
ABSTRACT

Title of dissertation: A SCALABLE TIME-PARALLEL
SOLUTION OF PERIODIC DYNAMICS
FOR THREE-DIMENSIONAL
ROTORCRAFT AEROMECHANICS

Mrinalgouda Patil
Doctor of Philosophy, 2022

Dissertation directed by: Professor Anubhav Datta
Department of Aerospace Engineering

The principal barrier of computational time for rotorcraft trim solution using

high-fidelity three-dimensional (3D) structures on real rotor problems was overcome

with parallel and scalable algorithms. These algorithms were devised by leveraging

the modern supercomputer architecture. The resulting parallel X3D solver was used

to investigate advanced coaxial rotors using a notional hingeless rotor test case,

Metaltail. This investigation included rotor performance, blade airloads, vibratory

hub loads, and three-dimensional stresses.

The technical approach consisted of first studying existing algorithms for

periodic rotor dynamics — time marching, finite element in time (FET), and harmonic

balance. The feasibility of these algorithms was studied for large-scale rotor structures,

and drawbacks were identified. Modifications were then performed on the harmonic

balance method to obtain a Modified Harmonic Balance (MHB) method. A parallel

algorithm for skyline solver was devised on shared memory to obtain faster solutions

to large linear system of equations. The MHB method was implemented on a

hybrid distributed–shared memory architecture to allow for parallel computations of

harmonics. These developed algorithms were then integrated into the X3D solver to



obtain a new parallel X3D.

The new parallel X3D was verified and validated in hover and forward flight

conditions for both idealized and real rotor test cases. A total of four test cases

were studied: 1) uniform beam, 2) Frank Harris rotor, 3) UH-60A-like Black Hawk

rotor, and 4) NASA Tilt Rotor Aeroacoustic Model (TRAM). The predictions of tip

displacements, airloads, and stress distributions from the MHB algorithm showed

good agreement with the test data and time marching predictions. The key conclusion

is that the new solver converges to the time marching solution 50-70 times faster

and achieves a performance greater than 1 teraFLOPS.

The new parallel X3D solver opened the opportunity for modeling advanced

rotor configurations. In this work, the coaxial rotor was the selected configuration.

Two open access models were developed; 1) a notional hingeless coaxial rotor, and

2) a notional articulated UH-60A-like coaxial rotor. The aerodynamics, structural

dynamics, and trim modules of X3D were expanded for coaxial modeling. The coaxial

aerodynamics was validated with hover performance data from the U.S. Army model

test. The coaxial solver was then used to study rotor aeromechanics in forward flight.

The analysis was performed at a low-speed transition flight for which qualitative data

is available for the Sikorsky S-97 Raider aircraft for comparison. The UH-60A coaxial

airloads showed good agreement with the S-97 data as the twists are likely similar.

However, the Metaltail model showed dissimilarities, and the cause was investigated

to be its high twist. Vibratory hub loads with advance ratio were studied, and the

maximum vibration occurred at the transition flight speed (µ = 0.1 − 0.15), which

was consistent with the S-97 data. The effect of the inter-rotor phase was examined

for the reduction of vibratory hub loads. Three-dimensional stresses and strains were

predicted and visualized for the first time on lift offset coaxial rotors in the blade

and the hub.
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Chapter 1: Introduction

This chapter introduces the topic of this dissertation. It covers motivation, a

background on the past studies, objectives of this research, and a technical approach

to accomplish them.

1.1 Motivation

Helicopters have become a vital means of transportation for their ability to

vertically take off and land (VTOL), hover, and perform all-axes controlled flight.

These attributes make them ideal candidates for critical missions such as emergency

medical evacuation, disaster relief, search and rescue, fire-fighting, law enforcement

support, etc. Moreover, they can operate in congested or isolated areas where

fixed-wing aircraft and STOL (Short Takeoff and Landing) or STOVL (Short Takeoff

and Vertical Landing) aircraft cannot perform due to lack of runways. Despite their

utility, helicopters are limited by slow speeds and small ranges due to the poor cruise

efficiency of the rotor in forward flight. A typical helicopter such as the Black Hawk

UH-60 has a cruise speed of 152 knots (281 km/h). Several new configurations have

emerged supported by new technologies to overcome the speed and range limitations

inherent to a single rotor helicopter. Tilt rotors, coaxial rotors, and lift or thrust

compounded rotors are some of the new configurations. Advanced geometry blades,

modern hubs, variable speed engines, slowed rotors, and mission-adaptive morphing

rotor blades are some of the new technologies. Behind the success of them all, lies

modern aeromechanical analysis.
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The design and development of a rotary-wing aircraft is intensive, expensive,

and demanding. Moreover, it is an iterative process wherein the designers use

computational tools of various fidelity (low to high) to calculate aircraft parameters

as the basis to invent or modify a design until the desired level of performance with

safety is met. For brand new designs, it is necessary to use high-fidelity tools and

wind tunnel testing to achieve a high level of confidence. It takes time to insert new

tools into an established industry workflow. The rotorcraft industry is still primarily

inclined to use tools based on postdictive models developed years ago, which were

calibrated, refined, and fine-tuned for existing aircraft from years of wind tunnel

and flight testing. But they are not suitable for new aircraft development. Gordon

Leishman emphasized in his book The Helicopter: Thinking Forward, Looking Back

[1] that it is crucial to invest in new, truly-predictive, high-fidelity tools. With the

advent of modern computing, there is little excuse not to do so. It is also economical

as the price of the chip generally falls with time as opposed to parts and labor that

always rise.

Consider the example of modern coaxial rotors and tilt rotors. The modern

coaxial is designed for high speeds, around 250 knots. This is made possible by

thrust compounding pusher-propellers and heavy hubs that carry high roll moments,

allowing the individual rotors to produce high lift on their advancing sides. Figure

1.1(a) shows the Sikorsky-Boeing SB-1 Defiant aircraft in flight. The hub is large

and heavy to carry these moments. These hubs increase the vehicle’s weight and

drag, which in turn cuts into the cruise performance. Accurate predictions of the

stresses and strains are needed to minimize weight and drag. The modern tilt rotor

is designed for even higher speeds, close to 300 knots. Figure 1.1(b) shows the Bell

V-280 Valor aircraft in flight. Current tilt rotors have heavy proprotor blades and

hubs. The weight of these components is driven by the critical stresses experienced

due to high unsteady aerodynamic loads. A heavy rotor makes the wing thick (up
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to 23% chord) to prevent whirl flutter instability, which in turn cuts into the cruise

performance. Again, accurate predictions of the stresses and strains are needed to

minimize weight and drag.

(a) Sikorsky Boeing SB-1 Defiant Coaxial Rotor

(b) Bell V-280 Valor Tilt Rotor

Figure 1.1: Future Vertical Lift (FVL) configurations; (a) Coaxial rotor, and (b) Tilt
rotor.
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The state-of-the-art rotorcraft computational analysis is the coupled CFD/CA

methodology [2]. Computational Fluid Dynamics (CFD) uses three-dimensional

(3D) Reynolds Averaged Navier Stokes (RANS) based solvers for modeling rotor

aerodynamics. Comprehensive Analysis (CA) uses computational structural dynamics

(CSD) coupled with lifting-line aerodynamics, wake models, and flight dynamics and

controls.

Computational structural dynamics in rotors use Euler-Bernoulli beam-based

models, wherein the rotor blade is modeled as a slender one-dimensional (1D) beam

with two-dimensional (2D) sectional analysis to calculate the spanwise structural

properties of the blade. Although accurate and efficient for many applications, this

approach faces several limitations, such as its inability to accurately model the

non-slender three-dimensional (3D) hub components of advanced rotors. Advanced

blade tips, cross-section deformations, discontinuities, damage, and cut-outs such as

flaps all break the beam assumption. Constant iteration to extract properties and

back transform stresses with design changes is also antithetical to the concept of

modern CAD-based digital design and manufacture. Presently they almost always

rely on priori measurements to derive equivalent root springs and couplings.

In 2008, Johnson and Datta [3] identified 3D structures as a requirement for

future comprehensive analysis. The X3D [4] solver attempts to fill this requirement.

Before this thesis, the major limitation of 3D structures was its high computational

time. It is the principal barrier to the application of 3D finite elements on helicopter

rotors. This then, is the central task of this thesis. The intricacies of the rotor

structural dynamics pose unique challenges to this task. Its low damped modes,

modes near resonance, complex load paths, joints and bearings, control inputs,

and poorly conditioned matrices make it complicated but also interesting. These

complications must be addressed efficiently for a structural model to be admissible

for rotor aeromechanics analysis.
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1.2 Rotorcraft Aeromechanics

Aeromechanics is the branch of aeronautics that deals with motion and control of

elastic aircraft in air. It involves study of multiple disciplines covering aerodynamics,

structural dynamics, stability, and control. For a helicopter, the aeromechanics is

dominated by its main rotor. Computational aeromechanics predicts performance,

loads, vibration, and stability mathematically. Without predictions, designers are

forced to rely on expensive wind tunnel tests or flight tests.

The availability of digital computers during the 1960s and 70s had a critical

impact on the growth of aeromechanics. A review of rotorcraft aeromechanics can be

found in the Nikolsky paper [5] by Johnson. The following two sections will describe

the disciplines of aerodynamics and structural dynamics, which are relevant to 3D

rotor structural modeling.

1.2.1 Aerodynamics

The analysis of rotor aerodynamics can be divided into two problems: outer

and inner. The outer problem calculates rotor inflow. The inner problem calculates

the blade airloads. Inflow affects the blade angle of attack, and blade lift generates

circulation that produces inflow. Hence the problems are inter-connected. A lifting-

line model connects these inner and outer problems by ensuring lift, inflow, and

angle of attack are all consistent with one another.

Rotor aerodynamics modeling began with Glauert [6] who extended the mo-

mentum theory for hover first developed by Rankine (1865) to edgewise flight. These

models assume uniform inflow throughout the rotor disk. Gustafson and Gessow

proposed the Blade Element Momentum Theory (BEMT) in 1946 [7] for non-uniform

inflow in hover. The inflow varies along the radius and includes Prandtl correction

to capture the tip-loss effects.
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To predict non-uniform inflow in forward flight, the rotor wake must be cal-

culated precisely. Since the wake is dominated by tip vortices, vortex theory is

widely used to calculate the wake. The tip vortex model can either be un-distorted

(rigid or prescribed wake) or free to distort with time (free-wake). The important

contributions to prescribed wake models were from Piziali and DuWaldt [8], and

Landgrebe [9–11]. The important contributions to the free-wake models were from

Scully [12, 13], Miller and Bliss [14], Johnson [15], Bagai and Leishman [16], and

Bhagwat and Leishman [17, 18]. Since 1970s wake models are matured by including

empirical models of vortex core size, core growth with time, roll-up, and efficient

and effective numerical schemes for trim and transient flight. The work by Bagai

and Leishman [16] on pseudo-implicit predictor-corrector (PIPC) scheme developed

into the Maryland Free Wake (MFW). This was later upgraded by Bhagwat and

Leishman [17, 18] with a predictor-corrector second-order backward (PC2B) scheme

for application in both trim and transient flight. Recently Shastry [19] updated

the azimuthal discretization with time discretization to allow transient and stopped

rotor RPM. The free-wake models are vital for capturing vibratory airloads, without

which vibrations cannot be predicted.

For aircraft stability analysis, the wake models are not suitable unless brought

to a state-space form. This has been hard. Typically, dynamic inflow models are

used instead. Dynamic inflow is an extension of momentum theory with variation in

time. These methods represent the inflow using an assumed distribution over the

disk as a Fourier series whose coefficients are related to the net rotor thrust and

moments. The steady component is the momentum theory solution. The important

contributions were from Mangler and Squire [20], Joglekar and Loewy [21], and Pitt

and Peters [22, 23]. These models do not calculate individual tip vortices and are

therefore inadequate for rotor vibration analysis.

The flow experienced by blades in the inner problem is highly complex due to
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excitation from blade motions. However, sectional unsteady thin airfoil theory can

still be used for first-order predictions of airloads. The sectional angles of attack are

calculated from blade motions at three-quarter chord consistent with Weissinger’s

L theory. The airfoil coefficients are obtained from 2D CFD look-up tables or

wind-tunnel tests. The quasi-static airloads are then corrected using 2D unsteady

aerodynamic theory. Unsteady theory correct for shed wake. Thus the outer and

inner problems formally separate the wake into trailed and shed wake. Corrections

are possible in frequency or time domains. The frequency-domain corrections range

from the classical Theodorsen and Sears theory to the more accurate Lowey theory

for rotors. These ignore compressibility and dynamic stall. Time-domain corrections

range from classical Kissner and Wagner to modern semi-empirical models with

compressibility and dynamic stall. The popular semi-empirical models are Leishman

and Beddoes [24, 25], and the ONERA [26, 27].

Instead of using a lifting-line model that deals with the inner and outer

problems, computational fluid dynamics (CFD) can be used to solve the flow directly.

Typically unsteady Reynolds-Averaged Navier-Stokes (RANS) equations are solved

with turbulence models. Thus airloads and wake are solved all at once, eliminating

the need for inner and outer problems. But with that goes the ability to predict

induced losses of the rotor. Nevertheless, RANS is essential for capturing the 3D

unsteady transonic effects near the blade tip and the dynamic stall inboard. With the

advancement of computer power, enough resolution is possible today to capture the

wake precisely. For a review of CFD methods in rotorcraft, see Strawn, Caradonna,

Duque [28]. For a review of CFD methods in rotorcraft coupled to structures, see

Datta, Nixon, Chopra [29].
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1.2.2 Structures

In 1958, Houbolt and Brooks gave the linear theory for elastic rotor blades [30].

In 1974, Hodges and Dowell gave the non-linear beam theory retaining up to second

order terms for elastic rotor blades [31]. Subsequent years saw many related and

independent efforts such as Hodges, Ormiston, and Peters [32], Kvaternik [33], Rosen

and Friedmann [34], Johnson [35], Bauchau and Hong [36], Smith and Chopra [37],

and Bauchau and Kang [38] to expand the analysis to composites and multibody

dynamics. These have now become essential parts of rotor beam modeling. Thus 3D

models must retain these capabilities. Multibody dynamics uses joints undergoing

arbitrary rotations connecting flexible components. This enables analysis of modern

rotor hubs built up from many components, each with its own role. Parallel efforts

have focused on improving the calculations of 2D cross-sectional properties [39].

There has been work on analyzing rotor structural dynamics with higher

dimensional models but not in helicopter rotors. See Datta and Johnson [40] review

for other applications. All these applications have either insignificant centrifugal

effect (wind turbines) or no blade motions (turbo-machinery), and none deal with

integrated aeromechanics.

In summary, one-dimensional beam models have remained the dominant state

of the art in rotor structural dynamics. It may be fair to say that aerodynamics

has gone far ahead to harness the explosion in computer power by effective RANS

solutions to replace lifting-line aerodynamics. It is time to do the same in the

structural domain by developing three-dimensional finite element solutions to replace

beams.
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1.3 The X3D Solver

In 2006, the U.S. Department of Defense (DoD) High Performance Computing

Modernization Program (HPCMP) Computational Research and Engineering Acqui-

sition Tools and Environments (CREATE) program was launched to develop and

deploy set of multi-physics high performance computing (HPC) software tools to

aid the DoD acquisition community (government and industry) develop innovative

military air vehicles [41]. The program consisted of several domain-specific software

products. One of them was HI-ARMS which produced the software Helios dedicated

to the high-fidelity analysis and design of rotary-wing aircraft. Initially, it focused

only on CFD. During that time, the NASA survey in 2008 identified 3D structures

as one of the essential requirements for next-generation comprehensive analysis [3].

This led to the development of X3D [4].

X3D is an experimental (X) three-dimensional (3D) dynamic analysis software

for rotors. It is a departure from current 1D beam-based comprehensive codes as well

as commercially available finite element analysis. The flexible parts of a structure

are modeled using 3D solid finite elements, which are 27 noded hexahedral bricks.

Euler joints with 6 degrees of freedom (3 displacements and 3 rotations) are used

to model hinges, bolts, and bearings. The finite element analysis was formulated

carefully with emphasis on non-linear strains, inertial couplings, trim controls, and

aerodynamics crucial for the analysis of rotating structures. X3D has a built-in

lifting-line aerodynamic model and an interface to couple with external CFD software.

Over the years, there have been significant developments to the X3D solver.

The timeline for these developments can be broadly divided into three phases. The

first phase corresponded to the years between 2008 and 2014. The main goal in

this phase was to demonstrate the basic capability of 3D FEA on rotors [42, 43].

Idealized rotor geometries and meshes were used. Once the basic capability of 3D
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FEA was demonstrated, an integrated 3D CFD/CA aeromechanics solution for an

idealized UH-60A-like rotor was performed in Helios [43]. This initial capability

demonstration identified two significant barriers: the lack of 3D modeling tools for

geometry and meshing, and the high computational cost, making parallelization in

time and space an urgent imperative.

The second phase was during 2014 and 2018. In this phase, the first barrier was

resolved. UMD developed 3D geometry and meshing tools for generic rotor blades.

This effort was supported by the CAD-based Modeling of Rotary-Wing Structures

(CMARS) program of the U.S. Army. NASA Ames Research Center – Aeromechanics

Branch specially released the Tilt Rotor Aeroacoustic Model (TRAM) – a 1/4-scaled

model of V-22 Osprey tilt rotor to develop and demonstrate integrated-3D (I3D)

analysis [44–46]. The UH-60A rotor was modified with extension-torsion coupling

to demonstrate self-twist, and increased rotor lift-to-drag ratio for 15% rotor speed

reduction at high speeds [47, 48]. The Mars helicopter Ingenuity was stress-tested

for adequate safety of flight [unpublished].

The third phase was during 2018 and 2022. In this phase, the second barrier

was resolved. The governing equations are now efficiently solved in a parallel and

scalable manner in both time and space. This thesis is on time. A contemporary

thesis is on space.

1. Time: This is the topic of present dissertation. Several papers were published

to document the work in progress of this research effort [49–53] culminating in

this thesis.

2. Space: This is a topic of contemporary thesis. Several papers were published

to document the work in progress [54–56].

Parallelization in time allowed the modeling of modern coaxial rotors [52, 53]. These

are part of the present dissertation. It also opened the door for other contemporary
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research at UMD, from the study of double anhedral blades [57] to the design of

next-generation Mars helicopter [58, 59]. To understand parallelization in time, a

background is needed on Periodic Rotor Dynamics, and why it is particularly difficult

in rotors.

1.4 Periodic Rotor Dynamics

The linearized governing equations obtained from a finite element model (FEM)

of a structure has the well known form,

Mq̈ + Cq̇ +Kq = F (1.1)

where M,C, and K are the mass, damping and stiffness matrices respectively. F is

the nodal force vector from aerodynamic and internal forces (for nonlinear). The

vector q is the nodal solution. Several unique conditions make it difficult to solve this

equation to find the periodic solution q in response to a periodic forcing F . These

are:

1. low (or zero) damping in many modes (especially lag), makes marching in time

to reach periodic solution very inefficient,

2. presence of near (or at) resonance modes (particularly for teetering/gimballed

or articulated rotors), makes direct extraction of periodic solution to periodic

forcing ill-conditioned,

3. numerical linearization of a large-scale problem into sensitivities typical of

beam-based comprehensive codes,

F = A0 + A1q + A2q̇ + A3q̈ (1.2)

to extract aerodynamic damping is impractical, and
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4. numerically stiff problems having a large mass (M) and stiffness (K) ma-

trix typically result in high condition numbers (ratio of highest and lowest

frequencies), particularly in presence of joints connecting the finite element

structures.

The first two conditions are generic to all rotor models regardless of large– or

small– scale, whereas the next two are unique to large-scale structures. Thus, trim

solution in rotorcraft with a large-scale structural model is challenging and a fertile

ground for innovative parallel and scalable algorithms in time.

Periodic dynamics is a vast area with important applications in a variety of

fields, from crystallography [60] to circuit analysis [61], to orbital mechanics [62].

Within mechanics, rotary-wing aeroelasticity has been a key area of application

for many years. The commonly used approaches for solving periodic dynamics are

broadly classified into: periodic shooting, finite elements in time, time-spectral and

harmonic balance methods.

Periodic shooting methods are a variation of time marching methods and simply

involve iterations to find the right initial conditions. The main drawback of the

shooting methods is stability. In addition, every iteration for initial condition will

require many rotor revolutions to attain periodicity (due to condition 1). The initial

conditions can also be found by the Floquet transition matrix [63], a method more

robust but also more expensive.

Direct extraction of periodicity without time marching can be carried out using

finite elements in time, time-spectral methods, and harmonic balance methods. The

first two are formulated in the time domain and the latter is formulated in the

frequency domain.

Finite elements in time (FET) is a widely used method. This method uses local

time shape functions and is well suited for capturing local gradients. It can be traced

back to the 1960s when Argyris [64] introduced the method in nuclear engineering.
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Borri [65], and Peters and Hou [66] first applied it in rotorcraft to study a flapping

rotor. The work was extended by Panda and Chopra [67], and Dull and Chopra

[68] to flap, lag, and torsion. The main advantage of FET is that it can capture

high-frequency response with a relatively few time elements. These formulations

are typically used in conjunction with numerical linearization of forcing to extract

aerodynamic damping, thereby overcoming condition 2. However, for large-scale

structures, this linearization is impractical, as noted in condition 3.

The time-spectral method uses global time shape functions. It is unsuitable

for capturing local gradients. It is also prone to aliasing errors. It is rarely used

in structures, but have been used with computational fluid dynamics (CFD) for

analysis of helicopter rotor flows [69]. These methods might be suitable for fluids

but lead to matrices of overwhelming size in structures with no apparent benefit.

Harmonic balance is a frequency-domain method. It uses Fourier expansions as

shape functions. It is a global method and also unsuitable for local gradients. But it

has no aliasing errors, and for elliptic problems such as structures where the solution

is guaranteed to be smooth, as many harmonics as needed can be introduced to

resolve the solution. Several other frequency-domain methods have been explored in

large-scale fluid flows from systems including variable time periods [70] to occasional

helicopter rotor flows [71], but none of these methods are suitable for near resonance

low damped structural dynamics characterized by the four unique conditions given

earlier. In rotors, harmonic balance is used routinely since the early work of Peters

and Ormiston in the 1970s [72]. It will be shown later that this standard harmonic

balance is not scalable to large problems due to matrix structure.

Historically, most efforts to parallelize the numerical solution of partial differen-

tial equations focus on the spatial discretization of the problem. In dynamic problems,

time adds a new dimension, and when periodic solution is desired, particularly in a

low damped near resonance system like the rotor, time becomes a critical bottleneck
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to scalability. A class of algorithms called Parallel in Time Algorithms (PITA) have

been studied since 2001 for dynamic problems [73] and have found applications in

various areas, from chemical kinetics [74] to power systems [75]. However, they can

fail with second order systems of linear oscillators due to stability problems of near

resonance modes (condition 2).

Time is fundamentally a serial concept. It has no boundaries, hence cannot

be partitioned and parallelized in the same manner as space. For periodic systems,

a transformation to frequency domain can be utilized to solve in parallel. But in

addition to this transformation, other modifications are needed to account for the

unique conditions 1 to 4 encountered in rotorcraft. These are the principal objectives

of this work.

