Linking Symbolic and Subsymbolic
Computing

by A. Wilson and]. Hendler

TECHNICAL
RESEARCH
REPORT

Institute for
Systems
Research

The Institute for Systems
Research is supported by the
National Science Foundation
Engineering Research Center

Program (NSFD CD 8803012),
Industry and the University

TR 93-12

Linking Symbolic and Subsymbolic
Computing

A. Wilson J. Hendler*

Department of Computer Science
University of Maryland
College Park, MD 20742

wilson@cs.umd.edu
hendler@cs.umd.edu

Abstract

The growing interest in integrating symbolic and subsymbolic com-
puting techniques is manifested by the increasing number of hybrid
systems that employ both methods of processing. This paper presents
an analysis of some of these systems with respect to their symbolic/subsymbolic
interactions. Then, a general purpose mechanism for linking symbolic
and subsymbolic computing is introduced. Through the use of pro-
gramming abstractions, an intermediary agent called a supervisor is
created and bound to each subsymbolic network. The role of a su-
pervisor is to monitor and control the network behavior and interpret
its output. Details of the subsymbolic computation are hidden be-
hind a higher level interface, enabling symbolic and subsymbolic com-
ponents to interact at corresponding conceptual levels. Module level
parallelism is achieved because subsymbolic modules execute indepen-
dently. Methods for construction of hierarchical systems of subsym-
bolic modules are also provided.

*This research was supported in part by a fellowship from the American Association of
University Women to A. Wilson, and by grants from NSF(IRI-8907890), ONR (N00014-
J-91-1451), and AFOSR (F49620-93-1-0065). Dr. Hendler is also affiliated with the UM
Institute for Systems Research, an NSF-sponsored Engineering Research Center.

1 Introduction

In recent years, the disparity between connectionist and traditional Al sys-
tems has been reduced by an increasing number of systems which integrate
symbolic and subsymbolic computation. For some, this integration is mo-
tivated in part by the observation that human intelligence seems to allow
symbolic processes such as language and long-term planning to be supported
on the neural network of the human brain. For others, it is motivated by the
engineering need to develop applications such as intelligent controllers and
signal understanding. Whichever motivation, an analysis of existing systems
shows that most hybrid systems have been tailored to specific applications,
or have focused on improving the behavior of systems in particular domains
such as planning, rule following behavior, and natural language processing.

In contrast to such specialized system development, in this paper we de-
scribe work which focuses on symbolic/subsymbolic interaction per se. Our
goal is to develop some general purpose methods for integrating symbolic
and subsymbolic components, and for supporting the computational needs
of hybrid systems developers. As such, a critical aspect of our work is un-
derstanding the relationship between the symbolic and subsymbolic levels of
hybrid systems in order to support the many different ways in which these
systems are integrated.

To understand the relationship between the levels in hybrid systems, we
have studied how a number of current systems allow for symbolic/subsymbolic
interactions. For each system, the first characteristic we assessed was the de-
gree to which symbolic and subsymbolic processing were interwoven. In some
cases, the two subsystems are very highly integrated, to the point where it
is difficult to designate a boundary between them. For example, in systems
which propagate both symbolic markers and activation values over the same
data structures (cf. [LHFB89, KTL89]) it cannot easily be said whether the
systems are symbolic or subsymbolic for any given computation.

A second class of systems provides only very loose coupling between the
symbolic and subsymbolic components. In these systems, the computations
are separate, and any information flow between them is carefully regulated.
For example, in the SCRuFFy system of [HD91], a backpropagation network
functions separately from an expert system, and a special purpose integrating
mechanism is used to provide output from the network level to the expert
reasoner. Although useful in practice, such a system is very limited in terms

of the interactions provided between the levels.

Current research, however, tends to use more general methods than the
latter, but without the complexity of integration of the former. That is,
although these system provide for a tight coupling between the symbolic and
subsymbolic reasoners, the program control tends to flow from one method
to the other, so at any point the processing can be characterized as symbolic
or subsymbolic. In contrast to the continuous, fused interaction of the highly
integrated systems, which is difficult to capture in a general way, we found
that a number of these systems had important commonalities that could be
identified as targets in the development of s.ipport tools.

Table 1 summarizes a number of these systems, and illustrates some sim-
ilarities as well as differences in interaction methods. Perhaps the most im-
portant point of commonality is that the “goal” of each system tends to be
symbolic in nature. Accordingly, the inputs to these systems are typically
symbolic, and subsymbolic processing is used as an important adjunct in
computing a some sort of a symbolic representation.

