
THE INSTITUTE FOR SYSTEMS RESEARCH

ISR develops, applies and teaches advanced methodologies of design and
analysis to solve complex, hierarchical, heterogeneous and dynamic prob-
lems of engineering technology and systems for industry and government.

ISR is a permanent institute of the University of Maryland, within the
A. James Clark School of Engineering. It is a graduated National Science

Foundation Engineering Research Center.

www.isr.umd.edu

Kendall Syndrome Coding (KSC) for Group-
Based Ring-Oscillator Physical Unclonable
Functions

Chi-En Yin and Gang Qu

ISR TECHNICAL REPORT 2011-13

Kendall Syndrome Coding (KSC) for Group-Based
Ring-Oscillator Physical Unclonable Functions

Chi-En Yin and Gang Qu
Department of Electrical and Computer Engineering & Institute for Systems Research

University of Maryland, College Park, USA
{chienyin,gangqu}@umd.edu

Abstract—Rank permutation has been proposed to maximize
the secrecy extraction power of ring oscillator (RO) physical
unclonable functions (PUFs) [1]. To encode the frequency rank of
a group of ROs, the authors suggested to encode compactly. One
problem is that the error weight distribution does not correlate
well with the underlying error probability distribution such that
many errors occurring frequently are encoded in greater (instead
of smaller) Hamming distance than those less likely to happen.
Consequently, the previous scheme would suffer greater min-
entropy loss [2] when worked with a error correcting code
(ECC). Instead, we propose a new encoding scheme such that the
Hamming distance between two encoded codewords is the same
as the Kendall tau distance [3] between the two corresponding
rank permutations. We also improve manufacturing feasibility
as well as the randomness of the secrecy such that our generated
secret demonstrates the statistics of the uniform distribution [4].
Overall, the proposed PUF is about 9% more efficient than its
predecessor and 50% or more efficient than an index-based (IBS)
approach [5] in most error correcting scenarios we considered
under an i.i.d. uniform output assumption.

Index Terms—ring oscillator (RO), physically unclonable func-
tions (PUFs), Compact Syndrome Coding (CSC), Kendall Syn-
drome Coding (KSC), error correcting code (ECC), Hamming
distance dh, Kendall tau distance dτ , rank permutation codes

I. INTRODUCTION

A Physical Unclonable Function (PUF) is a physical struc-
ture whose functional characteristic is hard to predict before
fabrication but once fabricated the characteristic of each device
is rather stable and unique. One key application of PUFs
is cryptographic secret generation and storage that may not
demand a large number of challenge-response pairs (CRPs) but
requires a high level of randomness and stability. Nevertheless,
these two properties are often at odds, making their co-
existence without raising hardware budget a great challenge.

A. Group-based Coding

LISA [1], a heuristic group-based coding algorithm, has
been proposed to extract the maximum comparison-based
entropy log2M ! out of M ROs by searching for longest
increasing subsequences (LIS) to form independent groups
containing the largest set of ROs while maintaining certain
stability within the group. However, there are four issues that
may reduce its usability.
• Manufacturing Complexity In order to ensure stability

it demands frequency measurements at two temperature
boundaries, e.g., 0◦C and 100◦C, when the secret is

000002 {ABCD} 010002 {BCAD} 100002 {CDAB}
000012 {ABDC} 010012 {BCDA} 100012 {CDBA}
000102 {ACBD} 010102 {BDAC} 100102 {DABC}
000112 {ACDB} 010112 {BDCA} 100112 {DACB}
001002 {ADBC} 011002 {CABD} 101002 {DBAC}
001012 {ADCB} 011012 {CADB} 101012 {DBCA}
001102 {BACD} 011102 {CBAD} 101102 {DCAB}
001112 {BADC} 011112 {CBDA} 101112 {DCBA}

TABLE I
THE CODEBOOK OF THE RANK PERMUTATIONS OF 4 ROS USING COMPACT
SYNDROME CODING (CSC), WHERE {ABCD} IS A SHORTHAND OF THE

FREQUENCY RELATION ROA < ROB < ROC < ROD

enrolled. This complicates the fabrication process signif-
icantly.

• Error Tolerance LISA is effective to address temperature
variability that is linear to RO frequency but not so when
dealing with non-linear variability such as supply voltage
fluctuation.

• Spatial Correlation The underlying systematic trend
may render each extracted bit no longer independent and
identically distributed (i.i.d.) [6], which in turn weakens
the security of the secret bitstring.

• Coding Inefficiency The previous work encoded the fre-
quency rank permutation of M ROs in binary of integer
0 . . .M ! − 1, here we refer to as Compact Syndrome
Coding (CSC); however, CSC does not work well with
error correcting codes (ECC). To illustrate, let us consider
a list of four ROs ROA, ROB , ROC and ROD; the
CSC codebook in lexicographic order is listed in Table I.
Suppose a rank permutation {ROA < ROD < ROC <
ROB} is first enrolled with its codeword 001012; later
on, we would like to regenerate the codeword given
certain errors. Let us say a flipover occurs between ROA
and ROD, yielding us a new frequency measurement
{ROD < ROA < ROC < ROB} or 100112 in its
encoded form. Since the Hamming distance dh between
the two codewords 001012 and 100112 is three, the error
can be corrected by BCH(n = 15, k = 5, t = 3) code
using the Code-Offset technique in [2], assuming there
is no more error in the subsequent 10 bit of the 15-
bit code block. To estimate the effective min-entropy,
which is defined later, let us assume the 10 bits are
derived from other two independent lists of 4 ROs. If

each rank permutation is equally likely with probability
1
4! , then the raw entropy of the block is 3 log2 4! or 13.754
bits. The min-entropy, however, is merely 3.7543 bits
because we have to deduct 10 bits of entropy loss due
to public syndrome disclosure1. In fact, the loss can be
reduced by better correlating the error weight distribution
in Hamming space with the probability mass function
(p.m.f.) of erroneous flipovers. In other words, if an error
event happens in higher probability, it should be encoded
closer in Hamming space. To see how this may not be
true in CSC, consider three flipovers happening at the
same time: the first between ROA and ROB , the second
between ROA and ROC and the third between ROA
and ROD, with presumably fairly low probability. But
instead, the Hamming distance between the new code-
word 101112 of {DCBA} and the enrolled codeword
001012 of {ADCB} is only two, even closer than the
previous error pattern presumably in higher probability.