1.5 Coaxial Helicopters

Coaxial helicopters consist of two rotors mounted one above the other on

concentric shafts, with the same axis of rotation but turning in opposite directions

(counter-rotating). This gives them the natural ability to balance torque. The

earliest examples of coaxial rotors were mainly toys and devices used for flight

demonstration – Mikhail Lomonosov’s clock-spring driven device (Russia, 1754),

Launoy and Bienvenu’s bow-string driven device (France, 1784), and Gustave de

Ponton D’Amécourt’s device (France, 1863) from which the helicopter derives its

name were all coaxial and used the natural torque balance. The first controlled

forward flight by Breguet and Dorand (France, 1935) was a coaxial helicopter. The

first helicopter to demonstrate cyclic controls and autorotation was also a coaxial

design by Raul Pateras Pescara (Argentina/France, 1923). Today, Kamov (Russia)

and Sikorsky (U.S.), design and develop various coaxial rotors. The tiny Mars

helicopter Ingenuity was also a coaxial design.

Achieving high speed without compromising hover efficiency has been an en-
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during quest for rotary-wing aircraft. In hover, the coaxial rotors have a slight aero-

dynamic advantage – an 8-10% reduction in induced power for the same total thrust

than a single rotor with the same number of blades. Moreover, the lack of tail rotor

saves power and makes it compact. During the 1970s, Sikorsky found that coaxial

rotors can be used to prevent edgewise rotors from running out of lift by allowing roll

moments on each rotor. This was later demonstrated by the XH-59A aircraft. Since

both rotors have equal and opposite moments, the net is still zero. The roll moment

is characterized by lift offset, which is simply the offset of the thrust from the center

of rotation. But the roll moments must be absorbed somehow, either by motions or

structure. Allow too much motion, and there is a danger of blade strike, preventing

which requires greater inter-rotor separation, hence more drag. Have more structure,

and the weight increases, which cuts into the payload.

1.6 Articulated Coaxial Helicopters

An articulated coaxial rotor consists of articulated hubs. This is the Kamov

(Russia) helicopter. The articulated rotors allow high blade flapping. A large vertical

separation is needed to prevent blade strike. Figure 1.2 shows some of the Kamov

coaxial rotors. The compact design finds application for shipboard use (Ka-27).

They are also used for various Army missions (Ka-50).

For articulated coaxial rotors, the upper rotor and lower rotor collectives θU
o , θ

L
o

solve for vertical force balance (thrust) and yaw moment balance (torque). The roll

and pitch moment equations are solved with a single lateral (θ1c = θU
1c = θL

1c) and

longitudinal (θ1s = θU
1s = θL

1s) cyclic control, respectively. These coaxial rotors have

the same cyclic given to both rotors through two swashplates that are mechanically

linked. The inputs control flapping which tilts the thrust vector. This solution is

acceptable because the hub moments are not a concern for these rotors. The body

pitch and roll angles are found from propulsive force and side force balance.
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(a) Kamov Ka-27

(b) Kamov Ka-50

(c) Kamov Ka-226

Figure 1.2: Examples of classical coaxial rotors; (a) Kamov Ka-27, (b) Kamov Ka-50,
and (c) Kamov Ka-226.
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1.7 Hingeless Coaxial Helicopters

A hingeless coaxial rotor consists of hingeless hubs. They restrict blade flapping,

hence a small vertical separation can suffice. But the hub moments are very high

and must be absorbed by heavier structure. The hub roll moments are quantified as

a lift offset from the hub. It is defined as,

LO =
|CU

MX
| + |CL

MX
|

CU
T + CL

T

(1.3)

where |CU
MX

| and |CL
MX

| are the hub roll moment magnitudes of the upper and lower

rotors respectively, and CU
T , CL

T are thrust coefficients. The magnitude of the roll

moment is taken since their signs are opposite. The lift offset (LO) has a dimension

of length and is typically represented as a fraction of the rotor radius. Higher the

speed, greater the LO, hence higher the loads. Absorbing higher loads with less

blade motion needs more stiffness, leading to greater stress and more weight.

Similar to articulated rotors, the collectives of upper and lower rotors solve

for the total thrust and yaw moment balance (torque). However, the cyclic controls

are solved differently. For rotors with high flap frequency, the longitudinal cyclic

(θ1c) primarily produces the roll moment, and lateral cyclic (θ1c) produces the

pitch moment. The lateral cyclic is kept same for both upper and lower rotors

(θU
1c = θL

1c = θ1c) and this value along with the two longitudinal (θU
1s, θ

L
1s) cyclics are

solved for a specified lift offset and net roll and pitch moments. The body pitch and

roll angles are found from propulsive force and side force balance.
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Figure 1.3: Sikorsky XH-59A flight demonstrator of the Advance Blade Concept
(ABC) Rotor.

In the 1970s, Sikorsky introduced the Advancing Blade Concept (ABC) for

coaxial rotors [76]. The experimental XH-59A (Figure 1.3) flight demonstration

program was setup in collaboration with US Army and NASA [77, 78] to demonstrate

the basic viability of this concept. While proving the basic viability of the concept,

the XH-59A was compromised by many aerodynamic and structural dynamic factors,

from heavy hub to high vibration which led to lower speeds than initially intended.

During the 2000s, Sikorsky revisited the ABC rotor concept intending to resolve

problems of XH-59A. They carried out flight tests of what was now called the X2

Technology Demonstrator (Figure 1.4(a)) [79–82]. The X2-TD is a 6,000 lbs aircraft

which recorded a 250 knots steady-level flight in 2010. This led to the development

of a larger 11,000 lbs S-97 Raider aircraft (Figure 1.4(b)). Since 2014, Sikorsky

has conducted several tests of the S-97 Raider – model-scale tests at the National

Full-scale Aerodynamics Complex 40 by 80 ft wind-tunnel at Ames Research Center

[83], and flight tests [84–86]. In 2019, Sikorsky introduced the Raider X configuration

for the Future Attack Reconnaissance Aircraft (FARA) program.

In late 2013, the Sikorsky-Boeing team entered the Joint Multi-Role Technology

Demonstration (JMR-TD) program that marked the beginning of the even larger
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30,000 lbs Sikorsky-Boeing SB-1 Defiant aircraft (Figure 1.4(c)). The first flight

was in 2019, and several more have occurred since then. In 2020, SB-1 Defiant was

shortlisted for the Future Long-Range Assault Aircraft (FLRAA) program alongside

the Bell V-280 Valor tilt rotor aircraft. The FLRAA program was initiated by

the U.S. Army to develop a successor to the Sikorsky UH-60 Black Hawk utility

helicopter as part of the Future Vertical Lift (FVL) program. The SB-1 aircraft has

undergone several flight tests and has demonstrated flight with speeds above 200

knots with the ultimate goal to reach 250 knots. Sikorsky has also announced to

build an intermediate version of S-97 and SB-1 aircraft by 2034, weighing around

20,000 lbs, which is considered as the FVL medium aircraft. It can be clearly seen

that the relative hub sizes increase with weight. Hence understanding and predicting

the stresses of blades and hub components is critical for designing a low-weight

modern coaxial rotor.
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(a) Sikorsky X2, W = 6,000 lbs

(b) Sikorsky S-97 Raider, W = 11,000 lbs

(c) Sikorsky-Boeing SB-1 Defiant, W = 30,000 lbs

Figure 1.4: Examples of modern high-speed coaxial rotors; (a) Sikorsky X2, (b)
Sikorsky S-97 Raider, and (c) Sikorsky-Boeing SB-1 Defiant.
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1.8 Coaxial Rotor Analysis

It is more challenging and computationally intensive to model the aeromechanics

of a coaxial rotor than a single main rotor. These challenges primarily arise from

the inter-rotor aerodynamic interactions, stiff hingeless rotors, and the impact of lift

offset on trimmed flight. The size of the problem is also doubled. There is a vast

literature on modeling coaxial helicopters, but few are validated, and none use 3D

structures capable of predicting accurate hub stresses.

An authoritative review of the principal works on coaxial rotors was given by

Coleman in 1997 [87]. Escobar et al. in 2021 [88] provides a review of the work

performed since. Coaxial rotor analysis can be classified into four categories: 1)

isolated momentum and vortex theories, 2) isolated CFD with Reynolds Averaged

Navier-Stokes (RANS) modeling, 3) lifting-line aerodynamic models coupled with

beam finite elements and rotor trim – the typical comprehensive analysis (CA), and

4) CFD coupled with CA (CFD/CA coupling). The following sections review each

category.

1.8.1 Isolated Momentum and Vortex Theory

The classic textbook analysis of a coaxial rotor in hover uses momentum theory.

It can be found in any modern text [89]. Leishman and Ananthan [90] gave the

blade element momentum theory (BEMT) analysis for coaxial rotors. These analysis

are useful when the lower rotor is operating in the fully contracted wake of the

upper rotor. For arbitrary inter-rotor separations, vortex theory is desired. Some

of the relatively recent work are from Bagai and Leishman [91], Brown 2000 [92],

Lim, McAlister, and Johnson 2009 [93], Syal and Leishman 2012 [94], and Singh and

Friedmann 2018 [95, 96].
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1.8.2 Isolated CFD Analysis

CFD captures the large impulsive blade passage airloads and the inter-rotor

interactions from the first principles. The earliest work can be traced to Ruzicka and

Strawn [97], and Lakshminarayanan and Baeder [98]. They provided insight into

spanwise and azimuthal variations in coaxial airloads, which have been impossible

to measure, and established that accurate wake modeling was necessary even for

reasonable performance predictions. Juhasz et al. [99] compared results from CFD

with blade element momentum theory (BEMT) and free-wake analysis for the old

Harrington data [100]. Free-wake and CFD were needed to capture the inflow

distribution, near the tip. Reed and Egolf studied the full X2-TD aircraft including

the rotor, fuselage, and stabilizers [101]. Bowles et al. [102] studied the same for

S-97 Raider aircraft.

Isolated CFD can be adequate for hover performance predictions, but it is

insufficient in forward flight, where coupling with structural dynamics and trim

solution is essential.

1.8.3 Comprehensive Analysis

The majority of analyses on coaxial rotors use comprehensive analysis. Proper

analysis of hingeless coaxial rotors began with Johnson [103], which first quantified

the lift offset parameter. This was further extended by Johnson, Moodie, and

Yeo [104], confirming the benefits of lift offset with predictions of power and rotor

lift to drag, and by Yeo and Johnson [105] to prove that lift offset allowed rotors to

break past the McHugh stall boundary. These work were performed using RCAS and

CAMRAD II comprehensive analysis, which were validated earlier with the XH-59A

data.

Coaxial data obtained from the UT Austin – University of Maryland (UTA-
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UMD) wind tunnel tests were used to validate and refine the University of Maryland

Advanced Rotorcraft Code (UMARC) by Schmaus and Chopra [106, 107]. Similar

validation was repeated with CAMRAD II by Feil et al. [108, 109]. The validated

UMARC later formed the basis for Mars aeromechanics studies by Escobar [88, 110].

1.8.4 CFD/CA Coupled Analysis

Several studies have applied CFD/CA coupling on coaxial rotors. The UTA-

UMD coaxial test data was analyzed using CFD/CA coupling by Singh, Kang and

Sirohi [111] and Singh et al. [112]. Passe et al. [113, 114] carried out the CFD/CA

analysis of X2-TD-like aircraft with rotor and fuselage, and this work was further

extended by Klimchenko and Baeder [115] by adding the pusher propeller. These

studies found strong interactions between the rotor, fuselage, and pusher propeller

components. However, there was no available data for validation. Recently, Sikorsky

published CFD/CA analysis for S-97 Raider aircraft [84–86]. The analysis was

performed using Helios for CFD with RCAS for CA and S-97 flight test data was

shown without any units. These studies appeared to capture the harmonic content

of the airloads distribution at low and high-speed flights. The aircraft showed

high vibrations at low-speed transition flight where the inter-rotor interactions are

maximum.

1.9 Objectives of this Thesis

None of the methodologies so far could ultimately predict the 3D stresses and

strains on the blades and hub of a coaxial rotor. The current work advances the

state of the art by using 3D FEA-based structural models instead of 1D beams.

This advancement is enabled and driven by the parallel solver. The aerodynamics

uses a lifting-line model with free-wake. There is also a need for an open-source
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coaxial model instead of proprietary rotors. This open-source model can be a basis

for academia, industry, and government joint action to understand the 3D vibratory

stress patterns at the hub.

So the objectives of this dissertation are to develop parallel algorithms for 3D

structures and bring it to bear on a modern coaxial rotor. The technical approach

to meet these objectives is given below.

Part I

1. Study existing periodic solution algorithms used for 1D beams and test their

feasibility for 3D structures.

2. Develop a new approach for 3D structures.

3. Integrate the new approach into X3D.

4. Validate new X3D with UH-60A flight test and NASA TRAM tunnel test data.

5. Measure the parallel performance of new X3D.

Part II

1. Develop an open-source notional 3D coaxial rotor model.

2. Refine the X3D for analyzing coaxial rotors.

3. Validate the refined X3D with U.S. Army coaxial test data.

4. Perform 3D comprehensive analysis.

5. Study vibratory loads and stresses versus lift offset and phasing.
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1.10 Organization of the Dissertation

The dissertation is organized into nine chapters. Following this introduction

chapter, Chapters 2 to 5 cover part I, and Chapters 6 to 8 cover part II. Chapter

2 discusses the existing solution algorithms for periodic dynamics. The feasibility

of these algorithms for 3D structures is studied, and key drawbacks are identified.

Chapter 3 introduces the new Modified Harmonic Balance (MHB) algorithm. Its

development and integration into the X3D solver are described. Chapter 4 verifies

and validates the MHB algorithm. The verification is performed on an idealized rotor,

and validation on the UH-60A Black Hawk and NASA TRAM test cases. Chapter 5

studies and quantifies the new algorithms’ parallel performance using metrics such

as parallel speedup, FLOPS, and scalability. Chapter 6 describes the development of

notional 3D coaxial models. Two models are reported; one is called the Metaltail – a

notional hingeless rotor and the other is an artificially made-up articulated coaxial

with two UH-60A-like rotors. Chapter 7 describes the coaxial-related refinements of

the X3D solver and its validation with coaxial hover performance data. Chapter 8

performs a 3D comprehensive analysis of the two coaxial models. The predictions

are compared with the S-97 published data at low-speed flight. The fundamental

understanding of airloads, vibratory loads, and 3D stresses is studied. Finally,

Chapter 9 ends with conclusions.
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Chapter 2: Three-Dimensional Periodic Rotor Dynamics

This chapter discusses the existing methods to extract periodic rotor dynamics

– time marching, finite element in time (FET), and harmonic balance. The feasibility,

scalability, and scope of parallelization of these algorithms for three-dimensional

large-scale structures are studied, and key drawbacks are identified.

2.1 Finite Element Analysis

The Finite Element Analysis (FEA) used in in the development of X3D solver

is based on the established methods by Bathe 1982 [116] and Zienkiewicz and Taylor

2006 [117]. A total Lagrangian weak formulation with Green-Lagrange strains and

second Piola-Kirchhoff stresses is used. The details of the theory and formulation

can be found in Reference [118]. The material constitutive laws are linear with no

yield or fracture.

X3D solver uses 27 noded hexahedral brick elements for the finite element

analysis. Figure 2.1 shows a iso-parametric brick element in physical and natural

coordinates. It consists of 8 vertex nodes and 19 internal nodes – 12 edge nodes, 6

face nodes, and 1 volume node. It uses iso-parametric formulation with quadratic

Lagrangian shape functions.
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(a) Brick element in physical coordinates

(b) Brick element in natural coordinates

Figure 2.1: 27-node isoparametric, hexahedral brick element in physical and natural
coordinates.
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The final governing equations for rotor structural dynamics are obtained by

substituting the variational energies in to the Hamilton’s principle. The linearized

governing equations obtained has the well-known form,

Mq̈ + Cq̇ +Kq = F (2.1)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, F

is the nodal force vector from aerodynamic and internal forces (nonlinear), and q is

the nodal solution vector for all the degrees of freedom.

2.2 Multibody Joints

The 3D FEA in X3D is unified with multibody dynamics to handle joint

displacements and rotations. Mulitbody joints are essential to model the connections

between parts in a complex structure such as of rotor blade. The X3D solver models

joint rotations with Euler angles. The joint degrees of freedom are three displacements

and three rotations. They can be free, locked (no motion), commanded (prescribed

motion) or actuated (prescribed forcing). They can be assigned mass, stiffness and

damping values. The joint degrees of freedom can also be used as load sensors – the

joint motions will yield the loads transmitted by the joint as long as they are not

locked.

The details of joint formulation can be found in Reference 118. The formulation

preserves exact kinematics between the connected parts and allows arbitrary rotation

relative to each other up to 90◦ per limitation of the Euler angles. The algebraic

constraints are eliminated to ensure the resulting system of equations are ordinary

differential equations. Only holonomic constraints are modeled where the deformation

on either side of the joint are related by an explicit closed form relation. Non-

holonomic constraints such as contact and friction cannot be modeled.
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2.3 Time Marching

Direct time integration methods or time marching have been used to solve

the ordinary differential equations since a long time. These methods carry both

the transient as well as the forced response, as part of the total solution. In this

approach, the governing equation (Eq. 2.1) is integrated over time to calculate the

solution at new time step qt+1 from the solution at old time step qt. In discrete time,

the integration is reduced to summations which are performed using discretization

schemes. Several schemes are available in the literature for second-order dynamic

systems. A few popular ones are the Three-point Backward Euler, Trapezoidal,

Newmark-beta, Generalized-α, etc., schemes. The details of these schemes can be

found in Reference 118.

For rotors, one is interested in the periodic response. The time marching

method provides it but one has to wait for the transients to decay. A typical

transient rotor response using time marching solution procedure is shown in Figure

2.2. Flap, lag, and torsion degrees of freedom are shown. As expected, time marching

requires many rotor revolutions before periodicity is attained particularly in lag,

which has little aerodynamic damping. This is a significant barrier for rotorcraft

trim solution, which makes them less suitable for large-scale problems.

29



0 2 4 6 8 10 12 14 16 18 20

Number of Revolutions

-0.02

0

0.02

0.04

0.06

F
la

p
 D

e
fo

rm
a
ti

o
n

 /
 R

(a) Flap deformation

0 2 4 6 8 10 12 14 16 18 20

Number of Revolutions

-5

0

5

10

L
a
g

 D
e
fo

rm
a
ti

o
n

 /
 R

10
-3

(b) Lag deformation

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

10

15

T
o

rs
io

n
a
l 
D

e
fo

rm
a
ti

o
n

 (
d

e
g

)

Number of Revolutions

(c) Torsion deformation

Figure 2.2: Time-history of flap, lag and torsional deformation at tip of UH-60A-like
rotor in forward flight.
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2.4 Finite Element in Time

Finite Element in Time (FET) is used to calculate the forced response of a

periodic system directly without initial transients. It is a widely used method in

rotorcraft. The overall methodology is similar to that of the finite element method

in space, except that the discretization is now performed in the time domain and

the boundary condition is periodic.

Consider the governing equation obtained from FEM formulation in Eq. 2.1.

For rotors, the forcing vector (F ) is a function of both space and time. In time, the

forcing is periodic.

Figure 2.3: Finite Element in Time (FET) discretization of a period of oscillatory
motion.
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Figure 2.4: Distribution of 4 time elements and time nodes for a rotor periodic
system. Each element is shown in a different color. The internal nodes to each
element are used to carry the higher order interpolation (5th order in this case).

In FET, the time domain [0, T ] is discretized into N time elements of length

T/N , where T = 2π is the period, as shown in Figure 2.3. The initial and final times

are the same (t1 = tN+1). In each time element, the degree of freedom q is allowed to

vary as a polynomial expressed as a linear combination of shape functions weighted

by the value of q at the nodes (shown in Figure 2.4). This assumed variation could

be of any order. A 5th order Lagrangian time shape functions is used here. The use

of Lagrangian shape functions enforces continuity of q. This is shown in Eq. 2.2

where H1, H2, H3, H4, H5, H6 are Lagrangian time shape functions.

q(t) = H1(t)q1 +H2(t)q2 +H3(t)q3 +H4(t)q4 +H5(t)q5 +H6(t)q6 t ∈ [t1, t2] (2.2)

In order to enforce continuity in q and q̇, Hermite polynomials can be used. In this

case, the velocity (q̇) is obtained as follows.

˙q(t) = ˙H1(t)q1 + ˙H2(t)q2 + ˙H3(t)q3 + ˙H4(t)q4 + ˙H5(t)q5 + ˙H6(t)q6 (2.3)

The solution procedure of FET begins by transforming the governing equations

into a variational form. The primary assumption in the FET formulation is that the
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mass matrix is void of any time-periodic terms. The above-defined shape functions

are substituted to obtain the time elemental matrices for each of the elements. The

final equation for the elemental time stiffness matrix, Ae, and the forcing vector, Qe

are given below.

Ae =
∫ t2

t1
[−ḢTMḢ +HTCḢ +HTKH]dt (2.4)

Qe =
∫ t2

t1
HTFdt (2.5)

where, M , K and C are mass, stiffness and damping matrices respectively. In the

above equations, H is a matrix of the temporal shape functions defined by

H = [H1INdof
H2INdof

........... H6INdof
] (2.6)

with INdof
being an identity matrix of size Ndof by Ndof so that the temporal shape

function matrix, H, is of size Ndof by 6 ×Ndof .

Each time element shares its first and last node with neighboring elements.

The elemental matrices are assembled in to a large linear system of equations, given

by,

Aη = Q (2.7)

where A is global time stiffness matrix, η is the solution vector comprising of

displacement at spatial nodes and time nodes, and Q is the global forcing vector.

The global time stiffness matrix, A, is a square matrix of size N×(Ndt−1)×Ndof

by N × (Ndt − 1) × Ndof . The global time forcing vector, Q, is a vector of size

N× (Ndt −1)×Ndof . Here, N is the number of time elements, Ndof is the number of

degrees of freedom in space, and Ndt is the number of internal nodes within each time

element (Ndt = 6 for the example in Figure 2.4). It is very important to understand

the organization of η vector. The first Ndof degrees of freedom in η corresponds to

33



the solution q at time t = 0. Similarly, the next Ndof correspond to the solution q at

the second node of the first time element. Hence, the vector is organized by first

looping through all space degrees of freedom and then through the time degrees of

freedom.

The FET method directly provides the periodic rotor solution, although some-

times iterations are required as the forcing vector depends on the blade deformations.

The FET implementation requires the extraction of aerodynamic damping and

stiffness terms from the right-hand side forcing vector. This is performed using the

classical perturbation approach or by using the exact expressions of aerodynamic

forcing. The perturbation approach is a bottleneck for large number of degrees

of freedom and the use of exact expressions is cumbersome to account for all the

aerodynamic effects. Note that, without the aerodynamic damping on the left-hand

side, the FET solution does not converge.

