UMIACS TR 90-87 July 1990
CS TR 2495

INCREMENTAL CONDITION CALCULATION
AND COLUMN SELECTION

G. W. STEWART*

ABSTRACT

This paper describes a method for calculating the condition number
of a matrix in the Frobenius norm that can be used to select columns
in the course of computing a QR decomposition. When the number
of rows of the matrix is much greater than the number of columns,
the additional overhead is negligible. Limited numerical experiments
suggest that the method is quite good at finding gaps in the singular
values of the matrix.

*Department of Computer Science and Institute for Advanced Computer Studies, University
of Maryland, College Park, MD 20742. This work was supported in part by the Air Force Office
of Sponsored Research under Contract AFOSR-87-0188.

INCREMENTAL CONDITION CALCULATION
AND COLUMN SELECTION
G. W. STEWART*

ABSTRACT

This paper describes a method for calculating the condition number
of a matrix in the Frobenius norm that can be used to select columns
in the course of computing a QR decomposition. When the number
of rows of the matrix is much greater than the number of columns,
the additional overhead is negligible. Limited numerical experiments
suggest that the method is quite good at finding gaps in the singular
values of the matrix.

1. Introduction

The problem of CONDITION ESTIMATION is to approximate the norm of an inverse or
pseudo-inverse of a matrix. The matrix is typically a triangular matrix K— often
the result of computing a QR or LR factorization. The first condition estimator
was devised by Gragg and Stewart [8], and was later improved by Cline, Moler,
Stewart, and Wilkinson [4] for incorporation into LINPACK [5]. Other condition
estimators have since been proposed, many of which are treated in a survey by
Higham [9].

Condition estimators typically trade precision for speed. They produce an
approximation to the norm of the inverse, usually a lower bound, in O(n?) time,
where n is the order of R. This attempt to save work makes sense when R
is a triangular factor of a matrix of order n, since an O(n®) algorithm would
take time proportional to the factorization itself. However, when R is from the
QR decomposition of an m x n matrix with m > n, there is less need of economy,
since the QR decomposition requires O(mn?) operations to compute. In this paper
we propose an O(n?) algorithm that implicitly computes the inverse of R and its
Frobenius norm.

A closely related problem is that of coLumN seLEcTION. The goal of column
selection is to determine a maximal set of “independent” columns of K. Here “in-
dependence” means that the smallest singular value of the matrix formed from the

*Department of Computer Science and Institute for Advanced Computer Studies, University
of Maryland, College Park, MD 20742. This work was supported in part by the Air Force Office
of Sponsored Research under Contract AFOSR-87-0188.

2 CONDITION CALCULATOR

columns is greater than some prescribed tolerance. Although no one has proven
that the problem can be solved —at least for large n—there are a number of
effective strategies. Perhaps the oldest of these is to compute the QR decom-
position with column pivoting, as suggested by Golub [6]. This method is an
example of an INCREMENTAL SELECTION ALGORITHM, since it can select columns
as the QR decomposition is computed. Other methods work with a precomputed
decomposition. For example, the method of Golub, Klema, and Stewart [7] starts
with a singular value decomposition, and the rank revealing method of Chan [3]
starts with a QR decomposition.

Recently Bischof [1] has proposed an incremental condition estimator and
shown how it can be used to drive a selection method. Since the condition calcula-
tor proposed here is incremental, it also yields a selection method. Unfortunately,
this method (as well as Bischof’s method and column pivoting) fails on a ma-
trix devised by Kahan [10]. However, the quantities computed by the condition
calculator not only detect the failure but they point to a cure.

In the next section the condition calculator and its use as a column selection
strategy will be described. In §3 the selection method is shown to fail on Kahan’s
matrix, and a remedy is described. The last section is devoted to presenting
the results of numerical experiments and concluding remarks. Throughout this
paper, ||A|| is the spectra norm of A, ||A||r the Frobenius norm of A, and inf(A)
the smallest singular value of A.

2. The Condition Calculator

The condition calculator is based on an incremental scheme for calculating the
columns of R7!. Let R be partitioned in the form

k n—=k
__k Ry Ry
pt (), o
and assume that the quantities?
v=|lRlr

and

512 = (Sk, ceey Sn) = Rl_llRlQ.

'We have chosen to calculate the Frobenius norm of R™!. However, the algorithm of this
section can easily be adapted to calculate the 1-norm.

CONDITION CALCULATOR 3

vr=20
for k. =0ton

v = \/1/2 + 051242_1(1 + H‘Sk-l-le)

-1

S; — & PE+1,55k4+1 .

