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HISTORICAL BACKGROUND

While great strides have been made in the solution of ordinary 

differential equations by numerical methods, much leas has been done 

with numerical solutions of partial differential equations. That the 

latter are more difficult to handle is true, but surely much of the 

lethargy in the development of the theory behind the numerical solu­

tion of partial differential equations was due to the fact that such 

methods were seldom, if ever, used. This was due to the tremendous 

labor involved in using such methods to solve even a simple practical 

problem. Undoubtedly the recent increase in interest in this field is 

due, to a large extent, to the development of the modern high-speed cal­

culators and to the increased number of them in everyday use*

It was not until 1910 that one of the first important papers was 

written on this subject (ref. 6). The author of the article, 1. F. 

Richardson, numerically approximated the solution of the one dimensional 

heat flow equation
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with simple initial and boundary conditions, by means of the difference 

equation

merits of 0.001 and 0.1, respectively, Richardson computed, by means of 

(1.2), the temperature on the mesh points from t s 0 to t a 0.005>, for 

certain values of x. Comparing his result with that from solving (1.1) 

by means of a Fourier series (with the same initial and boundary condi­

tions) he found them to be quite good.

Perhaps the outstanding early paper on the subject was on© by 

Courant, Friedrichs, and Lewy (ref. 2). A difference equation with 

given auxiliary conditions was defined as convergent provided the solu­

tion of the difference equation approached the solution of the differ­

ential equation when the distance between mesh points approached aero. 

In this paper it was first shown that the ratio of the increments af­

fected the ability of a difference equation to converge and in on© par­

ticular hyperbolic problem it was shown that, to be sure of convergence, 

the ratio must be taken less than one ,1AX

\ n  a hyperbolic partial differential equation the ratio is £&•

U(x, t / At) - U(x,t - At) si 2r£u(x / 4 X,t) - 2U(x,t) / U(x -AX,t)J (1.2)

where r, called the w ratio5*, equals Using time and space incre
(a x )

AX
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Later von Neusann, in an entirely different manner but using the same

problem as Courant, Friedrichs, and Lewy, again showed that must be4>:
less than 1 to make convergence certain* He recognised that *stability* 

is & separate factor, and defined a difference equation as being stable 

when the numerical solution of the difference equation can be mad® arbi­

trarily close to the exact solution of the difference equation. He 

showed that the value of the ratio was the determining factor in sta­

bility (ref* S) ̂

By using von Netanann* s method Kaplan and O’Brien recently showed 

that Richardson’s results, previously mentioned, were entirely in er­

ror (ref* U). It was shown that Richardson was using an unstable rep­

resentation and that his results, if carried a little further in the 

time direction, would oscillate with ever increasing amplitude. His 

method was used by them to actually demonstrate this showing that the 

results soon alternately exceeded th© initial temperature and fell below 

the final temperature. A stable solution was then used, and 41 un­

changed in size, and the result was a close approximation to the

7on Neumann himself did not publish these results.



solution of the differential equation (this in spite of the fact that 

the difference equation chosen actually possessed a larger truncation 

error).

In 19U9 0,Brien, Hyman, and Kaplan showed that in a simple para­

bolic partial differential equation the difference in value between 

the exact solution of the partial differential equation and a numerical 

solution of a corresponding partial difference equation, when a stable 

ratio was used, was due almost entirely to the difference in the exact 

solution of the differential equation and an exact solution of the dif­

ference equation rather than in the difference between the exact solu­

tion of the difference equation and its numerical solution caused by 

the accumulation of round-off errors. Even in an unstable case it was 

shown that lack of convergence more than lack of stability was respon­

sible for the large error in the numerical solution in this particular 

case (ref. !?}.