Figure 2.5(a) shows the structure of the three-dimensional Finite Element

Model (FEM) stiffness matrix of the UH-60A rotor blade. Figure 2.5(b) is the matrix

obtained using Finite Element in Time (FET) with 10 time elements and 5th order

shape functions. The structure in both matrices resembles a skyline where only the

entries below the stepped line are non-zero. Skyline representation is a form of sparse

matrix storage widely used in structural mechanics, where only the entries below

the skyline are stored. More details on skyline representation and skyline solver is

provided later in Chapter 3. The FEM matrix has a size of around 17,000, but it is

tiny compared to the size of the FET matrix. The size of the FET matrix is around

850,000. This makes it impractical for storage. The high ending columns are due to

the periodic boundary condition. It also has a higher bandwidth due to the periodic

boundary condition. It is seen later in Chapter 5 that the high bandwidth kills the

efficiency of the linear system solver. Due to these reasons, the FET is infeasible for

a large-scale structural problem.
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Figure 2.5: . Structure of FEM and FET matrices; (a) FEM skyline, and (b) FET
skyline.
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Two types of partitions were considered to examine whether the FET matrix

can be partitioned. One is a ring-wise partition shown in Figure 2.6(a) and another is

a pie-wise partition shown in Figure 2.6(b). A ring-wise partition requires the blade

to be also partitioned in space. It was found that this approach was not feasible.

This is because the resulting FET matrix structure for each ring does not align with

the required matrix structure for applying domain decomposition algorithms on a

spatially partitioned blade. A pie-wise partition avoids spatial partitioning. This

approach was found feasible. However, the scalability payoff is not significant. This

is because a problem is expected to have more partitions in the space domain than

in the time domain (a few time elements is sufficient to capture a smooth solution).

Thus, even if the memory overhead, high-bandwidth skyline, and pie-wise partition

were to be implemented, the potential scalability was expected to be poor.
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(a) Ring-wise partition

(b) Pie-wise partition

Figure 2.6: Illustration of ring-wise and pie-wise partitioning of FET matrix.
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2.5 Harmonic Balance

Harmonic Balance is a method that uses Fourier series approximation to

obtain direct periodic solution of the differential equations. Consider the discrete

linearized governing equations of the finite element model (FEM) given in Eq. 2.1.

In harmonic balance, the solution and the forcing are expanded as equations 2.8 and

2.9 respectively. A total of N harmonics is assumed with a fundamental time period

T . For a rotor, T = 2π/Ω, where Ω is the rotor speed in rad/sec. The assumption is

M,C,K are time invariant, and the time varying quantities are all on the right hand

side of Eq. 2.1. For example, if K = K0 + ∑N
n=1 Knc cos(nΩt) + ∑N

n=1 Kns sin(nΩt),

then only K0 is kept on the left hand side, the time-varying part is moved to the

right. The right hand side can then be iterated. In rotors, the dominant non-linearity

originates from rotation as mentioned earlier. Hence, the stiffness matrix (K0) is

calculated about a rotor solution in vacuum.

q = q0 +
N∑

n=1
qnc cos(nΩt) +

N∑
n=1

qns sin(nΩt) (2.8)

F = F0 +
N∑

n=1
Fnc cos(nΩt) +

N∑
n=1

Fns sin(nΩt) (2.9)

To solve for the harmonic coefficients q0, q1c, q1s, ....., qnc, qns, one can use differ-

ent approaches. Some of them are mentioned here.

Substituting the assumed solution (Eq. 2.8) and forcing (Eq. 2.9) in the

governing equation (Eq. 2.1), and equating the coefficients from left and right-hand

sides yields Eq. 2.10.

(K − n2Ω2M) nΩC

−nΩC (K − n2Ω2M)


qnc

qns

 =

Fnc

Fns

 (2.10)
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This is the essence of the standard harmonic balance method; the amplitude

of Fourier components is balanced frequency by frequency such that the governing

equation is satisfied. The accuracy of the solution improves with the number of

harmonics, N . The system of equations in Eq. 2.10 is a barrier for large-scale

structures as the matrix skyline is broken, it is no longer symmetric, and the sine

and cosine components are coupled.

To overcome this problem, Hall et al. [119] developed many variations of

the standard method in the context of time periodic fluid flows. These include

the standard method with pseudo time marching, the nonlinear frequency domain

method, and the time spectral method.

The pseudo time marching introduces a pseudo time τ that is used to iteratively

drive the solution residuals to zero. Equation 2.11 is marched in τ using conventional

time marching methods. This explicit pseudo time stepping avoids the inversion of a

large matrix. This works well for fluid problems, however, when applied to rotors,

the number of pseudo time steps required for convergence is large, defeating the

purpose of direct periodic solution.

d

dτ

qnc

qns

 +

(K − n2Ω2M) nΩC

−nΩC (K − n2Ω2M)


qnc

qns

 =

Fnc

Fns

 (2.11)

Time-spectral and nonlinear frequency domain forms of the standard method

are essentially identical because one is a similarity transformation of the other.

In time spectral form, instead of storing the Fourier coefficients denoted by q̃ =

{q0, q1c, q1s, . . . , qnc, qns}, and F̃ = {F0, F1c, F1s, . . . , Fnc, Fns} as working variables,

the solution at a number of time levels equally distributed over one time period are

stored. These time level solutions, denoted by q∗ for solution, and F ∗ for forcing, are
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related to the Fourier coefficients q̃ by a discrete Fourier transform given in Eq. 2.12.

q∗ = Eq̃ q̃ = E−1q∗

F ∗ = EF̃ F̃ = E−1F ∗ (2.12)

Substituting Eq. 2.12 in Eq. 2.10 and pre-multiplying the result by E yields,

Dq∗ = F ∗ (2.13)

where D is given by,

D = EA∗E−1 (2.14)

In Eq. 2.14, D is circulant and skew symmetric matrix, and A∗ is the block matrix

constructed by contributions from harmonics 0 to N given in Eq. 2.15.

A∗ =



K 0 0 . . . 0 0 0 . . . 0

0 (K − Ω2M) 0 . . . 0 ΩC 0 . . . 0
... ... ... . . . ... ... ... . . . ...

0 0 0 . . . (K − n2Ω2M) 0 0 . . . nΩC

0 −ΩC 0 . . . 0 (K − Ω2M) 0 . . . 0
... ... ... . . . ... ... ... . . . ...

0 0 0 . . . −nΩC 0 0 . . . (K − n2Ω2M)


(2.15)

The time spectral approach solves the equations in frequency domain using

only the time domain variables. This approach is straightforward to work for codes

with time domain solvers where little changes are necessary for the implementation.

However, for large-scale structure, this approach breaks the system’s skyline structure,

hence unscalable.
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In total, the size of the system and the skyline structure are two important

entities that need to be preserved for efficient storage and performance of large scale

structures. How this can be accomplished is described in the next chapter.

2.6 Summary and Conclusions

The existing methods to extract periodic dynamics – time marching, finite

element in time (FET), and harmonic balance were studied and their feasibility for

application to large-scale rotor structures is discussed. Based on this chapter, the

following conclusions are drawn.

1. Time marching methods carry both the transient as well as the forced response

as part of the total solution. As a result, one has to wait for the transients to

decay to obtain the periodic solution. For rotors, this is around 20-25 revolutions

in time, which makes it less practical for large-scale rotor applications.

2. The Finite Element in Time (FET) formulation for large-scale rotor structures

results in a large matrix size which makes it impractical for storage. It also

has a high bandwidth due to the periodic boundary conditions that kills the

efficiency of the solver. For these reasons, it is infeasible.

3. The FET matrix was examined for feasibility of its partitioning. Two types

of partitions were considered: ring-wise and pie-wise. A ring-wise partition

requires the blade to be partitioned in space and is infeasible. A pie-wise

partition avoids spatial partitioning and is feasible. However, the scalability

payoff with pie-wise partitioning is not significant. Hence, even if implemented

the potential scalability is expected to be poor.

4. The system of equations encountered in harmonic balance solution procedure

is a barrier for large-scale structures as the matrix skyline is broken, it is no
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longer symmetric, and the sine and cosine components are coupled. Hence,

the classical harmonic balance cannot be directly applied for large-scale rotor

problems. However, modifications to the harmonic balance are possible that

circumvent these problems.
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Chapter 3: Modified Harmonic Balance (MHB)

This chapter describes a new Modified Harmonic Balance (MHB) algorithm

developed for solving large-scale periodic rotor dynamics. A parallel skyline solver

forms the core of this algorithm. The rotor solution procedure and its integration in

the X3D solver is described. The result of this integration is a new parallel X3D.

The pseudo codes for the algorithms developed are provided wherever necessary.

3.1 Modified Harmonic Balance

In the modified harmonic balance method, the solution and the forcing are still

expanded as Fourier series, but the solution procedure is modified. Consider again

the linearized governing equations obtained from a finite element model.

Mq̈ + Cq̇ +Kq = F (3.1)

Substituting an assumed solution (Eq. 3.2) and forcing (Eq. 3.3) in the

governing equation (Eq. 3.1), and equating the coefficients from left and right-hand

sides yields Kq0 = F0 for zeroth harmonic and Eq. 3.4 for the non-zero harmonics.

q = q0 +
N∑

n=1
qnc cos(nΩt) +

N∑
n=1

qns sin(nΩt) (3.2)

F = F0 +
N∑

n=1
Fnc cos(nΩt) +

N∑
n=1

Fns sin(nΩt) (3.3)
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(K − n2Ω2M) nΩC

−nΩC (K − n2Ω2M)


qnc

qns

 =

Fnc

Fns

 (3.4)

The system of equations in Eq. 3.4 is a barrier for large-scale structures as

the matrix skyline was broken, it is no longer symmetric, and the sine and cosine

components are coupled. Two modifications are performed to retain the skyline,

bring back a symmetric structure, while still keeping the sine and cosine components

uncoupled.

The first modification recovers the symmetric form. This is performed by

multiplying the transpose of the left-hand side matrix of Eq. 3.4 on both sides to

produce Eq. 3.5.

(K − n2M)2 + (nC)2 0

0 (K − n2M)2 + (nC)2


qnc

qns



=

(K − n2M)Fnc − nCFns

(K − n2M)Fns + nCFnc


(3.5)

The resulting system is symmetric and keeps the sine and cosine components uncou-

pled. The problem is that it breaks the original skyline and increases it significantly.

The skyline structure of K2 is different from K, and in general denser.

The second modification recovers the original skyline structure. The matrix

(K − n2Ω2M)2 + (nΩC)2 in Eq. 3.5 has a new and deeper skyline. Figure 3.1(a)

shows the skyline of K − n2Ω2M for the UH-60A-like rotor, whereas Figure 3.1(b)

shows the skyline of (K −n2Ω2M)2. A larger skyline is unacceptable for two reasons:

1) it increases memory requirements for storage; and 2) it increases the computational

cost making it an expensive step. This problem is solved by expressing the squared

44



matrix as a product of two complex matrices (Eq. 3.6).

[(K − n2Ω2M)2 + (nΩC)2] qnc

= [(K − n2Ω2M) + i(nΩC)] × [(K − n2Ω2M) − i(nΩC)] qnc

= [(K − n2Ω2M) + i(nΩC)] q̂nc

(3.6)

Equation 3.6 assumes C to be a diagonal matrix where i is the imaginary

unit, i =
√

−1. Now two linear solves are performed for each harmonic as shown in

equations 3.7 and 3.8.

[(K − n2Ω2M) + i(nΩC)] q̂nc = (K − n2Ω2M)Fnc − nΩCFns (3.7)

[(K − n2Ω2M) − inΩC] qnc = q̂nc (3.8)

First, an intermediate solution q̂nc is obtained from Eq. 3.7. Then, the final

solution qnc is obtained from Eq. 3.8. The price to pay is two linear solves instead of

one. This is acceptable provided there is an efficient and parallel way to solve the

system of equations, which is discussed in the later sections.

An alternative approach is to express the solution and forcing in the complex-

exponential form directly using equations 3.9 and 3.10 respectively. Here qn and Fn

are the complex nth harmonic Fourier coefficients of the solution and forcing,

q =
N∑

n=−N

qn e
inΩt (3.9)

F =
N∑

n=−N

Fn e
inΩt (3.10)

Substitution in the governing equation yields Eq. 3.11. This complex-exponential

representation avoids the formation of non-symmetric system in the first place. More-

over, the equation corresponding to each harmonic retains the original skyline.
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Figure 3.1: Comparison of original and modified skyline; squaring a matrix alters
the structure of its original skyline.
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However, it comes at the cost of storage, a complex variable requires twice the

storage of a real variable.

[(K − n2Ω2M) + i(nΩC)] qn = Fn (3.11)

Expressing the solution in complex domain requires necessary transformations

between complex and real domain. Equation 3.12 performs the conversion from

complex to real, and Eq. 3.13 from real to complex.

qnc = 2 Re{qn}; qns = −2 Im{qn} (3.12)

qn = 1
2(qnc − iqns) (3.13)

The real coefficients of the solution (qnc, qns) are the deflections, which are used

to calculate airloads. The real coefficients of airloads (Fnc, Fns) are then converted

to the complex coefficient Fn, which is used to solve Eq. 3.11. Thus, the harmonic

solution qn is obtained in the complex domain.

Of course, both the formulations produce the same solution. The second

approach in complex domain uses one skyline solve per harmonic, making it faster

than the first approach when implemented in serial. When implemented in parallel,

both approaches yield the solution at the same time as the cosine and sine harmonics

are uncoupled. Thus, solving Equations 3.7, and 3.8 (first approach) or Eq. 3.11

(second approach) now lies at the heart of the algorithm. This is described in the

next section.

3.2 Linear Algebraic Solvers

To solve a large-system of linear equations Ax = b, many types of solvers are

available. These are broadly classified into direct and iterative solvers.
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1. Direct Solvers: These solvers provide direct (exact) solution by factorizing the

matrix A. The factorization can be performed using LU or LDLT decompo-

sition. These solvers are needed for high condition number problems where

exact solution is desired for accuracy as the iterative solvers fail to converge.

Various storage techniques can be used for the matrix A. The solvers are often

named after these techniques.

(a) Banded Solver: This is the oldest solver of all the available ones. In a

banded solver, the bandwidth of the problem is minimized by rearranging

the nodes internally to cluster more non-zero terms near the diagonal.

This process of rearrangement can take significant time in a large model.

After rearrangement, only N terms are stored for each row, where N is

the largest bandwidth. The largest bandwidth is the largest number of

entries starting with the diagonal term up to the last non-zero term in

any row. These solvers require a modest amount of memory for storage.

They are typically the slowest.

(b) Sparse Solver: In a sparse solver, the nodes are left as they are; instead

only the nonzero terms are stored (hence the term "Sparse"). It does

not zeros if they are within the bandwidth. However, indexing variables

are required to store the locations. Thus, a sparse solver may require

more memory than the banded. The sparse solver can provide the fastest

solution for problems that have no structure at all by sparse (typically

mid-size to large-sized problems).

(c) Skyline Solver: In a skyline solver, the diagonal and each column above

the diagonal is stored. The column height forms a skyline just like in

buildings. Zero entries are stored if they are within the skyline. For a

typical finite element system, there are not many of them. The exact

details of this storage are described later. A skyline solver generally
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requires less memory than the banded solver. For finite element matrices

with a skyline structure, they provide the fastest solution.

2. Iterative Solvers : These solvers provide an approximate solution that converges

to the exact solution with proper preconditioning. Thus, the user must specify a

convergence criteria. Unlike direct solvers, the number of iterations and floating

point operations vary from problem to problem, and with initial conditions. For

the right initial conditions and with good preconditioners, iterative solvers can

provide the fastest solution. These solvers perform poorly for ill-conditioned

problems.

The FEM matrices in structural dynamics and in particularly rotors have

high condition numbers which favor a direct solver. It is reliable and guaranteed to

converge with a fixed number of floating point operations regardless of the matrix

entries. The skyline storage was the best choice for our matrices.

3.3 The Skyline Solver

Finite element matrices have a structure that resembles a skyline. A typical

matrix structure for a 3D finite element rotor analysis is shown in Figs. 3.2(a) and

3.2(b). Figure 3.2(a) corresponds to UH-60A-like rotor blade, and Figure 3.2(b)

to the NASA TRAM rotor blade. More details on these rotor blades are given

in Chapter 4. The presence of multi-body joints can lead to spikes in the skyline

structure as seen in the TRAM rotor test case. This increases the bandwidth of the

matrix. Moreover, the FEM matrices have high condition numbers ∼ 1012 or higher

(ratio of largest to lowest eigenvalues) and are stiff systems.
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Figure 3.2: Skyline structure of the finite element matrices; (a) UH-60A skyline with
a single joint; (b) TRAM skyline with 6 joints.

A skyline solver uses direct factorization to solve a system of algebraic equations:

Ax = b =⇒ (LDLT )x = b, (3.14)

where A is a square symmetric matrix, and L and D are lower triangular and diagonal

matrices respectively. The solution x can then be found by two triangular solves – a

forward substitution LDy = b and a backward substitution LTx = y . The skyline is

preserved, which means all the entries that might change from zero to a non-zero

value during the factorization (also called as fill-ins) are guaranteed to fall within

the skyline; so no entry outside the skyline is ever used or populated. The LDLT

factorization is the intricate and expensive stage.

3.4 Serial Skyline Factorization

Skyline solvers are routine in finite elements, its parallelization is what is novel

in this work. But in order to understand the parallel algorithm, it is useful to review

the serial algorithm first.
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Figure 3.3: Skyline of a matrix in its initial and final states.

Suppose there is a square symmetric matrix A of size (5 × 5) with a skyline

structure as shown in Figure 3.3. It is symmetric, so only the diagonal and upper

triangular part is shown. The matrix A is stored as a vector S containing only the

skyline entries. Another vector of row pointers r contains the indices of the diagonal

positions of each column. In Figure 3.3, S and r are,

S = (3, 6, 15,−3, 4, 2, 6, 3, 0, 6,−2, 18)

r = (1, 3, 5, 7, 12) (3.15)

The skyline format stores the entries of the matrix column by column, starting

from the first to the last column. Within each column, the entries are stored from

the first non-zero row to the diagonal element. The size of the vector r is equal to

size of the matrix. The height (hj) of each column j is,

hj = rj − rj−1 for j > 1 (3.16)
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An entry of the original matrix can be found from the skyline vector as,

Aij = S(rj − j + i) for j ≥ i (3.17)

In Figure 3.3, the white entries are the initial matrix values, while the shaded

entries are the final factorized values. The starting entry will remain the same, hence

it is already shaded. After the factorization is completed, S will automatically contain

the solution LT at the non-diagonal positions, and D at the diagonal positions. For

our simple example,

Factorized S = (3, 2, 3,−1, 1, 2, 2, 1,−2, 0,−1, 1) (3.18)

The factorization of any non-diagonal element at row i and column j is given

by Eq. 3.19, and that of any diagonal element in column j is given by Eq. 3.20,

where Afact is the final factorized entry and Aorig is the original matrix entry. In

Eq. 3.19, mi and mj correspond to the row number of first element in column i and

column j respectively.

Afact
ij = 1

Aii

Aorig
ij −

i−1∑
l=MAX(mi,mj)

Ali Alj

 (3.19)

Afact
jj = A

orig
jj −

j−1∑
i=mj

A2
ij Aii (3.20)
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Figure 3.4: Step by step execution of the parallel skyline algorithm.
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The factorization is performed each element at a time, in the ascending order

of the columns. This process is depicted in Figure 3.4. To compute an element at

row i and column j, the following are required:

1. all elements above (i, j) in column j, and

2. all elements up to column i.

Figure 3.5 depicts the operation pictorially. For example, to compute the entry

(3,5), information from all the shaded elements is needed. This means all the shaded

elements must be factorized before the entry (3,5). Observe, the elements from

column 4 are not needed. The parallel algorithm is built to take advantage of this

observation.

Figure 3.5: Skyline solver algorithm — to compute entry (3,5), all the shaded entries
are needed.

3.5 Parallel Skyline Factorization

The parallel algorithm is built for speed, hence involves a large number of

communications. Historically these communications were a barrier but with shared
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memory architectures this barrier can be overcome. Shared memory architectures are

best suited because of guaranteed data locality. For purposes of illustration, consider

4 processors, namely P0,P1,P2 and P3. Each processor is assigned a column as

shown in Figure 3.6.

Figure 3.6: Assignment of processors to different columns of skyline.

Each processor is instructed to complete the computations in its column and

then proceed to the next available column. In the first step, the processors P0 and

P3 can compute the first elements of their respective columns. This is because all

the elements needed are available. In the next step, only P0 can compute the next

element. Once P0 has completed the column it was assigned, it can move on to the

next available column. Note that, at each step, only the processors which have the

required entries available can compute, others have to wait. Figure 3.7 shows a step

by step depiction of the parallel execution. The fact that it is stored within the

skyline makes it complicated for implementation, but possible, as shown here.
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Figure 3.7: Step by step execution of the parallel skyline algorithm.
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The pseudo-code of the parallel algorithm of skyline solver is given in Algorithm

1. The algorithm is implemented using OpenMP, which is an API that supports

shared-memory programming. The algorithm begins by assigning shared variables:

the skyline vector S, and row pointer vector r. Next, private variables are assigned to

each processor: namely, the processor number id, the column number j, the position

of an element inside the column k, the most recent factorized column number jp,

and the most recent factorized diagonal position kp.

The outer loop executes until all the columns are factorized (While loop in line

3). The first step is to assign each processor a column j. Both jp and kp are set to

1 because the first column is already factorized. Each processor cycles over every

element k in its column until all are factorized. This is the inner loop (While loop in

line 7).

Within the inner loop, line 8 of the algorithm keeps the values of jp and kp

current using the OpenMP command FLUSH. The FLUSH command ensures that

each processor knows the current values of jp and kp of other processors. The

processor assigned to the second column (j = 2) can factorize the entire column as

the first column (j = 1) is already factorized. In general, all the elements of column

j can be factorized if column j − 1 is available in factorized form (If condition in line

9). If, however, column j − 1 is not available, then column j can only be factorized

partially (Else condition in line 11) only for entries for which both the conditions

mentioned in Figure 3.5 are met (If condition in line 12). For the example shown

in Figure 3.7, in step 1 processor P3 could factorize the first element of its column

whereas, processors P1, P2 must wait until P0 completes its column (Wait condition

in line 15).

Each processor updates jp and kp once the column assigned to it is factorized

entirely (line 20, 21). This step is performed in serial using the OpenMP command

CRITICAL, to avoid date races across processors. For the example shown in Figure
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Algorithm 1: Parallel Skyline Solver
1: OMP SHARED (....S, r,....) ▷ Assign shared variables
2: OMP PRIVATE (....id, j, k, jp, kp,....) ▷ Assign private variables
3: while {All columns are factorized} do
4: Assign next available column j to processor id
5: jp = Most recent factorized column number ▷ Start with jp = 1
6: kp = Most recent factorized diagonal position ▷ Start with kp = 1
7: while {Each element k of column j is factorized} do
8: OMP FLUSH (jp, kp) ▷ Updates jp, kp on that processor to the most

recent written value
9: if {Column (j − 1) is factorized} then ▷ Complete factorization of the

column
10: Factorize all elements of column j
11: else ▷ Partial factorization of the column
12: if {Conditions 1 and 2 for each k in column j} then
13: Factorize each k inside column j that satisfies both conditions
14: else
15: Wait till the conditions are satisfied
16: end if
17: end if
18: if {Column j is factorized} then
19: OMP CRITICAL ▷ Performed by one processor at a time
20: Update jp = j
21: Update kp = rj

22: end if
23: end while
24: end while

3.7, at the end of second step, processor P0 updates jp to 2 and kp to 3. The updated

jp and kp are flushed across other processors. With the completion of its column, a

processor is assigned to the next available column, and the process repeats.