_ j E41Pk+1,55k+ _

55 = M , J=k4+2,....n
Qg1 1Pk+1,5

Figure 2.1: Basic Condition Calculator
<

have already been computed.
It is easily verified that if (ry41 azy1)? is the (k + 1)th column of R then

-1 -1
-1 -1
I R rpga B Ry QL 415k+1
11 = = i .
0 Ofk_|_1 0 ak+1

Hence the norm of Ry} is

b= /v? + a2 (14 [|spl?)- (2.2)

Moreover, the columns of the corresponding matrix Sy are given by

-1
Rl_ll _051;41-15k+1 rj
0 Oél;—ll—l PEk+1,5 (23)

-1
8j — Qi Pha1iSka1 .
_ J k1 Pk+1,5 k4 _
= , j=k+2,...,n.

051;41-1/’k+17j
A summary of a condition calculator based on (2.2) and (2.3) is given in Figure 2.1.
Regarded simply as a condition calculator this algorithm has little to rec-
ommend it, since it requires twice the number of flops needed to compute R™!
directly. However, the fact that S is present allows the algorithm to be used in a
column selection strategy. Specifically, let

o; = sl

o J 2
;=)D impg Pi;

j=k+1,...,n.

4 CONDITION CALCULATOR

Since ¢ is the norm of the part of the jth column of R that lies below the kth row,
if that column is swapped with the (k + 1)th column and the resulting matrix is
reduced to triangular form, the column assumes the form (r]T a; 0 ... 0)T. Hence,
if the jth column were to replace the (k+1)th, the new norm v441 would be given

by

Vit1 = /i + ozj_z(l + 0]2).

Thus a natural selection strategy is to choose j so that ozj_z(l + 0]2) is minimal
and replace column k& + 1 by column j.

The swapping of columns can be accomplished in a standard way with plane
rotations. Briefly, to move, say, the fifth column backward, interchange the fifth
and fourth column, to get a matrix of the form

O O O O X
O O O X X
O O X X X
X X X X X
O X X X X

Then restore R to triangular form by applying a rotation Pys in the (4,5) plane to
annihilate the element below the diagonal. Thus by repeated swaps and restora-
tions, the column is moved into position. The effect of the plane rotations may
be accumulated in an n x n array.

A summary selection algorithm is given in Figure 2.2. The amount of work
done by this algorithm will depend on which columns are swapped, but an upper
bound is n? flops. Accumulating the rotations requires an additional maximum
of 2n? flops.

The column selection strategy can be used in conjunction with the reduction of
an mxn matrix A to triangular form by Householder transformations. Specifically,
just after the kth step in the reduction, Householder transformations Hy, ..., Hy

and permutations Ily, ..., 1I; have been determined so that
Ry R
Hy-- H ATl - - T, = R
0 Ay

where Ry is a k x k upper triangular matrix. The matrix S and the scalars o; are
defined as usual; however, the «; are now the norms of the columns of Aj;. The

CONDITION CALCULATOR 5

v=20
o;=0, yg=1,....n

Oéj:\/Zf:kHP?ja jzlv"'vn

for k =0ton
Determine j so that ozj_z(l + 0]2) is minimal.
Swap column j into column k + 1.

v = \/1/2 + Oé;;f_l(l + H‘Sk-l-le)

-1
S5 = Op 1 Pk41,55k+1
J k+1Fk+1,7°k+ .
55 = B , J=k4+2,....n
Cpy1Ph+2,5

o= |lsjll, Jj=k+2,...,n

ozj:,/oz?—pz_l_m, j=k+2,...,n

Figure 2.2: Selection Algorithm
<

column for which ozj_z(l + 0%) is minimal is swapped with the (k+ 1)th column by
means of a permutation II;;,, and a Householder transformation Hjyyq reduces it.
The quantities S, o;, and «; are updated as usual.?

3. A Recovery Procedure

One of the purposes of column selection is to reveal gaps in the singular values.
Specifically, let the singular values of R be

Py =Py > - >).

and suppose that for some integer p

¢p > ¢p+1-

2Some care must be taken in updating the a;, since cancellation can make them meaningless.
See the program sQrRDC in [5] for details. In the unlikely event that cancellation occurs in
updating a column of S| the column can easily be calculated ab initio.

6 CONDITION CALCULATOR

A successful selection strategy should produce a matrix R of the form

P n—p
R R
R=" 11 12
n—p(0 Ry)7

with infa(R11) = ppp = ¥, and [[Ra|lz = ppr1p+1 = pr1. Unfortunately, the
selection strategy of the last section, along with most others, fails on the following
example due to Kahan [10].