In the systems shown in Table 1, connectionist networks may be created
a priori (before the program is invoked), once per program invocation, or
once for each input pattern received by the program. Some of these systems
use networks which are created manually [Hen91, Sun91, WL89], while the
others create networks automatically [Lan91, Leh91, TS92].

We found that each of the natural language processing systems uses dy-
namic network creation or selection based on the current input. Two of
the these systems create a unique subsymbolic network for each input sen-
tence or phrase [Leh91, Lan91]. The third [WL89] uses a different dynamic
methodology. In this system, a suite of networks is trained before the pro-
gram is invoked. Then, for each input a subset of these trained networks is
selected for use. In contrast, each of the other three systems uses one fixed
subsymbolic network per invocation. These systems were developed for im-
proving the traditionally symbolic methods used in developing rules [TS92]
and performing common sense reasoning [Sun91] and planning [Hen91].

The goal of the particular system provides some insight into whether the
subsymbolic component is created dynamically or statically. In those cases
using static information about a domain, networks are fixed. In contrast, in
natural language processing, the static information available to the system
pertains to general syntactic or lexical information. Yet an understanding of
the semantics of an input is often required to properly parse it. Obviously,

System Goal

System Input

System Output

Network Creation

Symboiic to
Subsymbolic
Influence

input to
Subsymbolic
Network

Meaning of
Subsymbolic
Output

Use of
subsymbolic
output

Hendler 1991 SAARCS CIRCUS CONSYDERR Towell, Shavlik Wermmnter, Lshnert
Lange 1991 Lehnert 1991 Sun 1991 1992 1989
Improve Sent Avoidi Extracti
semantic net | Sentence volding racting ;
performance | Understanding, | Sentence brittieness in rules from Noun phrase
in a planning analog analysis commonsense| a neural understanding
environment | retrieval reasoning network
symbolic goal | sentence -> Guery ->
-> activation activation Sentence aclivation Symbolic Noun
pattem over pattem over pattem over domain info phrase
localist nodes | localist nodes localist nodes
activation activation Completed actvation Symbolic Structural
pattem over patiem over Frame patiern over rules interpretation
localist nodes localist nodes localist nodes
apron | Onesper | Cvoper | omeper | Owoper |
input input invocation invocation
Output layer Topology
size dependent] Topology Topology "lj’eopology Topology dependent on
on numberof aj dependent dependent pendent on dependgnt On 1 ancoding of
subset of on input on input structure of symbolic preselacted
semantic nodes localist net domain info microfeatures
Activation Activation Activation Activation Subsymbolic | Manually
spreads from | spreads from | levelschosen | spreads network used | determined
semantic semantic based on from localist | onlyin encoding of
network network semanticinfo | network training preselected
microfeatures
Similarities Most Most likely Strength of Distributed Plausibility of
over coherent site for presence of encoding of a particular
perceptual interpretation prep. phrase microfeatures | refined interpretation
encodings attachment symbolic rules
Sut‘)syr.nbolic Sul.)syr'nbolic Used only Subsymbolic | waeights and Network
actlva.hon activation when activation topology yielding
used in used in symbolic used in used as input | greatest
semantic semantic methods fail | localist 1o extraction | plausibility
network netyov.i(network algorithm has corract
activation activation activation interpretation
Note: ->means "translated to”

Table 1: Symbolic/Subsymoblic Interactions in Hybrid Systems

this information is not available until the input arrives.

Three of the systems in our survey use networks which were trained out-
side the scope of the system. Two use a priori training [Hen91, WL89], while
the third trains the network after it has been constructed using a symbolic to
subsymbolic mapping algorithm [TS92]. Unlike the other systems, these sys-
tems rely on the existence of microfeatures discovered by the network, thus
necessitating the training. Note that in these cases separate network train-
ing most likely relied on human observation and adjustment. This human
influence could be viewed as exerting a symbolic influence on the network.

There is one way in which a symbolic component cons.ztently influences
a subsymbolic component. In each system, the symbolic component de-
fines part or all of the subsymbolic network’s topology including some initial
weight values. This is clearly the case for those natural language processing
systems which dynamically create subsymbolic networks. Hybrid systems
using parallel symbolic methods often require corresponding nodes in a sub-
symbolic component [Hen91, Lan91, Sun91]. The last way in which the
subsymbolic topology is influenced is as a result of a direct mapping from a
symbolic representation to a subsymoblic network [TS92].

Finding such a consistent influence on network topology is not too surpris-
ing. It is clearly advantageous to focus the computation of the subsymbolic
network as much as possible beforehand. As noted by others, a network’s
structure plays an important role in its processing by enabling learning and
restricting the search space [Die89, Arb87, vdM88].

