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This thesis focuses on finding useful features for emotion recognition from

speech signals. In comparison to the popular openSMILE ‘emobase’ feature set,

our proposed method reduced the size of feature space to about 28% yet boosted

the recognition rate by 3.3%.

Given we are at a point technologically where computing is cheap and fast,

and lots of data are available, the approach to solving all sorts of problems is based

on sophisticated machine learning techniques to implicitly make sense of data. Yet

in this work, we study particular features that are felt to correlate with changes in
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shimmer, breathiness, and speaking rate are analyzed and are found to systemati-

cally change as a function of emotion.

We not only explore these additional acoustic features that help improve the

classification performance, but also try to understand the importance of the existing

features in improving accuracy. Our results show that using our features together

with MFCCs and pitch related features lead to a better performance.
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Chapter 1: Introduction

1.1 Motivation

Emotions undoubtedly play an important role in our daily life. Hence the need

and importance of automatic emotion recognition has grown with the increasing role

of human computer interface applications. Studies that focus on user emotions while

he or she interacts with computers and applications belong to the domain of affective

computing. It is an interdisciplinary field spanning engineering, computer science,

psychology, and cognitive science.

Having a computing device which has the ability to detect and appropriately

respond to its user’s emotions could be beneficial to many fields. Automatic emotion

recognition is a crucial technology that can be used in modern Human-Computer

interfaces and has numerous applications as described in [30]. Call center managers

would be able to monitor the quality of the services provided by their agents, and

handle very angry customers by specially trained agents. In e-learning situations,

the computer could detect when the user is having difficulty and offer expanded

explanations or additional information. What’s more, user’s interest, stress, and

cognitive load can be employed to adapt the teaching pace in an online tutoring

system. In the field of media retrieval, highlights in sports games can be extracted
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by measuring the level of excitement of the reporter. Another field of applications

is Robotics: With a better modelling of these states and traits, we will be able to

add social competence to humanoid or other highly interactive and communicative

robots, assistive robots, or to virtual agents.

As a result, a challenging problem of automatic recognition of human emotions

has become a research field of large interests. Several information sources such

as facial expressions, voice signals, and physiological measurements, can be used

for human emotion recognition. Among all, speech signals are the most suitable

way for the purpose since it is non-invasive and easier to acquire. It is known

that emotions cause mental and physiological changes which are reflected in uttered

speech; however, how the speech is affected by emotions is not yet well understood.

1.2 State of the Art Feature Sets

After decades of research, there are no standard agreed-upon acoustic fea-

tures for the automatic recognition of human emotions. This is because only few

data exists. Most of the emotional speech datasets are private and only three are

freely available to us. The Berlin emotional database [3] is in German, and it con-

tains about 500 utterances spoken by actors. The LDC Emotional Prosody Speech

and Transcripts database [20] is in English and has around 1000 utterances, but

the utterances—date and time—are all short. The Electromagnetic Articulography

database [18], the one we used, contains around 600 utterances in English produced

by three speakers. In addition, there is a large range and set of emotions, requiring
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different sets of acoustic features for discrimination. Furthermore, most studies are

carried out on single data set, where the types of emotions, the speakers, and the

acoustic conditions are the same throughout. Nevertheless, a number of acoustic fea-

tures have been commonly employed for automatically classifying emotions. These

include: prosodic features (pitch, intensity, duration, rhythm) and spectral features

(Mel-Frequency Cepstral Coefficients (MFCCs) and alike, formants, spectral statis-

tics). Banse et al.(1996) [1] examined vocal cues for 14 emotion categories. The

speech features they used are related to the fundamental frequency F0, the energy,

the articulation rate, and the spectral information in voiced and unvoiced portions.

Schuller et al.(2004) [28] ranked more than 200 features with aid of a Linear Discrim-

inant Analysis, and provided a list of their top 33 features in detail. Pitch-related

features rank the top in their study. In addition, it is believed that the emotional

content of an utterance is strongly related to its voice quality. Li et al.(2007) [19]

developed their recognition system using continuous HMM as a classifier and ap-

plied to utterances from the SUSAS database with the following selected speaking

styles: angry, fast, Lombard, question, slow and soft. The baseline accuracy corre-

sponding to using only MFCC as features was 65.5%. The classification accuracy

was 68.1% when the MFCC was combined with the jitter, 68.5% when the MFCC

was combined with the shimmer, and 69.1% when the MFCC was combined with

both of them. A summary of the commonly used features is shown in Table 1.1.

