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This thesis proves certain results concerning an important question in non-

equilibrium quantum statistical mechanics which is the derivation of effective evo-

lution equations approximating the dynamics of a system of large number of bosons

initially at equilibrium (ground state at very low temperatures). The dynamics of

such systems are governed by the time-dependent linear many-body Schrödinger

equation from which it is typically difficult to extract useful information due to the

number of particles being large. We will study quantitatively (i.e. with explicit

bounds on the error) how a suitable one particle non-linear Schrödinger equation

arises in the mean field limit as number of particles N → ∞ and how the appro-

priate corrections to the mean field will provide better approximations of the exact

dynamics.

In the first part of this thesis we consider the evolution of N bosons, where

N is large, with two-body interactions of the form N3βv(Nβ·), 0 ≤ β ≤ 1. The



parameter β measures the strength and the range of interactions. We compare the

exact evolution with an approximation which considers the evolution of a mean field

coupled with an appropriate description of pair excitations, see [18,19] by Grillakis-

Machedon-Margetis. We extend the results for 0 ≤ β < 1/3 in [19, 20] to the case

of β < 1/2 and obtain an error bound of the form p(t)/Nα, where α > 0 and p(t) is

a polynomial, which implies a specific rate of convergence as N →∞.

In the second part, utilizing estimates of the type discussed in the first part,

we compare the exact evolution with the mean field approximation in the sense of

marginals. We prove that the exact evolution is close to the approximate in trace

norm for times of the order o(1)
√
N compared to log(o(1)N) as obtained in Chen-

Lee-Schlein [6] for the Hartree evolution. Estimates of similar type are obtained for

stronger interactions as well.
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vN(x) = N3βv(Nβx)

φ⊗N(x1, . . . , xN) =
∏N

j=1 φ(xj)

|φ〉〈φ| rank-one projection with kernel (φ⊗ φ̄)(x, y) = φ(x)φ̄(y)
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component

L2
s (R3N) subspace of L2(R3N) consisting of symmetric functions in
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Hs(Rn) Sobolev space of functions having s derivatives in L2(Rn),
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Chapter 1: Introduction

1.1 Background

A Bose-Einstein condensate is a state of matter of a dilute gas of bosons at

very low temperatures, in which particles macroscopically occupy the lowest energy

state described by a single one particle wave function. This phenomenon was first

predicted by Einstein in 1925 for non-interacting massive particles based on the

ideas of Bose. The experimental realization of the first condensates was achieved

in 1995 [1, 11] which has been followed by an increase in the experimental and

theoretical activity on the study of the condensates.

In experiments, to obtain a condensate, weakly interacting atoms trapped by

external potentials are cooled below a certain temperature depending on the den-

sity of the gas. Traps are then removed to observe the evolution of the condensate.

The properties of interest are the macroscopic properties of the system describing

the typical behavior of the particles resulting from averaging over a large number

of particles. The limiting behavior as the number of particles goes to infinity is

expected to be a good approximation for the macroscopic properties observed in

the experiments for a system of large but finite number of particles. We can de-

scribe the corresponding mathematical model as follows. We consider a system of N
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weakly interacting bosons, the dynamics of which is governed by the N -body linear

Schrödinger equation

1

i
∂tψN =

( HN︷ ︸︸ ︷
N∑
j=1

∆xj −
1

N
↑

to treat
HN as

a mean field
Hamiltonian

N∑
j<k

N3βv(Nβ(xj − xk))︸ ︷︷ ︸
vN (xj−xk) ⇀

N→∞

( ∫
v(x)dx

)
δ(xj−xk)

)
ψN (1.1)

where 0 ≤ β ≤ 1. HN acts on the wave functions

ψN ∈ L2
s (R3N) with ‖ψN‖L2

s (R3N ) = 1

where L2
s (R3N) stands for the subspace of L2(R3N) consisting of symmetric functions

in x1, x2, . . . xN . The spherically symmetric non-negative potential v ∈ L1(R3) ∩

L∞(R3) models two body interactions and the scaling parameter β describes the

range and the strength of interactions. In a trap of fixed size the average inter-

particle distance can be considered to scale with N−1/3 compared to the range of the

interaction of order N−β. Hence for β > 1/3, each particle feels only the potential

generated by itself, which is consistent with the Gross-Pitaevskii theory proposing

to model the many-body effects by a strong on-site self interaction [23,24,34]. The

problem becomes more difficult and interesting as β → 1 since strong interactions

in Gross-Pitaevskii regime (β = 1) produce short range particle correlations leading

to the emergence of the scattering length of v in the limiting dynamics.

We consider the evolution in (1.1) with initial data coming from the ground
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state of the following Hamiltonian describing the initially trapped gas:

Htrap
N :=

N∑
j=1

(
−∆xj + Vext(xj)︸ ︷︷ ︸

∼|xj |2 typically
in available experiments

)
+

1

2N

∑
j 6=k

N3βv(Nβ(xj − xk)).

The ground state of Htrap
N at zero temperature exhibits complete BEC as N → ∞

in the sense that it looks like a factorized state:

ψN(0, x1, . . . , xN) ' φ⊗N0 :=
N∏
j=1

φ0(xj)︸ ︷︷ ︸
pure condensate in

case of no interaction

(1.2)

as rigorously justified by the work of Lieb-Seiringer-Yngvason [30,31] which showed

γ
(1)
N (0, x, x′) :=

∫
R3(N−1)

ψN(0, x,xN−1)ψN(0, x′,xN−1)dxN−1 → φ0(x)φ̄0(x′) (1.3)

in trace norm as N →∞ and for φ0 minimizing the appropriate one-particle energy

functional, subject to ‖φ0‖L2(R3) = 1. The eigenvalues of γ
(1)
N are interpreted as the

probabilities of occupation of the corresponding eigenstates. Convergence to a rank-

one projection as in (1.3) implies that in the limit of large N any randomly chosen

particle occupies the one-particle state φ0 (initial mean field) with probability one.

Concerning the time evolution of an initially factorized (or approximately fac-

torized) state, preservation of condensation at later times in the sense of marginals

as described above has been proved during the last 10-15 years mainly by Erdös-

Schlein-Yau in a series of papers [13–16] under varying assumptions on the interac-

3



tion and the scaling parameter β. More precisely the solution ψN to (1.1) satisfies

ψN(t, x1, . . . , xN) '
N∏
j=1

φ(t, xj) (1.4)

in the sense that

γ
(1)
N (t, x, x′)→ φ(t, x)φ̄(t, x′) (1.5)

in trace norm as N →∞ where the limiting one-particle condensate wave function

φ satisfies the Schrödinger equation

1

i
∂tφ = ∆φ−



(
v ∗ |φ|2)φ, if β = 0( ∫
v(x)dx

)
|φ|2φ, if 0 < β < 1

8π a
↓

scattering length of v

|φ|2φ, if β = 1

φ(0, ·) = φ0.

(1.6)

Similarly for higher order marginals

γ
(k)
N (t,xk,x

′
k) :=

∫
R3(N−k)

ψN(t,xk,xN−k)ψN(t,x′k,xN−k)dxN−k →
k∏
j=1

φ(t, xj)φ̄(t, x′j)

in trace norm as N → ∞. The strategy in the above mentioned papers was based

on the work of Spohn [37] proving (1.4) for bounded potentials in case of β = 0 via

BBGKY hierarchy. Recent simplifications and generalizations were given in [26],

[7], [9, 10], [8].

One would also like to quantify the error in (1.5). Using the framework of the

second quantization L. Chen-Lee-Schlein [6] (extending the techniques developed
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by Rodnianski-Schlein [35]) and also Benedikter-Oliveira-Schlein [3] obtained the

following results:

Tr
∣∣γ(1)
N (t, ·)− |φ(t, ·)〉〈φ(t, ·)|

∣∣ .


eCt/N by [6], for β=0 and

singular potentials

including v(x)=|x|−1,

exp(c1 exp(c2t))

N1/4
by [3], for β=1 and

v∈L1∩L3(R3,(1+|x|6)dx).

(1.7)

Convergence in the sense of marginals provides with partial information about

the system since most of the variables are averaged out. Also, although the Hartree

equation (corresp. to β = 0) or the cubic nonlinear Schrödinger equation provides

a good description of the limiting behavior for the mean field represented by the

condensate wave function, they fail to describe pair excitations i.e. the scattering of

particles in pairs from the condensate to other states. Hence, Grillakis-Machedon-

Margetis (GMM) [18, 19], inspired by but being different than that of Wu [39],

introduced a Fock space approximation of the exact dynamics which considers pair

excitations as a correction to the mean field. They obtained error bounds deteriorat-

ing more slowly in time compared to the exponential deterioration. Those results are

valid for β < 1/3 with the assumptions in [18–20]. One of the issues we would like

to address in this thesis is extending GMM-results to higher β values (i.e. stronger

interactions with shorter range) under the same assumptions as in [20]. The other

direction in this thesis is utilizing GMM-type Fock space estimates to improve the

error bounds in (1.7). We will state and discuss our main results in subsections 1.3

and 1.4 after providing a brief overview of second quantization in the next section.
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We will conclude this introductory chapter by an outline of the rest of this thesis.

1.2 Fock Space Formalism

1.2.1 Symmetric Fock Space

The symmetric Fock space is defined as

F =
∞⊕
n=0

Fn; Fn = L2
s (R3n) for n > 0 and F0 = C

containing vectors of the form

|ψ〉 = (ψ0, ψ1, ψ2, . . . )

and equipped with the inner product (linear in the first component)

〈ψ|φ〉 = ψ0φ̄0 +
∑
n≥1

∫
R3n

ψn(x)φ̄n(x)dx.

We will use the following notation for what is known to be the vacuum state

with no particles: ∣∣0〉 = (1, 0, 0, . . . ).

We define the annihilation and creation operator-valued distributions denoted

by ax and a∗x and acting on Fock vectors of the form (0, . . . , 0, ψn+1, 0, . . . ) and
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(0, . . . , 0, ψn−1, 0, . . . ) respectively as:

ax(ψn+1) =
√
n+ 1ψn+1(x, x1, . . . , xn), (1.8a)

a∗x(ψn−1) =
1√
n

n∑
j=1

δ(x− xj)ψn−1(x1, . . . , xj−1, xj+1, . . . , xn). (1.8b)

Note that they are adjoints of one another and they satisfy

[ax, ay] = [a∗x, a
∗
y] = 0, [ax, a

∗
y] = δ(x− y), ax

∣∣0〉 = 0. (1.9)

We also need to define the (unbounded) number of particles operator :

N :=

∫
dx a∗xax acting as

(
N α|ψ〉

)
n

= nαψn

for α > 0 and |ψ〉 satisfying
∞∑
n=1

n2α‖ψn‖2
L2(R3n) <∞

(1.10)

so that for |ψ〉 in Fock space with ‖|ψ〉‖F = 1

〈ψ|N |ψ〉 =
∞∑
n=1

n

probability of having
n particles at |ψ〉︷ ︸︸ ︷
‖ψn‖2

L2(R3n) (1.11)

represents the expectation of number of particles in the state |ψ〉.

With the help of operator-valued distributions ax, a
∗
x defined in (1.8), we can

introduce the unbounded, closed, densely-defined operators annihilating/creating

particles at a state f :

a(f̄) :=

∫
dx f̄(x)ax and a∗(f) :=

∫
dx f(x)a∗x for f ∈ L2(R3). (1.12)
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We will need the following control of the annihilation a(f) and the creation a∗(f)

operators in terms of the number of particles operator N introduced in (1.10):

Lemma 1.1. For f ∈ L2(R3), the following estimates hold:

‖a(f)|ψ〉‖ ≤ ‖f‖2‖N 1/2|ψ〉‖, (1.13a)

‖a∗(f)|ψ〉‖ ≤ ‖f‖2‖(N + 1)1/2|ψ〉‖. (1.13b)

Proof. (1.13a) follows by

‖a(f)|ψ〉‖ = ‖
∫

dx f(x)ax|ψ〉‖ ≤
∫
|f(x)|‖ax|ψ〉|‖dx ≤ ‖f‖2

(∫
〈ψ|a∗xax|ψ〉dx

)1/2

and recalling the definition of N in (1.10). (1.13b) follows from

‖a∗(f)|ψ〉‖2 = 〈ψ|a(f̄)a∗(f)|ψ〉

using the 2nd commutation
relation in (1.9)

↓
=〈ψ|

{
‖f‖2

2 + a∗(f)a(f̄)
}
|ψ〉

= ‖f‖2
2‖|ψ〉‖2 + ‖a(f̄)|ψ〉‖2

≤ ‖f‖2
2‖|ψ〉‖2 + ‖f‖2

2‖N 1/2|ψ〉‖2

where the last inequality follows by (1.13a).
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1.2.2 Embedding the N -body Dynamics in Fock Space:

Fock Hamiltonian and Coherent States1

Embedding the N -body dynamics in the Fock space representation provides

with the advantage of considering all possible number of particles at the same time.

One can then try to extract information for the relevant N -particle sector via pro-

jection. Also the algebra in Fock space is easier due to certain algebraic properties

of the operators soon to be defined.

Let’s first define the second quantization dΓ(J) of a one-particle operator J

acting on L2(R3):

(dΓ(J)|ψ〉)n :=
n∑
k=1

Jkψn (1.14)

where Jk denotes the action of J on ψn in the kth variable. If J has a corresponding

kernel then we can write

dΓ(J) =

∫
J(x, y)a∗xaydxdy.

Notice that dΓ(δ(x − y)) = N recalling definition (1.10). We state a property of

dΓ(J) here for future reference:

Lemma 1.2. For any |ψ〉 in the domain of N and for any bounded operator J on

1Embedding the N -body system in Fock space and using coherent states as initial data was
originally proposed by Hepp [25] to study the semi-classical limit of quantum many-body boson
systems and then was extended by Ginibre-Velo [17] to singular potentials. This approach has been
revived by [35] to obtain estimates on the rate of convergence to the limiting Hartree dynamics
which further inspired [18,19].
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L2(R3), the following estimate holds:

‖dΓ(J)|ψ〉‖ ≤ ‖J‖op‖N |ψ〉‖. (1.15)

Proof. We can proceed as

‖dΓ(J)|ψ〉‖2 =
∞∑
n=0

〈 n∑
k=1

Jkψn,
n∑
k=l

Jlψn

〉
L2
≤ ‖J‖2

op

∞∑
n=0

n2‖ψn‖2 = ‖J‖2
op‖N |ψ〉‖2

where ‖J‖op = sup{f∈L2(R3):‖f‖2=1} ‖Jf‖2 i.e. the operator norm of J.

Similar to the definitions above, one can define the second quantization of a

symmetric 2-particle kernel W as

1

2

∫
W (x, y;x′, y′)a∗xa

∗
yax′ay′dxdydx′dy′. (1.16)

In order to embed the N -body system in the Fock space we need to define the

Fock Hamiltonian acting on F as

H := H1 −N−1V where, (1.17a)

H1 := dΓ(∆) =

∫
∆xδ(x− y)a∗xay dx dy, (1.17b)

V :=
1

2

∫
vN(x− y)a∗xa

∗
yaxay dx dy (1.17c)

with vN(x) := N3βv(Nβx) (1.17d)

where we took W (x, y;x′, y′) = vN(x−y)δ((x, y)−(x′, y′)) in (1.16) for the definition

10



of V in (1.17c). H is a diagonal operator on F, acting on the n-particle sector as a

regular n-body PDE Hamiltonian

HN,n =
n∑
j=1

∆xj −
1

N

∑
j<k

vN(xj − xk)

which is equal to HN in (1.1) for n = N .

Before considering the initial value problem in the Fock space corresponding

to the N -body equation (1.1) let’s introduce the coherent states which we will use

as our initial data. First define the skew-Hermitian operator:

A(φ0) :=

∫
dx φ̄0(x)ax︸ ︷︷ ︸
a(φ̄0)

−
∫

dxφ0(x)a∗x︸ ︷︷ ︸
a∗(φ0)

for φ0 ∈ L2(R3).

Setting X =
√
Na∗(φ0) and Y = −

√
Na(φ̄0) for φ0 with ‖φ0‖2 = 1 and using the

Baker-Campbell-Hausdorff formula implying

eX+Y = eXeY e−
1
2

[X,Y ] for operators X, Y with
[
X, [X, Y ]

]
=
[
Y, [X, Y ]

]
= 0

together with a
∣∣0〉 = 0, we can perform the following computation leading to an

explicit formula for what is known to be the N-particle coherent state e−
√
NA(φ0)

∣∣0〉:
Weyl operator︷ ︸︸ ︷
e−
√
NA(φ0)

∣∣0〉 = e−
N
2 e
√
Na∗(φ0)

∣∣0〉 = e−
N
2

∞∑
n=0

Nn/2

n!

(0,...,0,
√
n!φ⊗n0 ,0,... )︷ ︸︸ ︷

a∗(φ0)n
∣∣0〉

=

(
. . . , cn

n∏
j=1

φ0(xj), . . .

)
with cn = (e−NNn/n!)1/2 (1.18)
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Coherent states, having a tensor product in each sector, are a generalization in Fock

space of factorized states φ⊗N0 seen in (1.2). Some useful properties of them are

stated in (iii)-(iv) of the following lemma:

Lemma 1.3. Let φ ∈ L2(R3).

(i) The Weyl operator e
√
NA(φ) is unitary.

(ii) We have

e
√
NA(φ)axe

−
√
NA(φ) = ax +

√
Nφ(x), (1.19)

e
√
NA(φ)a∗xe

−
√
NA(φ) = a∗x +

√
Nφ(x), (1.20)

e
√
NA(φ)N e−

√
NA(φ) = N +

√
N ϕ(φ)︸︷︷︸
a(φ̄)+a∗(φ)

+N‖φ‖2
2. (1.21)

(iii) Coherent states are eigenvectors of annihilation operators.

(iv) The expected number of particles in coherent state e−
√
NA(φ0)

∣∣0〉 with ‖φ0‖2 = 1

is 〈0|e
√
NA(φ0)N e−

√
NA(φ0)

∣∣0〉 = N .

Proof. (i) is implied by the fact that A(φ) = a(φ̄)−a∗(φ) is skew-Hermitian. (1.19)

and (1.20) are adjoints of each other and either of them can be obtained by using

the formula

eAHe−A =
∞∑
n=0

1

n!
(adA)n(H) where adA(H) := [A,H] for operators A,H (1.22)

and the commutation relation in (1.9). (1.21) can be obtained in the same way using

12



(1.22) or we can write

e
√
NA(φ)N e−

√
NA(φ) =

∫
e
√
NA(φ)a∗xe

−
√
NA(φ)e

√
NA(φ)axe

−
√
NA(φ)dx

and then use (1.19)-(1.20). (iii) follows from (1.19) if we let both sides of (1.19) act

on vacuum and use a
∣∣0〉 = 0. (iv) is implied by (1.21) or we can recall (1.11) and

use the explicit formula in (1.18) to compute the probability of having n particles at

e−
√
NA(φ0)

∣∣0〉 as c2
n = e−NNn/n! which implies a Poisson distribution with expected

number of particles N .

Considering (1.17)-(1.18), the initial value problem in the Fock space can be

written as:

1

i
∂t|ψ〉 = H|ψ〉, (1.23a)

|ψ(0)〉 = e−
√
NA(φ0)

∣∣0〉 (1.23b)

so that on the N -particle sector we have the N -body equation (1.1) with the initial

data cNφ
⊗N
0 where cN = eNNN/N ! ' (2πN)−1/4 has been estimated using Stirling’s

formula.

1.2.3 Mean Field Approximation and Second-order Corrections

The solution to the initial value problem (1.23a)-(1.23b) can be written for-

mally as

|ψex(t)〉 = eitHe−
√
NA(φ0)

∣∣0〉 (exact evolution) (1.24)

13



having cNe
itHNφ⊗N0 in the N -particle sector and the mean field evolution is described

by

|ψMF(t)〉 = e−
√
NA(φ(t))

∣∣0〉 (1.25)

where φ satisfies

1

i
∂tφ−∆φ+

(
vN ∗ |φ|2

)
φ = 0 with φ(0, ·) = φ0. (1.26)

However the mean field evolution does not track the exact dynamics in the Fock

space norm. We can explain this briefly in the following way while referring to

Section 3 in [18] for more details. We want to estimate

∥∥|ψex〉 − |ψMF〉
∥∥
F =

∥∥ e√NA(φ)eitHe−
√
NA(φ0)

∣∣0〉︸ ︷︷ ︸
define as |ψ1〉

−
∣∣0〉∥∥F. (1.27)

To this aim we can compute the evolution for |ψ1〉 in the above equation in a closed

form as

1

i
∂t|ψ1〉 =

[(1

i
∂te
√
NA(φ)

)
e−
√
NA(φ) + e

√
NA(φ)He−

√
NA(φ)︸ ︷︷ ︸

define as L1

]
|ψ1〉 (1.28)

which is equivalent to

(1

i
∂t − L1

)(
|ψ1〉 −

∣∣0〉) = L1

∣∣0〉.

14



Hence for the error in (1.27) to be small we need to prove that the forcing term

L1

∣∣0〉 in the last equation is small when measured in Fock space norm. L1 in (1.28)

has been explicitly computed in e.g. [18,20] and shown to have the form

L1 = Nµ0 +N1/2P1 + P2 +N−1/2P3 +N−1P4 (1.29)

where Pk stands for a polynomial of degree k in annihilation and creation operators

(a, a∗). Let’s explain each term briefly:

• Nµ0 = (N/2)〈vN ∗ |φ|2 , |φ|2〉L2 in (1.29) is a zero order term w.r.t (a, a∗).

Despite being of O(N) (i.e. not small), it can be absorbed as a phase factor.

• P1 =
∫

dx{h(t, x)a∗x + h̄(t, x)ax} with h(t, x) = −(1/i)∂tφ+ ∆φ− (vN ∗ |φ|2)φ

and so drops out since φ satisfies the Hartree equation in (1.26).

• P3 = −
∫

dxdy
{
vN(x− y)

(
φ(y)a∗xa

∗
yax + h.c.

)}
has a∗a∗a- and a∗aa-terms so

does not give any contribution when it acts on
∣∣0〉. The same is true for P4

which equals −V , the potential part of the Fock Hamiltonian H in (1.17).

• Finally

P2 =dΓ
({

∆x − (vN ∗ |φ|2)(t, x)
}
δ(x− y)− vN(x− y)φ̄(t, y)φ(t, x)

)
− 1

2

∫
dxdy

{
vN(x− y)(φ(t, x)φ(t, y)a∗xa

∗
y + h.c.

}

first line of which is the second quantization of big-parenthesized terms and

gives no contribution when acts on
∣∣0〉
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Although several terms in L1

∣∣0〉 drop out as explained, ‖L1

∣∣0〉‖F will still not

be small due to the presence of a∗a∗-term in P2, which stands for two particles

leaving the condensate and forming a pair vN(x−y)φ(t, x)φ(t, y) driving in turn the

evolution of pair interactions. Hence the error (1.27) does not turn out to be small.

To circumvent the problem described above, in [18,19], via the skew-Hermitian

operator

B(k) :=
1

2

∫ {
k(x, y)axay − k(x, y)a∗xa

∗
y

}
dx dy, (1.30)

a second order correction to the mean field e−
√
NA(φ)

∣∣0〉 was introduced, namely, a

state of the form

∣∣ψap

〉
:= eiNχ(t)e−

√
NA(φ)e−B(k)

∣∣0〉 (approximate evolution) (1.31)

where χ(t) is an appropriately chosen phase function and k(t, x, y) describes a pair

of particles that scatter from condensate to other states. The dynamics of these pair

excitations is computed in a way consistent with the N -body dynamics (1.1) which

is explained more in section 2.1.

In order to write eB(k) more explicitly we can consider the map I from the

space of complex L2 symplectic matrices of the form

L :=

d(x, y) k(x, y)

l(x, y) −d(y, x)

 where d, k, l ∈ L2(R6), and k, l symmetric in (x, y)
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to quadratic expressions in (a, a∗) given by

I(L) =
1

2

∫ (ax , a
∗
x)

d(x, y) k(x, y)

l(x, y) −d(y, x)


−a∗y
ay


 dx dy

which is the Lie algebra isomorphism considered in [18–20]. Then

K =

0 k̄

k 0

 I7→B(k) and eK =

c ū

u c̄

 7→ eB(k) (1.32)

with


u := sh(k) = k + 1

3!
k ◦ k̄ ◦ k + . . . ,

c := ch(k) = δ(x− y) + p = δ(x− y) + 1
2!
k̄ ◦ k + . . . .

(1.33)

where k ◦ l needs to be understood in the following sense

(k ◦ l)(x, y) :=

∫
k(x, z)l(z, y)dz

for k and l symmetric Hilbert-Schmidt operators on L2(R3). Since B(k) is skew-

Hermitian eB(k) is unitary and therefore eKe−K = I based on the correspondence

in (1.32). This fact implies the following trigonometric identities which will play

crucial role in our arguments:

c ◦ c− ū ◦ u = δ(x− y) and u ◦ c = c̄ ◦ u. (1.34)

Finally in this section we state for future reference the next lemma showing

eB(k) acts on annihilation and creation operators as a Bogoliubov transformation:
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Lemma 1.4. k ∈ L2(R6) be symmetric in (x, y). Also let u := sh(k) and c := ch(k)

as in (1.33). Then

bx := eB(k)axe
−B(k) =

∫ (
c(y, x)ay + u(y, x)a∗y

)
dy, (1.35)

b∗x := eB(k)a∗xe
−B(k) =

∫ (
ū(y, x)ay + c̄(y, x)a∗y

)
dy (1.36)

and [bx, b
∗
y] = δ(x− y), [bx, by] = [b∗x, b

∗
y] = 0.