Influence in the other direction, from the subsymbolic to the symbolic,
is generally different in nature. Symbolic components will delegate subtasks
to subsymbolic components, but the opposite is not true. Subsymbolic com-
ponents tend to be used mainly to improve or enhance symbolic techniques.
Note that this is consistent with Lehnert’s statement [Leh91]:

"[This analysis| suggests an important claim about the relation-
ship between symbolic and subsymbolic processes which sounds
quite plausible in general: Symbolic processes can be influenced
by subsymbolic processes, but the converse does not hold.”

Of particular note in these hybrid systems is the incorporation of the
subsymbolic output. It is at this point that, in a variety of different ways,
the subsymbolic output becomes symbolic. In some cases, the output is
interpreted discretely and symbolically, such as a plausibility value or an

4

attachment point. This occurs in those systems in which the main flow
of control is serial [Leh91, WL89]. In systems using parallel symbolic pro-
cessing, the output is simply propagated back to the semantic or localist
network [Hen91, Lan91, Sun91]. In these systems, as energy is propagated to
the symbolic component it activates some subset of symbolic nodes, thereby
becoming symbolic. One system in our survey [TS92] focuses precisely on
this subsymbolic to symbolic shift by developing a method for extracting
symbolic rules from the subsymbolic network.

Based on an examination of systems such as those discussed above, it be-
~omes clear that a mechanism which can help link symbolic 37d subsymbolic
processing needs to allow for a number of capabilities:

o For those networks requiring it, off line training should be possible at
various times during processing. Network tuning should be possible
also.

o There should be a way for activation to pass between symbolic and
subsymbolic components.

o There should be a means by which subsymbolic output can be trans-
lated to a symbolic representation.

e Both static and dynamic network creation should be supported.

In the remainder of this paper we present the Conncert system, a frame-
work and set of tools which we have designed for providing these capabilities.
We first describe the linking between subsymbolic and symbolic computation
by analogy with “abstraction” as used in traditional computing languages,
and then show how Conncert supports subsymbolic abstractions. We present
some examples of the capabilities that Conncert offers, and describe how it
supports the capabilities listed above.

2 Symbols and Abstractions

Our basic contention is that the “symbol” which results from the numeric
output of subsymbolic computation is similar to an abstraction in the context

of programming languages.! Ghezzi [GJ87] defines the process of creating
such abstractions as

... identifying important qualities or properties of the phe-

nomenon being modeled. Using the abstract model, one is able
to concentrate only on the relevant qualities or properties of the
phonomenon and to ignore the irrelevant ones.”

In programming languages, abstractions provide symbols through the
svmbolic naming of both locations in memory and operations on those loca-
tions. Thus, even an integer is an abstraction, representing both a location
in memory and a method for interpreting the bit pattern stored there. Simi-
larly, a function serves as an abstraction for a memory location which can be
interpreted as executable code. Put simply, these abstractions raise the level
of discourse away from that of the computer and brings it closer to that at
which algorithms are described.

In contrast, in the context of Al programming, a symbol often stands for
a concept meaningful to a person but which may or may not have meaning
to the computer, such as (son_-of clyde). Here, symbols are chosen not
to aid in directing the computer per se, but because the symbols and their
relationships are inherently important to people. As in the case of integers
and functions, however, low level details are avoided. These symbols serve
as abstractions to allow deliberation at a level similar to that used in daily
discourse.

In general, subsymbolic computing does not support deliberation at the
same level of abstraction as do the symbols traditionally used in Al program-
ming. In discussing subsymoblic computation, one often talks about weights,
activations, input vectors, squashing functions, learning rules, etc. These are
all terms describing characteristics well below the level of description of the
task performed by the network as a whole, such as pattern completion, cat-
egorization, or associative retrieval — the high level emergent behavior is
characterized in terms of its low level numerical aspects.

To provide for an integration of symbolic and subsymbolic processing,
the results of the subsymbolic analysis must be made available to the sym-

!Recent speculations about the existence and role of symbols have examined many
different notions of “reducibility” and “irreducibility.” Our analogy to programming ab-
stractions can support either view, and thus we leave this matter open to those philosophers
so inclined.

bolic system at a level similar to the sorts of symbols used in Al program-
ming. That is, integrating these systems requires providing abstractions for
the subsymbolic computation and output to make them more accessible to
the symbolic system. Thus, it becomes clear that a model which provides
programming level abstractions is necessary to supporting the sorts of capa-
bilities described in the introduction, and a general purpose mechanism must
support the creation of these abstractions. (In addition, the benefits usually
associated with abstraction, such as increased modularity, information hid-
ing, simplification of code modification and reuse, etc., are made available
by such a tool, although we will not discuss this in detail in this paper.)

