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HISTORICAL BACKGROUND

While great strides have been made in the sclution of ordinary
differential equations by numerical methods, much less has been done
with numerical solutions of partial differential equations, That the
latter are more difficult to handla.ia true, but surely much of the
lethargy in the development of the theory behind the numerical solue
tion of partial diffsrential equations was due to the fasct that such
nethods were ssldom, if ever, used, This was due to the tremendous
labor involved in using such methods to solve even a simple practical
problem, Undoubtedly the recent increase in interest in this field is
due, to a large extent, to the development of the modern highespeed cal-
culators and to the increased number of them in everyday use.

It was not until 1910 that one of the first important papers was
written on this subject (ref., 6). Thé author of the article, L. F,
Richardson, numerically approximated the solution of the one dimensional

heat flow equation

(1.1)



with simple initial and boundary conditions, by means of the difference
equation

U{x,t £ at) - U(x,t -at) = Zr[ﬂ(x #ax,t) = 2U(x,t) # U(x -Ax,t)] (1.2))

where r, called the "ratio", equals _O%Y , Using time and space incre-
(ax)

ments of 0,001 and 0,1, respectively, Richardson computed, by means of

(1.2), the temperature on the mesh points from t = 0 to t = 0,005, for

certain values of x, Comparing his result with that from solving (1.,1)

by means of a Fourier series (with the same initial and boundary condi-

tions) he found them to be quite good,

Perhaps the outstanding early paper on the subject was one by
Courant, Iriedrichs, and Lewy (ref. 2). A difference equation with
given auxiliary conditions was defined as convergent provided the solu-
tion of the difference equation approached the solution of the differ-
ential equation when the distance between mesh polnts approached zero,
In this paper it was {irst shown that the ratioc of the increments afl-
fected the ability of a difference equation to converge and in one pare-

ticular hyperitolic problem it was shown that, to be sure of convergence,

the ratio &t must be taken less than one .t
AX

1
In a hyperbolic partial differential equation the rati@:isﬁég.



Later von Neumann, in an entirely different mammer but using the same
problem as Courant, Friedrichs, and Lewy, again showed that 3_;% must be
less than 1 to make convergence certain, He recogniszed that "stabllityn
is & separate factor, and defined a difference equation as being stable
when the numerical solution of the difference squation can be made arbi-
trarily close to the exact solution of the difference eoguation, He
showed that the value of the ratio was the determining factor in sta-
bility (ref. 5).2

By usingz von Neumann's method Kaplan and O'Brien recently showed
that Hichardson!s results, previocusly mentioned, were entirely in er-
ror (ref, L). It was shown that Richardson was using an unstable rep-
resentation and that his results, if carried a little further in the
time direction, would oscillate with ever increasing amplitude, His
moethod was used by them to actually demonastrate this showing that the
results soon alternately exceeded the initial temperature and fell below

the final temperature, A stable solution was then used, At and ox un-

changed in size, and the result was a close approximation to the

2
Von Neumarn himself did not publish these results,



solution of the differential equation (this in spite of the fact that
the difference equation chcosen actually possessed a larger truncation
error) .

In 1949 O'Brien, Hyman, and Kaplan showed that in a simple para-
bolic partial differential equatlon the difference in value between
the exact solution of the partial differential equation and a numerical
solution of a corresponding partial difference equation, when a stable
ratio was used, was due almost entirely to the difference in the exact
solution of the differential equation and an exact solution of the dif-
ference equation rather than in the difference between the exact solu-
tion of the difference equation and its numerical solution caused by
the accumulation of round-off errors. Even in an unstable case it was
shown that lack of convergence more than lack of stability was respon=-
8ible fer the large error in the numerical solution in this particulsar

case (ref. ¥),



PRELIMINARY MATFERIAL

Consider a partial differential equation of the parabolic or hyper-
bolic type with suitable auxiliary conditions, Assume that a solution
exists, perhaps in the form of a converging infinite series; such a solu-
tion will henceforth be called the exact solution of the differential
equation and will be represented by the letter T (see equation 3,5).

