solve suite ontains operations to ompute the produt of a matrix and its inverse.It is alled the Solve suite, beause a prinipal appliation is to solve linear systemslike Ax = b, whose solution an be written in the form x = A�1b. The routines do notompute an inverse and multiply; instead, if neessary, they omputed a deompositionof the matrix in question and use it to solve systems of equations to get the answer.The operations are shown in Figure 4.4. These operations interrogate the tag �eldof the Rmat whose inverse appears in the �rst olumn. If the matrix is triangular, itsolves the system diretly using an appropriate blas. If not, it omputes a pivotedLU deomposition (tag = GE, SY) or a Cholesky fator (tag = SP) and uses that toperform the operation.7At least mathematially. Numerially, xp and x may be far from orthogonal. A way out of thisprediament is given by the subroutine gsro in x8.

MATRAN 21Operation Operator SubroutineC = A=s C = A/s all Solve(C, A, s)C = A�1B C = A.xiy.B all SolveXiy(C, A, B)C = A�HB C = A.xihy.B all SolveXihy(C, A, B)C = AB�1 C = A.xyi.B all SolveXyi(C, A, B)C = AB�H C = A.xyih.B all SolveXyih(C, A, B)� Exept as noted below, these operations are de�ned for Rmats and Rdiags.� The operations A.xihy.B and A.xyih.B are de�ned only for Rmats.� The operation A.xiy.B is not de�ned for A a Rmat and B a Rdiag. Usethe Inverse suite.� The operation A.xyi.B is not de�ned for A a Rdiag and B a Rmat. Usethe Inverse suite. Figure 4.4: The Solve suite�In many appliations, systems involving the same matrix must be solved repeatedly.For matries of tag GE, SY, or SP, this means reomputing a fatorization of the samematrix for eah solve operation. To avoid this expense, the solve subroutines have twoadditional optional arguments LU and Chold. To see how this is used, onsider thefollowing odedo all SolveXiy(y, A, x, LU=lua)...<modify x>...end doAt eah all, SolveXiy determines if LU ontains a pivoted LU deomposition by hek-ing its ompanion omponent. If it does does not, then SolveXiy initializes LU to anLU deomposition of A. Otherwise, SolveXiy assumes that the LU deomposition isassoiated of A. In either ase, it uses the LU deomposition to ompute A�1x. It isthe responsibility of the user to maintain the integrity of the relation between A andLU. The programmer an announe that the relation has been broken by setting (in theabove example)lua%ompanion = .false.in whih ase SolveXiy will ompute a new fatorization.

22 MATRANOperation Operator SubroutineC = (A B) C = A.jwe.B all JoinWE(C, A, B)C = �AB� C = A.jns.B all JoinNS(C, A, B)� These operations are de�ned for any ombinations of Rmats and Rdiags.Figure 4.5: The Join suite�4.6. The Join suitGiven two matries A and B we an join them in two ways. First, if A and B have thesame number of rows, we an form the matrixC = (A B):We say that A and B have been joined from west to east. Seond, if the two matrieshave the same number of olumns we an form the matrixC = �AB� :We say that the matries have been joined north to south.Matran's Join suite provides these operation, as shown in Figure 4.5.4.7. The Border suitMany matrix algorithms expand a matrix by bordering it with other matries. Forexample, we might replae A with �A BC D� :This bordering an be implemented using the Join suite by the following fragment.A = A.jwe.BT = C.jwe.DA = A.jns.T (4.2)However, this ode is awkward and requires four temporaries| three impliit tempo-raries for the assignments and the expliit temporary T. Matran allows you to aom-plish this by a single all to a subroutine:

MATRAN 23Operation Subroutine ResultBorder southeast BorderSE(A, S, E, SE) [A, E; S, SE℄Border northeast BorderSE(A, N, E, NE) [N, NE; A, E℄Border northwest BorderNW(A, N, W, NW) [NW, N; W, A℄Border southwest BorderNW(A, S, W, SW) [W, A; SW, S℄Border north BorderN(A, N) [N; A℄Border south BorderS(A, S) [A; S℄Border east BorderE(A, E) [A, E℄Border west BorderW(A, W) [W, A℄� The result is expressed in matlab notation.� All arguments to a Border subroutine must be of the type Rmat.Figure 4.6: The Border suite�all BorderSE(A, C, B, D)Sine there are many ways of bordering, let us introdue some onventions. In theabove example, we say that A is border on the southeast. Obviously, we an also borderon the southwest, the northeast, and the northwest. Moreover, we an border A by asingle matrix to the north, south, east and west. Figure 4.6 desribes the subroutinesthat aomplish the bordering.Arguments in the border subroutines must have dimensions for whih the operationmake sense. For example in BorderE(A, E) both A and E must have the same numberof rows.The subroutines of the Border suite are generi and ould potentially mix matrixtypes. However, the number of arguments to the border subroutines is so great thatwe would have an explosion of implementing subroutines. For example if we allowarbitrary ombinations of Rmats and Rdiags, the suite would have 264 subroutines. Forthis reason, matran allows only matries of a single type in the arguments of a bordersubroutine|and at present that is only the type Rmat. One ure for the problem ofmixed types is to onvert every argument of the funtion to the the type of the naturalresult before alling the subroutine. Another is to use the Join suite, whih does allowmixed types. See (4.2). Fortunately, mixed types are rare in pratie.4.8. The Submatrix suiteThe �nal suite extrats submatries from a Rmat. Sine speifying a submatrix requiresinformation beyond the Rmat in question, submatrix extration annot be implemented

