
 
 

  
 
 
 
 
  ABSTRACT 
 
 
 
 
Title of Document: MARITIME PIRACY: SOLVING THE 

OPTIMIZED TRANSIT PATH PROBLEM 
  
 John Robert Schedel, Jr., Ph.D., 2015 
  
Directed By: Professor Gregory B. Baecher 

 
Department of Civil and Environmental 
Engineering 

 
 

Models have been developed that accurately predict the probability of pirate activity at 

locations throughout the Arabian Sea.  With these piracy prediction models, mariners transiting 

this region can ensure that their course avoids the highest threat regions and that ample anti-piracy 

precautions are in place elsewhere.  However, they are on their own to determine their “best” 

transit path. 

Using unique piracy success predictors and transit cost calculators, along with existing 

pirate activity predictions, this research develops a method for determining the Optimized Transit 

Path through the Arabian Sea.  This method simultaneously optimizes two different attributes, 

piracy avoidance and cost minimization, based on a mariner’s priorities. 

The Optimized Transit Path (OTP) algorithm calculates the minimum cumulative path 

through a two-dimensional, geographic matrix.  The OTP algorithm finds the shortest path through 

the network from a starting line on one side of the matrix to a finish line on the other side.  Using 

a computer code of the algorithm, experimental tests quantified the OTP algorithm’s computation 



 
 

speed and required number of calculations to reach a solution.  Further, the performance of the 

OTP algorithm at solving the piracy matrix was compared to the speed of other shortest path 

algorithms.  Based on this study, the OTP algorithm’s speed at solving the piracy matrix was 

comparable to that of the fastest shortest path algorithm in use today, Dijkstra’s Algorithm 

implementing a Min-Priority queue with a Fibonacci Heap, and significantly faster than all others.   

Because it can use the piracy prediction matrix directly as an input, the OTP algorithm is 

especially well suited for solving the piracy avoidance problem.  More importantly, its calculation 

of Optimized Slack quantifies the additional cost of diverting from the shortest path, information 

not calculated by other shortest path methods.  However, use of the OTP algorithm is fairly limited, 

as it is only well suited for matrices that represent a flat plane of interconnected geographic areas, 

with movement from a node limited to the eight adjacent nodes surrounding it. 

Another promising application of the methods in this paper is within the field of underwater 

search. 

Models have been developed that accurately predict the probability of pirate activity at 

locations throughout the Arabian Sea.  With these piracy prediction models, mariners transiting 

this region can ensure that their course avoids the highest threat regions and that ample anti-piracy 

precautions are in place elsewhere.  However, they are on their own to determine their “best” 

transit path. 

Using unique piracy success predictors and transit cost calculators, along with existing 

pirate activity predictions, this research develops a method for determining the Optimized Transit 

Path through the Arabian Sea.  This method simultaneously optimizes two different attributes, 

piracy avoidance and cost minimization, based on a mariner’s priorities. 



 
 

The Optimized Transit Path (OTP) algorithm calculates the minimum cumulative path 

through a two-dimensional, geographic matrix.  The OTP algorithm finds the shortest path through 

the network from a starting line on one side of the matrix to a finish line on the other side.  Using 

a computer code of the algorithm, experimental tests quantified the OTP algorithm’s computation 

speed and required number of calculations to reach a solution.  Further, the performance of the 

OTP algorithm at solving the piracy matrix was compared to the speed of other shortest path 

algorithms.  Based on this study, the OTP algorithm’s speed at solving the piracy matrix was 

comparable to that of the fastest shortest path algorithm in use today, Dijkstra’s Algorithm 

implementing a Min-Priority queue with a Fibonacci Heap, and significantly faster than all others.   

Because it can use the piracy prediction matrix directly as an input, the OTP algorithm is 

especially well suited for solving the piracy avoidance problem.  More importantly, its calculation 

of Optimized Slack quantifies the additional cost of diverting from the shortest path, information 

not calculated by other shortest path methods.  However, use of the OTP algorithm is fairly limited, 

as it is only well suited for matrices that represent a flat plane of interconnected geographic areas, 

with movement from a node limited to the eight adjacent nodes surrounding it. 

Another promising application of the methods in this paper is within the field of underwater 

search. 

 



  

 

 
 
 
 
 
 
 
 
MARITIME PIRACY: SOLVING THE OPTIMIZED TRANSIT PATH PROBLEM 

 
 
 

By 
 
 

John Robert Schedel, Jr. 
 
 
 
 
 

Dissertation submitted to the Faculty of the Graduate School of the 
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 
Doctor of Philosophy 

2015 
 
 
 
 
 
 
 
 
 
 
Advisory Committee: 
Professor Gregory Baecher, University of Maryland, Chair 
Professor Christopher Davis, University of Maryland 
Associate Professor Lei Zhang, University of Maryland 
Assistant Professor Qingbin Cui, University of Maryland 
Assistant Professor Linda Craugh, United States Naval Academy 

 
 



  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

© Copyright by 
John Robert Schedel, Jr. 

2015 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

ii 
 

Table of Contents 

Table of Contents .......................................................................................................... ii 
List of Tables ................................................................................................................ v 

List of Figures .............................................................................................................. vi 
List of Abbreviations ................................................................................................. viii 
Chapter 1: Introduction and Background on Maritime Piracy...................................... 1 

1.1 Maritime Piracy: “A Global Phenomenon.  A Local Problem.”......................... 1 

1.2 The Spread of Somali Piracy .............................................................................. 6 

1.3 Maritime Piracy Tactics ...................................................................................... 8 

1.4 Piracy Prevention: Countermeasures ................................................................ 12 

Chapter 2: Piracy Prediction Methods ........................................................................ 15 

2.1 High Threat Regions ......................................................................................... 16 

2.2 Threat Density Plots .......................................................................................... 18 

2.3 Forecasting via Simulation ............................................................................... 19 

2.3.1 United Kingdom Global Model (UKGM) .................................................. 19 

2.3.2 Piracy Performance Surface (PPS) Model ................................................ 20 

2.3.3 Pirate Attack Risk Surface (PARS) Model ................................................. 21 

Chapter 3: Problem Definition .................................................................................... 26 

3.1 Pirate Avoidance: What’s Still Missing? .......................................................... 26 

3.2 Objective: Solving the Optimized Transit Path Problem .................................. 31 

Chapter 4: Nodal Matrices in Other Shortest Path Applications ................................ 37 

4.1 Computer Network Routing .............................................................................. 37 

4.2 Transportation and Logistics............................................................................. 41 

4.3 Search and Recovery......................................................................................... 44 

Chapter 5: Incorporating Piracy Cost Considerations ................................................ 51 

5.1 Economic Considerations of Pirate Avoidance ................................................ 51 

5.2 EMV of Piracy Cost and Countermeasures in Each Node ............................... 53 

5.3 Transit Cost to Travel Through Each Node ...................................................... 61 

5.4 Weighted EMV of Pirate Avoidance vs. Transit Cost ...................................... 64 

5.5 Example of Applying Weighted EMV to Transit Route Decisions .................. 69 

Chapter 6: Survey of Deterministic Shortest Path Algorithms ................................... 81 

6.1 Types of Deterministic Shortest Path Problems ............................................... 81 

6.2 Dijkstra’s Algorithm ......................................................................................... 83 

6.3 Bellman-Ford Algorithm .................................................................................. 87 

6.4 Floyd-Warshall Algorithm and Johnson’s Algorithm ...................................... 88 

Chapter 7: The Optimized Transit Path (OTP) Algorithm ......................................... 90 

7.1 Background and Definitions ............................................................................. 92 

7.1.1 Node Matrix ............................................................................................... 92 

7.1.2 Cost of Each Node ..................................................................................... 97 

7.1.3 Node Identifier ........................................................................................... 97 

7.1.4 Minimum Start (MS) and Minimum Finish (MF) of Each Node ................ 98 

7.2 Forward Pass Calculations: Determining MS and MF for Each Node ............. 99 

7.2.1 First Forward Pass .................................................................................... 99 



 

 

iii 
 

7.2.2 Second Forward Pass .............................................................................. 101 

7.2.3 Additional Forward Passes...................................................................... 109 

7.2.4 Final Forward Pass: Optimized Transit Path through the Matrix .......... 112 

7.2.5 One Process to Identify the Optimized Transit Path Through the Matrix 113 

7.3 Backward Pass Calculations: Determining RS and RF for Each Node .......... 115 

7.3.1 Definitions: Required Finish, Required Start, and Optimized Slack ....... 115 

7.3.2 First Backward Pass ................................................................................ 117 

7.3.3 Second Backward Pass ............................................................................ 119 

7.3.4 Additional Backward Passes.................................................................... 125 

7.4 Identifying the Optimized Transit Path........................................................... 128 

7.4.1 Determining Optimized Slack .................................................................. 128 

7.4.2 Identifying the Optimized Transit Path .................................................... 131 

7.5 Variations to the Optimized Transit Path Algorithm ...................................... 132 

7.5.1 Defining a Specific Start and/or End Point ............................................. 132 

7.5.2 Limiting Directions of Motion ................................................................. 136 

Chapter 8: Computer Modeling of the OTP Algorithm ............................................ 139 

Chapter 9:  Performance Results of the OTP Algorithm .......................................... 145 

9.1 Structure of the Experimental Test Plan ......................................................... 145 

9.2 Number of Forward and Backward Passes Required to Reach a Solution ..... 148 

9.3 Number of Calculations Required to Reach a Solution .................................. 156 

9.3.1 Number of Computations to Solve the Specified Starting Point Case ..... 160 

9.3.2 Number of Computations to Solve the Limited Motion Case ................... 161 

9.4 Computing Time Required to Reach a Solution ............................................. 162 

9.5 Comparison of OTP Performance to Other Shortest Path Algorithms ........... 165 

Chapter 10: Potential Uses in Other Applications .................................................... 170 

10.1 Single Attribute Search ................................................................................. 170 

10.2 Multiple Attribute Search ............................................................................. 175 

10.2.1 Underwater Search Applications ........................................................... 176 

10.2.2 Other Multiple Attribute Applications ................................................... 180 

Chapter 11: Conclusions and Future Work ............................................................... 182 

Appendices ................................................................................................................ 185 

Appendix 1: MATLAB Code for Optimized Transit Path Algorithm .................. 185 

Appendix 1A: MATLAB Subroutine to Read Matrix Input from External File .. 190 

Appendix 1B: MATLAB Subroutine to Bound Matrix with High Value Rows .. 191 

Appendix 1C: MATLAB Subroutine to Prepare Initial MS and MF Matrices .... 192 

Appendix 1D: MATLAB Subroutine to Conduct Forward Pass Calculations ..... 193 

Appendix 1E: MATLAB Subroutine to Time and Count Forward Passes ........... 196 

Appendix 1F: MATLAB Subroutine to Prepare Initial RS and RF Matrices ....... 197 

Appendix 1G: MATLAB Subroutine to Conduct Backward Pass Calculations .. 198 

Appendix 1H: MATLAB Subroutine to Time and Count Backward Passes........ 201 

Appendix 1I: MATLAB Subroutine to Calculate Optimized Slack ..................... 202 

Appendix 1J: MATLAB Subroutine to Simplify the Optimized Matrices ........... 203 

Appendix 1K: MATLAB Subroutine to Record the Time for All Calculations... 204 

Appendix 1L: MATLAB Subroutine to Present the Final Results ....................... 205 

Appendix 1M: MATLAB Subroutine to Write Solution to External Source ....... 206 

Bibliography ............................................................................................................. 207 



 

 

iv 
 



 

 

v 
 

List of Tables 
 
Table 1: Annual Number of Piracy Attacks from 1991 to 2013 ................................... 4 

Table 2: Effect of Speed on Probability of Successful Pirate Attack ......................... 56 

Table 3: Effect of Freeboard Height on Probability of Successful Pirate Attack ....... 56 

Table 4: Effect of Defensive Measures on Probability of Successful Pirate Attack .. 57 

Table 5: Effect of Guards and Escorts on Probability of Successful Pirate Attack .... 57 

Table 6: Summary of Optimized Route Choices ........................................................ 79 

Table 7: OTP Algorithm Solution Results for One Thousand 43x50 Matrices ........ 165 

Table 8: Number of Calculations Required to Solve a 43x50 Piracy Matrix for 
Common Shortest Path Algorithms .......................................................................... 167 

 

  



 

 

vi 
 

List of Figures 

Figure 1: Global Maritime Piracy Activity ................................................................... 2 

Figure 2: Expansion of Somali Piracy Attacks ............................................................. 7 

Figure 3: Typical Somali Pirate Skiff ........................................................................... 9 

Figure 4: Pirate Mother Ships or Regular Traffic? ..................................................... 11 

Figure 5: Disruption Devices May Slow or Thwart Potential Boarders ..................... 13 

Figure 6: Anti-Piracy Planning Chart for the Arabian Sea Region ............................ 17 

Figure 7: Map of Arabian Sea Region ........................................................................ 22 

Figure 8: Dividing the Arabian Sea Region into 50 mile x 50 mile Areas ................. 23 

Figure 9: Example of Calculated Values at Each Location in PARS Model.............. 24 

Figure 10: Adapted Example of PARS Model Output ............................................... 25 

Figure 11:  Comparison of Routes Through the Piracy Prediction Matrix ................. 27 

Figure 12: Example of a More Complicated Piracy Prediction Matrix ...................... 29 

Figure 13: Simplified Diagram of a Typical Computer Network Matrix ................... 38 

Figure 14: Example Transportation Network of Locations and Roads ...................... 41 

Figure 15: Expected Monetary Value Tree of Potential Piracy Outcomes ................. 54 

Figure 16: Example 5x5 Array of Piracy Probability Values ..................................... 69 

Figure 17: Example 5x5 Array of EMVPiracy per Node Values ........................................ 71 

Figure 18: Example 5x5 Array of Ctransit per Node Values .............................................. 72 

Figure 19: Example 5x5 Array of EMVActual Total per Node Values ................................. 73 

Figure 20: Example 5x5 Array of EMVWeighted Total per Node for X = 0.5 Values ................. 74 

Figure 21: Example 5x5 Array of EMVWeighted Total per Node for X = 0.25 Values ................ 76 

Figure 22: Example 5x5 Array of EMVWeighted Total per Node for X = 0.75 Values ................ 77 

Figure 23: Optimized Routes Vary Based on Choice of Priorities ............................. 78 

Figure 24: Example 5x5 Matrix of Piracy Prediction Values ..................................... 93 

Figure 25: Example 5x5 Matrix Represented in Box Format ..................................... 94 

Figure 26: Example 5x5 Matrix with Potential Transit Paths Shown ........................ 95 

Figure 27: Method of Designating Minimum Start, Minimum Finish, and Cost ....... 98 

Figure 28: First Forward Pass MS and MF Values for Example 5x5 Matrix ........... 100 

Figure 29: Second Forward Pass - Column 2 of Example 5x5 Matrix ..................... 104 

Figure 30:  Second Forward Pass - Column 3 of Example 5x5 Matrix .................... 106 

Figure 31: Second Forward Pass - Column 4 of Example 5x5 Matrix ..................... 107 

Figure 32: Second Forward Pass - Column 5 of Example 5x5 Matrix ..................... 108 

Figure 33: Third Forward Pass MS and MF Values for Example 5x5 Matrix ......... 109 

Figure 34: Fourth Forward Pass MS and MF Values for Example 5x5 Matrix ....... 110 

Figure 35: Fifth Forward Pass MS and MF Values for Example 5x5 Matrix .......... 111 

Figure 36: Optimized Transit Path Forward through Example 5x5 Matrix.............. 114 