PRELIMINARY MATERIAL

Consider a partial differential equation of the parabolic or hyper­

bolic type with suitable auxiliary conditions. Assume that a solution 

exists, perhaps in the form of a converging infinite series; such a solu­

tion will henceforth be called the exact solution of the differential 

equation and will be represented by the letter T (see equation 3*5)*

Let a suitable difference equation be used to approximate the differen­

tial equation and choose auxiliary conditions which will suitably approx­

imate the auxiliary conditions of the differential equation. Its solution 

will be designated an exact solution of the difference equation and it 

will be represented by the letter U (see equation 3*9). There may be 

more than one exact solution for a given difference equation c?epending 

on the chosen auxiliary conditions. Let the numerical solution derived 

from the difference representation be represented by the letter H.

It will be most convenient to us® the term nconvergence3® in this

henceforth when we speak of the solution of a difference or differ­
ential equation It will be understood that suitable auxiliary conditions 
are also included*



paper in the usual way although I believe a better definition is given

in the footnote below

The term "stability" has two different definitions and, in re­

ference 5, they are distinguished between and called, weak stability and

strong stability. We will use the terms with the following meanings?

A numerical representation is weakly stable provided a single

error, introduced at any point in the numerical computation, will not

increase with succeeding steps.

A numerical representation is strongly stable provided the accu­

mulation of round-off errors, introduced at each point and carried on

A difference equation is called convergent when, by properly let­
ting x and t go to aero, the value of \U - T\ can be made arbitrarily 
small for any set of values of x and t that lie on the mesh. That this
is the most logical definition follows from the fact that we would, in
practice, us© a difference equation to approximate the solution of a dif­
ferential equation, Whether w® then used a numerical solution or not we 
would have the solution only at points of th© mesh. No matter how small 
we chose ax and At there would be an infinite (continuum) number of 
values of (x,t) within our range that would never be, in fact could never 
be, covered. In the problem considered in this paper w© see that all of 
the mesh points will be rational sets of values which, even in the limit 
as ax, At— *0, covers only a relatively small part of all the possible 
points in our interval.

At first this might cause some alarm and misgivings as to the value 
of a difference solution but a little consideration shows such concern
to be groundless. For even if it ware possible for us to get a ridicu­
lous answer from our difference equation for points off the mesh it would 
not matter. Our values on fch© mesh can be made as close to the true 
result, at these points, as desired. If we should find it necessary to 
determine the value of the solution at an inaccessible point we could do 
so by on© of the many interpolation methods available.
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by the numerical process, will not increase beyond a certain bound with 

succeeding steps.

In reference $ it is assumed that weak stability implies strong sta­

bility provided the round-off errors are of a random nature. This assump­

tion is justified in each of the problems actually computed. In reference 

3 it is pointed out that although round-off errors may be non-random in 

certain regions of integration, the randomness may be regained by carrying 

extra figures in calculating those regions.

The theorems dealt with in this paper concern weak stability and since 

it is convenient (although not necessary) it will be assumed that weak sta­

bility implies strong stability.

Convergence has to do with T and 13 while strong stability has to do 

with U and II. If a numerical solution lacks either convergence or strong 

stability N will not generally be a good approximation to T. The impor­

tant question is *will a certain numerical solution properly approximate 

the solution of the given differential equation?* That this is also a 

difficult question is immediately evident for generally one uses a nu­

merical solution because no other one is available. It is the principal
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aim of this paper to show that, in certain parabolic cases at least, 

convergence is closely related to weak stability and, in particular, 

that one may insure convergence (as well as strong stability) by proper 

choice of r, Then, whether T and U are obtainable or not, one need only 

choose r within the proper range and not only weak stability, but con­

vergence, is insured and the numerical solution will approximate the 

true solution to any desired degree of accuracy.

As stated, strong stability has to do with U and N, We call Ju -  N| 

the numerical errors this error arises in various ways, round-off errors 

being of prime interest to us, N is called strongly stable when |u ~ 

can be kept arbitrarily small throughout the entire region of solution 

by properly choosing the size of ax and At and by properly deciding on 

the number of significant figures to retain in the steps of the compu­

tation.



the m o m m

As vas already stated, the principle aim of this paper is to give 

a practical means of determining conditions under which a numerical 

solution will suitably approximate the true solution of a parabolic 

partial differential equation. In this section we will limit ourselves 

to a simple initial condition.