B. Contributions

This work offers a new group-based RO PUF with improved
entropy efficiency, security and fabrication simplicity. Specifi-
cally, 1) we propose a new syndrome coding based on Kendall
tau distance for better stability in the encoded Hamming space;
2) we incorporate two new processes for entropy distillation
and entropy packing to strengthen security; 3) we redesign the
grouping algorithm to simplify the manufacturing process. The
improvements make the new design about 9% more efficient
than its predecessor and 50% or more efficient than the
index-based (IBS) approach [5] in most of our experimental
scenarios. The NIST hypothesis testing affirms that our PUF
output is indistinguishable from those drawn from an ideal
uniform distribution. We emphasize that the results are not
derived with help from universal hash function (UHF) nor
linear feedback shift register (LFSR) typically employed for
PUF secrecy amplification. When external seeding is spared,
our PUF can generate its secrecy in a fully autonomous
fashion.

C. Paper Organization

The rest of paper is organized as follows: Section II intro-
duces Kendall Syndrome Coding (KSC); Section III describes
the architecture of the proposed RO PUF; Section IV presents
experimental results; lastly, Section V concludes.

II. KENDALL SYNDROME CODING (KSC)

Kendall’s correlation statistic [3] can be used to address the
aforementioned issue of coding inefficiency. To begin with,
rank permutation of n elements is defined as permutation
of integers (ranks) 1 . . . n; Kendall tau distance dτ (σ, π) is
defined as the minimum number of transpositions of adjacent
ranks required to change from one rank permutation σ into
another π of the same size [7]. For instance, consider two
rank permutations of three elements σ = {σ(1) = 1, σ(2) =
3, σ(3) = 2} and π = {π(1) = 2, π(2) = 3, π(3) = 1}. The

1More generally, (n− k)-bit loss for linear codes [2].

Kendall distance dτ (σ, π) is one because σ would be equal to
π after transposing of rank 1 and rank 2 of the first element
and the third element2. dτ can also defined as the number of
pairwise disagreements between two rank permutations [8],
namely,

dτ (σ, π) =

n−1∑
i=1

n∑
j=i+1

s(i, j) (1)

where

s(i, j) =

 1 if (σ(i) < σ(j) ∩ π(i) > π(j))
∪ (σ(i) > σ(j) ∩ π(i) < π(j))

0 otherwise.

For a group-based RO PUF, dτ is equal to the number of
flipovers in a group during secret regeneration and presumably
reversely proportional to the error probability. Now we want
to encode the frequency rank permutation of a list of ROs
from the Kendall space into the Hamming space such that the
Kendall distance dτ between any two rank permutations is
equivalent to the Hamming distance dh of the corresponding
codewords. Indeed, such a class of codes exists and the conver-
sion is efficient [9]. Given a group of ROs g, {RO1 . . . ROn}
in certain physical order, its rank permutation can be encoded
pairwisely into a bitstring sg of length n(n−1)

2 ,

sg = (sg(1, 2) . . . sg(1, n), sg(2, 3) . . . sg(n− 1, n)) (2)

where ∀sg(i, j), i < j, 1 ≤ i, j ≤ n,

sg(i, j) =

{
0 if ROi < ROj
1 otherwise.

For instance, consider a group g composed of 3 ROs with
frequency readings {ROA = 38, ROB = 97, ROC = 54} in
the same rank permutation as the σ = {1, 3, 2} defined earlier;
from Eqn. (2), we can KSC encode g into sg = (0, 0, 1).
Let us say later certain environmental variations cause a re-
measurement of the frequencies to g′ = {ROA = 78, ROB =
103, ROC = 60}, which has the same rank permutation as the
π = {2, 3, 1} defined above. In turn, Eqn. (2) yields a KSC
encoded bitstring sg′ = (0, 1, 1). As we see, dh(sg, sg′) =
dτ (σ, π) = 1, where the pairwise disorder takes place between
elements (1, 3) for g(1) < g(3) but g′(1) > g′(3). Conversely,
[9] also shows how to decode sg into σ = (σ(1) . . . σ(n)),
where

σ(i) = 1 +

i−1∑
j=1

(1− s(i, j)) +
n∑

j=i+1

s(i, j). (3)

III. THE PROPOSED GROUP-BASED RO PUF
The architecture of the proposed PUF is depicted in Figure

1. Our public helper data comprises three parts (i) distiller
coefficients, (ii) group information and (iii) syndrome bits; all
of them are determined and stored publicly in non-volatile
memory such as EEPROM or NAND/NOR flash when the
secret is first enrolled. The seven-step secrecy extraction
procedure is explained in the following.

2In the previous section, the elements are listed in the order of ranks,
different from here the ranks are listed in the order of elements.

Fig. 1. The architecture of the proposed group-based RO PUF

1) Frequency Characterization: A RO PUF typically con-
sists of a RO array as well as counters and multiplexers to
help acquire frequency readings of the RO array. Given M
ROs, the frequency readings are denoted as RO1 . . . ROM in
certain physical order, say, scanning sequentially by rows when
ROs are placed as a 2-D array. One may take an average over
multiple measurements for each RO as the output of the step.

2) Randomness Distillation: The output from Step 1 con-
tains both random and systematic variations. Since the system-
atic component may render the output lack of randomness, we
apply polynomial regression to remove it. Each PUF calculates
its own model coefficients and stores them as public helper
data. As an example, let us model the systematic trend of
a m-by-n 2-D RO array by means of 1st-order polynomial
sysx,y = β1x+β2y+β3, where βi’s are the model coefficients
to be solved and (1, 1) ≤ (x, y) ≤ (n,m). The frequency
measurement can then be written as ROx,y = sysx,y + εx,y ,
where sysx,y denotes the systematic variability and εx,y de-
notes the random variation at location (x, y). Putting m × n
model equations in matrix form, we have

z = Ωβ + ε, (4)

where

z =

RO1,1

...
ROn,1

...
RO1,m

...
ROn,m

,Ωβ =

1 1 1
...

...
...

n 1 1
...

...
...

1 m 1
...

...
...

n m 1

β1β2
β3

 , ε =

ε1,1
...

εn,1
...

ε1,m
...

εn,m

.

To solve the model coefficients β, one can use the least squares
method that takes the first derivative on the sum of the squares
of the residual terms ε and set the derivative to zero, or
formally,

∂ε2

∂β
=
∂(z − Ωβ)T (z − Ωβ)

∂β
(5)

=
∂(zT z − zT Ωβ − βT ΩT z + βT ΩT Ωβ)

∂β
(6)

= −2ΩT z + 2ΩT Ωβ = 0 (7)

=⇒ β = (ΩT Ω)−1ΩT z, (8)

where (ΩT Ω)−1ΩT is a constant solver and z is the fre-
quency characterization of the m×n ROs at enrollment. Once
β is determined, we can easily calculate the output of the step,
that is, the distilled random variation ε′, which is equal to
z′ − Ωβ for any frequency re-characterization z′.

