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Incremental Condition Calculationand Column SelectionG. W. Stewart�ABSTRACTThis paper describes a method for calculating the condition numberof a matrix in the Frobenius norm that can be used to select columnsin the course of computing a QR decomposition. When the numberof rows of the matrix is much greater than the number of columns,the additional overhead is negligible. Limited numerical experimentssuggest that the method is quite good at �nding gaps in the singularvalues of the matrix.1. IntroductionThe problem of condition estimation is to approximate the norm of an inverse orpseudo-inverse of a matrix. The matrix is typically a triangular matrix R|oftenthe result of computing a QR or LR factorization. The �rst condition estimatorwas devised by Gragg and Stewart [8], and was later improved by Cline, Moler,Stewart, and Wilkinson [4] for incorporation into linpack [5]. Other conditionestimators have since been proposed, many of which are treated in a survey byHigham [9].Condition estimators typically trade precision for speed. They produce anapproximation to the norm of the inverse, usually a lower bound, in O(n2) time,where n is the order of R. This attempt to save work makes sense when Ris a triangular factor of a matrix of order n, since an O(n3) algorithm wouldtake time proportional to the factorization itself. However, when R is from theQR decomposition of an m�n matrix with m� n, there is less need of economy,since the QR decomposition requiresO(mn2) operations to compute. In this paperwe propose an O(n3) algorithm that implicitly computes the inverse of R and itsFrobenius norm.A closely related problem is that of column selection. The goal of columnselection is to determine a maximal set of \independent" columns of R. Here \in-dependence" means that the smallest singular value of the matrix formed from the�Department of Computer Science and Institute for Advanced Computer Studies, Universityof Maryland, College Park, MD 20742. This work was supported in part by the Air Force O�ceof Sponsored Research under Contract AFOSR-87-0188.1



2 Condition Calculatorcolumns is greater than some prescribed tolerance. Although no one has proventhat the problem can be solved|at least for large n|there are a number ofe�ective strategies. Perhaps the oldest of these is to compute the QR decom-position with column pivoting, as suggested by Golub [6]. This method is anexample of an incremental selection algorithm, since it can select columnsas the QR decomposition is computed. Other methods work with a precomputeddecomposition. For example, the method of Golub, Klema, and Stewart [7] startswith a singular value decomposition, and the rank revealing method of Chan [3]starts with a QR decomposition.Recently Bischof [1] has proposed an incremental condition estimator andshown how it can be used to drive a selection method. Since the condition calcula-tor proposed here is incremental, it also yields a selection method. Unfortunately,this method (as well as Bischof's method and column pivoting) fails on a ma-trix devised by Kahan [10]. However, the quantities computed by the conditioncalculator not only detect the failure but they point to a cure.In the next section the condition calculator and its use as a column selectionstrategy will be described. In x3 the selection method is shown to fail on Kahan'smatrix, and a remedy is described. The last section is devoted to presentingthe results of numerical experiments and concluding remarks. Throughout thispaper, kAk is the spectra norm of A, kAkF the Frobenius norm of A, and inf(A)the smallest singular value of A.2. The Condition CalculatorThe condition calculator is based on an incremental scheme for calculating thecolumns of R�1. Let R be partitioned in the formR =  k n�kk R11 R12n�k 0 R22 !; (2:1)and assume that the quantities1 � = kR�111 kFand S12 � (sk; : : : ; sn) = R�111 R12:1We have chosen to calculate the Frobenius norm of R�1. However, the algorithm of thissection can easily be adapted to calculate the 1-norm.