Few years ago, the Munich open Speech and Music Interpretation by Large

Space Extraction (openSMILE) tool was developed and it enables us to extract large

audio feature spaces in real-time. What’s more, it provides different configurations
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prosodic spectral voice quality
pitch MFCCs jitter

intensity LPCCs shimmer
duration formants
rhythm

Table 1.1: Commonly used features for automatically classifying emotions

for various purposes, such as emotion recognition, speech recognition, and chord

recognition. It quickly became the standard feature-extraction tool for the annual

INTERSPEECH Computational Paralinguistics Challenges.

1.3 Objectives

As discussed previously, openSMILE toolkit is widely used in the domain.

Based on the emotion recognition features sets (the ‘emobase’ configuration) pro-

vided by openSMILE, there are two objectives for this work: One is to explore

additional acoustic features that improve the performance of emotion recognition

from spoken audio signals. The other is to reduce the number of commonly used

features for emotion recognition, finding the effective ones. In fact, the ‘emobase’

configuration consists of almost a thousand of features.

1.4 Organization of this Thesis

The rest of the thesis is organized as follows. In Chapter 2, we cover the

background knowledge of speech production, voice quality and emotions. We also

introduce the Penn Phonetics Lab Forced Aligner (P2FA) toolkit [38] and the aperi-

odicity, periodicity, and pitch (APP) system [9] that help us with extracting features.
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In Chapter 3, we outline our findings with respect to various speech parame-

ters. The relationship between speech signals and their intrinsic acoustic features,

which could be helpful for decoding the emotion states, will be introduced.

In Chapter 4, we describe the database used and methodology chosen in this

work. Afterward, experiments we conducted and corresponding results are pre-

sented.

Finally, concluding remarks and suggestions for future works are given in

Chaper 5.
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Chapter 2: Background

2.1 Speech Production

As shown in Figure 2.1(a), the mechanism of speech production starts from

our lungs. In nearly all speech sounds, the basic source of power is the respiratory

system pushing air out of the lungs. Air flows from the lungs up to the trachea,

into the larynx, and then it passes between the vocal folds. By the time it passes

through the vocal folds, if the vocal folds are apart, the air from the lungs will have

a relatively free passage into the pharynx and then the nasal or oral cavity. In the

case of the latter, the velum is in charge of such selection. But if the vocal folds

are adjusted so that there is only a narrow passage between them, the airstream

from the lungs will set them vibrating. Sounds produced when the vocal folds are

vibrating are said to be voiced, as opposed to those in which the vocal folds are

apart, which are said to be voiceless or unvoiced.

The articulation process takes place in the mouth and it is the process through

which we can differentiate most speech sounds. In the mouth we can distinguish

between the oral cavity, which acts as a resonator, where the frequencies and ampli-

tudes of the resonance are determined by the position of and the articulators: upper

and lower lips, upper and lower teeth, tongue (tip, blade, front, back) and roof of
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the mouth (alveolar ridge, palate and velum). So, speech sounds are distinguished

from one another in terms of where (place) and how (manner) they are articulated.

2.2 The Penn Phonetics Lab Forced Aligner toolkit

The Penn Phonetics Lab Forced Aligner (P2FA) toolkit is developed by Yuan

et al. [38]. It is a Python script which takes a .wav file and a .txt file orthographic

transcript and generates a time-aligned phonetic transcripts of the speech wave-

form. The toolkit runs based on the Hidden Markov Model Speech Recognition

Toolkit(HTK). P2FA uses HTK, the CMU Pronouncing Dictionary, and a set of

acoustic models derived from a corpus of recordings of the U.S. Supreme Court. It

is extremely useful for scripted databases. The simplest way to use it is to type in

the following command:

python align.py InAudio.wav Transcriptions.txt OutName.TextGrid

More information of the toolkit can be found on the following website: http://

www.ling.upenn.edu/phonetics/old_website_2015/p2fa/index.html.

In this work, the P2FA toolkit was used to help find the vowel regions of the

utterances. Human verification is done afterwards to ensure correct alignment for

each audio signal. Less than 5% of the data requires correction.

2.3 The APP system

The time domain aperiodicity, periodicity, and pitch (APP) detector was built

by Deshmukh et al. [9] to estimate (1) the proportion of periodic and aperiodic
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(a) cross-section view of human vocal system

(b) Speech production mechanism

Figure 2.1: (a) shows a cross-section view of human vocal system and (b) depicts how
speech is produced
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energy in a speech signal and (2) the pitch period of the periodic component. The

APP system uses a time domain method and estimates the pitch based on the

distribution of the local minima in the short-time average magnitude difference

function (AMDF) of the speech signal. The block diagram of the system is shown

in Figure 2.2.