3) Grouping Algorithm: The goal of the step is to form
independent groups while meeting certain stability criterion.
The key difference from its predecessor [1] is that only one
environmental condition is needed to take the measurements in
the enrollment phase. This resolves the manufacturing problem
mentioned in the very beginning. Due to the change, the
maximization problem in [1] is rephrased as: given M ROs
whose frequency output are i.i.d., we want to find a partition
G = {g1 . . . g|G|} that maximizes the total group entropy∑|G|
i=1 log2 |gi|! while ensuring that no RO pair in the same

group gi have their frequency difference less than a stability
threshold fth at enrollment time, that is,
maximize

∑|G|
i=1 log2 |gi|! subject to

a) gi ∩ gj = ∅, where 1 ≤ i, j ≤ |G|, i 6= j
b) g1 ∪ g2 ∪ . . . ∪ g|G| = RO1, . . . ROM
c) ∀ROi, ROj ∈ gk, |ROi − ROj | ≥ fth, where 1 ≤ i, j ≤
|gk|, i 6= j, 1 ≤ k ≤ |G|.

Constraint a) ensures that no RO is used twice to maintain the
i.i.d. PUF output assumption; b) leaves no RO unexplored3;
c) parametrizes PUF stability with fth, whose value can
be determined empirically. To solve the new maximization
problem, LISA can be simplified as LISA-lite as below. LISA-
lite completes in O(M2) and the worst case occurs, for
instance, when all ROs have the same frequency readings such
that only one RO can be removed from the linked list for each
run of the for loop. Lastly, each RO is assigned with a group
ID in solution G and all ROi.gid’s are stored in their physical
order for future reference.

4) Kendall Syndrome Coding: Each group gi in solution
G is KSC encoded by Eqn. (2). The resulting bitstrings
sg1 . . . sg|G| are concatenated as the output of the step.

5) Conventional ECC: A linear block code (n, k, t) can be
used to correct runtime errors, where n denotes block size, k
the number of information bits, n−k the number of parity bits
and t maximum errors within the block that are correctable by
the code. The Code-Offset technique [2] is assumed to bound
the min-entropy loss due to public disclosure of syndrome bits.

3The constraint is redundant in the setting of a maximization problem but
kept for clarity

Algorithm 1 LISA-lite
Input: (i) M ROs, RO1 . . . ROM , in their physical order with

ROi.phy denoting ith RO’s physical position, ROi.frq its
frequency reading at enrollment, and ROi.gid its group
ID (with initial value −1); (ii) reliability threshold fth

Output: (i) RO1 . . . ROM with all ROi.gid 6= −1
1: sort RO1 . . . ROM in increasing order of ROi.frq’s and

keep the sorted objects RO′1 . . . RO
′
M on a linked list L

2: gid← 1
3: frqpre ← −∞ // previous frequency
4: while frqpre 6= −∞ do
5: frqpre ← −∞
6: for i← 1 to |L| do
7: if (RO′i.frq − frqpre) ≥ fth then
8: RO′i.gid← gid
9: frqpre ← RO′i.frq

10: remove RO′i from L
11: i = i− 1
12: end if
13: end for
14: gid = gid+ 1
15: end while
16: return G = {RO1 . . . ROM}

At enrollment, the output from the previous step is divided into
blocks of n-bit secret w. The first k bits of w is encoded with
certain ECC to produce n− k parity bits p. The parity bits p
then exclusive-or with the last n− k bits of w to produce the
n− k syndrome bits h, which are then saved as public helper
data to assist secrecy recovery. To recover the enrolled secret
block w given new input w′ from Step 4, we retrieve the saved
syndrome bits h and exclusive-or with the last n − k bits of
w′ to produce n−k parity bits p′. The first k-bit of w′ is then
appended with p′ to form a n-bit block to decode. As long as
dh(w,w

′) ≤ t, ECC decoder can correct all errors in w′ and
output the w enrolled at first. All restored secret blocks w’s
form the output of the step and input of Step 6–7.

6) Entropy Packing: Although KSC is designed to help
reduce the complexity of ECC, it does not encode entropy ef-
ficiently. Many bitstrings are left unused; taking three ROs for
example, (0, 1, 0) would never occur due to the contradiction
(ROA < ROB , ROA ≥ ROC , ROB < ROC). Therefore,
we have to re-encode each group gi compactly with CSC
with help from the stored group information ROi.gid’s. Since
error correction has been done, the coding inefficiency issue
mentioned in the very beginning is no longer a concern. Before
encoding in CSC, we have to KSC decode each group sgi into
its rank permutation via Eqn. 3. To encode a group g in the
most compact form cg , we can calculate the inversion vector
(line 2–8,10) and interpret it in factorial number system (line
9) as below [10]. Note that the algorithm we are showing does
not produce a codebook in lexicographic order like Table I.
CSC decoding can also be done efficiently but is beyond the
scope of the work. Lastly, in order to construct a secret in

uniform distribution, we have to close the unused gap between
|g|! and 2dlog2 |g|!e − 1 for each output cg as we put together
all cgi ’s to form the final PUF secret. This can be done by
simple addition, subtraction and shift operations; the pseudo
code is omitted for brevity.

Algorithm 2 Compact Syndrome Coding (CSC) Encoding
Input: a group g containing ordered ROs RO1 . . . RO|g|
Output: a CSC encoded integer cg in dlog2 |g|!e bits

1: cg = 0
2: for i← |g| to |2| do
3: inv = 0 // number of inversions
4: for j ← 1 to i− 1 do
5: if ROi < ROj then
6: inv = inv + 1
7: end if
8: end for
9: cg = (cg + inv)× (i− 1)

10: end for
11: return cg

7) Test for Randomness and Stability: This verification
process not only helps us ensure security and reliability of
the final secret but also helps us choose the parameter fth and
the exact regression model. This leads our discussion to the
next section.