The wait times encountered by the processors during the execution of the

algorithm do not affect the solver performance adversely. When a processor is

assigned a new column, it immediately begins to factorize what it can. During this

time, the conditions necessary for complete factorization are often fulfilled. So the

process proceeds to completion. Hence for a problem with many degrees of freedom,

it is found that the wait times become negligible as the factorization proceeds.
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3.6 Rotor Solution Procedure

The solution procedure for helicopter rotors call for an additional modification.

This is generic to all models, large or small scale. But in large scale, the typical

linearization to extract aerodynamic damping is no longer practical. Yet, damping

is even more crucial in large-scale due to the richer frequency content.

Mq̈k + Caq̇k + Cq̇k +Kqk = F + Caq̇k−1 (3.21)

The solution is relatively simple: an artificial diagonal damping Ca is added to the

left and removed from the right through iterations. Thus, even at flapping frequency

1/rev, the problem remains well posed. The original Eq. 3.1 is modified to Eq. 3.21.

The subscript k refers to the iteration number. A relaxation factor can be used for

faster convergence.

The modified harmonic balance is designed for implementation on a large-

scale computer architecture typical of a supercomputer consisting of both shared

and distributed memory. A detailed description on the specifics of supercomputer

architecture is provided in Chapter 5. As stated earlier, the solution of the governing

equation is expanded as the sum of harmonics (Eq. 3.2). Since these harmonics

can be solved independent of one another, they are computed in parallel using

distributed memory architecture (MPI). A total of N + 1 MPI tasks are assigned

for obtaining solution with N harmonics (0, 1, 2, ..., N). Each MPI task is assigned

with 10 shared memory processors (OpenMP programming). Overall, hybrid MPI-

OpenMP parallelism involving a total of 10 × (N + 1) processors is used. Note that

the shared memory processors are only spawned when necessary. Figure 3.8 shows

the schematic representation of the employment of shared and distributed memory

processors in implementing the modified harmonic balance. This hybrid parallelism

improves performance dramatically while reducing memory requirements for each
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processor.

Algorithm 2: Periodic Rotor Response
1: Start with assumed solution in frequency domain (q0, qnc, qns)
2: Assign each harmonic to a MPI task
3: while {solution q is converged} do
4: Obtain the mass (M), stiffness (K) and damping (C) matrices ▷ Performed

in parallel using OpenMP
5: Obtain the nodal solution, velocities in time using Eq. 3.2 (q, q̇, q̈)
6: Obtain airloads at all azimuths
7: Assemble airloads and internal forces to get F ▷ Performed in parallel by

each MPI task internally using OpenMP
8: Artificial Damping: F = F + Caq̇
9: Fourier decomposition of F in complex domain (Fn) ▷ Performed in parallel

using OpenMP
10: Skyline solve of each harmonic (Eq. 3.11) ▷ Performed in parallel by each

MPI task internally using OpenMP
11: Convert complex solution qn to real (q0, qnc, qns)
12: end while

60



Fi
gu

re
3.

8:
Im

pl
em

en
ta

tio
n

of
m

od
ifi

ed
ha

rm
on

ic
ba

la
nc

e
us

in
g

sh
ar

ed
an

d
di

st
rib

ut
ed

m
em

or
y

ar
ch

ite
ct

ur
e.

61



A pseudo-code is shown in Algorithm 2. The algorithm begins with an assumed

solution in frequency domain (q0, qnc, qns) and assigns each harmonic to a separate

MPI task. The harmonics are solved iteratively till the solution is converged (line

3). The first step in the iteration is to obtain the mass (M), stiffness (K), and

damping (C) matrices. This is followed by computing the nodal solution (q) and

velocities (q̇) in the time domain using Eq. 3.2 (line 5). These are used to calculate

the aerodynamic forcing at all azimuths. The aerodynamic forcing obtained is now

assembled as a force vector F using the finite element model at all azimuths (line

7). The next step adds the artificial damping to F and computes Fn (line 8 and 9).

The final step solves the system of equations in Eq. 3.11 for each harmonic (line 10)

in complex domain (qn) which is in turn converted to the real domain (q0, qnc, qns)

for starting the next iteration. The skyline solves of each harmonic are performed

in parallel by each MPI task. Within each MPI task the parallel skyline solver is

employed across shared memory processors.

3.7 New Parallel X3D

A new parallel in time X3D was developed by integrating the parallel algorithms

into the old serial solver. The solver alone was not sufficient to achieve complete

speedup. For large-scale non-linear structures with joints, the construction of matrices

and forcing vectors at all azimuths contributes significantly to the total solution

time. These steps must often be repeated for trim solution. Figure 3.9 shows the

pie-chart representing distribution of total computation time for a trim solution.

These numbers correspond to the UH-60A-like rotor test case. As expected, the

periodic solution procedure is the computationally most expensive operation. The

aerodynamics module uses lifting-line free-wake model and has the lowest contribution

to the total solution time. The model construction takes around 28% of the total

computation time. The model construction workload is distributed across MPI tasks
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and are internally parallelized using OpenMP. In summary, all the modules of X3D

were parallelized to obtain the new parallel X3D. Only the aerodynamics module,

inputs, and outputs were left serial. The rationale was aerodynamics will eventually

be replaced with CFD which will have its own parallel implementation. The lower

order aerodynamics required for that coupling do not produce a significant overhead.

Figure 3.9: Pie chart showing distribution of computation time required for different
pieces of X3D solver for UH-60A rotor trim solution.

3.8 Summary and Conclusions

In this chapter, a Modified Harmonic Balance (MHB) method was developed

for large-scale structures tailored to the unique requirements of rotary-wing dynamics.

The modified method is formulated in the complex domain and built upon a scalable

skyline solver and implemented on hybrid shared and distributed memory architecture.

The algorithm is integrated into the X3D solver. Based on this work, the following

conclusions are drawn.

1. A Modified Harmonic Balance (MHB) algorithm formulated in the complex

domain can help retain the original size and skyline of the large-scale 3D finite
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element problem.

2. The harmonics of the rotor solution can be solved independently on a distributed

memory architecture. This helps to reduce the memory requirements needed

when the problem is solved in serial. Inter-harmonic couplings feedback through

iterations.

3. Skyline solver can be be parallelized efficiently by taking advantage of data

locality of the shared memory architecture.

4. For large-scale finite element structures with multi-body joints, the computation

time for model construction (FEM matrices and forcing vectors) can significantly

contribute to the overall time, hence parallelization of their construction is

crucial, though a trivial task in comparison to the solver.
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Chapter 4: Verification and Validation of MHB

Having completed the development of modified harmonic balance algorithm

in the previous chapter, the next step is to validate the algorithm. The validation

is performed on two different rotor models. But first, a verification test case is

considered. The verification rotor is an idealized rotor which is analyzed for tip

loading and prescribed aerodynamics. This is followed by the UH-60A Black Hawk

single main rotor model, which is studied at hover and forward flight conditions.

Finally, the validation is performed on the NASA Tilt-Rotor Aeroacoustic Model

(TRAM) at low-speed forward flight with moderate and high thrust conditions.

Throughout this chapter, all the predictions from modified harmonic balance are

also verified with time marching predictions.

4.1 Idealized Rotor

The idealized rotor model begins with a uniform three-dimensional beam-like

structure. This model provides the flexibility of uniform meshing with arbitrary

number of finite element bricks. Figure 4.1 shows an idealized beam meshed with 10

× 1 × 1 hexahedral brick elements. Two test cases are studied.
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Figure 4.1: Idealized beam meshed with 10 × 1 × 1 brick elements.

The first test case is elementary: a non-rotating beam with a tip force. The

force is either kept constant or harmonically varying in time. The tip displacement is

verified with the analytical solution. For constant tip force, the solution procedure is a

single skyline solve for constant q0. This test case is ideal to compute the algorithmic

performance of the parallel skyline solver (Chapter 5). With harmonic tip force, the

solution procedure computes all harmonics. Since the forcing is prescribed and not

deflection dependent, this test case is ideal to benchmark the total floating point

operations. Details are given later in Chapter 5.

Figure 4.2: Deformation of a 3D cantilevered beam with a tip force; test case used
for performance study of skyline solver.

Inclusion of aerodynamics leads to the Frank Harris test case (Reference 120).

The test case was developed in 1990s for validating 1D beam bending moments in

forward flight. Here it is extended to 3D structures.
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The test case was constructed by using the fourth-order flap bending equation.

Reference 120 provides the details. A representative beam deflection (z/R) is obtained

from curve-fitting experimental data of a particular flight condition. This deflection

is substituted in the governing flap equation to obtain the forcing function. The flight

condition used here corresponds to an advance ratio µ = 0.287. The blade deflection

z/R and forcing dF/dr are analytical expressions consisting of six harmonics. The

model parameters are tabulated in Table 4.1.

Table 4.1: Model parameters for Frank Harris test case.

Property Value
Radius 8.53 m (28 ft)

Rotor speed 221.67 RPM (23.214 rad/s)
Lock number 8

Advance ratio, µ 0.287
Flap Stiffness, EI 5,255,337 Nm2 (109,760 lb-ft2)

Mass, m 9.518 kg/m (0.0.1988 slug/ft)

The rotor model is articulated at the root. A mesh size of 10 × 1 × 1, and

567 degrees of freedom is used. The analytical forcing is applied to the degrees of

freedom in the vertical (z) direction.

Figure 4.3 shows the tip displacement calculated using various methods and

verified with analytical solution. The number of degrees of freedom was deliberately

kept small so that finite element in time could also be employed. The implementation

of finite element in time uses the formulation mentioned earlier in Chapter 2. Figure

4.3 verifies all three numerical methods provide the same solution and all match the

analytical solution. The time marching solution was obtained for different azimuth-

steps ranging from 10◦ to 1◦. The solution achieves 5% accuracy with ∆ψ = 10◦,

2% with ∆ψ = 5◦, 0.5% with ∆ψ = 1◦, and 0.1% with ∆ψ = 0.5◦. The solution for

∆ψ = 0.5◦ is shown in Figure 4.3.
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Figure 4.3: Tip displacement obtained using different solution procedures for the
analytical rotor flap bending case.

4.2 The UH-60A-like Rotor

A representative 3D model of the UH-60A Black Hawk articulated rotor is

used for validation. The internal structure is an idealization (see Figure 4.4), reverse

engineered to reproduce similar fan plot as the real rotor. The true internal structure

is not available in public domain. The external geometry and aerodynamic description

including airfoil decks are nearly exact and follows the Army-NASA Database. Only

the trim tab is neglected. The same model has been studied with slowed rotor tests

by Ward et al. in Reference [47].

The control inputs are provided through joint commands at the pitch bearing.

68



The pitch bearing is coincident with the flap and lag hinge co-located at 4.66%R

so a single joint is sufficient. The bearing also includes a linear lag damper. The

actual damper properties and connection to the blade are complications deemed

unnecessary for this validation study. Figure 4.5 shows the 3D model. There are 592

hexahedral bricks with 27–nodes each, a total of 17,523 degrees of freedom. Further

details of the 3D model can be found in Reference 43.

The UH-60A rotor model is tested on three cases. The first two cases are

made-up test cases used for verifying certain features of the solver and the third test

case is a real flight test case used for validating the solver.

Figure 4.4: Idealized internal structure of a UH-60A-like articulated rotor.
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Number of Elements: 592
Number of DOFs: 17,523

Figure 4.5: Three-dimensional brick mesh of an UH-60A-like articulated rotor; lifting-
line geometry and aerodynamic definitions are exact (based on Ames database); the
flap, lag, and torsion bearing are at 4.66% R.

4.2.1 Hover with higher harmonic pitch inputs

First, ideal hover flight is simulated with arbitrary higher harmonic pitch inputs.

The pitch angle is given by Eq. 4.1, where Ω is the rotor speed and t is the time.

θ = 10◦ + 3◦ cos(Ωt) − 5◦ sin(Ωt) + 3◦ sin(2Ωt) + 3◦ sin(4Ωt) + 2◦ sin(6Ωt) (4.1)

There is no inter-harmonic coupling in hover, only harmonics of excitation are

expected in the solution. The solution was obtained with 8 and 12 harmonics. Even

though only 6 harmonics are expected in the solution, higher harmonics were solved

to confirm they were indeed numerically zero. Figures 4.6(a) and 4.6(b) compare the

flap and lag deformations (at tip 1/4 chord). A converged time marching solution

obtained with Newmark scheme with ∆ψ = 1◦ is also shown. Uniform inflow model

was used to avoid harmonics from wake. The harmonic breakdown in Figures 4.6(c)

and 4.6(d) show, as expected, only steady, 1, 2, 4, and 6 /rev harmonics are present

in the solution. The small steady error in lag is likely a numerical artifact from the

time marching solution. The lag is in general too small in this case. The phase error

70



0 90 180 270 360

Azimuth (deg)

-0.1

-0.05

0

0.05

0.1

0.15

0.2

F
la

p
 D

e
fo

rm
a
ti

o
n

 /
 R

Time Marching

MHB (8 harmonics)

MHB (12 harmonics)

(a) Flap deformation

0 90 180 270 360

Azimuth (deg)

2.5

3

3.5

4

L
a
g

 D
e
fo

rm
a
ti

o
n

 /
 R

10
-3

Time Marching

MHB (8 harmonics)

MHB (12 harmonics)

(b) Lag deformation

0 2 4 6 8 10 12

Harmonic Number

0

0.2

0.4

0.6

M
a

g
n

it
u

d
e

Time Marching

MHB (8 harmonics)

MHB (12 harmonics)

1 2 3 4 5 6 7 8 9 10 11 12

Harmonic Number

-180

-90

0

90

180

P
h

a
s

e

(c) Flap deformation

0 2 4 6 8 10 12

Harmonic Number

0

0.01

0.02

0.03

M
a

g
n

it
u

d
e

Time Marching

MHB (8 harmonics)

MHB (12 harmonics)

1 2 3 4 5 6 7 8 9 10 11 12

Harmonic Number

-180

-90

0

90

180

P
h

a
s

e

(d) Lag harmonics

Figure 4.6: Comparison of flap and lag deformations at the tip for hover with higher
harmonic inputs; (a) flap deformation; (b) lag deformation; (c) flap harmonics; and
(d) lag harmonics.

for harmonic 8 is merely a 360◦ wrap around.

4.2.2 Forward flight with fixed pitch inputs

Next, forward flight at advance ratio µ = 0.37 is simulated with arbitrary 1/rev

pitch inputs. The pitch angle is given by Eq. 4.2, where Ω is the rotor speed and t

is the time.

θ = 10◦ + 3◦ cos(Ωt) − 5◦ sin(Ωt) (4.2)
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In forward flight, the inter-harmonic couplings are introduced naturally due to

asymmetry in the flow. The high-speed case was chosen for maximum asymmetry.

The solution was again obtained with 8 and 12 harmonics. Figures 4.7(a) and 4.7(b)

compare the flap and lag deformations (at tip 1/4 chord) with a converged time

marching solution. Linear inflow model was used to avoid harmonics from wake.

The harmonic breakdown in Figures 4.7(c) and 4.7(d) show minor differences in the

phase of higher harmonics. Overall, the results verify the accuracy of the Modified

Harmonic Balance.

4.2.3 Forward flight with trim

The final test case is a full trim solution at low-speed transition flight. The

pitch inputs are calculated from the trim solution by targeting rotor thrust and zero

hub moments. The aircraft pitch is fixed at the measured value. The conditions are:

CT/σ = 0.076, µ = 0.15, αs = -3.75◦. This is the same condition previously studied

in the Black Hawk Loads workshop (Reference 29).
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Figure 4.7: Comparison of flap and lag deformations at the tip in forward flight with
fixed control inputs; (a) flap deformation; (b) lag deformation; (c) flap harmonics;
and (d) lag harmonics.
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Figure 4.8: Normal force from modified harmonic balance method using 8 and 12
harmonics at different radial stations; predictions compared with time marching
solution and measured UH-60A airloads.
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Figure 4.9: Normal force vibratory harmonics (3,4,5 /rev) from modified harmonic
balance using 8 and 12 harmonics; predictions compared with UH-60A airloads for
qualitative comparison.
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Figure 4.10: Chord force from modified harmonic balance method using 8 and 12
harmonics at different radial stations; predictions compared with time marching
solution and measured UH-60A airloads.
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The wake roll up and intertwining effects dominate the airloads at this condition

and cause high vibratory loads. The rich harmonic content in airloads makes this

an ideal case for validation. The free-wake model is a fully rolled-up single-tip

vortex model with no inboard wake. Figure 4.8 shows the measured and predicted

normal forces at different radial stations along the azimuth. Figure 4.9 shows the

vibratory harmonics (3,4,5 /rev) versus span. This level of accuracy is generally the

state of the art with lifting-line free-wake models. However, search for accuracy is

not the objective here. The key conclusion is that the modified harmonic balance

produces the same results as time marching. A converged time marching solution

with ∆ψ = 5◦ is used for the assessment of convergence. The small differences at the

tip are an artifact of using a finer time-step in time marching. Figure 4.10 shows the

measured and predicted chord forces at different radial stations along the azimuth.

The chord forces are usually difficult to predict with lifting-line models. Note that

the measured data only includes the pressure drag, whereas the model contains both

pressure and skin friction, with no mechanism to separate them.
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Figure 4.11: Distribution of axial strain obtained using time marching and modified
harmonic balance methods for different radial stations at ψ = 245◦.

Figure 4.12: Distribution of transverse shear strain in vertical direction obtained
using time marching and modified harmonic balance methods for different radial
stations at ψ = 245◦.
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Figure 4.13: Distribution of inter-laminar strain in vertical direction obtained using
time marching and modified harmonic balance methods for different radial stations
at ψ = 245◦.

The distribution of axial and transverse shear strain in vertical direction

obtained at the azimuth, ψ = 245◦ are shown in Figures 4.11 and 4.12. The harmonic

balance solver appears to capture all the localized strain patterns of the internal

structure with a similar accuracy as time marching. The differences (between MHB

and time marching) observed in the foam behind spar account to around 1% and

are considered negligible. The inter-laminar strain distribution is shown in Figure

4.13, which can be only predicted using 3D modeling. Here also both the solution

procedures show good agreement with each other.

The total wall clock time for a trim solution of the UH-60A rotor using MHB

is 2 minutes using 8 harmonics and 90 processors as opposed to 100 minutes using

the time marching procedure. These and other computational specifics are provided

in Chapter 5.
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4.3 The NASA TRAM

The Tilt-Rotor Aeroacoustic Model (TRAM) is a 1/4-scale model of the V-22

tiltrotor. The structural model developed in Reference 46 is used here. The model

consists of five flexible parts – blade, flexbeam, pitchcase, pitch horn, and pitch link.

It includes a total of eight joints which model the bolts between the pitch case and

the blade, the outboard and inboard bearings, gimbal at the hub, and pitch link

connections. The assembled mesh of the model is shown in Figure 4.14. The total

problem size is 43,305 degrees of freedom: 1709 elements, 8 joints, and 13 different

materials.

Number of Elements: 1709
Number of DOFs: 43,305

Figure 4.14: Three-dimensional brick mesh of the TRAM blade consisting of five
flexible components, eight joints and 13 different composite materials.

The airfoils developed for the NASA large civil tiltrotor (LCTR) project were

provided by NASA for the analysis (Reference 121). Trim is controlled via collective

and cyclic inputs at the bottom of the pitch link. The free-wake model used here

employs a single-tip vortex and no inboard wake. The predictions are compared to

experimental test data for TRAM in the DNW wind tunnel (Reference 122). The

results are for low-speed edgewise flight: advance ratio µ = 0.15, and shaft angle

αs = -2.97◦. The thrust condtions are: moderate thrust (CT/σ = 0.089) and high
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thrust (CT/σ = 0.128). The trim targets are thrust and zero first harmonic flapping.

4.3.1 Forward flight at moderate thrust

Figures 4.15 and 4.16 shows the normal force predictions in the time and

frequency domain at two radial stations (72%R and 90%R) for moderate thrust

condition. The flight conditions are: CT/σ = 0.089, αs = -2.97◦, µ = 0.15. The trim

targets are thrust and zero first harmonic flapping.

The single tip vortex free-wake model performs poorly in capturing the shape

of the wake impulses, which is consistent with the state-of-the-art. Multiple trailers

are needed to approach test data, or better still, coupling with CFD. The predictions

are particularly poor near the front of the rotor disk. It is known that proprotor

roll-up is difficult to capture without CFD (Reference 46). The purpose here is

to validate the general trends, and verify the harmonics are consistent with time

marching solution, for the same level of fidelity in aerodynamics.
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Figure 4.15: Predictions of normal force compared to wind-tunnel test data; CT/σ =
0.089, αs = -2.97◦, µ = 0.15; (a) r = 72% R; (b) r = 90.7% R .
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Figure 4.16: Predictions of normal force harmonics compared to wind-tunnel test
data; CT/σ = 0.089, αs = -2.97◦, µ = 0.15; (a) r = 72% R; (b) r = 90.7% R .

4.3.2 Forward flight at high thrust

Figures 4.17 and 4.18 shows the normal force predictions in the time and

frequency domain at two radial stations (72%R and 90%R) for high thrust condition.

The flight conditions are: CT/σ = 0.128, αs = -2.97◦, µ = 0.15. The trim targets

are thrust and zero first harmonic flapping.

A dominant 4/rev is seen at the tip normal force distribution and overall similar

trends are observed as the moderate thrust case.

82



0 90 180 270 360
Azimuth, deg

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

M
2
c

n

Time Marching

MHB (8 harmonics)

Test Data

(a) Normal force at 72% radial location

0 90 180 270 360
Azimuth, deg

0

0.05

0.1

0.15

0.2

0.25

M
2
c

n

Time Marching

MHB (8 harmonics)

Test Data

(b) Normal force at 90% radial location

Figure 4.17: Predictions of normal force compared to wind-tunnel test data; CT/σ =
0.128, αs = -2.97◦, µ = 0.15; (a) r = 72% R; (b) r = 90.7% R .
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Figure 4.18: Predictions of normal force harmonics compared to wind-tunnel test
data; CT/σ = 0.128, αs = -2.97◦, µ = 0.15; (a) r = 72% R; (b) r = 90.7% R .

The total wall clock time for a trim solution of the TRAM rotor using MHB

is 8 minutes using 8 harmonics and 90 processors as opposed to 9 hours using the

time marching procedure. These and other computational specifics are provided in

Chapter 5.
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4.4 Summary and Conclusions

The Modified Harmonic Balance (MHB) algorithm was verified with the Frank

Harris analytical solution and validated with UH-60A rotor and NASA TRAM test

cases in forward flight. Predictions of tip displacements, normal and chord forces,

and stress distributions were studied. Based on this chapter, the following key

conclusions are drawn.

1. The converged Modified Harmonic Balance (MHB) solution for the Frank

Harris test case is identical to the converged time marching and finite element

in time solution. This verifies the accuracy of the new algorithm.

2. The MHB method performs well in capturing the higher harmonic trends

exhibited in the normal force distributions at low-speed wake-dominated flight.

3. Eight harmonics are sufficient to capture the impulsive wake-induced loading

in the first and fourth quadrant for UH-60A and TRAM test cases.