Before proving the theorems (3,1 and 3,2} some groundwork is nec­

essary and three lemmas, which will be used in establishing theorem

3,2, will be proved.

Let us turn our attention now to a specific problem. Assume a bar 

of unit width and unspecified length be heated uniformly to a tempera­

ture 1°. Let each side be suddenly cooled to, and kept at, 0° and as­

sume the heat flow in one dimension (namely across the width of the 

bar), Let its constants be such that

H“f? (3'1}
represents the heat flow, where T m f(x,t) represents the temperature, 

t the time, and x the distance, (measured across the bar),



The partial differential equation (3.1) is readily solved for the 

particular solution

T(x,t) s c^e^t (eg cos x / sin J/3c x) (3*2)

Imposing the boundary conditions

T(0,t) s 0, T(l?t) s 0 (t>0) (3.3)

and the initial condition

T(x,G$ s 1 (3.U)

one finds the solution to 'be

?{x,t) ss k ^ slnirkx. (3.5:)
K= 1,3,5,

Equation (3.35 is what has been referred to as the exact solution of the 

partial differential actuation (3.1) with the initial and boundary con­

ditions (3.3) and (3*h)♦

Next approximate (3,1) by the difference equation 

U(x,fa / at) s U(x#t) / r|ll(x / Ax,t) - 2U(x,t) / U(x - AX>t)J , (3.6)

where at and a x  are the time and. space increments respectively, and

r, the ratio, equals atfiax)d m 1

A solution of (3,6) satisfying (3.3) is seen to be

s <»"There are other approximations of (3*1) different from (3.6) (e.g.
Bee reference 5),



arbitrary, k an integer greater than 0, and

ak - ln 3in2 . (3.7)

In place of the initial condition T(x,0) » 1, x 6(0,1), use a trigo­

nometric polynomial approximation in the sense of least square error.

To satisfy this, choose A^ so that

r ^  “I2ĵ l - y  Ak sin 7ikxj dx (3.6)
o

is a minimum giving the suitable approximation
m - ̂

u(x,t) - ~ ^ sin nkx j\ - Ur sin2 i^lj , (3.9)
H*i,V

where M, the number of subdivisions of the width of the bar, is given

by Max - 1.

Equation (3.9) is what has been referred to as an exact solution 

of the difference equation.

To determine the conditions under which (3,6) will be stable as­

sume e(x,t) is the total error at the point (x,t). Then e(x,t) satis­

fies the "variational equation"
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That the form of (3.10) is the same as that of (3.6) is due to the fact

that (3.6) is linear.

The errors @(xft) at each of the M - 1 interior mesh points on the

line t — 0 are arbitrary quantities and small. They may be represented

by a Fourier series of complex exponentials of the form

satisfies (3.10) and reduces to (3*11) when t - 0. Any term in the sum

(3.12) is a solution of (3.10)f let such a term be represented by

The value of b depends on M and on the fact that the width of the bar 

is taken as If thus it is rational. Her© a « a(b) is generally complex.

To determine values in (3.10) such that (3.13) holds (i.e. errors

(3.11)

Choose a„ the same as in (3.7) and n
M  -I

(3.12)

Aeateib*

Q k4*The ratio of error growth is e , A sufficient condition for stability

is therefore

(3.13)

diminish giving stability) put r into (3.10). This gives



sa(t^t) + ibx _ @at+ibx gat+ib(x+Ax) _ ^at+ibx ^ @at+ ib(x-Ax)
At " tix)^  ~~~~ " ~ ^

Let y as and (3-lit) becomes, with slight simplification,

y ~ 1 s r eib/,x - 2 / e-ibAXl - - Ur sin2 1 ^ 1 .