IV. EXPERIMENTAL RESULTS

This section extends Step 7 in greater detail. The prototype
of the proposed PUF has been realized as an embedded system
on Xilinx Virtex-5 FPGAs via Xilinx ISE and Xilinx Platform
Studio (XPS) EDK/SDK 13.2 and 9.2 tool chains4. The PUF
is implemented as an IP core connecting to the MicroBlazeTM

soft processor core through Processor Local Bus (PLB). The
bus exchanges control signals and RO frequency character-
ization between the processor and the IP via user defined
soft registers. The frequency characterization is in turn passed
through to a RS232 serial port logger on PC for the following
analyses. Timing critical logic such as RO is instantiated as a
hard macro in ISE. Polynomial regression employed in Step
2 can be solved quickly as the Floating Point Unit (FPU) of
MicroBlazeTM is enabled. In addition to our own dataset, the
public dataset [11] is also used to confirm the results.

A. Test for Randomness

The first goal is to test whether our PUF is secure. To this
end, the output of Step 6 is subject to the NIST statistical test
for randomness [4]. An ‘ideal’ random sequence is regarded
as the outcome of consecutive flips of a fair coin. In other
words, the random variable assigned to each toss is identical
and independent distributed (i.i.d.) and uniformly distributed
between 0 and 1 with equal probability 1/2. The null hypothe-
sis of the test is that the random sequence under test is ‘ideal’

4v13.2 for ML506 and ML510 development boards and v9.2 for ML501
boards.

unless the test statistic indicates a clear deviation. NIST test
results are interpreted in two ways: a) the proportion of total
bitstrings that passes a test shall be above a minimum value;
b) the P-values of all bitstrings shall be uniformly distributed
such that the P-value of the P-values is equal or greater than
a minimum value; default settings were used in the test suite.
Eleven out of fifteen tests in the suite are applicable to our
output length; for each of the two datasets, we use the first
half to select the order of the polynomial model and the second
half to validate the randomness of the output.

1) Virginia Tech Dataset: This dataset comprises frequency
characterization of 125 Xilinx Spartan-3 (90-nm) FPGAs [11].
For each FPGA, 512 ROs are implemented in 32 rows by
16 columns. Although there are 100 frequency measurements
available for each RO in one operating condition, only the first
measurement at 1.2V 25◦C is used as the output of Step 1. The
outputs of Step 6 from chip No.1 to No.125 are concatenated
altogether to construct a long random sequence subject to
test. Test parameters are set as follows: bitstring length 400
(except 3× for FFT Test in order to meet with the minimum
length requirement), block length for Frequency Test 32, 2 for
Approximate Entropy Test and 5 for Serial Test, all following
NIST recommendations. The test results from the first half of
the dataset suggest that we can select 1st-order polynomial
to remove the systematic component with least computation.
Indeed, the results from the second half affirm the selection
and more importantly the i.i.d. uniform assumption we have
made on our PUF output; see Appendix Table V and Table III
for detailed reports.

2) In-House Dataset: The second dataset is collected from
9 Xilinx Virtex-5 (65-nm) FPGAs in our own lab. The 9
FPGAs come with three different types of development boards:
3 ML501, 3 ML506 and 3 ML510. Because of different sizes,
they are placed with different number of RO arrays: 3 for
ML501, 6 for ML506 and 12 for ML510, 63 in total. Each
array contains 32 × 16 ROs just as in the previous dataset
and is regarded as an independent PUF for the test. Although
multiple measurements are available for each array, only the
first measurement at 20◦C is used as the output of Step 1
to produce the final secret. All test parameters are the same
as mentioned previously. Similar results are derived from this
dataset: The first half suggests the choice of the first order
model since it passes all tests with the lowest computing
and storage cost. The i.i.d. uniform assumption along with
the selected model is affirmed by the second half. Respective
results are listed in Appendix Table VI and Table IV.

B. Test for Stability

The second goal is to determine the optimal value of fth
given a class of ECC in Step 5; moreover, in the criterion
that all errors have to be corrected, we want to estimate the
effective min-entropy we can extract given a fixed number
of ROs. Three classes of BCH codes are considered, namely,
BCH(n = 31, k, t), BCH(n = 63, k, t) and BCH(n = 127,
k, t), where n denotes code block size, k the number of
information bits per block and t the maximum correctable

errors within a block. As we know from [2], the larger the
k, the smaller the min-entropy loss n − k per block; both
depend on t. For each class of code, we first pick a fth and
find out the largest t among all ECC blocks under test. As
long as t is small enough such that all errors can be corrected
by the given class of code, we have at least one solution k for
the picked fth, among which the largest k is used to calculate
the effective min-entropy of PUF schemes. For the proposed
PUF, the effective min-entropy HKSC

∞ is estimated as

|G|∑
i=1

log2 |gi|!− d
∑|G|
i=1 |sgi |
n

e(n− k) if ≥ 0, else 0, (9)

where the first term represents the total entropy extracted from
the grouping algorithm in Step 3 and the second term discounts
the total min-entropy loss due to public disclosure of syndrome
bits for ECC in Step 5. To compare, when CSC rather than
KSC is used in Step 4 (as proposed in [1]), replacing the sgi ’s
in Eqn. (9) with the cgi ’s defined in Step 6 forms the estimate
of HCSC

∞ . In case there is no solution k for a code class to
correct all errors with a given fth, the effective min-entropy
is then set to 0 as the case when the result of Eqn. (9) turns
negative. For both datasets, fth is swept from 0.1 to 3 standard
deviation of the 512 random variations distilled in Step 2.

1) Virginia Tech Dataset: This dataset consists of fre-
quency characterization of 5 Spartan-3 FPGAs provisioned
with ±10% and ±20% core supply voltage fluctuation and
separately temperature variation from 25◦C to 65◦C [11]. We
rule out the cases with ±20% voltage swings for they would
drive the results too conservative. Rather, our estimate is based
on the criterion that all errors must be corrected in rest of the
7 cases: Case 1) the nominal condition at 1.2V 25◦C; Case
2–3) provisioned in 25◦C with core supply voltage at 1.08V
and 1.32V; Case 4–7) provisioned at 1.2V 35◦C, 45◦C, 55◦C
and 65◦C. The secret is enrolled in Case 1 and regenerated in
Case 2–7). Also, we scan through 0th to 6th order model in
Step 2 and use the average to report.