24 MATRANSubmatrix Funtion SubroutineC = A(i1:i2; j1:j2) C = Sbm(A, i1, i2, j1, j2) GetSbm(C, A, i1, i2, j1, j2)C = A(:; j1:j2) C = Col(A, j1, j2) GetCol(C, A, j1, j2)C = A(:; j) C = Col(A, j) GetCol(C, A, j)C = A(i1:i2; :) C = Row(A, i1, i2) GetRow(C, A, i1, i2)C = A(i; :) C = Row(A, i) GetRow(C, A, i)� These routines are de�ned only for Rmats.Figure 4.7: The Submatrix suite�as a de�ned operator. Instead, we give funtions and ompanion subroutines, as shownin Figure 4.7.The e�et of these funtions an also be attained by using the operator .dm. om-bined with Fortran 95's subarray expressions. For example Sbm(A, i1, i2, j1, j2)is equivalent to .dm.A%a(i1:i2, j1:j2). However, one must be areful with olons.The equivalent of Col(A; j) is .dm.A%a(1:A%nrow ,j), not .dm.A%a(:, j).5. Matrix misellaniaThis setion desribes a misellany of suites to perform various funtions. Right now itis rather small, but it will grow.5.1. The Diag suiteThe kth diagonal diag(A; k) of a matrix A is de�ned as the diagonal starting with a1;k+1if k � 0 and with a�k+1;1 if k < 0. Thus diag(A; 0) is the main diagonal of A; diag(A; 1)is the �rst superdiagonal; and diag(A;�1) is the �rst subdiagonal. The Diag suiteprovides a generi subroutine and funtion for extrating a diagonal.The subroutine has the formsubroutine GetDiag(D, A, k)wheretype(Rdiag), intent(inout) :: DOn return ontains the kth diagonal of A.type(Rmat), intent(in) :: AThe matrix whose diagonal is to be extrated.integer, optional, intent(in) :: kThe diagonal to be extrated. If not present, extrat the main diagonal.

MATRAN 25The funtion has the formfuntion Diag(A, k) result(D)wheretype(Rdiag) :: DA Rdiag ontaining on return the kth diagonal of A.type(Rmat), intent(in) :: AThe matrix whose diagonal is to be extrated.integer, optional, intent(in) :: kThe diagonal to be extrated. If not present, extrat the main diagonal.5.2. The Eye suiteThe module RmatEye_m generates identity matries|or rather zero matries with oneson their prinipal diagonals. As usual, it de�nes both a generi subroutine and anassoiated funtion. The subroutine has the alling sequeneall Eye(A, m, n)wheretype(Rmat), intent(inout) :: AOn return A is a Rmat with ones on its prinipal diagonal and zeros elsewhere.integer :: minteger, optional :: nIf n is not present A is m x,m.If n is present A is m x n.The funtional form isfuntion Reye(m, n) result(A),wheretype(Rmat) :: AOn return I is a Rmat with ones on its diagonal and zeros elsewhere.integer :: minteger, optional :: nIf n is not present A is m x,m.If n is present A is m x n.

26 MATRAN5.3. The Inverse suiteThe inverse of a matrix is seldom needed: the Solve suite omputes matries like A�1Bfaster and more stably than by inverting A and multiplying. But for the rare oasionswhen an expliit inverse is required, matran provides the Inverse suite. As usual ithas a subroutine and operator form.The subroutine has the formsubroutine Inv(C, A, luda, hola, info, mywork)wheretype(Rmat), intent(out) :: CThe inverse matrix.type(Rmat), intent(in) :: AThe matrix to be inverted.type(RmatLudpp), optional, intent(inout) :: ludaA pivoted LU deomposition. If present and luda.ompanion is true, the de-omposition is used to ompute the inverse. If present and luda.ompanionis false, the LU deomposition is omputed and returned. If absene an LUdeomposition is silently omputed. Applies only to Rmats of tag GE.type(RmatChol), optional, intent(inout) :: holaA Cholesky deomposition. If present and luda.ompantion is true, the de-omposition is used to ompute the inverse. If present and hola.ompanionis false, the deomposition is omputed and returned. If absene a Choleskydeomposition is silently omputed. Applies only to Rmats of tag SP.integer, optional, intent(out) :: infoWhen a deomposition is omputed to alulated the inverse, info, if present,ontains on return the value of the info parameter from the lapak routinethat omputed the deomposition. Applies only to Rmats of type GE, SY, andSP.real(wp), pointer :: mywork(:)For matries of type SY, the lapak routine DSYTRF requires an auxiliarywork array, whih is ordinarily alloated and dealloated by Inv. If myworkis present and ontains enough storage, it is used as the work array. If it ispresent but does not ontain enough storage, it is realloated and used as thework array. This storage is not dealloated, so that mywork an be reusedwhen Inv is alled in a loop.The operator has the form.inv.Awhere A is a Rmat.

MATRAN 275.4. The Norm and Norm2 suitesThe Norm suite provides generi funtions to ompute the following three norms.1. The 1-norm: kAk1 = maxjPi jaij j2. The Frobenius norm: kAkF =qPij jaij j23. The 1-norm: kAk1 = maxiPj jaijjThe funtions have the following alling sequenes.Norm1(A); NormF(A); NormInf(A)where A is a Rmat.The 2-norm of a matrix A is de�ned bykAk2 = maxkxkF=1 kAxkF.The Norm2 suite provides a generi funtionNorm2(A)to ompute the 2-norm of a Rmat. The reason that the 2-norm is segregated in a separatesuite is that its omputation requires the expensive solution of an eigenvalue problem.Think twie before using it!5.5. The Pivot suiteThe Pivot suite provides subroutines to apply interhanges to the rows or olumns of aRmat, thus e�eting a permutation of the rows or olumns. It also applies the inversepermutation. The permutation is spei�ed by an array pvt of length npvt. The e�etof pivoting and its inverse on an array x is given by the following fragments of pseudo-ode. Pivoting Inverse pivotingdo i=1 to npvt do i=npvt,1,-1swap x(i) and x(pvt(i)) swap x(i) and x(pvt(i))end do end doThere are four generi funtions in the suite.