’Then to satisfy (3*13) taka

- 1 < 1 - Ur sin^ ( ^ x? < 1.2

The right side of the inequality is evidently true; the left inequality 

holds for all b if and only if r<|>-. This must be made to hold for all 

b because in a numerical solution all frequencies are possible due to 

the small errors always present. Thus, in this problem, the value 

r - J- separates the region of stability, where errors damp out, from 

the region of instability, where some errors grow. The value of r, 

the "ratio*, is the determining factor in the stability of a difference 

representation.

The effect of the ratio upon convergence will now be considered. 

Theorem 3.1* In the problem under discussion, namely equations (3.1) 

with conditions (3.3) and ( 3 .U ) ,  and ( 3 .6 )  with conditions ( 3 .3 )  and 

(3.8), stability is necessary to insure convergence.



Proof. By applying Weierstrass1 II - test one sees that (3.5) con­

verges uniformly with respect to x, 0 & x $ 1, t i to>0. It will now 

be shown that (3*9)* the solution under consideration of the correspond­

ing difference equation, diverges to infinity as the number of intervals 

M increases without bound, x jd 0, 1, t>0, provided r is chosen greater 

than

For each value of u (3*9) yields a different series; consider these 

series as successive values of M are used. Keep

where Kfl is a fixed arbitrary positive constant greater than 1, and note

the result as M Increases without bound, the value of

eventually exceeds, and remains greater than, one. Choose on© ter® 

from each series, subject to the condition (3.15), and there follow® 

a sequence of terms that diverge to infinity In spite of the tendency

M - K0 £ k i II - 1, (3.15)

of ffiyriS toward aero. Q. S. D.

Three lemmas will be found useful in the work that is to follow.
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Lemma 3«1. For r € (0,^ 9 *€[b,v] 9 M an integer s 1,

•3
t il'

1 -  Ur s in 2 a

is non-increasing in r.

Proof. Ifj *  * ? j the learn i s  true. Let * > 0 and let us choose a  (z * Oj

fixed value for t >0. Choose any S and s as long as they satisfy

2 : 2s s S >s>0.

r i f1 - Us sin2 z| » 1 - US sin2 z / 8S(S - s)sin^ z / 2|2{S - s)(2s - S)sin^ s

a 1 - US ain2 2.
Sr~Thus [l - Us sin2 a] > _  x

or [l - Us sin2 J  >,Ja --- 1179 = 1

1 - US sin2 s
i f

t P
|l - US sin* z2 *1 “T

Q. K. D.

Lemma 3.2. With the same restrictions on r, sf t and M as in Lemma

(3.1)* for any £>0 there exists an M0 so large that

- Ur sin2 ẑ j n r  -im2t,2t < e— © --

whenever M > M q9

* 3 ~1Proof. Case i. Let % € (0,M J .



Hence,

Then

f1
Let

Let

Let

Sine©

16

List I 1 
r^-0

Jm£
[ X  - Ur sin2 si r

from Lemma (3.1), 0~^tM sin s serves as an upper bound for

1 -
M

hr ®in% *\ r .

itr sin2 *1 ~,r* - ,-^2»2t £ e-UtH2 sin2 s _ ,-tUlVt 

e-ittH2 sin2 z < e-!ttM2z2 /(U/3) HI2*** .

J(z,M) S e-*1̂ 2®2 / (U/3)tM2zk _ e-l»ttf2z2

Ja(z,H) s 8tK2ze-k**2*2 z2 - ^  e<V3)tM z^ ^ l 

K(*,K) S Q  *2 - l) ^ i

K(0,K) s 0

t(*,n) s Uta2z2( 2 «2 - i) / l.

J(z,M) £ 0, L(*,M) £ Of in fact

0 % L(a,M) 4 1.
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Sine® this is true for any fixed t,

Hence

0 s Z <  jgjf.