Figure 2 draws two test results when BCH(n=31, k, t)
is considered: (i) the maximum number of errors among all
ECC blocks, see vertical bars that correspond to the secondary
y-axis; (ii) the averaged HCSC

∞ and HKSC
∞ given (i), see

lines and the primary y-axis. As we see, both HCSC
∞ and

HKSC
∞ drop to zero when fth approaches zero, meaning that

errors are so overwhelming that either there is no solution
to make all blocks error-free or the entropy loss surpasses
the group entropy in Eqn. 9. On the other hand, as fth
approaches 3 there is no error to be corrected such that HCSC

∞
and HKSC

∞ converge. When fth is in between, HCSC
∞ and

HKSC
∞ increase if the reduction in min-entropy loss is greater

than the reduction in group entropy extraction; otherwise,
they decrease. The tipping point, 1.9 for HKSC

∞ , suggests the
optimal value we can choose for fth. We can see similar results
for BCH(n=63, k, t) and BCH(n=127, k, t) in Appendix
Figure 3 and 4. On average HKSC

∞ outperforms HCSC
∞ by

8% in those optimal cases.

Fig. 2. The estimated HCSC
∞ and HKSC

∞ derived with BCH(31, k, t) based
on the Virginia Tech dataset

2) In-House Dataset: The second dataset is derived from
the 9 FPGAs mentioned earlier. Frequency measurements
are provisioned at chip temperature 20◦C, 50◦C and 100◦C
respectively with no intended core supply voltage variation.
Temperatures are manually controlled by monitoring the on-
chip system sensor. Ten measurements are taken for each of
the three scenarios; the first measurement at 20◦C is used to
generate the secret and then we try to recover it from the rest
of 29 measurements with help from ECC. As in the previous
dataset, polynomial orders 0th to 6th are all tested out. The
test results are similar to those derived from the previous
dataset only the tipping point shift lower to fth around 0.4
to 0.9 standard deviation due to less errors are introduced
with a stable voltage supply. Consequently, the estimates of
HCSC
∞ and HKSC

∞ in those optimal cases almost double than
in the previous dataset to 353 and 385 bits respectively, which
translates to a 9% gain. Complete charts are reported in
Appendix Figure 5, 6, 7.

C. In Comparison with IBS-Based RO PUF

To compare with the IBS-based scheme [5] in the context
of the i.i.d. uniform PUF output assumption, we form IBS
blocks each out of k consecutive ROs5 and ensure no blocks
share a common RO. Each IBS block generates one bit secret
through comparing the ROs that yield the largest frequency
difference at enrollment time; the selected pair is recalled by
keeping a log2

(
k
2

)
-bit index as public helper data. The k we

consider ranges from 2 to 6. Applying a similar methodology
we estimate the effective min-entropy HIBS

∞ using the the
same datasets and BCH codes. For the Virginia Tech dataset
no error takes place when k = 6, whereas no error is
observed when k ≥ 4 for the in-house dataset. The HIBS

∞
vs. k relation is drawn in Appendix Figure 8 and 9. Table II
summarizes the best case HIBS

∞ and HKSC
∞ when different

error correcting capability is assumed. As we see, in most
cases the proposed group-based RO PUF is 50% or more
efficient than the conjectured IBS-based RO PUF in terms
of effective min-entropy given the same number of ROs. The
only case KSC underperforms is due to one single error that

5Since there is no distillation process assumed, a block has to be formed
out of ROs physically as close as possible to reduce systematic correlation
[6].

Virginia Tech In-house
HIBS

∞ HKSC
∞ Gain HIBS

∞ HKSC
∞ Gain

No ECC 85 128 50% 128 102 -20%
BCH(31) 96 184 92% 128 280 118%
BCH(63) 104 189 82% 134 366 173%

BCH(127) 121 197 63% 172 509 196%
Average 107 190 72% 140 314 123%

TABLE II
THE ESTIMATE OF HIBS

∞ AND HKSC
∞ IN VARIOUS ECC SCENARIOS

cannot be cured until fth reaches 2.7; the study of the root
cause and preventing mechanisms is among our future work.

V. CONCLUSION

This work presents a new group-based RO PUF. First
of all, we introduce Kendall Syndrome Coding (KSC) to
address the coding inefficiency issue. Our experiment indicates
a 9% gain in terms of effective min-entropy. Second, we
incorporate entropy distillation and entropy packing processes
to achieve stronger secrecy. NIST test results derived from two
independent datasets both affirm the i.i.d. uniform assumption
we have made on our PUF output. Third, we redesign the
grouping algorithm LISA-lite to simplify the manufacturing
process. Besides, we construct a IBS-based PUF based on the
i.i.d. assumption and show that our design can be 50% or more
efficient in various error correcting scenarios. The proposed
PUF can be quickly realized as an embedded system on FPGA
with modern tool chain.

REFERENCES

[1] C.-E. D. Yin and G. Qu, “Lisa: Maximizing ro puf’s secret extraction,”
Proceedings of 3rd IEEE International Workshop on Hardware Oriented
Security and Trust (HOST), Jun. 2010.

[2] L. R. Yevgeniy Dodis and A. Smith, “Fuzzy extractors: How to generate
strong keys from biometrics and other noisy data,” Proceedings of IACR
Eurocrypt 2004 International Conference, LNCS Vol. 3027, pp. 523–540,
Springer, May 2004.

[3] M. Kendall, “Rank correlation methods,” London: Griffin, 1958.
[4] J. N. M. S. E. B. S. L. M. L. M. V. D. B. A. H. J. D. S. V.

Andrew Rukhin, Juan Soto and L. E. B. III, “A statistical test suite
for random and pseudorandom number generators for cryptographic
applications,” NIST Special Publication 800-22 Revision 1a, Apr. 2010.

[5] M.-D. Yu and S. Devadas, “Secure and robust error correction for phys-
ical unclonable functions,” IEEE Journal of Design & Test Computers,
Vol. 27, Issue 1, Jan. 2010.

[6] A. Maiti and P. Schaumont, “Improving the quality of a physical
unclonable function using configurable ring oscillators,” Proceedings of
19th IEEE International Conference on Field Programmable Logic and
Applications (FPLA), Sep. 2009.

[7] A. Barg and A. Mazumdar, “Codes in permutations and error correction
for rank modulation,” Proceedings of 2010 IEEE International Sympo-
sium on Information Theory (ISIT), June 2010.

[8] H. Chadwick and L. Kurz, “Rank permutation group codes based
on kendall’s correlation statistic,” IEEE Transactions on Information
Theory, Vol. 15, No. 2, pp. 306–315, 1969.

[9] H. Chadwick and I. Reed, “The equivalence of rank permutation codes to
a new class of binary codes,” IEEE Transactions on Information Theory,
Vol. 16, No. 5, pp. 640–641, 1970.

[10] D. E. Knuth, “Volume 2: Seminumerical algorithms (3st edition),” the
Art of Computer Programming, Addison-Wesley, 1998.