Condition Calculator 3� = 0for k = 0 to n� = q�2 + ��2k+1(1 + ksk+1k2)sj = 0@ sj � ��1k+1�k+1;jsk+1��1k+1�k+1;j 1A ; j = k + 2; : : : ; nend Figure 2.1: Basic Condition Calculator�have already been computed.It is easily veri�ed that if (rk+1 �k+1)T is the (k + 1)th column of R thenR̂�111 � 0@ R11 rk+10 �k+1 1A�1 = 0@ R�111 ���1k+1sk+10 ��1k+1 1A�1 :Hence the norm of R̂�111 is�̂ = q�2 + ��2k+1(1 + ksk+1k2): (2:2)Moreover, the columns of the corresponding matrix Ŝ12 are given by0@ R�111 ���1k+1sk+10 ��1k+1 1A�1 0@ rj�k+1;j 1A= 0@ sj � ��1k+1�k+1;jsk+1��1k+1�k+1;j 1A ; j = k + 2; : : : ; n: (2:3)A summary of a condition calculator based on (2.2) and (2.3) is given in Figure 2.1.Regarded simply as a condition calculator this algorithm has little to rec-ommend it, since it requires twice the number of 
ops needed to compute R�1directly. However, the fact that S is present allows the algorithm to be used in acolumn selection strategy. Speci�cally, let�j = ksjk�j = qPji=k+1 �2ij j = k + 1; : : : ; n:



4 Condition CalculatorSince �j is the norm of the part of the jth column of R that lies below the kth row,if that column is swapped with the (k + 1)th column and the resulting matrix isreduced to triangular form, the column assumes the form (rTj �j 0 : : : 0)T. Hence,if the jth column were to replace the (k+1)th, the new norm �k+1 would be givenby �k+1 = q�2k + ��2j (1 + �2j ):Thus a natural selection strategy is to choose j so that ��2j (1 + �2j ) is minimaland replace column k + 1 by column j.The swapping of columns can be accomplished in a standard way with planerotations. Brie
y, to move, say, the �fth column backward, interchange the �fthand fourth column, to get a matrix of the form0BBBBBBBB@ X X X X XO X X X XO O X X XO O O X XO O O X O 1CCCCCCCCAThen restore R to triangular form by applying a rotation P45 in the (4; 5) plane toannihilate the element below the diagonal. Thus by repeated swaps and restora-tions, the column is moved into position. The e�ect of the plane rotations maybe accumulated in an n� n array.A summary selection algorithm is given in Figure 2.2. The amount of workdone by this algorithm will depend on which columns are swapped, but an upperbound is n3 
ops. Accumulating the rotations requires an additional maximumof 2n3 
ops.The column selection strategy can be used in conjunction with the reduction ofanm�nmatrixA to triangular form by Householder transformations. Speci�cally,just after the kth step in the reduction, Householder transformations H1; : : : ;Hkand permutations �1; : : : ;�k have been determined so thatHk � � �H1A�1 � � ��k = 0@ R11 R120 A22 1A ;where R11 is a k�k upper triangular matrix. The matrix S and the scalars �i arede�ned as usual; however, the �i are now the norms of the columns of A22. The



Condition Calculator 5� = 0�j = 0, j = 1; : : : ; n�j = qPji=k+1 �2ij, j = 1; : : : ; nfor k = 0 to nDetermine j so that ��2j (1 + �2j ) is minimal.Swap column j into column k + 1.� = q�2 + ��2k+1(1 + ksk+1k2)sj = 0B@ sj � ��1k+1�k+1;jsk+1��1k+1�k+2;j 1CA ; j = k + 2; : : : ; n�j = ksjk, j = k + 2; : : : ; n�j = q�2j � �2k+1;j , j = k + 2; : : : ; nend Figure 2.2: Selection Algorithm�column for which ��2j (1+�2j ) is minimal is swapped with the (k+1)th column bymeans of a permutation �k+1, and a Householder transformation Hk+1 reduces it.The quantities S, �i, and �i are updated as usual.23. A Recovery ProcedureOne of the purposes of column selection is to reveal gaps in the singular values.Speci�cally, let the singular values of R be 1 �  2 � � � � �  :and suppose that for some integer p p �  p+1:2Some care must be taken in updating the �i, since cancellation can make them meaningless.See the program sqrdc in [5] for details. In the unlikely event that cancellation occurs inupdating a column of S, the column can easily be calculated ab initio.