28 MATRANsubroutine PivotRow(A, pvt, npvt)subroutine PivotInvRow(A, pvt, npvt)subroutine PivotCol(A, pvt, npvt)subroutine PivotInvCol(A, pvt, npvt)wheretype(Rmat), intent(inout) :: AThe Rmat to be pivotedinteger, intent(in) :: pvt(:)The pivot arrayinteger, intent(in) :: npvtThe number of pivots.In the names of these subroutines, Row indiates that the rows of A are interhanged, Colthat the olumns of A are interhanged, and Inv that the inverse pivoting is performed.5.6. The Print suiteFortran 95 has the ability to print objets in any oneivable format, and it is expetedthat most programmers will wish to ustom ode their output. However, in debuggingmatran ode, it is onvenient to be able to print out Rmats and their arrays in astandard format. The Print suit provides a generi subroutine to do this.The subroutine to print a retangular array has the alling sequeneall Print(A, m, n, w, d, e, lw, nbl)wherereal(wp), intent(in) :: A(:,:)The array to be printed.integer, intent(in) :: mThe number of rows to print.integer, intent(in) :: nThe number of olumns to print.integer, intent(in) :: winteger, intent(in) :: d

MATRAN 29integer, optional, intent(in) :: eThis and the next two argument speify the format by whih the elementsare to be printed. Spei�ally, the elements are printed in 1pe<w>.<d>e<e>format. The exponent width �eld e is optional. Its default value is 3.integer, optional, intent(in) :: lwThe width in haraters of an output line. The default value is 80.logial, optional, intent(in) :: nblIf nbl (for no blank line) is present and true, it suppresses the printing of ablank line above the array.The subroutine to print a Rmat has the alling sequene.all Print(A, w, d, note, e, lw)wheretype(Rmat), intent(in) :: AThe Rmat that is to be printed.integer, intent(in) :: winteger, intent(in) :: dinteger, optional, intent(in) :: eThis and the next two argument speify the format by whih the elementsare to be printed. Spei�ally, the elements are printed in 1pe<w>.<d>e<e>format. The exponent width �eld e is optional. Its default value is 3.harater(*), optional, intent(in) :: noteIf present the string note is printed along with the array.integer, optional, intent(in) :: lwThe width in haraters of an output line. The default value is 80.This print funtion also printsA%nrow, A%nol, A%narow, A%naol, A%tag, A%adjustable, A%temporary(Atually, Print tells a little white lie. If pointer A%temporary is assoiated it prints thevalue of its target; if not, it prints zero.) Here is some sample output generated byall Print(A, 9, 1, 'This is the Rmat A')

30 MATRANThis is the Rmat A4 5 4 5 GE T 01 2 3 4 51 2.0E+000 3.0E+000 4.0E+000 5.0E+000 6.0E+0001 2 3 4 52 3.0E+000 4.0E+000 5.0E+000 6.0E+000 7.0E+0001 2 3 4 53 4.0E+000 5.0E+000 6.0E+000 7.0E+000 8.0E+0001 2 3 4 54 5.0E+000 6.0E+000 7.0E+000 8.0E+000 9.0E+0005.7. The Rand suiteMatran provides routines to generate uniformly or normally distributed random Rmats.There are two subroutine forms.all RandX(A, m, n)where X is either U or N. If X = U the elements of the matrix are independently uniformlydistributed in [0; 1). If X = N the elements of the matrix are independently normallydistributed (0; 1).type(Rmat), intent(inout) :: AThe random Rmat generated by the subroutine.integer, intent(in) :: minteger, optional, intent(in) :: nIf m is not present, A is m x m. If m is present, A is m x n.The funtional forms areDrandX(m, n) result(A)where X is the suÆx U or N, as desribed above, andtype(Rmat), intent(inout) :: AThe random Rmat generated by the subroutine.integer, intent(in) :: minteger, optional, intent(in) :: nIf n is not present, A is m x m. If m is present, A is m x n.The uniformly distributed random variables are obtained using the Fortran 95 in-trinsi subroutine random_number, and the user is warned that the quality of the pseu-dorandom numbers so generated are implementation dependent. Normally distributed

MATRAN 31random numbers are omputed by an algorithm of Leva [ACM Trans. Math. Software,18 (1992) 454{455.℄To ontrol the seed for both uniform and normal random matries, use the intrinsisubroutine random_seed.6. Deompositions6.1. GeneralitiesA matrix deomposition is a fatorizations of a matrix into a produt of two or morematries. Matran provides a number of standard deompositions. The fators ofeah deomposition are generated by a generi subroutine, whih puts the fators in ade�ned type partiular to the deomposition, whih we will all the ontainer of thedeomposition. Here is a list of the deompositions urrently provided by matran.Deomposition Container ConstrutorLU with partial pivoting RmatLudpp LudppCholesky deomposition RmatChol CholQR deomposition RmatQR QRQR deomposition with pivoting RmatQRP QRPSpetral deomposition RmatSpe SpeSingular value deomposition RmatSVD SVDEigendeomposition RmatEig EigIn addition eah deomposition has a generi sanitizer Clean to dealloate the storageof deompositions onstruted in subprograms.The standard alling sequene for the onstrutors isall <onstrutor>(<ontainer>, <matrix>, <optional arguments>)In order to interat with the lapak drivers that ompute the deompositions, mostof the onstrutors have optional arguments, in addition to the ontainer and matrix.They fall into two lasses.First, some of the drivers have a parameter alled info that returns informationabout the status of the omputation. If the status indiates an error, the onstrutorauses an error message to be printed and terminates the run. However, if the optionalparameter info is present in the alling sequene of the onstrutor, the onstrutorsets it to the value of returned by the driver and returns, thus giving the alling programa hane at on the error ag.Seond, many of the drivers require that the user furnish additional work arrays.Ordinarily, matran silently alloates and dealloates this storage. However, through