Let a sultable difference equation be used to approximate the differen-
tial equation and choose auxiliary conditions which will suitably approx-
imate the auxiliary conditions of the differential equation, Its solution
will be designated an exact sclution of the difference equation and it
will be represented by the letter U (see eguation 3,9). There may be
more than one exact solution for a given difference equation depending

on the chosen suxiliary conditions, Let the numericel solution derived

1

from the difference representation be represented by the letter ¥,

It will be most convenient to use the term "convergence® in this

lﬁenceforth when we speak of the solution of a difference or differ-
ential eguation it will be understood that suitable auxiliary conditions
are also included,



paper in the usuval way although I believe a better definition is given
in the footnote below,?

The term "stability" has two different definitions and, in re-
ference 5, they are distinguished between and called weak stability and
strong stability. W%We will use the terms with the following meanings:

& numerical representation is weakly stable provided a single
error, introduced at any point in the numerical computation, Qill not
increase with succeeding steps.

A numerical representation is strongly stable provided the accu-

mulation of round-off errors, introduced at sach peint and carried on

A difference equation is called convergent when, by properly lei-
ting x and t go to zero, the value of |U - T| can be made arblitrarily
small for any set of values of x and t that lie on the mesh, That this
is the most logical definition follows from the fact that we would, in
practice, use a difference equation to approximate the solution of a difw
ferential equation, Whether ws then used a numerical 3o0lution or not we
would have the sclution conly at points of the mesh, No matter how small
we chose ax and at there would be an infinite (continuum) number of
values of (x,t) within our range that would never be, in fact could never
be, covered, In the problem considered in this paper we see that all of
the mesh points will be rational sets of values which, even in the limit
as ox, at—0, covers only a relatively small part of all the possible
points in our interval,

At first this might cause some alarm and misgivings as Lo the value
of a difference solution but a little consideration shows such concern
to be groundless, For even 1f it ware possible for us to get a ridicu-
lous answer from our difference equation for points off the mesh it would
not matter, Our values on the mesh can be made as close to the true
result, at these points, as desired, f we should find it necessary to
determine the value of the sclution at an inaccessible point we could do
so by one of the many interpolation methods available,



by the numeriscal process, will not increasse beyond a certain bound with
succeeding steps,

In reference 5 it is assumed that weak stability implies strong sta-
bility provided the round-off errors are of a random nature, This assump-
tion is justified in each of the problems actually computed, In reference
3 it is pointed out that although round-off errors may be non-random in
certain regions of integration, the randomness may be ragaineé by carrying
extra figures in caleculating those regions,

The theorems dealt with in this paper conecern weak stabllity and since
it is convenient (although not necessary) it will be assumed that weak sta-
bility implies strong stability,

Convergence has to do with T and U while strong stability has to do
with U and N, If a numerical solution lacks elther convergence or strong
stability ¥ will not generally be a good approximation to T. The impor=-
tant question is "will a certain numerical aoluﬁién properly approximate
the solution of the given differential equation?® That this is also a
difficult question is immediately evident for generally one uses a nu=~

merical solution because no other cne is available, It is the principal



aim of this paper to show that, in certain parabolic cases at least,
convergence 1s closely related to weak stability and, in particular,
that one may insure convergence (as well as strong stability) by proper
choice of r, Then, whether T and U are obtainabls or not, one need only
choose r within the proper range and not only weak stability, but con=-
vergence, is insured and the numerical solution will approximate the
true solution ito any desired degrse of accuracy,

As stated, strong stebility has to do with U and N. ¥e call 'U ~ N|
the numerical error: this error arises in various ways, round-off errors
being of prime interest to us, N is called strongly stable when |[U ~ K|
can be kept arbitrarily small throughout the entire region of solution
by properly choosing the size of aAx and At and by properly deciding on
the number of significant figures to retain in the steps of the compu-

tation,



THE FROBLEM

As was already stated, the principle aim of this paper is to give
a practical means of determining conditions under which a nﬁmsrical
solution will suitably approximate the true solution of a parabolie
partial differential equation. In this section we will limit ourselves
to a simple initial condition,

Before proving the thecrems (3,1 and 3,2) scme groundwork is nec-
essary and three lemmas, which will be used in establishing theorem
3,2, will be proved,