However, providing abstractions in the realm of connectionist modeling
is somewhat more complex than in traditional programming. In traditional
models of abstraction such as object oriented programming, operations on
objects are implemented via function calls. Generally, the behavior of these
operations is easy to understand. Verbal descriptions can be provided which
are sufficient to enable them to be used properly by others. Functionality is
usually well defined so that a given input always provides the same output,
and the computation is relatively simple (algorithmically).

The nature of connectionist computation is very different. Connectionist
components are used in cases where it is difficult or impossible to symbolically
describe the desired input/output mapping. This mapping can also change
over time, as the network learns. Functionally, connectionist networks tend
to be general purpose mechanisms, and their specific meaning arises only
as they are applied (and usually trained) to a particular problem. Thus,
their success relies on proper construction and training within a particular
environment.

A programmer may not fully understand network behavior. Indeed, a
general method for identifying the features on which a network discriminates
is still an open question. Further, depending on the network model and its
dynamics, outputs may vary over time so that the same input may produce
different outputs depending on its position in the input stream. Due to this
dynamic nature, outputs may or may not reflect the desired mapping — quite
different than in the case of traditional functions.

Another difference between subsymbolic computing and more traditional
programming is that the answers produced by connectionist methods are
typically distributed over a set of nodes and must be mapped to a symbolic
interpretation. It is most often humans who are employed to perform this

7

translation. For example, a network performing categorization may make
one output level high and the rest low, but it is people who interpret that
output as symbolizing a particular category. In addition, outputs tend to
approach their limits rather than actually reach them, and thus the human
may also have to decide what criteria are used to determine high vs. low
outputs.

There are further complications involved in connectionist model usage.
Most models involve some degree of convergence to produce the desired
mapping or to reach a state of equilibrium. Usually, a person is involved
in making the determination of whether the convergence has occurred or will
ever occur.

Finally, even through connectionist models are cited for their robustness
in the face of noise or novel inputs, they often can not respond to a changing
environment. Instead, if it is possible for an environmental change to occur,
a person is employed to monitor the output of the network to determine
whether retraining is necessary. If so, the network may be taken off line,
retrained, and placed back on line, all by hand.

Humans play an important role in analyzing, interpreting, and adjusting
connectionist models. Lange (p. 34) refers to the problems requiring human
intervention as unreduced mechanisms. Currently, researchers are investi-
gating methods for dealing with these issues, but much work remains to be
done.

These differences between connectionist computing and traditional pro-
gramming (both in AI and elsewhere) provide an obstacle to creating general
purpose abstractions for connectionist computing, and thus impede the de-
velopment of hybrid models. To overcome these difficulties, a framework i1s
needed which provides a method for encapsulating connectionist systems, and
removing the need for human interaction at the boundary between symbolic
and subsymbolic computing.

3 Network Encapsulation Through Supervi-
sion

To provide for the integration of subsymbolic computing into more general
symbolic systems?, we have developed an intermediary mechanism that en-
capsulates the subsymbolic computing. This allows connectionist models to
truly become “functions” in the traditional sense, and thus allows for ab-
straction as used in other programming methodologies.

We call our symbolic/subsymbolic intermediary a supervisor, or a super.
A supervisor is a software agent which provides an interface to and monitors
the performance of a connectionist model. Supervisors and their respective
networks can be created using a system we have developed called Conncert.
Conncert consists of a set of objects for creating networks and their supervi-
sors, written in the object oriented language C++.

In Conncert, a supervisor is associated with each subsymbolic network.
The supervisor provides a symbolic interface to the network through which
high level information can be passed. At the same time, the boundaries
between components are maintained, reflecting their logical distinctness. Our
goal in developing an intermediary is to be able to create a fully encapsulated
connectionist module having a high level, symbolic interface, usable like
any other software module.

The supervisor fills three important roles. First, it controls the environ-
ment in which the network functions. Environmental control duties vary
across models, and may include controlling the spread of activation, mak-
ing transitions between phases (such as training versus recall phases), and
adjusting parameters.

The second job of the supervisor is to present the network’s answer. This
means that the supervisor must determine whether or not a legitimate an-
swer 1s present. This raises several issues. In some cases, the supervisor
must determine whether the network has converged. If not, the super must
decide whether it will ever converge and possibly take some corrective steps
such as adjusting parameters, modifying the topology, or simply halting and
reporting the problem.

Even if the network has converged, the super must further determine the
legitimacy of the output. It may be the case that the output of the network

2And, for that matter, other computational environments

9

is erroneous or meaningless, in which case the super must respond or indicate
this in some way. If the output is legitimate, the super may perform the task
of translating from a subsymbolic output vector to a symbol.