32 MATRANthe optional parameters the user an furnish the working storage expliitly. This mayredue storage management time when the onstrutor is alled inside a loop.The ontainers are all derived types|a di�erent one for eah deomposition. Butthey all have a ommon omponent ompanion that is used to ontrol the reuse of adeomposition. Spei�ally, onsider the following loopdoall Ludpp(lua, A)<alulations involving lua>if (<ondition>) then<modify A>endend doSuppose that the if statement is only plae in the loop where A is modi�ed. Then if<ondition> is not true the all to Ludpp is redundant|expensively redundant. Toure this problem we an ode as follows.doif (.not.lua%ompanion)&all Ludpp(lua, A)<alulations involving lua>if (<ondition>) then<modify A>lua%ompanion = .false.endend doThus ompanion is a ag that tells the program that a deomposition is assoiated witha matrix of interest.In using ompanion, it is important to keep in mind that it does not in itself suppressthe omputation of the deomposition. It has absolutely no e�et on Ludpp or any otherdeomposition onstrutor. It is just a handy ag that enables the programmer to deidewhether or not to ompute the deomposition in question.The default value of ompanion is false. All deomposition onstrutors set ompanionequal to true.In the Solve suite we gave an example of the use of ompanion to fore the reom-putation of a deomposition. The same treatment has been applied to our introdutoryexample qrlsq in Figure 6.1. It is worth pondering a bit.6.2. The LU deompositionGiven an m�n matrix A, there is a permutation matrix P suh thatPA = LU; (6.1)

MATRAN 33subroutine qrlsq(A, b, x, r, oldqra)use MatranRealCore_muse RmatQR_mimpliit nonetype(Rmat), intent(in) :: A, btype(Rmat), intent(out) :: x, rtype(RmatQr), optional, intent(inout), target :: oldqra! Internal variables.type(RmatQR), target :: newqratype(RmatQR), pointer :: qra!Protet temporaries.all GuardTemp(A); all GuardTemp(b)! Get the QR deomposition of A.if (present(oldqra)) thenqra => oldqraif (.not.qra%ompanion) all QR(qra, A)elseqra => newqraall QR(qra, A)end if! Solve the least squares problem.x = qra%R.xiy.(qra%Q.xhy.b)r = b - A*x! Clean up.if (.not.present(oldqra)) all Clean(qra)all CleanTemp(A); all CleanTemp(b)end subroutine qrlsqFigure 6.1: QR least squares�

34 MATRANwhere U is an upper triangular matrix and L is a lower triangular matrix with oneson its diagonal and with its subdiagonal elements not greater than one in magnitude.Matran represents suh a deomposition by the derived typetype RmatLudpptype(Rmat) :: L ! The L-fatortype(Rmat) :: U ! The U-fatorinteger, pointer :: pvt(:) ! The pivot arryinteger :: npvt ! The number of pivots.logial :: ompanion ! True if the deomposition is! that of a Rmat of interest.end type RmatLudppThe members L and U are Rmats with ags LT and UT respetively. The array pvtenodes the permutation P in (6.1) as a sequene of interhanges. Spei�ally, thevetor Px an be omputed by the following fragment.do i=1,npvttemp = x(i); x(i) = x(pvt(i)); x(pvt(i)) = tempend doFor more see the Pivot suite.The deomposition is omputed by the generi subroutine Ludpp whose alling se-quene isall Ludpp(lu, A, info)wheretype(RmatLudpp), intent(inout), target :: luOn return lu ontains the LU deomposition of A.type(Rmat), intent(in) :: AThe Rmat whose LU deomposition is to be omputed.integer, intent(out), optional :: infoIf this optional argument is present, Ludpp returns the info parameter fromthe lapak routine DGETRF. The normal return is info=0. If info>0, theinfoth diagonal of U is zero.6.3. The Cholesky deompositionGiven a symmetri positive de�nite matrix A of order n there is an upper triangularmatrix R suh that A = RTR:The matrix R is alled the Cholesky fator of A.The ontainer for the deomposition is de�ned type RmatChol de�ned by

MATRAN 35type RmatCholtype(Rmat) :: R ! The R-fatorlogial :: ompanion ! True if the deomposition is! assoiated with a Rmat of interestend type RmatCholwhere R represents the Cholesky fator. The use of ompanion is explained in x6.1.The Cholesky deomposition of a Rmat of tag SP is omputed by the generi sub-routine Chol, whose alling sequene isall Chol(hola, A, info)wheretype(RmatChol), intent(inout), target :: holaOn return hola ontains the Cholesky deomposition of A.type(Rmat), intent(in) :: AThe Rmat whose Cholesky deomposition is to be omputed.integer, optional, intent(out) :: infoIf this optional argument is present, Chol returns the info parameter fromthe lapak routine DPOTRF. The normal return is info=0. If info>0, theleading submatrix of A of order info is inde�nite.6.4. The QR deompositionLet A be an m�n matrix with m � n. Then there is an orthogonal Q suh thatQTA = �R0� ; (6.2)where R is an n�n upper triangular matrix. We all (6.2) the QR deomposition of A.If we partition Q = (Q1 Q2);where Q1 is m�n, then we an write A = Q1R: (6.3)This version of the deomposition is sometimes alled the QR fatorization. It annotdo as many things as the full deomposition, but it requires muh less memory whenm� n.If m < n then we an write the deomposition in the formA = QR (6.4)