6 Condition CalculatorA successful selection strategy should produce a matrix R of the formR =  p n�pp R11 R12n�p 0 R22 !;with inf2(R11) �= �pp �=  p and kR22k2 �= �p+1;p+1 �=  p+1. Unfortunately, theselection strategy of the last section, along with most others, fails on the followingexample due to Kahan [10].Let c2 + s2 = 1;and let Kn be the triangular matrix illustrated below for n = 5:K5 = diag(1; s; s2; s3; s4)0BBBBBBBB@ 1 �c �c �c �c0 1 �c �c �c0 0 1 �c �c0 0 0 1 �c0 0 0 0 1 1CCCCCCCCA :The norm of each column of the trailing l � l principal submatrix of Kn is easilyseen to be sn�l. Consequently, if the selection algorithm breaks ties by doingnothing, the �nal result is Kn itself.Unfortunately, the columns of Kn are nearly dependent; or what is equivalentKn has a small singular value. To see this, sett = 11 + c � 1:Then it is easily veri�ed thatdiag(1; s; s2; s3; s4)0BBBBBBBB@ 1 �c �c �c �c0 1 �c �c �c0 0 1 �c �c0 0 0 1 �c� t41�t 0 0 0 1 1CCCCCCCCA0BBBBBBBB@ 1tt2t3t41�t 1CCCCCCCCA = 0:Thus a perturbation of sn�1tn�1=(1 + t) will make Kn singular, and its smallestsingular value can be no greater than this quantity. In particular, the ratio of the



Condition Calculator 7smallest singular value to the smallest element diagonal element is bounded bytn�11� t :When c = 0:2 and n = 50, this ratio is about 8 � 10�4, which shows that thecolumn selection algorithm fails catastrophically for this example.The failure might be understandable if the singular values of Kn had no gap.But in factKn has only one small singular value; and if the �rst column is removed,the remaining columns are strongly independent. The problem is how to decidethat the �rst column is the one to remove. The following heuristic strategy isbased on the condition computer.Let R be partitioned as in (2.1), and let S and �i be as usual. The strategyconsists in swapping out one of the columns of R11 in favor of a another columnnot yet entered. The choice is made to minimize a bound on the the value of �for the column swapped out. The rationale is that producing small values of �outside the current factorization will tend to expose gaps in the singular values.To derive the bound, suppose that the jth column (j � k) is to by swappedout and the lth column (k < l) is to be swapped in. Let �̂jl be the value of �corresponding to the jth column after the swap. Note that�̂jl = 





P?jl 0@ rj0 1A





 ; (3:1)where P?jl is the projection onto the orthogonal complement of the space spannedby 0@ rl�l 1A ;0@ r10 1A ; : : : ;0@ rj�10 1A ;0@ rj+10 1A ; : : : ;0@ rk0 1A :Now by the de�nition of sl,0@ rl�l 1A = 0@ R110 1A sl + 0@ 0�l 1A :Hence if �jl denotes the jth component of sl, it follows0@ rj0 1A = ��1jl 2640@ rl�l 1A � kXi=1i6=j �il0@ r10 1A375�0@ 0��1jl �l 1A :



8 Condition CalculatorIf this equation is multiplied by Pjl, it follows from (3.1) that�̂jl = 





P?jl 0@ 0��1jl �l 1A





 � j��1jl j�l:This is the required bound.Of course there is no need to perform a swap if the diagonals are doing anadequate job of revealing gaps. The incremental condition calculator can be usedto tell when things go wrong. Let tol(k) be a tolerance, perhaps depending on k.The heuristic strategy is the following.If ��kk > tol(k), choose j and l so that j��1jl j�l is maximized, and swapcolumns j and l.The details of the swapping are a little involved. The �rst step is to movecolumn j into the position of column k. If this is done as described in the lastsection, it amounts to replacing R11 by QR11�, where Q is orthogonal and � isa permutation. The matrix R12 is replaced by QR12. Hence the matrix S12 mustbe replaced by (QR11�)�1(QR12) = �TS12;which is to say that the interchanges made in the columns of R11 must also bemade in the rows of S12.The second step is to remove the kth column (formerly the jth); that is, toreduce k by one and recompute S12 and the �j. WriteR11 = 0@ R̂11 r̂k0 �kk 1Aand R12 = 0@ r̂k+1 : : : r̂n�k+1;k+1 : : : �k+1;n 1A :The �'s corresponding to R̂11 are given by�̂k = �kkand �̂j = q�2j + �2kj; j = k + 1 : : : ; n:



Condition Calculator 9The columns ŝj of Ŝ12 satisfyR̂11ŝj = r̂j; j = k; : : : ; n:For j = k, the above system must be solved for ŝk, but the other columns of Ŝ12may be obtained more economically.Let (~sTj �kj)T be the jth column of S12. Then0@ R̂11 r̂k0 �kk 1A0@ ~sj�kj 1A = 0@ r̂j�kj 1A :Hence r̂j = R̂11~sj + �kj r̂k = r̂j:It follows on multiplying this equation by R̂�111 thatŝj = ~sj + �kj ŝk; j = k + 1; : : : ; n:The third and last step is to replace column k with column l as described inthe last section.This is a complicated procedure which should only be used in extremis. More-over, it complicates the reduction of a general matrix by Householder transfor-mations, since it intersperses rotations with the Householder transformations.3The simplest solution in this case is to note where the condition calculator andthe diagonals of the matrix disagree and continue the reduction as usual Whenthe factorization is complete, the matrix S12 can be recomputed and the recoveryprocedure applied.4. Numerical Experiments and ConclusionsThe condition calculator was subjected to a sti� test to see if the associatedselection strategy could spot a small gap in the singular values. Random triangularmatrices of order twenty with singular values21�i; i = 1; : : : ; 10� � 21�i; i = 11; : : : ; 203Actually, if we write a Householder transformation in the form H(u) = I � uuT, wherekuk = p2, then H(u)Q = QH(QTu) for any orthogonal matrix Q. Thus, rotations can bepulled out of the factorization at the cost of updating the vectors that determine the Householdertransformations.



10 Condition Calculator

Figure 4.1: Summary of Test Results�were generated by the technique described in [11]. The singular values have a gapof ratio ��1 between the tenth and eleventh and otherwise show a gentle decreasein size.The selection strategy was run on two-hundred such matrices, once for � = 0:1and again for � = 0:01. The ratios � = �11;11= 11 and � = �11;11=�10;10 wererecorded. The empirical distribution of these ratios is shown in Figure 4.1.The ratios � should be near one. They are reasonably well behaved: �11;11overestimates the singular by no more than a factor of 2:5 and underestimates itby no less than 0:5.



Condition Calculator 11Since � is the ratio of two diagonal elements, it may be expected to show morevariability than �. Ideally it should be equal to �. For the most part it is close,with only a few cases producing small values. In all cases, the ratio is greater thanthe grading ratio of two between the other pairs of consecutive singular values,although some may feel that a the smallest ratio of 3:4 for � = 0:1 is too smallfor comfort. For � = 0:01, there is always a reasonable gap in the ratios of thediagonal elements.No numerical tests of the recovery procedure of the last section were made.The reason is that Kahan's matrix seems to exhaust the good examples. Theprocedure works perfectly on Kahan's matrix, selecting the �rst column as theone to be thrown out.The condition calculator should not be regarded as a rival of other methods;rather it is another tool with which the numerical analyst can probe rank. Itsstrong point is that it calculates the condition exactly. However, one should notmake too much of this, since empirical studies [11, 9] have shown approximatecondition estimators to be quite good in practice. The condition calculator is moste�ective for dense matrices manymore rows than columns. For sparse matrices thetechnique of Bischof and Hansen [2], which combines restricted forward selectionwith a backward rank-revealing pass [3]. Other combinations will be suggested bythe application at hand.References[1] C. H. Bischof (1990). \Incremental Condition Estimation." SIAM Journalon Matrix Analysis and Applications, 11, 312{322.[2] C. H. Bischof and P. C. Hansen (1989). \Structure-Preserving and Rank-Revealing QR-Factorizations." Preprint MCS-P100-0989, Mathematics andComputer Science Division, Argonne National Laboratory.[3] T. F. Chan (1987). \Rank Revealing QR Factorizations." Linear Algebraand Its Applications, 88/89, 67{82.[4] A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson (1979). \An Es-timate for the Condition Number of a Matrix." SIAM Journal on NumericalAnalysis, 16, 368{375.[5] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart (1979). LIN-PACK User's Guide. SIAM, Philadelphia.
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