The AMDF [25] is defined as

γn(k) =
∞∑

m=−∞

|x(n+m)w(m)− x(n+m− k)w(m− k)| (2.1)

where x(n) is the input signal, w(m) in this APP system is a 20-ms rectangular

window and k is the lag value, which varies from 1 to 320 due to the 16kHz sampling

rate. This function looks roughly like an inverted autocorrelation function. For truly

periodic sounds, the AMDF attains local minima(referred to as dips hereafter) at

lags equal to the pitch period and its integer multiples.

If the signal x(n) is truly periodic, it can be seen from equation (2.1) that when

k equals a pitch period or multiple of a pitch period, γn(k) will be brought to zero.

That is, there will be spikes sitting at one pitch period, two pitch periods, three pitch

periods, etc. in the dip profile. However, since speech is a time-varying process, it

is only quasiperiodic in that the pitch period can change somewhat between cycles,

and the amplitude of the waveform from one cycle to the next may also change.

The main results from the APP system used in this work is the dip profile.

The dip profile stores information about strength and location of dips for every sin-

gle frame among 60 channels (ERBFilter Bank)[31]. The dip locations and their
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strengths, found by computing the convex hull of the AMDF, are applied to de-

termine periodicity and aperiodicity. For a typical periodic frame, the dip profile

would show evenly spaced dip clusters, as can be seen in Figure 2.3(a). On the other

hand, for an aperiodic frame, dips spread everywhere and their strengths are low,

as shown in Figure 2.3(b). Furthermore, the distribution and strengths of the dips

can be used to compute the proportion of periodicity and aperiodicity as well as the

proportion of periodic and aperiodic energies.

Figure 2.2: Block diagram of APP system. Adapted from “Use of Temporal Information:
Detection of Periodicity, Aperiodicity, and Pitch in Speech.” by O. Deshmukh,
IEEE Transactions on Speech and Audio Processing, 13.5 (2005): 776-786.

2.4 Voice Quality

Voice quality is defined by Trask [32] as the characteristic auditory coloring

of an individual’s voice, derived from a variety of laryngeal and supralaryngeal

features and running continuously through the individual’s speech. The natural

and distinctive tone of speech sounds produced by a particular person yields a

particular voice. In this thesis, we are exceptionally interested in jitter, shimmer,

10



(a) a periodic frame (b) an aperiodic frame

Figure 2.3: Comparison of AMDF dips in periodic and aperiodic frames. (a) shows evenly
spaced dip clusters, while (b) shows that dips spread everywhere. Note the
huge difference between their strengths.

and breathiness.

2.4.1 Jitter and Shimmer

Jitter and shimmer are measures of the cycle-to-cycle variations of fundamental

frequency and amplitude, respectively. By definition,

Jitter =
|Ti − Ti−1|

1
N

N∑
i=1

Ti

(2.2)

Shimmer =
|Ai − Ai−1|

1
N

N∑
i=1

Ai

(2.3)

where Ti is the pitch period of the i-th window, Ai is the peak amplitude of the i-th

window, and N is the total number of voiced frames. These two parameters can be

analyzed under a steady voice producing a vowel continuously.

Vocal jitter is affected mainly by the lack of control of vibration of the cords; it
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increases in voice disorder and is responsible for hoarse, harsh or rough voice quality.

The voices of patients with pathologies often have a higher percentage of jitter. The

shimmer changes with the reduction of glottal resistance and mass lesions on the

vocal cords and is correlated with the presence of noise emission and breathiness, and

it sounds crackly and buzzy. Multi-Dimensional Voice Program (MDVP), a software

tool for quantitative acoustic assessment of voice quality, indicates a threshold of

pathology of 1.04% for jitter and 3.81% for shimmer. Note that normal voice usually

has some amount of jitter and shimmer as they make the voice sound more natural.

If they don’t vary from cycle to cycle, the voice sounds robotic.

2.4.2 Breathiness

Breathy voice (also called murmured voice) is a phonation in which the vocal

cords vibrate, as they do in normal voicing, but don’t close along their full length

(see Figure 2.4(a)). Muscular tension is low, with minimal adductive tension, weak

medial compression and medium longitudinal tension of the vocal folds. Vocal fold

vibration is inefficient and, because of the incomplete closure of the glottis, a con-

stant glottal leakage occurs which causes the production of audible friction noise

(see Figure 2.4(b)). Aspiration noise can be found in higher frequency region in the

spectrogram (see Figure 2.4(c)). Figure 2.5 shows different amount of breathiness

on the basis of dip profiles. The dips are higher in the off-peak region when the

speech is breathy, as shown in Figure 2.5(b), and vise versa.
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(a) Glottal configurations