36 MATRANwhere Q is orthogonal and R is an m�n upper triangular matrix.The matran module RmatQR_m provides the means of omputing the three de-ompositions (6.2), (6.3), and (6.4). The ontainer is RmatQR, whih has the followingde�nition.type RmatQRtype(Rmat) :: Q ! The Q-fatortype(Rmat) :: R ! The R-fatorlogial :: ompanion ! True if The deomposition is! assoiated with a Rmat of interestend type RmatQRThe deomposition is omputed by the generi subroutine QR, whose alling sequeneis all QR(qra, A, fullq, mywork)wheretype(RmatQR), intent(out), target :: qraThe QR deomposition of A.type(Rmat), intent(in) :: AThe Rmat whose QR deomposition is to be omputed.logial, intent(in), optional :: fullqIf fullq is absent or present and false, QR omputes the deomposition (6.3)or (6.4), depending on the row and olumn dimensions of A. If fullq ispresent and true, QR omputes the deomposition (6.2) or (6.4), dependingon the row and olumn dimensions of Areal(wp), pointer, optional:: mywork(:)The lapak subroutine DGEQRF requires an auxiliary work array, whih isordinarily alloated and dealloated by QR. If mywork is present and ontainsenough storage, it is used as the work array. If it is present but does notontain enough storage, it is realloated and used as the work array. Thisstorage is not dealloated, so that mywork an be reused when QR is alled ina loop.6.5. The pivoted QR deompositionLet A be an m�n matrix with m � n. Then there is an orthogonal matrix Q and apermutation matrix P suh that QTAP = �R0� ; (6.5)

MATRAN 37where R is an n�n upper triangular matrix. The matrix P is formed by a proess ofolumn pivoting that results in a matrix R suh thatr2kk � maxj>k fPi�kjrij j2g:This deomposition is alled the pivoted QR deomposition or the QRP deomposition.If we partition Q = (Q1 Q2);where Q1 is m�n, then we an write AP = Q1R: (6.6)This version of the deomposition is sometimes alled the pivoted QRP fatorization ofA. If m < n then we an write the deomposition in the formAP = QR (6.7)where Q is orthogonal and R is an m�n upper triangular matrix.The matran module RmatQRP_m provides the means of omputing the three de-ompositions (6.5), (6.6), and (6.7). The ontainer is RmatQRP, whih has the followingde�nition.type RmatQRPtype(Rmat) :: Q ! The Q-fatortype(Rmat) :: R ! The R-fatorinteger, pointer :: pvt(:) ! The pivot arraylogial :: ompanion ! True if The deomposition is! assoiated with a Rmat! of interestend type RmatQRPThe array pvt enodes the permutation P in as a sequene of interhanges. Speif-ially the vetor xTP an be omputed by the following fragment.do i=1,A.mtemp = x(i); x(i) = x(pvt(i)); x(pvt(i)) = tempend doThe deomposition is omputed by the generi subroutine QRP, whose alling se-quene isall QRP(qrpa, A, fullq, firstols, mywork)

38 MATRANwheretype(RmatQR), intent(out), target :: QRThe QR deomposition of A.type(Rmat), intent(in) :: AThe Rmat whose QR deomposition is to be omputed.logial, intent(in), optional :: fullqIf fullq is absent or present and false, QR omputes the deomposition (6.6)or (6.7), depending on the row and olumn dimensions of A. If fullq ispresent and true, QR omputes the deomposition (6.5) or (6.7), dependingon the row and olumn dimensions of Alogial, intent(in), optional, target :: firstols(:)If present, the olumns A(:; j) of A for whih firstols(j) is true are movedto the beginning of A and frozen there during the pivoting proess. Thelength of firstols may be less than A%nol.real(wp), pointer, optional:: mywork(:)The lapak subroutine DGEQRP requires an auxiliary work array, whih isordinarily alloated and dealloated by QRP. If mywork is present and ontainsenough storage, it is used as the work array. If it is present but does notontain enough storage, it is realloated and used as the work array. Thisstorage is not dealloated, so that mywork an be reused when QRP is alledin a loop.6.6. The spetral deompositionLet A be a symmetri matrix of order n. Then there is an orthogonal matrix V suhthat A = V DV T (6.8)where D = diag(Æ1; : : : ; Æn) with Æ1 � � � � � Æn. The salars Æi are the eigenvalues of Aand the olumns vi of V are the orresponding eigenvetors. The deomposition (6.8)is alled the spetral deomposition of A.The matran module RmatSpe_m de�nes and omputes the type RmatSpe, whihhas the following de�nition.type RmatSpetype(Rdiag) :: D ! The matrix of eigenvalues.type(Rmat) :: V ! The matrix of eigenvetors.logial :: ompanion ! True if the deomposition is! assoiated with a Rmat of interestend type RmatSpe

MATRAN 39The spetral deomposition is omputed by the generi subroutine Spe, whosealling sequene isall Spe(S, A, wantv, info, mywork)wheretype(RmatSpe), intent(out) :: SThe spetral deomposition of A.type(Rmat), intent(in) :: AThe symmetri Rmat whose spetral deomposition is to be omputed.logial, optional, intent(in) :: wantvIf wantv is present and true, ompute both eigenvalues and eigenvetors.Otherwise ompute only eigenvalues.integer, optional, intent(out) :: infoIf present info returns the info parameter of the lapak routine DSYEV.The normal return is info=0. If info>0, DSYEV failed to onverge.real(wp), pointer, optional :: mywork(:)The lapak subroutine DSYEV requires an auxiliary work array, whih isordinarily alloated and dealloated by Spe. If mywork is present and on-tains enough storage, it is used as the work array. If it is present but doesnot ontain enough storage, it is realloated and used as the work array. Thisstorage is not dealloated, so that mywork an be reused when Spe is alledin a loop.6.7. The singular value deompositionLet A be an m� n matrix with m � n. Then there are orthogonal matries U and Vof order m and n suh that A = U �D0�V T; (6.9)where D = diag(Æ1; : : : ; Æn)with Æ1 � � � � � Æn:The deomposition (6.9) is alled the singular value deomposition of A. The Æi arealled the singular values of A, and the olumns of U and V are alled the left and rightsingular vetors of AIf we partition U = (U1 U2), where U1 has n olumns, then we may writeA = U1DV T: (6.10)