4. The time marching procedure requires a low azimuth-step (dψ) to achieve a

converged solution that is of similar accuracy as the converged MHB solution.

This requirement of a small time-step leads to huge computational time,

especially for large-scale structures.

5. The total wall clock time for a trim solution of the UH-60A rotor using MHB

is 2 minutes using 8 harmonics and 90 processors as opposed to 100 minutes

using the time marching procedure.

6. The total wall clock time for a trim solution of the TRAM rotor using MHB is

8 minutes using 8 harmonics and 90 processors as opposed to 9 hours using

the time marching procedure.
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Chapter 5: Parallel Performance of Algorithms

Having verified and validated the new X3D solver for real rotor cases, this

chapter studies its parallel performance. The first part introduces the specifics of

computer architecture relevant to this work, parallel computing, and the components

present in a typical supercomputer cluster. The second part discusses parallel

performance of skyline solver and modified harmonic balance algorithms.

5.1 Computer Architecture

A computer is a machine that accepts data (input), processes it, and produces

outputs. A mouse and a microphone are examples of input devices. A monitor and a

speaker are examples of output devices. The processing element is called a processor

or a Central Processing Unit (CPU). The core components of any computer are the

following.

1. Motherboard

The motherboard is the computer’s main circuit board. All components of a computer

communicate through this circuit board. It houses the CPU, memory, and other

units, such as connectors for the hard drive and connections to the external ports

like the Universal Serial Bus (USB) ports.

2. Processor (CPU)

The CPU performs basic arithmetic, logic, and input/output operations and issues
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command for other components. Code written in high-level languages like C, Fortran,

etc., is converted to assembly language for execution by the CPU. The CPU is housed

in a microprocessor that contains other peripheral units.

The essential elements of a CPU include the arithmetic logic unit (ALU), the

floating-point unit (FPU), registers, and cache memory. The four primary functions

of a CPU are to fetch, decode, execute and write. Fetch is the operation that

receives instructions from the Random Access Memory (RAM). Decode is where the

instruction is converted to assembly language for execution. Execute is where the

operation is performed. Finally, the output is written to a file.

3. Memory and Storage

There are two types of memory: primary and secondary. The term memory is often

used as a synonym for primary memory or as an abbreviation for the Random Access

Memory (RAM). In the primary memory, the data is stored only for a short time. It

is volatile, meaning it is deleted when the computer is turned off. The term storage

refers to secondary memory. An example of storage is a hard drive or a hard disk

drive (HDD). It is nonvolatile, meaning the information is retained even after the

computer is turned off.

Overall there are four major storage locations arranged hierarchically as depicted

in Figure 5.1. The first two – registers and cache are internal to the CPU. A processor

register is the fastest accessible memory location. The time taken to access it is

around 1 CPU cycle, and it can store only a few thousand bytes. A cache is a larger,

slower than register, and farther memory but still embedded on the CPU and stores

copies of data from RAM that is frequently used. It helps to reduce the average time

to access data from the RAM. Most processors have a hierarchy of multiple cache

levels (L1, L2, and L3). L1 is the fastest and the smallest, and L3 is the slowest and

largest. The cache size of modern processors is in the order of kilobytes, and access
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speed is around 100-700 Gigabytes per second.

The third hierarchy is the Random Access Memory (RAM), which allows infor-

mation to be stored and retrieved on a computer. All requests, whether instructions

or data, go to the random access memory. Its size is in the order of Gigabytes, and

the access speed is around 1-10 Gigabytes per second. The last hierarchy is the hard

disk and solid-state drive storage, which are terabytes in size and access speeds of

thousand megabytes per second.

Figure 5.1: Memory hierarchy triangle

5.2 Shared Memory Architecture

In shared-memory architecture, the entire memory, i.e., main memory and

disks, is shared by all processors. Shared memory parallel computers vary widely but

generally have the ability for all processors to access all memory as global address

space. The changes in a memory location affected by one processor are visible to all

other processors. Based on the memory access times, shared memory machines are
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classified into two types:

1. Uniform Memory Access (UMA): This type is represented by Symmetric

Multiprocessor (SMP) machines (Figure 5.2(a)). SMP machine involves an

architecture where two or more identical processors are connected to a single,

shared main memory. As the name suggests, all processors have equal access

and access times to memory. It is also called CC-UMA - Cache Coherent UMA.

Cache coherent means if one processor updates a location in shared memory, all

the other processors know about the update. Cache coherency is accomplished

at the hardware level.

2. Non-Uniform Memory Access (NUMA): These are constructed by linking

two or more SMP machines (Figure 5.2(b)). As the name suggests, not all

processors have equal access time to all memories. One SMP can directly access

the memory of another SMP. However, memory access across links is slower.

If cache coherency is maintained, it is called CC-NUMA (Cache Coherent

NUMA).
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(a) UMA shared memory machine

(b) NUMA shared memory machine

Figure 5.2: Illustration of UMA and NUMA shared memory machines.

The advantages and disadvantages of shared memory architectures are as

follows.

Advantages

1. The data sharing between tasks is fast and uniform due to the proximity of

memory to CPUs.

2. The presence of global address space makes it easy to write software.

Disadvantages
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1. The primary disadvantage is the lack of scalability between memory and

CPUs. Adding more CPUs can geometrically increase traffic on the shared

memory-CPU path.

2. The performance might degrade when multiple processors try to access the

shared memory simultaneously (contention problem). A typical design might

use caches to solve the contention problem.

3. Having multiple copies of data spread throughout the caches might lead to a

coherence problem. The cache copies are coherent if they are all equal to the

same value. However, if one of the processors updates the copy, it becomes

inconsistent because it no longer equals the value of the other copies.

4. It is difficult to ensure correct access of global memory and synchronization for

the programmer.

Shared memory architectures are best suited to achieve fine-grained parallelism

because they support fast communication. In fine-grained parallelism, a program is

broken down into many small tasks. These tasks are assigned individually to many

processors. The amount of work associated with each task is low, and the work is

evenly distributed among the processors. Hence, fine-grained parallelism facilitates

load balancing. As each task processes less data, the total number of processors

required is high, leading to increased communication and synchronization overhead.

Shared memory architecture with a low communication overhead is most suitable for

fine-grained parallelism.

5.3 Distributed Memory Architecture

Distributed memory refers to a multiprocessor computer system in which each

processor has its own private memory. Each processor has its own local memory.
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It requires a communication network to connect inter-processor memory. These

systems are also called message-passing systems. The network fabric used for data

transfer varies widely, though it can be as simple as Ethernet. Memory addresses

in one processor do not map to another processor, so there is no concept of global

address space across all processors. Any changes made to its local memory do not

affect the memory of other processors. Hence, the concept of cache coherency does

not apply.

Figure 5.3: Illustration of distributed memory architecture.

The programmer ensures synchronization between tasks and handles com-

munications between processors. Communications in message-passing systems are

performed via send and receive operations. The advantages and disadvantages of

distributed memory architecture are listed below.

Advantages

1. Memory is scalable with the number of processors. Increase the number of

processors, and the size of memory increases proportionately.

2. Each processor can rapidly access its memory without interference and without

the overhead incurred with trying to maintain global cache coherency.

Disadvantages
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1. Non-uniform memory access times - data present on a remote node takes longer

to access than local node data.

2. The programmer is responsible for details associated with data communication

between processors.

Distributed memory architecture takes a long time to communicate data

among processes, making it suitable for coarse-grained parallelism. In coarse-grained

parallelism, a program is split into large tasks. Due to this, a large amount of

computation takes place in each processor, resulting in load imbalance, wherein

certain tasks require more time while others take less time. The advantage of this

type of parallelism is low communication and synchronization overhead.

5.4 UMD Deepthought2

The largest and fastest computers in the world today are clusters employing

both shared and distributed memory architectures. The University of Maryland’s

cluster is named Deepthought2.
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Figure 5.4: Schematics of a node encompassing shared memory architecture in the
cluster Deepthought2.

The cluster consists of 480 nodes with a dual socket on each node. A node is

a collection of processors with shared memory architecture. Figure 5.4 shows the

picture of a node of the Deepthought2 cluster. It has two sockets with ten Intel Ivy

Bridge E5-2680v2 processors running at 2.8 GHz on each. So a total of 20 processors

are available on each node. Each of these processors has a separate L1 cache (64

KB), a separate L2 cache (256 KB), a shared L3 cache (25 MB), and a total shared

memory of 128 GB. The arrangement of the processors on each socket is shown in

Figure 5.5.
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Figure 5.5: Schematics of arrangement of processors on each socket of a node in the
cluster Deepthought2.

A collection of the nodes described above form a distributed memory architec-

ture. This is represented in Figure 5.6. The memory is only shared internally and

not between each node. This overall architecture represents a hybrid distributed and

shared memory architecture. Note that all the processors internal to a node can also

be used as distributed memory for programming purposes.

5.5 Parallel Computing

In simple terms, parallel computing is the simultaneous use of multiple comput-

ing resources to solve a computational problem. A problem is broken into discrete

parts that can be solved concurrently on many processors. The problem’s partition-

ing into discrete parts depends on the algorithm, and the distribution across the

processors depends on the parallel computer architecture described above.

Parallel computing is critical to the understanding of complex real-world

phenomena. During the past 20-30 years, significant advancements have been

made in computer architectures and parallel programming modules that have made

parallelism ubiquitous. Exascale (1018 calculations per second) computing is an
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Figure 5.6: Hybrid Distributed Shared memory.
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aspirational target for parallel computing.

In this section, some important terms of parallel computing are defined that

are useful for understanding the results.

1. Speedup: Parallel speedup of a code that has been parallelized is defined as,

Speedup = wall-clock time of serial execution
wall-clock time of parallel execution (5.1)

One of the most widely used indicators for a parallel algorithm’s performance.

2. Scalability: It refers to the ability to demonstrate a proportionate increase

in parallel speedup with the addition of more resources. Both hardware and

software (algorithm) contribute to this demonstration. Two types of scaling

are defined based on the solution time.

• Strong Scalability: It is defined as how the solution time varies with the

number of processors for a fixed total problem size. Strong scaling means

the problem is solved in 1/N time (compared to serial) with N processors.

• Weak Scalability: It is defined as how the solution time varies with the

number of processors for a fixed problem size per processor. Weak scaling

means an N times larger problem is solved in the same time as the original

problem given N processors.

3. FLOPS: It refers to the number of floating point operations taking place in an

algorithm per second. A powerful processor and a faster algorithm contribute

to higher FLOPS.
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5.6 Parallel Performance of Skyline Solver

In this section, the parallel performance of the skyline solver is studied. The

solver speedup is recorded on a shared memory architecture. Its performance is

compared with the widely used linear system solver MUMPS.
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Figure 5.7: Speedup of the parallel skyline solver on a single node of 20 processors.

The speedup performance of the skyline solver was recorded using the 3D

cantilevered beam test case with constant tip force, mentioned earlier in Chapter 4.

This elementary test case allows to easily vary the mesh sizes, hence chosen for this

study. Figure 5.7 shows the speedup with the number of shared memory processors

for various mesh sizes ranging from 10K to 250K degrees of freedom. Regardless

of size, a speedup of up to 17 is obtained over 19 processors, which accounts for
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90% efficiency. Of 20 processors available on each node, one is usually dedicated to

system management. Thus, using 19 provides the best speedup for computation.

Even though the parallel skyline solver achieves 90% speedup efficiency for

a range of problem sizes, the solver does fail to achieve linear speedup for certain

problem types. These limitations are dependent on the structure of the matrix

solved. For a typical finite element problem, the matrix structure resembles a skyline

shown in Figure 5.8(a). Consider the matrix obtained from the finite element in time

formulation shown in Figure 5.8(b). The structure of this matrix still resembles a

skyline but with a larger bandwidth resulting from periodic boundary conditions.

Even though the matrices shown in Figure 5.8 are of similar sizes, the parallel skyline

solver does not perform at the same efficiency. Figure 5.9 shows the speedup for

both these matrices versus the number of processors. The speedup increases till 12

processors for the FET matrix, and after that the speedup remains constant with

increasing processors. The high bandwidth results in high memory storage of a

column which results in cache losses, resulting in decrease of speedup. Note that this

behavior is dependent on the cache size of the architecture used. Hence a definitive

problem size cannot be determined as to when the solver performance begins to

degrade.
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Figure 5.8: Comparison of matrix skylines obtained from 3D FEM and 3D FET
formulation.
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Figure 5.9: Speedup of the parallel skyline solver on matrices obtained from FEM
and FET formulation versus number of processors.

There are several open source sparse direct solvers available to solve large

systems of finite element equations. A widely used solver is the MUMPS (Multifrontal

Massively Parallel sparse direct Solver) (References 123, 124). It implements the

multifrontal method in parallel using MPI-OpenMP, and uses BLAS and ScaLAPACK

kernels for dense matrix computations. The performance of the solver developed here

is compared against MUMPS on a local desktop with a maximum of 16 processors

and similar specifications as Deepthought2.
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Figure 5.10: Performance comparison of solution time versus number of processors
between skyline solver and MUMPS for various problem sizes.
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Figure 5.10 shows the variation of solution time versus the number of shared-

memory processors for various problem sizes. As expected, the solution time reduces

for skyline solver with the number of processors, whereas it is constant for the

MUMPS solver. This is observed regardless of the problem size. Thus, MUMPS is

significantly faster in serial mode or when using a low number of processors. But as

the number of processors increase, the parallel skyline solver appears to surpass it.

The speedup characteristics for both solvers with number of processors is shown in

Figure 5.11.
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Figure 5.11: Speedup of skyline solver and MUMPS solver versus number of processors
for various problem sizes.

Direct solvers allow for the computation of the number of floating point opera-

tions. The number of floating point operations involved in the LDLT factorization

of the skyline solver is given by Eq. 5.2,

N∑
j=1

1 + hj(hj − 1) (5.2)

where hj is the height of column j in the skyline given by Eq. 3.16 in Chapter 3.

MUMPS also reports the number of operations performed using its multifrontal

method. Figure 5.12 shows that the floating point operations per second (FLOPS)
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for both solvers with number of processors for various problem sizes. Regardless of

problem size, a maximum of 3 times higher FLOPS is achieved with skyline solver

as compared to that of MUMPS.
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Figure 5.12: Performance comparison of FLOPS versus number of processors between
skyline solver and MUMPS for various problem sizes.

103



5.7 Convergence of MHB

The time histories of flap, lag, and torsional deformations at the tip in forward

flight with fixed control inputs and ∆ψ = 1◦ are shown in Figure 5.13. As expected,

time marching requires many rotor revolutions before periodicity is attained, particu-

larly in lag, which has little to no aerodynamic damping. The flap and torsion modes

converge in 10 revolutions, whereas lag reaches 5% accuracy in 10, 0.5% accuracy

in 20 iterations. The same level of accuracy in modified harmonic balance requires

25-30 iterations.
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Figure 5.13: Time-history of flap, lag and torsional deformation at tip of UH-60A-like
rotor in forward flight.

Figure 5.14 shows the convergence of harmonics with the iteration number. The

error plotted is the difference between modified harmonic balance and time marching

solutions at the tip for the UH-60A rotor test case. A typical solution reaches 1%
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accuracy in 10 iterations, 0.01% in 30, and 0.0001% in 40 iterations. What time

marching achieves with small azimuth-step and large number of revolutions, the

modified harmonic balance achieves directly, albeit with iterations.
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Figure 5.14: Convergence of harmonics in the solution at tip with iterations.

5.8 Parallel Performance of MHB

The parallel performance of the modified harmonic balance algorithm is char-

acterized using three metrics: floating point operations per second (FLOPS), parallel

speedup, and scalability with the number of harmonics and processors.

Figure 5.15 shows the variation of floating point operations per second (FLOPS)

with the number of degrees of freedom for time marching and modified harmonic

balance. The 3D cantilevered beam with sinusoidal varying tip force (see Chapter 4)
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is used as a test case for obtaining the FLOPS performance. A maximum of only 10

gigaFLOPS can be achieved using time marching. On the other hand, the modified

harmonic balance reaches higher than 1 teraFLOPS. The key conclusion is that the

modified harmonic balance will produce a gain of at least two orders of magnitude in

FLOPS compared to time marching. Although this is not a fair comparison between

the two algorithms, it does establish that the MHB is an inherently parallel algorithm

that performs more computations at a lesser time.
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Figure 5.15: Variation of FLOPS versus the number of degrees of freedom for time
marching and modified harmonic balance.

The solution times and speedup for the trim solution of UH-60A-like rotor test

case are summarized in Table 5.1. The times for the time marching solution was

obtained with ∆ψ = 5◦. The time marching solution on a single processor for a
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trim solution takes 100 minutes. The parallel skyline, but still with time marching,

reduces it to 16 minutes, a speedup of around 6. Replacing time marching with the

modified harmonic balance on a single processor with no parallelization produces

a speedup of 10. When implemented in parallel (9 MPI tasks, 0 to 8 harmonics)

with each using 10 shared memory processors internally, the time drops to 2 minutes,

achieving a total speedup of 50. This massive speedup is a result of the combined

effect of the parallel skyline and the inherent parallel nature of the modified harmonic

balance.

Table 5.1: Solution times for serial and parallel time marching and modified
harmonic balance for UH-60A-like rotor test case; parallel execution on combined
shared and distributed memory architecture.

Solution Procedure Mode Trim Solution Speedup

Time Marching Serial
Parallel

100 min
16 min

1
6

Modified Harmonic Balance Serial
Parallel

10 min
2 min

10
50

Table 5.2 provides the solution times and speedup for trim solution of TRAM

test case. Because the TRAM test case has a larger problem size, the serial computa-

tional time for time marching takes 8 hours. The parallel skyline with time marching

reduces it to 70 minutes, a speedup of around 7. Modified Harmonic Balance on

a single processor solves the problem in 55 minutes, and the parallel version in 8

minutes. Overall the parallel modified harmonic balance yields a speedup of 70.

Table 5.2: Solution times for serial and parallel time marching and modified harmonic
balance for the NASA TRAM test case; parallel execution on combined shared and
distributed memory architecture.

Solution Procedure Mode Trim Solution Speedup

Time Marching Serial
Parallel

8 hours
70 min

1
7

Modified Harmonic Balance Serial
Parallel

50 min
8 min

10
70
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A total of N+1 MPI tasks are launched for obtaining solution with N harmonics

(0, 1, 2, ..., N). With each MPI task assigned with 10 shared memory processors, a

total of 10× (N+1) processors (both MPI and OpenMP) are employed. The solution

time for the trim solution remains almost constant with an increase in number of

harmonics. Thus, a finer harmonic resolution is possible with no increase in solution

time if more processors are available. Figure 5.16 shows the trim solution time versus

number of harmonics and processors. For example, a total of 90 processors are used

to solve for 0, 1, 2, ..., 8 harmonics. This proves the weak scalability of the algorithm.

Figure 5.16: Trim solution time versus number of harmonics and processors; a total
of 10 × (N + 1) processors are used to solve for 0, 1, 2, ..., N harmonics; solution time
remains almost constant with increase in number of harmonics and processors.
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5.9 Summary and Conclusions

The parallel performance of the skyline solver and modified harmonic balance

algorithm was studied using different performance metrics. Idealized beam and real

rotor test cases were used for this study. Based on the results obtained, the following

conclusions are drawn.

1. Regardless of problem size, the parallel skyline solver provides a speedup of

around 17 for 19 processors on a shared memory architecture. This makes it

90% efficient.

2. The matrix bandwidth does affect the performance of parallel skyline solver.

A matrix with larger bandwidth such as that of FET matrices can only be

speeded ten times with 19 processors. The drop in speedup is due to the cache

losses occurring due to high bandwidth (high memory).

3. The parallel skyline solver performs better than the widely used open-source

solver MUMPS. The solution time reduces for skyline solver with number of

processors, whereas it is constant for the MUMPS solver. Thus, MUMPS is

significantly faster in serial mode. But as the number of processors increases,

the parallel skyline solver appears to surpass it. Regardless of problem size, a

maximum of 3 times higher FLOPS is achieved with skyline solver compared

to MUMPS.

4. The modified harmonic balance is verified to converge to the same time marching

solution. The error drops to 1% with 10 iterations, 0.01% with 20, and 0.0001%

with 40 iterations. This level of accuracy and convergence was observed for

both idealized and practical rotor problems.

5. For the UH-60A rotor trim solution test case, a 50 times speedup is achieved

using the parallel MHB method compared to the serial time marching method.
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This brings the solution time from 100 minutes to 2 minutes. For the TRAM

trim solution test case, a 70 times speedup is achieved. This brings the solution

time from 9 hours to 8 minutes.

6. The MHB method exhibits weak scalability with number of processors and

harmonics. The solution time for the trim solution remains almost constant

with an increase in number of harmonics. Thus, a finer harmonic resolution is

possible with no increase in solution time if more processors are available.

7. Peak performance of 1 teraFLOPS was recorded for the parallel modified

harmonic balance algorithm on a model problem with structures alone.
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Chapter 6: Three-Dimensional Coaxial Models

The establishment of new parallel X3D allows for expanding the scope of

modeling advanced rotor configurations. In this work, the coaxial rotor is that

selected configuration. This chapter deals with the development of three-dimensional

coaxial models. Two open access models are developed; one is called the Metaltail –

a hingeless conceptual design, and the other is an artificially made-up articulated

coaxial with two UH-60A-like rotors.

6.1 The Metaltail

Metaltail was the name given to a notional coaxial tail-sitter proprotor aircraft

designed by the University of Maryland as a part of the 2018 Vertical Flight Society

Graduate Design Competition [125]. The rotor is henceforth referred to as the

Metaltail rotor or just Metaltail. Cheng Chi of the 2018 design team first built this

model. It is an open-source research rotor therefore adopted by the U.S. Army /

DoD rotorcraft simulation software CREATETM–AV Helios [126] development team

as an example case. Figure 6.1 shows the computer-aided design (CAD) model of

the coaxial rotor. Table 1 lists the important rotor parameters.
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Figure 6.1: CAD model of Metaltail coaxial rotor.

Table 6.1: Properties of each Metaltail rotor

Property Value
Radius 1.5 m (4.9 ft)

Number of Blades 4
Pre-cone 1.5◦

Solidity, σ 0.0637
Rotor Separation, z/D 0.07

Rotor speed 1408 RPM (147 rad/s)

Staruk et al. [127] built the preliminary mesh and structural analysis model

for this rotor; however, that model encountered convergence problems when coupled

with Helios CFD. In order to dissect the problem, a new model was built ground-up

and re-meshed. The following sections describe the creation of this new model step

by step.

6.2 CAD Model

Figure 6.2 shows the CAD model for the upper rotor depicting attachment of

blade root to hub through bearing housing. The blade consists of surface and internal
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structure. The structural dynamics model will contain a single blade, but with all

details of its internals structure. Figure 6.3 shows the CAD model of individual

parts of one Metaltail blade. It consists of the following parts – the blade, pitch

horn, pitch link, inner cuff, outer cuff, thrust bearing, and journal bearing. The

connectivity between each of these parts is described using the structural analysis

representation below.

Figure 6.2: Attachment of Metaltail rotor blade root to hub through bearing housing.
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6.3 Structural Analysis Representation

The structural analysis representation assigns which parts are to be modeled

using 3D finite elements and which parts are to be simply modeled as joints. It then

defines the type and geometry of joint connections and assigns joint properties.