(b) Glottal volume velocity waveforms

(c) Spectrum

Figure 2.4: Glottal configurations and spectrums for modal and breathy voices. Left:
modal voice. Right: breathy voice.
(a) shows that vocal folds do not close along their full length when breathy
(b) shows there exists a DC component in glottal volume velocity waveform
resulting from the incomplete closure of vocal folds in breathy voice (c) shows
there is aspiration noise in the higher frequency region when breathy.
This figure is adapted from “Analysis, synthesis, and perception of voice qual-
ity variations among female and male talkers.” by D. H. Klatt and L. C. Klatt,
the Journal of the Acoustical Society of America, 87.2 (1990): 820-857.
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(a) modal voice (b) breathy voice

Figure 2.5: This figure shows that the dips are higher in the off-peak region when the
voice is breathy. (a) The peaks are “cleaner” (b) Lots of spurious spikes

2.5 Emotions

The classification of emotions has been researched from two fundamental view-

points: (1) emotions are discrete and fundamentally different constructs; or (2) emo-

tions can be characterized on a dimensional basis in groupings. Paul Ekman(1971)[10]

devised his list of basic emotions after doing research on many different cultures. He

found a high agreement across members of diverse Western and Eastern literate cul-

tures on selecting emotional labels that fit facial expressions. The six basic emotions

are: anger, disgust, fear, happiness, sadness, and surprise. James Russell(1980)[26]

introduced the circumplex model and proposed that emotions are distributed in a

two-dimensional circular space, with arousal and valence being the two axes of the

plane. Arousal is the physiological and psychological state of being reactive to stim-

uli. It results in an observable change in the physical state of the body which causes

14



you to become alert and a ready to move and respond. Valence means the intrinsic

attractiveness (positive valence) or aversiveness (negative valence) of an event, ob-

ject, or situation. In this model, emotional states can be represented at any level

of valence and arousal. Robert Plutchik's(1984)[24] three-dimensional circumplex

model, wheel of emotions, describes the relations among emotion concepts, which

are analogous to the colors on a color wheel. The cones vertical dimension repre-

sents intensity, and the circle indicates degrees of similarity among the emotions. It

demonstrates how different emotions can be blend into one another and create new

emotions. Plutchik first suggested 8 primary bipolar emotions: joy versus sadness;

anger versus fear; trust versus disgust; and surprise versus anticipation.

Currently, discrete emotion classification is the state-of-the-art in this area.

That being said, we only select finite diverse emotions for classification task. In our

case, we strive to classify among angry, happy, neutral, and sad emotions. However,

the other models are still useful. For instance, researchers have claimed that global

features are efficient only in distinguishing between high-arousal emotions versus

low-arousal ones, and this explains why it is harder to tell angry from happy as

opposed to angry from sad.
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(a) Ekman’s six basic emotions c©Paul Ek-
man

(b) Russell’s two dimensional circumplex
model

(c) Plutchik’s three dimensional circumplex model

Figure 2.6: This figure illustrates three different models for emotion classification as de-
scribed in section 2.5
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Chapter 3: Study of Emotion Cues from Speech Parameters

3.1 Jitter and Shimmer

Fundamental frequency F0 is often used in voice assessment. And measure-

ments of F0 disturbance, jitter and shimmer, has proven to be useful in describing

vocal characteristics. In this thesis, in place of the jitter/shimmer formulas, the APP

detector was used to get the dip profiles to quantify jitter and shimmer. Because

equation (2.2) and equation (2.3) only compare the variability within two consecu-

tive periods, while the AMDF equation compares multiple periods as a whole which

characterizes the trend more accurately. Based on the meaning of the AMDF equa-

tion, jitter and shimmer can be interpreted as the spread and the height of the first

dip cluster in the dip profiles during vowel region, respectively. The wider the dip

cluster, the more the jitter; the higher the cluster height, the less the shimmer.

Figure 3.1 and Figure 3.2 support the statement.

In this work, we look at 14 dips that precede/follow the first peak and calculate

jitter as the spread of those dips that exceed 20% of the peak value. Figure 3.3

depicts the idea.

For shimmer, we average the heights of the first cluster in the dip profiles

across each frame. To automate the process of finding the peak value in the first dip

17



(a) /AA/ without jitter

(b) /AA/ with little jitter

(c) /AA/ with much jitter

Figure 3.1: This figure shows that the amount of jitter is positively correlated with the
width of the first dip cluster. One period of /AA/ was first extracted from
a real speech. (a) was generated by directly concatenating the signal itself
multiple times. Jitter was introduced in (b) and (c) by resampling the signal
(to modify pitch period) and concatenation.