Figure 37: Method of Designating Required Start, Required Finish, and Optimized 
Slack .......................................................................................................................... 116 

Figure 38: First Backward Pass RS and RF Values for Example 5x5 Matrix .......... 118 

Figure 39: Second Backward Pass RF and RS Values for Example 5x5 Matrix ..... 122 

Figure 40: Third Backward Pass RS and RF Values for Example 5x5 Matrix ........ 125 

Figure 41: Fourth Backward Pass RS and RF Values for Example 5x5 Matrix....... 126 

Figure 42: Fifth Backward Pass RS and RF Values for Example 5x5 Matrix ......... 127 



 

 

vii 
 

Figure 43: Graphical Representation of Optimized Slack ........................................ 128 

Figure 44: Optimized Transit Path MS, MF, RS, RF, and OS Values for Example 5x5 
Matrix ........................................................................................................................ 130 

Figure 45: Optimized Transit Path through Example 5x5 Matrix ............................ 131 

Figure 46: Editing of Example 5x5 Matrix to Include a Specific Start Point ........... 134 

Figure 47: Optimized Transit Path Solution of Example 5x5 Matrix to Include a 
Specific Start Point ................................................................................................... 135 

Figure 48: Limited Motion Paths Between Nodes in Example 5x5 Matrix ............. 137 

Figure 49: Optimized Transit Path Solution of Example 5x5 Matrix to Include 
Limited Motion ......................................................................................................... 138 

Figure 50: Number of Nodes vs. Number of Forward Passes – All Test Matrices .. 148 

Figure 51: Number of Nodes vs. Number of Forward Passes – Square Matrices .... 149 

Figure 52: Matrix Size vs. Number of Forward Passes – Fixed # of Columns ........ 150 

Figure 53: Matrix Size vs. Number of Forward Passes – Fixed # of Rows .............. 151 

Figure 54: Number of Nodes vs. Number of Backward Passes – All Test Matrices 153 

Figure 55: Number of Nodes vs. Number of Backward Passes – Square Matrices.. 154 

Figure 56: Matrix Size vs. Number of Backward Passes – Fixed # of Columns ...... 154 

Figure 57:  Matrix Size vs. Number of Backward Passes – Fixed # of Rows .......... 155 

Figure 58: Number of Nodes vs. Number of Calculations – All Test Matrices ....... 158 

Figure 59: Number of Nodes vs. Number of Calculations – Square Matrices ......... 158 

Figure 60: Matrix Size vs. Number of Calculations – Fixed # of Columns ............. 159 

Figure 61: Matrix Size vs. Number of Calculations – Fixed # of Rows ................... 159 

Figure 62: Number of Nodes vs. Calculation Time – All Test Matrices .................. 162 

Figure 63: Number of Nodes vs. Calculation Time – Square Matrices .................... 163 

Figure 64: Matrix Size vs. Calculation Time – Fixed # of Columns ........................ 164 

Figure 65: Matrix Size vs. Calculation Time – Fixed # of Rows ............................. 164 

Figure 66: Probability of Discovery Matrix for Search Example ............................. 171 

Figure 67: Probability of No Discovery Matrix for Search Example ....................... 172 

Figure 68: Modified No Discovery Matrix for Search Example .............................. 173 

 
 
 

 



 

 

viii 
 

List of Abbreviations 

 

CASP – Computer Aided Search Program 

CPM – Critical Path Method 

EMV – Expected Monetary Value 

MF – Minimum Finish of a node 

MS – Minimum Start of a node 

OS – Optimized Slack of a node 

OTP – Optimized Transit Path 

PARS – Pirate Attack Risk Surface 

PPS – Piracy Prediction Surface 

RF – Required Finish of a node 

RS – Required Start of a node 

RTM – Risk Terrain Modeling 

UKGM – United Kingdom Global Model 

 



 

 

1 
 

Chapter 1: Introduction and Background on Maritime Piracy 

1.1 Maritime Piracy: “A Global Phenomenon.  A Local Problem.” 

For most people, the word piracy invokes romanticized images of a past age, of 

sailing ships and walking the plank.  Blackbeard might come to mind or, more likely, 

Johnny Depp’s character Captain Jack Sparrow from the “Pirates of the Caribbean” 

movies.  Few people realize that piracy on the high seas is alive and well in the world 

today.   In fact, maritime piracy has undergone a major revival over the past two 

decades and is now a multi-billion dollar per year enterprise.  The 2013 Hollywood 

blockbuster, “Captain Phillips,” paints a fairly accurate picture of modern pirates, who 

are far more brutal, desperate, and high-tech than their predecessors of an earlier age. 

The International Maritime Bureau (IMB), the world’s foremost authority for 

monitoring pirate activity, defines maritime piracy as “an act of boarding or attempting 

to board any ship with the intent to commit theft or any other crime and with the intent 

or capability to use force in the furtherance of that act” (ICC-IMB 2014).  Though 

different countries and legal authorities sometimes disagree on geographical 

jurisdictions and definitions related to maritime piracy, all seem to agree on the three 

main tenets of the IMB definition: intent to board, intent to commit a crime and intent 

(or capability) to use force. 

In today’s world, maritime piracy can best be described as a “global phenomenon 

but a local problem” (Murphy 2010).  Piracy is prevalent in localized regions around 

the globe where geography, economics and politics converge to make it profitable and 

feasible.  In each region, the tactics and objectives of piracy differ, making a “one size 



 

 

2 
 

fits all” solution impractical.  Figure 1 shows the global areas of significant pirate 

activity (shaded areas) over the past decade.  

Globally, there are eight geographic “hot spots” for maritime piracy (Scheffler 

2010) : 

•  Arabian Sea (Gulf of Aden / Gulf of Oman / Somalia)  

•  West Indian Ocean (from Somalia south to Seychelles) 

•  Gulf of Guinea (West Africa off Nigeria and Benin)  

•  Straits of Malacca  (Indonesia / Malaysia / Singapore) 

•  South China Sea (Thailand / Malaysia) 

•  Celebes Sea (Philippines / Indonesia) 

•  Bay of Bengal (India / Myanmar) 

•  South America 

 
 

Figure 1: Global Maritime Piracy Activity 
(Source: Map from Wikimedia Commons.  Data adapted from Galletti 2007 and 
ICC-IMB 2014.) 
 
 



 

 

3 
 

Piracy tactics and objectives differ within these regions.  In some regions, 

pirates intend solely to rob the ships then depart.  Attacks usually occur clandestinely 

at night, often to ships at anchor.  Anything easily transported, hard to track and quick 

to convert to cash is targeted, from cash in the captain’s safe to paint in the ship’s 

lockers.  Ships at anchor are frequently targeted, and thefts are sometimes not 

discovered until the next day (Dillon 2005).   

In other regions, pirates intend to hijack the ship, sail it to a safe location then 

sell the cargo and/or the entire ship (once it has been properly renamed and 

renumbered).  These hijackings with the intent to sell tend to be the most violent of 

pirate activities, as surviving crew members could reveal the true origins of the ship 

and cargo (Chalk 2009).   

Another piracy objective, prevalent in the 1990’s and early 2000’s but now 

mostly absent, is to hijack the ship, sell its cargo, then use it as a “phantom ship.”  

Pirates disguise a “phantom ship” as a legitimate cargo ship, contract to carry cargo in 

a busy port and load the ship.  Upon leaving port, the “phantom ship” simply disappears 

with the cargo, which the pirates sell in another port after renaming and renumbering 

the ship (Chalk 2008).   

The final tactic, which is used especially in Somalia and Nigeria, is for the 

pirates to hijack the ship then hold the ship, cargo and crew for ransom.  Once the 

shipping company or their insurers pay a ransom, often in the millions of dollars, the 

ship, cargo, and crew are returned to them.  This hijack and ransom tactic has proven 

the most profitable and disruptive of all the piracy methods (Nincic 2009). 



 

 

4 
 

Globally, the number of annual piracy attacks saw a steady increase throughout 

the 1990’s then a leveling off to about 300 to 400 incidents per year in the 21st century.  

Table 1 shows the annual number of piracy attacks, sorted by geographic region, from 

1991 to 2013 (Geopolicity 2011 and ICC-IMB 2014).  Though the worldwide number 

of attacks has held fairly steady for the past 15 years, the geographic concentration of 

these attacks has changed.  In the late 1990’s, an explosion of piracy in Southeast Asia 

accounted for an increase in annual numbers of attacks.  However, the Indian Ocean 

tsunami of 2005 destroyed land support bases for Southeast Asian piracy, dramatically 

reducing its prevalence (Jones 2011). At about the same time, maritime piracy in the 

Arabian Sea, based out of Somalia, escalated and is now the leading location for pirate 

activity, both in number of incidents and in economic impact.  

 

 

Economically, the international cost of piracy is significant and expected to 

grow.  In 2010, the annual cost of piracy was estimated at between $5 and $8 billion.  

By 2015, the annual cost is expected to grow to $13 to $15 billion (Geopolicity 2011).  

 

Table 1: Annual Number of Piracy Attacks from 1991 to 2013 
Source: Data from Geopolicity 2011 and ICC-IMB 2014 

 

 
 

1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

South East Asia 88 63 16 38 71 124 92 89 161 242 153 153 170 158 102 83 70 54 46 70 80 104 128

Africa 0 0 7 6 20 25 46 41 55 68 85 78 93 73 80 61 123 189 270 259 293 150 79

Indian Sub-Continent 0 5 3 3 16 24 37 22 45 93 53 52 87 32 36 53 30 23 30 28 16 19 26

America 0 0 6 11 21 32 37 35 28 39 21 65 72 45 25 29 21 14 37 40 25 17 18

Far East 14 7 69 32 47 17 19 10 6 20 17 17 19 15 20 5 10 11 23 44 23 7 13

Rest of World 5 31 2 0 13 6 17 5 5 7 6 5 4 6 13 8 9 2 4 4 2 0 0

TOTAL 107 106 103 90 188 228 248 202 300 469 335 370 445 329 276 239 263 293 410 445 439 297 264

Global Piracy Incidents (1991-2013) by Region



 

 

5 
 

Most of this rise in cost is tied to the shifting of piracy objectives to the hijack and 

ransom model practiced in and around Somalia. 

During 2013, due to extremely high levels of international policing efforts with 

military ships, especially in the Arabian Sea, the number of pirate attacks globally was 

down to its lowest level in years.  Only 264 pirate attacks were reported globally in 

2013, compared to an average of 377 for the five previous years (ICC-IMB 2014).  

However, the high level of military involvement in the region is not seen as either 

sustainable or cost-effective.  The long range prognosis is that, once the military 

presence has diminished, Arabian Sea piracy will again flourish (Hunt 2012, Ng 2014). 

 

  



 

 

6 
 

1.2 The Spread of Somali Piracy 

In many ways, modern-day Somalia presents the “perfect storm” for maritime 

piracy.  Three main factors coincide to make Somalia attractive to pirates: ideal 

geographic location, permissive political environment, and extreme poverty (Chalk 

2009). 

Somalia is geographically located within close proximity to two of the world’s 

busiest, most strategic maritime chokepoints: the Bab el-Mandeb and the Straits of 

Hormuz.  These chokepoints control access to the Red Sea and the Persian Gulf, 

respectively.  All ship traffic to or from these destinations must transit the Arabian Sea 

in relatively close proximity to Somali waters.  With the advent of Mother-Ship and 

Pirate Action Group tactics, to be discussed later in section 1.3 of this paper, pirates are 

now able to range more than 1,000 miles from the Somali coast, rendering no locations 

in the Arabian Sea safe from potential attack (Bridger 2011).  The geographical 

expansion of Somali pirate attacks has widened over the past decade as tactics have 

evolved (Figure 2). 

Politically, Somalia remains among the most lawless, decentralized nations in 

the world today.  Throughout most of Somalia, local warlords reign and invoke a 

“might is right,” anything-goes style of government.  In the south of Somalia, large 

swaths of the country are controlled by al-Shabaab, a cell of the militant Islamist 

terrorist group al-Qaeda (Murphy 2009).  Not only do local leaders condone piracy, 

they actively encourage it, as they are typically paid a percentage of the revenues.  For 

most of those in power in Somalia, piracy is looked at as a source of funding, which 

allows them to stay in power. 



 

 

7 
 

Somalia is extremely poor.  Average annual income is $140 (World Vision Inc. 

2014).  With extreme poverty comes a nothing-to-lose mentality among Somali youth.  

Though a high percentage of those who engage in piracy drown at sea (Archibugi and 

Chiarugi 2009), it is still seen as the most attractive option for financial well-being 

among many Somali youth.  Just as the poor in America are the most frequent players 

of the lottery, the poorest youth in Somalia are the most prone to play the “piracy 

lottery,” hoping to be among the few who beat the odds and strike it rich.  Despite high 

mortality rates at sea and international efforts to try captured pirates in court, Somalia 

has a seemingly endless supply of young people willing to risk the odds. 

 
 

Figure 2: Expansion of Somali Piracy Attacks 

(Source: Map from Google Maps.  Data adapted from Bridger 2011.) 



 

 

8 
 

1.3 Maritime Piracy Tactics 

Maritime piracy requires a significant, land-based support infrastructure in 

order to succeed.  Pirate land bases readily provide supplies, personnel, and 

intelligence.  A land support network is critical to holding hostages and negotiating for 

their release.  In Somalia, as previously discussed, organized crime, war lords, and 

potential terrorists (al Shabaab) are all willing and able sponsors of maritime piracy, as 

they look to it as a source of much-needed funds.  Many authorities have suggested that 

the only way to permanently get rid of Somali piracy is to somehow get rid of pirate 

land bases within the country (Murphy 2009).  

A modern-day “pirate ship” is typically a 20 to 30 foot fishing skiff equipped 

with oversized outboard engines (Figure 3). A typical skiff is manned by 4 to 6 young 

men, usually less than 25 years old, who are heavily armed with Rocket Propelled 

Grenades (RPG’s) and automatic weapons.  Two or three skiffs typically work together, 

navigating via GPS and communicating via hand-held radio and satellite phone, and 

potentially staying far offshore for days at a time.  Pirates often seek first to attack a 

particular ship that their land-based intelligence network has identified as having a 

valuable cargo or being vulnerable to attack (Chalk 2008).  Other times, or after a 

planned attack has not succeeded, pirates at sea seek out any target of opportunity. 

When a potential target ship has been spotted, pirates race to it at top speed.  A 

combination of stealth and speed are critical at this point.  Approach is typically from 

the rear, taking advantage of the radar shadow behind the ship to remain unseen.  Pirates 

often work together in Pirate Action Groups (PAG’s) of two or three small boats.  One 

or two boats will maneuver alongside or in front of the target vessel, often firing heavy 



 

 

9 
 

weapons at it, in an effort to slow the target and distract its crew.  Meanwhile, the final 

small boat approaches the target vessel undetected from its stern, and pirates use 

ladders to rapidly and clandestinely board the ship.  Once onboard, pirates quickly 

move to the ship’s bridge, using whatever force is necessary to gain control of the ship 

(Whiteneck 2011).  The pirates slow the ship, embark additional pirates, then round up 

and secure the crew.  At this point, pirates have complete control of the ship, and they 

navigate it to the coastal waters of Somalia, where the ship and crew are held hostage 

until a ransom is negotiated and paid. 