Let us turn our attention now to a specific problem, Assume a bar
of unit width and unspecified length be heated unifqrmly to a tempera-
ture 1°, Let each side be suddenly cooled to, and kept at, 0° and as-
eume the heat flow in one dimension (nemely across the width of the
bar)., Let its constants be such that

2T %
—

Fygalrys (3.1)

represents the heat flow, where T = T(X,t) represents the temperature,

t the time, and x the distance, (measured across the bar),



The partial differential equation (3,1) is readily solved for
narticular solution
T{zst) = cxekt (@2 cos =k x £ ¢, sin V<K x)
- 3
Imposing tne boundary conditions
T{G,t) = 0, T{l,t) =0 (t>0)
and the iritial condition
T{x,0) = 1
sne finds the sclutlion Lo be
< il
. i T K
T{r,t) = L Lo sin Wkx, {
™ ¥
K=l’,;sa-’
fquation (3,5) i3 what has beer referrsd to &8 the exact solution

nartial

ditions {2.3) and (2.4).

1]

r, Lhe ratio, equala AL
9 9 &

solution of (3

re are obths

o

oy,

f 3

Leg fefﬂrenfp

"i

roximate {3,1) b7 the
0(x,1) # r[ﬁ(:{ .

=nd Space ilncremeonts

he difference equaticon

el

Ax,t) = 2U{x,%) # U(x ««an,*:,Ei sy

respac

bilvely, an

(3,2)

differential ecuation (3,1} with the initial and Loundary cone

3.6)
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ayt
U(x,t) = Ape K* gin Triex,

Ay arbvitrary, k an integer greater than O, and
a :g:_ﬁ In [1 ~ hr sin® _Q"_.?;’Q.] . (3.7)

In place of the initial eondition T(x,0) & 1, x€ (0,1), use & trigo-
nometric polynomial approximation in the sense of least square error,

To satisfy this, choose A, so that

k
1 M- 2
J[l— 2 Ak sin nkx| dx (3.8)
0 K=t

is a minimun giving the suitable approximation
M-l 2
T
L4

U(x,t) :_’% Z % sin nkx [l - Lr sin® ("“ k)‘]
K=13,-

where ¥, the number of subdivisions of the width of the bar, is given

(3.9)

by ¥Max = 1,

Equation (3,9) is what has been referred to as an exact solution
of the difference egquation,

To determine the conditions under which (3,6) will be stable as-
sume e(x,t) is the total error at the point (x,t). Then e(x,t) satis-
fies the ®*variationrl equation®

2t “ﬁ zolxnt)  olx £ax,E) -(f§§§’t) relx-ant) (5
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That the form of (3,10) is the same as that of (3,6) is due to the fact
that {(3.,6) is linear,

The errors e(x,t) at each of the ¥ -~ 1 interior mesh points on the
line t = 0 are arbitrary quantities and small, They may be represented

by a Fourier series of complex exponentials of the form

M=

AT (3.1)

MNs

Choose a, the same as in (3.7) and

™M~

& t ib,.x
E Ae Ng M (3.12)

neif

satisfies (3,10) and reduces to (3,11) when t = O, Any term in the sum
(3.12) is a solution of (3,10); let such a term be represented by
pedltelbx
The value of b depends on ¥ and on the fact that the width of the bar
is taken as 1y thus it is rational. Here a = a(b) is generally complex,
The ratio of =rror growth is ea°t. A sufficient condition for stabllity
is therefore
iea‘ti <1, (3.13)

To determine values in (3,10) such that (3.,13) holds (i.e, srrors

diminish giving stability) put et A ibx inte (3,10). This gives
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ea(tﬁmt) +1bx _ at+ibx  at+ 1b(xrax) _ a2 b+ 1bx / G2t ib(x~-ax)

AL = (ax)2 {3,1k)

w

let v = &% ang (3.14) besomes, with slight simplification,

Y ow 1l om r{eibﬁx -2 ;‘ e-ibdﬂ = = hr sin2 Q%ﬁ,

Then to satisfy (3,13) take

«1<1 = Lr sin® Q_’;El<1.