[11] A. Maiti and P. Schaumont, “A large scale characterization of ro-puf,”
Proceedings of 3rd IEEE International Workshop on Hardware Oriented
Security and Trust (HOST), Jun. 2010.

VI. APPENDIX

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
1
s
t
-o

rd
er

7 6 8 4 7 6 10 4 8 4 0.609372 63/64 Frequency
12 9 7 4 6 6 5 4 7 4 0.465914 62/64 BlockFrequency
8 6 11 8 5 5 5 7 5 4 0.517608 63/64 CumulativeSums (m-2)
7 8 10 8 11 4 8 3 2 3 0.109242 63/64 CumulativeSums (m-3)
7 2 14 10 6 2 5 5 8 5 0.023812 63/64 Runs
6 3 12 7 4 9 7 7 5 4 0.366511 63/64 LongestRun
7 9 6 6 5 4 8 7 8 4 0.817009 64/64 Rank
1 2 3 0 4 4 0 6 0 1 0.028264 21/21 FFT

10 8 3 9 5 5 7 6 5 6 0.517608 63/64 ApproximateEntropy
10 5 6 7 6 5 6 6 6 7 0.933004 64/64 Serial (forward)
4 9 9 6 6 8 3 6 4 9 0.380722 64/64 Serial (backward)

TABLE III
NIST TEST RESULTS DERIVED FROM THE SECOND HALF OF THE VIRGINIA TEACH DATASET [11] WITH 1st-ORDER POLYNOMIAL REGRESSION MODEL

APPLIED IN STEP 2. ALL TESTS ARE PASSED.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST

1
s
t
-o

rd
er

5 4 3 2 7 0 2 5 3 2 0.259438 31/33 Frequency
9 6 1 3 2 1 4 2 3 2 0.033490 31/33 BlockFrequency
7 5 2 4 2 1 4 1 6 1 0.120885 31/33 CumulativeSums (m-2)
6 4 3 3 4 3 5 1 4 0 0.502674 30/33 CumulativeSums (m-3)
8 2 3 2 1 4 2 2 5 4 0.216159 32/33 Runs
6 7 2 5 2 4 0 2 1 4 0.098607 33/33 LongestRun
6 3 3 8 1 2 3 2 4 1 0.120885 31/33 Rank
0 3 1 0 1 1 0 5 0 0 0.003950 11/11 FFT
9 4 2 4 3 0 2 4 3 2 0.064760 33/33 ApproximateEntropy
7 3 2 5 4 5 4 3 0 0 0.120885 32/33 Serial (forward)
3 3 5 3 2 5 3 5 1 3 0.697921 32/33 Serial (backward)

TABLE IV
NIST TEST RESULTS DERIVED FROM THE SECOND HALF OF OUR OWN DATASET WITH 1st-ORDER POLYNOMIAL REGRESSION MODEL APPLIED IN STEP 2.

ALL TESTS ARE PASSED

Fig. 3. The estimated HCSC
∞ and HKSC

∞ derived with BCH(63, k, t) based
on the Virginia Tech dataset

Fig. 4. The estimated HCSC
∞ and HKSC

∞ derived with BCH(127, k, t)
based on the Virginia Tech dataset

Fig. 5. The estimated HCSC
∞ and HKSC

∞ derived with BCH(31, k, t) based
on the in-house dataset

Fig. 6. The estimated HCSC
∞ and HKSC

∞ derived with BCH(63, k, t) based
on the in-house dataset

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
0
t
h

-o
rd

er

10 9 4 6 4 4 9 3 5 11 0.187777 64/65 Frequency
11 10 12 6 5 3 6 4 5 3 0.068316 64/65 BlockFrequency
12 8 5 11 6 3 9 3 5 3 0.061374 63/65 CumulativeSums (m-2)
9 10 5 7 4 7 5 6 7 5 0.676274 63/65 CumulativeSums (m-3)

19 9 5 8 4 6 5 4 2 3 0.000049 * 59/65 * Runs
7 6 7 14 14 4 5 1 3 4 0.000919 65/65 LongestRun

11 4 8 6 7 6 4 5 10 4 0.484073 64/65 Rank
4 2 2 0 3 3 0 3 0 4 0.323011 21/21 FFT

18 9 5 6 6 5 8 5 2 1 0.000145 62/65 ApproximateEntropy
15 9 5 9 6 5 1 7 4 4 0.009867 63/65 Serial (forward)
6 3 4 7 11 11 7 6 9 1 0.075967 65/65 Serial (backward)

1
s
t
-o

rd
er

7 7 6 7 9 2 8 5 5 9 0.494547 63/65 Frequency
9 7 11 6 4 4 6 5 4 9 0.521707 61/65 BlockFrequency
8 8 6 10 6 2 5 6 9 5 0.314919 63/65 CumulativeSums (m-2)
6 7 9 7 5 6 4 8 7 6 0.921761 63/65 CumulativeSums (m-3)
6 9 5 6 8 7 7 8 3 6 0.798722 64/65 Runs
8 3 6 8 14 4 4 5 8 5 0.093645 65/65 LongestRun
7 8 7 4 7 6 9 7 6 4 0.867205 62/65 Rank
1 3 4 0 2 3 0 4 0 4 0.187777 21/21 FFT
9 6 5 7 6 5 6 7 9 5 0.896359 63/65 ApproximateEntropy

13 4 6 11 3 4 10 6 7 1 0.011121 65/65 Serial (forward)
7 5 6 7 13 7 2 5 10 3 0.093645 63/65 Serial (backward)

2
n
d

-o
rd

er

8 7 9 6 10 5 4 5 5 6 0.631944 64/65 Frequency
11 8 11 7 4 5 5 6 3 5 0.296269 64/65 BlockFrequency
10 6 7 6 7 3 5 5 8 8 0.631944 64/65 CumulativeSums (m-2)
8 10 6 7 5 6 4 5 6 8 0.760113 64/65 CumulativeSums (m-3)

13 8 9 4 8 2 6 3 5 7 0.084389 62/65 Runs
8 1 8 12 11 1 7 7 6 4 0.017828 64/65 LongestRun
9 8 6 2 5 5 7 7 8 8 0.540669 64/65 Rank
1 0 4 0 8 5 0 3 0 0 0.000065 * 21/21 FFT

12 8 8 3 6 8 6 5 5 4 0.414146 63/65 ApproximateEntropy
14 9 5 6 10 3 5 5 4 4 0.044252 64/65 Serial (forward)
12 5 4 5 8 5 9 6 4 7 0.448203 64/65 Serial (backward)