On average, Somali pirates successfully board and gain control of only about 

20% of the ships they target (Bridger 2011).  Section 1.4 discusses some of the 

countermeasures that contribute to this low success rate.  Thus, about 80% of the time, 

after an unsuccessful or thwarted boarding, the pirates find themselves alone, hundreds 

of miles out to sea, in a small and poorly outfitted skiff, with nothing to show for their 

effort, and in extreme peril.  The reaction of most pirates is to immediately attempt to 

 
 

Figure 3: Typical Somali Pirate Skiff 
(Source: U.S. Navy) 

 



 

 

10 
 

find a new target.  If another ship is visible on the horizon, they race towards it and 

attempt to board, despite no foreknowledge of its cargo or crew (Whiteneck 2011). 

One tactic that has proven especially effective for Somali pirates is the use of 

mother ships to increase their range and on-station time.  Captured vessels of all sizes, 

from fishing dhows to oil tankers, are used as floating support bases, from which 

smaller skiffs can be launched.  Pirates can stay on station longer and in worse weather, 

with significantly less fatigue, by using mother ships as staging areas from which to 

launch their attacks.  In addition, the mother ships have better communication facilities 

to receive intelligence from shore and better radar to spot target ships while still over 

the horizon.  Once a potential target vessel has been detected over the horizon, pirates 

use the mother ship’s radar to track it, launch two or three small pirate skiffs, and then 

use radio communications to vector the skiffs towards the target for intercept. Using 

mother ships, pirates can reach virtually all corners of the Arabian Sea and stay on 

station for weeks at a time (Warbrick 2008).   The innovation of using mother ships 

was responsible for the dramatic increase in range of pirate attacks shown in Figure 2.  

Before mother ships were used, all Somali pirate attacks occurred within 200 miles of 

the coast.  Today, using mother ships, no region of the Arabian Sea is off limits, and 

pirate attacks have occurred as far as 1,300 miles from the Somali coast (Bridger 2011).  

Additionally, pirate mother ships can be extremely hard to detect, since they often look 

like regular shipping traffic (Figure 4). 



 

 

11 
 

 

 

  

 
 

 
 

Figure 4: Pirate Mother Ships or Regular Traffic? 
(Source: U.S. Navy) 

 



 

 

12 
 

1.4 Piracy Prevention: Countermeasures 

Merchant ship captains and crew utilize an array of countermeasures in their 

attempts to thwart a pirate boarding.  These methods range from fairly passive to highly 

aggressive and active. 

Among the more passive of countermeasures are those dealing with a ship’s 

course and speed.  In general, if a ship maintains a speed of greater than 15 knots, its 

chances of being successfully boarded are dramatically reduced.  In any significant sea 

state, pirate skiffs have a difficult time traveling at high speeds.  Even when pirate skiffs 

are able to maintain higher speeds, their rate of closure on high speed contacts is so 

slow that they usually give up the chase before intercepting their target.  Another 

passive method of pirate avoidance is evasive maneuvering, where the ship’s course is 

frequently changed in an erratic pattern.  A ship with frequent course changes is 

difficult for pirates to track and intercept, even when using a mother ship’s radar 

facilities.  During an attempted boarding, erratic course changes make boarding 

significantly more difficult and sometimes swamp and sink the pirate skiff (Hummel 

2011). 

Physical barriers and disruption devices are additional methods of thwarting 

unwelcome boarders.  Chain-link fence and/or barbed wire are sometimes installed at 

locations of the ship with low freeboard, as these are the areas most vulnerable to rapid 

boarding.  Disruption devices, such as fire hoses, slippery foam on the decks, and Long 

Range Acoustic Devices (LRAD), can further impede potential boarders (Figure 5).   

Though these barriers and devices might not hold off a determined boarding party 

indefinitely, they usually delay the boarding.    This extra time can be used to maneuver 



 

 

13 
 

the ship towards help or to secure the crew in a safe location onboard ship (Duda and 

Szubrycht 2009). 

Since 2010, most ship owners have begun to employ active measures to prevent 

Somali piracy.  At a minimum, unarmed guards and extra lookouts are posted on 

virtually all ships transiting the Arabian Sea and West Indian Ocean.  Many merchant 

ships now travel in convoys with other ships and via routes that will take them near 

military ships.  Meanwhile, the military, especially the U.S. Navy, has successfully 

employed Unmanned Aerial Vehicles (UAV’s) to locate, track down, and destroy pirate 

mother ships (La Boon 2011).  Merchant ships are warned ahead of time to avoid areas 

where UAV’s have spotted pirates recently, while naval warships speed to those areas 

to intercept the pirates. 

 
 

Figure 5: Disruption Devices May Slow or Thwart Potential Boarders 
(Source: U.S. Navy) 

 



 

 

14 
 

A small but growing percentage of merchants have employed the most 

aggressive methods to thwart pirate attacks.  Some ships have been outfitted with 

custom-built safehouses, called citadels, to which the crew can retreat if boarded by 

pirates.  A locked citadel cannot be breached from the outside, and some citadels even 

have facilities within them to allow the crew to maintain steerage of the ship (Bateman 

2012).  Thus, even though pirates successfully board the ship, they are unable to gain 

control of the ship or its crew.  The worst they can do is to steal items from it. 

Finally, at the most aggressive end of the spectrum of countermeasures versus 

piracy, some ships have chosen to employ armed security guards and/or armed escorts 

for the transit through the most dangerous areas.  Though costly, these methods have 

so far proven successful.   To date, no vessels employing armed security guards or 

armed escorts have been successfully boarded.  However, the relative sample size of 

potential target ships fitting this description is small.  Also, concerns have been raised 

that, should pirates successfully board an armed merchant vessel, they will be more 

likely to retaliate with violence towards the crew (Mineau 2010). 

 

 

 

 

  



 

 

15 
 

Chapter 2: Piracy Prediction Methods 

 When asked about his strategy for batting, baseball Hall of Famer Willie Keeler 

replied, “Hit ‘em where they ain’t.”  This philosophy also embodies the single best 

countermeasure versus piracy: avoid encountering them in the first place.  The key to 

avoiding pirates is to know where they are (or are most likely to be) then travel in 

another direction.  To this end, three main methodologies have emerged for predicting 

the likely locations of maritime pirates: 

• Prediction based on past piracy problem areas 

• Prediction based on geography and political factors 

• Prediction based on agent-based simulation using intelligence and weather data, 

incorporating Bayesian inputs about recent pirate activity 

Each of these methodologies is briefly discussed in the following pages. 

 

 

  



 

 

16 
 

2.1 High Threat Regions 

 The earliest and simplest method of piracy prediction is to treat an entire region 

as a high-threat or low-threat area, based on its past history of attacks.  Within a given 

region, such as the combined Red Sea, Gulf of Aden and Arabian Sea area, no 

distinction is made regarding probability of pirate attack at individual locations.  At 

any location within a high-risk geographic region, the likelihood of attack is treated as 

equally high.  No distinction is made in the risk of being within a few hundred miles of 

the Somali coast, where most attacks historically have occurred, versus being over a 

thousand miles from the Somali coast, where only the most sophisticated of pirates can 

operate via use of mother ships.  In other words, mariners transiting the region are 

essentially warned, “It’s all bad.  Beware!”   

For high-threat regions, anti-piracy planning charts are printed and distributed 

to mariners (Figure 6).  These charts generally list anti-piracy advice applicable to the 

region and shade the entire region in which mariners should exercise caution (United 

Kingdom Hydrographic Office 2010).  Because there is no distinction within a region 

as to level of threat at particular locations, and given that most crews transiting the 

waters near Somalia have already conducted anti-piracy training, the value of such 

charts is minimal.   

  



 

 

17 
 

  

Figure 6: Anti-Piracy Planning Chart for the Arabian Sea Region 

(Source: United Kingdom Hydrographic Office 2010) 



 

 

18 
 

2.2 Threat Density Plots 

 In 2010, researchers at Rutgers University conducted a study using historical 

information to predict where future pirate attacks would occur.  This study, called Risk 

Terrain Modeling (RTM), was based on the premise that 3 factors could predict 

whether or not an area would experience pirate activity in the coming year: density of 

shipping routes, presence of maritime chokepoints, and the area’s score in the global 

Failed States Index.  From these 3 factors, they identified 7 layers of piracy risk, each 

of which was evaluated in a dichotomous (high risk / no risk) manner.  Using these 

assessments, they created a piracy risk level for each area of the globe.  Risk levels 

were color-coded then plotted on maps according to location.  

Using risk data from 2008, the RTM model accurately predicted the global 

locations of maritime piracy incidents in 2009 (Moreto and Caplan 2010).  By 

predicting future piracy hotspots, RTM could be a useful tool for policymakers.  It 

might allow them to take political measures that prevent piracy’s spread.  However, 

RTM is not a tool that mariners can use on a daily basis.  As with anti-piracy planning 

charts, the RTM model only tells mariners that an area is bad and should be avoided, 

not how to travel through it and avoid pirates.  It gives no data on particular locations, 

nor does it give real-time predictions based on current information. 

 

  



 

 

19 
 

2.3 Forecasting via Simulation 

 In order to provide a more dynamic, real-time forecasting of pirate locations, 

both the United Kingdom and the United States developed prediction models that 

incorporate agent-based simulation.  The three most successful models have been the 

United Kingdom Global Model (UKGM), the Piracy Performance Surface (PPS) 

model, and the Pirate Attack Risk Surface (PARS) model.  Each of these three are 

discussed briefly in the following pages. 

 

2.3.1 United Kingdom Global Model (UKGM) 

In 2010, the United Kingdom developed a real-time forecasting model that 

utilizes meteorological data to predict the probable locations of pirate activity in the 

Arabian Sea.  The United Kingdom Global Model (UKGM) is run four times per day 

and provides a rolling six day forecast.  Inputs to the model include present and forecast 

weather, winds, sea states, and water temperatures.  The UKGM is purely an agent-

based simulation based on weather conditions.  It does not incorporate real-time 

intelligence about known pirate activity and tactics.  Even if pirates are reported at a 

particular location, the UKGM does not adjust its probability values (Ritchie 2010). 

 

 

  



 

 

20 
 

2.3.2 Piracy Performance Surface (PPS) Model 

In 2009, the Naval Oceanographic Office developed the first real-time piracy 

prediction model, the Piracy Performance Surface (PPS) model.  This model, which is 

used as a forward-warning tool by military and commercial vessels, graphically shows 

the predicted piracy threat level in the Arabian Sea region.  The PPS model uses a 

combination of the environmental forecast and historical locations of observed pirate 

activity, as well as Bayesian input of recent pirate activity, to calculate a probability of 

real-time pirate activity in discrete areas of the Arabian Sea.  Each area is a square box 

approximately 50 miles by 50 miles.  When an attempted or successful pirate boarding 

is reported, the probability is raised for the next 48 hours at that location plus the 

bordering areas.  These increased probability values slowly dissipate over the next 7 

days (Slootmaker 2011).  

  



 

 

21 
 

2.3.3 Pirate Attack Risk Surface (PARS) Model 

The success of the PPS model led to follow-on research to develop an even 

more accurate piracy forecasting tool, the Pirate Attack Risk Surface (PARS) model. 

The PARS model adds extra layers of input regarding real-time intelligence and pirate 

behavior patterns that the PPS model did not include (Slootmaker 2011).  The output 

of PARS is a forecast of the probability of pirate presence as a function of latitude and 

longitude within the Arabian Sea region over time. 

The piracy probability at each of over 2,000 locations in the PARS model is 

calculated based on 72 hour meteorological forecasts, real-time intelligence, and 

historically observed pirate behavior trends.  Meteorological inputs include data on 

waves, winds, and tides.  Intelligence inputs include information about recent pirate 

attacks, suspected mother ship spotting, and pirate base camp activity ashore.  

Historically observed behaviors include known areas of operation, current piracy 

tactics, and observed pirate behaviors after unsuccessful attacks.  

The PARS model uses agent-based simulation along with these inputs to 

calculate a new probability surface every 12 hours, giving an updated probability for 

each location on the map.  When real-time pirate attacks are reported, the PARS model 

uses this information as Bayesian input to further adjust its probability predictions for 

the coming week.   

The PARS model was created using the Python 2.6.2 program; however, a 

MATLAB version of the model has also been developed.  Currently, the PARS model 

is the only known piracy forecasting tool that combines meteorological and intelligence 



 

 

22 
 

data, along with Bayesian input of recent activity.  Its output is considered the most 

accurate predictor of pirate activity currently available (Slootmaker 2011).  

To create its output piracy prediction map, the PARS model starts with a map 

of the Arabian Sea, such as that shown in Figure 7.  

 

 
 

Figure 7: Map of Arabian Sea Region 

(Source: Google Maps) 



 

 

23 
 

The PARS model then divides the Arabian Sea region into areas of 0.8 degrees 

latitude by 0.8 degrees longitude.  This essentially creates a 43 x 50 matrix of 2,150 

equally sized grid squares that are each 50 miles by 50 miles in size.  The dividing of 

the region into grid squares is shown in Figure 8 . 

 

 
 

Figure 8: Dividing the Arabian Sea Region into 50 mile x 50 mile Areas 

 (Source: Map from Google Maps) 



 

 

24 
 

Finally, the PARS model calculates a unique probability value related to pirate 

activity in each grid square.  As discussed above, the probability at each location is 

based on weather forecasts, intelligence reports, and pirate behavior trends.  It is 

updated every 12 hours using Bayesian input of observed pirate activity.  An example 

of the type of data generated in the PARS model is shown in Figure 9. 

   

 
 

Figure 9: Example of Calculated Values at Each Location in PARS Model 

 (Source: Map from Google Maps. Data adapted from Slootmaker 2011.) 



 

 

25 
 

 Typically, the graphical output of the PARS model does not include probability 

numbers.  Rather, each square is color-coded according to its threat level.  Red 

represents high pirate activity threat levels.  The scale descends to orange, yellow, blue 

blue-green, and finally green for the lowest piracy threat levels.  Figure 10 is an adapted 

example of the type of PARS output that the military or mariners might use to plan 

their transit routes.  

 
 

Figure 10: Adapted Example of PARS Model Output 
 (Source: Map from Google Maps. Data adapted from Slootmaker 2011.) 

 



 

 

26 
 

Chapter 3: Problem Definition 

3.1 Pirate Avoidance: What’s Still Missing? 

The PARS model is the most accurate tool currently available for predicting the 

probability of encountering pirates in the Arabian Sea.  It is updated twice daily to 

incorporate the most recent meteorological and intelligence data, and it provides a 

nearly real-time threat picture.  The United States Navy and allied nations use the PARS 

model as a guide for directing their anti-piracy efforts.  They focus their naval presence 

in the areas of highest predicted pirate concentration. 

Unclassified outputs from the PARS model, color-coded into areas of lowest to 

highest threat levels, are sometimes made available to civilian mariners.  In transiting 

the Arabian Sea region, using the PARS output, mariners can ensure that their course 

avoids the highest threat regions and that ample anti-piracy precautions are in place 

elsewhere. 

However, mariners using the PARS model are more or less on their own to 

determine the “best” transit path.  The tradeoff is that, by diverting to avoid high threat 

regions, they may spend more actual time in the “danger zone” and might spend 

significantly more on their operating and fuel costs.  Is it worthwhile to go twice as far 

and spend twice as long in pirate-infested waters to avoid a high threat area?  What 

about a medium threat area or a low-to-medium threat zone?  Where should mariners 

draw the line on which regions to avoid and which to speed straight through at full 

speed?  And how does transit cost enter into a mariner’s decisions?  Excessive 

diversions to avoid even the most miniscule threat of pirates will drive up costs and add 



 

 

27 
 

delays.  Should mariners on fast moving ships with anti-piracy countermeasures in 

place follow the same “best” route as those on slower moving ships with little to no 

countermeasures?  What is missing from the PARS model is mapping of the optimum 

transit route through the Arabian Sea that minimizes the overall probability of 

encountering pirates, while at the same time attempting to reduce any extra costs 

associated with such diversions. 