40 MATRANThe deomposition (6.10) is sometimes alled the singular value fatorization of A.If m < n the singular value deomposition assumes the formA = U(D 0)V T; (6.11)where D is now of order m. Partitioning V = (V1 V2), where V1 has m olumns, we anwrite A = UDV T1 (6.12)The module RmatSdv_m omputes one of the deompositions (6.9), (6.10), (6.11), or(6.12). The deomposition is ontained in the derived type RmatSvd.type RmatSVDtype(Rdiag) :: D ! The singular valuestype(Rmat) :: U ! The right singular vetorstype(Rmat) :: V ! The left singular vetorslogial :: ompanion ! True if the deomposition is! assoiated with a Rmat! of interestend type RmatSVDThe deomposition is omputed by the generi subroutine SVD, whose alling se-quene isall SVD(svdmp, A, wantu, wantv, full, info, mywork)wheretype(RmatSVD), intent(out), target :: svdThe singular value deomposition of Atype(Rmat), intent(in) :: AThe Rmat whose singular value deomposition is to be omputed.logial, optional, intent(in) :: wantuIf present and true ompute ompute the left singular vetors.logial, optional, intent(in) :: wantvIf present and true ompute ompute the right singular vetors.logial, intent(in), optional :: fullIf present and true, ompute the full omplement of singular vetors requestedby wantu or wantv. Otherwise ompute the fatorizations (6.10) or (6.12).integer, optional, intent(out) :: infoIf present info returns the info parameter of the lapak routine DGESVD.The normal return is info=0. If info>0, DGESVD failed to onverge.

MATRAN 41real(wp), pointer, optional:: mywork(:)The lapak subroutine DGESVD requires an auxiliary work array, whih isordinarily alloated and dealloated by SVD. If mywork is present and ontainsenough storage, it is used as the work array. If it is present but does notontain enough storage, it is realloated and used as the work array. Thisstorage is not dealloated, so that mywork an be reused when SVD is alledin a loop.6.8. The real Shur deompositionLet A be of order n. Then there is an orthogonal matrix U suh thatA = UTUT;where T is blok upper triangular with 1�1 and 2�2 bloks on its diagonal. The 1�1bloks are the real eigenvalues of A. The 2�2 bloks ontain the omplex eigenvaluesof A. Suh a deomposition is alled a real Shur deomposition of A. The 2�2 bloksan be standardized to have the form �r b r� ;where b < 0. It is easily veri�ed that the real part of the eigenvalues of this blok is rwhile the imaginary parts are �pjbjpjj.8The matran module RealShur_m ontains the wherewithal to ompute a stan-dardized real Shur deomposition of a Rmat A. The ontainer istype RmatRealShurtype(Rmat) :: T ! The blok upper triangular matrix! of the deomposition.type(Rmat) :: U ! The orthogonal matrix of the! deomposition.omplex(wp), pointer :: D(:) ! D ontaines the eigenvalues of T! in the order the appear on the! diagonal of T.logial :: ompanion ! True if the deomposition is! assoiated with a Rmat of! interest.The real Shur deomposition is omputed by the subroutine RealShur, whosealling sequene is8This formula is preferable to its mathematial equivalent �pjbj, whih is subjet to exponentexeptions.

42 MATRANall Shur(S, A, wantu, info, mywork)wheretype(RmatRealShur), intent(out) :: SThe real Shur deomposition of A.type(Rmat), intent(in) :: AThe Rmat whose real Shur deomposition is to be omputed.logial, optional, intent(in) :: wantuIf present and true, ompute U and T. Otherwise ompute only T.integer, optional, intent(out)If present info returns the info parameter of the lapak routine DGEES.The normal return is info=0. If info>0, DGEES failed to onverge.real(wp), pointer, optional:: mywork(:)The lapak subroutine DGEES requires an auxiliary work array, whih isordinarily alloated and dealloated by RealShur. If mywork is present andontains enough storage, it is used as the work array. If it is present but doesnot ontain enough storage, it is realloated and used as the work array. Thisstorage is not dealloated, so that mywork an be reused when RealShur isalled in a loop.The order in whih eigenvalues appear on the diagonal of T annot be predited.Thus it may be neessary to reorder the bloks. The subroutine ReorderShur. movesdiagonal a blok up or down the diagonal of T by pairwise exhanges. Its allingsequene isReorderShur(S, i1, i2, info)wheretype(RealShur), intent(inout) :: SThe real Shur deomposition whose bloks are to be reordered. On returnthe bloks will be reordered as desribed below. The ontents of S%U (ifpresent) and S%D will be hanged appropriately, so that S is still a standard-ized real Shur deomposition of the original matrix.integer, intent(inout) :: i1, i2The blok beginning in row i1 is moved by pairwise exhanges of bloks tothe row i2. If S%D(i1) is the seond of a pair of omplex eigenvalues, i1 isderemented by 1. On return i2 points to the �rst row of the blok in its �nalposition, whih may di�er from its original value by �1. The parameters i1and i2 may take any values from 1 to n.