The right side of the inequality is evidently true; the left inequality
holds for all b if and only if r<:%. This must be made to hold for all
b because in a numerical solution all freguencles are possible due to
the small errors always present, Thus, in this problem, the value

r =  separates the region of stability, where errors damp out, from
the region of instability, where some errors grow, The value of r,

the "ratio”, is the determining factor in the stability of a Jdifference
representation,

The effect of the ratioc upon convergence will now be considered,

Theorem 3,1, In the problem under discussion, namely equations (3,1}

with conditions (3,3) and (3.4), and (3.6) with conditions (3,3) and

(3.2), stability is necessary itc insure convergence,



)

Proof. By applying Welerstrass' M - test one seea that (3.5) con=-
verges uniformly with respect to x, 0 ® x $ 1, t & t>0. It will now
be shown that (3.9), the solution under consideration of the correspond-
ing difference equation, diverges to infinity as the number of intervals
¥ increases without bound, x £ 0, 1, t>0, provided r is chosen greater
than 3,

Por each value of ¥ (3,9) yields a different serles; consider these
series as successive values of M are used, Keep

M-M, Rka&N-1, (3.15)
where ¥ is a fixed arbitrary positive constant greater than 1, and note
the result as M inereases without bound, The value of

1 - hr sin® {Wk

eventually exceeds, and remains greater than, one, Choose one term
from each series, subject to the condition (3.,15), and there follows
a sequence of terms that diverge to infinity in spite of the tendency
of Em....E"L"E towsrd zero. Q. E. D,

Three lemmas will be found useful in the werk that 1s to follow,



Lemma 3,1. For re (0,4] . ae[o,ﬂ s V<.2, ¥ an integer Z 1,

m?
[1 - 4r sin z:( ki

is non-increasing in r,
Proof, Ifg' = g} the lemma is true, Let 2>0 and let us choose a
T—— 2=

fixed value for t>0, Choose any 5 and 8 as long as they satisfy

12232 5>8>0.

]
E
[1 - hs sin? ;J 21 -Uks sin? 2 £ 85(8 s)simé’* 2 £ §.§§(S - 3){28 - S)sin'5 2

21 - LS sin® z.

]
¥
Thus [1 ~ s sin? g 2,
145 sin® ¢
2
or [1 - ha sin® mj >
w2 =1
TD

Il - 45 sin? a]

Q. E, D,

Lemma 3,2, With the same restrictions en r, 2, t and ¥ as in Lemma

(3.1), for any £>0 there exists an ¥ o 90 large that

_$22
Ll»larsi :&“?" _e,ﬁ&zt§§

whenever ¥ > Bﬁo .

-/
Preof, Case j_:. Let z € {0,k '}] R




2 |
lim [ 1 - br sin® z] ol e”hwz sin g
r—=>0 -

Hence, from Lemma (3.1), @-hwz sin? g serves as an upper bound f
] or

we
[l-lu'sinzs} r.

Then

=
1 - lhr Sinz 3] -~ e-hﬁ?ggt g a"hwz sin? 2 g.hﬁzzzt
ebti? sin? 2 g o-ktM2aZ L(1/3) tu2eh

Let J(z,H) & o-uti222 £ (L/3)tuel | ditn2a?

J(OM) = O
Jg(z,¥) = Btﬁ‘?ze"hwzzz [(% 8 - ]) a(h/g)maz)‘ ’ :ﬂ .

Let K(z,k) & @- 2 - 1) Q(h/3)w2,h £1

kK(0,¥) = ©
K, (z,4) = %5 e(h/3)m2.lt [hm"’aa (% 82 - ) £ 1:)

let L(z,M) = htaa?( § s - 1) £1.,
Since J(z,4) £ 0, L(z,) 2 03 4in fact

0 % L(=,M) & 1,

16
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Since this is true for any fixed %,

< 1
(4] =2 53 < ﬁ'
Hence
t
Kglah) 3 0 ﬁﬁ"' s
K(z,iﬁ.) S —3;,‘%73- »
s (nﬁ) 32&1/3?'1”‘”25_2
16 V%
Then ¥ax J,(z,¥) S
= 32 '%IQ/B ’
J(am) S —28VE _<¢
s 3 V2 3%.“11/3 ¥
' 2 242
Hence [1-hrsin2n ’“f"'__e-tht §§.
Case i1, Let 2 € (H‘Q/B, ".5.)
2