The third role of the supervisory is to encapsulate and provide an interface
to the network. All requests to the network and all output from the network
must pass through the super. In this way, a distinct boundary is maintained
between the network and the rest of the system. Also low level details of
network operation are hidden.

Figure 1 illustrates an encapsulated back propagation network module.
fnside the module are variables called environment variables which are the
parameters used in the computation. Also, note that there are two seperate
paths for inputs to the module, one each for data and control. Control inputs
consist of high level requests to the network in the form of function calls. We
call the connectionist modules created in Conncert network objects as they
behave like any other object in an object oriented programming environment.

10

control
> train() '_’jf"‘énv‘ironment' Var:iablég\\ .
L v learn rate)
... momentum

forward_pass()

- forward_pass (f_vecior)

save_close()

save_toss()
Supervisor

Network

data

Figure 1: Back Propagation Network Object

3.1 Handling Model Dependent Variations

The various subsymbolic computing approaches have widely disparate na-
tures and monitoring needs. For example, training a back propagation net-
work to perform a particular mapping is very different than tuning a Hopfield
network to solve an optimization problem. The former requires multiple syn-
chronous passes of data through a feed forward network while analyzing the
output to see that the error is being reduced. The latter requires selecting a
set of parameters then observing the asynchronous operation of the network
to see if the activation values are reaching a stable state. Diffferences such
as these make it not only difficult but imprudent to attempt to build a single

supervisory mechanism for all connectionist models.

For this reason, a supervisor is not a mechanism for monitoring a connec-

11

tionist model per se. Rather, it is a framework for monitoring a connectionist
model. The difficulty of meeting disparate monitoring needs is overcome by
what we refer to as user tailored programming and illustrates why the supervi-
sor is a framework and not a single, complete mechanism for all connectionist
models.

In user tailored programming the system creates templates in the form of
function definitions which are complete except for their contents. A simple
example is an environment for building graphical interfaces. Here, the pro-
grammer may select an interface object graphically, such as a button or a
menu. The system then creates the text for the object’s code, but leaves the
functionality to be defined by the programmer. The programmer can then
add code particular to the application at hand.

In Conncert, in addition to the system functions provided, we also pro-
vide certain template functions, functions whose contents are intended to be
augmented or replaced with algorithms particular to their networks. In par-
ticular, the main control loop of the supervisor is a template function. The
control loop is a large switch (or case) statement. Referring back to Fig-
ure 1, each possible control signal has a corresponding switch in the control
loop. The programmer is free to add new switches and add or substitute new
functions for the switch bodies. These model dependent control tasks may
be implemented in any way - the programmer may choose either symbolic
or subsymbolic methods to monitor the network. For example, one could
imagine using another subsymbolic network to adjust tuning parameters like
learning rate or momentum.

3.2 An Example

To see more directly how Conncert’s mechanism for abstraction allows the
construction of a hybrid system, we describe the implementation of one such
system [Hen91] using Conncert network objects. The hybrid model consists
of a semantic network integrated with a three layer distributed network. The
distributed network is trained beforehand to classify instances of concepts
which appear in the semantic network. As a result, the hidden layer of the
network develops its own internal representation using microfeatures that
it discovered during training. The distributed network is then attached to
the semantic network, by creating edges between the output layer of the
distributed network and the corresponding instance nodes in the semantic

12

network. (The input layer is no longer used.)

In using the system, markers are propagated through the semantic net-
work. When these markers reach those instance nodes to which the sub-
symbolic network is attached, activation values corresponding to the energy
of the symbolic markings are passed to the distributed network. These val-
ues propagate down from the output layer of the network to the hidden layer
using a specialized activation spreading method. Activations are then propa-
gated back up and out to the semantic net. In the semantic net the instances
which were most similar, as determined by the distributed network, gain en
ergy and are able to propagate symbolic information. In this way, pathe
through the semantic network are established.

Figure 2 depicts this system using a network object defined in Conncert.
Here, rather than having actual edges between the two networks, activation
values are grouped into a vector, which is presented to the network object.
The supervisor of the network object propagates the input vector in the
requisite specialized manner. It then groups the output of the network into
a vector and passes it back to the semantic network.

13

Hybrid System

Semantic Network

‘\/ Network Object

train(}

% specialProp()

Network I | Supervisor

AN,

Figure 2: Hendler's Hybrid System Using a Network Object

To create this particular network object, it is necessary to write a spe-
cialized activation spreading method for the supervisor. This means simply
writing a new method to propagate activation from the output layer to the
hidden layer then back to the output layer. Also, a modified function for
calculating the net input to nodes in the hidden layer is required to encode
the specialized backward flow of activation. These modifications are simple

14

because high level operations are provided for all objects in the system, in-
cluding nodes, edges, and sets of nodes or edges (such as a layer of nodes).
Existing back propagation operations can be used for other operations such
as training.