3
r
d

-o
rd

er

6 9 6 7 10 2 7 3 8 7 0.521707 65/65 Frequency
7 8 9 9 8 2 6 9 1 6 0.226378 64/65 BlockFrequency
3 13 5 10 10 10 3 0 7 4 0.002550 65/65 CumulativeSums (m-2)
3 11 7 5 10 5 5 7 7 5 0.521707 65/65 CumulativeSums (m-3)

10 10 6 8 8 4 10 4 3 2 0.127107 64/65 Runs
4 5 7 8 14 2 3 9 4 9 0.022481 65/65 LongestRun
6 10 6 3 5 3 2 8 14 8 0.020027 65/65 Rank
2 6 1 0 2 8 0 2 0 0 0.000097 * 21/21 FFT

11 6 6 11 7 3 7 3 5 6 0.296269 64/65 ApproximateEntropy
9 11 8 3 6 5 7 4 5 7 0.561026 64/65 Serial (forward)
8 8 5 8 2 7 7 5 6 9 0.540669 63/65 Serial (backward)

4
t
h

-o
rd

er

9 5 4 7 6 3 11 6 3 11 0.170659 63/65 Frequency
8 13 8 4 3 10 4 5 4 6 0.093645 64/65 BlockFrequency
7 5 9 5 2 4 10 9 8 6 0.448203 63/65 CumulativeSums (m-2)
8 7 4 6 10 3 10 4 6 7 0.561026 62/65 CumulativeSums (m-3)
7 9 6 6 6 1 6 9 8 7 0.358516 64/65 Runs
4 10 5 8 11 9 4 5 3 6 0.271286 65/65 LongestRun
9 5 5 3 6 11 10 5 6 5 0.414146 63/65 Rank
3 4 2 0 3 3 0 2 0 4 0.323011 20/21 FFT
8 10 4 7 8 5 2 7 4 10 0.351554 63/65 ApproximateEntropy
9 5 9 5 5 7 6 4 7 8 0.760113 65/65 Serial (forward)
3 6 6 7 10 5 8 9 3 8 0.272584 65/65 Serial (backward)

5
t
h

-o
rd

er

6 8 5 3 11 3 11 6 6 6 0.271286 64/65 Frequency
13 5 8 5 10 7 5 7 0 5 0.039609 63/65 BlockFrequency
7 8 6 3 9 3 4 8 9 8 0.272584 64/65 CumulativeSums (m-2)
8 9 7 6 5 3 5 13 6 3 0.170659 64/65 CumulativeSums (m-3)

13 9 5 9 6 3 6 7 3 4 0.114933 61/65 Runs
3 9 12 10 13 4 3 1 4 6 0.001981 64/65 LongestRun
5 3 13 7 3 7 3 9 7 8 0.103803 63/65 Rank
0 2 4 0 4 7 0 1 0 3 0.003277 21/21 FFT

18 8 6 1 9 5 5 1 5 7 0.000074 * 64/65 ApproximateEntropy
12 7 3 11 7 8 7 4 4 2 0.068316 64/65 Serial (forward)
6 8 8 6 5 8 6 10 7 1 0.561026 65/65 Serial (backward)

6
t
h

-o
rd

er

7 4 9 2 4 5 9 8 5 12 0.154893 64/65 Frequency
14 13 13 8 2 2 4 4 2 3 0.000019 * 65/65 BlockFrequency
7 10 8 8 5 6 3 3 11 4 0.271286 65/65 CumulativeSums (m-2)
5 6 8 6 12 7 4 6 6 5 0.403161 65/65 CumulativeSums (m-3)

15 14 3 6 5 2 6 7 2 5 0.000323 64/65 Runs
7 3 13 9 10 7 5 2 4 5 0.049394 65/65 LongestRun
8 8 5 5 7 5 6 6 7 8 0.960834 63/65 Rank
1 4 3 0 1 5 0 4 0 3 0.075967 21/21 FFT

15 7 5 9 7 5 3 4 7 3 0.028264 64/65 ApproximateEntropy
13 7 8 10 5 6 4 0 8 4 0.025217 64/65 Serial (forward)
10 8 5 6 9 4 4 6 4 9 0.314919 64/65 Serial (backward)

TABLE V
NIST TEST RESULTS DERIVED FROM THE FIRST HALF OF THE DATASET [11], WHERE THE LENGTH OF ONE BITSTRING IS 400 (EXCEPT 3X FOR FFT

TEST), THE BLOCK LENGTH FOR FREQUENCY TEST 32, THE BLOCK LENGTH FOR APPROXIMATE ENTROPY TEST 2 AND THE BLOCK LENGTH FOR
SERIAL TEST 5. ‘*’ MARKS A FAILURE.

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 P-VALUE PROPORTION STATISTICAL TEST
0
t
h

-o
rd

er

13 3 3 1 1 1 4 1 2 5 0.000008 * 30/34 * Frequency
16 3 4 3 0 2 2 1 2 1 0.000000 * 29/34 * BlockFrequency
14 4 3 1 2 2 2 1 3 2 0.000001 * 27/34 * CumulativeSums (m-2)
10 5 5 2 3 0 2 2 3 2 0.007297 29/34 * CumulativeSums (m-3)
15 6 4 2 0 3 1 1 1 1 0.000000 * 26/34 * Runs
12 1 4 3 3 4 4 1 2 0 0.000119 31/34 LongestRun
5 3 6 7 4 1 2 2 3 1 0.196868 33/34 Rank
1 2 1 0 2 1 0 1 0 3 0.581286 11/11 FFT

17 4 3 4 1 1 1 2 1 0 0.000000 * 24/34 * ApproximateEntropy
16 4 2 6 1 1 2 1 0 1 0.000000 * 26/34 * Serial (forward)
6 5 3 2 4 2 3 5 2 2 0.471531 34/34 Serial (backward)

1
s
t
-o

rd
er

6 5 0 5 5 0 5 2 3 3 0.133610 33/34 Frequency
6 6 4 2 4 1 2 2 4 3 0.541162 33/34 BlockFrequency
6 3 5 3 4 1 1 3 4 4 0.380722 33/34 CumulativeSums (m-2)
6 5 1 6 3 1 1 2 5 4 0.196868 33/34 CumulativeSums (m-3)
7 5 4 2 4 0 4 2 0 6 0.058152 33/34 Runs
3 1 4 7 6 3 2 2 5 1 0.196868 34/34 LongestRun
4 3 4 5 0 4 4 3 6 1 0.465914 32/34 Rank
2 4 0 0 0 1 0 4 0 0 0.003950 11/11 FFT
6 1 6 6 3 3 3 1 3 2 0.283561 32/34 ApproximateEntropy
6 5 6 4 3 1 3 2 0 4 0.236992 32/34 Serial (forward)
3 5 7 7 4 2 0 1 1 4 0.037462 34/34 Serial (backward)