For example, suppose Figure 11 represents a matrix of probability values (in 

thousandths of one percent) while transiting a portion of the Arabian Sea.  A ship, 

starting at point A with no foreknowledge of pirate locations, might follow the shortest 

distance route, represented by the solid black path across the middle of the matrix.  

They would travel a distance of 50 grid squares but risk a 1.538% chance of 

encountering pirates.   Thus, their transit cost would be based on traveling 50 grid 

squares * 50 miles per grid square = 2,500 miles.  However, there would also be an 

 
Figure 11:  Comparison of Routes Through the Piracy Prediction Matrix 

 (Values Shown are Probabilities in units of thousandths of one percent) 

23 22 21 21 12 11 11 13 17 17 17 17 17 15 12 12 12 11 5 4 4 4 5 5 5 22 22 22 24 24 25 24 23 23 22 22 21 21 20 18 18 17 17 17 16 16 16 16 16 16 B

24 22 21 19 15 5 5 11 16 16 15 15 12 12 5 5 5 5 5 4 5 5 5 21 22 23 23 24 26 26 29 28 27 24 23 23 22 21 20 20 20 18 17 17 17 17 16 16 16 16 B

24 22 18 15 12 5 1 5 12 13 12 11 5 5 5 4 4 4 4 4 5 21 21 22 23 26 26 26 28 28 31 32 31 28 25 25 23 22 21 21 20 18 18 17 17 17 16 16 16 16 B

24 22 17 14 5 5 4 5 5 5 5 5 5 4 4 4 5 5 5 5 5 5 5 23 26 30 30 30 32 33 37 38 35 32 27 28 26 24 23 22 19 19 19 18 17 17 17 16 16 16 B

23 22 15 5 5 4 4 4 4 4 4 4 4 4 5 5 5 5 21 21 22 24 27 27 28 34 34 35 38 41 46 44 40 38 33 33 29 27 27 24 22 22 21 19 18 18 18 17 17 17 B

22 16 11 4 4 4 4 4 4 5 5 5 5 5 5 22 23 23 22 24 24 25 31 33 34 37 46 48 48 49 53 49 46 44 42 38 34 33 32 26 24 22 21 20 20 20 20 19 19 19 B

16 16 12 4 4 4 4 5 5 5 5 5 21 22 23 26 26 26 24 31 31 33 34 35 38 46 51 53 54 56 60 58 55 52 51 41 39 42 35 32 26 23 21 21 21 21 21 20 20 20 B

15 12 4 4 4 4 4 5 5 5 21 21 22 23 24 28 31 31 32 32 32 34 38 41 46 51 53 56 62 69 74 70 66 64 56 53 52 44 38 34 31 26 24 23 22 21 21 21 21 21 B

11 4 4 4 4 4 4 5 5 21 21 22 23 24 29 31 31 32 32 33 34 36 41 47 52 54 59 62 68 72 82 71 68 62 58 54 52 51 42 36 31 27 26 25 23 22 22 5 5 5 B

4 4 4 4 4 4 4 5 5 5 5 21 22 22 26 31 31 31 32 32 33 37 42 48 51 53 59 65 70 82 88 83 71 65 60 54 52 51 42 37 32 29 27 25 23 22 21 5 5 5 B

A 4 4 4 4 4 3 4 4 5 5 5 5 5 21 25 25 26 28 31 32 33 36 38 43 48 54 60 66 72 84 85 83 70 67 58 54 44 40 38 35 33 32 31 27 22 21 5 5 5 5 B

4 4 3 3 3 3 3 4 5 5 5 5 5 5 22 22 24 27 28 29 32 34 38 42 48 52 56 62 70 75 82 73 68 64 57 52 43 40 37 34 32 31 25 24 22 5 5 5 5 5 B

4 4 3 3 3 3 3 4 4 4 4 4 5 5 5 5 22 25 27 32 32 35 36 39 45 46 48 55 66 68 75 69 63 57 48 44 40 35 32 28 26 22 22 22 5 5 5 5 5 5 B

4 3 3 3 3 3 3 4 4 4 4 4 4 5 5 21 22 23 25 28 31 32 34 36 40 41 46 54 62 61 67 60 58 52 44 39 36 33 31 28 24 21 5 5 5 5 5 5 5 5 B

3 3 3 3 3 3 3 3 4 4 4 4 4 5 21 21 22 22 23 25 27 27 32 34 34 35 40 45 52 56 60 56 52 43 40 35 34 32 27 25 21 5 5 5 5 5 5 5 5 5 B

2 2 2 2 2 2 3 3 4 4 4 4 4 5 21 21 21 21 21 25 25 25 32 33 33 34 37 45 51 52 56 52 51 42 39 33 31 27 24 21 21 21 21 21 5 5 5 5 5 5 B

2 2 2 2 2 2 3 3 1 4 4 4 4 5 5 5 21 21 21 22 22 23 24 31 32 32 34 37 41 51 53 52 51 40 35 32 26 24 21 21 21 21 22 21 5 5 5 5 5 5 B

2 2 3 3 3 3 3 4 4 4 5 5 5 5 5 5 15 18 19 20 20 21 22 24 31 31 31 32 36 41 40 39 38 39 33 26 23 22 21 21 23 22 22 21 21 21 5 5 5 5 B

3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 5 12 16 17 17 16 20 20 21 22 22 25 31 32 33 34 33 34 33 25 22 20 21 21 23 24 22 22 5 5 5 5 5 5 5 B

3 3 3 4 5 5 4 4 5 5 5 5 5 5 5 5 11 15 15 15 15 16 16 20 19 20 21 23 23 24 25 24 23 22 22 21 20 21 21 23 23 22 21 21 21 5 5 5 5 5 B

4 4 4 4 5 5 5 5 5 5 5 5 5 11 11 11 12 14 14 14 14 15 15 16 16 16 19 19 20 20 20 20 19 19 19 19 19 21 21 22 22 21 21 21 21 5 5 5 5 5 B

4 4 4 5 5 5 5 5 5 5 11 12 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 12 12 11 11 13 13 13 16 16 20 21 21 21 21 21 21 21 5 5 5 B

4 4 4 5 5 5 5 5 12 11 11 12 12 13 13 14 14 14 13 13 13 14 14 13 13 13 13 12 12 12 9 10 10 10 11 11 11 13 13 13 18 21 21 21 21 21 21 21 21 21 B

4 4 4 5 5 5 11 12 11 12 12 12 12 13 13 13 13 13 13 13 13 13 12 12 12 12 12 9 10 10 10 9 9 9 9 10 10 12 11 12 12 18 21 21 21 5 5 4 4 4 B

5 5 5 5 5 5 12 12 12 12 12 12 12 12 12 12 11 11 11 11 12 12 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9 10 9 9 10 10 21 21 5 5 5 4 4 4 B

5 5 5 11 12 12 12 12 12 12 12 12 12 12 11 12 10 10 10 10 10 10 10 10 10 10 10 10 9 9 9 9 9 9 9 9 9 9 9 9 9 10 10 10 8 8 7 7 7 7 B

Black Path: Distance = 50; Pnet = 1.538%

Blue Path: Distance = 59; Pnet = 0.647%

Green Path: Distance = 66; Pnet = 0.478%



 

 

28 
 

Expected Monetary Value (EMV) associated with their high piracy risk.  Because a 

successful pirate attack would have negative financial impact in the millions of dollars, 

even a small piracy risk has a potential financial impact that must be considered.  

Alternatively, another mariner, starting from the same location and with access 

to data about possible pirate locations, might choose to follow a route above or below 

the highest risk location.  This would reduce his chances of encountering pirates even 

though it would increase his total distance traveled.  In Figure 11, following the dashed 

blue path above the danger area increases the distance traveled to 59 grid squares = 

2,950 miles while reducing the overall piracy risk to 0.647%.  Traveling the even longer 

dotted green path increases the distance to 66 grid squares = 3,300 miles but further 

decreases the overall piracy probability to 0.478%. 

For relatively simple threat pictures like the example just discussed, a mariner 

might be fairly confident that he is choosing close to the optimum course to lower his 

overall piracy risk, while still keeping transit costs down.  However, for more 

complicated threat pictures with multiple active Piracy Action Group mother ships in 

the area, the choice of best transit path is not so obvious.  The best path for pirate 

avoidance is not nearly as clear in Figure 12 as in the previous example.  A tool that 

helps identify the optimum transit path to avoid pirate activity, while considering both 

transit cost and the Expected Monetary Value of the cost of a successful pirate attack, 

would be useful. 

  



 

 

29 
 

Furthermore, a merchant ship traveling at 20 knots will take about 4 days to 

transit the Arabian Sea.  During this time, the PARS map will be updated 8 times, once 

every 12 hours, with the latest predictions.  PARS maps do not usually change quickly 

– the effects of weather and intelligence are accretive, based on a rolling sample of 

recent information, not just one report.  The only rapid changes to the PARS maps 

come from Bayesian input of recent pirate activity.  The influence of these activity 

reports starts in a concentrated location then spreads and dissipates over the next 7 days.  

Because the PARS map can change during a ship’s transit period, the tool for 

identifying the optimized path should also be able to adjust quickly for new probability 

matrices as well as current location of the ship. 

 
 

Figure 12: Example of a More Complicated Piracy Prediction Matrix 
 (Values Shown are Probabilities in units of thousandths of one percent) 

 

 

23 22 21 21 12 11 11 13 17 17 17 17 17 15 12 12 12 11 5 4 4 4 5 5 5 22 22 22 24 24 25 24 23 23 22 22 21 21 20 18 18 17 17 17 16 16 16 16 16 16 B

24 22 21 19 15 5 5 11 16 16 15 70 70 70 70 5 5 5 5 4 5 5 5 21 22 23 23 24 26 26 29 28 27 24 23 23 22 21 20 20 20 18 17 17 17 17 16 16 16 16 B

24 22 18 15 12 5 1 5 12 13 70 75 75 75 75 70 4 4 4 4 5 21 21 22 23 26 26 26 28 28 31 32 31 28 25 25 23 22 21 21 20 18 18 17 17 17 16 16 16 16 B

24 22 17 14 5 5 4 5 5 70 75 82 82 82 82 75 70 5 5 5 5 5 5 23 26 30 30 30 32 33 37 38 35 32 27 28 26 24 23 22 19 19 19 18 17 17 17 16 16 16 B

23 22 15 5 5 4 4 4 4 70 75 82 99 99 82 75 70 5 21 21 22 24 27 27 28 34 34 35 38 41 46 44 40 38 33 33 29 27 27 24 22 22 21 19 18 18 18 17 17 17 B

22 16 11 4 4 4 4 4 4 70 75 84 99 99 82 75 70 23 22 24 24 25 31 33 34 37 46 48 48 49 53 49 46 44 42 38 34 33 32 26 24 22 21 20 20 20 20 19 19 19 B

16 16 12 4 4 4 4 5 5 70 75 82 82 82 82 75 70 26 24 31 31 33 34 35 38 46 51 53 54 56 60 58 55 52 51 41 39 42 35 32 26 23 21 21 21 21 21 20 20 20 B

15 12 4 4 4 4 4 5 5 5 70 75 75 75 75 70 31 31 32 32 32 34 38 41 46 51 53 56 62 69 74 70 66 64 56 53 52 44 38 34 31 26 24 23 22 21 21 21 20 20 B

11 4 4 4 4 4 4 5 5 21 21 70 70 70 70 31 31 32 32 33 34 36 41 47 52 54 59 62 68 72 82 71 68 62 58 54 52 51 42 36 31 27 26 25 23 22 22 5 5 5 B

4 4 4 4 4 4 4 5 5 5 5 21 22 22 26 31 31 31 32 32 33 37 42 48 51 53 59 65 70 82 88 83 71 65 60 54 52 51 42 37 32 29 27 25 23 22 21 5 5 5 B

A 4 4 4 4 4 3 4 4 5 5 5 5 5 21 25 25 26 28 31 32 33 36 38 43 48 54 60 66 72 84 85 83 70 67 58 54 44 40 38 35 33 32 31 27 22 21 5 5 5 5 B

4 4 3 3 3 3 3 4 5 5 5 5 5 5 22 22 24 27 28 29 32 34 38 42 48 52 56 62 70 75 82 73 68 64 57 52 43 40 37 34 32 31 25 24 22 5 5 5 5 5 B

4 4 3 3 3 3 3 4 4 4 4 4 5 5 5 5 22 25 27 32 32 35 36 39 45 46 48 55 66 68 75 69 63 57 48 44 40 35 32 28 26 22 22 22 5 5 5 5 5 5 B

4 3 3 3 3 3 3 4 4 4 4 4 4 5 5 21 22 23 25 28 31 32 34 36 40 41 46 54 62 61 67 60 58 52 44 39 36 33 31 28 24 21 5 5 5 5 5 5 5 5 B

3 3 3 3 3 3 3 3 4 4 4 4 4 5 21 21 22 22 23 25 27 27 32 34 34 35 40 45 52 56 60 56 52 43 40 35 34 32 27 25 21 5 5 5 5 5 5 5 5 5 B

2 2 2 2 2 2 3 3 4 4 4 4 4 5 21 21 21 21 21 25 25 25 32 33 33 34 37 45 51 52 56 52 51 42 39 33 31 27 24 21 21 21 21 21 5 5 5 5 5 5 B

2 2 2 2 2 2 3 3 1 4 4 4 4 5 5 5 21 21 21 22 22 23 24 31 32 32 34 37 41 51 53 52 51 40 35 32 26 24 46 46 46 46 22 21 5 5 5 5 5 5 B

2 2 3 3 3 3 3 4 4 4 5 5 5 5 5 5 15 18 19 20 20 21 22 24 31 31 31 32 36 41 40 39 38 39 33 26 23 46 46 69 69 46 46 46 21 21 5 5 5 5 B

3 3 3 4 4 4 4 4 5 5 5 5 5 5 5 5 12 16 17 17 16 20 20 21 22 22 25 31 32 33 34 33 34 33 25 22 46 46 69 69 69 69 69 46 46 5 5 5 5 5 B

3 3 3 4 5 5 4 4 5 5 5 5 5 5 5 5 11 15 15 15 15 16 16 20 19 20 21 23 23 24 25 24 23 22 22 46 46 69 69 69 69 69 69 69 46 46 5 5 5 5 B

4 4 4 4 5 5 5 5 5 5 5 5 5 11 11 11 12 14 14 14 14 15 15 16 16 16 19 19 20 20 20 20 19 19 46 46 69 69 62 69 74 70 66 64 69 46 46 5 5 5 B

4 4 4 5 5 5 5 5 5 5 11 12 12 12 13 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 12 12 11 11 46 69 69 69 68 72 82 83 68 62 69 69 46 5 5 5 B

4 4 4 5 5 5 5 5 12 11 11 12 12 13 13 14 14 14 13 13 13 14 14 13 13 13 13 12 12 12 9 10 10 10 46 69 69 69 70 82 88 83 83 65 69 69 46 21 5 5 B

4 4 4 5 5 5 11 12 11 12 12 12 12 13 13 13 13 13 13 13 13 13 12 12 12 12 12 9 10 10 10 9 9 9 46 46 69 69 72 84 85 83 83 67 69 69 46 4 4 4 B

5 5 5 5 5 5 12 12 12 12 12 12 12 12 12 12 11 11 11 11 12 12 10 10 10 9 9 9 9 9 9 9 9 9 9 46 69 69 70 75 82 83 68 64 69 46 46 4 4 4 B

5 5 5 11 12 12 12 12 12 12 12 12 12 12 11 12 10 10 10 10 10 10 10 10 10 10 10 10 9 9 9 9 9 9 9 46 46 69 66 68 75 69 63 57 46 46 7 7 7 5 B



 

 

30 
 

Identification of the Optimized Transit Path must also consider the economic 

realities involved and allow a mariner to choose the priority he places on pirate 

avoidance versus cost minimization.  Is it worth it to divert significantly to lower one’s 

probability of encountering pirates if it means a longer distance traveled and, thus, a 

higher transit cost?  Perhaps it is worth it if the threat of piracy drops significantly while 

the transit cost increases only marginally.  But what about the opposite case – when the 

risk of piracy drops only slightly but transit costs go up significantly?  The tool used 

for determining the Optimized Transit Path should allow for the mariner to make his 

own decisions about optimizing pirate avoidance versus minimizing overall cost. 