Proof. For f, g ∈ L2(R3), we obtain the following

eB(k)


∫

(ay , a
∗
y)

f(y)

g(y)

 dy

 e−B(k)

=
↑

recalling (1.32)

eI(K)


∫

(ay , a
∗
y)

f(y)

g(y)

 dy

 e−I(K)

=

∫ 
(
ay , a

∗
y

)
eK(y,z)

f(z)

g(z)


 dy dz (1.37)

where the last step can be justified by the use of (1.22) (see e.g. Sect. 7 in [20]).

We obtain (1.35) if f(z) = δ(x − z) and g(z) ≡ 0 in (1.37). (1.36) is the adjoint

of (1.35). Finally the commutation relations follow using trigonometric identities in

(1.34).
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1.3 Error Estimates in Fock Space for Stronger Interaction:

The case of vN = N 3βv(Nβ·) with β < 1/2

In this section we will state one of our main results. It is an improvement

of the following result obtained via the GMM-approximation scheme introduced in

(1.31).

Theorem 1.5. [19, 20] Let φ and k seen in (1.31) satisfy

1

i
∂tφ−∆φ+

(
vN ∗ |φ|2

)
φ = 0, (1.38a)

1

i
∂tsh(2k) + gT ◦ sh(2k) + sh(2k) ◦ g = m ◦ ch(2k) + ch(2k) ◦m, (1.38b)

1

i
∂tch(2k) + [gT , ch(2k)] = m ◦ sh(2k)− sh(2k) ◦ m̄, (1.38c)

where

g(t, x, y) :=
(
−∆x +

(
vN ∗ |φ|2

)
(t, x)

)
δ(x− y) + vN(x− y)φ̄(t, x)φ(t, y), (1.39)

m(t, x, y) := −vN(x− y)φ(t, x)φ(t, y), (1.40)

with prescribed initial conditions φ(0, ·) = φ0, k(0, ·, ·) = 0. Then for some real

phase function χ the following estimate holds:

∥∥∥∣∣ψex(t)
〉
−
∣∣ψap(t)

〉∥∥∥
F
.


√

1+t√
N

if β=0 and v(x)=ξ(x)|x|−1 for some ξ∈C∞0 decreasing

(1+t) log4(1+t)

N(1−3β)/2 if 0<β<1/3 and v(x) bounded, integrable.

Our main result in this section extends the error estimates in Theorem 1.5 to
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the case of β < 1/2:

Theorem 1.6. [28] If φ and k seen in (1.31) satisfy the equations in (1.38) with

prescribed initial data φ(0, ·) = φ0 and k(0, ·, ·) = 0 and if v is bounded and inte-

grable, then the following estimate holds:

∥∥∥∣∣ψex(t)
〉
−
∣∣ψap(t)

〉∥∥∥
F

.ε,j t
j+3

2 log6(1 + t) ·


N−

1
2

+β(1+ε)
for 0<β≤ 2j

(1−2ε+4j)
,

N
−3+7β

2
+(j−1)(−1+2β)

for 1+2j
3+4j

>β> 2j
(1−2ε+4j)

.

(1.41)

The above estimate implies a decay as N → ∞ for β as close as desired to 1/2 if

we choose first ε sufficiently small and then j sufficiently large depending on ε.

Remark 1.7. placeholder

(i) Note that the bound in Theorem 1.6 gives a faster decay rate w.r.t. N for the

case of 0 < β < 1/3 compared to that of Theorem 1.5 but the error in Theorem

1.6 grows faster in time. Nevertheless it is still less than the exponential growth

typical of previous works.

(ii) We also claim that with the uncoupled system given in (1.38) one can go only

as far as β < 1/2 in terms of Fock space estimates of the type presented above.

A heuristic argument supporting this claim will be provided in the next chapter.

We note that [22] extended the estimates to the case of β < 2/3 (but locally

in time) by considering a coupled system introduced in [21] instead of (1.38)

we used for our results. Also, similar Fock sapce estimates have been obtained
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in [4] for β ∈ (0, 1) using a certain class of initial data and an explicit choice

of pair excitation function k. However the dependence of the error bounds on

time in [4] is exponential.

(iii) Estimates of the type presented above have implications for N-particle wave

function ψN = eitHNφ⊗N0 if we consider projection PN onto the N-particle

sector. Recalling that PN |ψex(t)〉 = cNe
itHNφ⊗N0 with cN = O(N−1/4) (see

(1.23)), we have

∥∥ψN − 1

cN
PN |ψap〉

∥∥
L2(R3N )

. N1/4
∥∥∥∣∣ψex(t)

〉
−
∣∣ψap(t)

〉∥∥∥
F
.

Hence inserting estimate in Theorems 1.5 and 1.6 into the above inequality

gives ∥∥ψN − 1

cN
PN |ψap〉

∥∥
L2(R3N )

∼ O(Nβ−1/4) for 0 ≤ β < 1/2

which implies a decay as long as β < 1/4. We do not know what PN |ψap〉 =

eiNχ(t)PNe
−
√
NA(φ)e−B(k)

∣∣0〉 exactly equals but the idea in considering such an

approximation is that the N-particle sector should roughly look like

φ(t, x1) . . . φ(t, xN)
∏
j,k

f(t, xj, xk)

where f is a function describing particle correlations.

21



1.4 Error Estimates in the Sense of Marginals:

Rate of Convergence to the Limiting Mean Field

For an N -particle wave function ψN we can express the one-particle marginal

using (a, a∗) as

γ
(1)
N (x, y) :=

∫
R3(N−1)

ψN(x,xN−1)ψ̄N(y,xN−1)dxN−1

=
1

N
〈ψN , a∗xayψN〉L2(R3(N−1)). (1.42)

For Fock space marginals, this generalizes to

Γ
(1)
|ψ〉(x, y) =

1

〈ψ|N |ψ〉
〈ψ|a∗xay|ψ〉 for |ψ〉 ∈ F with 〈ψ|N |ψ〉 <∞︸ ︷︷ ︸

finite particle expectation
see (1.11)

(1.43)

which agrees with (1.42) for an N -particle state |ψ〉 = (0, . . . , 0, ψN , 0, . . . ).

Before stating our main results in this section let’s also recall that Tr
∣∣ · ∣∣

denotes the trace norm on the space of trace class operators L1(L2(R3)) on L2(R3)

i.e. Tr
∣∣A∣∣ = Tr

(
(A∗A)1/2

)
for A satisfying

∑
f∈F 〈|A|f, f〉L2(R3) < ∞ for any F

orthonormal basis of L2(R3).

Our main results in this section are the following:

Theorem 1.8. (partly from [27]) Let |ψex(t)〉 = eitHe−
√
NA(φ0)

∣∣0〉 as in (1.24) where

H denotes the Fock Hamiltonian (1.17) and Γ
(1)
ex (t, x, y) =

〈ψex|a∗xay|ψex〉
〈ψex|N |ψex〉

according

to definition (1.43). Let σ = 1/2 for 0 < β ≤ 1/6 and σ = 1−3β for 1/6 < β < 1/3.

Also for ε arbitrarily small let j be as large as to satisfy 2j/(1−2ε+4j) < 1/(2(1+ε)).
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Then the following estimate holds:

Tr
∣∣Γ(1)

ex (t)− |φ(t)〉〈φ(t)|
∣∣ .


1+t
N

if β=0 and v(x)=ξ(|x|)/|x|, ξ∈C∞0 decreasing cutoff

(1+t)2 log16(1+t)
Nσ if 0 < β < 1/3 and v is bounded, integrable

tj+3 log20(1+t)

N1−2β(1+ε) if 1/3 ≤ β ≤ 2j
1−2ε+4j

and v bounded, integrable

where φ solves

1

i
∂tφ = ∆φ−


(
v ∗ |φ|2

)
φ, β = 0( ∫

v(x)dx
)
|φ|2φ, 0 < β < 1/3

(1.44)

with φ(0, ·) = φ0 satisfying φ0 ∈ H1(R3) and also in W l,1(R3) for l ≥ 2 in case

0 < β < 1/3.

Theorem 1.9. (partly from [27]) Let ψN(t) = eitHNφ⊗N0 where HN denotes the N-

body Hamiltonian defined in (1.1) and

γ
(1)
N (t, x, y) =

∫
R3(N−1)

ψN(t, x,xN−1)ψN(t, y,xN−1)dxN−1.

Then we have

Tr
∣∣γ(1)
N (t)−|φ(t)〉〈φ(t)|

∣∣ .


√
1+t

N1/4 if β=0 and v(x)=ξ(|x|)/|x|, ξ∈C∞0 decreasing cutoff

(1+t) log8(1+t)

N(1−6β)/4 if 0 < β < 1/6 and v is bounded, integrable

t(j+3)/2 log10(1+t)

N1/4−β(1+ε) if 1/6 ≤ β < 1
4(1+ε)

, v bounded, integrable

where ε > 0 is as small as desired, j sufficiently large to satisfy 2j/(1− 2ε + 4j) <

23



1/(2+2ε) and φ solves (1.44) with φ0 satisfying the same assumptions as in Theorem

1.8.

Remark 1.10. placeholder

(i) Estimates similar to the ones in Theorem 1.8 have been obtained in [35] for

β = 0 and v(x) = |x|−1 and in [3] for β = 1 and more regular potentials.

The error was of O(N−1) in [35] which is known to be the optimal rate of

convergence. We obtained the same rate and additionally our error estimate

grows more slowly in time compared to the exponential growth of [35]. However

we had to use the cut-offed Coulomb potential since our main tool in proving

Theorems 1.8 and 1.9 was the Fock space estimates of the previous section

which required faster decay at infinity than that of |x|−1 in case of β = 0.

(ii) We consider in Theorem 1.8 with initial data of the form e−
√
NA(φ0)

∣∣0〉 for

suitable φ0. One might also think of replacing the vacuum
∣∣0〉 in e−

√
NA(φ0)

∣∣0〉
with a more general Fock space vector |ψ〉 (with only few particles) satisfying

〈ψ|N |ψ〉 ≤ C for some constant C. The main tool in the proof of Theorem

1.8 is Theorem 1.5 which also holds for initial data of the form e−
√
NA(φ0)|ψ〉

if we take |ψ〉 = e−B(k0)
∣∣0〉 with a symmetric k0 = k(0, ·) ∈ L2(R6) to be

prescribed such that 〈ψ|N |ψ〉 = 〈0|eB(k0)N e−B(k0)
∣∣0〉 = ‖sh(k0)‖2

L2(R6) (last

equality follows by Lemma 1.4) is of O(1) w.r.t. N . The case of initial data

of the form e−
√
NA(φ0)|ψ〉 with a more general |ψ〉 remains to be investigated

(iii) As can be seen in Theorem 1.9, in projecting onto the N-particle space there

is some loss in the power of N which prevents obtaining a bound of O(N−1)
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in case of β = 0. This was achieved in [6] but their bound was meaningful

for times of order log(o(1)N) whereas our bound shows that the mean field

approximation stays close to the exact dynamics at least for up to times of

order o(1)
√
N .

(iv) The idea of the proof for the results of this section is to bound the trace norm

of the difference between Γ
(1)
ex (or γ

(1)
N ) and their approximation by the number

of particles at a reduced dynamics expected to be close to the vacuum. One

then has to control the particle expectation in this reduced dynamics, which

has been done so far via energy estimates being typical of [35], [6], [3]. The

novelty of our work is in controlling particle expectation of the appropriately-

defined reduced dynamics via the error in Fock space approximation on which

we have a control from Theorems 1.5 and 1.6.

1.5 Outline of the Rest of the Thesis

The rest of this thesis is devoted to proving Theorems 1.6, 1.8 and 1.9. First

in chapter 2 we prove the Fock space estimate of Theorem 1.6 and then in chapter 3

we will establish Theorems 1.8 and 1.9 on error estimates in the sense of marginals.
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Chapter 2: Proof of Fock Space Estimate in Theorem 1.6

2.1 Preliminaries

The proof of Theorem 1.6 is based on estimating the deviation of the evolution

from the vacuum state defined as

|ψ̃(t)〉 := e−iNχ(t)|ψred(t)〉 −
∣∣0〉 where (2.1a)

|ψred(t)〉 := eB(k(t))e
√
NA(φ(t)) eitHe−

√
NA(φ0)

∣∣0〉︸ ︷︷ ︸
|ψex(t)〉

(reduced dynamics) (2.1b)

which satisfies

∥∥|ψ̃(t)〉
∥∥
F =

∥∥|ψex(t)〉 −

|ψap(t)〉︷ ︸︸ ︷
eiNχ(t)e−

√
NA(φ(t))e−B(k(t))

∣∣0〉 ∥∥F
due to e−

√
NA and e−B being unitary. We can obtain the evolution for |ψ̃〉 as follows.

A straightforward computation gives the evolution of the reduced dynamics:

1

i
∂t
∣∣ψred

〉
= Hred

∣∣ψred

〉
(2.2)
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where

Hred :=
1

i

(
∂te
B)e−B + eB

(
1

i

(
∂te
√
NA)e−√NA + e

√
NAHe−

√
NA
)
e−B. (2.3)

As shown in section 2 of [20], if (1.38) holds, then

Hred = N µ(t)︸︷︷︸
related
to χ via
χ=

∫
µ

+

∫
dxdy

{
L(t, x, y)︸ ︷︷ ︸
∆xδ(x−y)

+some self-adjoint
potential terms

a∗xay

}
−N−1/2 E(t)︸︷︷︸

a self-adjoint error
term being sum of

polynomials in (a,a∗) of degree
one up to four

. (2.4)

(2.4), (2.1a), (2.2) and the fact that a
∣∣0〉 = 0 implies

(
1

i
∂t − L
↙︷ ︸︸ ︷∫

L(t, x, y)a∗xaydxdy −N−1/2E(t)

)
| ψ̃〉 = −N−1/2E(t)

∣∣0〉︸ ︷︷ ︸
↘

=:(0,F1,F2,F3,F4,0,... )

with |ψ̃(0)〉 = 0 (2.5)

The integral term in (2.5) is the second quantization of the self-adjoint one-particle

operator L(t, x, y) which can be considered to be the sum of some kinetic and “po-

tential” parts as follows:

L(t, x, y) :=

−g(t,y,x) as defined in (1.39)︷ ︸︸ ︷
∆xδ(x− y)−

(
vN ∗ |φ|2

)
(t, x)δ(x− y)− vN(x− y)φ(t, x)φ̄(t, y)

+
1

2

(
(c̄
↓

ch(k)

)−1 ◦my
−vN (x−y)φ(t,x)φ(t,y)

from (1.40)

◦ū+ u
↓

sh(k)

◦m̄ ◦ (c̄)−1 +
[
W(c̄)︸ ︷︷ ︸
↓

1
i
∂tc̄+[gT ,c̄]

see top line for g

, (c̄)−1
])
.

(2.6)

Before explaining the forcing term in (2.5), let’s see in the next section how the

error term in (2.4) looks like.
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2.1.1 The Error Term N−1/2E(t) in Hred in (2.4)

N−1/2E(t) in (2.4) is an error term containing polynomials in (a, a∗) up to

degree four. It is a self-adjoint operator which can be written as:

N−1/2E(t) =
4∑
j=1

{
Ej(t) +

denotes
adjoint

↓
E∗j (t)

}
+ E sa

2 (t) + E sa
4 (t) (2.7)

where Ej(t) denotes a contribution consisting terms of degree j. We also have some

self-adjoint contributions consisting terms of 2nd and 4th degrees and denoted by

E sa
2 (t) and E sa

4 (t). The explicit forms of these terms needs to be given here for

future reference.1 Using the notation Dxy := a∗xay, Q∗xy := a∗xa
∗
y, Qxy := axay and

suppressing the time dependence of the functions φ, c := ch(k) = δ(x− y) + p and

u := sh(k) (recalling (1.33)) we have

E1(t) := N−1/2

∫
dx1dx2dy1

{(
u ◦ c

)
(x1, x2)vN(x1 − x2)φ̄(x2)ū(y1, x1)ay1 (2.8a)

+ c(y1, x1)vN(x1 − x2)φ(x2)
(
c ◦ ū

)
(x1, x2)ay1

}
(2.8b)

E2(t) :=
1

2N

∫
dx1dx2dy1dy2{(
ū ◦ c̄

)
(x1, x2)vN(x1 − x2)c(y1, x1)u(x2, y2)Dy2y1 (2.8c)

+
(
ū ◦ c̄

)
(x1, x2)vN(x1 − x2)u(y1, x1)c̄(x2, y2)Dy1y2 (2.8d)

+
(
ū ◦ c̄

)
(x1, x2)vN(x1 − x2)c(y1, x1)c̄(x2, y2)Qy1y2 (2.8e)

+
(
u ◦ c

)
(x1, x2)vN(x1 − x2)ū(y1, x1)ū(x2, y2)Qy1y2

}
(2.8f)

1See Section 5, [20] for the computations leading to this explicit form of N−1/2E(t).
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terms involved
are self-adjoint
↓
E sa

2 (t) :=
1

2N

∫
dx1dx2dy1dy2{(
u ◦ ū)(x1, x2)vN(x1 − x2)ū(y1, x1)u(x2, y2)Dy2y1 (2.8g)

+ 2
(
u ◦ ū)(x1, x1)vN(x1 − x2)ū(y2, x2)u(y1, x2)Dy1y2

}
(2.8h)

E3(t) := N−1/2

∫
dx1dx2dy1dy2dy3{
ū(y1, x1)vN(x1 − x2)φ(x2)c(x2, y2)c(y3, x1)Dy2y1ay3 (2.8i)

+ c̄(y1, x1)vN(x1 − x2)φ(x2)ū(x2, y2)c(y3, x1)Dy1y2ay3 (2.8j)

+ c̄(y1, x1)vN(x1 − x2)φ̄(x2)c(y2, x1)c̄(x2, y3)a∗y1
Qy2y3 (2.8k)

+ ū(y1, x1)vN(x1 − x2)φ(x2)ū(x2, y2)c(y3, x1)Qy1y2ay3 (2.8l)

+ ū(y1, x1)vN(x1 − x2)φ̄(x2)u(y2, x1)c̄(x2, y3)ay1Dy2y3 (2.8m)

+ ū(y1, x1)vN(x1 − x2)φ̄(x2)c(y2, x1)u(x2, y3)ay1Dy3y2 (2.8n)

+ ū(y1, x1)vN(x1 − x2)φ̄(x2)c(y2, x1)c̄(x2, y3)ay1Qy2y3 (2.8o)

+ ū(y1, x1)vN(x1 − x2)φ(x2)ū(x2, y2)u(y3, x1)Qy1y2a
∗
y3

}
(2.8p)

E4(t) :=
1

2N

∫
dx1dx2dy1dy2dy3dy4{
ū(y1, x1)c(x2, y2)vN(x1 − x2)c(y3, x1)u(x2, y4)Dy2y1Dy4y3 (2.8q)

+ c̄(y1, x1)ū(x2, y2)vN(x1 − x2)c(y3, x1)c̄(x2, y4)Dy1y2Qy3y4 (2.8r)

+ ū(y1, x1)ū(x2, y2)vN(x1 − x2)c(y3, x1)u(x2, y4)Qy1y2Dy4y3 (2.8s)

+ ū(y1, x1)c(x2, y2)vN(x1 − x2)c(y3, x1)c̄(x2, y4)Dy2y1Qy3y4 (2.8t)

+ ū(y1, x1)ū(x2, y2)vN(x1 − x2)u(y3, x1)c̄(x2, y4)Qy1y2Dy3y4 (2.8u)

+ ū(y1, x1)ū(x2, y2)vN(x1 − x2)c(y3, x1)c̄(x2, y4)Qy1y2Qy3y4

}
(2.8v)
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E sa
4 (t) :=

1

2N

∫
dx1dx2dy1dy2dy3dy4{

c̄(y1, x1)ū(x2, y2)vN(x1 − x2)c(y3, x1)u(x2, y4)Dy1y2Dy4y3 (2.8w)

+ ū(y1, x1)c(x2, y2)vN(x1 − x2)u(y3, x1)c̄(x2, y4)Dy2y1Dy3y4 (2.8x)

+ c̄(y1, x1)c(x2, y2)vN(x1 − x2)c(y3, x1)c̄(x2, y4)Q∗y1y2
Qy3y4 (2.8y)

+ ū(y1, x1)ū(x2, y2)vN(x1 − x2)u(y3, x1)u(x2, y4)Dy3y1Dy4y2

}
. (2.8z)

We will estimate the above terms in various ways to be explained later.

2.1.2 The Forcing Term N−1/2E(t)
∣∣0〉 in (2.5)

Based on the explicit form of N−1/2E(t) given by (2.7)-(2.8) and recalling

c := ch(k) = δ(x − y) + p, the sectors of the forcing term −N−1/2E(t)
∣∣0〉 in (2.5)

can be computed (up to symmetrization in the 2nd, 3rd and 4th sectors) as2:

• Sector F1:

F1(t, y1) := −N−1/2

(∫
dx1dx2vN(x1 − x2)

{
u(y1, x2)(ū ◦ u)(x1, x1)φ̄(x2) (2.9a)

+ p̄(y1, x2)(u ◦ ū)(x1, x1)φ(x2) (2.9b)

+ u(y1, x1)(ū ◦ u)(x1, x2)φ̄(x2) (2.9c)

+ p̄(y1, x1)(p̄ ◦ u)(x1, x2)φ̄(x2) (2.9d)

+ p̄(y1, x1)(u ◦ ū)(x1, x2)φ(x2) (2.9e)

+ u(y1, x1)(ū ◦ p̄)(x1, x2)φ(x2) (2.9f)

2The main idea of this computation is to commute a (if there is any), to the right hand side,
with a∗ operators in those terms in (2.7) which do not annihilate the vacuum. This produces some
lower order terms (contributions of which we see in (2.9a)-(2.12d)) and terms which annihilate

∣∣0〉
since a

∣∣0〉 = 0. See Section 5, [20] for the details.
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+ p̄(y1, x1)u(x1, x2)φ̄(x2) (2.9g)

+ u(y1, x1)ū(x1, x2)φ(x2)
}

(2.9h)

+

∫
dx1 vN(y1 − x1)

{
u(y1, x1)φ̄(x1) (2.9i)

+ (u ◦ ū)(y1, x1)φ(x1) (2.9j)

+ (p̄ ◦ u)(y1, x1)φ̄(x1) (2.9k)

+ (u ◦ ū)(x1, x1)φ(y1)
})

(2.9l)

• Sector F2:

F2(t, y1, y2) :=

− 1

2N

(
vN(y1 − y2)

{
u(y1, y2) + (p̄ ◦ u)(y1, y2)} (2.10a)

+

∫
dx1dx2vN(x1 − x2)

{
2p̄(y1, x2)u(x2, y2)(ū ◦ u)(x1, x1) (2.10b)

+ 2p̄(y1, x2)u(x1, y2)(ū ◦ u)(x1, x2) (2.10c)

+ u(y1, x1)u(x2, y2)(ū ◦ p̄)(x1, x2) (2.10d)

+ p̄(y1, x1)p(x2, y2)(p̄ ◦ u)(x1, x2) (2.10e)

+ u(y1, x1)u(x2, y2)ū(x1, x2) (2.10f)

+ p̄(y1, x1)p(x2, y2)u(x1, x2)
}

(2.10g)

+

∫
dx1vN(y1 − x1)

{
2u(y1, y2)(ū ◦ u)(x1, x1) (2.10h)

+ p̄(y2, x1)u(x1, y1) (2.10i)

+ 2u(x1, y2)(ū ◦ u)(x1, y1) (2.10j)

+ p̄(y2, x1)(p̄ ◦ u)(y1, x1)
}

(2.10k)
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+

∫
dx1 vN(x1 − y2)p̄(y1, x1)(c̄ ◦ u)(x1, y2)

)
(2.10l)

• Sector F3:

F3(t, y1, y2, y3) :=

−N−1/2
{
vN(y1 − y2)φ(y2)u(y3, y1) (2.11a)

+

∫
dx{vN(y1 − x)φ̄(x)u(x, y3)}u(y2, y1) (2.11b)

+

∫
dx{p̄(y1, x)vN(x− y2)u(y3, x)}φ(y2) (2.11c)

+

∫
dx{p̄(y2, x)vN(y1 − x)φ(x)}u(y3, y1) (2.11d)

+

∫
dx1dx2{p̄(y1, x1)vN(x1 − x2)φ̄(x2)u(y2, x1)u(x2, y3)} (2.11e)

+

∫
dx1dx2{p̄(y1, x1)p(x2, y2)vN(x1 − x2)φ(x2)u(y3, x1)}

}
(2.11f)

• Sector F4:

F4(t, y1, y2, y3, y4) :=

− (1/2N)
{
vN(y1 − y2)u(y3, y1)u(y2, y4) (2.12a)

+

∫
dx{p̄(y2, x)vN(y1 − x)u(x, y4)}u(y3, y1) (2.12b)

+

∫
dx{p̄(y1, x)vN(x− y2)u(y3, x)}u(y2, y4) (2.12c)

+

∫
dx1dx2{p̄(y1, x1)p(x2, y2)vN(x1 − x2)u(y3, x1)u(x2, y4)}

}
. (2.12d)
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A standard energy estimate applied to (2.5) using self-adjointness of L implies

∥∥|ψex(t)〉 − |ψap(t)〉
∥∥
F = ‖|ψ̃(t)〉‖F ≤ N−1/2

∫ t

0

∥∥E(t1)
∣∣0〉∥∥F dt1.

For an estimate of the right hand side of the above inequality, we need L2-norm

estimates of the terms in (2.9a)-(2.12d). This was done in [20] using the decay

estimate ‖φ(t, ·)‖L∞(R3) . 1/(1 + t3/2) and the estimate ‖u(t, ·)‖L2(R6) . log(1 + t).

However β < 1/3 had to be assumed there for the final estimate in Theorem 1.5 to be

meaningful. We consider a modified approach in which we treat the singular terms

(i.e. terms not having sufficient integrability properties) in N−1/2E(t)
∣∣0〉 separately

to be explained in the next section.