Let

02—|—32:1,

and let K, be the triangular matrix illustrated below for n = 5:

1 —¢ —¢ —c¢ —c
0 1 —¢ —c¢ —c
Ks = diag(1,s,s*,s>, s 0 0 1 —¢ —c
0o 0 0 1 —¢
0o 0 0 0 1

The norm of each column of the trailing [x [principal submatrix of K, is easily
seen to be s"7!. Consequently, if the selection algorithm breaks ties by doing
nothing, the final result is K, itself.

Unfortunately, the columns of K, are nearly dependent; or what is equivalent
K, has a small singular value. To see this, set

t= <1
1+e¢
Then it is easily verified that
1 —c —c —c —c 1
0 1 —¢ —c —c t
diag(1, s, s%, 5%, s%) 0 0 1 —¢ —c 2 | =0
0 0 0 1 —¢ 3
4 4
—= 0 0 0 1 =

Thus a perturbation of s"~'"~1/(1 4 t) will make K, singular, and its smallest
singular value can be no greater than this quantity. In particular, the ratio of the

CONDITION CALCULATOR 7

smallest singular value to the smallest element diagonal element is bounded by
tn—l

11—t

When ¢ = 0.2 and n = 50, this ratio is about 8 - 107*, which shows that the
column selection algorithm fails catastrophically for this example.

The failure might be understandable if the singular values of K, had no gap.
But in fact K, has only one small singular value; and if the first column is removed,
the remaining columns are strongly independent. The problem is how to decide
that the first column is the one to remove. The following heuristic strategy is
based on the condition computer.

Let R be partitioned as in (2.1), and let S and «; be as usual. The strategy
consists in swapping out one of the columns of Ry in favor of a another column
not yet entered. The choice is made to minimize a bound on the the value of «
for the column swapped out. The rationale is that producing small values of «
outside the current factorization will tend to expose gaps in the singular values.

To derive the bound, suppose that the jth column (5 < k) is to by swapped
out and the /th column (k < [) is to be swapped in. Let &; be the value of «
corresponding to the jth column after the swap. Note that

.
5 (%)

where Pﬁ is the projection onto the orthogonal complement of the space spanned

T)

Now by the definition of s;,

()=)]

Hence if 0;; denotes the jth component of s;, it follows

k
r; _ 7 B ' 1 B 0
(0)_0” (a) ZU(O) (aﬁlaz)'

i#]

, (3.1)

Oé]‘l =

8 CONDITION CALCULATOR

If this equation is multiplied by P, it follows from (3.1) that

0
Ple_ (P)

Of course there is no need to perform a swap if the diagonals are doing an
adequate job of revealing gaps. The incremental condition calculator can be used
to tell when things go wrong. Let tol(k) be a tolerance, perhaps depending on k.
The heuristic strategy is the following.

ééﬂ = S |0'j_ll|0q.

This is the required bound.

If vpgr > tol(k), choose j and [so that |Uj_ll|0él is maximized, and swap
columns j and .

The details of the swapping are a little involved. The first step is to move
column j into the position of column k. If this is done as described in the last
section, it amounts to replacing Ry by Q) Rqy11Il, where () is orthogonal and II is
a permutation. The matrix Ris is replaced by () R1,. Hence the matrix S7; must
be replaced by

(QRl1H)_1(QRlz) =117 S)y;

which is to say that the interchanges made in the columns of Ry; must also be
made in the rows of Si3.

The second step is to remove the kth column (formerly the jth); that is, to
reduce k by one and recompute Si; and the a;. Write

P (R i)
0 pre

T
R12 — .
Pk+1k+1 --- Pk+ln

The a’s corresponding to Ry are given by

and

A = Pkk

dj:\/m7 j=k+1... n.

and

CONDITION CALCULATOR 9

The columns §; of Slz satisfy
Rlléj:f]‘,]:k,,n

For j = k, the above system must be solved for 3, but the other columns of S
may be obtained more economically.
Let (§]T or;)T be the jth column of Syy. Then

Ry 7y 5\ _ (%
0 prk Tk Pkj

r; = RHS]‘ + OkiTE = T5.

Hence

It follows on multiplying this equation by]%1_11 that

§]‘:§]‘—|-O'k]‘§k,]:k—l—l,,n

The third and last step is to replace column k& with column [as described in
the last section.