[lwlxr sin® 2] ¥ ,
considered as & function of g, is monotone decreasing in z €. (kl—z/ 3 s &)

when r € (0,%2\ having
2

M
[1 - Lr sin2 (w"z/B)] v

for upper bound, But for any £>0 there exists an M,> O so large that,



for M>H o
2

[l - Lr sin? (u“a/:a)] Yog % n, E. D,

Lemua 3,3, under the conditions of lemma (3.2)
o li%n t-[l«hr 3in? z]

A

£
H

Proof, Case 1, Let z € (O,%'E/E‘] .
2

V————

Since [1 - Lr sin? z] r

is monotone decreasing in r, it has for lower bound

2
{cos z)gm .

32
2 2 [ [ ] - *TM s 2 2 1;2
a-—:&!«f %<t . [1 - Ur sin® zj é 8 L€z, - (GOS ’)8@‘? = C}(z,};i).

G(0,M) = 0

0, (2,k) = Bulta [- o THBTE 122 2 (cos s)mJ )

Call
2.2 2]
H(z,¥) g[-— e.mé L # ta;l 2 (cos z)an .

2. 2,2
If {cos Z)Btﬁ? 2 @-JAR 2t
case 1 iz proved, Consider

2 -

{cos 8)8‘0&2 s e”huzﬁat

[9s)
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H(z,H) S o-ilZe?t ( tanz 1]
’I'anséz;‘.?;.,{,s.
H(z,h) S olliZe%t ( _:;f / ah) < g2q-ui2s2t

2 JM22t < o
Z @
® Lol

o (s,u) & 20~1y2/3
ofa,u) & 20~2/3 %

2
Thus e“‘“‘*‘-[l-hr sin? :] T

A

£
¥
Case ii, Let 3 € (H-E/B’ ’.‘;.)

2,2 A2/ 3
a"lm'tiehm ;% for any €>0,
if ¥ is chosen large enough,

e

Hence e‘wz’gt‘ - [1 - hr sin? a] ¥ <& for e e (M"z/ 3 R '-’é)

&

¥
w?

since [1 - hr sina s] r 2 0. Q. E. D,

The following theorem can now readily be proved.

Theocrem 3,2, In the problem under discussion, (see theorem 3,l1)

r € (0,4 is a sufficient conditien for convergence,

162872
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Proof. It is necessary %o show that, for any d> 0 there exists

K_ such that, for M>M,

s}
oo # -1 tz
L sin whkx -ngzt h 5 sin W kx 2 qk) T .
7-": —F e - — 1 - 4r sin ml < é {3,.16)
K=1,3,.. K=4,3,0- ' »

whenever OKr & % and t 8 0 are fixed, and uniformly with respest to
% € [O,]] .

It is clear that (3,16) is true previded t =0, x = 0, or x = 1,
Assume then that t+>0 and x € (0,1},

One easily sees that

L D sinwkx 2kl
/) , TTE ¢ ks, (3.17)
K=13,--
is uniformly convergent with respect to our values of x,
Hence for any d1>0 there sxists an %’{1 such that M>¥, implies
. -
L > sin wkx eaﬂrzkzt _ S sinwkx e-rzkzt B g (3.18)
L A L__/ k < 1 .
K=1,3,-- k:,’al-.
Kow consider
M- M-y 2
: 2.7 - e
WY Usinwkx —x2k8y N\ sinwkx 1.1 2xi} T |
= , —x @ - —— ,_-rssin_é.g
Koo Ko |

#nich may be written



(%
d

M-) . e

4 j Sin mkx ia TETS . l,‘i - hr sin® wi{j (3.1}

w|l_, . il
K=zj,3,--
By means of lemmas (3,2) and (2,3) the above can be mads, Tor any

chosen dp> 0,

e

L Vogin Whkx
;‘:i T w < dy (3.20)

Ly choosing U > sore fixed value, say Yo

Now for any d>0 we can choose M, so large that, when ¥ >4,

el

dy< %, d2<§ go that (3.,16) is satisfied,



A CENERALIZATION OF THE INITIAL CONDITION

The previous problem and the theorem stating that choosing r € (0,%}
insures convergence poses the question as to the possibility of using
some such criterion in more general parabolic probl&ma and in hyperbolie
problems, In this section it is proved that such a criterion does exist
for the previous problem with a generalized initial condition.