Then

Hence

r (. ») ^ U -5P < U»/ as 3ir " w >

K(z,K) £  11
*575'

I e u\ < 32tM1//30e'JttM2‘2« ■“■■"'."'■'■y .... w...i

M<UC S 3 i/TJ*2^  »

<s £.
3 t/I 1

[x  -  Ur .ln 2 a ] ^  S |I*

.-2/3

-2/3Case 11. Let s € (M » w)

M
-  Ur s in2 z l r  ,

considered as a function of s, is monotone decreasing in m £ 

when r € { 0 , having
t|g%

f~l -  Ur s in2 ( IT 2/ 3) ] ~r~

for upper bound. But for any £>0 there exists an Mfi> 0 so large that.



 ̂RXu

for > Mo
m2

JjL ~ Ur sin2 1. D

Lemma 3»3» Under the conditions of lemma (3*2) 

Proof, Case i. Let z € .

Sine® £ 1 -* Ur sin2 zj
m*
r

is monotone decreasing in r, it has for lower bound

,  ,8m2(cos z) ,

m 2
«•UM2si2t j- i , 2 1 ^ —UM^z^t / \8tM*"® ~ II - Ur sin s ^ e *  ̂ (cos z)

0(0,M) = 0

a#(z,M) SS 8Sf2tss - x A 2t y tan * /- e f — ~  (eos z)

Call

H(z,M)

If

- e- ^ 2*2* / tan_a (coB z)8m^

(cos E)e« 3 2 e-to2*2t

case i is proved# Consider

(cos «)8tks2 i e- ^ 2*2t
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H(s,M) % 04a,2*2t - ll

T*n

H(*,U) £ a-to2*2t j V  + aUj < B2e-40l2*2t

Z20-Jjl2*2t < £2;
UtK

3S(*,K) - 2e"1M*'2/3

Of*,*) % 2e"V4^ 3 «

tB2MMNMi*
Thus .*l*,42»2t - [l - Ur sin2 ,1 r i £

1

Case il. let * £ (K-2'3, £)  2

< ,-j.tji2/3 < |  for any e > o,

if 5* is chosen large enough*
tn%

Hence e~Ull2*2t «. j~x - Ur sin2 *J T %  ̂  for % 6 1̂ )

til2
since £*1 - Ur sin2 « J r • 0. Q. E. D*

The following theorem can now readily be proved.

Theorem 3*2. In the problem under discussion, (see theorem 3.1) 

** € (QjiJ is a sufficient condition for convergence.

162872
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Proof. It is necessary to show that, for any d> 0 there exists

I such that, for M > M Qf

2.2. . tM2
i£ ^  [l - >* S] < d (3.16)

Hsi.V

whsnever 0< r a J and. i & 0 are fixed, and uniformly with respect te 

X 6 [o,l] .

It is clear that (3*16) is true provided t s 0, x * 0, or x m 1.

Assume then that t^O and x £ (0,1).

One easily sees that

I* sin 7rkx -.Tĵ k̂ t
7T /_ , It *

K = h*,"
is uniformly convergent with respect to our values of x.

(3.17)

Hence for any d^> 0 there exists an such that implies

7T
— i e 9 (V'’1\ 1 sin wkx ~*Trk t S""* 7rkx ~7T̂ k̂ t f/  .— F “  9 - /  — s r ~  6 j * Ql (3.18)

consider
AV tI p . ■ "j —— -—
\ sin wkx -Tr̂ k̂ t \  sin w kx

— T —  @ “ / —
L f L__
k=m ,-*

which may be written
Ks'.b"

1 -



pi

. M-i
!i V~* sin tt kx \
n I L j  k )

pk*->,V- L
“TT k 1 * ii r dn2 ] (3.19)

By means of lemmas (3*2) and (3.3) the above can >a&<

chosen do>
f?"1* h I \ 1 sin tt kx d2IT -*0 (3.2(

by choosing K > some fixed value, say M.g.

Now for any d>0 we can choose M0 so large that, when M >Uoi

di< (̂2< ̂  30 t‘iâ  (3.16) is satisfied*

Q* E. D.
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the previous problem and. the theorem stating that choosing r 6 (O/JJ

insures convergence poses the question as to the possibility of using 

some such criterion in more general parabolic problems and in hyperbolic 

problems* In this section it is proved that such a criterion does exist 

for the previous problem with a generalized initial condition.