The Metaltail blade has five flexible parts: the blade, pitch horn, pitch link,

inner cuff, outer cuff, and inner cuff. The bearings, fittings between the flexible parts,

and hub connections are modeled as joints. Figure 6.2 showed the attachment of the

blade root to the hub. The blade root is sandwiched by the bearing housing from

top and bottom. The bearing housing connects the thrust and journal bearing to

the hub. The pitch horn is located at the root of each inner sleeve and connected to

the upper swashplate (not shown in Figure 6.2) with a pitch link.

(a) Blade and outer cuff (b) Inner cuff and blade

(c) Inner and outer cuff (d) Pitch link, pitch horn and blade

Figure 6.4: Physical connections between components of Metaltail; (a) blade and
outer cuff connection; (b) inner cuff and blade connection; (c) inner and outer cuff
connection; and (d) pitch link, pitch horn and blade connections.
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(a) Attachment of two bearings

(b) Attachment of inner and outer cuff to blade

Figure 6.5: Cut away view of blade root showing attachment of (a) thrust and journal
bearing; (b) inner and outer cuff to blade.
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The bolts between the inner cuff and the outer cuff, the thrust and journal

bearings, and pitch link connections to the pitch horn and hub are modeled as joints.

The exposed root of the blade mates into the inner surfaces of the outer cuff, and

the inner cuff locks into the open slot of the blade as shown in Figure 6.4. So, the

connections between the blade and both the cuffs are modeled as rigid joints. The

outer cuff is connected to the rotor hub through two bearings as shown in Figure

6.5(a). The thrust bearing transfers only axial force to the hub. The journal bearing

transfers thrust, in- and out-of-plane shears, and the flapping and lead-lag moments.

The inner cuff is connected to a pitch horn, which is then connected to a pitch link

on the leading edge side of the blade. The torsion moment is transferred via inner

cuff to the pitch link connection to the hub. The blade cross section consists of a

tungsten leading edge weight, a solid uni-axial carbon-fiber D-spar, a machinable

foam aft core, and a uni-axial carbon fiber trailing edge block, all wrapped in a ±45◦

carbon fiber skin. This is shown in Figure 6.6.

Figure 6.6: CAD model of the Metaltail blade cross-section at the root.
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In total, the model has 13 parts, 5 of which are flexible parts and 8 are joints.

These are shown in Figure 6.7 and listed in Table 6.2. Figure 6.8 shows the load flow

diagram. This is the final structural analysis representation of the Metaltail. Each

part has two ID numbers, one is the part number (P#), and another is the type

number (F# for flex parts, J# for joint parts). The five flexible parts are meshed

using brick finite elements. The eight joint parts are assigned kinematic constraints

using Euler angles. Three joints are connected to the hub. These serve as load

sensors, whose motion in corresponding directions yield the root loads. The root

loads are then transferred to hub loads for studying rotor vibration. The identifier

−1 (in Table 6.2) sets zero displacement boundary condition (in the rotating frame).

Here, it is the hub. Vertical motion commanded to the joint (P1/J1) provides pitch

control for trim solution.
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Figure 6.8: The load flow diagram is the final structural analysis representation of
the Metaltail blade.

The hub is rigid, so the upper and lower rotors are independent with no dynamic

interactions. The analysis is carried out using a single blade in each rotor. There are

three connections to the hub for each rotor blade, as seen in Figure 6.8. Hence for

the coaxial model, there are a total of six connections to the hub, three from each

rotor.

6.4 Structural Analysis Model

Once the part types are assigned, the individual flexible parts are meshed

in Cubit. Part meshes are independent. The meshes are generated using 27-node
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Table 6.2: List of parts in the Metaltail blade structural model, including connections
with -1 indicating a connection to the hub.

Part No. Flexible/Joint No. Name Type Connections
P1 J1 jPlinkHub Joint -1, P2
P2 F1 Pitch Link Flex P1, P3
P3 J2 jPlinkPhorn Joint P2, P4
P4 F2 Pitch Horn Flex P3, P5
P5 J3 jPhornIcuff Joint P4, P6
P6 F3 Inner Cuff Flex P5, P7, P11
P7 J4 jIcuffOcuff Joint P6, P8
P8 F4 Outer Cuff Flex P7, P10, P12, P13
P9 F5 Blade Flex P10, P11
P10 J5 jOcuffBlade Joint P8, P9
P11 J6 jIcuffBlade Joint P6, P9
P12 J7 jThrustBearing Joint -1, P8
P13 J8 jJournalBearing Joint -1, P8

isoparametric hexahedral brick elements. A detailed description of meshing rotor

blades can be found in Reference [45]. The meshes and joints are assembled to create

the final structural analysis model of the blade as shown in Figure 6.9. It consists of

1316 bricks with a total of 31,735 degrees of freedom.

Figure 6.9: Assembled structural mesh is the final structural analysis model of the
Metaltail blade.

Each part mesh is assigned three features: blocks (B), sidesets (SS), and

nodesets (NS). These are also generated in Cubit. They are used by the solver

for important tasks. Blocks assign materials for flexible parts, sidesets identify

aerodynamic surface nodes, and nodesets are the finite element nodes to which

joints connect. Figure 6.10 shows the different set of nodesets created for joint

connections between components. The same is listed in Table 6.3. Figure 6.11
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shows the nodesets along the span and can be used to extract 1D-like properties and

sidesets for aerodynamic surfaces. A total of 10 sidesets are created for this model.

Table 6.3: Description of nodesets of Metaltail.

Component Nodeset Description
Pitch Link NS401 Connects to hub
Pitch Link NS402 Connects to pitch horn
Pitch Horn NS401 Connects to inner cuff
Pitch Horn NS402 Connects to pitch link
Inner Cuff NS401 Connects to pitch horn
Inner Cuff NS402 Connects to pitch outer cuff
Inner Cuff NS403 Connects to blade
Outer Cuff NS401 Connects to inner cuff
Outer Cuff NS402 Connects to blade
Outer Cuff NS403 Connects to thrust bearing
Outer Cuff NS404 Connects to journal bearing

Blade NS401 Connects to outer cuff
Blade NS402 Connects to inner cuff
Blade NS403 For tip loading

The meshes and joints are input to the solver through SAM.input file. This file

can be made manually or automatically using the Python-based utility samBuilder

[45]. The SAM.input is a FORTRAN namelist consisting of mesh positions and

orientations, material properties, joint properties, and joint connections.

Figure 6.11: Depiction of nodesets along the blade span and sidesets for aerodynamic
surfaces of Metaltail.
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6.5 Material Properties

The material properties of the Metaltail blade are listed in Tables 6.4 and 6.5.

The first table lists the material properties of flexible parts F1 to F4. All the parts

F1 to F4 are made of an isotropic material, Titanium-6AL-4V. The second table

lists the materials for the blade (F5). The blade consists of different parts (Figure

6.6), each made with different material.

Table 6.4: Material properties of Metaltail flexible parts (F1 to F4).

Properties F1 F2 F3 F4
Component Pitch Link Pitch Horn Inner Cuff Outer Cuff

Material Ti-6Al-4V Ti-6Al-4V Ti-6Al-4V Ti-6Al-4V
Type Isotropic Isotropic Isotropic Isotropic
E, GPa 113.8 113.8 113.8 113.8
ν12 0.342 0.342 0.342 0.342

ρ, kg/m3 4430 4430 4430 4430

Table 6.5: Material properties of Metaltail blade (flex component F5).

Properties Leading Edge Spar Foam Trailing Edge Skin

Material Tungsten T300
Graphite Rohacell 71 T300

Graphite
IM7CF
(±45◦)

Type Isotropic Ortho-Iso Isotropic Ortho-Iso Ortho-Iso
E1, GPa 330 131 0.092 131 68.47
E2, GPa 9.3 9.3 64.54
ν12 0.32 0.28 0.18 0.28 0.058

G12, GPa 5.86 5.86 4.07
ρ, kg/m3 17000 1600 75 1600 1600
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6.6 Aerodynamic Model

The aerodynamic model of the blade is input through the AER.input file. It is

a FORTRAN namelist of airfoil names and lifting line properties, no different from

any beam-based comprehensive analysis. The Metaltail blade consists of two airfoils;

NACA2420 at the root and SC1095 at the tip. The transition between the root airfoil

and the tip airfoil occurs at 30% R. The blade is highly twisted at a nominal rate of

−56◦ per span. The chord and twist distribution are shown in Figures 6.12 and 6.13

respectively. The high twist of the blade makes it less representative of an edgewise

coaxial rotor. Nevertheless, the high twist along with the intricate hub provides

many of the complications desired in a test problem and also loosely represents the

challenges involved in modeling a modern coaxial rotor.
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Figure 6.12: Span-wise chord distribution of Metaltail blade.
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Figure 6.13: Span-wise twist distribution of Metaltail blade.

The blades for both rotors are meshed and assembled together as shown in

the Figure 6.14. Naturally it consists of twice the number of degrees of freedom as

the single rotor model. For X3D purposes, the input parameters for both rotors

are identical except the direction of rotation. The upper rotor rotates in counter

clockwise direction (+1) and lower rotor in clockwise direction (−1). The direction of

rotation, rotor-rotor separation distance, and other top-level parameters are specified

in the system definition (SDN.input) file.
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Once the development of Metaltail model was completed, the first step was

to perform the simple sanity checks. The load path was verified with loads (forces

and moments) applied at the tip. It checked the loads were transferred to the hub

through the correct load path.

6.7 Rotor Frequencies

The rotor frequencies are shown in Figure 9. At the nominal rotor speed of

1408 RPM, the frequencies clear all the integer harmonics. The flap and lag modes

are coupled due to the high twist. The first flap-lag frequency is 1.3 /rev. The first

torsion is 5.22 /rev. The high first flap frequency is not unusual for modern coaxial

rotors. The first six natural frequencies are listed at the operating rotor speed in

Table 6.6.
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Figure 6.15: Rotating frequencies of the Metaltail blade.

Table 6.6: First six blade frequencies in vacuum at 1408 RPM.

Mode Freq (/rev)
1st Flap/Lag 1.33
2nd Flap/Lag 2.15
3rd Flap/Lag 3.48
1st Torsion 5.22

4th Flap 5.85
2nd Torsion 7.43
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6.8 Airloads

Airloads are predicted in edgewise flight at advance ratio µ = 0.1, forward

shaft tilt of α = −2◦, and blade loading CT/σ = 0.08. The trim targets are thrust

and zero hub moments. The advance ratio and trim targets are chosen to allow for

qualitative comparison with the TRAM test data.

Predictions are shown for two inflow models: linear and free-wake. The free-

wake model employs a fully rolled up single tip vortex with filament strengths of

70% maximum bound circulation occuring outboard of 50% R.

Figures 6.16 and 6.17 show the normal force predictions in the time and

frequency domain at two radial stations: 72%R and 90%R. The linear inflow model

can only capture the gross 1/rev characteristics of the airloads, which are too coarse a

representation to be used for good airloads prediction. The free-wake model predicts

higher harmonics with the characteristics of vortex loadings in the first and fourth

quadrant near the tip. The lift near tip has a significant 4/rev as shown in Figure

8.9(b). The proprotor roll up is a complex viscosity-driven phenomenon usually

beyond the capabilities of lifting line models. The purpose here is only to verify the

general trends.
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Figure 6.16: Predictions of normal force with linear inflow and free-wake models at
µ = 0.1, CT/σ = 0.08; (a) 72% R; (b) 90% R.
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Figure 6.17: Predicted normal force harmonics with linear inflow and free-wake at
µ = 0.1, CT/σ = 0.08; (a) 72% R; (b) 90% R.
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6.9 UH-60A Coaxial Rotor

A notional coaxial configuration is developed using two UH-60A-like rotors

stacked on top of each other. This model provides the benefit of being a realistic

edgewise rotor with moderate twist, thereby useful for qualitative comparison with

the aeromechanics predictions of Metaltail and S-97 Raider data. The inter-rotor

separation is kept identical to Metaltail (z/D = 0.07). This coaxial rotor uses a

representative model of an UH-60A rotor blade, which is identical to that studied in

Chapter 4.

Figure 6.18 shows the assembled structural mesh for the coaxial Metaltail.

Unlike Metaltail, this is an articulated rotor. Each blade connects to the hub through

a single articulated joint. The upper and lower rotors are still kept independent with

no dynamic interactions. The analysis is carried out using a single blade in each

rotor.

6.10 Summary and Conclusions

Two notional 3D coaxial models were developed in preparation for coaxial

aeromechanical analysis. One is the Metaltail – a hingeless coaxial rotor, and the

other is the coaxial rotor built from articulated UH-60A-like rotors. The development

of the 3D model for the Metaltail proprotor was described in detail, from CAD to

the structural analysis model.

134



Chapter 7: The Coaxial X3D Solver

The X3D solver is expanded to model multiple rotors. Modifications were

needed in both structural dynamics and aerodynamics modeling. The first section of

this chapter describes these modifications. The aerodynamics is validated first with

coaxial hover data to ensure interactions are correctly captured. Then the analysis

is extended to forward flight. In the absence of measured airloads, the UH-60A

coaxial rotor is studied with infinite separation to confirm they collapse to single

rotor predictions.

7.1 Structural Dynamics

The structural dynamics module of X3D was modified to allow modeling of

arbitrary number of rotors spinning in counter clockwise (CCW) or clockwise (CW)

directions. X3D carries out the analysis in a right-handed CCW frame. To model CW

rotating rotor, the calculations are performed as a CCW rotor, with the conditions,

motions and loads changing signs appropriately. For example, the wake analysis is

in the fixed frame, so blade motions into the wake and inflow out of the wake are

adjusted appropriately. The transformation between the CCW and CW frames is

given by Eq. 7.1. 
x

y

z



CCW

=


1 0 0

0 −1 0

0 0 1




x

y

z



CW

(7.1)

Consider two rotors, each rotating in opposite directions. Suppose both are
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Table 7.1: Sign changes of velocities and loads between CCW and CW rotors.

Variables CCW CW
VX V1 V1
VY V2 −V2
VZ V3 V3
FX H H
FY Y −Y
FZ T T
MX MR −MR

MY MP MP

MZ Q −Q

operated at identical conditions and control angles. In that case, the hub forces and

moments for the rotor with CW rotation can be obtained from the CCW analysis by

changing the signs according to the following table.

7.2 Aerodynamics

The aerodynamics of coaxial rotors were modeled using quasi-steady lifting

line theory coupled with time accurate free-wake. The Maryland Free Wake (MFW)

was updated to a new version [19] that can analyze variable and transient RPM

(including stopped rotor) on multiple rotors even though that feature is not used

in the present work. In addition, a rigid nonlinear near-wake model was added to

X3D. The validation for this updated aerodynamics module is discussed in the later

section.

7.3 Trim

The goal of an aircraft trim solver is to calculate the necessary inputs to achieve

a desired equilibrium flight condition. The trim module in X3D was expanded to

include multiple options for coaxial trim. The upper and lower rotor collectives

(θU
0 , θ

L
0 ) provide total thrust and torque balance. The cyclics can be solved with two
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options. In the first option, the lateral (θU
1c, θ

L
1c) and longitudinal (θU

1s, θ
L
1s) cyclics can

be solved for specified roll and pitch moments on each rotor. The body pitch and

roll angles are specified. This option is useful for fundamental understanding and

research and is used in this work. In the second option, the lateral cyclic is kept same

for both upper and lower rotors (θU
1c = θL

1c = θ1c) and this value along with the two

longitudinal (θU
1s, θ

L
1s) cyclics are solved for a specified lift offset and net roll and pitch

moments. The body pitch and roll angles are specified. The second option is similar

to the actual aircraft trim where the pitch and roll angles are found from propulsive

force and side force balance. In total, there are 7 controls (θU
0 , θ

L
0 , θ1c, θ

U
1s, θ

L
1s, αs, and

ϕs) for 6 equilibrium equations plus the lift offset.

7.4 Coaxial Hover

The data used to validate the coaxial aerodynamic analysis is from the U.S.

Army model test conducted by Ramasamy 2015 [128]. The tests include a single rotor

setup and a twin-rotor setup, shown in Figure 7.1. The twin rotors are independent;

hence the inter-rotor separation could be varied. The system allowed for independent

rotor measurements. The tests were carried out with a straight blade with the NACA

0012 airfoil and a special-purpose twisted blade with tilt rotor airfoils for both single

and coaxial configurations. The tilt rotor airfoils are not available in the public

domain, so the current validation uses only the straight blades. The validation cases

include:

1. Single rotor thrust sweeps, with both three and six blades,

2. coaxial thrust sweep at constant inter-rotor separation, and

3. coaxial separation sweep, at two thrust settings.

The rotor is rigid, so no blade flexibility is modeled. Thus, this is a pure

aerodynamic validation. Table 7.2 summarizes the parameters of the rotors. The

137



Figure 7.1: Coaxial rotor test setup of U.S. Army model test conducted by Ramasamy
[128].

Table 7.2: Ramasamy rotor parameters.

Parameter Value
Number of Blades 3 or 6

Radius, ft (m) 2.17 (0.66)
Chord, in (m) 2.29 (0.0647)
Root cutout 19.1%

RPM 1200
Rotor Separation, z/D 0.07

ReT ip 315, 000
MT ip 0.25

Solidity, Nb = 3 0.0679
Solidity, Nb = 6 0.1359

Twist 0
Taper 1
Airfoil NACA 0012
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baseline rotor separation is 7% diameter (z/D = 0.07). The rotor speed is 1200

RPM. The test data includes thrust and torque for each rotor. For the single rotor,

the thrust sweep was achieved by sweeping the collective. For the coaxial rotor,

the thrust sweep was achieved by sweeping the upper rotor collective and setting

the lower rotor collective to achieve zero torque (Qu +Ql = 0). For the inter-rotor

separation sweeps, the total thrust (Tu +Tl = constant) and zero torque (Qu +Ql = 0)

were targeted using the upper and lower rotor collectives.

The analysis used a lifting-line model with airfoil lookup tables coupled with

free-wake. The important features of this model are documented as follows.

1. The free-wake model used a single tip rolled-up vortex released from each blade

and azimuthal discretization of 7.5◦.

2. A nonlinear lifting-line model was used with prescribed near-wake geometry

that extended 30◦ behind each blade.

3. The initial core size was set to 10% of chord-length.

4. The tip vortex strength was taken as 40% of the maximum bound circulation

outboard of 50%R. The 40% value was chosen for no other reason but to obtain

good agreement with single rotor (Nb = 3) test data.

5. The vortex diffusion constant in the Squire core growth model was set to

a = 0.05.

6. The number of free-wake turns was set to 6, but for the inter-rotor separation

sweeps, it was increased to 20 to ensure that even at the largest separation

(z/D = 1.5), the upper wake would travel far enough downstream to reach the

lower rotor.

7. The number of time marching revolutions for new transient free-wake was set

to 20.
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8. Reynolds number correction was used for airfoil drag according to Yamauchi

and Johnson [129]. The tip Reynolds number (325,000) was low enough that the

corrections were needed. The Reynolds number of the NACA 0012 airfoil tables

was assumed to be Retable = 10 million. The Reynolds number corrections are:

cl(α) = Kcltable
(α) ; cd(α) = cdtable

(α)
K

; α = αz + (α− αz)
K

(7.2)

where cl is the resulting coefficient of lift, α is the angle of attack, K is the

correction factor, cltable
is the coefficient of lift from the table, cd is the resulting

coefficient of drag, cdtable
is the coefficient of drag from the table, and αz is the

angle of attack for zero lift. The correction factor is given as:

K =
(

Re

Retable

)n

(7.3)

where Re and Retable are the blade and table Reynolds numbers, respectively,

and n is an adjustable constant, between 1/8 to 1/5 (turbulent flat plate limit).

In the present work only the drag correction was used with n = 1/8.
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The first validation case is the performance of a single rotor. Figure 7.2 shows

the predictions and measurement of thrust and power coefficients for a single rotor

with 3 and 6 blades. Figure 7.3 shows the corresponding Figure of Merit versus

thrust coefficient. The X3D predictions show good agreement with the test data for

both cases. Due to higher solidity, the six-bladed rotor has a higher profile power

than a three-bladed rotor. As a result, the Figure of Merit of the three-bladed rotor

is higher than that of the six-bladed rotor for a given thrust. The induced power for

both rotors have similar trends as it is independent of the number of blades. However,

the blade loading (CT/σ) for a three-bladed rotor is higher than the six-bladed rotor,

which results in early occurrence of blade stall for the same thrust CT . An early stall

is seen as a quick rise in the power profile of the three-bladed rotor at higher thrust

(Figure 7.2). Figures 7.4 and 7.5 show the free-wake geometry of single rotor with

three and six blades respectively.
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Figure 7.2: Performance (power vs thrust) of single rotor with 3 and 6 blades in
hover; predictions compared with measurements.
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Figure 7.5: Free-wake geometry of single rotor wake with 6 blades, at CT = 0.005

The coaxial rotor validation follows the single rotor validation. For the coaxial

rotor, first a thrust sweep was conducted at the inter-rotor separation of z/D = 0.07.

Figures 7.6 - 7.10 correspond to the results obtained from this sweep.

The performance of upper and lower rotors of a coaxial configuration is com-

pared with the single rotor configuration in Figure 7.6. Figure 7.6(a) shows power

versus thrust, and Figure 7.6(b) shows the same data as Figure of Merit versus

thrust. The single rotor data is the same as shown in the previous section. Between

upper and lower rotors, the analysis shows better agreement with the latter test data.

At low thrust, the analysis matches well with the test data for both rotors, but with

the increase in thrust, the power grows slightly more quickly in the analysis than in

the data. The analysis predicts correctly that the lower rotor should be less efficient

than the upper and that both should be worse than a single rotor. This comparison

shows that a rotor is more efficient in isolation than in a coaxial system for the same

thrust.
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Figure 7.6: Performance comparison of single rotor and individual rotors within
coaxial system (z/D = 0.07); all at 1200 RPM.
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Figure 7.7 shows a comparison of a coaxial rotor, each rotor with three blades,

and an isolated single rotor with six blades. This comparison ensures that the total

number of blades remains the same. Thus the skin friction losses and profile power

stay the same, and differences can be attributed primarily to induced power due to

interference. Figure 7.7(a) shows power versus thrust variation. The analysis slightly

over-predicts the power for single and coaxial rotor cases at higher thrust conditions.

The results of this comparison show that the coaxial rotor is more efficient than the

isolated rotor. The improved efficiency of the coaxial rotor stems from two effects.

The primary benefit is from inter-rotor separation - the upper wake contracts before

reaching the lower rotor; therefore, the lower rotor effectively provides additional

disk area. This benefit is dependent on wake contraction and, hence the inter-rotor

separation. A secondary effect is the swirl recovery of each rotor counteracts the

other and reduces net momentum loss due to swirl. Momentum theory predicts a 9%

reduction in power for a fully contracted upper wake compared to the single rotor.

The test data shows a 6% benefit, and the predictions show a 4-5% benefit in power

compared to the single rotor.

Figure 7.7(b) shows Figure of Merit (FM) versus thrust variation. The FM

for multi rotors is defined using ideal power of a single rotor of same projected area.

This is the proper definition as it captures the interference effects between the rotors.