18



(a) /AA/ with little shimmer

(b) /AA/ with much shimmer

Figure 3.2: This figure confirms that the amount of shimmer is negatively correlated with
the height of the first dip cluster. One period of /AA/ was first extracted from
a real speech. Shimmer was generated in (a) and (b) by scaling the amplitude
of that period of /AA/ with random factors and were put together.
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Figure 3.3: This figure demonstrate how we quantify jitter from a dip profile. A win-
dow(orange rectangle) of width 29 is centered at the first peak. Standard de-
viation of distribution of those dips that exceed 20% peak value is said to be the
jitter value for this particular speech frame. In this example, the peak occurs at
index 96, and the indices of dips that exceeds the threshold are: 87, 90 to 101.
Then the spread is calculated as std(87,90,91,92,93,94,95,96,97,98,99,100,101)
= 4.182
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cluster, the following steps are taken (see Algorithm 1): (1) Search for the maximum

value (dmax) and its location (i) in the dip profile. (2) Search for the maximum value

(d̃max) and its location only in the first d0.7× ie indices. (3) Set the peak value to

d̃max if d̃max ≥ 0.7 × dmax, we conclude this new maximum value to be the peak

value for the first dip cluster; this happens, though rarely, when the second cluster

has a higher peak value than the first cluster. (4) Otherwise, set peak value to dmax

when d̃max < 0.7×dmax. The threshold of 0.7 was chosen empirically. Two example

dip profiles are shown in Figure 3.4.

Algorithm 1 Algorithm for automatically finding peak value in the first dip cluster

1: function getSHIMMER(dipprofile)
2: n = length(dipprofile)
3: [dmax, i] = max(dipprofile(1:n)) . find the largest element and its index in

dipprofile
4: [d̃max, ĩ] = max(dipprofile(1:d0.7× ie)) . find the largest element and its

index within the first d0.7× ie samples in dipprofile

5: if d̃max ≥ 0.7× dmax then
6: return d̃max

7: else
8: return dmax

9: end if
10: end function

We explored jitter and shimmer produced by different subjects with various

emotions and found out that speech produced with neutral and sad emotions tends to

have higher jitter values relative to speech produced with angry and happy emotions.

And shimmer is lower for angry, happy and sad speech, relative to neutral speech.

Figure 3.5 shows an example boxplot for jitter and Figure 3.6 shows an example

boxplot for shimmer, both with four emotions: angry, happy, neutral, and sad.

The boxplot is a convenient way of graphically depicting groups of numerical data
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(a) Max value occurs in first dip cluster, shimmer = 11.99

(b) Max value occurs in second dip cluster, shimmer = 3.51

Figure 3.4: This figure illustrates how our algorithm works to capture the height of the
first dip cluster (a) shows when the max dip occurs in the first cluster while
(b) shows when the max dip occurs in the second cluster, the algorithm will
update the selection by checking dips preceeding the maximum.
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through their quartiles and gives us a sense of how the data distribute. On each

box, the central mark is the median, the edges of the box are the 25th and 75th

percentiles, the whiskers extend to the most extreme data points not considered

outliers, and outliers are plotted individually.

3.2 Breathiness/Aperiodic Energy During Vowels

Breathy voice comes from incomplete closure of the vocal folds and appears

as aspiration noise in the higher frequency range. (see Figure 2.4(c)) Aperiodic

energy during vowels could be used to assess the amount of breathiness in the

higher-frequency region. This parameter is believed to contain emotion-related in-

formation. In particular, we found that when people are sad, their voices tend to

be breathier. Scherer(1986)[27] suggests that lax voice (speech sound pronounced

with little muscular effort and consequently having relatively imprecise accuracy

of articulation and little temporal duration; at the phonatory level essentially the

same as breathy voice) is associated with sadness. Laukkanen et al.(1996)[17] in-

dicates that sorrow was produced with a more breathy voice quality. Burkhardt

and Sendlmeier(2000)[4] describe a synthesis system for the generation of emotional

speech. They found that breathy voice is associated with sadness.

To measure breathiness, the APP detector was once again used to get the

dip profiles, and dips occurring outside a certain tolerance region of the clusters

are summed together. Note that breathiness is aperiodicity in higher frequency

channels, so we only sum the dips for the channels above 2500Hz. The greater the

23



sum, the breathier the voice. Figure 3.7(a) shows speech produced with neutral and

sad emotions have more aperiodic energy relative to speech produced with angry

and happy emotions. Figure 3.7(b) shows sample dip profiles for angry and sad

speech. The dips are relatively higher in the off-peak region in sad speech.