2.2 General Strategy and Outline of the Proof of Theorem 1.6

As mentioned at the beginning of this chapter we need to estimate the error |ψ̃〉

defined in (2.1a) and satisfying the equation (2.5) with the forcing −N−1/2E(t)
∣∣0〉

which contains the terms in (2.9)-(2.12). In all of them except (2.10a), (2.11a) and

(2.12a), the singularity associated with the interaction vN(x) = N3βv(Nβx), which

converges to
( ∫

v)δ(x) as N → ∞, is smoothed out due to the integration against

functions with sufficient integrability properties. Hence we separate Fl(t, ·) defined

in (2.9)-(2.12) into their regular and singular parts as follows, where super-scripts

“r” ans “s” stand for “regular” and “singular” respectively:

F s
2(t, y1, y2) := −(1/2N)vN(y1 − y2)

{
u(t, y1, y2) + (p̄ ◦ u)(t, y1, y2)

}
, (2.13a)
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F s
3(t, y1, y2, y3) := −N−1/2vN(y1 − y2)φ(t, y2)u(t, y3, y1), (2.13b)

F s
4(t, y1, y2, y3, y4) := −(1/2N)vN(y1 − y2)u(t, y3, y1)u(t, y2, y4) and (2.13c)

F r
l := Fl − F s

l for l = 2, 3, 4. (2.13d)

Using this, we split the error |ψ̃〉 in (2.1a) first into its singular and regular parts

as

|ψ̃〉 = |ψ̃r〉+ |ψ̃s〉 where(1

i
∂t − L

)
|ψ̃r〉 = (0, F1, F

r
2 , F

r
3 , F

r
4 , 0, . . . ), (2.14a)(1

i
∂t − L

)
|ψ̃s〉 = (0, 0, F s

2 , F
s
3 , F

s
4 , 0, . . . ), (2.14b)

|ψ̃r(0)〉 = |ψ̃s(0)〉 = 0

which follows from (2.5). Energy estimate applied to (2.14a) implies

‖|ψ̃r(t)〉‖F .
∫ t

0

(
‖F1(t1)‖L2(R3) +

4∑
l=2

‖F r
l (t1)‖L2(R3l)

)
dt1. (2.15)

Hence we need to obtain L2-norm estimates of F1 and F r
l , l = 2, 3, 4, which we do in

section 2.4 after obtaining a priori estimates on the pair excitations in section 2.3.

We will start dealing with the singular part of |ψ̃〉 in section 2.5 in which we

will split |ψ̃s〉 in (2.14b) into its approximate and error parts as follows

|ψ̃s〉 = |ψ̃a
1〉+ |ψ̃e

1〉 where
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(1

i
∂t −

∫
L(t, x, y)a∗xay dxdy

)
|ψ̃a

1〉 = (0, 0, F s
2 , F

s
3 , F

s
4 , 0, . . . ), (2.16a)(1

i
∂t − L

)
|ψ̃e

1〉 = −N−1/2E(t)|ψ̃a
1〉, (2.16b)

|ψ̃a
1(0)〉 = |ψ̃e

1(0)〉 = 0.

First we will obtain estimates on |ψ̃a
1〉 using an elliptic estimate and also Strichartz

estimates along with Christ-Kiselev Lemma after a suitable change of variables.

Those will not provide us with sufficient integrability properties for the forcing term

in (2.16b). Hence we will also discuss the necessity to iterate the splitting procedure

for some finitely many times before applying a final energy estimate to the error

part of the solution at the final step of iteration. We will prove the inductive step of

the iteration and discuss its implications in section 2.6. Theorem 2.8 in section 2.4,

Theorem 2.14 and Corollary 2.15 in section 2.6 will lead to our main result Theorem

1.6 as proved in section 2.7.

2.3 A priori Estimates for the Pair Excitations

In this section we will prove estimates on mixed Lp and Sobolev norms of the

pair excitations which will be needed in estimating the terms in (2.9)-(2.12). To

keep the notation simple in what follows let’s define

s2 := sh(2k) = 2sh(k) ◦ ch(k) (2.17a)

p2 := ch(2k)− δ(x− y) (2.17b)
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and also the operators

S(s) :=
1

i
∂ts+ gT ◦ s+ s ◦

(
−∆x+

(
vN∗|φ|2

)
(t,x)

)
δ(x−y)+vN (x−y)φ̄(t,x)φ(t,y)

↙
g (Schrödinger-type), (2.18a)

W(p) :=
1

i
∂tp+ [gT , p] (Wigner-type). (2.18b)

Then (1.38b)-(1.38c) becomes

S(s2) = 2m+m ◦ p2 + p̄2 ◦m, (2.19a)

W(p̄2) = m ◦ s̄2 − s2 ◦ m̄, (2.19b)

s2(0, ·) = p2(0, ·) = 0.

Let’s also recall our notation (see (1.33)) u := sh(k), c := ch(k) = δ(x− y) + p from

the previous section. Our main result in this section is the following:

Theorem 2.1. Let the initial data φ0 for (1.38a) be in Wm,1(R3) (m derivatives in

L1) for m ≥ 6 and let (∂ts2)(0, ·) be sufficiently regular (to be specified later in the

proof). Then the following estimates hold:

‖∂jt s2(t, ·)‖H3/2 .ε N
β(1+ε) log(1 + t) for j = 0, 1 (2.20)

‖u(t, ·)‖H3/2 .ε N
β(1+ε) log(1 + t) (2.21)

‖u(t, x, y)‖L∞(dy;L2(dx)) :=
∥∥‖u(t, x, y)‖L2(dx)

∥∥
L∞(dy)

.ε N
β(1+ε) log(1 + t) (2.22)

for any ε > 0 and 0 < β ≤ 1.
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We will need the following lemmas for the proof Theorem 2.1:

Lemma 2.2. (Proposition 3.3, Corollary 3.4, Corollary 3.5 in [20]) Let φ be a solu-

tion of (1.38a) with initial data φ0.

(i) There exists Cs depending only on ‖φ0‖Hs(R3) such that

‖φ(t, ·)‖Hs(R3) ≤ Cs uniformly in time. (2.23)

(ii) Assuming φ0 ∈ Wm,1 for m ≥ 2,

‖∂jtφ(t, ·)‖L∞(R3) . (1 + t3/2)−1 and (2.24)

‖∂jtφ(t, ·)‖L3(R3) . (1 + t1/2)−1 for j = 0, 1. (2.25)

Remark 2.3. Note that in case of j = 0, (2.25) follows by interpolating (2.24) with

mass conservation and in case of j = 1, by interpolating (2.24) with

‖∂tφ(t, ·)‖L2(R3) . ‖φ(t, ·)‖H2(R3) + ‖(vN ∗ |φ(t, ·)|2)φ(t, ·)‖L2(R3)︸ ︷︷ ︸
≤‖v‖1‖φ‖24‖φ‖∞

≤ const. (2.26)

We will also frequently use

‖∂jtφ(t, ·)‖L4(R3) . (1 + t3/4)−1 for j = 0, 1 (2.27)

which follows again by interpolation.

Corollary 2.4. (2.24)-(2.25) hold for j ≥ 2 if φ0 ∈ Wm,1 for m sufficiently large.
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Proof Sketch. Since we will only need the estimates on the second and third order

time derivatives, let’s provide here with an outline of the proof in case of the second

order time derivative, which can be modified to obtain estimates on higher time

derivatives. We claim that if φ solves (1.38a) with initial data φ0 ∈ Wm,1 for m ≥ 4

(m ≥ 6 in case of third order time derivative) then we have

‖∂2
t φ(t)‖L∞(R3) .

1

1 + t3/2
. (2.28)

To prove this estimate let’s differentiate (1.38a) with respect to time twice and solve

the resulting equation for ∂2
t φ by Duhamel’s formula. Then we have

∥∥∂2
t φ(t)

∥∥
∞ ≤

∥∥eit∆(∂2
t φ
)

0

∥∥
∞ +

∫ t

0

∥∥∥ei(t−s)∆∂2
s

[
(vN ∗ |φ|2)φ(s)

]∥∥∥
∞

ds. (2.29)

Assuming t > 1, we split the above integral and, to estimate the integrand, we use

the standard L∞L1 decay estimate for the linear equation when we integrate over

(0, t − 1). For the part of the same integral on (t − 1, t), we first use the Sobolev

embedding W 3+ε,1(R3) ↪→ L∞(R3) and then the L3L3/2 decay estimate for the linear

equation, up to modifying the exponents by a small amount. Hence we obtain

∥∥∂2
t φ(t)

∥∥
∞ .
‖
(
∂2
t φ
)

0
‖1

1 + t3/2
+

∫ t−1

0

1

1 + |t− s|3/2
∥∥∂2

s

[
(vN ∗ |φ|2)φ(s)

]∥∥
1
ds

+

∫ t

t−1

1

1 + |t− s|1/2+ε

∥∥∇∂2
s

[
(vN ∗ |φ|2)φ(s)

]∥∥
3/2−ε′ds. (2.30)

Now we have ‖∂αφ‖2 . ‖φ‖H|α| ≤ C|α| and also ‖∂αφ‖∞ . ‖∂αφ‖H2 ≤ C2+|α| which
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follow from (2.23). Interpolating, we obtain

• ‖∂αφ‖p ≤ Cα,p for p ≥ 2 and for spatial derivatives ∂α of all orders.

• We can extend this to the case of derivatives including the time va-

riable if we take derivatives in (1.38a) as needed and use the esti-

mates obtained so far.


(2.31)

These regularity and integrability properties together with (2.24) imply

∥∥∂2
s

[
(vN ∗ |φ|2)φ(s)

]∥∥
1
. ‖φ(s)‖∞ .

1

1 + s3/2
,

∥∥∇∂2
s

[
(vN ∗ |φ|2)φ(s)

]∥∥
3/2−ε′ . ‖φ(s)‖∞ + ‖∂sφ(s)‖∞ .

1

1 + s3/2
.

Inserting these in (2.30) implies our claim in (2.28). We also have

‖∂2
t φ(t)‖3 .

1

1 + t1/2
(2.32)

by interpolation between (2.28) and L2-norm which is uniformly bounded. 2

Before stating the next lemma, let’s write the kinetic and the potential parts

of g (see (1.39)) separately as

g = −∆xδ(x− y) + gpot. (2.33)

then we can define V as follows

V (u) := gT
pot ◦ u+ u ◦ gpot. (2.34)

39



Explicitly,

V (u)(t, x, y) =(
(vN ∗ |φ|2)(t, x) + (vN ∗ |φ|2)(t, y)

)
u(x, y) (2.35)

+

∫
vN(x− z)φ(t, x)φ̄(t, z)u(z, y)dz +

∫
u(x, z)vN(z − y)φ̄(t, z)φ(t, y)dz.

This allows us to write the potential part of S (see (2.18a)) separately:

S(·) =
(1

i
∂t −∆

)
(·) + V (·). (2.36)

We will split s2 satisfying (2.19a) as

s2 = sa + se (2.37)

where sa satisfies the equation S(sa) = 2m = −2vN(x − y)φ(t, x)φ(t, y) and it

represents the singular part of s2 since

‖m(t, ·)‖L2(R6) =
(
v2
N ∗ |φ(t, ·)|2, |φ(t, ·)|2

) 1
2
. ‖vN‖L2(R3)‖φ(t, ·)‖2

L4(R3) (2.38)

.
by

(2.27)

N3β/2(1 + t3/2)−1

blows up as N →∞. We further split sa into its approximate and error parts as

sa = s0
a + s1

a (2.39)
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and we have the following set of equations being equivalent to (2.19a):

(1

i
∂t −∆

)
s0
a = 2m (2.40a)

S(s1
a) = −V (s0

a) (2.40b)

S(se) = m ◦ p2 + p̄2 ◦m (2.40c)

s0
a(0) = s1

a(0) = se(0) = 0.

We are ready to state the next lemma:

Lemma 2.5. Assuming φ0 ∈ Wm,1 for m ≥ 2 as initial data for (1.38a), the

following estimates hold:

‖s0
a(t, ·)‖L2(R6) . log(1 + t), ‖s1

a(t, ·)‖L2(R6) . 1 (2.41)

which imply

‖se(t, ·)‖L2(R6) . 1, ‖p2(t, ·)‖L2(R6) . 1. (2.42)

Since s2 = s0
a + s1

a + se, we also have

‖s2(t, ·)‖L2(R6) . log(1 + t). (2.43)

Finally since s2 = sh(2k) = 2sh(k)◦ch(k) and ‖ch(k)−1‖operator is uniformly bounded,

recalling the notation u = sh(k) and p = ch(k)− δ(x− y), we have

‖p(t, ·)‖L2(R6) ≤ ‖u(t, ·)‖L2(R6) . log(1 + t) (2.44)
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where the first inequality follows from taking traces in the relation p ◦ p+ 2p = ū ◦ u

(see (1.34)) and using p(x, x) ≥ 0. Constants involved in the above estimates depend

only on ‖φ0‖Wm,1.

Remark 2.6. For the proof of the first inequality in (2.41), one solves equation

(2.40a) by Duhamel’s formula and, after an integration by parts, uses the elliptic

estimates below (Lemma 4.3 in [20]) along with (2.25):

∫
|m̂(t, ξ, η)|2

(|ξ|2 + |η|2)2
dξdη . ‖φ(t, ·)‖4

3, (2.45a)∫
|∂tm̂(t, ξ, η)|2

(|ξ|2 + |η|2)2
dξdη . ‖φ(t, ·)‖2

3‖∂tφ(t, ·)‖2
3 and (2.45b)

similar estimates hold for higher time derivatives.

The proof of the second inequality in (2.41) is achieved by applying an energy es-

timate to the equation (2.40b) and using the first inequality in (2.41). A final ap-

plication of energy estimates to the equations (2.40c) and (2.19b) together with the

estimates in (2.41) implies the estimates in (2.42). We refer for more details to the

proofs of Lemma 4.4 and Lemma 4.5 in [20].

Proof of Theorem 2.1. Proof of (2.20). Recalling that s2 = s0
a+s1

a+se from (2.37)

and (2.39), we will prove (2.20) in two steps.

Step 1 Estimates on ‖∂jt s0
a‖H3/2 for j = 0, 1: We will first estimate H2 and

H1/2−ε-norms and then interpolate.

Differentiating (2.40a) as needed, solving the corresponding equations by Duha-
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mel’s formula and using integration by parts give

(
∂jt ŝ

0
a

)
(t, ξ, η) =(

∂jt ŝ
0
a

)
(0, ξ, η︸ ︷︷ ︸

equals 0 if j=0

) +
2e−it(|ξ|

2+|η|2)

|ξ|2 + |η|2
(
∂jt m̂(t, ξ, η)eit(|ξ|

2+|η|2) −
(
∂jt m̂

)
(0, ξ, η) (2.46)

−
∫ t

0

eis(|ξ|
2+|η|2)∂j+1

s m̂(s, ξ, η)ds
)

which implies

‖∆∂jt s0
a(t, ·)‖2 .

equals 0 if j=0 and
assumed to be finite for j=1︷ ︸︸ ︷
‖∆
(
∂jt s

0
a

)
(0, ·)‖2 +‖

(
∂jtm

)
(0, ·)‖2 + ‖∂jtm(t, ·)‖2

+

∫ t

0

‖∂j+1
s m(s, ·)‖2ds (2.47)

Applying estimate (2.38) and the following estimates

‖∂sm(s, ·)‖2 . 〈v2
N ∗ |∂sφ(s, ·)|2, |φ(s, ·)|2〉1/2 ≤ ‖φ(s, ·)‖∞‖vN‖2‖∂sφ(s, ·)‖2

.
by

(2.24) and (2.26)

N3β/2(1 + s3/2)−1

‖∂2
sm(s, ·)‖2 . 〈v2

N ∗ |∂2
sφ(s, ·)|2, |φ(s, ·)|2〉1/2 + 〈v2

N ∗ |∂sφ(s, ·)|2, |∂sφ(s, ·)|2〉1/2

≤ ‖φ(s, ·)‖∞‖vN‖2‖∂2
sφ(s, ·)‖2 + ‖∂sφ(s, ·)‖∞‖vN‖2‖∂sφ(s, ·)‖2

.
by

(2.24) and (2.31)

N3β/2(1 + s3/2)−1

to (2.47) and considering (2.44), we obtain

‖∂jt s0
a(t, ·)‖H2 . N3β/2 log(1 + t) for j = 0, 1. (2.48)
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We will next estimate ‖∂jt s0
a(t, ·)‖H1/2−ε′ , j = 0, 1 for ε′ > 0 small and to be

determined later. Again by using (2.46)

‖D1/2−ε′∂jt s
0
a(t, ·)‖2 ' ‖(|ξ|+ |η|)1/2−ε′∂jt ŝ

0
a(t, ξ, η)‖2

. ‖

equals 0 if j=0︷ ︸︸ ︷
D1/2−ε′(∂jt s0

a

)
(0, ·) ‖2 +

∥∥∥ (∂jt m̂)(0, ξ, η)

(|ξ|+ |η|)3/2+ε′

∥∥∥
2

+
∥∥∥ ∂jt m̂(t, ξ, η)

(|ξ|+ |η|)3/2+ε′

∥∥∥
2

+

∫ t

0

∥∥∥ ∂j+1
s m̂(s, ξ, η)

(|ξ|+ |η|)3/2+ε′

∥∥∥
2
ds. (2.49)

Now we need estimates of

∥∥∥ ∂jt m̂(t, ξ, η)

(|ξ|+ |η|)3/2+ε′

∥∥∥
2

for j = 0, 1, 2.

We will prove the estimates on the above terms similarly to the proof of (2.45).

Let’s do it first for the case j = 0. Writing

−m(t, x, y) = vN(x− y)φ(t, x)φ(t, y) =

∫
δ(x− y − z)vN(z)φ(t, x)φ(t, y)dz

and considering the Fourier transform of δ(x − y − z)φ(t, x)φ(t, y) in the variables

x, y:

eiz·ηφ̂φz(t, ξ + η) where φz(x) = φ(x− z)

we can write

|m̂(t, ξ, η)|2 =
∣∣∣ ∫ vN(z)eiz·ηφ̂φz(t, ξ + η)dz

∣∣∣2 ≤ ‖v‖1

∫
|vN(z)||φ̂φz(t, ξ + η)|2dz.
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Hence after a change of variables

∥∥∥ m̂(t, ξ, η)

(|ξ|+ |η|)3/2+ε′

∥∥∥2

2
.
∫
|vN(z)| |φ̂φz(t, ξ)|

2

(|ξ|+ |η|)3+2ε′
dξ dη dz

.
1

ε′

∫
|vN(z)| |φ̂φz(t, ξ)|

2

|ξ|2ε′
dξdz.

Combining this last estimate with

∫
|φ̂φz(t, ξ)|2

|ξ|2ε′
dξ . ‖D−ε′(φφz)‖2

2 .ε′

by
Hardy-

Littlewood-
Sobolev

‖φφz‖2
2−ε′′ ≤ ‖φ‖4

4−2ε′′ where ε′′ =
4ε′

3 + 2ε′

gives ∥∥∥ m̂(t, ξ, η)

(|ξ|+ |η|)3/2+ε′

∥∥∥
2
.ε′ ‖φ‖2

4−2ε′′ . (2.50)

We can prove similarly in general the following estimate:

∥∥∥ ∂jt m̂(t, ξ, η)

(|ξ|+ |η|)3/2+ε′

∥∥∥
2
.ε′

j∑
l=0

‖∂ltφ‖4−2ε′′‖∂j−lt φ‖4−2ε′′ . (2.51)

Inserting estimates (2.50)-(2.51) into (2.49) gives

‖D1/2−ε′s0
a(t, ·)‖2 .ε′ ‖φ(0, ·)‖2

4−2ε′′ + ‖φ(t, ·)‖2
4−2ε′′

+

∫ t

0

‖φ(s, ·)‖4−2ε′′‖∂sφ(s, ·)‖4−2ε′′ds

‖D1/2−ε′∂ts
0
a(t, ·)‖2 .ε′ ‖

(
∂ts

0
a

)
(0, ·)‖H1/2−ε′ + ‖φ(0, ·)‖4−2ε′′‖

(
∂tφ
)
(0, ·)‖4−2ε′′

+ ‖φ(t, ·)‖4−2ε′′‖∂tφ(t, ·)‖4−2ε′′

+

∫ t

0

(
‖φ(s, ·)‖4−2ε′′‖∂2

sφ(s, ·)‖4−2ε′′ + ‖∂sφ(s, ·)‖2
4−2ε′′

)
ds.
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Using ‖∂jtφ(t, ·)‖4−2ε′′ . (1+ t3/4−ε
′/2)−1 for j = 0, 1, 2, which follow by interpolating

L2-norm with L∞ estimates (see Corollary 2.4 and (2.31)) and recalling (2.44), we

obtain

‖∂jt s0
a(t, ·)‖H1/2−ε′ .ε′ log(1 + t) for j = 0, 1. (2.52)

Interpolating this with (2.48) gives

‖∂jt s0
a‖H3/2 ≤ ‖∂jt s0

a‖
2+2ε′
3+2ε′

H2 ‖∂jt s0
a‖

1
3+2ε′

H1/2−ε′ .ε′ (N
3β
2 )

2+2ε′
3+2ε′ log(1 + t) for j = 0, 1.

Hence finally we obtain

‖∂jt s0
a(t, ·)‖H3/2 .ε N

β(1+ε) log(1 + t) for j = 0, 1 where ε =
ε′

3 + 2ε′
(2.53)

So for ε > 0 arbitrarily small, we can choose ε′ = 3ε/(1− 2ε) in the above estimates

leading to (2.53).

Step 2 Estimates on ‖∂jt s1
a‖H3/2 and ‖∂jt se‖H3/2 for j = 0, 1: We will first es-

timate H2-norms then we will use the Sobolev embedding H2 ↪→ H3/2. We will

obtain H2-estimates of ∂jt s
1
a and ∂jt se by estimating ∂j+1

t s1
a and ∂j+1

t se in L2 first

and then using the equations satisfied by ∂jt s
1
a and ∂jt se. If we take derivative on

both sides in (2.40b) and recall that sa = s0
a + s1

a from (2.39), we can write

S(∂ts
1
a) = −V (∂ts

0
a)−

((
∂tg

T
pot

)
◦ sa + sa ◦

(
∂tgpot

))
, (2.54)

S(∂2
t s

1
a) = −V (∂2

t s
0
a)− 2

((
∂tg

T
pot

)
◦ ∂tsa + (∂tsa) ◦

(
∂tgpot

))
−
((
∂2
t g

T
pot

)
◦ sa + sa ◦

(
∂2
t gpot

))
(2.55)
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where

∂tgpot(t, x, y) =
(
vN ∗

(
2Re(φ̄∂tφ)

))
(t, x)δ(x− y)

+ vN(x− y)∂tφ̄(t, x)φ(t, y) + vN(x− y)φ̄(t, x)∂tφ(t, y)

and we can compute ∂2
t gpot likewise. We will apply an energy estimates to (2.54)-

(2.55). Let’s define

(∂jtV )(u) :=
(
∂jt g

T
pot

)
◦ u+ u ◦

(
∂jt gpot

)
for j = 1, 2. (2.56)

Using this definition and (2.54)-(2.55) and also recalling (2.18), we have

W
(
(∂ts

1
a) ◦ ∂ts1

a

)
= S(∂ts

1
a) ◦ ∂ts1

a − (∂ts
1
a) ◦ S(∂ts1

a)

= −V (∂ts
0
a) ◦ ∂ts1

a + (∂ts
1
a) ◦ V (∂ts0

a)−
(
(∂tV )(sa)

)
◦ ∂ts1

a + (∂ts
1
a) ◦ (∂tV )(sa),

W
(
(∂2
t s

1
a) ◦ ∂2

t s
1
a

)
= S(∂2

t s
1
a) ◦ ∂2

t s
1
a − (∂2

t s
1
a) ◦ S(∂2

t s
1
a)

= −V (∂2
t s

0
a) ◦ ∂2

t s
1
a + (∂2

t s
1
a) ◦ V (∂2

t s
0
a)

− 2
[(

(∂tV )(∂tsa)
)
◦ ∂2

t s
1
a − (∂2

t s
1
a) ◦ (∂tV )(∂tsa)

]
− (∂2

t V )(sa) ◦ ∂2
t s

1
a + (∂2

t s
1
a) ◦ (∂2

t V )(sa).

To obtain L2-norm estimates, we take traces on both sides of the above equations

and make the following estimates:

∂t‖∂ts1
a‖2

2 ≤ 2
(
‖V (∂ts

0
a)‖2 + ‖(∂tV )(sa)‖2

)
‖∂ts1

a‖2 (2.57)
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∂t‖∂2
t s

1
a‖2

2 ≤ 2
(
‖V (∂2

t s
0
a)‖2 + 2‖(∂tV )(∂tsa)‖2 + ‖(∂2

t V )(sa)‖2

)
‖∂2

t s
1
a‖2 (2.58)

Both V
(
see (2.35)

)
and ∂jtV for j = 1, 2

(
see (2.56)

)
are bounded from L2 to L2

since the inequalities

‖
(
vN ∗ ∂jt |φ|2

)
(t, x)u(x, y)‖L2

x,y

. ‖vN‖L1(R3)

( j∑
k=0

‖∂kt φ(t, ·)‖L∞(R3)‖∂j−kt φ(t, ·)‖L∞(R3)

)
‖u‖L2(R6),

‖
∫
vN(x− z)∂jt

(
φ̄(t, x)φ(t, z)

)
u(z, y)dz‖L2

x,y

.
( j∑
k=0

‖∂kt φ(t, ·)‖L∞(R3)‖∂j−kt φ(t, ·)‖L∞(R3)

) .‖vN‖L1(R3)‖u‖L2(R6)︷ ︸︸ ︷
‖
(
vN ∗ ‖u(·, y)‖L2

y

)
(x)
∥∥
L2
x



(2.59)

for j = 0, 1, 2 and ‖∂jtφ(t, ·)‖L∞(R3) . 1/(1 + t3/2) (see Corollary 2.4) imply

‖V ‖op . ‖φ(t, ·)‖2
∞ . (1 + t3)−1,

‖∂tV ‖op . ‖φ(t, ·)‖∞‖∂tφ(t, ·)‖∞ . (1 + t3)−1,

‖∂2
t V ‖op . ‖φ(t, ·)‖∞‖∂2

t φ(t, ·)‖∞ + ‖∂tφ(t, ·)‖2
∞ . (1 + t3)−1.