In particular consider again the differential equation (3*1) sub­

ject to the boundary conditions (3.3). Let the Initial condition be

where f(x) is assumed piecewise continuous and has one sided derivatives 

in the interval 0 * x - 1.

In solving the differential equation one ©an use the previous re­

sult

?U=J

together with the condition (U.l) and get as a solution of the new 

system

T(x,0+) . f(x) U.l)
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T(x,t) s yT* 0 g ^ n  m x  (I* .2)
D si

° a  *  2 J ‘ f ( x , )  3 ln  d x ’O
How consider the difference equation (3.6) subject to the boundary 

conditions (3.3). In place of the initial condition (ii.l) again use a 

trigonometric polynomial in the sense of least square error so that

-fi, 2
f(x) - sin n-rrxl dx (k.3)

o *«•»

is a minimum. This condition is satisfied by taking

2 6 , n>M 

An s 9 n = M

giving
M tM?

»<«.*> - 2 1  *„ ■*" »“  [l - '*'■ ^ ( S )
>1 - 1

f' ̂
kn 8 t

( h M

f{x») sin irnx* dx*
JQ

The change in the initial condition in no way affects th© ratio so

that | still separates the region of stability from that of instability,

lemma U.l. Let t>0, x€[o,3] and the series

'y sin rnrxL ( n
y\-i

converges uniformly in x.
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oo

Proof. The series Cn sin nrx converges to f (x) by hypothesis.
n «i

sequence  ̂ independent of x, monotone decreasing in n

* 7T ^  —n̂ ir̂ tand the first term is e . Hence / Cn®"* sin nxx is uniformly

converging in x (ref. 1). Q. I. D.

Theorem U.l. Consider the partial differential equation (3*1) with the 

conditions (3.3) and (U.l), and the partial difference equation (3.6) 

with the conditions (3*3) and (U *3)»

Stability is a necessary condition to insure convergence of the 

difference solution to the solution of the differential equation.

Proof. The proof of theorem (3.1), without important modifications, 

will serve here. Q. S. t>*

Theorem U.2. Consider th© partial differential equation (3.1) and the 

difference equation (3.6) with the auxiliary conditions the same as in 

theorem (U.1). A sufficient condition for convergence of the difference 

solution to that of the solution of the differential equation is that

r  e <0. i ]  .

Proof. It is necessary and sufficient to show that, for 0< r « J 

and for any d >0 that there exists an so large that, for all M>M ,
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h= i
Cne - ^ t  s^n n7TX _ ^  \ n sin nxx |~1

■ Ur sib2( S )1 r |< a * (U,5)

where GR and An are the same as previously defined 

If t » 0 (U.5) reduces to

oo

(Qn «* Ar) sin htx si / Gn sin n*x#
"H -  I >1 -  M + /

this expression can be made arbitrarily small by choosing M large enough, 

Consider t fixed but greater than 0.

is uniformly converging so for any d^> 0 there exists an so large 

that, when M>V^
ao

(ĵe-B-7t-Tl Bin n„x j < (U.6)

tut2“®'rrT

Me-1
Next consider

M  M

^  Cne*n 7̂ir̂ ^ sin nxx An ain nxx JjL - Ur sin^
y\ = i >1 = 1

tM**
> Cn sin nxx - £l - J*r sin^ sj ^ ̂  | (U*T)

where s a 5j||. The expression

(U,7) s |Cn sin mrx j ^  (U*8)

where dg> 0 can be chosen as small as we wish
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Let dj as sax j ̂  sin mix |

and (U#8) jfc U ■■*?■.,■■£, * d^, 0t*9)

where d^ s <*3^ .

Finally one ean choose dg ao small, and MQ so large, that when M> M0

d <cL /

and ©^nation (k.5) '©ill be satisfied.

Q. £. D.
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