In particular consider again the differential equation (3,1) sub-
Ject to the boundary conditions (3.3). Let the initial condition be

T(x,0") & £(x) (L.1)
where f(x) is assumed plecewise continuous and has one sided derivatives
in the interval 0 % x £ 1,

In solving the differential equation one can use the previous re-

sult

A
<’ wnlnxl
r(x,t) = Z ) Tt ein nrx

=)
together with the condition (4.l) and get &8s a sclution of the new

system
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T(x,t) = Z One“'“a"zt sin mmx (s.2)

n=)

Cp =2 I' £{x') sin nwrx' dx?

[

Now consider the difference equation (3.,6) subject to the boundary
conditions (3.3). In place of the initial condition (L,l1) again use a

trigonometric polynomial in the sense of least square error so that

\ .
had 2

f [f(;c) - ) ay s n'nx] ax (4.3)

0 n=

is a minimum, This condition is satisfied by taking
An =0, n>K

glving
M w2
U{x,t) = Z A, sin nx [1 - Lr sin‘?(%ﬂ T
nE (L.h)

'
Ay = 2] £{x') sin Tnx' dx!'

0

The change in the initial condition in no way affects the ratio soc
that 5 still separates the region of stability from that of instability.
Lerma 4.1, Let t>0, x¢€]0,1] and the series

[~

el
? Gnenrtsiamrx
n=i

convergas uniformly in x,
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-]
Proof. The seriesvzz: C, sin nrx converges to f(x) by hypothesis,

Nn=1

—-nére
The sequence {e L é} is independent of x, monotone decreasing in n

2 o0 2
-T0 -
and the first term is e t. Hence ZZ:Gng nr?t sin nmx is wiformly

n=?

converging in x (ref, 1), Q. E. D,

Theorem 4,1, Consider the partial differential equation (3,1) with the

conditions (3,3) and (L4.,1), and the partial difference equetion (3.6)
with the conditions (3,3) and (L4,3),

Stability is & necessary condition to insure convergence of the
difference golution to the solution of the differential eqguation,

Proof. The proof of theorem (3.1), without important modifications,

will serve here, Q. T. D.

Theorem l,2, Consider the partial differential equation (3,1} and the

difference equation (3,6) with the auxiliary conditions the same as in
theorem {4,1). A sufficlent condition for convergence of the difference
solution to that of the solution of the differential eguation is that
r € (0,%] .

Proof. It is necessary and sufficient to show that, for O<r : %

and for any d>0 that there exists an ¥, so large that, for all ¥>¥,,
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w2

o M
‘ che“nznzt sin nrx - Z“n sin nnx [1 - hr ainz(%)] T ’4 dy, (L.5)
n=1 m=1

where C, and A, are the same as previously defined,

I+t 20 (L.5) hrsducﬂaa to

lZ(G‘n - A) sin m’xla’Z G, sin nnx,
may

WMy

Thls expression can be made arbitrarily small by choosing M large enough,

Consider ¢ fixed but greater than O,

o0
_S_ Gna"‘nz’rzt sin nnx

n=t
is uniformly converging so for any dy> O there exists an ¥y 80 large

that, when M>M,

I ZGne“nzxet sin mx! < dy (L.6)

M=z M

Kext consider

™M ™M
}? Cpe sin nrx —S_ Anainmrx[l Lr sin ﬁ]
M= M

¥
- ~L2nly, 2 __t%?.
::/ch sin nnx {e - [1 - 4r sin z] } ( (L.7)
h=1

where 2 = %. The expression

(u.7) i‘)cn sin mx| R (4.8)

n=

where d2>0 can be chosen as small as we wish,
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Let d3 = mAx ]cn sin nnx|
dad
and (4.8) 3 4 22 & o, (4.9)

where dh = d3d2.
Finally one san choose d, 8o small, and ﬁe so large, that when M>M,
d<4, # ¢,

and equation (h,5) will be satisfied.

QO E. D.
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