(2.60)

Hence (2.57)-(2.58) take the form

∂t‖∂ts1
a(t, ·)‖2 .

1

1 + t3

(
‖∂ts0

a(t, ·)‖2 + ‖sa(t, ·)‖2︸ ︷︷ ︸
.log(1+t) by (2.41)

since sa=s0a+s1a

)
, (2.61)

∂t‖∂2
t s

1
a(t, ·)‖2 .

1

1 + t3

(
‖∂2

t s
0
a(t, ·)‖2 + ‖∂tsa(t, ·)‖2 + ‖sa(t, ·)‖2︸ ︷︷ ︸

.log(1+t)

)
. (2.62)

Now we need estimates of ‖∂jt s0
a‖2, j = 1, 2. Taking L2-norms in (2.46) and using
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(2.45), we can obtain the following estimate:

‖∂jt s0
a(t, ·)‖2

≤ ‖(∂jt s0
a)(0, ·)‖2 +

∥∥(∂jt m̂)(0, ξ, η)

|ξ|2 + |η|2
∥∥

2
+
∥∥∂jt m̂(t, ξ, η)

|ξ|2 + |η|2
∥∥

2

+
∥∥∫ t

0

eis(|ξ|
2+|η|2)∂

j+1
s m̂(s, ξ, η)

|ξ|2 + |η|2
ds
∥∥

2

. ‖(∂jt s0
a)(0, ·)‖2 +

j∑
l=0

(
‖(∂ltφ)(0, ·)‖3‖(∂

j−l
t φ)(0, ·)‖3 + ‖∂ltφ(t, ·)‖3‖∂

j−l
t φ(t, ·)‖3

)
+

∫ t

0

{ j+1∑
l=0

‖∂ltφ(t, ·)‖3‖∂
j+1−l
t φ(t, ·)‖3

}
ds.

This last estimate considered with (2.25) and Corollary 2.4 imply

‖∂jt s0
a(t, ·)‖2 . log(1 + t) for j = 1, 2. (2.63)

Inserting this in (2.61) gives

∂t‖∂ts1
a‖2 .

log(1 + t)

1 + t3
(2.64)

which implies uniform-in-time boundedness of ‖∂ts1
a‖2. This together with (2.63)

implies

‖∂tsa‖2 . log(1 + t) (2.65)

since sa = s0
a + s1

a. Inserting this last estimate and estimate (2.63) in (2.62) implies

∂t‖∂2
t s

1
a‖2 .

log(1 + t)

1 + t3
(2.66)
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yielding uniform-in-time boundedness of ‖∂2
t s

1
a‖2. With the help of the uniform

bounds on ‖∂jt s1
a‖2, j = 1, 2, we can control ∆s1

a and ∆∂ts
1
a using equations (2.40b)

and (2.54) satisfied by s1
a and ∂ts

1
a respectively:

‖∆s1
a‖2 ≤ ‖∂ts1

a‖2︸ ︷︷ ︸
unif. bounded

+ ‖V (sa)‖2︸ ︷︷ ︸
. log(1+t)

(1+t3)
by (2.60), (2.41)

. log(1 + t), (2.67)

‖∆∂ts1
a‖2 ≤ ‖∂2

t s
1
a‖2︸ ︷︷ ︸

unif. bounded

+ ‖V (∂tsa)‖2 + ‖(∂tV )(sa)‖2︸ ︷︷ ︸
. log(1+t)

(1+t3)
by (2.60), (2.41), (2.65)

. log(1 + t). (2.68)

Since we have H2 ↪→ H3/2, we obtain

‖∂jt s1
a(t, ·)‖H3/2 . log(1 + t) for j = 0, 1. (2.69)

Finally for estimating ‖∂jt se‖H3/2 for j = 0, 1, again we will estimate ∂j+1
t se in

L2 and use the equations satisfied by ∂jt se to estimate ∆∂jt se and then the embedding

H2 ↪→ H3/2. If we take derivatives of equations (2.40c) and (2.19b), we obtain the

following equations to which we will apply energy estimates:

S(∂tse)

= −(∂tV )(se) + (∂tm) ◦ p2 +m ◦ ∂tp2 + (∂tp̄2) ◦m+ p̄2 ◦ (∂tm)

W(∂tp̄2)

= −
[
∂tg

T
pot, p̄2

]
+ ∂tM

↓
m◦sa−sa◦m

+(∂tm) ◦ se +m ◦ ∂tse − (∂tse) ◦m− se ◦ ∂tm


(2.70)

50



S(∂2
t se)

= −2(∂tV )(∂tse)− (∂2
t V )(se) + (∂2

tm) ◦ p2 + p̄2 ◦ ∂2
tm

+ 2
[
(∂tm) ◦ ∂tp2 + (∂tp̄2) ◦ ∂tm

]
+m ◦ ∂2

t p2 + (∂2
t p̄2) ◦m

W(∂2
t p̄2)

= −
[
∂2
t g

T
pot, p̄2

]
− 2
[
∂tg

T
pot, ∂tp̄2

]
+ ∂2

tM + (∂2
tm) ◦ se − se ◦ ∂2

tm

+ 2
[
(∂tm) ◦ ∂tse − (∂tse) ◦ ∂tm̄

]
+m ◦ ∂2

t se − (∂2
t se) ◦m



(2.71)

where M := m ◦ sa − sa ◦m. Now we add the equations

W
(
(∂jt se) ◦ ∂

j
t s̄e
)

= S(∂jt se) ◦ ∂
j
t se − (∂jt se) ◦ S(∂jt se)

W((∂jt p̄2) ◦ ∂jt p̄2) = W(∂jt p̄2) ◦ ∂jt p̄2 + (∂jt p̄2) ◦W(∂jt p̄2)

side by side and then take traces to make the following estimate:

∂t
( =:E2

j (t)︷ ︸︸ ︷
‖∂jt se‖2

2 + ‖∂jt p2‖2
2

)
(2.73)

. ‖S(∂jt se)‖2‖∂jt se‖2 + ‖W(∂jt p̄2)‖2‖∂jt p2‖2 for j = 1, 2.

We already know from (2.60) that ‖∂jtV ‖op . (1 + t3)−1 for j = 0, 1, 2. Similarly

∥∥[∂jt g
T
pot, (·)]‖op . (1 + t3)−1. (2.74)

Recalling m(t, x, y) = −vN(x− y)φ(t, x)φ(t, y), the definition of M from (2.70) and
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using estimates similar to the second one in (2.59) we obtain

‖(∂jtm) ◦ u‖2 ≤ (1 + t3)−1‖u‖2,

‖∂jtM‖2 . (1 + t3)−1

j∑
k=0

‖∂kt sa‖2

 for j = 1, 2. (2.75)

Considering all these estimates together with (2.70) implies

‖S(∂tse)‖2 .
1

1 + t3

( O(1) by (2.42)︷ ︸︸ ︷
‖se‖2 + ‖p2‖2 +‖∂tp2‖2

)
,

‖W(∂tp̄2)‖2 .
1

1 + t3

(
‖p2‖2 + ‖sa‖2 + ‖∂tsa‖2︸ ︷︷ ︸

.log(1+t) by (2.41), (2.65)

+‖se‖2 + ‖∂tse‖2

)
.

Inserting the above estimates in (2.73) for j = 1, we obtain

∂t
( =:E2

1(t)︷ ︸︸ ︷
‖∂tse‖2

2 + ‖∂tp2‖2
2

)
.

1

1 + t3

( ≤E1(t)︷ ︸︸ ︷
‖∂tse‖2 +

.E2
1(t)︷ ︸︸ ︷

‖∂tse‖2‖∂tp2‖2 +
(
1+log(1+t)

) ≤E1(t)︷ ︸︸ ︷
‖∂tp2‖2

)

from which it follows that

∂tE1(t) .
1

1 + t3
E1(t) +

1 + log(1 + t)

1 + t3
.

This in turn implies that E1(t) is uniformly bounded in time. Using this, we can

deduce

‖∂tse(t, x, y)‖L2
x,y

. 1 and ‖∂tp2(t, x, y)‖L2
x,y

. 1. (2.76)
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Now considering estimates (2.60), (2.74), (2.75) together with (2.71) implies

‖S(∂2
t se)‖2 .

1

1 + t3

( O(1) by (2.42)︷ ︸︸ ︷
‖se‖2 + ‖p2‖2 +

O(1) by (2.76)︷ ︸︸ ︷
‖∂tse‖2 + ‖∂tp2‖2 +‖∂2

t p2‖2

)
,

‖W(∂2
t p̄2)‖2 .

1

1 + t3

( 1∑
j=0

(
‖∂jt se‖2 + ‖∂jt p2‖2

)
︸ ︷︷ ︸

O(1) as above

+
2∑
j=0

‖∂jt sa‖2︸ ︷︷ ︸
.log(1+t)

by (2.41), (2.65), (2.63), (2.66)
and recalling sa=s0a+s1a

+ ‖∂2
t se‖2

)
.

Inserting the above estimates in (2.73) for j = 2, we obtain

∂t
( =:E2

2(t)︷ ︸︸ ︷
‖∂2

t se‖2
2 + ‖∂2

t p2‖2
2

)
.

1

1 + t3

( ≤E2(t)︷ ︸︸ ︷
‖∂2

t se‖2 +

.E2
2(t)︷ ︸︸ ︷

‖∂2
t se‖2‖∂2

t p2‖2 +
(
1+log(1+t)

) ≤E2(t)︷ ︸︸ ︷
‖∂2

t p2‖2

)

which yields

∂tE2(t) .
1

1 + t3
E2(t) +

1 + log(1 + t)

1 + t3
.

This implies that E2(t) is uniformly bounded in time, which helps us conclude

‖∂2
t se(t, x, y)‖L2

x,y
. 1 and ‖∂2

t p2(t, x, y)‖L2
x,y

. 1. (2.77)

Now we can estimate ‖∆∂jt se‖2, j = 0, 1 using (2.40c) and the first equation in

(2.70) as follows:

‖∆se‖2 ≤ ‖∂tse‖2 + ‖V (se)‖2 + ‖m ◦ p2‖2 + ‖p̄2 ◦m‖2 . 1 +
1

1 + t3
(2.78)

‖∆∂tse‖2 ≤ ‖∂2
t se‖2 + ‖(∂tm) ◦ p2‖2 + ‖p̄2 ◦ ∂tm‖2 + ‖m ◦ ∂tp2‖2 + ‖(∂tp̄2) ◦m‖2

. 1 +
1

1 + t3
(2.79)
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where we used (2.60), (2.75), (2.42), (2.76) and (2.77). The estimates above imply

‖∂jt se(t, ·)‖H3/2 . 1 for j = 0, 1. (2.80)

due to the Sobolev embedding H2 ↪→ H3/2. Recalling s2 = s0
a+s1

a+se and combining

(2.53), (2.69) and (2.80) imply

‖∂jt s2‖H3/2 .ε N
β(1+ε) log(1 + t) for j = 0, 1

which proves (2.20).

Proof of (2.21). This is based on the identity s2 = 2u ◦ c = 2c̄ ◦ u. We have

Dσ
xu(t, x, y) =

1

2

(
Dσ
xs2

)
◦ c−1 and Dσ

yu(t, x, y) =
1

2
c̄−1 ◦Dσ

y s2 (2.81)

where σ ∈ R denotes the order of the derivative. (2.81) implies

‖Dσu(t, ·)‖2
2 =

∫ (
|ξ|2 + |η|2

)σ|û(t, ξ, η)|2dξdη

.
∫
|ξ|2σ|û(t, ξ, η)|2dξdη +

∫
|η|2σ|û(t, ξ, η)|2dξdη

= ‖Dσ
xu(t, ·)‖2

2 + ‖Dσ
yu(t, ·)‖2

2 . ‖s2‖2
Hσ

(2.82)

where the last inequality follows from (2.81) since ‖c−1‖op is uniformly bounded.

Taking σ = 3/2 in (2.81)-(2.82) proves (2.21).
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Proof of (2.22). For ε̃ > 0 small, we can make the following estimate:

∥∥∥‖u(t, x, y)‖L2(dx)

∥∥∥
L∞(dy)

≤
∥∥∥‖u(t, x, y)‖L∞(dy)

∥∥∥
L2(dx)

.ε̃ ‖D
3
2

+ε̃
y u(t, ·)‖2 . ‖u‖H 3

2 +ε̃

(2.83)

where, for the second last inequality, we have used Hs(Rn) ↪→ L∞(Rn) for s > n/2

with n = 3 (see e.g. Remark 1.4.1 (v) in [5]). Considering σ = 2 in (2.81)-(2.82),

one can prove ‖u(t, ·)‖H2 . ‖s2(t, ·)‖H2 . N3β/2 log(1 + t) where the last inequality

follows from (2.48), (2.67) and (2.78). Interpolating between this H2-norm estimate

and the previously obtained H3/2-norm estimate (see (2.21)) gives

‖u(t, ·)‖H3/2+ε̃ . (Nβ(1+ε))1−2ε̃
(
N3β/2

)2ε̃︸ ︷︷ ︸
Nβ[1+ε+ε̃(1−2ε)]

log(1 + t). (2.84)

This last estimate considered with (2.83) proves (2.22). 2

Remark 2.7. placeholder

(i) In the following section we will frequently use an estimate of
∥∥‖u(t, ·)‖2

∥∥
4

:=∥∥‖u(t, x, y)‖L2
x

∥∥
L4
y

to control most of the contributions in (2.9)-(2.12). This

follows by interpolation between
∥∥‖u‖2

∥∥
∞ and ‖u‖2 =

∥∥‖u‖2

∥∥
2

i.e. we have

∥∥‖u(t, ·)‖2

∥∥
4
≤
∥∥‖u(t, ·)‖2

∥∥1/2

∞ ‖u(t, ·)‖1/2
2 . N (β/2)(1+ε) log(1+t), ε > 0 (2.85)

where for the last inequality we used (2.44) and (2.22).

(ii) Recalling the relation p ◦ p + 2p = ū ◦ u and the fact that (p ◦ p)(t, x, x) ≥ 0
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and also p(t, x, x) ≥ 0, we have

‖p(t, x, y)‖2
L2(dx) = (p ◦ p)(t, y, y) ≤ (ū ◦ u)(t, y, y) = ‖u(t, x, y)‖2

L2(dx)

which implies (for any ε > 0)

∥∥‖p(t, ·)‖2

∥∥
∞ ≤

∥∥‖u(t, ·)‖2

∥∥
∞ . Nβ(1+ε) log(1 + t) (2.86)∥∥‖p(t, ·)‖2

∥∥
4
≤
∥∥‖u(t, ·)‖2

∥∥
4
. N (β/2)(1+ε) log(1 + t) (2.87)

using (2.22) and (2.85).

2.4 The Regular Part of the Error |ψ̃〉

Our main result in this section is the following:

Theorem 2.8. We have the following estimate for |ψ̃r〉 solving equation (2.14a):

‖|ψ̃r(t)〉‖F .ε N
−1/2+β(1+ε)t log4(1 + t) (2.88)

for any ε > 0.

We will need the following lemma for the proof of Theorem 2.8:

Lemma 2.9. Given the definitions in (2.9)-(2.12) and (2.13), the following esti-
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mates hold:

‖

without r
if l=1
↓

F r
l (t)‖L2(R3l) .ε


N−1/2+β(1+ε) log3(1 + t)/(1 + t3/2), l = 1, 3

N−1+2β(1+ε) log4(1 + t), l = 2, 4.

(2.89)

for any ε > 0.

Proof. Let’s prove (2.89) for l = 1, 2 first. We need to estimate the L2-norms of the

contributions in (2.9a)-(2.9l) and the ones in (2.10b)-(2.10l). Estimate for the term

in (2.10b) can be made as follows:

N−1‖
∫

dx1dx2vN(x1 − x2)p(x2, y1)u(x2, y2)(ū ◦ u)(x1, x1)‖L2(dy1dy2) (2.90)

≤ N−1

∫
dx1dx2vN(x1 − x2)‖p(x2, y1)‖L2(dy1)‖u(x2, y2)‖L2(dy2)(ū ◦ u)(x1, x1)

≤ N−1
∥∥‖p‖2

∥∥
∞

∥∥‖u‖2

∥∥
∞‖vN‖1 ‖(ū ◦ u)(x2, x2)‖L1(dx2)︸ ︷︷ ︸

‖u‖22

.ε
by

(2.44),
(2.22) and (2.86)

N−1+2β(1+ε) log4(1 + t).

Estimates of the terms in (2.10c)-(2.10e) are similar and differ slightly from

(2.90). We estimate only for (2.10c):

N−1‖
∫

dx1dx2vN(x1 − x2)p(x2, y1)u(x1, y2)(ū ◦ u)(x1, x2)‖L2(dy1dy2)

≤ N−1

∫
dx1dx2vN(x1 − x2)‖p(x2, y1)‖L2(dy1)‖u(x1, y2)‖L2(dy2)|(ū ◦ u)(x1, x2)|

≤ N−1
∥∥‖p‖2

∥∥
∞

∥∥‖u‖2

∥∥
∞

∫
dx2 vN(x2)

(∫
dx1 |(ū ◦ u)(x1, x1 − x2)|

)
︸ ︷︷ ︸

≤‖u‖22 uniformly in x2

≤ N−1
∥∥‖p‖2

∥∥
∞

∥∥‖u‖2

∥∥
∞‖vN‖1‖u‖2

2 .ε
by

(2.44),
(2.22) and (2.86)

N−1+2β(1+ε) log4(1 + t). (2.91)
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Estimates of (2.9a)-(2.9b) are similar to (2.90) and the estimates of (2.9c)-

(2.9f) are similar to (2.91); the only difference being that, in (2.90)-(2.91), we were

able to pull two factors out of the integral in L∞-norm, each of which is either a

p-term or a u-term whereas in estimates of (2.9a)-(2.9c) there is only one u (or

p)-term available for us to pull out in the same manner and we also need to pull φ

out of the integral in L∞-norm. This explains the the difference between the powers

of N and the time dependence of the bounds in the estimates in (2.89), in cases of

l = 1 and l = 2.

Estimates of (2.10f)-(2.10g) are similar so let’s just look at the estimate of

(2.10f):

(1/2N)‖
∫

dx1dx2vN(x1 − x2)u(y1, x1)u(x2, y2)ū(x1, x2)‖L2(dy1dy2)

≤ (1/2N)

∫
dx1dx2vN(x1 − x2)‖u(y1, x1)‖L2(dy1)‖u(x2, y2)‖L2(dy2)|u(x1, x2)|

≤ (1/2N)
∥∥‖u‖2

∥∥
∞

∫
dx2vN(x2)

(∫
dx1 |u(x1, x1 − x2)|‖u(y1, x1)‖L2(dy1)

)
︸ ︷︷ ︸

≤‖u‖
H3/2+ε̃‖u‖2 unif. in x2

≤ (1/2N)
∥∥‖u‖2

∥∥
∞‖vN‖1‖u‖H3/2+ε̃‖u‖2 .ε

by
(2.44),

(2.84) and (2.22)

N−1+2β(1+ε) log3(1 + t). (2.92)

Estimate of the more singular term (2.10i) differs slightly from the above

estimate:

(1/2N)‖
∫

dx1vN(y1 − x1)p(x1, y2)u(y1, x1)‖L2(dy1dy2)

≤ (1/2N)
∥∥∥∫ dx1vN(y1 − x1)‖p(x1, y2)‖L2(dy2)u(y1, x1)

∥∥∥
L2(dy1)
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≤ (1/2N)
∥∥‖p‖2

∥∥
∞

∫
dx1 vN(x1) ‖u(y1, y1 − x1)‖L2(dy1)︸ ︷︷ ︸

≤‖u‖
H3/2+ε̃unif. in x1

≤ (1/2N)
∥∥‖p‖2

∥∥
∞‖vN‖1‖u‖H3/2+ε̃ .ε

by
(2.84) and (2.86)

N−1+2β(1+ε) log2(1 + t). (2.93)

Now let’s consider the estimate of (2.10h):

N−1‖
∫

dx1vN(x1 − y1)u(y1, y2)(ū ◦ u)(x1, x1)‖L2(dy1dy2)

≤ N−1
∥∥∥∫ dx1vN(x1 − y1)‖u(y1, y2)‖L2(dy2)(ū ◦ u)(x1, x1)

∥∥∥
L2(dy1)

≤ N−1
∥∥∥(vN ∗ ((ū ◦ u)(·, ·)

))
(y1)‖u(y1, y2)‖L2(dy2)

∥∥∥
L2(dy1)

≤ N−1
∥∥‖u‖2

∥∥
∞‖vN‖1 ‖(ū ◦ u)(y1, y1)‖L2(dy1)︸ ︷︷ ︸∥∥‖u‖2∥∥2

4

.ε
by

(2.22)
and (2.85)

N−1+2β(1+ε) log3(1 + t). (2.94)

Estimates of (2.10j)-(2.10k) are similar and differ slightly from (2.94). We will

estimate for (2.10j) in the following way:

N−1‖
∫

dx1vN(x1 − y1)u(x1, y2)(ū ◦ u)(x1, y1)‖L2(dy1dy2)

≤ N−1
∥∥∥∫ dx1 vN(y1 − x1)(ū ◦ u)(x1, y1)‖u(x1, y2)‖L2(dy2)

∥∥∥
L2(dy1)

≤ N−1
∥∥‖u‖2

∥∥
∞

∫
dx1 vN(x1) ‖(ū ◦ u)(y1 − x1, y1)‖L2(dy1)︸ ︷︷ ︸

≤
∥∥‖u‖2∥∥2

4
uniformly in x1

≤ N−1
∥∥‖u‖2

∥∥
∞‖vN‖1

∥∥‖u‖2

∥∥2

4
.ε
by

(2.22) and (2.85)

N−1+2β(1+ε) log3(1 + t). (2.95)

(2.10l) is similar to the sum of the terms in (2.10i) and (2.10k) whose estimates

have already been discussed.
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Estimates of (2.9g)-(2.9h) are similar to (2.92). The estimate of (2.9i) re-

sembles (2.93). Estimate of (2.9l) is similar to (2.94) and estimates of (2.9j)-(2.9k)

resemble (2.95). However, similar to the remarks coming right after (2.91), in (2.9g)-

(2.9l), there is no u (or p)-term available for us to pull out of the integral in the way

we did in (2.92)-(2.95). Instead, we can pull φ out in L∞-norm, which explains the

difference in the powers of N and the time dependence of the bounds in (2.89), in

cases l = 1, l = 2.

In order to prove (2.89) for l = 3, 4, we need to consider L2-norms of the terms

in (2.11b)-(2.11f) and the terms in (2.12b)-(2.12d). Estimates of (2.12b) and (2.12c)

are similar so let’s make it for (2.12b):

(1/2N)‖
∫

dxp̄(y2, x)vN(y1 − x)u(x, y4)u(y3, y1)‖L2(dy1dy2dy3dy4)

≤ (1/2N)
∥∥∥∫ dx vN(y1 − x)‖p(x, y2)‖L2(dy2)‖u(x, y4)‖L2(dy4)‖u(y3, y1)‖L2(dy3)

∥∥∥
L2(dy1)

≤ (1/2N)
∥∥‖u‖2

∥∥2

∞‖
(
vN ∗ ‖p(·, y2)‖L2(dy2))

)
(y1)‖L2(dy1)

≤ (1/2N)
∥∥‖u‖2

∥∥2

∞‖vN‖1‖p‖2 .ε
by

(2.44) and (2.22)

N−1+2β(1+ε) log3(1 + t).

Estimates of (2.11b)-(2.11d) are similar but we need to pull out
∥∥‖u(y2, y1)‖L2

y2

∥∥
L∞y1

in (2.11b),
∥∥‖u(y3, x)‖L2

y3

∥∥
L∞x

in (2.11c),
∥∥‖u(y3, y1)‖L2

y3

∥∥
L∞y1

in (2.11d) and also

‖φ‖∞ in all three of them, instead of the
∥∥‖u‖2

∥∥2

∞ factor in the above estimate.

That again causes the difference in the powers of N and the time dependence of the

bounds in (2.89) in cases l = 3, l = 4.
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And our last estimate is for (2.12d):

(1/2N)‖
∫

dx1dx2p̄(y1, x1)p(x2, y2)vN(x1 − x2)u(y3, x1)u(x2, y4)‖L2(dy1dy2dy3dy4)

≤ (1/2N)

∫
dx1dx2

{
vN(x1 − x2)

× ‖p(x1, y1)‖L2(dy1)‖p(x2, y2)‖L2(dy2)‖u(x1, y3)‖L2(dy3)‖u(x2, y4)‖L2(dy4)

}
≤ (1/2N)

∥∥‖p‖2

∥∥
∞

∥∥‖u‖2

∥∥
∞

∫
dx1

(
vN ∗

(
‖p(·, y2)‖L2(dy2)‖u(·, y4)‖L2(dy4)

))
(x1)

≤ (1/2N)
∥∥‖p‖2

∥∥
∞

∥∥‖u‖2

∥∥
∞‖vN‖1‖p‖2‖u‖2 .ε

by
(2.44),

(2.22) and (2.86)

N−1+2β(1+ε) log4(1 + t).

Estimates of (2.11e)-(2.11f) are similar but we need to pull out
∥∥‖u(x2, y3)‖L2

y3

∥∥
L∞x2

in (2.11e),
∥∥‖p(x2, y2)‖L2

y2

∥∥
L∞x2

in (2.11f) and also ‖φ‖∞ in both of them.