FM = PIdeal

PMeasured

=
T 3/2
√

2ρA

PMeasured

=
CT

3/2
√

2
CPMeasured

(7.4)

In the above equation, T is thrust, P is power, ρ is density, A is projected area, and

CT and CP are the coefficients of thrust and power, respectively. The projected area

A for coaxial rotors remains the same as the single rotor.
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Figure 7.7: Performance comparison of six-bladed single rotor and coaxial rotor
(z/D = 0.07); all at 1200 RPM.
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The thrust sharing between the rotors is shown in Figure 7.8, plotted versus

total system thrust. The results in Figure 7.8(a) suggest that the individual thrust

of both rotors increases linearly with increasing system thrust, and the upper rotor

thrust has a higher rate of increase than the lower rotor thrust. This implies that

with increasing system thrust, the aerodynamic efficiency of the upper rotor increases

relative to that of the lower rotor. With increasing thrust, the tip vortices convect

down faster, so more of the lower rotor is within the radial boundary of the upper

rotor wake. Also, with increasing thrust, the strength of the vortices increases; this

leads to higher levels of downwash for points located inside the radial boundary of

the upper rotor wake; and upwash for points located outside the radial boundary

of the upper rotor wake. As a result of both these reasons, the efficiency of the

upper rotor increases relative to that of the lower rotor with increasing system thrust.

Figure 7.8(b) shows the torque balance. The rotors are trimmed to the same torque,

only the magnitude is over predicted. This results in an under prediction of the

Figure of Merit especially at higher thrust levels as seen in Figure 7.8(d). Figure

7.8(c) shows that the upper and lower rotors produce about 55% and 45% of the

total thrust, respectively. The ratio is insensitive to thrust level across the sweep.

Figures 7.9 and 7.10 show the free-wake geometry of the coaxial wake for two

rotor separation distances: z/D = 0.07 and z/D = 1.5 respectively. As mentioned

earlier, more free-wake turns were used for the larger separation case to ensure the

wake of the upper rotor is fully developed to interact with the lower rotor.
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Figure 7.8: Performance of coaxial rotor over thrust sweep, at 1200 RPM, z/D = 0.07.

148



Figure 7.9: Free-wake geometry of coaxial wake in hover at 1200 RPM; rotors are
separated at a distance of z/D = 0.07; each rotor blade has single tip vortex.
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Figure 7.10: Free-wake geometry of coaxial wake in hover at 1200 RPM; rotors are
separated at a distance of z/D = 1.5; each rotor blade has single tip vortex.
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Next, a sweep of inter-rotor separation is performed for the validation study.

This sweep is more vital as it is beyond the predictive capability of momentum

theory and tests the accuracy of the free-wake model. The sweep is conducted

over a range of separation distances from z/D = 0.05 to z/D = 1.5, for two total

thrust conditions: CT = 0.007 and CT = 0.014. The upper and lower collectives are

trimmed to achieve the required total thrust CT and torque balance CQ. Figure 7.11

shows the thrust and power sharing at the low thrust level CT = 0.007 plotted versus

the inter-rotor separation, z/D. The predictions show good agreement with the test

for all separation distances. With increasing separation, the lower rotor produces

a lower thrust until the wake of the upper rotor is fully developed. Thereafter the

thrust sharing is constant. As the rotors get closer, the upper rotor thrust decreases

due to the influence of the lower rotor, as seen in Figure 7.11(a). Figure 7.11(b)

shows the torque balance, where both rotors are trimmed to identical torque. Figure

7.11(c) shows the thrust sharing fraction, depicting that as the separation increases

the thrust share stabilizes around TL/TU ≈= 0.75 for rotor separation z/D ≥ 0.5.

This behavior suggests that by then, the upper rotor wake is already fully contracted.

Similar to the thrust sweep, power is over predicted, which results in an under

prediction in Figure of Merit in Figure 7.11(d).

A similar sweep is also carried out at a higher thrust level, CT = 0.014, shown

in Figure 7.12. The trends are similar as earlier. The thrust sharing in Figure 7.12(a)

shows good agreement with the test data. Again, the sharing begins nearly equal,

and as the inter-rotor separation increases, the upper rotor provides more thrust. The

torque balance matches well across the sweep, as shown in Figure 7.12(b). Having

matched the thrust and torque well, the Figure of Merit prediction (Figure 7.12(d))

also matches very well. At higher thrust condition, the thrust sharing is predicted to

level out at a smaller inter-rotor separation z/D = 0.35 as seen in Figure 7.12(c).

This is because the wake contracts faster with higher thrust. However, this is not
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Figure 7.11: Performance of coaxial rotor over separation sweep, at 1200 RPM with
total CT = 0.007.

seen in the test data. The predictions show that the thrust sharing stabilizes around

TL/TU ≈= 0.75, while the test data shows slightly higher TL/TU ≈= 0.8.
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Figure 7.12: Performance of coaxial rotor over separation sweep, at 1200 RPM with
total CT = 0.014.
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7.5 UH-60A-like Coaxial in Forward Flight

In the absence of measured coaxial airloads, the notional coaxial UH-60A-

like rotor model is used for validation. This validation is more of a sanity check

that verifies the working of coaxial-related refinements made in the X3D solver.

The validation is performed on the limiting case of infinite separation between the

rotors. There are no rotor-rotor interactions at this separation, and both rotors are

expected to behave as isolated single rotor helicopters. Predictions of normal force

are compared with the flight-test data from UH-60A Airloads Program transition

flight C8513. The conditions are: µ = 0.15, α = −3.75◦, CT/σ = 0.076. This is the

same condition studied earlier in Chapter 4.

The free-wake model utilizes a fully rolled-up single-tip vortex model with no

inboard wake. Figure 7.13 shows the measured and predicted normal forces and its

harmonics content at different radial stations along the azimuth. This is the same

data as shown earlier in Chapter 4. The upper and lower rotors yield the same

results when plotted in their local azimuth. This is the expected result with no

side slip. This verification ensures that the coaxial-related modifications in X3D are

functioning as intended.
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Figure 7.13: Normal force and its harmonics distribution along azimuth at different
radial stations; predictions of single and coaxial rotor compared with flight test data.
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7.6 Summary and Conclusions

The parallel X3D solver was extended for coaxial rotors. Modifications were

performed to structural dynamics, aerodynamics, and trim modules. The new

solver was validated with hover performance data obtained from U.S. Army Model

test, and forward flight data of the UH-60A coaxial rotor with the limiting case of

infinite separation between the rotors. Based on the results obtained, the following

conclusions are drawn.

1. For the same thrust, momentum theory predicts a 9% reduction in coaxial

hover power for a fully contracted upper rotor wake compared to the single

rotor. The rotor separation needed to achieve this is far beyond z/D = 0.07

used in actual aircraft. Thus, momentum theory is useless and free-wake is

needed to get meaningful results.

2. The lifting-line free-wake model captures the correct trends observed in test

data. The test data shows a 6% benefit, and the free-wake predictions show a

4-5% benefit in coaxial hover power compared to the single rotor.

3. For constant separation (z/D = 0.07), with increasing system thrust, both

predictions and test data show that the aerodynamic efficiency of the upper

rotor increases relative to that of the lower rotor. The individual thrust of

both rotors increases linearly with increasing system thrust, and the upper

rotor thrust has a higher rate of increase than the lower rotor. The upper and

lower rotor produces approximately 55% and 45% of the total system thrust,

respectively. This ratio is insensitive to the thrust level across the sweep.

4. With increasing separation between the rotors of a coaxial system, the lower

rotor produces a lower thrust until the wake of the upper rotor is fully developed.

Thereafter the thrust sharing is constant. As the rotors get closer, the upper
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rotor thrust decreases due to the influence of the lower rotor. Both predictions

and test data captured this behavior and was found to be independent of the

total system thrust.

5. At low system thrust (CT = 0.007), both predictions and test data showed

that the thrust sharing fraction stabilizes around TL/TU ≈= 0.75 for rotor

separation z/D ≥ 0.5.

6. At higher thrust (CT = 0.014), the thrust sharing is predicted to level out with

TL/TU ≈= 0.75 at a smaller inter-rotor separation z/D = 0.35. However, the

test data showed that the level out to be slightly higher TL/TU ≈= 0.8.

7. The upper and lower rotors of the UH-60A coaxial rotor yield the same blade

airloads in forward flight when the rotors are infinitely separated. This is

expected as there are no rotor-rotor interactions at that separation.
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Chapter 8: Understanding Coaxial Aeromechanics in Forward Flight

This chapter studies the coaxial aeromechanics in forward flight to gain funda-

mental insight. Both Metaltail and UH-60A coaxial models are used for this study,

with the former being the primary focus. The analysis is performed at a low-speed

flight condition for which qualitative data is available for the Sikorsky S-97 Raider

aircraft for comparison [84–86]. Predictors of rotor performance, blade airloads, root

loads, 4/rev vibratory hub loads, and three-dimensional stresses are studied. The

effect of inter-rotor phase is examined on vibratory hub loads.

8.1 Test Conditions

The predictions are obtained for edgewise flight at advance ratio µ = 0.1,

forward shaft tilt α = −2◦, and blade loading CT/σ = 0.08. The choice of low-speed

flight allows for qualitative comparison with the S-97 Raider data published recently

in References 84–86. The trim targets are specified thrust, zero torque, and specified

hub roll and pitch moments. The hub pitch moments of each rotor are set to zero

and hub roll moments are set to satisfy a specified lift offset. Two lift offset (LO)

conditions are used: 0% R and 10% R. Predictions for performance and vibratory

loads are obtained for a range of advance ratios.

All results are obtained with free-wake based lifting-line aerodynamics. The

free-wake model employs a fully rolled-up single tip vortex with filament strength of

40% maximum bound circulation occurring outboard of 50% R. These are the same

parameters used earlier for the coaxial hover validation.
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8.2 Rotor Performance

Predictions of rotor lift to equivalent drag ratio, L/De, with advance ratio for

multiple lift offsets are shown in Figure 8.1. The rotor L/De is defined as

L/De = CL

CP/µ+ CX

(8.1)

where CL = CU
L + CL

L is the total lift, CX = CU
X + CL

X is the total propulsive

force, and CP is the sum of absolute torques |CU
Q | + |CL

Q|. The Metaltail rotor has a

very low L/De, typical of a proprotor in helicopter mode. This is due to the highly

twisted blades. The rotor L/De increases with advance ratio till around µ = 0.3.

An increase in lift offset helps increase the cruise performance up to about 15% R.

Beyond that, it degrades the performance.

Figure 8.2 shows the control angles for both upper and lower rotors for LO =

0% R and 10% R. The collectives more or less follow the power curve trend. The

lower rotor has a higher collective than the upper. Because of the high flap frequency,

the roll moment is primarily affected by the longitudinal cyclic θ1s. An increase in

specified lift offset leads to a greater longitudinal cyclic requirement to provide the

necessary roll moment.
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(µ) for multiple lift offsets.
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Figure 8.2: Control angles (θ0, θ1c, θ1s) for upper and lower rotor versus advance
ratio with; (a) LO = 0% R; (b) LO = 10% R.
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8.3 Airloads

Figure 8.3 shows the normal force predictions versus azimuth at 72%R and

90%R for upper and lower rotors with zero lift offset. Note that the azimuth axes

correspond to the local azimuth of each rotor. Figure 8.4 shows the corresponding

harmonics. The lower rotor has higher harmonics 3,4,5 /revs but primarily the

4/rev. This is attributed to the upper rotor wake impinging on the lower rotor. At

low-speed, this interaction is significant and can be observed as a magnified impulse

in the first quadrant of the lower rotor. The 8/rev blade passage spikes are not

noticeable.

0 90 180 270 360

Azimuth, deg

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

M
2
c

n
 

Upper Rotor

Lower Rotor

(a) Normal force at 72% R

0 90 180 270 360

Azimuth, deg

-0.3

-0.2

-0.1

0

0.1

0.2

M
2
c

n
 

Upper Rotor

Lower Rotor

(b) Normal force at 90% R

Figure 8.3: Predictions of normal force for Metaltail with LO = 0% R; (a) 72% R;
(b) 90% R.
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Figure 8.4: Predictions of normal force harmonics for Metaltail with LO = 0% R;
(a) 72% R; (b) 90% R.

Figures 8.5 and 8.6 show the same airloads and its harmonics but now with

LO = 10% R. With lift offset, the blade lift increases on the advancing side and

decreases on the retreating side. Similar to the zero lift offset case, the lower rotor

again experiences higher harmonics due to the upper rotor wake impinging on the

lower rotor.
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Figure 8.5: Predictions of normal force for Metaltail with LO = 10% R; (a) 72% R;
(b) 90% R.
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Figure 8.6: Predictions of normal force harmonics for Metaltail with LO = 10% R;
(a) 72% R; (b) 90% R.

Figure 8.7 shows the free-wake geometry. It can be seen that the wake at

transition flight speed involves noticeable interferences of upper rotor wake on the

rear part of lower rotor.

Zhao et al. [84, 85] discuss the low-speed forward flight predictions of the S-97

Raider using CFD/CA analysis. It is mentioned that the inter-rotor interactions

in a coaxial system result in a dominant 3/rev contribution in the lift of the lower

rotor blade near the tip. Figure 8.8 shows the snapshot of the S-97 blade tip airloads

at transition flight condition from Reference 84. However, this dominant 3/rev is

not observed for Metaltail. A dominant 4/rev is seen instead. This difference was

investigated as discussed below.

The complexity of proprotor roll-up makes a coaxial wake even more compli-

cated. The single rotor Metaltail showed 4/rev in the blade lift distribution earlier

(Figure 8.9). In the coaxial Metaltail, this effect is amplified. The high twist in

Metaltail is the cause of this phenomenon and hence the deviation from the S-97

data.

To investigate this further, the coaxial UH-60A-like rotor was used. It is more
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(a) Isometric View

(b) Front View

(c) Side View

Figure 8.7: Free-wake geometry for Metaltail at low-speed flight (µ = 0.1) in (a)
isometric, (b) front view, and (c) side view.
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Figure 8.8: Snapshot of the S-97 blade airloads at tip at transition flight condition
from the Reference 84.

likely to have a twist similar to S-97. Because UH-60A is an articulated rotor, the

coaxial configuration was analyzed at zero lift offset. Figures 8.10 and 8.11 show the

airloads near blade tip in the time and frequency domain respectively. A dominant

3/rev is indeed observed in the lower rotor, which is similar to the behavior reported

for S-97 Raider in Reference [84]. Thus, it can be concluded that twist indeed is the

source of difference.
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Figure 8.9: Predictions of normal force and harmonics for single rotor Metaltail at r
= 90% R for µ = 0.1, CT/σ = 0.08.
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Figure 8.10: Predictions of normal force for UH-60A coaxial rotor with LO = 0% R;
(a) 72% R; (b) 90% R.
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Figure 8.11: Predictions of normal force harmonics for UH-60A coaxial rotor with
LO = 0% R; (a) 72% R; (b) 90% R.

Figures 8.12 and 8.13 show the span wise distribution of 3/rev and 4/rev normal

force harmonics for Metaltail with LO = 0% R and LO = 10% R respectively. The

airloads are concentrated at the tip in both cases. The 4/rev harmonics are higher

than 3/rev, and the contributions of upper and lower rotors are comparable. Figure

8.14 shows the snapshot of span wise distribution of 3/rev normal force harmonics for

S-97 rotor from Reference 85. In this case, the lower rotor harmonics are significantly
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higher than the upper rotor. As expected, this behavior is visible in UH-60A coaxial

rotor shown in Figure 8.15. For UH-60A coaxial rotor, the 3/rev contributions are

significantly higher than the 4/rev, and the lower rotor shows higher contributions

over the upper rotor.
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Figure 8.12: Span wise distribution of 3/rev and 4/rev normal force harmonics for
Metaltail with LO = 0% R.
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Figure 8.13: Span wise distribution of 3/rev and 4/rev normal force harmonics for
Metaltail with LO = 10% R.
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Figure 8.14: Snapshot of the span wise distribution of 3/rev normal force harmonics
for S-97 rotor from Reference 85.
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Figure 8.15: Span wise distribution of 3/rev and 4/rev normal force harmonics for
UH-60A coaxial rotor with LO = 0% R.
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8.4 Blade Root Loads

Figures 8.16 and 8.17 show the predicted upper and lower rotor bending

moments in flap, lag and torsion at blade root with LO = 0%R and 10% R respectively.

These are obtained using the joint sensors associated with the Metaltail load path

mentioned in Chapter 6.

The flap bending moment for LO = 0% R in Figure 8.16(c) has a close to

zero 1/rev signal, whereas the Figure 8.17(c) for LO = 10% R shows a dominant

1/rev signal, which is required to satisfy the steady hub roll moment. The lag

bending moment for both lift offset cases shows a dominant 2/rev contribution. The

torsional moment has contributions from higher harmonics 5, 6 /rev as the first

torsion frequency is close to 5/rev.
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Figure 8.16: Root torsion, flap and lag bending moments for Metaltail at µ = 0.1
with LO = 0% R.
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Figure 8.17: Root torsion, flap and lag bending moments for Metaltail at µ = 0.1
with LO = 10% R.
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8.5 Hub Loads

Figures 8.18 and 8.19 show the predicted upper and lower rotor hub loads with

LO = 0% R and 10% R respectively. FX , FY , and FZ correspond to the longitudinal,

lateral, and vertical hub forces respectively. MX ,MY , and MZ correspond to the

rolling, pitching, and yawing hub moments respectively. The hub loads of both rotors

are dominated by 4/rev as there are 4 blades in each rotor. The total coaxial hub

loads are obtained as a sum of upper and lower rotors.

The contributions from upper and lower rotors cancel each other in the time

domain for lateral shear FY , rolling moment MX , and torque MZ . A non-zero lift

offset will produce a non-zero roll moment for upper and lower rotor. The total

contribution is zero. The remaining two forces FX , FZ , and pitching moment MY of

each rotor add. The pitching moment for each rotor is zero, so the total is also zero.
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Figure 8.18: Hub forces and moments for Metaltail at µ = 0.1 with LO = 0% R.
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Figure 8.19: Hub forces and moments for Metaltail at µ = 0.1 with LO = 10% R.
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8.6 Vibratory Hub Loads

Main rotor vibratory loads is characterized by pNb /rev harmonics for identical

blades, where p is an integer. Here Nb = 4 and 4/rev is the dominant harmonic.

Figure 8.20 shows the predicted 4/rev vibratory harmonics of roll MX , pitch

MY , resultant
√
M2

X +M2
Y , and thrust FZ for upper, lower, and total as a function

of advance ratio. The lift offset is zero. As expected, the roll moment for upper and

lower rotors cancel (Figure 8.20(a)), while the pitch moment add (Figure 8.20(b)).

The resultant moment
√
M2

X +M2
Y then takes the form of pitch moment (Figure

8.20(c)). The thrust for upper and lower rotors add (Figure 8.20(d)). The maximum

hub moment is observed at the transition speed of µ = 0.1 − 0.15. The 4/rev hub

thrust decreases with the advance ratio. Similar observations can be made for LO =

10% R as shown in Figure 8.21. The vibratory harmonics of LO = 0% R and LO =

10% R are compared in Figure 8.22. A higher lift offset shows higher vibration at

lower speeds. This increase in vibration is not significant but noticeable.

Figures 8.23 and 8.24 show the snapshot of predicted 4/rev rotor hub loads

and flight test data of S-97 at low-speed flight from Reference 84. Overall, the trends

for
√
M2

X +M2
Y shown in Figure 8.20(c) are similar to S-97. No consistent trend

was observed between the contributions of upper and lower rotors to the total 4/rev

harmonics. This is because the upper and lower rotors of Metaltail show a similar

magnitude of harmonic content in airloads distribution, as discussed earlier. However,

comparing the S-97 with the UH-60A coaxial rotor (Figure 8.25) reveals that the

trends are much more similar.
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Figure 8.20: Predicted 4/rev vibratory harmonics of hub loads for Metaltail at
low-speed flight with LO = 0% R.
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Figure 8.21: Predicted 4/rev vibratory harmonics of hub loads for Metaltail at
low-speed flight with LO = 10% R.
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Figure 8.22: Comparison of 4/rev vibratory harmonics of hub loads for Metaltail
with LO = 0% R and LO = 10% R.
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Figure 8.23: Snapshot of CFD/CA predicted 4/rev rotor hub loads and flight test
data at low-speed transition flight for S-97 rotor from Reference 84 (left plot: hub
resultant moment; right plot: hub vertical force).

Figure 8.24: Snapshot of CFD/CA predicted 4/rev rotor hub loads and flight test
data at low-speed transition flight for S-97 rotor from Reference 84 (left plot: upper
rotor; right plot: lower rotor).
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Figure 8.25: Predicted 4/rev vibratory harmonics of hub loads for UH-60A coaxial
rotor at low-speed flight with LO = 0% R.
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8.7 Effect of Inter-Rotor Phase

Inter-rotor phase (ϕ) is defined as the angle between the blades of upper and

lower rotor in their initial configuration i.e., when the rotor blade is at ψ = 0◦

(aligned with the tail line). Figure 8.26 shows the coaxial rotor arrangement at

ψ = 0◦ for ϕ = 0◦ and 45◦. The rotor phasing changes the magnitude of 4/rev

vibratory hub loads. It selectively cancels or adds the components. At ϕ = 0◦, the

roll moments cancel and pitch moments add. However at ϕ = 45◦, the roll moments

add up and pitch moments cancel. At intermediate angles, the total moments are

a combination. Apart from the geometric interactions, there are wake interactions

that change hub loads on each rotor.

Figure 8.26: Coaxial rotor arrangement at ψ = 0◦ for inter-rotor phase angles, ϕ =
0◦ and 45◦.

The geometric interaction provides the baseline of how rotor phasing changes

the total hub moments. The hub moment from the upper and lower rotor can be

broken down into its harmonic components. For a coaxial system with 4 blades on

each rotor, the hub loads for rolling and pitching moment can be expressed as shown

in Eqs. 8.2 - 8.5. Only integer multiples of 4/rev harmonics are included. The hub
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loads for upper and lower rotors are assumed to be similar for simplicity – meaning

no inter-rotor interactions are considered. The lower rotor hub loads with the effect

of inter-rotor phase are given in Eqs. 8.6 and 8.7. The total rotor hub loads is then

calculated as the sum of upper and lower rotor loads as given in Eqs. 8.8 and 8.9. It

is seen that the total rotor loads is dependent on the rotor-to-rotor phase angle, ϕ,

and the harmonic content of the original wave form.