Moreover, in using a Conncert network object, if desired, the system
can be trained at the time the program is invoked. Currently we use a
very simple method to determine if the network has converged. For the
last N input/target pairs presented to the network, where N is some integer
determined to give a useful window size, if the error for each pair was smaller
than some epsilon value, we consider the uziwork trained.

4 The Network Object Interface

The interface to a network object consists of a set of functions selected by
the network designer to provide high level network operations. There are two
essential components of each network object interface function.

In many network computations it is the case that some decision must be
made as to the trustworthiness of the network’s output. In Conncert, it is the
job of the supervisor to make this assessment. Upon every network request,
the value of this assessment is reported back in the form of a confidence value
in the range of zero to one, with zero reflecting no confidence. Systems having
network object components can use this value in subsequent decision making.
In some situations a confidence is clearly zero, as in a case where the network
needed to converge but didn’t. Usually, however, determing confidence values
is difficult, model dependent, and currently open to research. 3

As discussed earlier, control of connectionist models is also a difficult
problem that has yet to be solved. Because of this, the other essential inter-
face component is an error code, which is necessary until the time (if ever)
that network control can be fully automated. This is the means by which
the supervisor reports back its findings regarding the success or failure of the
network’s computation. For example, it is through the error code that the
supervisor can report that the network failed to converge. Like the confidence
value, the error code is intended to be used by the subsuming system, but

3Pertainent research on providing confidence values has been done by Smeija and Muh-
lenbein. This work is mentioned in the Related Work section of this paper.

15

rather than reflecting the quality of the output it reflects conclusions drawn
by the supervisor regarding the success of the computation.

Thus, the interface to a network object consists of a set of possible op-
erations in the form of function calls. Each operation returns a confidence
value, and an error code. Any additional parameters deemed useful by the
network designer may also be included. Such an interface is compatible in
most programming environments, including most traditional symbol process-
ing systems.

5 Module Level Parallelism and Hierarchi-
cal Scaling

We have stressed encapsulation as one of the goals of our system. This
encapsulation gives us the usual benefits associated with modularity, but
it also provides further benefits specific to this context. Because module
interdependencies are minimized, restricted to information that can be passed
in function calls, network objects can execute in parallel. Each network
object is implemented as a separately executing process, resulting in module
level parallelism. *

Interactions between network objects occur via message passing. Mes-
sages between network objects consist of high level control requests which
invoke functions defined in the interface. At the same time, subsymbolic
data flows through the objects using paths which are distinct from those
used by control messages. This distinction is illustrated in Figure 1 by the
different arrows for data and control.

The objects are designed in a manner which allows their data channels
to be interconnected, so that the data output of one object can become
the input to another. Conncert also provides various intermediary objects,
called connectors, which allow data channels to be interconnected in arbitrary
configurations.

Additionally, these interconnected objects can be grouped into new ob-
jects having their own supervisors. In this way, hierarchical object definitions
can be built and the system scales up. We refer to simple network objects

4Conncert has been implemented using the Mach operating system, which directly
supports multi-threading, multi-tasking, and message passing.

16

as basic objects and objects comprised of network objects or other objects as
composite objects. The benefits of separate data and control paths can be
seen in composite objects. Data flows through connectors in the fashion of
a data flow architecture - when all necessary data is available at a site, it
is asynchronously processed. The flow of data is controlled within network
objects via control signals which they receive.

Figure 3 illustrates a composite object to implement the network of mod-
ular competing experts developed by Jacobs et al. [JJB90]. Briefly, this
svstem consists of multiple, competing networks whose outputs are gated by
the output of a gating network. In learning, the network having the output
closest to the target output modifies its weights, adjusting its output closer
still to the target. Over time the modules tend to specialize in different areas
in the input space.

In Figure 3 two expert network objects and one gating network object are
depicted. The other objects in the system are connectors which either direct
data vectors to various destinations or process data vectors in simple ways.
Solid lines represent data paths and broken lines represent control paths.
Near the bottom of the composite object, each expert network output vector
is multiplied elementwise with the output vector of the gating network. The
resulting vectors are then summed yielding the output of the svstem. Note
that for the sake of clarity, data paths for target data are not shown.