Proof of Theorem 2.8. Recalling the equation (2.14a) satisfied by |ψ̃r〉 and the energy

estimate (2.15) obtained from it, one can insert estimates in Lemma 2.9 into the

energy estimate (2.15) and this implies our claim in Theorem 2.8. 2

2.5 The Singular Part of |ψ̃〉

The singular part of |ψ̃〉, denoted by |ψ̃s〉, satisfies equation (2.14b). Let’s

recall from (2.16a)-(2.16b) how we split |ψ̃s〉:

|ψ̃s〉 = |ψ̃a
1〉+ |ψ̃e

1〉 where(1

i
∂t −

∫
L(t, x, y)a∗xay dxdy

)
|ψ̃a

1〉 = (0, 0, F s
2 , F

s
3 , F

s
4 , 0, . . . ), (2.96a)(1

i
∂t − L

)
|ψ̃e

1〉 = −N−1/2E(t)|ψ̃a
1〉, (2.96b)
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|ψ̃a
1(0)〉 = |ψ̃e

1(0)〉 = 0.

First we want to obtain estimates on the components of |ψ̃a
1〉 and then use them

to estimate the error part |ψ̃e
1〉. We would like to do the latter by applying an

energy estimate to (2.96b). But the estimates we obtain for |ψ̃a
1〉 will still not

ensure sufficient L2-integrability for the components of the forcing term in (2.96b)

as N → ∞ and for β close to 1/2. Hence we will need to split |ψ̃e
1〉 further into its

regular and singular parts and we will repeat similar splitting procedure for some

finitely many times before a final application of an energy estimate.

Recalling the explicit formula for L(t, x, y) from (2.6), let’s define Ṽ (t, x, y)

via the equation

L(t, x, y) = ∆xδ(x− y)− Ṽ (t, x, y). (2.97)

Let’s also define the operator

Sj =
1

i
∂t −∆R3j +

j∑
k=1

action of
Ṽ (t) on a function

in the
kth variable︷ ︸︸ ︷(
Ṽ (t)

)
k︸ ︷︷ ︸

Vj

(2.98)

Hence we have the following set of equations being equivalent to (2.96a):

Sjψ
(j)
1 = F s

j with ψ
(j)
1 (0) = 0 for j = 2, 3, 4 and (2.99)

|ψ̃a
1〉 = (0, 0, ψ

(2)
1 , ψ

(3)
1 , ψ

(4)
1 , 0, . . . ).

Our main result in this section is the following:
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Theorem 2.10. We have the following estimates for ψ
(j)
1 satisfying (2.99):

‖ψ(2)
1 ‖L2(R6) .ε N

−1+β+βεt log(1 + t) for any ε > 0, (2.100a)

‖ψ(3)
1 ‖L2(R9) . N

−1+β
2 , (2.100b)

‖ψ(4)
1 ‖L2(R12) .ε N

−1+ 3β
2

+βε
√
t log2(1 + t) for any ε > 0 (2.100c)

which imply the following estimate for |ψ̃a
1〉 satisfying (2.96a):

‖|ψ̃a
1〉‖F . N

−1+β
2 t log2(1 + t) for β < 1/2. (2.101)

We will need the following lemmas to prove Theorem 2.10:

Lemma 2.11. (Christ-Kiselev Lemma, see e.g. Lemma 2.4 in [38]) Let X, Y be Ba-

nach spaces, let I be a time interval, and let K ∈ C0(I × I;B(X, Y )) be a ker-

nel taking values in the space of bounded operators from X to Y . Suppose that

1 ≤ p < q ≤ ∞ is such that

‖
∫
I

K(t, s)f(s) ds‖Lq(I,Y ) . ‖f‖Lp(I,X)

for all f ∈ Lp(I,X). Then one also has

‖
∫
s∈I:s<t

K(t, s)f(s) ds‖Lq(I,Y ) .p,q ‖f‖Lp(I,X).

Lemma 2.12. For the operator norm of Vj defined in (2.98), we have the following

63



estimate:

‖Vj‖L2(R3j)→L2(R3j) ≤ j‖Ṽ (t)‖L2(R3)→L2(R3)

.
j

1 + t3
‖u(t)‖4

L2(R6) .
j log4(1 + t)

1 + t3
. (2.102)

Proof. The first inequality follows from the definition of Vj in (2.98). For the second

inequality let’s write Ṽ (t) explicitly recalling (2.6) and (2.97):

(Ṽ (t)f)(x) =

∫
Ṽ (t, x, y)f(y)dy

=
(
vN ∗ |φ|2

)
(t, x)f(x) +

∫
vN(x− y)φ(t, x)φ̄(t, y)f(y)dy (2.103a)

− 1

2

((
c̄)−1 ◦m ◦ ū+ u ◦ m̄ ◦

(
c̄)−1 + [W(c̄),

(
c̄)−1]

)
◦ f. (2.103b)

We can estimate L2-norms of the terms in (2.103a) as:

‖
(
vN ∗ |φ|2)f‖2 ≤ ‖vN‖1‖φ‖2

∞‖f‖2 .
1

1 + t3
‖f‖2, (2.104)

‖
∫
vN(x− y)φ(t, x)φ̄(t, y)f(y)dy‖2 ≤ ‖φ‖2

∞‖vN ∗ f‖2 .
1

1 + t3
‖f‖2. (2.105)

where we used ‖φ(t)‖L∞(R3) . 1/(1 + t3/2) from (2.24). Similarly to (2.105), one can

prove for m(t, x, y) = −vN(x− y)φ(t, x)φ(t, y) that

‖m ◦ l‖L2(R6) .
1

1 + t3
‖l‖L2(R6) (2.106)

for any l ∈ L2(R6).
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Recalling the relation c̄2 = c̄ ◦ c̄ = δ(x− y) + u ◦ ū and considering a contour

Γ enclosing the spectrum of the non-negative Hilbert-Schmidt operator q := u ◦ ū

one can write

W(c̄) = W(
√

1 + q) =
1

2πi

∫
Γ

(q − z)−1 W(q)︸ ︷︷ ︸
↓

m◦ū◦c̄−u◦c◦m̄
by (92) in [20]

(q − z)−1
√

1 + z dz (2.107)

Since
(
c̄
)−1

and (q − z)−1 have uniformly bounded operator norms and |z| . ‖u‖2
2,

(2.106) and (2.107) help us dominate L2-norm of (2.103b) with

1

1 + t3
‖u(t)‖4

L2(R6)‖f‖L2(R3).

This last bound considered together with the estimates in (2.104)-(2.105) proves the

second inequality in (2.102). The last inequality in (2.102) follows from the estimate

‖u(t)‖L2(R6) . log(1 + t) as we recall from (2.44).

Proof of Theorem 2.10. (2.99) is equivalent to the following set of equations:

ψ
(j)
1 = ψ

(j)
1,a + ψ

(j)
1,e where (2.108a)(1

i
∂t −∆R3j

)
ψ

(j)
1,a = F s

j , (2.108b)

Sjψ
(j)
1,e = −Vjψ

(j)
1,a, (2.108c)

ψ
(j)
1,a(0) = ψ

(j)
1,e(0) = 0 for j = 2, 3, 4.

We will try to obtain estimates on ‖ψ(j)
1,a‖L2(R3j) using an elliptic estimate in case of
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j = 2 and for the cases j = 3, 4 we will make use of the end-point Strichartz estimates

along with TT ∗-method (to be explained shortly) and Christ-Kiselev Lemma (see

Lemma 2.11). Then we will use the following energy estimate to control ψ
(j)
1,e:

∂t‖ψ(j)
1,e‖2

L2(R3j) ≤ −2Im
((

∆R3j −Vj

)
ψ

(j)
1,e −Vjψ

(j)
1,a , ψ

(j)
1,e

)
. ‖Vjψ

(j)
1,a‖L2(R3j)‖ψ

(j)
1,e‖L2(R3j) since Vj is self-adjoint

.
j log4(1 + t)

1 + t3
‖ψ(j)

1,a‖L2(R3j)‖ψ
(j)
1,e‖L2(R3j) by Lemma 2.12

which implies

‖ψ(j)
1,e(t)‖L2(R3j) .

∫ t

0

j log4(1 + t1)

1 + t31
‖ψ(j)

1,a(t1)‖L2(R3j) dt1. (2.109)

Case 1: j = 2. For j = 2, recalling (2.13a), (2.108b) becomes:

(1

i
∂t −∆R6

)
ψ

(2)
1,a = − 1

2N
vN(y1 − y2)

{ c̄◦u=u◦c= 1
2
s2︷ ︸︸ ︷

u(t, y1, y2) + (p̄ ◦ u)(t, y1, y2)
}
. (2.110)

Solving (2.110) by Duhamel’s formula and using integration by parts we get

‖ψ(2)
1,a(t, ·)‖L2(R6) .

∥∥∥∥∫ t

0

eit1(|ξ|2+|η|2)F̂ s
2(t1, ξ, η)dt1

∥∥∥∥
L2(R6)

.

∥∥∥∥∥ F̂ s
2(0, ξ, η)

|ξ|2 + |η|2

∥∥∥∥∥
L2(R6)

+

∥∥∥∥∥ F̂ s
2(t, ξ, η)

|ξ|2 + |η|2

∥∥∥∥∥
L2(R6)

+

∥∥∥∥∥
∫ t

0

eit1(|ξ|2+|η|2)∂t1F̂
s
2(t1, ξ, η)

|ξ|2 + |η|2
dt1

∥∥∥∥∥
L2(R6)

. (2.111)
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Now we need estimates of

∥∥∥∥∥∂jt F̂ s
2(t, ξ, η)

|ξ|2 + |η|2

∥∥∥∥∥
L2(R6)

for j = 0, 1.

Writing

∂jtF
s
2(t, x, y) = − 1

4N
vN(x−y)∂jt s2(t, x, y) = − 1

4N

∫
δ(x−y−z)vN(z)∂jt s2(t, x, y)dz

and considering the Fourier transform of δ(x− y − z)∂jt s2(t, x, y) in variables x, y:

eiz·η ∂jt ŝ
z
2(t, ξ + η) where sz2(t, x) = s2(t, x, x− z)

we can write

|∂jt F̂ s
2(t, ξ, η)|2 =

1

16N2

∣∣∣ ∫ vN(z)eiz·η ∂jt ŝ
z
2(t, ξ + η)dz

∣∣∣2
.
‖v‖1

N2

∫
|vN(z)||∂jt ŝz

2(t, ξ + η)|2dz.

Hence after a change of variables

∥∥∥∥∥∂jt F̂ s
2(t, ξ, η)

|ξ|2 + |η|2

∥∥∥∥∥
2

L2(R6)

.
1

N2

∫
|vN(z)| |∂

j
t ŝ
z
2(t, ξ)|2(

|ξ|2 + |η|2
)2 dξdηdz

.
1

N2

∫
|vN(z)|

(∫ |∂jt ŝz2(t, ξ)|2

|ξ|
dξ︸ ︷︷ ︸

.‖D−1/2∂jt s
z
2‖2L2(R3)

)
dz

.
by

Trace theorem

1

N2
‖∂jt s2‖2

H
3
2 +(R6)

. (2.112)
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Now since s2 = s0
a + s1

a + se, ‖∂jt s2‖H2 . N3β/2 log(1 + t) by (2.48), (2.67)-(2.68) and

(2.78)-(2.79). Interpolating thisH2-norm estimate with ‖∂jt s2‖H3/2 . Nβ(1+ε) log(1+

t) (see (2.20)) and applying the resulting estimate in (2.112) imply

∥∥∥∥∥∂jt F̂ s
2(t, ξ, η)

|ξ|2 + |η|2

∥∥∥∥∥
L2(R6)

.ε N
−1+β+βε log(1 + t) for any ε > 0 and for j = 0, 1. (2.113)

This inserted in (2.111) implies

‖ψ(2)
1,a(t)‖L∞((0,t);L2(R6)) .ε N

−1+β+βεt log(1 + t) for any ε > 0. (2.114)

(2.114) considered with (2.109) for j = 2 gives

‖ψ(2)
1,e(t)‖L2(R6) .ε N

−1+β+βε

∫ t

0

t1 log5(1 + t1)

1 + t31
dt1 . N−1+β+βεt log(1 + t).

Since ψ
(2)
1 = ψ

(2)
1,a +ψ

(2)
1,e as we recall from (2.108a), we can combine our last estimate

with (2.114) to obtain

‖ψ(2)
1 (t)‖L2(R6) .ε N

−1+β+βεt log(1 + t) for any ε > 0. (2.115)

Case 2: j = 3. For j = 3, recalling (2.13b), (2.108b) becomes:

(1

i
∂t −∆R9

)
ψ

(3)
1,a = −N−1/2vN(y1 − y2)φ(t, y2)u(t, y1, y3). (2.116)

To put the forcing term in a more suitable form for the mixed space-time norm
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estimates so that the power of N will depend on β in the desired way, we need the

change of variables x1 = y1− y2 and x2 = y1 + y2 which is inspired by the technique

introduced in Lemma 4.6, [9] (see also the remark following Lemma 5.3 in [10]). So

(2.116) takes the form

(1

i
∂t − 2

(
∆x1 + ∆x1

)
−∆y3

)
ψ

(3)
1,a(t,

x1+x2

2
, x2−x1

2
, y3)

= −N−1/2vN(x1)φ(t, x2−x1

2
)u(t, x1+x2

2
, y3). (2.117)

Now if we consider the solution operator T := eit{2(∆x1+∆x2 )+∆y3} for the correspond-

ing free Schröodinger equation, we have the following estimate:

‖Tf0‖L2
tL

6
x1
L2
x2y3

=
∥∥ ‖Tf0‖L2

x2y3︸ ︷︷ ︸
=‖e2it∆x1 f0‖L2

x2y3

∥∥
L2
tL

6
x1

≤
∥∥ ‖e2it∆x1f0‖L2

tL
6
x1︸ ︷︷ ︸

.‖f0(x1,x2,y3)‖
L2
x1

by the end-point Strichartz
estimates in dimension 3

∥∥
L2
x2y3

. ‖f0‖L2(R9)

which proves

T : L2(R9)→ L2
tL

6
x1
L2
x2y3

. (2.118)

Similarly we also have

T : L2(R9)→ L∞t L
2
x1x2y3

. (2.119)

If we consider

(T ∗f)(x1, x2, y3) =

∫
R
e−is{2(∆x1+∆x2 )+∆y3}f(s, x1, x2, y3) ds, (2.120)
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then (2.118) is equivalent to

T ∗ : L2
tL

6/5
x1
L2
x2y3
→ L2(R9). (2.121)

(2.119) and (2.121) imply

TT ∗ : L2
tL

6/5
x1
L2
x2,y3
→ L∞t L

2
x1,x2,y3

. (2.122)

Using (2.122) and Christ Kiselev Lemma 2.11 with K(t, s) = ei(t−s){2(∆x1+∆x2 )+∆y3},

f being the right hand side of (2.117), X = L6/5(R3;L2(R6)), Y = L2(R9) and

p = 2, q =∞, we obtain the first inequality in the following estimate:

∥∥ψ(3)
1,a‖L∞((0,t);L2(R9)) . N−1/2‖vN(x1)φ(t, x2−x1

2
)u(t, x1+x2

2
, y3)

∥∥
L2
tL

6/5
x1

L2
x2,y3

≤ N−1/2

(∫ t

0

‖φ(t1)‖2
L∞(R3)

×
(∫

v
6/5
N (x1)

(∫
|u(t1,

x1+x2

2
, y3)|2 dx2 dy3

)1
2
· 6

5
dx1

)5
6
·2

dt1

)1
2

. N−1/2‖vN‖L6/5(R3)

(∫ t

0

‖φ(t1)‖2
L∞(R3)‖u(t1)‖2

L2(R6) dt1

)1/2

.
by (2.24)
and (2.44)

N (−1+β)/2
(∫ t

0

log2(1 + t1)

1 + t31
dt1

)1/2

. N (−1+β)/2. (2.123)

This inserted in (2.109) for j = 3 implies:

‖ψ(3)
1,e(t)‖L2(R9) . N (−1+β)/2

∫ t

0

log4(1 + t1)

1 + t31
dt1 . N (−1+β)/2.
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Combining the last estimate with (2.123) gives

‖ψ(3)
1 ‖L2(R9) . N (−1+β)/2 (2.124)

since ψ
(3)
1 = ψ

(3)
1,a + ψ

(3)
1,e by (2.108a).

Case 3: j = 4. Finally for j = 4, recalling (2.13c), (2.108b) becomes:

(1

i
∂t −∆R12

)
ψ

(4)
1,a = − 1

2N
vN(y1 − y2)u(t, y3, y1)u(t, y2, y4). (2.125)

Doing the same change of variables as before, i.e. x1 = y1 − y2 and x2 = y1 + y2 in

(2.125) and letting T denote the corresponding free propagator, this time we have

TT ∗ : L2
tL

6/5
x1 L

2
x2,y3,y4

→ L∞t L
2
x1,x2,y3,y4

. We again use Lemma 2.11 to obtain the first

inequality in the following:

‖ψ(4)
1,a‖L∞((0,t);L2(R12)) . N−1

∥∥∥vN(x1)u(t, y3,
x1+x2

2
)u(t, x2−x1

2
, y4)

∥∥∥
L2
tL

6/5
x1

L2
x2,y3,y4

= N−1

(∫ t

0

(∫
v

6/5
N (x1)

×
(∫ ∥∥u(t1, y3,

x1+x2

2
)
∥∥2

L2
y3

∥∥u(t1,
x2−x1

2
, y4)

∥∥2

L2
y4

dx2︸ ︷︷ ︸
.
∥∥‖u(t1,x,y)‖

L2
x

∥∥4

L4
y
.εN2β(1+ε) log4(1+t1) by (2.85)

)1
2
· 6

5
dx1

)5
6
·2

dt1

)1
2

.ε N
−1+β(1+ε)‖vN‖L6/5

(∫ t

0

log4(1 + t1) dt1

)1/2

. N−1+ 3β
2

+βεt1/2 log2(1 + t) (2.126)
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for any ε < 0. Inserting this in (2.109) for j = 4 implies

‖ψ(4)
1,e(t)‖L2(R12) .ε N

−1+ 3β
2

+βε

∫ t

0

t
1/2
1 log6(1 + t1)

1 + t31
dt1 . N−1+ 3β

2
+βε log2(1 + t)

which, when combined with (2.126), gives

‖ψ(4)
1 (t)‖L2(R12) .ε N

−1+ 3β
2

+βεt1/2 log2(1 + t) for any ε > 0 (2.127)

since ψ
(4)
1 = ψ

(4)
1,a + ψ

(4)
1,e by (2.108a). 2

Theorem 2.10, estimate (2.101) provides us with an estimate of
∥∥|ψ̃a

1〉‖F in case

of β < 1/2, which decays as N →∞. We still need to estimate the error part |ψ̃e
1〉.

Recalling (2.96a)-(2.96b), at this point, one might think of applying the standard

L2-energy estimate to (2.96b) to obtain

∥∥|ψ̃e
1(t)〉

∥∥
F . N−1/2

∫ t

0

∥∥E(t1)|ψ̃a
1(t1)〉

∥∥
F dt1 (2.128)

in which we want to estimate the right hand side by using the estimates in Theorem

2.10. However, as we will explain shortly, we will not be able to pick up the desired

powers of N from the estimate of
∥∥E(t)|ψ̃a

1(t)〉
∥∥
F to ensure a decay as N → ∞ for

β < 1/2. This problem is due to the contribution to N−1/2E(t) coming from the

term (2.8y), considered only with δ-parts of c(x, y) = ch(k)(x, y) = δ(x−y)+p(x, y)

factors in it, namely

1

2N

∫
dy1dy2vN(y1 − y2)Q∗y1y2

Qy1y2 . (2.129)
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Notice that this corresponds to the potential part of the original Hamiltonian (see

(1.17)-(1.17c)). So let’s define the Fock space operators

H̃ :=
1

2N

∫
dy1dy2vN(y1 − y2)Q∗y1y2

Qy1y2 , (2.130)

H := N−1/2E(t)− H̃. (2.131)

Then we can rewrite (2.128) as

∥∥|ψ̃e
1(t)〉

∥∥
F .

∫ t

0

{∥∥H |ψ̃a
1(t1)〉︸ ︷︷ ︸
↓︷ ︸︸ ︷

(0, 0, ψ
(2)
1 (t1), ψ

(3)
1 (t1), ψ

(4)
1 (t1), 0 . . . )

from (2.99)

∥∥
F +

∥∥H̃ |ψ̃a
1(t1)〉

∥∥
F

}
dt1. (2.132)

We need the following operator norm estimates on H and H̃:

Lemma 2.13. Based on the definitions (2.130)-(2.131), we have the following esti-

mates for the actions of H and H̃ on the jth sector of Fock space:

‖Hψ(j)‖F .ε,j

(
N−1/2+β(1+ε) log4(1 + t) +N−1+5β/2+βε log2(1 + t)

+N (−1+3β)/2 log(1 + t)

1 + t3/2

)
‖ψ(j)‖L2(R3j) (2.133a)

‖H̃ψ(j)‖F . N−1+3β‖ψ(j)‖L2(R3j) (2.133b)

for any ψ(j) ∈ L2
s (R3j) and ε > 0.

We prove Lemma 2.13 in Appendix A.

Now turning back to the energy estimate (2.132), the inequalities given by

(2.100a)-(2.100c) and (2.133a) imply that the first term inside the integral on the
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left hand side of (2.132) i.e.
∥∥H|ψ̃a1〉∥∥F is of order N (−1+β)/2N (−1+3β)/2 for β < 1/2

implying a decay as N → ∞. However, the second term
∥∥H̃|ψ̃a1〉∥∥F is of order

N−1+3βN (−1+β)/2 using (2.100b) and (2.133b). In that case, we have a decay as

N →∞ as long as we choose β < 3/7 which is not good enough but we can improve

it as we will describe in the next section.

2.6 Iterating the Splitting Method

Let’s recall how we split |ψ̃〉 which is defined by (2.1a) and satisfies equation

(2.5). We first split |ψ̃〉 into its regular and singular parts as |ψ̃r〉 + |ψ̃s〉 where

|ψ̃r〉, |ψ̃s〉 satisfy equations (2.14a)-(2.14b) respectively. We obtained an estimate

on ‖|ψ̃r〉‖F in Theorem 2.8. We then split |ψ̃s〉 into its approximate and error parts

as |ψ̃a
1〉+ |ψ̃e

1〉 where |ψ̃a
1〉, |ψ̃e

1〉 satisfy (2.96a)-(2.96b) respectively. We obtained an

estimate on ‖|ψ̃a
1〉‖F in Theorem 2.10. Theorems 2.8 and 2.10 not only provide with

bounds that are slowly deteriorating in time but also imply a decay as N → ∞

for β < 1/2. We then considered analyzing |ψ̃e
1〉 to see if we can extend these

observations to the case of the full error ‖|ψex〉 − |ψap〉‖F = ‖|ψ̃〉‖F since |ψ̃〉 =

|ψ̃r〉+ |ψ̃a
1〉+ |ψ̃e

1〉. As we discussed at the end of the previous section, an approach

based solely on the energy estimate (2.128), which is rewritten in (2.132), only

provides with a bound which is meaningful as long as β < 3/7. The problem is due
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to the term H̃|ψ̃a
1〉 on the right hand side of the equation for |ψ̃e

1〉:

(1

i
∂t − L

)
|ψ̃e

1〉 =

−N−1/2E(t)|ψ̃a
1〉 by (2.131)︷ ︸︸ ︷

−H |ψ̃a
1〉︸︷︷︸
↑︷ ︸︸ ︷

(0, 0, ψ
(2)
1 , ψ

(3)
1 , ψ

(4)
1 , 0, . . . )

ψ
(j)
1 satisfy (2.99) which is equivalent to (2.96a)

−H̃|ψ̃a
1〉

For an improvement, we now consider splitting |ψ̃e
1〉 into its regular and singular

parts as |ψ̃r
1〉+ |ψ̃s

1〉 where

(1

i
∂t − L

)
|ψ̃r

1〉 = −H|ψ̃a
1〉 with |ψ̃r

1(0)〉 = 0,(1

i
∂t − L

)
|ψ̃s

1〉 = −H̃|ψ̃a
1〉 with |ψ̃s

1(0)〉 = 0

and then we again split |ψ̃s
1〉 into its approximate and error parts as |ψ̃a

2〉 + |ψ̃e
2〉

where

(1

i
∂t −

∫
L(t, x, y)a∗xaydxdy

)
|ψ̃a

2〉 = −H̃|ψ̃a
1〉 with |ψ̃a

2(0)〉 = 0,

(1

i
∂t − L

)
|ψ̃e

2〉 = −N−1/2E(t)|ψ̃a
2〉 = −H|ψ̃a

2〉 − H̃|ψ̃a
2〉 with |ψ̃e

2(0)〉 = 0

where |ψ̃a
2〉 = (0, 0, ψ

(2)
2 , ψ

(3)
2 , ψ

(4)
2 , 0, . . . ) and

Slψ
(l)
2 =
↓

up to
symmetrizations

− 1

2N
vN(y1 − y2)ψ

(l)
1 (t, y1, y2, . . . , yl), l = 2, 3, 4 (recalling (2.98), (2.130)).

We will iterate splitting in this manner for j − 1 times and at jth step we will

only split into approximate and error parts as |ψ̃s
j−1〉 = |ψ̃a

j 〉+ |ψ̃e
j〉 where j is to be
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determined later. We can summarize our iteration scheme by the following set of

equations:

|ψ̃〉 = |ψ̃r〉+ |ψ̃a
1〉+

|ψ̃e
1〉︷ ︸︸ ︷

|ψ̃r
1〉+

|ψ̃s
1〉︷ ︸︸ ︷

|ψ̃a
2〉+ · · ·+ |ψ̃r

j−1〉+ |ψ̃a
j 〉+ |ψ̃e

j〉︸ ︷︷ ︸
|ψ̃s
j−1〉︸ ︷︷ ︸

|ψ̃e
j−1〉

where (2.134a)

(1

i
∂t − L

)
|ψ̃r〉 = (0, F1, F

r
2 , F

r
3 , F

r
4 , 0, . . . ) with |ψ̃r(0)〉 = 0, (2.134b)

(1

i
∂t −

∫
L(t, x, y)a∗xaydxdy

)
|ψ̃a

1〉 = (0, 0, F s
2 , F

s
3 , F

s
4 , 0, . . . ) with |ψ̃a

1(0)〉 = 0,

(2.134c)

(1

i
∂t − L

)
|ψ̃r

1〉 = −H|ψ̃a
1〉 with |ψ̃r

1(0)〉 = 0, (2.134d)

(1

i
∂t −

∫
L(t, x, y)a∗xaydxdy

)
|ψ̃a

2〉 = −H̃|ψ̃a
1〉 with |ψ̃a

2(0)〉 = 0, (2.134e)

...