MATRAN 43integer, optional, intent(out)If present, the info parameter from the lapak routine DTREXC is returned.A nonzero value indiates an error.Reordering is a numerial proedure, and it an alter the bloks of T . In partiular,blok ontaining two omplex eigenvalues an split into two bloks ontaining real eigen-values (mostly when the imaginary parts are very small). However, two real eigenvaluesan never merge to form a omplex blok.6.9. The eigendeompositionLet A be a nondefetive matrix. Then there is a (generally omplex) matrix X suhthat X�1AX = D � diag(Æ1; : : : ; Æn): (6.13)The numbers Æi are alled the eigenvalues of A and the olumns xi of X are the orre-sponding eigenvetors, whih satisfy Axi = Æixi:If Y H = X�1, then the olumns yi of Y satisfyyHi A = ÆiyHi :The yi are alled the left eigenvetors of A.The module RmatEig_m provides the means to ompute the deomposition (6.13).The ontainer istype RmatEigomplex(wp), pointer :: D(:) ! The eigenvaluesomplex(wp), pointer :: X(:,:) ! The right eigenvetorsomplex(wp), pointer :: Y(:,:) ! The left eigenvetorslogial :: ompanion ! True if the deomposition! is assoiated with a Rmat! of interestend type RmatEigNote that this deomposition is di�erent from the others| the results are not returnedin matrix types. This is beause at this point we have not de�ned a omplex matrixtype. Later a ontainer CmatEig will remedy this de�ieny. However, the type RmatEigmay still be useful to those who do not want to bear the burden of inorporating theomplex types into their programs.The deomposition (6.13) is omputed by the generi routine Eig, whose allingsequene is the following.

44 MATRANEig(eiga, A, wantx, wanty, info, xwork, ywork, wwork)wheretype(RmatEig), intent(out) :: eigaThe eigendeomposition of Atype(Rmat), intent(in) :: AThe Rmat whose eigendeomposition is to be omputed.logial, optional, intent(in) :: wantxIf present and true, ompute right eigenvetors.logial, optional, intent(in) :: wantyIf present and true, ompute left eigenvetors.integer, optional, intent(out) :: infoIf present info returns the info parameter of the lapak routine DGEEV.The normal return is info=0. If info>0, DGEEF failed to onverge.real(wp), pointer, optional :: rv(:,:), lv(:,:), mywork(:)The LAPACK Routine DGEEV requires an auxiliary work arrays, whih areordinarily alloated and dealloated by EIG. If any of these three arrays ispresent present it is used, perhaps after a realloation. This storage is notdealloated, so that the arrays an be reused when EIG is alled in a loop.7. The real oreAt present Matran is a small pakage, and one an expliitly use only the modulesone desires. As it grows, however, it will be desirable to de�ne a ore of modules thatrepresents most of the needs of a typial program. The module in Figure 7.1 is anattempt at a beginning. What it leaves out is more signi�ant than what it inludes.The modules RmatInv_m and RmatNorm2_m are exluded beause their use an be asoure of unneessary omputation. All the major deompositions, exepting the LUand Cholesky deompositions, have been left out, on the grounds most programs needonly a small seletion of deompositions. The LU and Cholesky deomposition areinluded beause they are used by RmatSolve_m.Of ourse there is nothing to prevent the matran user with speial needs fromde�ning a di�erent list of modules. Only, please, do not all it RealCore_m.8. Computing Arnoldi deompositionsIn this setion we give a more extended example of matran's apabilities. Let A be amatrix of order n. An Arnoldi deomposition of A of order m is a relation of the formAUm�1 = UmBm;m�1; (8.1)

MATRAN 45module MatranRealCore_m! Root moduleuse MatranUtil_m! The two matrix objetsuse Rmat_m; use Rdiag_m! Matrix operationsuse RmatTranspose_m; use RmatSum_m; use RmatProdut_muse RmatSolve_m : use RmatJoin_m; use RmatBorder_muse RmatSubmatrix_muse RdiagSum_m; use RdiagProdut_m; use RdiagSolve_m! Matrix Miselaniause RdiagDiag_m; use RmatEye_m; use RmatNorm_m;use RmatPivot_m; use RmatPrint_m; use RmatRand_m! Deompositionsuse RmatLudpp_m; use RmatChol_mend module RealCore_m Figure 7.1: The Matran real ore�where Um is an orthonormal matrix with m olumns, Um�1 onsists of the �rst m�1olumns of Um and B is an m�(m�1) upper Hessenberg matrix. As the order of anArnoldi deomposition inreases, the matries Bm�1;m�1, onsisting of the �rst m�1rows of Bm;m�1 generally ontain inreasingly aurate approximations to the extremeeigenvalues of A. Approximate eigenvetors an also be extrated from Um�1, by aproess known as the Rayleigh{Ritz method.If we denote by Uk the matrix onsisting of the �rst k olumns of Um and Bk;k�1

46 MATRANthe leading (k+1)�k submatrix of Bm;m�1, thenAUk�1 = UkBk;k�1 (8.2)is also an Arnoldi deomposition of A. This suggests that we ompute (8.1) by forminga sequene of Arnoldi deompositions eah omputed from the previous one. Here isthe algorithm for passing from the deomposition (8.2) to the next.1. uk+1 = Auk2. r = UTk uk+13. uk+1 = uk+1 � Ukr4. � = kuk+1k25. uk+1 = uk+1=�6. Uk+1 = (Uk uk+1)7. Bk+1;k = �Bk;k�1 r0 �� (8.3)
The proess must be started with a vetor u1. In our example u1 will be a normalizedrandom vetor.Steps 3{5 in this algorithm orthogonalize Auk against Uk and normalize it, a proessknown as Gram{Shmidt orthogonalization. Unfortunately, the proess an fail, and weuse a more ompliated proess alled Gram{Shmidt with reorthogonalization.The following ode shows implements the Arnoldi proess. It onsists of a mainprogram Arnoldi and three subroutines:ArnStepImplements the algorithm (8.3).gsro Performs Gram{Shmidt with reorthogonalization.AmultMultiplies a vetor by A. In this ase A = diag(1; 0:95; 0:952 ; : : : ; 0:95n�1).For onveniene these routines are made loal to the program Arnoldi.program Arnoldiuse Rmat_muse RmatSum_muse RmatProdut_muse RmatNorm_muse RmatRand_muse RmatSolve_m