This is a complicated procedure which should only be used in extremis. More-
over, it complicates the reduction of a general matrix by Householder transfor-
mations, since it intersperses rotations with the Householder transformations.?
The simplest solution in this case is to note where the condition calculator and
the diagonals of the matrix disagree and continue the reduction as usual When
the factorization is complete, the matrix S15 can be recomputed and the recovery
procedure applied.

4. Numerical Experiments and Conclusions

The condition calculator was subjected to a stiff test to see if the associated
selection strategy could spot a small gap in the singular values. Random triangular
matrices of order twenty with singular values

21-i, i=1,...,10
321t i=11,...,20

3Actually, if we write a Householder transformation in the form H(u) = I — uul, where
lu|| = V2, then H(u)Q = QH(Q"wu) for any orthogonal matrix (. Thus, rotations can be
pulled out of the factorization at the cost of updating the vectors that determine the Householder

transformations.

10 CONDITION CALCULATOR

Figure 4.1: Summary of Test Results
<

were generated by the technique described in [11]. The singular values have a gap
of ratio 37! between the tenth and eleventh and otherwise show a gentle decrease
in size.

The selection strategy was run on two-hundred such matrices, once for 5 = 0.1
and again for f = 0.01. The ratios A = p1111/%11 and g = p1111/p1010 Were
recorded. The empirical distribution of these ratios is shown in Figure 4.1.

The ratios A should be near one. They are reasonably well behaved: py; 11
overestimates the singular by no more than a factor of 2.5 and underestimates it
by no less than 0.5.

CONDITION CALCULATOR 11

Since p is the ratio of two diagonal elements, it may be expected to show more
variability than A. Ideally it should be equal to 3. For the most part it is close,
with only a few cases producing small values. In all cases, the ratio is greater than
the grading ratio of two between the other pairs of consecutive singular values,
although some may feel that a the smallest ratio of 3.4 for § = 0.1 is too small
for comfort. For 3 = 0.01, there is always a reasonable gap in the ratios of the
diagonal elements.

No numerical tests of the recovery procedure of the last section were made.
The reason is that Kahan’s matrix seems to exhaust the good examples. The
procedure works perfectly on Kahan’s matrix, selecting the first column as the
one to be thrown out.

The condition calculator should not be regarded as a rival of other methods;
rather it is another tool with which the numerical analyst can probe rank. Its
strong point is that it calculates the condition exactly. However, one should not
make too much of this, since empirical studies [11, 9] have shown approximate
condition estimators to be quite good in practice. The condition calculator is most
effective for dense matrices many more rows than columns. For sparse matrices the
technique of Bischof and Hansen [2], which combines restricted forward selection
with a backward rank-revealing pass [3]. Other combinations will be suggested by
the application at hand.

References

[1] C. H. Bischof (1990). “Incremental Condition Estimation.” SIAM Journal
on Matriz Analysis and Applications, 11, 312-322.

[2] C. H. Bischof and P. C. Hansen (1989). “Structure-Preserving and Rank-
Revealing QR-Factorizations.” Preprint MCS-P100-0989, Mathematics and

Computer Science Division, Argonne National Laboratory.

[3] T. F. Chan (1987). “Rank Revealing QR Factorizations.” Linear Algebra
and Its Applications, 88 /89, 67-82.

[4] A. K. Cline, C. B. Moler, G. W. Stewart, and J. H. Wilkinson (1979). “An Es-
timate for the Condition Number of a Matrix.” SIAM Journal on Numerical
Analysis, 16, 368-375.

[5] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart (1979). LIN-
PACK User’s Guide. STAM, Philadelphia.

12

CONDITION CALCULATOR

[6]

7]

G. H. Golub (1965). “Numerical Methods for Solving Least Squares Prob-
lems.” Numerische Mathematik, 7, 206-216.

G. H. Golub, V. Klema, and G. W. Stewart (1976). “Rank Degeneracy
and Least Squares Problems.” Technical Report TR-751, Department of
Computer Science, University of Maryland.

W. B. Gragg and G. W. Stewart (1976). “A Stable Variant of the Secant
Method for Solving Nonlinear Equations.” SIAM Journal on Numerical Anal-
ysis, 13, 880-903.

N. J. Higham (1987). “A Survey of Condition Number Estimation for Trian-
gular Matrices.” SIAM Review, 29, 575-596.

W. Kahan (1966). “Numerical Linear Algebra.” Canadian Mathematical
Bulletin, 9, 757-801.

G. W. Stewart (1980). “The Efficient Generation of Random Orthogonal
Matrices with an Application to Condition Estimators.” SIAM Journal on
Numerical Analysis, 17, 403-404.