17

. i l
train() -~ i
S - N\
H Tz a
[y b &\/
forward_pass() = dje = = = = - =4 — - - b~ —] Gating Net 7‘
1 1T
[T [Tl
N by
1T
-14]
Supervisor Systems and Connectors L

data

Figure 3: Jacob’s Network Composite Object

6 Conncert as hybrid system tool

In the introduction, we described a set of capabilities which were needed
to support a number of current hybrid models. Let us now look are how
Conncert supports these.

o Off Line Training and Tuning

For those networks that require it, training is a crucial phase in network
construction and use. The ability to incorporate a training phase into
subsymbolic network peformance as it remains a component of a larger
system is one of the strengths of Conncert. The supervisor may halt
subsymbolic processing at any time for the purpose of training the

18

network. It may do this upon receiving an external signal to do so, or,
if it is sophisticated enough it may do so on its own initiative.

Network tuning and adjustment is also an important part of subsym-
bolic network processing. As with training, the supervisor makes it
possible to tune the network as it remains a system component. En-
capsulating all of the phases of subsymbolic network usage brings us a
step closer to being able to build systems that are both fully integrated
and fully automatic.

- Method for Passing Activations

In our survey we saw that many hybrid systems pass activation values
between symbolic networks and subsymbolic networks. In Conncert
this is accomplished by grouping activation values into a vector that
may be passed into and out of the network object. This method was
illustrated in the example using Hendler’s hybrid system.

Method for Translating from Subsymbolic to Symbolic

We saw that some hybrid systems which use serial symbolic processing
have a point in their control flow in which they make a symbolic in-
terpretation of subsymbolic output. Performing this interpretation can
be done by the supervisor, so that the output of the network object is
a symbol rather than a vector of numeric values. It is by performing
this interpretation that we raise the level of the subsymbolic output
to correspond to that used by the rest of the system. For example, in
Lehnert’s system [Leh91], the supervisor would be the obvious choice
for translating an activation pattern over the subsymbplic network to
an attachment point for the prepositional phrase. ‘

Static and Dynamic Network Construction

One weakness of the current implementation of Conncert is that while
it supports static network construction, it does not currently support
dynamic network construction or modification. However, as we point
out in the introduction, we have seen that for some problems, notably
those in natural language processing, dynamic network construction
may be essential. Extending the system to support this is straightfor-
ward, as all the mechanisms for linking nodes and propagating values
are in place.

19

Not only is Conncert capable of handling these types of symbolic/subsymbolic

interactions, but at the same time it provides the benefits of abstraction and
modularity.

7 Additional Related Work

There are simulators available which provide high level abstractions for con-
nectionist computing [Miy91, GM88|. However, as the goal of most of these
simulators is to study connectionist computing per se, most simulators create
networks and execute networks in their own environment — not as compo-
nents of larger systems. While these simulators provide abstractions for the
computation (such as feedForward(), a function to spread activation), they
do not provide methods for abstracting the output of a network, which is still
in the form of a vector of numbers. Abstractions for passing results to other
software components are therefore not provided, and it is generally awkward
to try to implement hybrid systems using these tools.

Smeija and Muhlenbein [SM92] have addressed the need for subsymbolic
network monitoring when networks are used as modules in larger systems.
In this work, network monitoring is performed as part of a larger effort to
develop a modular neural network architecture. A module in their system,
called a MINOS module, is similar to a Conncert network object in that
it consists of two components: a worker network and a monitor network.
The worker network processes the input and the monitor network provides a
confidence value. In particular, this work proposes several different methods
for determining a confidence value. In their current implementation, they
have chosen a confidence value which reflects whether or not that particular
module was trained on that particular input.

However, the goal of this work is very different than that of Conncert.
The intent is to develop a new connectionist architecture. Thus, MINOS
modules have a fixed interface and are intended to be used as elements in
a suite of modules which comprise a larger, subsymbolic system (called a
Pandemonium system). As in Jacob’s modular system, this system evolves
specialized networks subsymbolically. Additionally, this work does not allow
for an integration with symbolic processing methods.

20

8 Conclusion

We have provided a framework for the purpose of making a subsymbolic
network an interoperable component of a larger system. Interoperability is
obtained by using a software agent to interpret the network output, raising it
to a more symbolic level. This way, symbolic and subsymbolic modules may
interface at corresponding conceptual levels. Additionally, it is a beginning
towards addressing the issues in subsymbolic network monitoring, including
training and tuning networks.

Now that a supervisory framework has been developed, much research
remains to be done in determining network monitoring methods. General
purpose methods are needed, such as determining confidence values and ana-
lyzing network performance with respect to convergence. More specific meth-
ods must be developed on a per model basis, such as adjusting learning rate
and momentum parameters in a back propagation network. Additionally,
applying the system to particular problems will entail the development of
specialized methods for interpreting subsymbolic output.