Finally, when it comes to piracy, not all ships are created equal.  Once pirates 

are encountered (the probability predicted by the PARS model), some ships have a 

much higher likelihood of being successfully boarded than others.  A slow moving ship 

with low freeboard will be successfully boarded almost every time that pirates attempt 

to get on board.  Meanwhile, a fast moving ship with high freeboard is extremely 

difficult for pirates to board.  This difference between ship types and speeds should 

also be accounted for in determining the Optimized Transit Path through the Arabian 

Sea, especially when cost is an important factor. 

  



 

 

31 
 

3.2 Objective: Solving the Optimized Transit Path Problem 

Ultimately, the goal of this research is to develop the framework of a “Pirate 

Avoidance System” that could be used by mariners to minimize the probability of 

encountering pirates, while at the same time following an economically viable transit 

path.  In a fashion similar to a modern GPS advising drivers of the best path to avoid 

areas of heavy traffic, the Pirate Avoidance System would advise mariners of the best 

path to avoid pirates.  Using probability data from the PARS model, the system would 

determine the Optimized Transit Path through the Arabian Sea with the lowest overall 

net probability of pirate activity, the lowest overall cost (incorporating transit cost plus 

Expected Monetary Value of potential piracy costs), or some weighted average of the 

two. 

One of the challenges of solving the piracy avoidance problem is to determine the 

best algorithm and logic in order to calculate the minimum cumulative path of nodes 

through the piracy network.  The piracy matrix problem is similar to other path 

applications in common use today.  However, it does have some differences that may 

or may not make these other methods appropriate to its solution.  An Optimized Transit 

Path algorithm, specifically aimed at solving the piracy matrix shortest path problem, 

should be developed and its performance compared to that which could be achieved 

with pre-existing algorithms.   

In some ways, the piracy Optimized Transit Path problem resembles Critical Path 

Methods used in project scheduling.  For the scheduling of a project, network 

scheduling techniques can be used to determine the earliest start, earliest finish, latest 

start, latest finish, total slack, and free slack for each activity.  However, all of these 



 

 

32 
 

calculations are based on the limitations imposed by the project’s critical path, its path 

of maximum total duration (Gido and Clements 2012).  In the case of the piracy 

Optimized Transit Path problem, the minimum total duration is desired.   

Though the Optimized Transit Path problem is similar in many ways to network 

scheduling, there are a few important differences.  Each area on the map can be treated 

like a node in a network diagram.  However, instead of durations for each node, either 

the probability of piracy or an overall cost for each node is used.  Also, instead of 

movement in the network being confined in direction by precedence logic, movement 

in the piracy Optimized Transit Path problem is much more complex.  From any node 

in the problem, movement can be forwards, backwards, left, right, or diagonal.  In a 

fairly simple matrix of nodes, such as a 4x4 or 5x5, each having its own cost per node, 

the minimum cumulative cost to move from one side to the other can be determined 

fairly simply by trial and error.  However, as the matrix gets larger, the task of 

identifying the minimum path becomes exponentially more difficult.  For extremely 

large matrices, like the 43x50 array of probability values produced by the PARS model, 

hand calculation of the optimum transit path is almost impossible.  For example, just 

traveling forward through the matrix, with no backtracking allowed, there are 43 * 349 

possible paths through this network.  

In other ways, this Optimized Transit Path problem resembles some of the 

Transportation and Logistics Problems, as well as Computer Routing Problems, studied 

in Operations Research and Computer Science, as will be discussed in Chapter 4.  In 

many computer network designs, as well as transportation routing problems, the 

objective is to transit from one location to another via the shortest or quickest path 



 

 

33 
 

possible.  This class of problems is generally referred to as shortest path problems and 

is broken up into deterministic shortest path problems and stochastic shortest path 

problems.  In deterministic shortest path problems, the distance from one node 

(location) to another is considered a known, fixed value.  In stochastic shortest path 

problems, the distance from one node to another is treated as a probability distribution 

with a mean and standard deviation, which can either be constant or vary with time.  

Solutions to stochastic shortest path problems generally rely on a deterministic shortest 

path solution method to find the mean path value, then utilize stochastic methods to 

calculate variations in the mean (Cho 2003). 

The Optimized Transit Path problem for maritime piracy can effectively be treated 

as a deterministic shortest path problem.  In the unclassified version of the PARS output 

occasionally released to the public, the probability of encountering pirates at each node 

is represented as a fixed value for that 12 hour period, with no standard deviation 

reported.  Likewise, its time variance is not repeatable or predictable, as it relies on the 

ever-changing weather, intelligence, and pirate activity picture of the moment.  A brief 

survey of deterministic shortest path methods is included in Chapter 6 of this report. 

One aspect of the piracy shortest path problem that is somewhat unique is that it is 

looking for the shortest path from any point on the “starting line” of one side of the 

matrix to any point on the “finish line” on the other side of the matrix.  The fastest of 

traditional shortest path algorithms calculate the shortest path from one particular 

starting point to one particular finish point or to all other potential finish points.  

Because a mariner in the Arabian Sea will continue his transit after passing through the 

danger area, he typically does not have to start or finish at specific points in the matrix.  



 

 

34 
 

As long as he crosses the “finish line” to exit the area of piracy danger (the area 

represented by the PARS matrix), it is sufficient.  Thus, to use potential point-to-point 

shortest path algorithms for the piracy problem, then algorithm would have to be run 

an extra (number of nodes on starting line) * (number of nodes on finish line) times to 

evaluate every potential shortest path through the matrix and determine the overall 

shortest.  For the 43 x 50 PARS matrix, this could require running the algorithm an 

extra 43 * 43 = 1,849 times. 

Other traditional shortest path algorithms calculate the shortest path between a 

specific node and every other node.  Still others calculate the shortest path from every 

node in the matrix to every other node in the matrix.  For the piracy problem, these two 

classes of algorithms might be overkill, making for more calculations than necessary. 

What is needed is an algorithm that efficiently calculates the shortest path from any 

point on the “starting line” of the matrix to any point on the “finish line” at the other 

end.  Using input from the PARS model, this algorithm would efficiently find the best 

transit path through the Arabian Sea to avoid pirates and minimize costs.  The 

performance of this algorithm, specifically its required number of calculations and 

computing time, could then be compared to the performance of the most prevalent 

deterministic shortest path methods at solving the Optimized Transit Path problem for 

maritime piracy. 

Once the necessary algorithm has been developed, the next objective of this 

research is to write a computer code that solves the Optimized Transit Path problem for 

avoiding pirates and minimizing overall cost, based on the most efficient algorithm for 

solving the problem.  This code will utilize the methodology and logic discussed above, 



 

 

35 
 

specifically applied to input data from the PARS model.  It will solve for the optimized 

path – that with the lowest net probability of pirate activity, the lowest overall cost, or 

some weighted combination thereof - through the entire Arabian Sea region.  As an 

output, the computer model should summarize the Optimized Transit Path via a listing 

of the recommended waypoints to follow. 

In addition, the computer model should give quantitative feedback on the “cost” of 

deviating from the Optimized Transit Path, in terms of increased net probability and 

increased cost.  Thus, for example, if a mariner chooses to follow a shorter path as far 

as physical distance, he will be aware of the increase in probability of encountering 

pirates associated with his choice or the increase in overall cost, when EMV of piracy 

costs is also considered. 

Analysis of the computer code associated with solving the Optimized Transit Path 

problem should also explore the relationship between matrix size and both theoretical 

and actual computation time needed to solve the problem.  For example, if the number 

of nodes in the matrix were doubled, would this change double the required solution 

time?  Would it square the solution time?  Or is there another relationship between 

matrix size and computing time?  The worst case number of calculations required to 

solve the problem should be represented as a polynomial in terms of number of nodes 

and/or edges (connections between nodes) so that it can be compared to other potential 

solution algorithms.  In addition, for a reasonably powered computer that might be 

found on a merchant ship, experiments should be run to quantify the expected solution 

time when a new PARS input is received. 

The main deliverables that result from this research should be as follows. 



 

 

36 
 

 

1. Methodology that accounts for differences between ships, configurations, and 

defensive measures in predicting the success rate of pirates attempting to board 

and take control of the ship. 

2. Methodology that allows optimization of both piracy avoidance and overall cost 

reduction.  This methodology should allow a mariner to make choices about his 

priorities regarding these two, sometimes competing, objectives. 

3. Algorithm that solves the piracy Optimized Transit Path problem to find the 

shortest path from any point on the “starting line” of the matrix to any point on 

the “finish line.” 

4. Computer code of the piracy Optimized Transit Path algorithm.  This code will 

allow calculation of both theoretical and actual performance of the algorithm. 

5. Comparison of the piracy Optimized Transit Path algorithm’s performance to 

that of already existing shortest path algorithms when solving the piracy 

avoidance problem. 

 

  



 

 

37 
 

Chapter 4: Nodal Matrices in Other Shortest Path Applications 

 Nodal matrices are frequently used to model the workspace in a wide variety of 

fields.  Just as with piracy prediction, in most of these applications, finding the shortest 

path through the matrix is an objective.  Three common applications that utilize shortest 

path algorithms through nodal matrices are computer network routing, transportation 

and logistics optimization, and underwater search planning. 

 

4.1 Computer Network Routing 

 Within computer science, each network of computers, routers, and their 

connections is modeled as a matrix.  Every router is modeled as a node in the matrix.  

Each router node is connected by a link to every other router node that is directly 

attached to it, either by hard wire connection or wirelessly.  Each of these router nodes, 

in turn, has links that directly connect it to those routers to which it is directly attached.  

Each link in the matrix has properties and metrics associated with it.  Routers will use 

knowledge of these properties to help them determine the best route to a desired 

destination.  Among the metrics used to determine the best path are length of 

transmission time, bandwidth, load, reliability, delay, and Maximum Transmission 

Unit (maximum size in bytes of a data unit that a link can process) associated with 

individual links, as well as number of hops, path cost, and communications cost 

associated with a potential path (Kurose and Ross 2004).  

 A typical computer network matrix will have a large number of nodes that are 

directly connected to only one, or just a few, other nodes.  These represent individual 

computer workstations and routers, which are usually connected via a relatively slow, 



 

 

38 
 

low bandwidth connection.  Many of these individual nodes will feed into an 

intermediate router, which is, in turn, connected to a main server via a significantly 

higher bandwidth connection than the stand-alone computers’.  This main server will 

then connect out to other main servers via extremely high bandwidth, high speed 

connections.  A simple diagram of part of a typical computer network matrix is 

illustrated in Figure 13. 

 

 In forming this vast array of routers and their connections into a matrix, two 

main protocols are followed for making updates to values in the matrix.  In Distance 

Vector Routing Protocol, which is used as the basis for Routing Internet Protocol (RIP), 

an individual router informs only its immediate neighbors of any property changes in 

its links to other routers (Tanenbaum and Wetherall 2010).  For example, if a 

connection between two routers were unplugged, only those routers directly connected 

 
 

Figure 13: Simplified Diagram of a Typical Computer Network Matrix 
 

Main

Server

Main

Server

Int.

Router

Int.

Router

Int.

Router

Int.

Router

Int.

Router

Int.

Router

Int.

Router

To Other

Main Servers

To Other

Main Servers



 

 

39 
 

to these two would be informed of the change.  Because information about the link 

properties in locally held, computations related to link changes are much easier and less 

complex with the Distance Vector Routing Protocol than with other methods. 

 The Link State Protocol is one of these other methods.  In it, a router sends a 

message to inform all other nodes in the matrix of any changes in link properties 

between it and a neighboring router.  Thus, the Link State Protocol maintains 

information about link properties on a global level, with all nodes aware of the status 

of all other nodes in the network and each of their link connections (Cisco 2014).  For 

large networks, this results in massive, complex computations any time a change is 

made anywhere in the network.  

Once the network matrix is established, routing protocols are used to specify 

how one router will communicate with another.  The routing protocol determines what 

path between tens, hundreds, or even thousands of router nodes that data will take in 

order to get from one location to a desired destination.  Within the routing protocol, 

routing algorithms determine which specific route to choose in order to accomplish this 

data transfer. 

With each routing protocol, the goal is essentially the same: to transfer data 

from one location to another location as quickly and efficiently as possible.  To do this, 

a shortest path algorithm is used to determine the shortest length path between two 

nodes, based on whichever property of the route is being optimized.  Usually, this 

optimization involves minimizing the net time to transfer data from one location to 

another.  The overall length of a route is defined as the sum of the lengths of those links 

the data travels through while being transferred from one location to another (Kurose 



 

 

40 
 

and Ross 2004).  Two of the most common routing algorithms used in computer science 

network routing are Suurballe’s Algorithm and the Edge Disjoint Shortest Path 

Algorithm. 

Suurballe’s Algorithm finds two different, distinct paths of minimum total 

length between a pair of nodes.  Suurballe’s Algorithm utilizes Dijkstra’s Algorithm, 

which will be discussed in Chapter 6, to find the minimum length path in the matrix 

from one location to another.  This path is recorded as the primary route.  Suurballe’s 

Algorithm then reweights each of the links on the shortest path, artificially increasing 

the lengths of all links that are part of the true shortest path.  It then uses Dijkstra’s 

Algorithm a second time to find a secondary or back-up shortest path through the 

matrix (Suurballe 1974 and Bhandari 1999).  In routing data via Suurballe’s Algorithm, 

the data is first sent via the primary shortest path.  If, for some reason, the data does not 

get through to its destination, it is sent again, this time via the secondary path. 

Edge Disjoint Shortest Pair Algorithm is another method sometimes used to 

solve for the shortest path through a computer routing network.  Like Suurballe’s 

Algorithm, it also calculates two shortest paths through the matrix.  However, because 

the Edge Disjoint Shortest Pair Algorithm allows negative values for link lengths, it 

must use the significantly slower Johnson’s Algorithm, which will be discussed briefly 

in Chapter 6, to calculate the shortest path (Bhandari 1999).  Because its solution is 

slower and requires more computing power, the Edge Disjoint Shortest Pair Algorithm 

is not used as frequently as Suurballe’s Algorithm in computer network routing 

applications. 



 

 

41 
 

4.2 Transportation and Logistics 

 The use of nodal matrices and shortest path calculations is also prevalent within 

transportation and logistics routing problems.  GPS navigation software, which gives 

turn-by-turn directions to a car’s driver, is perhaps the most commonly recognizable 

application in this field. 