3.3 Speaking Rate

Speaking rate is supposed to reflect the speed at which an individual executes

articulatory movements for speech production. Williams and Stevens (1972)[35]

found higher syllabic rate in neutral (4.31 syllables per second) and anger (4.15

syllables per second), while lower rate in sorrow (1.91 syllables per second). There

were longer vowels and consonants and longer pauses in sorrow, relative to neutral

and anger, that were often inserted in a sentence. Braun and Oba (2007) [2] dis-

covered greatest syllable rate in hot anger, and lowest in sadness. In this work,

speaking rate was assessed as articulation rate, as number of syllables divided by

total duration of speaking time. Approximately 80% of the utterances consist of

single sentence, while the rest 20% consist of two sentences, and pause between the

two sentences are excluded. Speech data used in this work is scripted and the CMU

Pronouncing Dictionary was used to obtain number of syllables(vowels). Utterance

durations were measured from the corresponding label files produced by the Penn

Phonetics Lab Forced Aligner [38]. Our study shows highest rate in neutral speech

and lowest rate produced with sad emotion as illustrated in Figure 3.8.
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(a) distribution of jitter under different emotions

(b) dip profile for angry /AW/

(c) dip profile for neutral /AW/

Figure 3.5: (a) shows the boxplot of jitter for speaker ab under four different emotions. It
can be seen that speech produced with neutral and sad emotions have higher
jitter values relative to speech produced with angry and happy emotions. (b)
and (c) are sample dip profiles from speaker ab. The spread of dips are wider
in neutral than in angry.
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Figure 3.6: This figure shows the boxplot of shimmer for speaker jn under four different
emotions. It shows shimmer being higher in neutral speech, relative to the
other three.
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(a) Boxplot of breathiness for speaker ab under
four different emotions.

(b) dip profiles: angry vs sad

Figure 3.7: (a) indicates speech produced with neutral and sad emotions have more aperi-
odic energy relative to speech produced with angry and happy emotions. (b)
shows the normalized dip profiles from an angry and a sad speech. From the
figure, it can be seen that the dips are relatively higher in the off-peak region
(circled in red) in sad speech.
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Figure 3.8: This figure shows the boxplot of articulation rate for speaker ab under four
different emotions. It suggests fastest speaking rate in neutral speech, and
slowest rate in sad speech.
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Chapter 4: Materials, Methods, and Results

4.1 Speech Corpus

The speech data used in this study is part of the Electromagnetic Articulog-

raphy (EMA) database. The EMA database is made of acted emotions and was

collected in a nonechoic chamber by the Signal Analysis and Interpretation Labora-

tory (SAIL) at the University of Southern California in year 2005. Three speakers

(1 male and 2 females) were asked to repeated 10 or 14 sentences five times each in

a random order. The sentences are mostly neutral in emotional content (see Table

4.1). Four different emotions: angry happy, neutral, and sad, were simulated, re-

sulting in a total of 200 or 280 utterances (10 or 14 sentences × 5 repetitions × 4

emotions) for each subject. Each utterance was then digitized in 12-bit resolution

with 16kHz sampling rate. The EMA data was collected simultaneously that track

the positions of three sensors in the midsagittal plane adhered to the tongue tip,

the lower maxilla and the lower lip. Given the EMA database consists of the same

sentence produced many times by the same subjects where the only difference was

the emotion expressed, and the database consists of clean speehch in American En-

glish, it allows for a controlled study. More details about the dataset can be found

in [18].
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Considering the difficulty in getting articulatory information in real life, we

focus only on the acoustic data from this database. To determine how well the

data represents each emotional state, SAIL conducted human evaluation tests with

4 English speakers. They listened to the recordings and were asked to judge the

emotion expressed in each utterance.

The utterances which obtain both high rates (3 or 4) for its target emotion and

low rates (0 or 1) for the other emotions were selected for this study. A total number

of 507 utterancess were chosen, and 295 of them are perfect emotion utterances

(i.e. all the evaluators chose the same target emotion). The distribution of data is

presented in Table 4.2.

# Sentence
1. Your grandmother is on the phone.
2. Don’t compare me to your father.
3. I hear the echo of voices and the sound of shoes.
4. That dress looks like it comes from Asia.
5. They think the company and I will have a long future.
6. The doctor made the scar. Foam antiseptic didn’t help.
7. That made being deaf tantamount to isolation.
8. The doctor made the scar foam with antiseptic.
9. I am talking about the same picture you showed me.
10. It’s hard being very deaf. Tantamount to isolation.

Table 4.1: The list of 10 sentences from the EMA database used in this study

4.2 Experiments

4.2.1 Methodology

The overall procedures of a recognition task are as follows: The speech data are

first trimmed (based on a silence detector) so that the silence part in the beginning
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subject ab jn ls
perfect others perfect others perfect others

14 22 21 23 34 14 Angry
Number 15 18 23 17 20 17 Happy

of 20 19 39 10 27 17 Neutral
Utterances 32 14 20 23 30 18 Sad

81 73 103 73 111 66 Total

Table 4.2: This table displays the distribution of our speech data. “perfect” indicates
number of utterances which all human evaluators assess the same as their target
emotion. “other” means 3 of the evaluators judged the utterance as its target
emotion, while the other evaluator chose a different emotion.

and the end of the speech are removed. Acoustic features are then extracted using

several methods. Afterwards, a classifier is used and 10-fold cross validation is

conducted to evaluate the performance of the recognizer. The detailed procedures

are shown in Figure 4.1.