(1

i
∂t − L

)
|ψ̃r
j−1〉 = −H|ψ̃a

j−1〉 with |ψ̃r
j−1(0)〉 = 0, (2.134f)

(1

i
∂t −

∫
L(t, x, y)a∗xaydxdy

)
|ψ̃a
j 〉 = −H̃|ψ̃a

j−1〉 with |ψ̃a
j (0)〉 = 0, (2.134g)

(1

i
∂t − L

)
|ψ̃e
j〉 = −N−1/2E(t)|ψ̃a

j 〉 with |ψ̃e
j(0)〉 = 0 where (2.134h)

|ψ̃a
j 〉 := (0, 0, ψ

(2)
j , ψ

(3)
j , ψ

(4)
j , 0 , . . . ) and (2.134i)

Slψ
(l)
j 'l
↑

means
“equal up to

symmetrizations”

− 1

2N
vN(y1 − y2)ψ

(l)
j−1(t, y1, y2, . . . , yl), l = 2, 3, 4. (recalling (2.98), (2.130)).
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We have the following result on the inductive step of the iteration:

Theorem 2.14. Under the above setting and based on the estimates in Theorem

2.10 and Lemma 2.13, we have the following estimates:

‖|ψ̃r
j(t)〉‖F . N j(−1+2β)t(j+3)/2 log6(1 + t), (2.135a)

‖ψ(2)
j (t)‖L2(R6) .ε N

(j−1)(−1+2β)N−1+β+βεt(j+1)/2 log(1 + t), (2.135b)

‖ψ(3)
j (t)‖L2(R9) . N (j−1)(−1+2β)N (−1+β)/2t(j−1)/2, (2.135c)

‖ψ(4)
j (t)‖L2(R12) .ε N

(j−1)(−1+2β)N−1+β(3/2+ε)tj/2 log2(1 + t) (2.135d)

for all j ≥ 1 and for every ε > 0.

Proof. Let’s prove first prove (2.135b)-(2.135d). The case j = 1 for (2.135b)-

(2.135b) was handled in Theorem 2.10. Hence, for the inductive step, assuming

(2.135b)-(2.135d), we will provide with a proof of the case j + 1.

Now let’s consider the equation (2.134g) by replacing j with j + 1. It will be

equivalent to the following set of equations where we need to recall (2.98), (2.130):

Slψ
(l)
j+1 'l −

1

2N
vN(y1 − y2)ψ

(l)
j (t, y1, y2, . . . , yl) with ψ

(l)
j+1(0) = 0 for l = 2, 3, 4 and

|ψ̃a
j+1〉 = (0, 0, ψ

(2)
j+1, ψ

(3)
j+1, ψ

(4)
j+1, 0, . . . ). (2.136a)

We can split ψ
(l)
j+1 similar to what we did in Theorem 2.10 as follows:

ψ
(l)
j+1 = ψ

(l)
j+1,a + ψ

(l)
j+1,e where (2.137a)
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(1

i
∂t −∆R3l

)
ψ

(l)
j+1,a 'l −

1

2N
vN(y1 − y2)ψ

(l)
j (t, y1, y2, . . . , yl), (2.137b)

Slψ
(l)
j+1,e = −Vlψ

(l)
j+1,a, (2.137c)

ψ
(l)
j+1,a(0) = ψ

(l)
j+1,e(0) = 0 for l = 2, 3, 4

and again after estimating ‖ψ(l)
j+1,a‖L2(R3l), we can use the energy estimate

‖ψ(l)
j+1,e(t)‖L2(R3l) ≤

∫ t

0

‖Vl(t1)ψ
(l)
j+1,a(t1)‖L2(R3l) dt1

.l
by

Lemma 2.12

∫ t

0

log4(1 + t1)

1 + t31
‖ψ(l)

j+1,a(t1)‖L2(R3l) dt1. (2.138)

Hence let’s prove the estimate on ‖ψ(l)
j+1,a‖L2(R3l) first. Similar to Case 2 in the

proof of Theorem 2.10, after a change of variables in equation (2.137b) and us-

ing Strichartz estimates, TT ∗-method and Christ-Kiselev Lemma we can make the

following estimate:

‖ψ(l)
j+1,a(t)‖L∞((0,t);L2(R3l))

.l N
−1

(∫ t

0

∥∥∥vN(x1)ψ
(l)
j (t1,

x1+x2

2
, x2−x1

2
, y3, . . . , yl)

∥∥∥2

L
6/5
x1

L2
x2y3...yl

dt1

)1/2

= N−1

(∫ t

0

(∫
v

6/5
N (x1)︸ ︷︷ ︸
↓

5/2

×
( ∫

|ψ(l)
j (t1,

x1+x2

2
, x2−x1

2
, y3, . . . , yl)|2 dx2dy3 . . . dyl

)1
2
· 6

5︸ ︷︷ ︸
↓

5/3

dx1

)5
6
·2

dt1

)1/2
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.
↓

Hölder
in x1
with

(5/2,5/3)

N−1 ‖vN‖L3(R3)︸ ︷︷ ︸
.N2β

(∫ t

0

‖ψ(l)
j (t1)‖2

L2(R3l) dt1

)1/2

for l = 2, 3, 4.

Now inserting the bounds in (2.135b)-(2.135d) in the last line of the above estimate

implies

‖ψ(l)
j+1,a(t)‖L∞((0,t);L2(R3l)) .

↑
constant
involved

depends on ε for l=2,4

N j(−1+2β) ·


N−1+β(1+ε)t(j+2)/2 log(1 + t) for l = 2

N (−1+β)/2tj/2 for l = 3

N−1+β(3/2+ε)t(j+1)/2 log2(1 + t) for l = 4

Finally inserting this in (2.138) yields the same bounds for ‖ψ(l)
j+1,e(t)‖L∞((0,t);L2(R3l))

because log4(1 + t)/(1 + t3) inside the integral in line (2.138) is integrable. Since

ψ
(l)
j+1 = ψ

(l)
j+1,a+ψ

(l)
j+1,e, we completed the inductive step of proving (2.135b)-(2.135d).

Now let’s move on to proving (2.135a). Replacing j− 1 with j in (2.134f), ap-

plying the L2-energy estimate to the resulting equation and using (2.135b)-(2.135d)

we can make the following estimate for any j ≥ 1:

∥∥|ψ̃r
j(t)〉

∥∥
F .

∫ t

0

∥∥H
(0, 0, ψ

(2)
j (t1), ψ

(3)
j (t1), ψ

(4)
j (t1), 0, . . . )︸ ︷︷ ︸

↑︷ ︸︸ ︷
|ψ̃a
j (t1)〉

∥∥
F dt1

.ε
by

(2.133a),
(2.135b)−(2.135d)

∫ t

0

N (−1+3β)/2N (−1+β)/2+(j−1)(−1+2β)t
(j+1)/2
1 log6(1 + t1)dt1 (2.139)

which implies (2.135a).

Now let’s see what the energy estimate applied to (2.134h) would imply if we
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were to stop the iteration at the jth step:

Corollary 2.15. For |ψ̃e
j〉 satisfying equation (2.134h) which is

(1

i
∂t − L

)
|ψ̃e
j〉 = −N−1/2E(t)|ψ̃a

j 〉 with |ψ̃e
j(0)〉 = 0

we have the following estimate

∥∥|ψ̃e
j(t)〉

∥∥
F

.j

(
N j(−1+2β) +N−1+3β+(j−1)(−1+2β)+(−1+β)/2

)
t(j+3)/2 log6(1 + t). (2.140)

In particular,
∥∥|ψ̃e

j(t)〉
∥∥
F = O(N (−3+7β)/2+(j−1)(−1+2β)) for 1/3 ≤ β < 1/2. To ensure

a decay we also need to choose

β <
1 + 2j

3 + 4j
.

Hence, if j is sufficiently large, β will be as close as desired to 1/2 in which case we

will also have
∥∥|ψ̃e

j(t)〉
∥∥
F decaying as N →∞.

Proof. Applying the standard energy estimate to (2.134h) gives

‖|ψ̃e
j(t)〉‖F .

∫ t

0

‖N−1/2E(t1)|ψ̃a
j (t1)〉‖F dt1

.
∫ t

0

{
‖H|ψ̃a

j (t1)〉
∥∥
F︸ ︷︷ ︸

.Nj(−1+2β)t
(j+1)/2
1 log6(1+t1)

as in line (2.139)

+ ‖H̃|ψ̃a
j (t1)〉‖F︸ ︷︷ ︸

.N−1+3βN(j−1)(−1+2β)N(−1+β)/2t
(j+1)/2
1 log2(1+t1)

by (2.133b) and (2.135b)-(2.135d)

}
dt1

which implies estimate (2.140).
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2.7 Final Step

Proof of Theorem 1.6 (Main result). Considering (2.134a), Theorem 2.8, Theorem

2.14 and Corollary 2.15, we have

∥∥|ψ̃(t)〉
∥∥
F

≤

by Theorem 2.8
.εN−1/2+β(1+ε)t log4(1+t)︷ ︸︸ ︷∥∥|ψ̃r(t)〉

∥∥
F +

by Theorem 2.14 for β<1/2,

.N(−1+β)/2t(j+1)/2 log2(1+t)︷ ︸︸ ︷
j∑

m=1

∥∥|ψ̃a
m(t)〉

∥∥
F

+

j−1∑
m=1

∥∥|ψ̃r
m(t)〉

∥∥
F︸ ︷︷ ︸

.N−1+2βt(j+3)/2 log6(1+t)
by Theorem 2.14

+
∥∥|ψ̃e

j(t)〉
∥∥
F︸ ︷︷ ︸

.

{
Nj(−1+2β)t(j+3)/2 if 0 < β < 1/3

N(−3+7β)/2+(j−1)(−1+2β)t(j+3)/2 log6(1 + t) if 1/3 ≤ β < 1/2

by Corollary 2.15

.ε

(
N−1/2+β(1+ε) +N (−3+7β)/2+(j−1)(−1+2β)

)
t(j+3)/2 log6(1 + t). (2.141)

For 0 < β ≤ 2j/(1− 2ε+ 4j), (2.141) will decay as N−1/2+β(1+ε) as N →∞ and for

2j/(1−2ε+4j) < β < (1+2j)/(3+4j), (2.141) will decay as N (−3+7β)/2+(j−1)(−1+2β),

which implies estimate (1.41). 2

2.8 Uncoupled System: Error Estimates only up to β < 1/2

While, in the current work, we extend the estimates on the error to the case of

β < 1/2 as stated in our main result (Theorem 1.6), we can also provide here with

the following heuristic argument suggesting that the uncoupled system consisting

of (1.38) does not provide an approximation for β ≥ 1/2. Indeed, we can write |ψ̃〉
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e.g. as

|ψ̃〉 = (0, ψ(2.9i), 0, . . . ) + other contributions

where ψ(2.9i) satisfies

(1

i
∂t −∆R3

)
ψ(2.9i)(t, y)

= N−1/2

∫
vN(y − x)u(t, y, x)φ̄(N)(t, x) dx with ψ(2.9i)(0) = 0 (2.142)

in which the integral term on the right hand side comes from (2.9i). We added

the superscript (N) to φ for recalling that it solves (1.38a) and hence it is N -

dependent. We could have checked other similar contributions coming from (2.9a)-

(2.12d) but we will consider (2.9i) as a typical example. At this point using (2.19a)

(i.e. (1.38b)) we can consider an approximate equation for u = sh(k). Recalling

s2 = sh(2k) = 2u ◦ c = 2u+ 2u ◦ p, let’s just look at

1

i
∂tu−∆u+ vN(y1 − y2)φ(N)(t, y1)φ(N)(t, y2) = 0.

If we make the change of variables x1 := y1 − y2 and x2 := y1 + y2 then we have

(1

i
∂t − 2

(
∆x1 + ∆x2

))
u(t, x1+x2

2
, x2−x1

2
) = −vN(x1)φ(N)(t, x1+x2

2
)φ(N)(t, x2−x1

2
).

Hence one can consider an “approximate” solution

u(t, y1, y2) = −Nβw(Nβ(y1 − y2))φ(N)(t, y1)φ(N)(t, y2) where ∆w = −1

2
v.

82



Inserting the above ansatz in (2.142) gives

(1

i
∂t −∆R3

)
ψ(2.9i) = −Nβ−1/2

{(
N3βv(Nβ·)w(Nβ·)

)
∗ |φ(N)|2

}
(t, y)φ(N)(t, y)︸ ︷︷ ︸

converges to (
∫
vw)|φ(t,y)|2φ(t,y) as N→∞

since φ(N)→φ in L2 as in Appendix B

where φ(N) and φ solve equations (1.38a) and (1.6) for 0 < β < 1 respectively.

Hence, to ensure a decay for ψ(2.9i) as N →∞, we have to consider β < 1/2.

2.9 Conclusions

In this chapter we provided a quantitative derivation of some effective evolution

equations for the dynamics of a bosonic system of N -particles interacting via two-

body potential vN(x) = N3βv(Nβx), x ∈ R3, 1/3 ≤ β < 1/2. This together with

previous results gives explicit rates of convergence for a Fock space approximation

of the exact dynamics in case of short-range strong interactions described by beta <

1/2. The approximation scheme employed here considers an appropriate description

of pair excitations as a correction to mean field. We also provided with an argument

showing that, with the uncoupled system of evolution equations at hand, the same

approximation works well only up to β < 1/2. Our rates of convergence deteriorates

more slowly in time compared to the exponential deterioration typical of previous

works.
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Chapter 3: Proof of Error Estimates for Marginals:

Theorems 1.8 and 1.9

3.1 Main Ideas and the General Strategy

Throughout this chapter unless stated otherwise let φ(N) denote the solution

of (1.38a)

1

i
∂tφ

(N) = ∆φ(N) −
(
vN ∗ |φ(N)|2

)
φ(N)

where vN = N3βv(Nβ·) and φ(N)(0, ·) = φ0

and φ denote the solution to the equation (1.44)

1

i
∂tφ = ∆φ−


(
v ∗ |φ|2

)
φ if β = 0

(∫
v(x)dx

)
|φ|2φ if 0 < β < 1

with φ(0, ·) = φ0

with initial data φ0 as described in Theorem 1.8. Note that in case of β = 0,

φ(N) = φ and for 0 < β < 1, φ(N) → φ in L2(R3) as proved in Appendix B.

Based on this let’s recall the exact and approximate evolutions of previous

84



chapters by rewriting them here:

|ψex(t)〉 = eitHe−
√
NA(φ0)

∣∣0〉 (3.1)

|ψap(t)〉 = eiNχ(t)e−
√
NA(φ(N)(t))e−B(k(t))

∣∣0〉 (3.2)

along with the reduced dynamics

|ψred(t)〉 = eB(k(t))e
√
NA(φ(N)(t)) eitHe−

√
NA(φ0)

∣∣0〉︸ ︷︷ ︸
|ψex(t)〉

(3.3)

i.e. propagate forward using the exact dynamics until time time t and come back

following the approximate evolution. As noted earlier, due to e
√
NA and eB being

unitary, we have

∥∥ |ψ̃(t)〉︷ ︸︸ ︷
e−iNχ(t)|ψred(t)〉 −

∣∣0〉 ∥∥F =
∥∥|ψex(t)〉 − |ψap(t)〉

∥∥
F (3.4)

which is supposed to be small in the limit of large N due to error estimates of

section 1.3, provided φ(N) and k satisfy suitable equations and the phase factor χ(t)

is chosen accordingly. This in turn implies that |ψred(t)〉 stays close to the vacuum

and hence the expected number of particles 〈ψred|N |ψred〉 at the reduced dynamics

should not grow fast.

The above observation will help us summarize our general strategy in proving

Theorems 1.8 and 1.9:

Step 1: Estimate 〈ψred|N |ψred〉 in terms of the error ‖|ψ̃〉‖F =
∥∥∣∣ψex

〉
−
∣∣ψap〉

∥∥
F.
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This is common to both proofs hence we prefer to do it first. When doing so, we

will benefit from the conservation of number of particles by the exact dynamics.

Step 2: Estimate Tr
∣∣Γ(1)

ex −|φ〉〈φ|
∣∣ and Tr

∣∣γ(1)
N −|φ〉〈φ|

∣∣ in terms of 〈ψred|N |ψred〉

and obtain bounds using step 1.

Step 3: Use the Fock space estimates on ‖|ψ̃〉‖F =
∥∥∣∣ψex

〉
−
∣∣ψap〉

∥∥
F from section

1.3 to obtain final bounds.

We will complete step 1 in the next section. Then we will present proofs for

Theorems 1.8 and 1.9 in sections 3.3 and 3.4 respectively, where we will follow steps

2 and 3 in each case.

3.2 Estimating 〈ψred|N |ψred〉 in Terms of the Error
∥∥|ψ̃〉∥∥F

Our main result in this section is the following:

Proposition 3.1. Let

|ψred(t)〉 = eB(k(t))e
√
NA(φ(N)(t))eitHe−

√
NA(φ0)

∣∣0〉
|ψ̃(t) = e−iNχ(t)|ψred(t)〉 −

∣∣0〉
and u = sh(k)

as before. Let φ(N) with ‖φ(N)(t)‖L2(R3) = 1 and k(t, x, y) ∈ L2(R6) symmetric

in (x, y) satisfy suitable equations with prescribed initial data φ(0, ·) = φ0 and

k(0, ·, ·) = 0 so that the error ‖|ψ̃〉‖F is small (in the context of the current work
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these are the equations in (1.38)). Then we have the following estimate:

〈ψred|N |ψred〉 . N‖|ψ̃〉‖2
F(1 + ‖u‖6

L2(R6)). (3.5)

The proof uses the following lemma:

Lemma 3.2. Let k ∈ L2(R6) be symmetric in (x, y), x, y ∈ R3 and u = sh(k).

Then the following operator inequality holds:

eB(k)N e−B(k) ≤ C(1 + ‖u‖2
2)(N + 1) (3.6)

for some constant C independent of t.

Proof. We will use the notation

a](fx) :=

∫
dzf(z, x)a]z where a] = a or a∗ (3.7)

and estimates

‖a(f)|ψ〉‖ ≤ ‖f‖2‖N 1/2|ψ〉‖ and ‖a∗(f)|ψ〉‖ ≤ ‖f‖2‖(N + 1)1/2|ψ〉‖ (3.8)

from Lemma 1.1. Using the shorthand notation eB for eB(k), we will also make use

of (1.35)-(1.36) which takes the form

eBaxe
−B = a(cx) + a∗(ux) and eBa∗xe

−B = a∗(c̄x) + a(ūx) (3.9)
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due to the choice of notation in (3.7). We prove the following estimate:

〈ψ|eBN e−B|ψ〉 =

∫
〈ψ|eBa∗xe−BeBaxe−B|ψ〉dx =

∫
‖eBaxe−B|ψ〉‖2dx

=

∫ ∥∥(ax + a(px) + a∗(ux)
)
|ψ〉
∥∥2

dx (using (3.9) and c:=ch(k)=δ+p from (1.33))

≤ C
(
(1 + ‖p‖2

2)〈ψ|N |ψ〉+ ‖u‖2
2〈ψ|(N + 1)|ψ〉

)
(using (3.8))

. (1 + ‖u‖2
2)〈ψ|(N + 1)|ψ〉

where in the last step we used ‖p‖2 ≤ ‖u‖2 from (2.44).

Proof of Proposition 3.1. First let’s note that the exact dynamics conserves the

number of particles since

〈ψex|N |ψex〉 = 〈0|e
√
NA(φ0)e−itHN eitHe−

√
NA(φ0)

∣∣0〉
=
by

[H,N ]=0

〈0|e
√
NA(φ0)N e−

√
NA(φ0)

∣∣0〉=
by

Lemma 1.3, (iv)

N. (3.10)

Using (3.10) and the shorthand notation e
√
NA for e

√
NA(φ(N)) we obtain:

N = 〈ψex|N |ψex〉 = 〈ψred|eB

N+
√
N
(
a(φ(N))+a∗(φ(N))

)
+N︷ ︸︸ ︷

e
√
NAN e−

√
NA e−B|ψred〉

= 〈ψred|
{
P2 +

√
NP1

}
|ψred〉+N (3.11)
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where we also used (1.21) and the definitions

P2 := eBN e−B and

P1 :=

∫
P(1)
x,xdx =

∫ {
φ(N)(t, x)

a(cx)+a∗(ux)︷ ︸︸ ︷
eBaxe

−B+φ(N)(t, x)

a(ūx)+a∗(c̄x)︷ ︸︸ ︷
eBa∗xe

−B
}

dx

= a(l̄) + a∗(l)

with l := u ◦ φ(N) + c̄ ◦ φ(N) = u ◦ φ(N) + φ(N) + p̄ ◦ φ(N)
(see (1.33)).


(3.12)

Equation (3.11) implies

〈ψred|P2|ψred〉 = −
√
N〈ψred|P1|ψred〉. (3.13)

We will estimate separately the left- and the right-hand sides of this last equation

in terms of number of particles. For the term on the right-hand side, we have

〈ψred|P1|ψred〉 = e−iNχ(t)〈ψred|a(l̄)|ψ̃〉+ eiNχ(t)〈ψ̃|a∗(l)|ψred〉 (3.14)

where we used again a
∣∣0〉 = 0 recalling |ψ̃〉 = e−iNχ(t)

∣∣ψred

〉
−
∣∣0〉 from (3.4). Hence

taking absolute values and using Cauchy-Schwarz inequality in (3.14) gives:

|〈ψred|P1|ψred〉| ≤ 2‖|ψ̃〉‖‖a∗(l)|ψred〉‖

≤ C1‖|ψ̃〉‖(1 + ‖u‖2)〈ψred|(N + 1)|ψred〉1/2 (3.15)

where we used (3.8) and ‖l‖2 . 1 + ‖u‖2 (since ‖p‖2 ≤ ‖u‖2). The only other thing

we need in order to obtain the bound for the number of particles is a rewrite of (3.6)
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which is true for any |ψ〉:

〈ψ|eB(N + 1)e−B|ψ〉 =
(
(N + 1)e−B|ψ〉, e−B|ψ〉

)
≥ C2

1 + ‖u‖2
2

〈ψ|N |ψ〉︷ ︸︸ ︷
〈ψ|eB

(
e−BN eB

)
e−B|ψ〉 (3.16)

where we used (3.6) by replacing k with −k for the last inequality. Constants

showing up in the last two inequalities are independent of t as before. Combining

what we know from (3.13), (3.15) and (3.16) gives

C2

1 + ‖u‖2
2

〈ψred|N |ψred〉 − 1 ≤ C1

√
N‖|ψ̃〉‖(1 + ‖u‖2)〈ψred|(N + 1)|ψred〉1/2.

Collecting all terms on the left hand side provides with a quadratic expression in

〈ψred|N |ψred〉1/2 which is non-positive:

0 ≥ C2

1 + ‖u‖2
2

〈ψred|N |ψred〉

− C1

√
N‖|ψ̃〉‖(1 + ‖u‖2)〈ψred|N |ψred〉1/2

−
(
1 + C1

√
N‖|ψ̃〉‖(1 + ‖u‖2)

)

The positive root of the corresponding quadratic function, namely,

1

2C2/(1 + ‖u‖2
2)

(
C1

√
N‖|ψ̃〉‖(1 + ‖u‖2)

+

√
C2

1N‖|ψ̃〉‖2(1 + ‖u‖2)2 + 4
C2

1 + ‖u‖2
2

(
1 + C1

√
N‖|ψ̃〉‖(1 + ‖u‖2)

) )
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can be bounded in the limit of largeN with a constant multiple of
√
N‖|ψ̃〉‖(1+‖u‖3

2)

since the second term inside the square root in the above expression is lower order

provided ‖|ψ̃〉‖F is small. This gives us an upper bound of the form seen in (3.5).

3.3 Proof of Theorem 1.8

We will first estimate Tr
∣∣Γ(1)

ex − |φ〉〈φ|
∣∣ in terms of 〈ψred|N |ψred〉 and then will

use Proposition 3.1 and Fock space estimates of 1.3.

3.3.1 Splitting the Error via Γ
(1)
ap and

Marginals as Mean Field + Fluctuations

We can split Tr
∣∣Γ(1)

ex − |φ〉〈φ|
∣∣ as

Tr
∣∣Γ(1)

ex − |φ〉〈φ|
∣∣ ≤ Tr

∣∣Γ(1)
ex − Γ(1)

ap

∣∣+ Tr
∣∣Γ(1)

ap − |φ〉〈φ|
∣∣ (3.17)

where

Γ(1)
ap (t, x, y) := Γ

(1)
|ψap〉(t, x, y) =

〈ψap|a∗xay|ψap〉
〈ψap|N |ψap〉

(3.18)

with
∣∣ψap

〉
= eiNχ(t)e−

√
NA(φ(N)(t))e−B(k(t))

∣∣0〉.
We would like to write both Γ

(1)
ex and Γ

(1)
ap as the sum of N -particle mean field

and fluctuations around it which will be useful in our proof of Theorem 1.8:

Lemma 3.3. We have the following formulas for the one-particle marginal densities
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of |ψex(t)〉 = eitHe−
√
NA(φ0)

∣∣0〉 and |ψap(t)〉 = eiNχ(t)e−
√
NA(φ(N)(t))e−B(k(t))

∣∣0〉:

Γ(1)
ex (t, x, y) =N−1〈ψred|

P(2)
x,y :=︷ ︸︸ ︷

eBa∗xaye
−B |ψred〉

+N−1/2〈ψred|

P(1)
x,y :=︷ ︸︸ ︷

eB
{
φ(N)(t, y)a∗x + φ(N)(t, x)ay

}
e−B |ψred〉

+ |φ(N)〉〈φ(N)|, (3.19)

Γ(1)
ap (t, x, y) =

N |φ(N)〉〈φ(N)|+ u ◦ ū
N + ‖u‖2

2

' |φ(N)〉〈φ(N)|+N−1u ◦ ū (3.20)

where u = sh(k). The equalities above are true for any φ0, φ
(N) with ‖φ0‖L2(R3) =

‖φ(N)‖L2(R3) = 1 and k ∈ L2(R6) symmetric in (x, y). The approximation in (3.20)

is true in the limit of large N if ‖u‖L2(R6) = O(1) w.r.t N , which holds if φ(N) and

k satisfy (1.38) (see (2.44) for β > 0 and Corollary 3.3 in [19] for β = 0).