 A car’s navigation GPS uses a vector-based map to calculate the best route 

through a network of roads from one location to another, then translates this route into 

a set of directions for the driver to follow to his destination.  For example, Figure 14 

represents a nodal matrix used in GPS navigation.  The lettered nodes in the figure 

represent specific locations on the map, and the links between them represent the roads 

that connect those locations.  Expected driving time for each road is a metric associated 

with each link.  If the quickest route from location A to location G were desired, the 

car’s navigation system would consider all of the possible routes between these points 

 
 

Figure 14: Example Transportation Network of Locations and Roads 
 
 

 

A

B

C

E

F

G

D

9 min

12 min

5
m

in



 

 

42 
 

then recommend the route with the shortest total time, route A-B-D-E-G, which has a 

route time of 21 minutes. 

 The key element of a vehicle’s navigation system is the map database upon 

which calculations are run.  A road map is essentially turned into a large matrix array.  

The basic elements of the map, such as addresses, locations, intersections, landmarks, 

and latitude/longitude coordinates, are treated as nodes of the matrix.  Roads between 

nodes are treated as links and assigned properties, such as distance, typical travel time, 

and speed limit.  Map providers put this matrix information of nodes and links into a 

standardized, well-defined, and documented format.  Typical map matrix formats 

include Standard Interchange Format, Geographic Data Files (GDF), and proprietary 

forms of GDF (ISO 14825 2004). 

 Various parties, including the providers of GPS hardware, software, and 

services then handle this standardized map data.  Many will add to it in proprietary 

ways, such as updating road travel times based on real-time traffic data.  These parties 

typically transform the data into a proprietary run-time format before calculating a 

recommended path through the matrix, preventing interoperation of maps between 

different vendors’ systems.  Recently, a large number of vendors, including GPS 

manufacturers, data services, and automobile manufacturers, have begun an initiative 

aimed at standardizing the format of final map data used in car navigation systems, 

with the goal of increasing interoperability and sharing of data between systems 

(Flament 2005). 

 The methods by which different navigation system manufacturers handle their 

map data to recommend a route is proprietary to each.  Differences include which 



 

 

43 
 

shortest path algorithms are utilized, which characteristics of each link are prioritized 

to determine the recommended path, how backup routes are decided upon, and which 

roads are included in determination of the best route.  However, all of the proprietary 

systems use some variant of traditional shortest path algorithms, most frequently 

Dijkstra’s Algorithm, discussed in Chapter 6, as their backbone (Toth and Vigo 2001). 

 One common difference between navigation systems is the extent to which they 

pre-calculate major parts of the route.  They will then use those pre-calculated sections 

rather than individual roads to decrease the size of the matrix and speed the time to 

calculate a recommended route between two locations.  For example, the route for a 

cross-country journey from Washington D.C. to Los Angeles would primarily utilize 

predetermined paths between major waypoints, consisting mainly of interstates and 

large highways, rather than calculating every possible route using every possible road 

between the two locations.  For example, in Figure 14, the navigation system might 

pre-calculate that the shortest route from B to E is via location D.  Thus, depending on 

the requested destination, it might not even include the road directly from B to E in its 

consideration of overall shortest route. 

  



 

 

44 
 

4.3 Search and Recovery 

 Another field where nodal matrices are often used along with path calculations 

is in search theory, especially for underwater searches at sea.  Search methods using 

probability mapping, Bayes Theorem, and path algorithms have been used successfully 

for a wide range of high-profile underwater searches, from lost ships and submarines 

to downed aircraft.  In essence, Bayesian search methods direct the search first to areas 

where the probability of discovery is highest, then to regions of intermediate 

probability, and finally to areas of lowest probability.  The search is continued until the 

probability of discovery is so low that the search is no longer economically viable 

(Stone 1975 and DeGroot 2004). 

 Bayesian search methods begin by formulating as many reasonable hypotheses 

as possible about the location of the missing object.  For example, in the search for the 

sunken treasure ship SS Central America, different hypotheses about the ship’s location 

were based on the captain’s reported location at the time of sinking, the location of 

ships that picked up survivors from the sinking, and the results of simulations based on 

weather and currents on the day of the sinking (Stone 1992).  For each hypothesis, a 

probability density function of likely locations of the missing object is created. 

 Meanwhile, for each location in the entire geographic region, the probability of 

detecting the missing object at each location, if it were actually located there, is 

determined.  In an underwater search, the detection probability, when searching an 

object’s true location, is a function of both the search method being used, the water 

depth at the location, and the size of the grid square represented by that location (PADI 

2003).  For example, divers and visual search methods will have a significantly higher 



 

 

45 
 

likelihood of detecting a missing object in shallow water than they would in deeper 

locations.  Both allowable bottom times and visibility drop quick as depth increases, 

greatly reducing the chances of spotting the object when visual methods are used.  

Other methods, such as towed array sonar search, have far less degradation of success 

probability as water deepens and are, therefore, typically a more preferred search 

method.  The detection probabilities for each location are summarized on a second 

probability map of the entire geographic region, distinct from the probability map of 

likely locations of the missing object. 

 For each hypothesis, the probability density function of the object’s location is 

then combined with the detection probability map, usually by multiplying the two 

values at each location (Stone 1975).  For example, if the probability that a missing 

object is at a particular location is 2.0%, and the detection probability of the search 

method being used is 70% for that water depth and location grid size, the overall 

probability of actually finding the object at the location would be 2.0% * 70% = 1.4%.  

Performing a similar calculation for every location on the map creates an overall 

probability density map of the entire geographic region for each hypothesis.  

Essentially, this map shows the probability of discovering the object at each location 

on the map, if that location were searched, based on that hypothesis. 

 If there are missing hypotheses as to the missing object’s location, the overall 

probability density maps for each hypothesis are then combined to form a single, 

overall, “best guess” probability map of the entire region.  This is the probability map 

upon which the search pattern will be based.  In combining probability density maps 

for the different hypotheses, a weighting factor is typically applied to each of the 



 

 

46 
 

hypotheses (DeGroot 2004).  Those hypotheses deemed more likely are given a higher 

weighting factor than those considered as more remote of possibilities.  Thus, the more 

likely hypotheses make a greater contribution to the final, overall probability density 

map than the less likely ones. 

 Using the overall probability density map, a search path is chosen that will 

begin by searching locations of highest probability then slowly progress to locations of 

intermediate probability and finally to areas of lower probability (Stone 1975).  The 

underwater scanning method to be used largely determines how this path is chosen and 

which, if any, path algorithms are used as part of the decision process.   

For example, when towed array sonar is used in deep water locations, miles of 

cable, with the towed array at its end, might be spooled out behind the search vessel.  

With such a tow, the search vessel cannot make sharp turns for fear of entanglement.  

Thus, search paths through this matrix of probability values need to be relatively 

straight, with only minor course corrections along the way.  Route selection algorithms 

used in this scenario need to encourage such a path.   

On the other hand, a search vessel utilizing divers would have almost no 

restrictions on its search pattern.  Because the vessel sits stationary for long periods of 

time while the divers are underwater then recovers them onboard before moving to the 

next search location, it has almost no restrictions on the pattern it follows from one 

search location to the next.  For such a scenario, the search would likely progress from 

the highest probability location to the next highest to the next and so on.   

Realistically, however, very few significant underwater searches today, 

especially the type that would create a probability density map, would utilize divers as 



 

 

47 
 

an initial search method because it is far too slow of a process with too low of detection 

probabilities in deeper water.  Almost all modern searches will incorporate some sort 

of towed array sonar, necessitating relatively straight paths through the nodal matrix of 

probability values. 

 In Bayesian search theory, once a location is searched and the missing object is 

not found there, the probability of discovery for that location, as well as all other 

locations in the matrix, is revised (Iida 1992).  When the search of a location does not 

yield the missing object, the probability for that location is dramatically reduced, 

though usually not to zero.  Correspondingly, the sum of probabilities for all other 

locations in the matrix is increased by the same amount.  The process of revising 

probabilities is done according to Bayes Theorem.   

 Applying Bayes Theorem to the underwater search (Berger 1985), let A denote 

the event that the missing object is actually located at a given location.  Let B denote 

the event that the object is not detected when that given location is searched.  Suppose 

that the prior probability, P(A), that the missing object is at a particular location is p.  

This is the probability for that location from the overall probability density map, prior 

to the location being searched.  The prior probability that the missing object is not at a 

particular location, therefore, is (1 – p).  Also suppose that the probability of 

successfully detecting the object at a given location, if it is actually there, is d.  Thus, 

the conditional probability, P(B|A), that the object will not be found at a location, even 

though the object is actually there, is (1 – d).   Likewise, the initial prior probability of 

discovering the object at a given location is (p * d).  Finally, the probability, P(B), that 

the missing object is not discovered at a given location equals the probability that it is 



 

 

48 
 

not at that location, (1 – p), plus the probability that it is at that location but is not 

detected, p * (1 – d).  Substituting each of the above values into Bayes Theorem allows 

a solution for the posterior conditional probability, P(A|B), of the probability that the 

object is at a given location, given that the location has been searched without finding 

the object.  Let p’ designate the posterior probability for a given location.   

Thus, for the following variables: 

   A =  event that object is located at a given location 

   B =  event that object is not detected at a given location when it is searched 

   p =  prior probability that object is at a given location 

   d =  probability that object will be detected at a given location if it is actually there 

   p’ =  posterior probability that object is at a given location, with the knowledge that  

the location has been unsuccessfully searched. 

 

Bayes Theorem simplifies as follows: 

 ���|�� =
���|�� ∗ ����

����
 (1) 

 

 ���|�� =
���|�� ∗ ����

����
 (2) 

 

 	
 =	
�1 − �� ∗ 	

�1 − 	� + 	 ∗ �1 − ��
 (3) 

 



 

 

49 
 

 	
 = 	
�1 − ��

1 − 	 ∗ �
 (4) 

 

Note that the revised, posterior probability, p’, is always less than p. 

 Meanwhile, if the object was not discovered at a given location and the 

probability for that location was reduced, the probability of the object being at every 

other location is increased slightly.  The sum of the increases in probability at all other 

locations combined equals the amount of decrease in probability at the location that 

was unsuccessfully searched.  If the prior probability of the object being located at a 

given different location was q, then the revised probability for that location, q’, would 

increase to 

 �
 = �	
1

1 − 	 ∗ �
 (5) 

 

after the unsuccessful search of the first location.  Thus, the revised probability for each 

other location, q’, is greater than its prior probability. 

  During a search utilizing Bayesian search methods, the overall probability 

density map is constantly updated.  With each unsuccessful search of a given location, 

the probability for that location is decreased, while the probabilities of all other 

locations are slightly increased.  This process continues for as long as the search 

progresses, either until the object is found or until the search is called off. 

 Bayesian search methods were first developed in the 1966 search for a missing 

hydrogen bomb in the waters off of Palomera, Spain after a B-52 crash (Moody 2006).  

Since then, it has been used in a wide array of underwater searches, including those for 



 

 

50 
 

the lost submarine USS Scorpion, a wide variety of treasure ships and historically 

significant wrecks, the flight recorder of the Air France Flight 447 disaster (Stone 

2011).  Bayesian search methods are also incorporated into the Computer Aided Search 

Program (CASP) used by the U.S. Coast Guard for at-sea search and rescue 

(Richardson and Discenza 1980).  



 

 

51 
 

Chapter 5: Incorporating Piracy Cost Considerations 

5.1 Economic Considerations of Pirate Avoidance  

The key feature that differentiates maritime piracy avoidance from other 

shortest path problems is the competition between two different objectives: minimizing 

the probability of encountering pirates and minimizing the total cost of transiting the 

Arabian Sea.  Though sometimes in line, these two objectives are often in conflict with 

each other.  When exiting the Persian Gulf, the shortest and most direct route south 

travels just off the coast of Somalia, where the chances of encountering pirates are 

typically highest.  Thus, the transit route with the lowest operating costs is often the 

very same route with the highest probability of pirate attack.  Mariners who want to 

lower their chances of encountering pirates often head east before turning south, putting 

hundreds of miles between them and the Somali coast.  At the height of Somali piracy 

in 2011 and 2012, this made good business sense.  The probability of piracy near the 

Somali coast was so great, and the associated costs of a successful attack, hijacking, 

and ransom were so high, that it made good business sense to travel extra distance in 

order to avoid the potential for a high-loss situation.  However, today, when the rate of 

Somali piracy is but a shadow of its former self and the odds of being hijacked are 

significantly lower, such diversions might not make the best economic sense any 

longer.   

On top of the changing piracy risk picture, some ships are far more prone to 

successful attack than others.  If pirates are encountered, slow-moving ships with low 

freeboard height are far easier to board than faster ships with high freeboard.  Thus, the 



 

 

52 
 

best path to follow through the Arabian Sea, from an economic perspective, might not 

even be the same from one ship to the next.  For a slower and lower ship, because the 

risk and cost of a successful boarding is so high, the best economic choice might be to 

take a significantly diverted path that avoids pirates as much as possible.  Meanwhile, 

for a fast ship with tall sides, the best choice economically might be to travel a straight 

line path at top speed directly through the Arabian Sea, with the knowledge that their 

speed and height make them almost unboardable even if pirates are encountered.      

Determining a “best” transit path is largely a matter of the priorities of the 

mariner.  A path that lowers the chances of encountering pirates to its absolute 

minimum – good for the crew’s morale – might yield one answer.  A path that lowers 

the expected cost of the transit to its absolute minimum – good for the company’s 

bottom line – might yield another answer.  And a path that splits the difference between 

the two, putting some level of priority on pirate avoidance while still trying to keep 

transit costs low, might yield yet another answer. 

The PARS model gives a 43x50 array of piracy probability values within the 

Arabian Sea.  The following sections discuss a methodology of transforming these 

probabilities into Expected Monetary Value (EMV) costs associated with successful 

pirate attacks as well as transit costs.  By transforming the array into one of costs, 

weighting can be placed on those costs most important to the mariner, identifying the 

“best” transit path based on his priorities and goals.    

  



 

 

53 
 

5.2 EMV of Piracy Cost and Countermeasures in Each Node  

 The PARS model calculates the probability of encountering pirates in any of 

the 2,150 grid squares (43x50 matrix) that make up the Arabian Sea region.  Each node 

value represents the probability of encountering pirates in that square, not the 

probability of being successfully attacked or the associated cost thereof.   

Expected Monetary Value (EMV) is a valuable tool for determining the average 

cost, over time, when evaluating the financial impact of a series of related events, each 

of which has a probability of occurrence.  From each uncertainty node in the EMV tree, 

designated by a circle, all of the potential events related to that event branch out.  Each 

event has a probability.  The sum of all probabilities of events emerging from an 

uncertainty node equals 1, or 100%.  The EMV for each uncertainty node equals the 

sum for all events of the financial impact of each event times its probability of 

occurrence. 

For the maritime piracy application, the EMV tree (Figure 15) has two uncertainty 

nodes.  The first uncertainty is whether pirates will be encountered when transiting the 

Arabian Sea.  Two events emerge from this node – pirates will be encountered or pirates 

will not be encountered.  If pirates are not encountered, the financial impact on the 

mariner is zero.  If pirates are encountered, the average financial impact is related to 

the EMV of the second uncertainty node – whether the pirates will successfully board 

the ship.  If the pirates do not successfully board the ship, the financial impact is zero.  

However, if the pirates do board the ship, the financial impact is enormous, consisting 

of not only ransom costs but lost earnings from the ship while being held, as well as 

intangibles such as damage to the company’s prestige or to the crew’s morale.  The 



 

 

54 
 

EMV related to pirates successfully boarding the ship equals the financial impact of a 

successful boarding multiplied by the probability that pirates will successfully board.  