4.2.2 Feature Extraction

The common trend of feature extraction consists of extracting key features

from speech samples and creating long vectors. In this work, the open-Source Me-

dia Interpretation by the Large feature-space Extraction (openSMILE) toolkit [12] is

used for most of the feature extraction process. The toolkit is capable of extracting

many helpful acoustic features, called low-level descriptpors (LLD), and their statis-

tics for distinct purposes of speech recognition tasks. With divergent configuration

settings, openSMILE will extract different sets of LLD accordingly.

In previous work, researchers investigated the use of various acoustic pa-

rameters for emotion recognition. These parameters include pitch, loudness, mel-

frequency cepstral coefficients, and speaking rate etc. The configuration used in
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Figure 4.1: The flowchart depicts the big picture of how a recognition task is done.
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this study is the openSMILE ‘emobase’ set, which is a standard baseline set de-

signed for emotion recognition tasks. A total of 988 acoustic features for emotion

recognition can be extracted.

The feature set specified by emobase.conf contains the following LLD: Inten-

sity, Loudness, 12 Mel-Frequency Cepstrum Coefficients(MFCCs), Pitch(F0), Prob-

ability of voicing, F0 envelope, 8 Line Spectral Frequencies(LSFs), Zero-Crossing

Rate. Delta regression coefficients are computed from these LLD, and the following

functionals are applied to the LLD and the delta coefficients: Max./Min. value and

respective relative position within input, range, arithmetic mean, 2 linear regression

coefficients and linear and quadratic error, standard deviation, skewness, kurtosis,

quartile 1-3, and 3 inter-quartile ranges.

Apart from the 988 features obtained from the openSMILE toolkit, another 8

features are extracted using our methods descirbed in Chapter 3. They are maxi-

mum, minumum and mean of jitter and shimmer, aperiodic energy measure during

vowels, and average articulation rate.

4.2.3 Classifier

The 5-Nearest Neighbor classifiers with Euclidean distance is used for training

and testing. Essentially, every single testing data is classified by a majority vote of its

closest 5 neighbors in the training set. The number 5 is chosen empirically. Since the

computational complexity for the nearest-neighbor algorithm is high in both space

and time, not to mention the openSMILE emobase feature set being considerably
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high dimensional (988), we were also motivated to reduce the dimensionality of the

feature set at the same time as we explored new features.

4.3 Methods and Results

The first part of the experiments focused on dimension reduction. Our goal was

to figure out a smaller set of features that perform as well as using the whole feature

set. The feature set is separated into groups systematically based on their types,

and several recognition trials were performed using multiple groups of features. To

estimate how the results will generalize to an independent data set, we performed

10-fold cross validation. Basically, the data set is broken into 10 groups with each

group approximately the same size. For each epoch, one group of data serve as

testing set, and the rest as the training set. The recognition rate is then calculated

and averaged over 10 iterations.

The other part of the experiments is to include our own features—jitter, shim-

mer, aperiodic energy during vowels, and articulation rate—into the reduced set and

see how they perform. In addition to 10-fold cross validation, we also ran the recog-

nition task using the “perfect” utterances as training set, and the rest as testing set.

Intuitively, those “perfect” utterances can be treated as the paragon of emotional

speech given that all human evaluators rate it the same way. Moreover, the data

distribute evenly in both training and testing set with the setting (see Figure 4.2).

Thereby it is reasonable to run the experiments using this setting and compare the

results.
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30.4%

34.7%

34.9%

subject ab
subject jn
subject ls

(a) all 507 utterances

27.5%

34.9%

37.6%

subject ab
subject jn
subject ls

(b) 295 perfect utterances

34.4%

34.4%

31.2%

subject ab
subject jn
subject ls

(c) 212 other utterances

Figure 4.2: The pie charts show the distribution of utterances from different subjects in
three groups. As can be seen from the charts, the dataset is pretty much
balanced regardless of grouping. This ensures the classification results won’t
be biased.
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In most cases, using only MFCC related features to perform the recognition

tasks does not degrade the accuracy; instead the subset outperforms the whole

emobase feature set. Furthermore, the third row of Table 4.3 shows that with ad-

ditional F0 related features, the accuracy using the MFCCs can be slightly improved.