Another issue for future work 1s that, as we mentioned in the introduction,
some hybrid systems are highly integrated and it is unclear as to where the
boundaries between the symbolic and subsymbolic system are. Conncert,
as currently implemented, is only designed to handle hybrid systems where
there are clear points of symbolic/subsymbolic interaction. Although we
have not yet explored the application of Conncert to such highly integrated
systems, it does seem possible to apply Conncert to a network which passes
both symbolic and numeric values along edges. In this case it would be
necessary to add functionality to pass symbolic values across edges. However,
in designing such a system, both symbolic and subsymbolic processing would
have to be encapsulated together, which is somewhat contrary to our design
intent. Still, there is a potential benefit in having a supervisor bound to
such a network. For example, it may extract path information or activation
patterns to be used by the rest of the system. We are currently exploring
the use of supervision in such systems, with an eye towards extending the
framework to support this more complex, but still largely unexplored, level
of integration.

21

References

[Arb87)

[Die89)]

[GI8T)

[GMSS]

[HDY1]

[Hen91]

[JIB90]

[K'TL8Y)

[Lan91]

M. A. Arbib. Brains, Machines, and Mathematics. Springer Ver-
lag, 1987. Cited in Diederich, 1989.

Joachim Diederich. Instruction and high-level learning in connec-
tionist networks. Connection Science, 1(2):161 — 180, 1989.

Carlo Ghezzi and Mahdi Jazayeri. Programming Language Con-
cepts 2/FE. John Wiley and Sons, 1987.

N. Goddard and T. Mintz. Rochester Connectionist Simula-
tor Manual. Department of Computer Science, University of
Rochester, 1988.

J. Hendler and L. Dickens. Integrating neural and expert reason-
ing: An example. In Proceedings of AISB-91, Leeds, UK, April
1991.

James Hendler. Developing hybrid symbolic/connectionist mod-
els. In John Barnden, editor, Advances in Connectionist and Neu-
ral Computation Theory, chapter 7, pages 165 — 179. Ablex, 1991.

Robert A. Jacobs, Michael I. Jordan, and Andrew G. Barto. Task
decomposition through competition in a modular connectionist
architecture: The what and where vision tasks. Technical Report
COINS Technical Report 90-27, Department of Computer and
Information Science, University of Massachusetts, March 1990.

H. Kitano, H. Tomabechi, and L. Levin. Ambiguity resolution
in dmtrans plus. In Manchester University Press, editor, Pro-
ceedings of the Fourth Conference of the European Chapter of the
Association of computational Linguistics, 1989. Cited in Lange,
1991.

Trent E. Lange. Hybrid connectionist models: Temporary bridges
over the gap between the symbolic and the subsymbolic. Technical
Report UCLA-AI-91-04, Computer Science Department, Univer-
sity of California, Los Angeles, April 1991.

22

[Leh91)

[LHFB8Y]

[Miy91]

[SM92]

[Sun91]

[TS92]

[vdM8s)

[WL89)

Wendy G. Lehnert. Symbolic/subsymoblic sentence analysis: Ex-
ploiting the best of two worlds. In John Barnden, editor, Ad-
vances in Connectionist and Neural Computation Theory, chap-
ter 6, pages 135 — 164. Ablex, 1991.

T. Lange, J. B. Hodges, M. Fuenmayor, and L. Belyaev. Descartes:
Development environment for simulating hybrid connectionist ar-
chitectures. In Proceedings of the Eleventh Annual Conference of
the Cognitive Science Society, Ann Arbor, MI, August 1989. Cited
in Lange, 1991.

Yoshiro Miyata. A User’s Guide to PlaNet Version 5.6 A Tool
for Constructing, Running, and Looking into a PDP Network.
Computer Science Department, University of Colorado, Boulder,
January 1991.

F. J. Smieja and H. Muhlenbein. Reflective modular neural net-
work systems. Retrieved from neuroprose electronic archive at
archive.cis.ohio-state.edu, March 1992.

Ron Sun. Integrating Rules and connectionism for Robust Rea-
soning: A Connectionist Architecture with Dual Representation.
PhD thesis, Brandeis University, July 1991.

Geoffrey Towell and Jude W. Shavlik. Interpretation of artificial
neural networks: Mapping knowledge-based neural networks into
rules. In Advance in Neural Information Processing Systems 4,
pages 977 — 984. Morgan Kaufmann, 1992.

Ch. von der Malsburg. Goal and architecture of neural comput-
ers. In R. Eckmiller and Ch. von der Malsburg, editors, Neural
computers. Springer Verlag, 1988. Cited in Diederich, 1989.

Stephan Wermter and Wendy G. Lehnert. A hybrid sym-
bolic/connectionist model for noun phrase understanding. Con-
nection Science, 1(3):255 - 272, 1989.

23