Proof. We will write e
√
NA for e

√
NA(φ(N)), e

√
NA0 for e

√
NA(φ0) and eB for eB(k) shortly.

Let’s compute first Γ
(N)
ex :

Γ(1)
ex (t, x, y) =

〈ψex|a∗xay|ψex〉
〈ψex|N |ψex〉

using (3.10) for
the denomiantor

↓
=
〈ψred|eB

a∗x+
√
Nφ(N)(t,x)︷ ︸︸ ︷

e
√
NAa∗xe

−
√
NA e

√
NAay

|ψex〉︷ ︸︸ ︷
e−
√
NAe−B|ψred〉

N

=
〈ψred|eB

{
a∗xay +

√
N
(
φ(N)(t, y)a∗x + φ(N)(t, x)ay) +N |φ(N)〉〈φ(N)|

}
e−B|ψred〉

N

= N−1〈ψred|eBa∗xaye−B|ψred〉+N−1/2〈ψred|eB
{
φ(N)(t, y)a∗x + φ(N)(t, x)ay

}
e−B|ψred〉

+ |φ(N)〉〈φ(N)|

where we used (1.19)-(1.20) to write the numerator as it appears in the second line

of the above computation.
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Next we will compute the marginal for |ψap〉

Γ(1)
ap (t, x, y) =

〈ψap|a∗xay|ψap〉
〈ψap|N |ψap〉

.

Note that the denominator is the trace of the numerator hence it is sufficient to

compute the numerator. Similar to the above computations, we can proceed as

〈ψap|a∗xay|ψap〉 = 〈0|eBe
√
NAa∗xaye

−
√
NAe−B

∣∣0〉
= 〈0|eB

{
a∗xay +

√
N
(
φ(N)(t, y)a∗x + φ(N)(t, x)ay) +N |φ(N)〉〈φ(N)|

}
e−B
∣∣0〉

= 〈0|eBa∗xaye−B
∣∣0〉+

√
N〈0|P(1)

x,y

∣∣0〉+N |φ(N)〉〈φ(N)| recalling P(1)
x,y from (3.19) (3.21)

The middle term in (3.21) vanishes because of the definition of P(1)
x,y from (3.19), the

identities (1.35)-(1.36) and the property a
∣∣0〉 = 0. The first term in (3.21) can be

computed using the same properties as

〈0|eBa∗xaye−B
∣∣0〉 = 〈0|eBa∗xe−BeBaye−B

∣∣0〉
= 〈0|

∫
ū(z, x)u(w, y)aza

∗
wdz dw

∣∣0〉 = u ◦ ū.

Inserting this into (3.21) gives

〈ψap|a∗xay|ψap〉 = N |φ(N)〉〈φ(N)|+ u ◦ ū.
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Finally

〈ψap|N |ψap〉 = Tr
(
〈ψap|a∗xay|ψap〉

)
= N + ‖u‖2

2 since ‖φ(N)‖2 = 1.

Hence we have

Γ(1)
ap (t, x, y) =

〈ψap|a∗xay|ψap〉
〈ψap|N |ψap〉

=
N |φ(N)〉〈φ(N)|+ u ◦ ū

N + ‖u‖2
2

.

3.3.2 Estimate on Tr
∣∣Γ(1)

ex − Γ
(1)
ap

∣∣
Recalling (3.17), we will first estimate Tr

∣∣Γ(1)
ex − Γ

(1)
ap

∣∣.
Proposition 3.4. Let φ(N) and k satisfy suitable equations (the uncoupled system

(1.38) in the current work) so that the error ‖|ψ̃〉‖F =
∥∥∣∣ψex

〉
−
∣∣ψap

〉∥∥
F is small and

‖u(t, ·)‖L2 = O(1) w.r.t. N where u = sh(k). Then

Tr
∣∣Γ(1)

ex − Γ(1)
ap

∣∣ . (1 + ‖u‖8
2

)
‖|ψ̃〉‖2

F +
‖u‖2

2

N
. (3.22)

where Γ
(1)
ex , Γ

(1)
ap are as they have been computed in Lemma 3.3.

A note on notation. We will use Tr| · | to denote the trace norm in the space of

the trace class operators L1(L2(R3)) as explained just before Theorem 1.8. In what

follows, by an abuse of notation, we will identify an operator with its kernel if there

exists any. In that case, Tr|γ(x, y)| denotes the trace of the absolute value of the
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operator with the kernel γ(x, y), not the trace of the absolute value of the kernel.

However, if γ is a positive trace class operator with continuous kernel γ(x, y), then

we indeed have Tr|γ| =
∫
γ(x, x) dx (see, for instance, Theorem 2.12 in [36]).

Proof of Proposition 3.4. Let’s first obtain a bound on Tr|Γ(1)
ex − Γ

(1)
ap | in terms of

〈ψred|N |ψred〉. Recalling (3.19) and (3.20), we need to estimate the terms on the

right hand side of the following inequality (see the note on the notation preceding

this proof):

Tr|Γ(1)
ex − Γ(1)

ap | ≤
1

N
Tr|〈ψred|P(2)

x,y |ψred〉|+
1√
N

Tr|〈ψred|P(1)
x,y |ψred〉|+

‖u‖2
2

N
. (3.23)

As for the first term on the right hand side of (3.23), the one particle operator

〈ψred|P(2)
x,y |ψred〉 is positive-semidefinite since

∫
〈ψred|P(2)

x,y|ψred〉f(y)f̄(x)dxdy = 〈ψred|eBa∗(f)a(f̄)e−B|ψred〉

= ‖a(f̄)e−B|ψred〉‖2 ≥ 0.

Hence we have

Tr|〈ψred|P(2)
x,y |ψred〉| =

∫
〈ψred|P(2)

x,x|ψred〉dx = 〈ψred|eBN e−B|ψred〉

.
(
1 + ‖u‖2

2

)
〈ψred|(N + 1)|ψred〉 using (3.6). (3.24)

For estimating the second term on the right hand side of (3.23), first we can use
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(3.9) to compute P(1)
x,y defined in (3.19) explicitly as

P(1)
x,y = φ(N)(t, y)

{
a(ūx) + a∗(c̄x)

}
+ φ(N)(t, x)

{
a(cy) + a∗(uy)

}
.

Using a
∣∣0〉 = 0 and also the definition of |ψ̃〉 := e−iNχ(t)

∣∣ψred

〉
−
∣∣0〉 from (3.4), we

obtain the following equation:

〈ψred|P(1)
x,y |ψred〉 =e−iNχ(t)〈ψred|

{
φ(N)(t, y)a(ūx) + φ(N)(t, x)a(cy)

}
|ψ̃〉

+ eiNχ(t)〈ψ̃|
{
φ(N)(t, y)a∗(c̄x) + φ(N)(t, x)a∗(uy)

}
|ψred〉. (3.25)

We will estimate the trace norm of (3.25) by using a duality argument. Let L1 and

K denote the spaces of trace class and compact operators on L2(R3) respectively.

Since L1
∼= K∗ under γ 7→ Tr(· γ) where Tr(· γ) : J 7→ Tr(Jγ), we have

Tr
∣∣〈ψred|P(1)

x,y|ψred〉
∣∣ = sup

J∈K
with ‖J‖op=1

∣∣Tr
(
J〈ψred|P(1)

x,y |ψred〉
)∣∣. (3.26)

Without loss of generality we can consider J satisfying J̄T = J . Thus we will

estimate
∣∣Tr
(
J〈ψred|P(1)

x,y |ψred〉
)∣∣ using the formula (3.25) as:

∣∣Tr
(
J〈ψred|P(1)

x,y |ψred〉
)∣∣

=
∣∣∣ ∫ J(x, y)e−iNχ(t)

(
〈ψred|

{
φ(N)(t, x)a(ūy) + φ(N)(t, y)a(cx)

}
|ψ̃〉

+ 〈ψ̃|
{
φ(N)(t, x)a∗(c̄y) + φ(N)(t, y)a∗(ux)

}
|ψred〉

)
dxdy

∣∣∣
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≤
∣∣∣〈 ∫ J(x, y)φ(N)(t, x)u(z, y)a∗zdxdydz︸ ︷︷ ︸

a∗(u◦J̄◦φ(N))

|ψred〉 , |ψ̃〉
〉

F

∣∣∣

+
∣∣∣〈 ∫ J(x, y)φ(N)(t, y)c̄(z, x)a∗zdxdydz︸ ︷︷ ︸

a∗(c̄◦J◦φ(N))

|ψred〉 , |ψ̃〉
〉

F

∣∣∣

+
∣∣∣〈ψ̃|∫ J̄(x, y)φ(N)(t, x)c̄(z, y)a∗zdxdydz︸ ︷︷ ︸

a∗(c̄◦J◦φ(N))

|ψred〉
∣∣∣

+
∣∣∣〈ψ̃|∫ J̄(x, y)φ(N)(t, y)u(z, x)a∗zdxdydz︸ ︷︷ ︸

a∗(u◦J̄◦φ(N))

|ψred〉
∣∣∣

. ‖|ψ̃〉‖
(
‖a∗(u ◦ J̄ ◦ φ(N))|ψred〉‖+ ‖a∗(c̄ ◦ J ◦ φ(N))|ψred〉‖

)
≤ ‖|ψ̃〉‖

(
‖u ◦ J̄ ◦ φ(N)‖2 + ‖c̄ ◦ J ◦ φ(N)‖2

)
‖(N + 1)1/2|ψred〉‖ using (1.13)

≤ ‖J‖op(1 + ‖u‖2)‖|ψ̃〉‖〈ψred|(N + 1)|ψred〉1/2 (3.27)

where for the last inequality we used c = ch(k) = δ(x− y) + p from (1.33) and then

‖p‖2 ≤ ‖u‖2 from (2.44). (3.26) and (3.27) imply

Tr
∣∣〈ψred|P(1)

x,y |ψred〉
∣∣ . (1 + ‖u‖2)‖|ψ̃〉‖〈ψred|(N + 1)|ψred〉1/2 (3.28)

Inserting (3.28) and (3.24) in (3.23) yields the following estimate

Tr|Γ(1)
ex − Γ(1)

ap | .
(1 + ‖u‖2

2)

N
〈ψred|(N + 1)|ψred〉

+
(1 + ‖u‖2)√

N
‖|ψ̃〉‖〈ψred|(N + 1)|ψred〉

1
2 +
‖u‖2

2

N
(3.29)
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in which when we insert 〈ψred|N |ψred〉 . N
(
1 + ‖u‖6

2

)
‖|ψ̃〉‖2 from Proposition 3.1

we obtain (3.22).

Remark 3.5. Proposition 3.4 shows in particular that the mean field with second or-

der corrections approximates the exact dynamics well also in the sense of marginals.

3.3.3 Estimate on Tr
∣∣Γ(1)

ap − |φ〉〈φ|
∣∣

Here we compare the approximate evolution with the mean field evolution:

Proposition 3.6. Let φ(N) and φ satisfy

1

i
∂tφ

(N) = ∆φ(N) −
(
vN ∗ |φ(N)|2

)
φ(N)

where vN = N3βv(Nβ·) and φ(N)(0, ·) = φ0

and

1

i
∂tφ = ∆φ−


(
v ∗ |φ|2

)
φ if β = 0

(∫
v(x)dx

)
|φ|2φ if 0 < β < 1

with φ(0, ·) = φ0

respectively where φ0 is as stated in Theorem 1.8 and let k satisfy (1.38b)-(1.38c).

Then

Tr
∣∣Γ(1)

ap − |φ〉〈φ|
∣∣ .


1
N
, if β=0 and v(x)=ξ(|x|)/|x|, ξ∈C∞0 decreasing cutoff

log2(1+t)√
N

, if 0<β<1 and v is bounded , integrable.

Proof. In case of β = 0 we have φ(N) = φ and for N large, Tr
∣∣Γ(1)

ap − |φ〉〈φ|
∣∣ '

‖u‖2
2/N = O(N−1) where we used ‖u‖2 = O(1) w.r.t. N and t for u = sh(k) as
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proved in Corollary 3.3, [19].

In case of 0 < β < 1, we can make the following estimate:

Tr
∣∣Γ(1)

ap − |φ〉〈φ|
∣∣ ≤ Tr

∣∣|φ(N)〉〈φ(N)| − |φ〉〈φ|
∣∣+
‖u‖2

2

N

. 2‖φ(N) − φ‖2 +
log2(1 + t)

N
.

log2(1 + t)√
N

where we used (2.44) and the fact Tr
∣∣|φ(N)〉〈φ(N)| − |φ〉〈φ|

∣∣ ≤ 2‖φ(N)− φ‖2 . N−1/2

as proved in Appendix B which compares the N -particle (N finite) mean field φ(N)

to the limiting mean field φ in case of 0 < β < 1.

3.3.4 Conclusion

We will use the following corollary to obtain the final estimate:

Corollary 3.7. Let φ(N) and k satisfy the uncoupled system (1.38) of Theorem 1.5

with initial data satisfying the same assumptions there. Then

Tr
∣∣Γ(1)

ex (t)− Γ(1)
ap (t)

∣∣ .



1+t
N

for β = 0 and v cut-offed Coulomb

(1+t)2 log16(1+t)
N1−3β for 0 < β < 1/3 and v bounded, integrable

tj+3 log20(1+t)

N1−2β(1+ε)

for 1/3 ≤ β ≤
2j

1− 2ε+ 4j
, ε small, j suffi-

ciently large, v bounded,integrable

(3.30)

Proof. Recalling that ‖|ψ̃〉‖F‖ = ‖|ψex〉 − |ψap〉‖F from (3.4) and inserting the esti-

mates of Theorem 1.5 for 0 ≤ β < 1/3 and Theorem 1.6 for β ≥ 1/3 into estimate

(3.22) in Proposition 3.4 implies the above corollary.

Now to get the final estimate in Theorem 1.8 we can insert (3.30) in (3.17),
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namely

Tr
∣∣Γ(1)

ex − |φ〉〈φ|
∣∣ ≤ Tr

∣∣Γ(1)
ex − Γ(1)

ap

∣∣+ Tr
∣∣Γ(1)

ap − |φ〉〈φ|
∣∣

and using Proposition 3.6 for the second term on the r.h.s. proves Theorem 1.8.

3.4 Proof of Theorem 1.9

We will first estimate Tr
∣∣γ(1)
N − |φ〉〈φ|

∣∣ in terms of 〈ψred|N |ψred〉 and then will

use Proposition 3.1 and Fock space estimates of 1.3.

3.4.1 Projecting onto N -particle Sector and

Expanding γ
(1)
N around N -particle Mean Field

Let’s recall the following:

γ
(1)
N (t, x, y) =

1

N
〈ψN , a∗xayψN〉L2(R3N ) where

N -body Hamiltonian
in (1.1)
↓

ψN(t) = eitHNφ⊗N0 (3.31)

and

|ψex(t)〉 =

Fock Hamiltonian
in (1.17)
↓

eitH e−
√
NA(φ0)

∣∣0〉 = ( . . . ,

N -particle sector
↓︷ ︸︸ ︷

cNe
itHNφ⊗N0 , . . . ), cN = O(N−1/4). (3.32)

If PN denotes projection onto the N -particle sector, considering (3.31)-(3.32) we

can rewrite γ
(1)
N as in the following line and then expand it around N -particle mean

field, where we write shortly e
√
NA for e

√
NA(φ(N)) and use (1.19)-(1.20) in the second
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line:

γ
(1)
N (t, x, y) =

1

c2
NN

〈
eitHPNe

−
√
NA(φ0)

∣∣0〉 , a∗xayeitHe−√NA(φ0)
∣∣0〉〉

F

=
1

c2
NN

〈
eitHPNe

−
√
NA(φ0)

∣∣0〉 ,
e−
√
NA e

√
NAa∗xe

−
√
NA︸ ︷︷ ︸

a∗x+
√
Nφ̄(N)(t,x)

e
√
NAaye

−
√
NA︸ ︷︷ ︸

ay+
√
Nφ(N)(t,y)

e
√
NAeitHe−

√
NA(φ0)

∣∣0〉〉
F

=
1

c2
NN

〈
eitHPNe

−
√
NA(φ0)

∣∣0〉 , e−√NAa∗xaye√NAeitHe−√NA(φ0)
∣∣0〉〉

F

+
φ(N)(t, x)

c2
N

√
N

〈
eitHPNe

−
√
NA(φ0)

∣∣0〉 , e−√NAaye√NAeitHe−√NA(φ0)
∣∣0〉〉

F

+
φ̄(N)(t, y)

c2
N

√
N

〈
eitHPNe

−
√
NA(φ0)

∣∣0〉 , e−√NAa∗xe√NAeitHe−√NA(φ0)
∣∣0〉〉

F

+ φ(N)(t, x)φ̄(N)(t, y). (3.33)

3.4.2 Duality Argument for Estimating Fluctuations

We will prove the following proposition:

Proposition 3.8. Let φ(N) and k satisfy suitable equations so that the error

‖

|ψ̃〉︷ ︸︸ ︷
e−itNχ(t)|ψred〉 −

∣∣0〉 ‖F = ‖

|ψex〉︷ ︸︸ ︷
eitHe−

√
NA(φ0)

∣∣0〉−
|ψap〉︷ ︸︸ ︷

eB(k)e
√
NA(φ(N))eitHe−

√
NA(φ0)

∣∣0〉 ‖F
is small (again in the current work we can take φ(N) and k as the solutions of (1.38)
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with prescribed initial data). Then

Tr
∣∣γ(1)
N − |φ

(N)〉〈φ(N)|
∣∣ . (1 + ‖u‖4

2

)
N1/4

(∥∥|ψ̃〉∥∥F +N−1/2
)
. (3.34)

Proof. The proof is based on a duality argument as in Appendix C of [3] where they

considered a more general N -particle state as the initial data. We will continue with

the notations introduced in the previous sections.

Because of L1
∼= K∗ where L1 and K stand for the spaces of trace class and

compact operators on L2(R3) respectively as before (see the lines leading to (3.26)),

we have

Tr
∣∣γ(1)
N − |φ

(N)〉〈φ(N)|
∣∣ = sup

J∈K
with ‖J‖op=1

∣∣Tr
(
J(γ

(1)
N − |φ

(N)〉〈φ(N)|)
)∣∣. (3.35)

Again we consider J satisfying J̄T = J . Hence considering the expansion in (3.33),

we will estimate the difference

Tr
(
J(γ

(1)
N − |φ

(N)〉〈φ(N)|)
)

=

∫
J(x, y)

(
γ

(1)
N (t, y, x)− φ(N)(t, y)φ̄(N)(t, x)

)
dxdy

=
1

c2
NN

〈
eitHPNe

−
√
NA(φ0)

∣∣0〉 , e−√NAdΓ(J)e−B

|ψred〉 by (3.3)︷ ︸︸ ︷
eBe

√
NA|ψex〉

〉
F

+
1

c2
N

√
N

〈
eitHPNe

−
√
NA(φ0)

∣∣0〉 , e−√NA(a(J ◦ φ(N)) + a∗(J ◦ φ(N))
)
e−B|ψred〉

〉
F

using (i) Cauchy-Schwarz inequality, (ii) ‖eitHPNe−
√
NA(φ0)

∣∣0〉‖ = cN , (iii) the fact

that ‖dΓ(J)|ψ〉‖ ≤ ‖J‖‖N |ψ〉‖ from Lemma 1.2 and (iv) the estimates (1.13) as
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follows:

∣∣Tr
(
J(γ

(1)
N − |φ

(N)〉〈φ(N)|)
)∣∣

.
‖J‖
cNN

∥∥N e−B|ψred〉
∥∥+

‖J‖
cN
√
N

∥∥(N + 1)1/2e−B|ψred〉
∥∥

. ‖J‖
( 1

N3/4

∥∥N e−B|ψred〉
∥∥+

(1 + ‖u‖2)

N1/4

∥∥(N + 1)1/2|ψred〉
∥∥) (3.36)

where we used (3.6) and cN = O(N−1/4) for the second inequality. Hence by (3.35)

Tr
∣∣γ(1)
N − |φ

(N)〉〈φ(N)|
∣∣

.
( 1

N3/4

∥∥N e−B|ψred〉
∥∥+

(1 + ‖u‖2)

N1/4

∥∥(N + 1)1/2|ψred〉
∥∥.) (3.37)

Based on the last inequality, it remains to estimate the expression

‖N e−B|ψred〉
∥∥ = 〈ψred|eBN 2e−B|ψred〉1/2.

Using (1.19)-(1.21) and the shorthand notations ϕ(φ) := a(φ̄) +a∗(φ) and e
√
NA0 :=

e
√
NA(φ0), we will proceed as follows (a simplified version of Proposition 4.2, [3]):

〈ψred|eBN 2e−B|ψred〉 =
〈
N e−B|ψred〉 , e

√
NA e−

√
NAN e

√
NA︸ ︷︷ ︸

N−
√
Nϕ(φ(N))+N

eitHe−
√
NA0

∣∣0〉〉
F

=
〈
N e−B|ψred〉 , e

√
NAeitHe−

√
NA0 e

√
NA0N e−

√
NA0︸ ︷︷ ︸

N+
√
Nϕ(φ0)+N

∣∣0〉〉
F

−
√
N
〈
N e−B|ψred〉 , e

√
NAϕ(φ(N))e−

√
NA︸ ︷︷ ︸

ϕ(φ(N))+2
√
N

e
√
NAeitHe−

√
NA0

∣∣0〉〉
F
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+N〈ψred|eBN e−B|ψred〉

=
√
N
{〈
N e−B|ψred〉 , e

√
NAeitHe−

√
NA0ϕ(φ0)

∣∣0〉〉
F

−
〈
N e−B|ψred〉 ,ϕ(φ(N))e

√
NAeitHe−

√
NA0

∣∣0〉〉
F

}
≤
√
N
∥∥N e−B|ψred〉

∥∥(∥∥ϕ(φ0)
∣∣0〉∥∥+

∥∥ϕ(φ(N))e−B|ψred〉
∥∥)

≤ ε〈ψred|eBN 2e−B|ψred〉+ CN
(∥∥ϕ(φ0)

∣∣0〉∥∥2
+
∥∥ϕ(φ(N))e−B|ψred〉

∥∥2
)

for some ε<1.

In the last line it is enough to consider ε = 1/2 and C = 1. This last estimate

implies

〈ψred|eBN 2e−B|ψred〉 . N
(∥∥ϕ(φ0)

∣∣0〉∥∥2
+
∥∥ϕ(φ)e−B|ψred〉

∥∥2
)

. N
(
1 + ‖u‖2

2

)
〈ψred|(N + 1)|ψred〉 using (1.13), (3.6)

which implies ‖N e−B|ψred‖ .
√
N(1 + ‖u‖2)〈ψred|(N + 1)|ψred〉1/2. This inserted in

(3.37) gives

Tr
∣∣γ(1)
N − |φ

(N)〉〈φ(N)|
∣∣ . 1 + ‖u‖2

N1/4
〈ψred|(N + 1)|ψred〉1/2. (3.38)

(3.34) follows by inserting the bound on particle expectation of reduced dynamics

from Proposition 3.1 in the above estimate.
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3.4.3 Conclusion

Note that in case of β = 0, the N -particle mean field φ(N) solving (1.38a)

equals the limiting mean field φ solving (1.44). Therefore inserting the estimate on

the error for Fock space approximation from Theorem 1.5 in case of β = 0 in (3.34)

proves Theorem 1.9 for the case β = 0.

For 0 < β < 1, we can write

Tr
∣∣γ(1)
N − |φ〉〈φ|

∣∣ ≤ Tr
∣∣γ(1)
N − |φ

(N)〉〈φ(N)|
∣∣︸ ︷︷ ︸

.
(

1+‖u‖42
)
N1/4

(
‖|ψ̃〉‖F+N−1/2

)
from (3.34)

+ Tr
∣∣|φ(N)〉〈φ(N)| − |φ〉〈φ|

∣∣︸ ︷︷ ︸
O(N−1/2)

as proved in Appendix B

Hence inserting ‖u(t)‖2 . log(1 + t) from (2.44) (which holds for β > 0) and

‖ψ̃〉‖ . N (−1+3β)/2(1 + t) log4(1 + t) for 0 < β < 1/3 from Theorem 1.5 into the

above estimate implies Theorem 1.9 for 0 < β < 1/6. To get the estimate for

β ≥ 1/6 we can use ‖ψ̃‖ . t(j+3)/2 log6(1+ t)N−1/2+β(1+ε) (from Theorem 1.6) which

holds for 0 < β ≤ 2j/(1− 2ε+ 4j) for ε small and j sufficiently large depending on

ε as explained in Theorem 1.9.