MATRAN 47use RmatBorder_muse RmatPrint_muse RmatEye_muse RmatEig_muse RmatSubmatrix_mimpliit none! Let U_m = (u_1,...,u_m) be orthonormal and let B_{m,m-1}! be an mx(m-1) upper Hessenberg matrix. If!! (*) AU_{m-1} = U_mB_{m,m-1},!! then (*) is alled an Arnoldi deomposition of A. An Arnoldi! deomposition an be built up sequentially by starting with a! normalized vetor u_1. Given U_{k-1}, u_{k} is generated by! orthonormalizing Au_{k-1} against the olumns of U_{k-1}. The! orthogonalizing oeffiients form the k-th olumn of B_{k,k-1}.! The eigevalues of B_{k-1,k-1} often ontain inreasingly aurate! approximations to the extreme eigenvalue of A.!! This program ompute an Arnoldi deomposition starting from a! normalized random vetor. It also omputes the dominant eigenvalue! of B_{k-1,k-1} to show its onvergene. It uses the subroutine! ArnStep to advane the deomposition. ArnStep in turn uses Amult! to multiply a vetor by the matrix in question and gsro! (Gram-Shmidt with reorthogonalization) to perform the! reorthogonalization.type(Rmat) :: U, Btype(RmatEig) :: eigbinteger :: bigeiglo(1), k, n, m! Get the order n of A and the number of! Arnoldi vetors to ompute.print *, 'Input n and m'read *, n, m! Initialize storage for U and BU = (/n,0, n,m/)B = (/0,0, m+1,m/)

48 MATRAN! Compute the Arnoldi deomposition.all random_seed() ! Initialize the random number generator.do k=0,m-1! Advane the deomposition.all ArnStep(U, B)! Compute and print the largest eigenvalue of! the Rayleigh quotient B(1:k,1:k)if (k>0) thenall Eig(eigb, Sbm(B, 1,k, 1,k))bigeiglo = maxlo(abs(eigb%D(1:k)))print '(e23.15, e9.1)', eigb%D(bigeiglo(1))end ifend do! Chek the defining relations of the final! Arnoldi deomposition.print *, ' 'print *, NormF(.xhx.U - Deye(m)), &NormF(Amult(Col(U, 1,m-1)) - U*B)ontainssubroutine ArnStep(U, B)type(Rmat), intent(inout) :: U, B! ArnStep takes expands an Arnoldi deomposition ! of order k to! one of order k+1. If k=0, ArnStep ! initializes the! deomposition to a random vetor.type(Rmat) :: x, xp, rreal(wp) rhointeger kn = U%nrowk = U%nol! Get a starting vetor for the Krylov sequene.

MATRAN 49if (k==0) thenU = DRandN(n,1)U = U/NormF(U)all ReshapeAry(B, 1, 0)returnend if! Compute Au_k, orthogonalize it, and fold the results! into U and B.x = Amult(ol(U,k))all gsro(U, x, xp, r, rho)all BorderE(U, xp)all BorderSE(B, .dm.(/1,k-1/), r, .dm.rho)end subroutine ArnStepsubroutine gsro(Q, x, xp, r, rho)type(Rmat), intent(in) :: Q, xtype(Rmat), intent(out) :: xp, rreal(wp), intent(out) :: rho! gsro orthogonalizes a olumn vetor x against the the olumns of! the orthonormal matrix Q to produe a normalized vetor xp that! is orthogonal to Q to working auray. Moreover, the relation!! x = Q*r + rho*xp!! is satisfied to working auray. The method used is! Gram-Shmidt with reorthogonalization.real(wp), parameter :: run = 2.2d-16 ! Rounding unit.real(wp) :: nu, sig, tautype(Rmat) :: s, xpall GuardTemp(Q)all GuardTemp(x)nu = NormF(x)r = .dm.(/Q%nol,1/)

50 MATRAN!Speial ation for null Qif (Q%nol == 0) thenxp = x/nurho = nugo to 99999end ifsig = nuxp = xdo ! Orthogonalize.s = Q.xhy.xpr = r + sxp = xp - Q*stau = NormF(xp)! Finished if redution in norm is not too great.if (tau > 0.5*sig) exit! If the urrent norm of xp has not dropped! below the 0.1 times the rounding unit relative! to original norm of xp, ontinue orthogonalizing.! Otherwise replae xp by a small random vetor.if (tau > 0.1*nu*run) thensig = tauelsenu = 0.1*nu*runsig = nuall RandN(xp, xp%nrow, 1)xp = sig*(xp/normf(xp))end ifend do! Normalize and return.rho = NormF(xp)xp = xp/rho99999&all CleanTemp(Q)

MATRAN 51all CleanTemp(x)end subroutine gsrofuntion Amult(x) result(y)type(dmat) :: ytype(dmat), intent(in) :: x! Amult omputes the produt y = Ax, where! A = diag(1, .95, .95^2, ..., .95^{n-1}).integer :: ireal(wp) :: sall GuardTemp(x)y%a => null() ! Neessary beause the SUN f95 6.2all Clean(y) ! does not initialize the results of! funtions properly.y = xs = 1.0do i=1,y%nrowy%a(i,1:y%nol) = s*y%a(i,1:y%nol)s = 0.95*send doall CleanTemp(x)end funtion Amultend program Arnoldi

52 MATRAN9. Appendix: The Sun Fortran 95 6.2 CompilerWhen the result of a funtion is a de�ned type, the Sun Fortran 95 6.2 Compiler maynot initialize it properly. The following ode (implementing an aspet of .dm.) showsthe neessary �x.! RmFromAry overloads .dm. to produe C = ary.funtion RmFromAry(ary) result(C)type(Rmat) :: Creal(wp), intent(in) :: ary(:,:)C%a => null() ! Nullify the C%a and C%temporaryC%temporary => null() ! and all Clean to initializeall Clean(C) ! the other omponents.C = aryall SetTemp(C)end funtion RmFromArySine I developed matran on a Sun system, all ode has been thoroughly sun-sreened. The �x will be removed as soon as Sun �xes the problem.