For all transits, the overall EMV equals the probability of encountering pirates 

multiplied by this value.    

To transform the PARS probability values into the Expected Monetary Value cost 

associated with piracy at each location (EMVpiracy per node), the probability of 

encountering pirates (Ppiracy encounter per node) from the PARS model can be multiplied by 

the probability of a successful attack (Psuccessful attack)and the cost associated with a 

successful attack (Csuccessful attack). 

 

 EMVpiracy per node = Ppiracy encounter per node * Psuccessful attack * Csuccessful attack (6) 

 

 
 

Figure 15: Expected Monetary Value Tree of Potential Piracy Outcomes 
 
 

Encounter Pirates

Do Not Encounter Pirates

PPiracy Encounter

1 - PPiracy Encounter

Successful Pirate Attack

PSuccessful Attack

Unsuccessful Pirate Attack

1 - PSuccessful Attack

CostSuccessful Pirate Attack

$ 0

$ 0

EMVPiracy = [ CostSuccessful Attack * Psuccessful Attack +   $0 * (1 - Psuccessful Attack ) ] * PPiracy Encounter +    $0 * (1 - PPiracy Encounter )

EMVPiracy =  CostSuccessful Attack * Psuccessful Attack * PPiracy Encounter 



 

 

55 
 

 Historically, only about 20% of the attacks attempted by pirates in the Arabian 

Sea have successfully resulted in the pirates boarding and capturing the ship (Bridger 

2011).  The rate of success is a combination of four main factors: the speed of the ship, 

the freeboard height of the ship, defensive measures in place on the ship, and the 

presence of armed guards and escorts.  The probability of a successful attack can be 

estimated by determining a “knock-down” factor associated with the particular ship’s 

configuration versus each of the above factors. 

 

 Psuccessful attack = Kspeed * Kfreeboard * Kdefensive measures * Kguards (7) 

 

 The tactics used by pirates to board a ship are similar, in many ways, to those 

used by U.S. Naval Special Warfare (SEAL) forces when interdicting noncompliant 

vessels on the high seas.  The same factors that limit a pirate’s ability to board a 

merchant vessel – speed, freeboard height, defensive measures, and armed guards – 

also limit a SEAL boarding party’s ability to successfully board and stop a 

noncompliant ship.  SEALs are significantly better trained and equipped and are able 

to overcome higher levels of adversity to their efforts.  However, SEALs analyze these 

same four factors in determining a probability of successfully boarding a vessel and 

determining whether to proceed with such an operation. 

Based on in-person interviews with numerous U.S. Navy SEALs, the impact of 

these four factors on a pirate crew’s probability of successfully boarding a merchant 

vessel were estimated as summarized in Table 2 through Table 5.  Note that the values 



 

 

56 
 

in these tables are expert opinions, based on years of experience boarding non-

compliant vessels, rather than being data-based values.  

 
 

Table 2: Effect of Speed on Probability of Successful Pirate Attack 
(Source: Interviews with Naval Special Warfare Personnel) 

 

 
 
 

 
 

Table 3: Effect of Freeboard Height on Probability of Successful Pirate Attack 
(Source: Interviews with Naval Special Warfare Personnel) 

 

 
 

 
 
 
 
 
 
 
 
 
 
 

Vessel Speed 

(knots)
Kspeed

< 10 1.0

10 to 15 0.9

15 to 20 0.6

20 to 25 0.3

> 25 0.1

Freeboard Height 

(ft)
Kfreeboard

< 8 1.0

8 to 12 0.8

12 to 16 0.5

16 to 20 0.3

> 20 0.1



 

 

57 
 

Table 4: Effect of Defensive Measures on Probability of Successful Pirate Attack 
(Source: Interviews with Naval Special Warfare Personnel) 

 

 

 

 

Table 5: Effect of Guards and Escorts on Probability of Successful Pirate Attack 
(Source: Interviews with Naval Special Warfare Personnel) 

 

 

  

Defensive Measures Kdefensive measures

None 1.0

Water Cannons 0.9

Deck Foaming 0.9

LRAD Sound System 0.9

Citadel without steering 0.7

Citadel with steering 0.4

Guards and Escorts Kguards

None 1.0

Extra unarmed lookouts 0.9

Convoy with other vessels 0.8

Armed guards onboard 0.4

Armed escort vessel 0.1



 

 

58 
 

Thus, if pirates are encountered, the probability of their successfully boarding 

a merchant ship can vary dramatically from one ship to the next.  For example, an older, 

smaller cargo vessel might travel at 12 knots, have a freeboard height of 10 feet at the 

stern, possess no extra defensive measures, and employ extra unarmed lookouts when 

transiting the Arabian Sea.  If such a vessel were attacked by pirates, as calculated with 

Equation 7, the estimated probability of a successful boarding would be quite high. 

 

Psuccessful attack = Kspeed * Kfreeboard * Kdefensive measures * Kguards    (7) 

Psuccessful attack = 0.9 * 0.8 * 1.0 * 0.9 

Psuccessful attack = 0.65 

 

Meanwhile, a newer tanker will typically transit the Arabian Sea at just over 20 

knots, have a minimum freeboard height of 18 feet, employ water cannons or deck 

foaming, and will frequently convoy with other similar vessels.  Even if pirates were 

encountered, the chances of such a vessel being successfully boarded are very low. 

 

Psuccessful attack = Kspeed * Kfreeboard * Kdefensive measures * Kguards    (7) 

Psuccessful attack = 0.3 * 0.3 * 0.9 * 0.8 

Psuccessful attack = 0.07 

 

  



 

 

59 
 

The final component needed to determine an Expected Monetary Value of 

piracy attack in each node of the PARS matrix, EMVpiracy per node , is the cost associated 

with a successful pirate attack.  As with the probability of successful boarding, the cost 

of a successful pirate attack can vary widely from one ship to another, depending on 

the type and size of the ship, the company that owns the ship, the amount of crew 

members involved, and the length of detainment of the ship, not to mention the outright 

brazenness and desperation of the pirate crew that captures it.   

The direct monetary cost of an attack is a sum of multiple factors, most notably 

the cost of any ransom paid to the hijackers and the operating costs associated with the 

ship during the time of its capture.  In 2011, average ransom costs were $4.9 million 

per ship, and hijacked ships were held an average of 2 weeks (Gardner 2012).  Average 

operating costs for a non-U.S. flagged merchant vessel in the Arabian Sea, not 

including fuel costs, was $7,500 per day in 2011 (U.S. DOT Maritime Administration 

2011).  On average, a 14 day detainment will cost an additional 14 days * $7,500/day 

≈ $100,000 of operating costs.  Thus, a successful pirate attack will typically incur 

about $5 million of direct costs.  Additional costs, somewhat harder to quantify, will 

include increased insurance premiums after an attack, lost opportunity cost of cargo the 

ship could otherwise be transporting during its detainment time, delayed schedules, 

decreased crew morale, and loss to company reputation and prestige.  

Based on information about a particular ship’s defenses against piracy and its 

associated cost of being successfully attacked, the PARS matrix of piracy probability 

values can be transformed into a matrix of Expected Monetary Value cost associated 

with piracy at each location.   



 

 

60 
 

As an example of calculating EMVpiracy per node , suppose the slow-moving, older 

cargo ship discussed earlier is traveling through a 50 mile by 50 mile region of the 

Arabian Sea for which the PARS model predicts that there is a 0.2% chance of 

encountering pirates.  The Expected Monetary Value of piracy costs for this ship while 

transiting this region would be calculated as follows. 

 

EMVpiracy per node = Ppiracy encounter per node * Psuccessful attack * Csuccessful attack  (6) 

EMVpiracy per node = 0.002 * 0.65 * $5,000,000 

EMVpiracy per node = $6,500 

 

The overwhelming chance is that there would be no piracy cost at all associated with 

this node, as pirates either would not be encountered or they would be unsuccessful in 

boarding.  On extremely rare occasions, however, a successful pirate attack would 

occur and cost $5 million.  The average piracy cost associated with this ship transiting 

this particular node, EMVpiracy per node ,  would be $6,500.    

Thus, each node in the matrix will have a projected cost of piracy associated 

with it.  If avoiding costs of piracy is a mariner’s only priority, he should follow a path 

through the Arabian Sea that minimizes the net EMV of piracy associated with it.  If 

piracy avoidance is the only consideration, this path will be identical to finding the path 

through the PARS matrix with the lowest net sum of probability values. 

 



 

 

61 
 

5.3 Transit Cost to Travel Through Each Node  

 The cost to transit a vessel through each 50 mile by 50 mile node in the PARS 

matrix is the sum of its daily operating costs per node plus its fuel costs per node. 

 

 Ctransit per node = Cdaily ops per node + Cfuel per node (8) 

 

 Daily operating costs for a ship at sea includes the costs of its crew salaries, 

stores and lubes, maintenance and repair, insurance, and overhead.  On average, these 

costs add up to $7,500 for foreign-flagged vessels and $20,000 for U.S.-flagged vessels 

(U.S. DOT Martitime Administration 2011).  Multiplication by the size of each node 

in the PARS matrix (50 miles), division by the ship’s speed (miles/hr), and simple units 

conversion can translate this value into the cost of daily operations associated with 

transiting each node. 

 

Cdaily ops per node = Cdaily ops per day  * Node Size * 1 day/24 hr * 1/Speed  (9) 

Cdaily ops per node = ($/day) * (50 miles/node) * (1 day/24 hr) * (hr/miles) 

Cdaily ops per node = $ / node 

 

 Fuel costs per node can likewise be calculated my multiplying the fuel 

consumption (Metric Tons/Day) by the fuel cost ($/Metric Ton) and Node Size (50 

miles), division by the ship’s speed (miles/hr), and simple units conversion. 

 

 



 

 

62 
 

Cfuel per node = Fuel Consumption*Cfuel per day*Node Size*1 day/24 hr*1/Speed     (10) 

Cfuel per node = (MT/day) * ($/MT) * (50 miles/node) * (1 day/24 hr) * (hr/miles) 

Cfuel per node = $ / node 

 

 As an example of calculating transit cost per node, a typical 8,000 container 

ship traveling at 21 knots burns 125 metric tons of fuel in one day in order to transit 

500 nautical miles (White 2010).  In January 2015, the average cost of one metric ton 

of fuel was approximately $350/metric ton (TSA Carriers 2015).  Using the above data 

along with a daily operating cost of $7,500, the cost to transit each node is calculated 

as follows. 

 

    Ctransit per node = Cdaily ops per node + Cfuel per node        (8, 9, 10) 

    Ctransit per node @ 21 knots = ($7,500/day)*(50 miles/node) * (1 day/24 hr) * (hr/21 miles)  

           + (125 MT/day) * ($350/MT) * (50 miles/node) * (1 day/24 hr) * (hr/21 miles) 

    Ctransit per node @ 21 knots = $744/node + $4,340/node 

    Ctransit per node @ 21 knots = $5,084/node 

 

 Note that shipping speed has a huge impact on the transit cost per node.  For 

the same 8,000 container ship analyzed above, the fuel consumption drops to 58 Metric 

Tons/ Day if the speed is dropped to 15 knots and all other variables are held the same 

(White 2010).  This reduction in speed from 21 to 15 knots reduces the transit cost per 

node by 24%, from $5,084/node to $3,862/node as follows.  

 



 

 

63 
 

    Ctransit per node = Cdaily ops per node + Cfuel per node        (8, 9, 10) 

    Ctransit per node @ 15 knots = ($7,500/day)*(50 miles/node) * (1 day/24 hr) * (hr/15 miles)  

           + (58 MT/day) * ($350/MT) * (50 miles/node) * (1 day/24 hr) * (hr/15 miles) 

    Ctransit per node @ 21 knots = $1,042/node + $2,820/node 

    Ctransit per node @ 21 knots = $3,862/node 

 

 In addition, the cost of fuel is highly variable over time and can likewise have 

a huge impact on transit cost per node.  For example, fuel costs are currently about 

$350/metric ton.  However, in 2012, fuel costs averaged over $700/metric ton (TSA 

Carriers 2015).  Thus, just three years ago, fuel cost per node was double its current 

cost at all speeds. 

  



 

 

64 
 

5.4 Weighted EMV of Pirate Avoidance vs. Transit Cost 

A mariner transiting the Arabian Sea faces competing demands.  Does he try to 

minimize his chance of encountering pirates?  Or does he try to minimize the overall 

costs of the transit?  Or does he seek some middle ground between the two?  Based on 

their motivations regarding piracy and transit cost, mariners fall into four categories. 

 

1. If a mariner’s only goal was to absolutely minimize his transit costs, he 

would travel in a straight-line path of the shortest possible route through the 

Arabian Sea, with no consideration at all for the possibility of pirate attack. 

   

Chosen Route Category 1 = Route with min(∑Ctransit )             (11) 

 

Such a mariner would spend the smallest amount possible on operating and 

fuel costs.  However, he would run the risk of incurring a significant cost if 

his ship were successfully attacked and boarded by pirates. 

 

2. Meanwhile, if a mariner’s only goal was to avoid pirates at all cost, he 

would choose to follow a path that follows those nodes with the smallest 

total sum of piracy probabilities in the PARS matrix.  This would be the 

same path as if the mariner followed those nodes with the lowest total sum 

of EMVpiracy per node. 

     

Chosen Route Category 2 = Route with min(∑EMVpiracy per node )            (12) 



 

 

65 
 

 

Such a mariner might follow a route that diverts hundreds of miles from the 

shortest distance route through the Arabian Sea, in the interests of reducing 

his chances of a pirate encounter. 

 

3. Other mariners, who are aware of the potential costs of piracy but still wary 

of increasing their transit costs too much, might choose to follow a route 

that minimizes the total overall cost of their route, where EMVactual total for 

route equals the sum of EMVpiracy per node plus the sum of transit cost per node 

for all the nodes on that route.  For each node on the route, its total EMV is 

as follows. 

  

EMVactual total per node = EMVpiracy per node + Ctransit per node             (13) 

 

 Meanwhile, the EMV of an overall route is the sum of piracy cost and 

transit cost of nodes on that route. 

 

EMVactual total for route = ∑EMVpiracy per node + ∑Ctransit per node            (14) 

 

A mariner who wishes to minimize his total costs would choose the route 

that minimizes EMVactual total for route. 

 

Chosen Route Category 3 = Route with min(EMVactual totalfor route )            (15) 



 

 

66 
 

 

4. Finally, still other mariners might wish to strike a balance between trying to 

avoid pirates and minimizing their overall costs.  Such mariners might be 

willing to divert a little bit, even at an increased total cost, if it means a 

significant reduction in their likelihood of pirate attack.  However, they are 

not willing to make massive course changes, at significant extra cost, if it 

only has a minimal impact on reducing the overall probability of a pirate 

encounter.  Such mariners recognize that there are qualitative factors 

associated with a successful pirate boarding, such as impact on crew morale 

and company prestige, not captured in EMVpiracy but that does have a 

tangible value.  And, thus, they place a slightly higher value on minimizing 

the chances of pirate attack than they do on minimizing overall cost. 

 

Chosen Route Category 4 = Route with min(Weighted sum of [EMVpiracy + Ctransit])   (16) 

 
 

In order to reconcile between the competing motivations of mariners described 

above, a weighting factor, X, can be implemented into the calculation of EMV for each 

node as follows. 

 

EMVweighted total per node = EMVpiracy per node  + X * Ctransit per node             (17) 

 

In transiting the Arabian Sea, mariners would follow a route that minimizes the sum 

of EMVweighted total per node from the nodes that are traveled through. 