2
n
d

-o
rd

er

9 3 3 1 4 2 4 1 2 5 0.058152 32/34 Frequency
8 4 4 4 1 2 4 6 1 0 0.037462 32/34 BlockFrequency
6 6 2 4 3 5 3 1 2 2 0.465914 33/34 CumulativeSums (m-2)

11 1 4 4 5 0 2 3 3 1 0.000757 32/34 CumulativeSums (m-3)
11 6 2 0 2 1 6 1 1 4 0.000069 * 31/34 Runs
6 3 7 3 3 4 0 3 4 1 0.196868 33/34 LongestRun
9 8 2 4 1 3 2 2 3 0 0.002716 32/34 Rank
2 2 4 0 0 2 0 1 0 0 0.064760 10/11 FFT

12 3 6 4 4 1 2 0 1 1 0.000023 * 32/34 ApproximateEntropy
11 1 7 1 5 2 2 0 4 1 0.000053 * 32/34 Serial (forward)
5 5 6 3 2 1 2 2 7 1 0.133610 34/34 Serial (backward)

3
r
d

-o
rd

er

3 5 4 5 1 2 5 3 4 2 0.563683 34/34 Frequency
5 6 5 2 5 2 2 3 3 1 0.541162 33/34 BlockFrequency
5 2 5 6 2 2 5 3 2 2 0.293582 34/34 CumulativeSums (m-2)
4 2 2 5 7 3 4 3 2 2 0.293582 34/34 CumulativeSums (m-3)
7 5 7 1 3 3 4 1 1 2 0.072049 31/34 Runs
1 1 5 4 6 5 4 5 1 2 0.283561 34/34 LongestRun
6 4 4 3 4 4 2 3 1 3 0.654263 33/34 Rank
1 4 2 0 1 1 0 1 0 1 0.216159 11/11 FFT
4 5 9 3 3 2 1 2 4 1 0.058152 34/34 ApproximateEntropy
7 3 5 1 4 2 4 2 3 3 0.541162 33/34 Serial (forward)
4 4 8 2 1 3 3 1 4 4 0.236992 34/34 Serial (backward)

4
t
h

-o
rd

er

5 7 1 1 5 4 4 2 1 4 0.196868 33/34 Frequency
7 2 6 1 7 0 4 3 2 2 0.029914 34/34 BlockFrequency
5 5 3 2 5 2 2 3 4 3 0.739897 33/34 CumulativeSums (m-2)
4 7 1 6 2 2 3 2 4 3 0.337055 34/34 CumulativeSums (m-3)
5 8 4 2 2 0 4 7 1 1 0.011803 33/34 Runs
4 2 4 4 7 2 2 4 4 1 0.541162 34/34 LongestRun
6 1 2 3 5 3 4 4 2 4 0.471531 34/34 Rank
1 4 2 0 0 3 0 1 0 0 0.033490 11/11 FFT
7 6 1 4 5 1 5 1 3 1 0.072049 33/34 ApproximateEntropy
4 4 5 3 4 5 3 4 2 0 0.471531 34/34 Serial (forward)
2 5 4 5 6 4 0 2 1 5 0.236992 34/34 Serial (backward)

5
t
h

-o
rd

er

4 3 2 2 4 2 6 3 2 6 0.380722 34/34 Frequency
5 1 2 2 3 1 2 6 5 7 0.133610 34/34 BlockFrequency
2 5 1 4 3 1 4 7 5 2 0.283561 34/34 CumulativeSums (m-2)
4 0 1 2 4 5 3 4 5 6 0.337055 34/34 CumulativeSums (m-3)
5 7 3 5 1 2 3 2 1 5 0.236992 34/34 Runs
2 1 5 6 9 4 3 3 1 0 0.009292 34/34 LongestRun
3 5 2 3 6 1 4 1 4 5 0.541162 34/34 Rank
1 2 1 0 2 1 0 3 0 1 0.581286 11/11 FFT
7 5 1 5 2 1 3 2 4 4 0.283561 34/34 ApproximateEntropy
5 6 5 3 1 4 3 4 1 2 0.541162 34/34 Serial (forward)
5 5 2 1 4 8 2 2 4 1 0.109242 34/34 Serial (backward)

6
t
h

-o
rd

er

7 4 3 4 5 1 3 1 4 2 0.397806 34/34 Frequency
6 2 4 5 4 3 5 0 0 5 0.162612 33/34 BlockFrequency
6 4 5 3 2 3 2 4 3 2 0.654263 34/34 CumulativeSums (m-2)
8 1 4 8 3 1 2 1 2 4 0.011803 34/34 CumulativeSums (m-3)

11 3 3 0 4 3 3 3 2 2 0.003488 32/34 Runs
3 4 9 7 4 1 0 3 2 1 0.005718 34/34 LongestRun
8 3 6 3 3 0 3 3 3 2 0.133610 31/34 Rank
2 2 2 0 0 2 0 2 0 1 0.581286 11/11 FFT
9 5 5 1 2 3 4 1 2 2 0.037462 33/34 ApproximateEntropy
8 6 2 3 6 2 4 1 2 0 0.023812 31/34 Serial (forward)
4 4 6 3 3 2 2 4 4 2 0.739897 32/34 Serial (backward)

TABLE VI
NIST TEST RESULTS USING THE FIRST HALF OF THE IN-HOUSE DATASET, WHERE THE LENGTH OF ONE BITSTRING IS 400 (EXCEPT 3X FOR FFT TEST),

THE BLOCK LENGTH FOR FREQUENCY TEST 32, THE BLOCK LENGTH FOR APPROXIMATE ENTROPY TEST 2 AND THE BLOCK LENGTH FOR SERIAL TEST
5. ‘*’ MARKS A FAILURE.

Fig. 7. The estimated HCSC
∞ and HKSC

∞ derived with BCH(127, k, t)
based on the in-house dataset

Fig. 8. The estimated HIBS
∞ derived from the Virginia Tech dataset

Fig. 9. The estimated HIBS
∞ derived from the in-house dataset

	TR_2011-13_Cover_Page.pdf
	ksc