MU
X =

k∑
(A4kc cos(4kψ) + A4ks sin(4kψ)) (8.2)

MU
Y =

k∑
(A4kc cos(4kψ) + A4ks sin(4kψ)) (8.3)

ML
X =

k∑
(−A4kc cos(4k(ψ)) − A4ks sin(4k(ψ))) (8.4)

ML
Y =

k∑
(A4kc cos(4k(ψ)) + A4ks sin(4k(ψ))) (8.5)

ML
X(ϕ) =

k∑
(−A4kc cos(4k(ψ + ϕ)) − A4ks sin(4k(ψ + ϕ))) (8.6)

ML
Y (ϕ) =

k∑
(A4kc cos(4k(ψ + ϕ)) + A4ks sin(4k(ψ + ϕ))) (8.7)

MU
X +ML

X =
k∑

2 sin(2kϕ)(A4kc sin(4kψ + 2kϕ) − A4ks cos(4kψ + 2kϕ)) (8.8)

MU
Y +ML

Y =
k∑

2 cos(2kϕ)(A4kc cos(4kψ + 2kϕ) + A4ks sin(4kψ + 2kϕ)) (8.9)

Consider some sample values. Let the hub loads comprise of 0, 4, 8, and 12

harmonics. Let the coefficients be an arbitrary set: A0c = 10.0, A4c = 1, A4s = 0,

A8c = 0.0, A8s = 0.05, A12c = 0.0, A12s = 0.02. Figure 8.27 shows the variation of

magnitude of 0, 4, 8 and 12 /rev harmonics of total hub rolling moment as a function

of inter-rotor phase angle. Clearly, the 0/rev content is zero irrespective of inter-rotor

phase. The higher harmonics (4, 8, and 12/rev) vary with inter-rotor phase. The
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Figure 8.27: Variation of magnitude of 0, 4, 8 and 12 /rev harmonics of total
theoretical hub rolling moment of a coaxial rotor with inter-rotor phase angle.

4/rev (first blade passage) roll moment is maximum at one phase ϕ = 45◦. The 8/rev

(second blade passage) is maximum at two phases ϕ = 22.5◦, and 67.5◦. The 12/rev

(third blade passage) is maximum at three phases ϕ = 15◦, 45◦, and 75◦. Similar

analysis for the pitching hub moment is seen in Figure 8.28. Here, the 0/rev pitching

moment is non-zero and constant. The 4/rev pitch moment is minimum at ϕ = 45◦.

The 8/rev pitch moment is minimum at ϕ = 22.5◦, and 67.5◦. The 12/rev pitch

moment is minimum at ϕ = 15◦, 45◦, 75◦. Therefore, the minimum hub pitch occurs

at the same inter-rotor phase as the maximum hub roll.
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Figure 8.28: Variation of magnitude of 0, 4, 8 and 12 /rev harmonics of total
theoretical hub pitching moment of a coaxial rotor with inter-rotor phase angle.

Let us now replace the arbitrary coefficients with actual calculations. The

hub loads for Metaltail with different inter-rotor phase angles are shown in Figure

8.29. These include the inter-rotor interactions from the wake. The total rolling

moment (4/rev harmonics) is maximum at ϕ = 45◦ and minimum at ϕ = 0◦. The

total pitching moment (4/rev harmonics) is maximum at ϕ = 0◦ and minimum at

ϕ = 45◦. The results are consistent with the made-up case shown before.

It is important to look at the variation of 4/rev vibratory harmonics as a

function of advance ratio for different inter-rotor phase angles. Figure 8.30 shows
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the total 4/rev vibratory harmonics of roll MX , pitch MY , resultant
√
M2

X +M2
Y ,

and vertical force FZ for different phase angles as a function of advance ratio. This

is obtained deliberately using a uniform inflow model so the interaction is only

geometric. Note that, the results shown in Figure 8.30 do not signify any physical

meaning as the interactions of a coaxial system are not captured using the uniform

inflow model. The expected trends are captured – the net roll moment is zero for

ϕ = 0◦, and the net pitch moment is zero for ϕ = 45◦. The effect of inter-rotor wake

interactions is shown next.
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Figure 8.29: Rolling and pitching hub moments for Metaltail with different inter-rotor
phase angles.

Figures 8.31 and 8.32 show the effect of wake on total coaxial rotor 4/rev

vibratory harmonics of roll MX , pitch MY , resultant
√
M2

X +M2
Y , and vertical force

FZ for different phase angles as a function of advance ratio with LO = 0% R and
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Figure 8.30: Total 4/rev vibratory harmonics of Metaltail with a uniform inflow
model for different phase angles at low-speeds with LO = 0% R.

LO = 10% R respectively. The predictions take into account the effects of wake

interactions. The results for ϕ = 0◦ are identical to the ones shown in Figures

8.20 and 8.21. Both the lift offset cases show similar trends and observations. The

phase ϕ = 0◦ provides the lowest 4/rev vibratory moment. However, the phase

ϕ = 45◦ provides the lowest 4/rev vibratory vertical force. The intermediate phase

angles do not show the extreme contributions for either force or moment and are

in-between the lowest and highest vibratory harmonics. The choice of ϕ depends on

whether vertical force or moments create more fuselage vibration. In general, the
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Figure 8.31: Total 4/rev vibratory harmonics of Metaltail with free-wake interactions
for different phase angles at low-speeds with LO = 0% R.

choice of ϕ = 45◦ seems to provide a higher drop in vertical force compared to hub

moments. The key conclusion is that the effect of wake interactions dominates over

the effect of geometric influence. The geometric influence alone captures neither the

magnitude nor trend of vibratory hub loads. Bringing in the wake interactions flips

the geometric influence trend and increases vibratory magnitude by up to 5 times.
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Figure 8.32: Total 4/rev vibratory harmonics of Metaltail with free-wake interactions
for different phase angles at low-speeds with LO = 10% R.
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8.8 Three-Dimensional Stresses

The benefit to full 3D FEA-based structural modeling is the ability to predict

stresses and strains throughout the rotor, including the hub components. The plots

shown here provide only a sample of the results generated for axial/bending stress,

but a wealth of data is available for different stresses and strains.

Figures 8.33 and 8.34 show the axial/bending stresses (σ11) for Metaltail with

LO = 0% R and 10% R respectively. The highest stresses occur near the advancing

and retreating sides. For LO = 0% R, the negative blade lift on the advancing

side causes downward bending and higher positive lift on the retreating side causes

upward bending. Hence the blades of both rotors are closest at ψ = 90◦ and farthest

at ψ = 270◦. With LO = 10% R, the advancing side produces more positive lift

compared to retreating side to produce the individual rotor roll moment. Hence the

blades of both rotors are closest at ψ = 270◦ and farthest at ψ = 90◦.

Figure 8.33: Axial/bending stress distribution for Metaltail with LO = 0% R.
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Figure 8.34: Axial/bending stress distribution for Metaltail with LO = 10% R.

Figures 8.35 and 8.36 show the cross-sectional axial/bending stresses within

the blade at ψ = 90◦ and 270◦ for LO = 0% R. Figures 8.37 and 8.38 show the same

stresses with LO = 10% R. Examination of cross section reveals that the blade spar

takes most of the bending stress, but there appears to be some stress carried by the

leading edge weight. The stress distribution along the span follows the blade bending.

This is determined by the lift and the centrifugal force. The pre-cone in the blade

results a downward bending due to centrifugal force, even without aerodynamics.

Consider the case with LO = 10% R. At ψ = 90◦, shown in Figure 8.37, the positive

lift at the tip causes a upward bending of the blade. This is seen as a compression

on the top and extension on the bottom near the root. Outboard, the moment due

to lift force decreases and the centrifugal force dominates. These effects oppose each

other but the net effect is an extension on the top and compression on the bottom

surface. Similar observations can be obtained with other cases.
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Figure 8.35: Blade axial/bending stress distribution at ψ = 90◦ with LO = 0% R.
(scale adjusted)

Figure 8.36: Blade axial/bending stress distribution at ψ = 270◦ with LO = 0% R.
(scale adjusted)
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Figure 8.37: Blade axial/bending stress distribution at ψ = 90◦ with LO = 10% R.
(scale adjusted)

Figure 8.38: Blade axial/bending stress distribution at ψ = 270◦ with LO = 10% R.
(scale adjusted)
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Figures 8.39 and 8.40 show the axial stresses at blade root connections to hub

at different azimuths for LO = 0% R and 10% R. The lower rotor has a higher

stress than the upper rotor. The connection to the outer cuff shows high stress

concentrations, as the stress from the blade spar is transferred. Otherwise,it is

generally lightly stressed. The inner cuff also shows some stress concentrations near

the outer edge.

Figure 8.39: Axial/bending stress distribution near blade root at ψ = 90◦ and 270◦

with LO = 0% R.
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Figure 8.40: Axial/bending stress distribution near blade root at ψ = 90◦ and 270◦

with LO = 10% R.

8.9 Computational Cost

The periodic rotor solution was obtained using the modified harmonic balance

(MHB) algorithm with rotor solution consisting of eight harmonics and executed

on a hybrid distributed – shared memory architecture with 90 processors. The 6

degrees of freedom trim solution for a coaxial rotor requires around 50 minutes of wall

clock time. The free-wake model is also parallelized with shared memory OpenMP

processors, with the number of processors equal to the number of tip trailers (8 in

our case). The free-wake computations for each trim iteration require 1 minute wall

clock time for ten wake turns and 20 revolutions in time with 7.5 degree time-step.
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8.10 Summary and Conclusions

The X3D solver was used to perform aeromechanical analysis of coaxial rotors.

Metaltail was used as the test example. The UH-60A coaxial rotor was also stud-

ied for certain parameters. Predictions of performance, airloads, hub loads, 4/rev

vibratory harmonics, and 3D stress fields generated with free-wake lifting line aero-

dynamics were discussed, and qualitatively compared with test data from Sikorsky

S-97 Raider aircraft. Although the intended goal was capability demonstration, some

key conclusions are drawn from the analysis:

1. It is possible to use 3D structures to model a coaxial rotor and obtain aeroelastic

stresses and strains from first principles. This was effectively demonstrated

on two notional coaxial model test cases. One is the Metaltail, a hingeless

coaxial proprotor aircraft, and two is the articulated coaxial rotor built from

two UH-60A-like rotors.

2. The lower rotor of a coaxial helicopter sees higher harmonics in blade lift

distribution. The rear part of the lower rotor (first quadrant) sees magnified

impulses. This is due to the upper rotor wake impinging on the lower rotor.

3. The higher harmonic content observed in the lower rotor is dependent on the

blade twist; a 3/rev is observed in a edgewise rotor (UH-60A coaxial rotor)

and 4/rev for a highly twisted proprotor (Metaltail).

4. The trends obtained for the total main rotor vibratory loads of coaxial Metaltail

are similar with the data published for S-97 Raider. For the range of speeds

studied (µ ≤ 0.25), the peak vibration for hub moments was observed at the

transition speed (µ = 0.1 − 0.15), and the 4/rev vertical force decreased with

increasing advance ratio.
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5. There is no clear trend observed between the contributions of upper rotor and

lower rotor to the total 4/rev vibratory harmonics. This is because the upper

and lower rotors of Metaltail show similar magnitude of harmonic content in

airloads distribution. For the UH-60A coaxial rotor, the lower rotor showed

higher contributions to 4/rev vibratory harmonics at low-speeds. This behavior

is similar to S-97 because the lower rotor had higher harmonic content in the

airloads distribution.

6. Increase in lift offset increases the 4/rev vibratory loads at low-speed flight,

thereby increasing the rotor vibration.

7. The effect of inter-rotor phase on 4/rev vibratory harmonics showed that ϕ = 0◦

provides lowest hub moments and ϕ = 45◦ provides lowest vertical hub force.

An ideal choice of inter-rotor phase angle for lowering vibratory loads depends

on which loading (vertical force or moment) ultimately creates vibration at the

fuselage. In general, the choice of ϕ = 45◦ seems to provide a higher drop in

vertical force compared to hub moments.

8. The effect of wake interactions dominates over the effect of geometric influence.

The geometric influence alone could neither capture the magnitude nor trend

of vibratory hub loads. Bringing in the wake interactions flips the geometric

influence trend and increases vibratory magnitude by up to 5 times.

9. The examination of 3D stress fields revealed that the advancing and retreating

sides showed higher stress concentrations over the rotor azimuth. Some stress

concentrations at the hub were observed, with the lower rotor showing slightly

higher stresses than the upper rotor of Metaltail.
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Chapter 9: Summary and Conclusions

This chapter summarizes the work performed, including key conclusions, con-

tributions, and recommendations for future research.

9.1 Summary

The principal barrier of computational time for rotorcraft trim solution using

high-fidelity three-dimensional (3D) structures on real rotor problems was overcome

with parallel and scalable algorithms. These algorithms were devised by leveraging

the modern supercomputer architecture. The resulting parallel X3D solver was used

to investigate advanced coaxial rotors using a notional hingeless rotor test case,

Metaltail. This investigation included rotor performance, blade airloads, hub loads,

and three-dimensional stresses.

The technical approach consisted of first studying existing algorithms for

periodic rotor dynamics — time marching, finite element in time (FET), and harmonic

balance. The feasibility of these algorithms was studied for large-scale rotor structures,

and drawbacks were identified. Modifications were then performed on the harmonic

balance method to obtain a Modified Harmonic Balance (MHB) method. A parallel

algorithm for skyline solver was devised on shared memory to obtain faster solutions

to large linear system of equations. The MHB method was implemented on a hybrid

distributed-shared memory architecture. Next, these developed algorithms were

integrated into the X3D solver to obtain a new parallel X3D.

The new parallel X3D was verified and validated in hover and forward flight
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conditions for both idealized and real rotor test cases. A total of four test cases

were studied. The first was a uniform idealized beam, which was analyzed for tip

loading. The second was the Frank Harris rotor. The third was the UH-60A Black

Hawk single main rotor model validated at low-speed flight with flight-test counter

8513 data from the UH-60A Airloads Program. The last test case was the NASA

Tilt-Rotor Aeroacoustic Model (TRAM), validated at low-speed forward flight with

DNW tunnel test data. Predictions of tip displacements, normal and chord forces,

and stress distributions were studied.

Next, the parallel performance of the solvers was measured for the test cases

mentioned above. The performance of the parallel skyline solver was compared with

commercially available solvers like MUMPS. The performance of the MHB algorithm

was compared with the time marching algorithm for speedup and the number of

floating-point operations per second (FLOPS). Lastly, the algorithm’s scalability

was studied with the increase in the number of harmonics and processors.

The new parallel X3D solver allowed for modeling advanced rotor configurations.

In this work, the coaxial rotor was the selected configuration. Two open access models

were developed; 1) a notional hingeless coaxial rotor, and 2) a notional articulated

UH-60A-like coaxial rotor. The aerodynamics, structural dynamics, and trim modules

of X3D were expanded for coaxial modeling. The coaxial aerodynamics was validated

with hover performance data from the U.S. Army model test. Inter-rotor separation

sweeps were carried out to validate the inter-rotor interactions.

The coaxial solver was then used to study rotor aeromechanics in forward flight.

Both Metaltail and UH-60A coaxial models were studied. The UH-60A analysis

allowed qualitative comparison with the Sikorsky S-97 Raider data as the twists are

likely similar. Predictions of performance, airloads, hub loads, and three-dimensional

dynamic stresses were studied. The effect of the inter-rotor phase was investigated

for the reduction of vibratory hub loads. Based on all of these studies, the following
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key conclusions are drawn.

9.2 Key Conclusions

The key conclusions are listed in the order they were drawn, not in order of

importance. They are all equally important.

1. Time marching methods carry both the transient and the forced response

as part of the total solution. As a result, they are not efficient for rotor

applications, where the modes are lightly damped and up to 20 revolutions

are necessary for transients to die. This makes large-scale applications very

expensive.

2. Parallel and scalable extraction of periodic dynamics is possible for large-scale

rotor dynamic models. However, the current algorithms will not be able to

carry out such tasks efficiently in tolerable time. Of the two widely used

algorithms, the finite element in time is infeasible due to its overwhelming

matrix size, and harmonic balance is unscalable due to skyline breakdown

of matrix. However, modifications to the harmonic balance are possible that

circumvent these problems.

3. A Modified Harmonic Balance (MHB) formulated in the complex domain

can retain the original size and skyline. The kernel of the algorithm then

becomes a parallel solver for the skyline. This can be devised on a shared

memory architecture deliberately designed for speed. The parallel skyline is

then unleashed on each harmonic, and the harmonics are solved independently

on distributed memory.

4. The modified harmonic balance is verified to converge to the same time marching

solution. The error drops to 1% with 10 iterations, 0.01% with 20, and 0.0001%
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with 40 iterations. This level of accuracy and convergence is demonstrated on

both idealized and practical rotor problems.

5. The solver was validated on the UH-60A-like rotor in a wake-dominated low-

speed transition flight and showed consistent levels of accuracy with time

marching for airloads, sectional deformations, and 3D blade stresses. Similar

observations were found for the NASA TRAM test case.

6. The performance results of the parallel MHB method show a 50 times speedup

compared to time marching in serial and at least 8 times speedup compared

to time marching in parallel for the UH-60A rotor test case. The speedup

progression for the trim solution is as follows: between time marching in serial

to time marching in parallel, there is a speedup of 6. Between time marching

in serial to modified harmonic balance in serial, there is a speedup of 10. Thus,

the modified harmonic balance in parallel provides a net speedup of 50 from

time marching in serial. Similar performance analysis for the NASA TRAM

test case demonstrated 70 times overall speedup for the parallel MHB method

from time marching in serial.

7. The MHB method exhibits weak scalability with processors as well as with

harmonics. Peak performance of 1 teraFLOPS was recorded for a model

problem with structures alone.

8. The open-source surrogate models provide useful templates for 3D modeling of

production rotors from CAD to stresses and strains. The development of the

3D model for the Metaltail proprotor was described in detail, including its flex

part connections, joint modeling, and structural mesh.

9. For the same thrust, momentum theory predicts a 9% reduction in coaxial

hover power for a fully contracted upper rotor wake compared to the single
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rotor. The rotor separation needed to achieve this is far beyond z/D = 0.07

used in actual aircraft. Thus, momentum theory is useless and free-wake is

needed to get meaningful results.

10. The lifting-line free-wake model captures the correct trends observed in test

data. The test data shows a 6% benefit, and the free-wake predictions show a

4-5% benefit in coaxial hover power compared to the single rotor.

11. For constant separation (z/D = 0.07), with increasing system thrust, both

predictions and test data show that the aerodynamic efficiency of the upper

rotor increases relative to that of the lower rotor. The individual thrust of

both rotors increases linearly with increasing system thrust, and the upper

rotor thrust has a higher rate of increase than the lower rotor. The upper and

lower rotor produces approximately 55% and 45% of the total system thrust,

respectively. This ratio is insensitive to the thrust level across the sweep.

12. In hover, with increasing separation between the rotor of a coaxial system,

the lower rotor produces a lower thrust until the wake of the upper rotor is

fully developed. Thereafter the thrust sharing is constant. As the rotors get

closer, the upper rotor thrust decreases due to the influence of the lower rotor.

Both predictions and test data captured this behavior and was found to be

independent of the total system thrust.

13. At low system thrust (CT = 0.007), both predictions and test data showed

that the thrust sharing fraction stabilizes around TL/TU ≈= 0.75 for rotor

separation z/D ≥ 0.5.

14. At higher thrust (CT = 0.014), the thrust sharing is predicted to level out with

TL/TU ≈= 0.75 at a smaller inter-rotor separation z/D = 0.35. However, the

test data showed that the level out to be slightly higher TL/TU ≈= 0.8.
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15. It is possible to use 3D structures to model a coaxial rotor and obtain aeroelastic

stresses and strains from the first principles. This was effectively demonstrated

on two notional coaxial model test cases. One is the Metaltail, a hingeless

coaxial proprotor aircraft, and two is the articulated coaxial rotor built from

UH-60A-like rotors.

16. The lower rotor of a coaxial helicopter sees higher harmonics in blade lift

distribution at low speeds. The rear part of the lower rotor (first quadrant)

sees magnified impulses. This is due to the upper rotor wake impinging on the

lower rotor.

17. The higher harmonic content observed in the lower rotor is dependent on the

blade twist; a 3/rev is observed in a moderately twisted rotor (UH-60A coaxial

rotor) and 4/rev for a highly twisted proprotor (Metaltail).

18. The trends obtained for the total main rotor vibratory loads of coaxial Metaltail

are similar with the data published for S-97 Raider. For the range of speeds

studied (µ ≤ 0.25), the peak vibration for hub moments was observed at the

transition speed (µ = 0.1 − 0.15), and the 4/rev vertical force decreased with

increasing advance ratio.

19. Increase in lift offset increases the 4/rev vibratory loads at low-speed flight,

thereby increasing the rotor vibration.

20. The effect of inter-rotor phase on 4/rev vibratory harmonics showed that ϕ = 0◦

provides lowest hub moments and ϕ = 45◦ provides lowest vertical hub force.

An ideal choice of inter-rotor phase angle for lowering vibratory loads depends

on which loading (vertical force or moment) ultimately creates vibration at the

fuselage. In general, the choice of ϕ = 45◦ seems to provide a higher drop in

vertical force compared to hub moments.
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21. The effect of wake interactions dominates over the effect of geometric influence.

The geometric influence alone could neither capture the magnitude nor trend

of vibratory hub loads. Bringing in the wake interactions flips the geometric

influence trend and increases vibratory magnitude by up to 5 times.

22. The examination of 3D stress fields revealed that the advancing and retreating

sides showed higher stress concentrations over the rotor azimuth. Some stress

concentrations at the hub were observed, with the lower rotor showing slightly

higher stresses than the upper rotor of Metaltail.

9.3 Contributions

There are four principal contributions of this thesis. These are listed below.

1. A parallel and scalable algorithm for periodic solution of large-scale three-

dimensional finite element analysis.

2. A new parallel X3D software that can be executed on shared memory systems

such as desktops or on supercomputer clusters to make use of both distributed

and shared memory architecture.

3. A three-dimensional model of a notional hingeless coaxial rotor, Metaltail that

can serve as an open-source test case for academia, industry, government/Helios

joint action. It can provide a template for X3D modeling of real rotors from

CAD to stresses and strains.

4. The new parallel X3D expanded and validated for coaxial aeromechanics. A

new Maryland Free Wake is integrated into the solver that can capture wake

interactions of variable speed multi-rotor systems.
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9.4 Future Work

The research demonstrated that full 3D FEA for rotors is practical for design.

This capability opens many future opportunities.

1. Parallel in space and time – Chapter 1 mentioned that the path to exascale

computing could be through parallelization in space and time. This dissertation

achieved the parallel in time. A contemporary effort by Lumba [54, 55] has

achieved parallel in space. The ultimate goal is to combine the two. Figure

9.1 shows a schematic of this vision. A parallel in space algorithm uses spatial

partitions which are assigned to MPI tasks (seen as concentric rings). A parallel

in time uses a hybrid MPI-OpenMP approach with harmonics distributed across

MPI tasks. The combination of both will involve each MPI spatial partition to

be solved for its harmonics using the parallel in time hybrid approach. Hence,

the overall implementation is still a hybrid MPI-OpenMP approach, but with

higher (hundreds to thousands) number of processors.
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2. Refined Fluid-Structure CFD/CSD Interface – The new parallel X3D

should be coupled to CFD. It should begin with a 1D lifting-line interface

(Level I) but eventually an exact 3D interface (Level III) between the CFD

surface mesh and the 3D structural mesh is required. A 3D interface will

require reformulation and fine-grained data exchange.

3. Model the S-97 Raider – The current work used Metaltail as a test case

for demonstrating 3D capability for coaxial rotors. However, the high twist of

its blades makes it representative of the S-97 coaxial rotor. It is desired that

UMD teams with Sikorsky to build the 3D model for the S-97 Raider.

4. Coaxial Wind Tunnel Tests – There is no test data for coaxial rotor airloads.

There is no test data for blade strains. More tests in the near future are needed

to fill these gaps.
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