Thus, We claim that using only MFCC and pitch related features should be suffi-

cient. Aside from the improvement in recognition rate, the computation compelexity

is greatly reduced by 72% owing to dimension reduction. What’s more, the recogni-

tion rate can be further improved by adding our own features. Figure. 4.3 shows an

example of recognition rate, assessed by 10-fold cross validation, using various sets of

features and their dimensionalities. Using MFCC and pitch related features along

with our features attains the highest recognition rate at 87.97% in this example.

Huamn judges attain a recognition rate at (295×100%+212×75%)/507=89.55%.

The results of the experiment about using the “perfect” utterances as training

set and the rest (human judges achieve 75% recognition rate.) as testing set can be

found in Table 4.3. Using our set of features along with the MFCCs and F0 related

features come to a recongition rate of 81.13%, which is 3.3% higher than using the

whole ‘emobase’ feature set, and 6.13% higher than huamn judges. Confusion

matrices for ‘emobase’ features versus our features are provided in Table 4.4. It is

shown that most improvement comes from correctly classified angry speeches. We

improve the recognition rate of angry emotion by 10% in paricular.
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Figure 4.3: This figures shows an example recognition rate assessed using 10-fold cross
validation. It can be seen that using only MFCC and pitch related features
as well as our features gives the highest recognition rate at 88.17%. In com-
parison, emobase features achieve 85.8% correctness, MFCC related features
reach 87.18%, and MFCC plus pitch related features attain 87.57%. In addi-
tion to improvement of recognition rate, the amount of features used is greatly
reduced from 988 to less than 280. Note that numbers in the parentheses in-
dicate the dimensionality of that feature set.
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Figure 4.4: This figures displays recognition rates with perfect utterances as training set
using various features.It shows that using only selected features can achieve
better recognition rate (above 81%) in comparison to using the whole emobase
feature set.(77.83%)
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accuracy(%)
Human Judges 75.00

emobase features (988) 77.83
MFCC + F0 (266) 79.72

MFCC + our features(236) 79.25
MFCC + F0 + our features (274) 81.13

MFCC + F0 + shimmer (269) 81.60

Table 4.3: This table displays the recognition accuracy using the “perfect” utterances as
training set and the rest as testing set. Our reduced feature set outperforms
the openSMLIE emobase feature set by more than 3%.

predicted
Angry Happy Neutral Sad Accuracy per emotion

Angry 36 10 10 3 61.02%

a
ct
u
a
l Happy 6 42 1 3 80.77%

Neutral 2 1 43 0 93.48%
Sad 1 0 10 44 80.00%

Overall 77.83%

(a) ‘emobase’ features

predicted
Angry Happy Neutral Sad Accuracy per emotion

Angry 42 6 9 2 71.19%

a
ct
u
a
l Happy 6 42 0 4 80.77%

Neutral 1 0 44 1 95.65%
Sad 0 0 11 44 80.00%

Overall 81.13%

(b) MFCC + F0 + our features

Table 4.4: The table shows the confusion matrix when using perfect utterances as training
set. From the statistics we can see that the recognition rate for angry speech
is improved by 10 %.
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Chapter 5: Conclusions

5.1 Summury

The understanding of how speech is affected by emotion is crucial towards

improving the performance of an emotion recognition system. Thanks to advances

in technology, computers get faster processors and lower prices. People nowadays can

easily neglect the importance of computation complexity and perform recognition

tasks in a data-driven approach. In spite of that, this thesis deeply analyzes a few

features (jitter, shimmer, aperiodic energy, and articulation rate) and finds them to

be involved with emotional speech. We show by the EMA dataset that using our

features together with MFCC and pitch related features lead to a better performance

in comparison to the openSMILE ‘emobase’ feature set. It not only improves the

overall accuracy by 3.3% but also greatly reduces the feature space by 72%.

5.2 Future Work

While this thesis provides a basic framework for emotion recognition from

speech, more work is needed in several areas.

• Collect more emotional speech data: Lack of data is always a big problem
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in the community. Most of the emotional speech datasets are private or in different

languages. We are in need of a standard database so that people can easily compare

their results.

• Investigate new features: Needless to say, there is still a gap between the

performance of speech emotion perception by human and machine. Based on the

results we get, our features contribute the most in differentiating angry speech.

There could be other features which recognize happy or sad emotions better. The

right features may be hard to find and need more exploration.

• Reduce feature space even more: In this work, features are selected on a

all-or-nothing basis. Take MFCC for example, we either keep all the MFCC related

features or none of them. It is possible to reduce the feature space even more if

additional investigation could be done on a functional basis. We are still not clear

whether the statistics applied are all beneficial or not.

• Automate and simplify our feature extraction process: In this work, all

the features are extracted separately using different modules, and were concatenated

afterwards. The tasks could possibly be integrated into one single package and all

the features could be extracted and concatenated at once seamlessly.
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