3.5 Concluding Remarks for Chapter 3

In this chapter we established the following general result:

If the N-particle mean field φ(N)(t, x) with ‖φ(N)‖L2(R3) = 1 and the pair exci-

tations function k(t, x, y) ∈ L2(R6) symmetric w.r.t (x, y) satisfy suitable equations

with appropriate initial data so that
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(i) ‖sh(k(t))‖L2(R6) = O(1) w.r.t. N and

(ii) The error
∥∥

∫
∆xa

∗
xaxdx−

1

2

∫
N

3β
v(N

β
(x− y))a

∗
xa

∗
yaxaydxdy︸ ︷︷ ︸

↘

eitH e−
√
NA(φ0)

∣∣0〉︸ ︷︷ ︸∣∣ψex(t)
〉 −

sutibaly-chosen real phase
depending on φ(N) and k
↙

eiNχ(t) e−
√
NA(φ(N)(t))e−B(k(t))

∣∣0〉︸ ︷︷ ︸∣∣ψap(t)
〉

∥∥
F is small

then

Tr
∣∣Γ(1)

ex − Γ(1)
ap

∣∣ ≤ C(‖sh(k)‖2)
(∥∥∣∣ψex

〉
−
∣∣ψap

〉∥∥2

F +N−1
)

Tr
∣∣Γ(1)

ex − |φ(N)〉〈φ(N)|
∣∣ ≤ C(‖sh(k)‖2)

(∥∥∣∣ψex

〉
−
∣∣ψap

〉∥∥2

F +N−1
)

(3.39)

Tr
∣∣γ(1)
N − |φ

(N)〉〈φ(N)|
∣∣ ≤ C(‖sh(k)‖2)N1/4

(∥∥∣∣ψex

〉
−
∣∣ψap

〉∥∥
F +N−1/2

)
(3.40)

where C(‖sh(k)‖2) denotes different constants depending on ‖sh(k)‖2.

We obtained explicit rates of convergence as N → ∞ inserting the ones we

have for ‖sh(k)‖2 and
∥∥∣∣ψex

〉
−
∣∣ψap

〉∥∥
F when φ(N) and k satisfy (1.38) into the above

estimates.

If we also know Tr
∣∣|φ(N)〉〈φ(N)| − |φ〉〈φ|

∣∣ = O(Nσ) with some σ < 0 in case of

0 < β < 1 for φ solving

1

i
∂tφ = ∆φ−


(
v ∗ |φ|2

)
φ if β = 0

(∫
v(x)dx

)
|φ|2φ if 0 < β < 1

then we can obtain estimates for convergence to the limiting mean field φ replacing

the φ(N)’s in (3.39)-(3.40) (for φ(N) satisfying (1.38a) we obtained σ = 1/2).

If φ(N) and k satisfy the uncoupled system (1.38) then the condition (i) above
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is true for any β > 0 and the condition (ii) was shown to be true for β < 1/2 at

most.

107



Appendix A: Proof of Lemma 2.13:

Operator Norm Estimates on N−1/2E(t)

Proof of Lemma 2.13. Recalling

N−1/2E(t) =
4∑
j=1

(
Ej(t) + E∗j (t)

)
+ E sa

2 (t) + E sa
4 (t) from (2.7)

= H +
1

2N

∫
dy1dy2vN(y1 − y2)Q∗y1y2

Qy1y2︸ ︷︷ ︸
H̃

from (2.131)− (2.130),

it is sufficient to obtain operator norm estimates for the terms listed in (2.8) since

from the general theory of bounded linear operators on Hilbert spaces, the adjoint

of an operator will have the same operator norm as the operator itself.

A typical contribution to H coming from the contributions involved in the

terms in (2.7) is of the form

∫
dy1 . . . dylf(y1, . . . , yl)

(
a, a∗

)
l︸ ︷︷ ︸

lth order
term in a,a∗

where l = 1, 2, 3, 4.

Let’s first consider estimating the second and the fourth order terms.

(2.8s) and (2.8u) are similar terms. If we consider (2.8s) in which we have
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l = 4,
(
a, a∗

)
4

= Qy1y2Dy4y3 and f being equal to

f(2.8s)(y1, y2, y3, y4) =
1

2N

∫
dx1dx2

{
ū(y1, x1)ū(x2, y2)vN(x1−x2)c(y3, x1)u(x2, y4)

}
,

we can write the contribution to Hψ(j) coming from (2.8s) as

∫
dy1dy2dy3dy4

{
f(2.8s)(y1, y2, y3, y4)Qy1y2Dy4y3

}(
ψ(j)

)
(A.1)

producing a function in sector j−2 for j ≥ 2, L2-norm of which we want to estimate.

We have the following typical estimates among others arising from symmetrizations

involved in the definition of the creation operators:

Type 1:
∥∥∥∫ (∫ f(2.8s)(y1, y2, y3, y2)dy2

)
ψ(j)(y3, y1, z1, . . . , zj−2)dy1dy3

∥∥∥
L2(R3(j−2))

≤
∥∥∥∫ f(2.8s)(y1, y2, y3, y2)dy2

∥∥∥
L2
y1y3︸ ︷︷ ︸

≤sum of L2-norms of
the terms like (2.10b), (2.10h)

‖ψ(j)‖L2(R3j)

.ε
by

(2.89), l=2

N−1+2β(1+ε) log4(1 + t)‖ψ(j)‖L2(R3j)

Type 2:
∥∥∥∫ (∫ f(2.8s)(y1, y2, y3, y1)dy1

)
ψ(j)(y3, y2, z1, . . . , zj−2)dy1dy3

∥∥∥
L2(R3(j−2))

≤
∥∥∥∫ f(2.8s)(y1, y2, y3, y1)dy1

∥∥∥
L2
y1y3︸ ︷︷ ︸

≤sum of L2-norms of
the terms like (2.10c), (2.10j)

‖ψ(j)‖L2(R3j)

.ε
by

(2.89), l=2

N−1+2β(1+ε) log4(1 + t)‖ψ(j)‖L2(R3j)

Type 3:
∥∥∥∫ dy1dy2dy3 f(2.8s)(y1, y2, y3, z1)ψ(j)(y3, y2, y1, z2, . . . , zj−2)

∥∥∥
L2(R3(j−2))
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≤ ‖ f(2.8s)︸ ︷︷ ︸
sum of

(2.12c)-(2.12d) like terms

‖L2(R12)‖ψ(j)‖L2(R3j) .ε
by

(2.89), l=4

N−1+2β(1+ε) log4(1 + t)‖ψ(j)‖L2(R3j).

With the above estimates we can estimate the contribution (A.1) as:

∥∥∥∫ dy1dy2dy3dy4

{
f(2.8s)(y1, y2, y3, y4)Qy1y1Dy4y3

}(
ψ(j)

)∥∥∥
L2(R3(j−2))

.j,ε N
−1+2β(1+ε) log4(1 + t)‖ψ(j)‖L2(R3j).

If we consider the contribution to Hψ(j) coming from (2.8v) and its adjoint,

we have

∫
dy1dy2dy3dy4

{
f(2.8v)(y1, y2, y3, y4)

j≥4 should hold
for non-trivial
contribution︷ ︸︸ ︷
Qy1y2Qy3y4

+ f(2.8v)(y1, y2, y3, y4)Q∗y1y2
Q∗y3y4

}(
ψ(j)

)
with f(2.8v)(y1, y2, y3, y4)

=
1

2N

∫
dx1dx2

{
ū(y1, x1)ū(x2, y2)vN(x1 − x2)c(y3, x1)c̄(x2, y4)

}
(A.2)

which will produce a contribution to Hψ(j) of the following type:

(
0, . . . , 0,

∫
R12

dy
{
f(2.8v)(y)ψ(j)(y, z1, . . . , zj−4)

}
, 0, . . .

. . . , 0,
(
f(2.8v) ⊗ ψ(j)

)
(z1, . . . , zj+4), 0, . . .

)
(A.3)
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Fock space norm of which is

.j ‖f(2.8v)‖L2(R12)︸ ︷︷ ︸
≤sum of L2-norms of

terms like (2.12a)-(2.12d)

‖ψ(j)‖L2(R3j)

.ε

(
N−1+2β(1+ε) log4(1 + t) +N−1+5β/2+βε log2(1 + t)

)
‖ψ(j)‖L2(R3j)

where the last inequality follows by (2.89), l = 4 and also by the following estimate

(see (2.13c) for F s
4):

‖F s
4‖L2(R12) . N−1

(∫
v2
N(y1 − y2)‖u(y3, y1)‖2

L2
y3
‖u(y2, y4)‖2

L2
y4

dy1dy2

)1/2

. N−1
∥∥‖u(y2, y4)‖L2

y4

∥∥
L∞y2

∥∥(v2
N ∗ ‖u(y3, ·)‖2

L2
y3

)
(y2)

∥∥1/2

L1
y2

.ε N
−1+β(1+ε) log(1 + t)‖vN‖L2(R3)‖u‖L2(R6) by (2.22)

. N−1+5β/2+βε log2(1 + t). (A.4)

Now let’s look at the contribution coming from (2.8w) only in the most singular

case which corresponds to keeping only the δ-parts of c-terms recalling c(x, y) =

δ(x− y) + p(x, y):

∫
dy1dy2dy4

{( 1

2N

∫
dx2ū(x2, y2)vN(y1 − x2)u(x2, y4)︸ ︷︷ ︸

=:f(y1,y2,y4)

)
Dy1y2Dy4y1

}(
ψ(j)

)
. (A.5)

This will not cause any sector shifts. We have the following typical estimates among
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others arising from symmetrization:

Type 1:
∥∥∥(∫ dy2f(z1, y2, y2)

)
ψ(j)(z1, . . . , zj)

∥∥∥
L2(R3j)

=
1

2N

∥∥∥(∫ dx2(u ◦ ū)(x2, x2)vN(z1 − x2)
)
ψ(j)(z1, . . . , zj)

∥∥∥
L2(R3j)

. N−1
∥∥∥(vN ∗ (u ◦ ū)(·, ·)

)
(z1)

∥∥∥
L∞z1

‖ψ(j)‖L2(R3j)

≤ N−1‖vN‖L1(R3)

∥∥‖u(x, z1)‖L2
x

∥∥2

L∞z1
‖ψ(j)‖L2(R3j)

.ε N
−1+2β(1+ε) log2(1 + t)‖ψ(j)‖L2(R3j) by (2.22)

Type 2:
∥∥∥∫ f(z1, y2, z2)ψ(j)(z1, y2, z3, . . . , zj)dy2

∥∥∥
L2(R3j)

=
1

2N

∥∥∥∫ (∫ ū(x2, y2)vN(z1 − x2)u(x2, z2)dx2

)
× ψ(j)(z1, y2, z3, . . . , zj)dy2

∥∥∥
L2(R3j)

. N−1
∥∥∥‖u(x2, z2)‖L2

z2

∥∥∥
L∞x2

×
∥∥∥∫ vN(x2)

(∫
ū(z1 − x2, y2)ψ(j)(z1, y2, z3, . . . , zj)dy2︸ ︷︷ ︸
≤‖u(z1−x2,y2)‖

L2
y2
‖ψ(j)(z1,y2,z3,...,zj)‖L2

y2

)
dx2

∥∥∥
L2(R3(j−1))

≤ N−1‖vN‖L1(R3)

∥∥‖u(x2, z)‖L2
z

∥∥2

L∞x2

‖ψ(j)‖L2(R3j)

.ε N
−1+2β(1+ε) log2(1 + t)‖ψ(j)‖L2(R3j) by (2.22).

Estimate for the contribution coming from (2.8x) is almost the same with the above

and (2.8q) can be estimated similarly. The other DD-contribution comes from (2.8z)

but this term is even less singular due to not having any c-factors.

Contributions to Hψ(j) coming from (2.8t) and (2.8r) are similar hence if we

look at the contribution from (2.8r), considered only in the most singular case cor-
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responding to keeping only the δ-parts of c-terms, it has the form

1

2N

∫
dy1dy2dy4

{
ū(y4, y2)vN(y1 − y4)Dy1y2Qy1y4

}(
ψ(j)

)
(A.6)

lowering the sector by two. We can make the following typical estimate for this

contribution up to symmetrizations:

1

2N

∥∥∥∫ vN(z1 − y4)ū(y4, y2)ψ(j)(y2, y4, z1, . . . , zj−2)dy2dy4

∥∥∥
L2(R3(j−2))

. N−1
∥∥∥∥∥vN(z1 − y4)‖u(y4, y2)‖L2

y2

∥∥
L2
y4

‖ψ(j)(y2, y4, z1, . . . , zj−2)‖L2
y2y4

∥∥∥
L2
z1...zj−2

≤ N−1‖vN‖L2(R3)

∥∥‖u(y2, y4)‖L2
y2

∥∥
L∞y4
‖ψ(j)‖L2(R3j)

.ε N
−1+5β/2+βε log(1 + t)‖ψ(j)‖L2(R3j) by (2.22)

Similar estimates can be made for the contributions to Hψ(j) coming from the

term in (2.8y) provided we keep the p-part of c̄(y1, x1) (or of c(y3, x1)) and replace

the remaining three c-factors with their corresponding δ-parts.

We move on to checking the second order contributions to Hψ(j).

(2.8c) and (2.8d) are similar terms. (2.8h) seems to be more singular compared

to (2.8g). So let’s estimate the contributions to Hψ(j) coming from (2.8d) and (2.8h)

which can be considered together in the form:

∫
dy1 dy2

{
f(y1, y2)Dy1y2

}(
ψ(j)

)
where (A.7)

f(y1, y2) =
1

2N

∫
dx1dx2

{
vN(x1 − x2)

[
(ū ◦ c̄)(x1, x2)u(y1, x1)c̄(x2, y2)

+ 2(u ◦ ū)(x1, x1)ū(y2, x2)u(y1, x2)
]}
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and we can estimate it as follows:

∥∥∥∫ dy1 dy2

{
f(y1, y2)Dy1y2

}(
ψ(j)

)∥∥∥
L2(R3j)

≤
j∑

k=1

∥∥∥∫ f(zk, y2)ψ(j)(y2,

zk missing︷ ︸︸ ︷
z1, . . . , zj)dy2

∥∥∥
L2(R3j)

.j ‖f‖L2(R6)︸ ︷︷ ︸
≤sum of L2-norms

of terms similar to (2.10b),
(2.10d), (2.10f), (2.10g)

‖ψ(j)‖L2(R3j) .j,ε
by

(2.89), l=2

N−1+2β(1+ε) log4(1 + t)‖ψ(j)‖L2(R3j). (A.8)

If we consider the contribution to Hψ(j) coming from (2.8e)-(2.8f) and their

adjoints, we have

∫
dy1dy2

{
f(y1, y2)Qy1y2 + f̄(y1, y2)Q∗y1y2

}(
ψ(j)

)
where (A.9)

f(y1, y2) = f(2.8e)(y1, y2) + f(2.8f)(y1, y2) and

f(2.8e)(y1, y2) =
1

2N

∫
dx1dx2(ū ◦ c̄)(x1, x2)vN(x1 − x2)c(y1, x1)c̄(x2, y2),

f(2.8f)(y1, y2) =
1

2N

∫
dx1dx2(u ◦ c)(x1, x2)vN(x1 − x2)ū(y1, x1)ū(x2, y2)

which will produce a contribution to Hψ(j) of the following form

(
0, . . . , 0,

∫
R6

dy
{
f(y)ψ(j)(y, z1, . . . , zj−2)

}
, 0, 0, 0, (f̄ ⊗ ψ(j))(z1, . . . , zj+2), 0, . . .

)

Fock space norm of which is

.j

(
‖f(2.8e)‖L2(R6) + ‖f(2.8f)‖L2(R6)︸ ︷︷ ︸
≤sum of L2-norms of terms like

(2.10a),(2.10e),(2.10g),(2.10l)

)
‖ψ(j)‖L2(R3j)
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.ε

(
N−1+2β(1+ε) log4(1 + t) +N−1+5β/2+βε log2(1 + t)

)
‖ψ(j)‖L2(R3j)

where the last inequality follows by (2.89), l = 2 and the following estimate (see

(2.13a) for F s
2):

‖F s
2‖L2(R6) . N−1

(∫
v2
N(y2)

×
(∫ {

|u(y1, y1 − y2)|2 + |(p̄ ◦ u)(y1, y1 − y2)|2
}

dy1

)
dy2

)1
2

. N−1 ‖vN‖L2(R3)︸ ︷︷ ︸
O(N3β/2)

(
‖u‖

H
3
2 +(R6)

+
∥∥‖u(x, y)‖L2

x

∥∥2

L4
y

)

.ε N
−1+5β/2+βε log2(1 + t) by (2.84), (2.85), (2.87). (A.10)

Next let’s deal with the third order terms. (2.8i), (2.8j), (2.8k) are providing

Da (or a∗Q)-terms which lower the sector by one. The most singular contribution

comes from (2.8k). Let’s consider its estimate in the most singular case by keeping

the δ-parts of c-factors. The corresponding contribution to Hψ(j) will have the

following form:

1√
N

∫
dy1dy3

{
vN(y1 − y3)φ̄(y3)a∗y1

ay1ay3

}(
ψ(j)

)
(A.11)

whose L2-norm is

'j
1√
N

∥∥∥∫ dy3

{
vN(z1 − y3)φ̄(y3)ψ(j)(y3, z1, . . . , zj−1)

}∥∥∥
L2(R3(j−1))
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≤
‖φ(t, ·)‖L∞(R3)√

N
‖vN‖L2(R3)

∥∥‖ψ(j)(y3, z1 . . . , zj−1)‖L2
y3

∥∥
L2
z1...zj−1

.
N (−1+3β)/2

1 + t3/2
‖ψ(j)‖L2(R3j).

We can write the contributions to Hψ(j) coming from (2.8l) and (2.8o) together

with their adjoints in the form:

∫
dy1dy2dy3

{
f(y1, y2, y3)Qy1y2ay3 + f̄(y1, y2, y3)a∗y1

Q∗y2y3

}(
ψ(j)

)
where (A.12)

f(y1, y2, y3) = N−1/2

∫
dx1dx2vN(x1 − x2)

{
ū(y1, x1)φ(x2)ū(x2, y2)c(y3, x1)

+ ū(y1, x1)φ̄(x2)c(y2, x1)c̄(x2, y3)
}

which will produce a contribution of the following form:

(
0, . . . , 0,

∫
R9

dy
{
f(y)ψ(j)(y, z1, . . . , zj−3)

}
, 0, . . . , 0,

(
f̄ ⊗ ψ(j)

)
(z1, . . . , zj+3), 0, . . .

)

Fock space norm of which is

.j ‖f‖L2(R9)︸ ︷︷ ︸
.sum of L2-norms of

tems like (2.11a)-(2.11f)

‖ψ(j)‖L2(R3j)

.ε

(
N−1/2+β(1+ε) log3(1 + t)/(1 + t3/2)

+N (−1+3β)/2 log(1 + t)/(1 + t3/2)
)
‖ψ(j)‖L2(R3j)
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by (2.89), l = 3 and the following estimate (see (2.13b) for F s
3):

‖F s
3‖L2(R9) . N−1/2‖φ‖L∞(R3)

(∫
v2
N(y1 − y2)‖u(y3, y1)‖2

L2
y3

dy1dy2

)1/2

.
N−1/2

1 + t3/2
‖vN‖L2(R3)‖u‖L2(R6)

. N (−1+3β)/2 log(1 + t)/(1 + t3/2) by (2.44). (A.13)

Other third order contributions to Hψ(j) are less singular and can be estimated

similarly. The first order contributions in (2.8a)-(2.8b) are providing with similar

bounds and the estimates for them are similar to the previous estimates. The

estimates so far prove (2.133a).

Finally let’s prove the estimate (2.133b) on H̃ψ(j). This is the contribution

coming from (2.8y) when all c-factors are replaced with their corresponding δ-parts

as we can recall from the definition (2.130). We have the following estimate:

1

2N

∥∥∥∫ dy1dy2

{
vN(y1 − y2)Q∗y1y2

Qy1y2

}(
ψ(j)

)∥∥∥
L2(R3j)

'j N−1‖vN(z1 − z2)ψ(j)(z1, z2, . . . , zj)‖L2(R3j)

. N−1‖vN‖L∞(R3)‖ψ(j)‖L2(R3j) . N−1+3β‖ψ(j)‖L2(R3j)

with which we completed proving Lemma 2.13. 2
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Appendix B: Comparison of N -particle Mean Field

to the Limiting Mean Field

The purpose here is to compare the N -particle (N finite) mean field φ(N)

satisfying (1.38a) i.e.

1

i
∂tφ

(N) −∆φ(N) +
(
vN ∗ |φ(N)|2

)
φ(N) = 0 where vN = N3βv(Nβ·), 0 < β < 1

with the mean field φ (in the limit as N → ∞) which is the solution of the formal

limit of the above equation, namely,

1

i
∂tφ−∆φ+

(∫
v(x)dx

)
|φ|2φ = 0. (B.1)

Proposition B.1. Let 0 < β < 1 and φ(N)(t, ·) and φ(t, ·) denote the solutions of

(1.38a) and (B.1) respectively, with initial data φ0 ∈ H1 ∩W l,1 for l ≥ 2. Then for

every t

Tr
∣∣|φ(N)(t, ·)〉〈φ(N)(t, ·)| − |φ(t, ·)〉〈φ(t, ·)|

∣∣ ≤ 2‖φ(N)(t, ·)− φ(t, ·)‖2 ≤
C√
N

for some constant C independent of t and N .
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Proof. The first inequality follows from the duality of trace class operators with

the compact operators on L2(R3) as discussed earlier in chapter 3. The proof of

the second inequality follows as in Appendix A of [3] with some alterations where

we make use of the L∞-decay estimates ((B.4a)-(B.4b)) for the solutions of the

equations (1.38a) and (B.1). In the following, we will suppress the time dependence

of φ(N) and φ notation-wise. The idea of the proof is applying energy estimates to

the equation

(
(1/i)∂t −∆

)
(φ(N) − φ) =

(∫
v(x)dx

)
|φ|2φ− (vN ∗ |φ(N)|2)φ(N).

Let c :=
∫
v(x)dx. Then we have:

∂t‖φ(N) − φ‖2
2 = 2 Im

〈
i∂tφ

(N) − i∂tφ, φ(N) − φ
〉

(B.2)

= 2 Im
〈
−∆φ(N) +

(
vN ∗ |φ(N)|2

)
φ(N) + ∆φ− c|φ|2φ, φ(N) − φ

〉
= −2 Im

〈(
vN ∗ |φ(N)|2

)
φ(N), φ

〉
− 2 Im

〈
c|φ|2φ, φ(N)

〉︸ ︷︷ ︸
−Im
〈
c|φ|2φ(N),φ

〉
= −2 Im

〈(
vN ∗ |φ(N)|2 − c|φ|2

)
φ(N), φ

〉
(add & subtract vN∗|φ|2 to the terms in (·))

= −2 Im
〈(
vN ∗

(
|φ(N)|2 − |φ|2

))
φ(N), φ

〉
︸ ︷︷ ︸

Im
〈(

vN∗(|φ(N)|2−|φ|2)
)

(φ(N)−φ),φ
〉

=(I)

−2 Im
〈(
vN ∗ |φ|2 − c|φ|2

)
φ(N), φ

〉
︸ ︷︷ ︸

(II)

We estimate (I) in the last line of (B.2) as follows:

|(I)| ≤
∥∥∥(vN ∗ (|φ(N)|2 − |φ|2

))
(φ(N) − φ)

∥∥∥
1
‖φ‖∞

≤
∥∥vN ∗ (|φ(N)|2 − |φ|2

)∥∥
2

∥∥φ(N) − φ
∥∥

2
‖φ‖∞
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≤ ‖vN‖1

∥∥|φ(N)|2 − |φ|2
∥∥

2

∥∥φ(N) − φ
∥∥

2
‖φ‖∞

≤ ‖vN‖1

(
‖φ(N)‖∞ + ‖φ‖∞

)∥∥φ(N) − φ
∥∥2

2
‖φ‖∞

≤ C(1 + t3)−1
∥∥φ(N) − φ

∥∥2

2
(B.3)

where we used the facts

‖φ(N)(t, ·)‖∞ ≤ C(1 + t3/2)−1 by Corollary 3.4 in [20], (B.4a)

‖φ(t, ·)‖∞ ≤ C(1 + t3/2)−1 by Theorem 2 in [32] (B.4b)

for the last inequality in (B.3) (constants in (B.4a), (B.4b) depend only on ‖φ0‖W l,1).

This is the point which makes the argument different than that of [3].

We move on to estimating (II) in the last line of (B.2) recalling that the time

dependence of φ(N), φ is notationally omitted for ease of notation. Again we proceed

as in [3]:

|(II)| ≤
∫
vN(y)

∣∣∣|φ(x− y)|2 − |φ(x)|2
∣∣∣|φ(N)(x)||φ(x)| dx dy (using

∫
vN (x)dx=c)

=

∫
v(y)

∣∣∣ |φ(x− y/N)|2 − |φ(x)|2︸ ︷︷ ︸∫ 1
0

d
ds
|φ(x−sy/N)|2ds

∣∣∣|φ(N)(x)||φ(x)| dx dy

≤
∫
v(y)

(
2|y|N−1

∫ 1

0

|∇φ(x− sy/N)||φ(x− sy/N)|ds
)
|φ(N)(x)||φ(x)| dx dy

≤ N−1‖φ‖2
∞
(
‖∇φ‖2

2 + ‖φ(N)‖2
2

) ∫
v(y)|y| dy

≤ C(1 + t3)−1N−1
(
1 + ‖φ‖2

H1

) ∫
v(y)|y| dy (using (B.4b) being different than [3])

≤ C(1 + t3)−1N−1 (B.5)
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Inserting (B.3) and (B.5) in the last line of (B.2):

∂t‖φ(N) − φ‖2
2 ≤ C(1 + t3)−1

∥∥φ(N) − φ
∥∥2

2
+
C(1 + t3)−1

N

Gronwall’s inequality implies:

‖φ(N) − φ‖2
2 ≤ CN−1eC(

∫ t
0 (1+s3)−1 ds)

∫ t

0

(1 + s3)−1 ds

which gives the desired rate of convergence.
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