 

 

67 
 

 

EMVweighted total for route=∑EMVweighted total per node=∑EMVpiracy+ ∑(X*Ctransit)              (18) 

 

 Weighting Factor, X, is a number between 0 and 1 that represents the priority a 

mariner places on minimizing the chance of a pirate boarding versus minimizing the 

overall cost to travel across a region.  The value of X is a subjective choice, based on 

the mariner’s preferences regarding pirate avoidance. 

X = 0 represents a mariner who wishes to avoid pirates at all costs, such as Category 

2 above.  In the case of X = 0, EMVweighted total per node = EMVpiracy per node  for all nodes in 

the matrix.  In following a route that minimizes EMVweighted total for route with X = 0, a 

mariner would be following the route that minimizes his chances of encountering 

pirates. 

X = 1 represents a mariner who wishes to minimize his total overall cost, with 

consideration of the fact that there is an EMV cost associated with piracy in each node, 

such as Category 3 above.  In the case of X = 1, EMVweighted total per node = EMVpiracy per 

node  + Ctransit per node for all nodes in the matrix.  Thus, in following a transit route that 

minimizes EMVweighted total for route with X = 1, a mariner would be following the route 

that minimizes EMVactual total for route , which is the optimized decision based purely on 

immediately tangible financial considerations. 

0 < X < 1 represents a mariner who places an increased importance on piracy 

avoidance versus strictly short-term financial considerations, but not at the total 

exclusion of these considerations, such as Category 4 above.  The closer that X is to 0, 

the higher the priority that the mariner places on piracy avoidance.  Meanwhile, the 



 

 

68 
 

closer that X is to 1, the higher the priority that the mariner places on minimizing total 

cost.  Based on a mariner’s choice of weighting factor, X, the optimized route will be 

that with the minimum value of EMVweighted total for route. 

   

Optimized Route Category 4 = Route with min(EMVweighted total for route )            (19) 

Optimized Route Category 4 = Route with min(∑EMVpiracy + ∑(X * Ctransit) )       (20) 

 

The actual cost of transiting this optimized route, however, is still based on Equation 

14 for the nodes on that route. 

 

EMVactual total for route = ∑EMVpiracy per node + ∑Ctransit per node                 (14) 

 

 Thus, based on a mariner’s choice of X, his optimized transit path will be 

somewhere between the routes of minimum piracy probability and minimum overall 

cost.  Note that the weighted EMVweighted total for route, which is used to choose the route, 

will always be less than or equal to the actual monetary cost of transiting that route, 

EMVactual total for route. 

 
  



 

 

69 
 

5.5 Example of Applying Weighted EMV to Transit Route Decisions 

 The following example demonstrates how the recommendation for Optimized 

Transit Path will change based on the priority that a mariner places on piracy avoidance 

versus overall transit cost. 

 Suppose that a 5 x 5 matrix of piracy probability values from the PARS model 

is as shown in Figure 16.  

 

 Each of the values in matrix represents the probability of encountering pirates 

in thousandths.  Thus, a value of 2.7 in the top-left node of the matrix represents a 

probability of 0.0027 that pirates will be encountered within that 50 mile by 50 mile 

 
 

Figure 16: Example 5x5 Array of Piracy Probability Values 
 
 

2.7

2.7

2.7

0.9

0.3

2.4

1.8

0.3

0.3

0.3

1.2

0.9

0.3

0.9

1.2

0.3

0.3

0.3

0.9

2.1

0.3

0.9

2.1

3.0

3.0

Note: Piracy Probability Values are in One-Thousandths



 

 

70 
 

region of the Arabian Sea during a transit.  By inspection, one can determine that the 

route represented in the figure by arrows would have the minimum sum of node values 

for any route from the left side of the matrix to the right.  This is based on the 

assumption that all movement through the matrix must be either in an up-down or a 

left-right direction, so that all moves represent the same physical number of miles 

transited, 50 miles.  For this example, diagonal movement is not considered, since it 

would involve distances per node of greater than 50 miles.  

 Using the methods discussed in Section 5.2, the piracy probability values of the 

PARS matrix could be transformed into Expected Monetary Value costs of piracy 

associated with each node in the matrix.  The first example ship discussed in Section 

5.2 was an older, smaller cargo vessel travelling at 12 knots, with a freeboard height of 

10 feet at the stern, possessing no extra defensive measures, and employing extra 

unarmed lookouts when transiting the Arabian Sea.  For such a vessel, the methods of 

Section 5.2 would transform the 5 x 5 matrix of piracy probability values to the matrix 

of EMVpiracy per node values in Figure 17.  

 Each of the values in the matrix represents the Expected Monetary Value cost 

due to piracy, measured in thousands of dollars.  By inspection, the Optimized Transit 

Path route to minimize the cost of piracy, without any consideration of transit cost, is 

shown by arrows in the matrix.  This is an identical route to that through the matrix of 

piracy probability values. 

  



 

 

71 
 

 
 However, in addition to potential piracy costs, a mariner transiting the region 

represented by this matrix would also incur transit costs, consisting of both operating 

and fuel costs.  As discussed previously in Section 5.3, for the vessel considered in this 

example, typical transit costs would be about $4,000 per node.  A 5 x 5 matrix of transit 

costs per node for this ship would be as shown in Figure 18.  

 Each of the values in the matrix represent the transit cost to travel the full 50 

miles distance across the node, in thousands of dollars.  Because all of the node values 

are the same, the Optimized Transit Path route to minimize transit costs, with no 

consideration of piracy costs, would be a straight line across the matrix of the shortest 

 
 

Figure 17: Example 5x5 Array of EMVPiracy per Node Values 
 
 
 
 

9

9

9

3

1

8

6

1

1

1

4

3

1

3

4

1

1

1

3

7

1

3

7

10

10

Note: EMVPiracy per Node Values are Thousands of Dollars



 

 

72 
 

possible distance.  Any of the routes shown by arrows in the matrix would be equally 

good, as all are of the same minimal length. 

 

 

 

 

 

 

 

 
 

Figure 18: Example 5x5 Array of Ctransit per Node Values 
 
 
 
 

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

4

Note: Ctransit per Node Values are Thousands of Dollars



 

 

73 
 

 The actual Expected Monetary Value total cost associated with each node in the 

5 x 5 matrix would be the sum of the EMVpiracy values in Figure 17 plus the Ctransit 

values in Figure 18.   These values are summed in Figure 19 below to produce a 5 x 5 

matrix of EMVactual total per node values.  

 

 Each value in the matrix represents thousands of dollars of actual EMV cost 

that could be expected in passing through that node.  Note that the Optimized Transit 

Path route for minimizing actual total cost, as shown by arrows in the matrix, is of a 

shorter distance than the recommended route for piracy avoidance but longer than the 

route for minimizing transit cost.  In this recommended path, it is still economically 

 
 

Figure 19: Example 5x5 Array of EMVActual Total per Node Values 
 
 

13

13

13

7

5

12

10

5

5

5

8

7

5

7

8

5

5

5

7

11

5

7

11

14

14

Note: EMVActual Total per Node Values are Thousands of Dollars



 

 

74 
 

viable to make some course changes to avoid pirates.  However, because transportation 

costs are now considered, only those course changes with the most significant 

economic impact are included in the recommended route.   

 If a weighting factor, X, is applied to the calculation of EMV for each node, it 

will produce a recommended route somewhere between the optimized routes for 

avoiding pirates and minimizing overall cost.  Not surprisingly, a choice of X = 0.5 in 

the example 5 x 5 matrix produces an Optimized Transit Path recommendation that 

“splits the difference” between the piracy avoidance (X = 0) route and the minimized 

cost (X = 1) route, as demonstrated in Figure 20.  Note that the values in this matrix are 

weighted values, EMVweighted total per node for X = 0.5, and do not represent actual costs.  To 

 
 

Figure 20: Example 5x5 Array of EMVWeighted Total per Node for X = 0.5 Values 
 

11

11

11

5

3

10

8

3

3

3

6

5

3

5

6

3

3

3

5

9

3

5

9

12

12

Note: EMVWeighted Total per Node – X = 0.5 Values are Thousands of Dollars



 

 

75 
 

calculate the actual cost of traveling the recommended route, one would have to sum 

the EMVactual cost per node values for each of the recommended nodes on the route.  

  Meanwhile, a mariner who put higher priority on piracy avoidance but wasn’t 

ready to fully commit to whatever course changes were necessary, might choose a 

weighting factor of X = 0.25.  In the example 5 x 5 matrix, this produces a 

recommended route that is closer to the piracy avoidance route (Figure 21).  Note that, 

in this example, both the lower left corner and upper right corner of the matrix have 

alternative route recommendations, where either route would produce the same sum of 

node values on the route, EMVweighted total for route for X = 0.25.  Thus, there are four potential 

shortest routes through the matrix, each of which has the same sum of node values.   



 

 

76 
 

 

 Likewise, a mariner whose highest priority was on minimizing overall cost but 

still wanted to put a little extra priority on pirate avoidance, might choose a weighting 

factor of X = 0.75.  In the example 5 x 5 matrix, this produces a recommended route, 

based on EMVweighted total for route for X = 0.75, that is closer to the piracy avoidance route 

(Figure 22).  As with the previous example, the far right side of the matrix produces 

two alternative route recommendations, where either route would produce the same 

sum of node values. 

 
 

Figure 21: Example 5x5 Array of EMVWeighted Total per Node for X = 0.25 Values 
 
 

10

10

10

4

2

9

7

2

2

2

5

4

2

4

5

2

2

2

4

8

2

4

8

11

11

Note: EMVWeighted Total per Node – X = 0.25 Values are Thousands of Dollars



 

 

77 
 

 

 
 

Figure 22: Example 5x5 Array of EMVWeighted Total per Node for X = 0.75 Values 
 
 
 
 
 
 

12

12

12

6

4

11

9

4

4

4

7

6

4

6

7

4

4

4

6

10

4

6

10

13

13

Note: EMVWeighted Total per Node – X = 0.75 Values are Thousands of Dollars



 

 

78 
 

 Depending on a mariner’s priorities regarding piracy avoidance versus cost 

minimization, the Optimized Transit Path recommendation might be different from one 

vessel to the next.  However, the tools developed in this section give mariners an 

objective means of quantifying the tradeoffs in their decisions.  The six potential 

choices for optimized routes through the example 5 x 5 matrix that were analyzed are 

summarized in Figure 23.  

 
 

 
 

Figure 23: Optimized Routes Vary Based on Choice of Priorities 
 

 

2.7 /13 

2.7 / 13

2.7 / 13

0.9 / 7

0.3 / 5

2.4 / 12

1.8 / 10

0.3 / 5

0.3 / 5

0.3 / 5

1.2 / 8

0.9 / 7

0.3 / 5

0.9 / 7

1.2 / 8

0.3 / 5

0.3 / 5

0.3 / 5

0.9 / 7

2.1 / 11

0.3 / 5

0.9 / 7

2.1 / 11

3.0 / 14

3.0 / 14

Note: Piracy Probability Values are in One-Thousandths / EMVActual Total per Node Values are Thousands of Dollars 

LEGEND

= Route to Minimize Transit Cost

= Route to Minimize Actual Total Cost (X = 1)

= Route Weighted Towards Minimized Actual Cost (X = 0.75)

= Route Weighted Evenly Between Piracy and Cost (X = 0.5)

= Route Weighted Towards Pirate Avoidance (X = 0.25)

= Route to Minimize Piracy Cost (X = 0)



 

 

79 
 

 A summary of the net piracy probability and the financial implications of each 

of these potential routes is summarized in Table 6.    

 

In the case of priority choices that result in multiple route options, a mariner 

could use a secondary preference to decide between options for that choice.  For 

example, the choice to minimize transit cost, ignoring the potential cost related to a 

successful pirate attack, results in five route options, each of which have the same 

transit cost of $20,000.  If a secondary preference of minimizing total actual cost of the 

route, which includes EMVpiracy, were considered, then the choice could be narrowed 

down to following row 3 of the matrix straight across.   

Table 6: Summary of Optimized Route Choices 
 

 
 
 

Route Description Symbol ∑Ppiracy ∑EMVpiracy ∑Ctransit EMVactual total for route

Minimize Transit Cost – Row 1 6.9 23 20 43

Minimize Transit Cost – Row 2 6.6 22 20 42

Minimize Transit Cost – Row 3 5.7 19 20 39

Minimize Transit Cost – Row 4 6.0 20 20 40

Minimize Transit Cost – Row 5 6.9 23 20 43

Minimize Actual Total Cost (X = 1) 4.2 14 24 38

Weighted To Min. Cost (X = 0.75) – Rte 1 3.3 11 28 39

Weighted To Min. Cost (X = 0.75) – Rte 2 4.2 14 24 38

Evenly Weighted (X = 0.50) 3.3 11 28 39

Weighted To Min. Piracy (X = 0.25) – Rte 1 3.3 11 28 39

Weighted To Min. Piracy (X = 0.25) – Rte 2 3.0 10 32 42

Weighted To Min. Piracy (X = 0.25) – Rte 3 3.0 10 32 42

Weighted To Min. Piracy (X = 0.25) – Rte 4 2.7 9 36 45

Minimize Piracy Cost (X = 0) 2.7 9 36 45



 

 

80 
 

Using a table of potential routes such as Table 6, a mariner can make a route 

decision that best aligns with his pirate avoidance and financial goals, while still being 

aware of the tradeoffs involved in such a decision.  For many situations, seeing the 

impact of his priority choices on the probability of piracy and the actual cost of a route 

may lead him to following a course that is a slight compromise.  For example, in the 

above example, after analyzing the route options, many mariners would ultimately 

choose to follow the Evenly Weighted (X = 0.50) route.  Compared to the Piracy 

Avoidance (X = 0) route, the Evenly Weighted route decreases the overall cost by 

$6,000 while only increasing the Piracy Probability by 0.6 thousandths.  Meanwhile, 

compared to the Minimum Actual Total Cost (X = 1) route, it only raises the overall 

cost by $1,000 while decreasing the Piracy Probability by 0.9 thousandths.  Again, 

however, the selection of an Optimized Transit Path really depends on a mariner’s 

choices regarding his priorities for piracy avoidance versus cost minimization.  



 

 

81 
 

Chapter 6: Survey of Deterministic Shortest Path Algorithms 

6.1 Types of Deterministic Shortest Path Problems 

In deterministic shortest path problems, all values in the matrix are treated as 

absolute, with no probability distribution associated with each node.  The shortest path 

algorithm attempts to find the path between two nodes in the matrix such that the sum 

of the distances between the nodes is minimized.  This is analogous to a traveler trying 

to find the quickest or shortest route via roads on a map from his current location to a 

desired destination. 

There are generally three main types of deterministic shortest path problems.  In 

single-pair shortest path problems, the shortest path from a single, defined start node to 

one particular end node is determined.  In single-source shortest path problems, the 

shortest path from a single, defined start node is found to all other nodes in the matrix, 

typically by a series of calculations forward through the matrix.  In the all-pairs shortest 

path problem, the shortest path between every possible pair of nodes in the graph is 

found (Abraham et al. 2010).  Within these methods, each point in the matrix is 

typically referred to as a node or a vertex.  The path that connects one node directly to 

another is referred to as an edge or a link.  The distance from one node to a connected 

one is often referred to as the edge weight or the cost. 

The Optimized Transit Path problem for maritime piracy is a hybrid of the above 

problem types.  The piracy shortest path problem attempts to find the shortest path from 

any node on one far side of the matrix to any node on the opposite far side of the matrix.  

The piracy shortest path problem essentially allows the path to start from any point on 



 

 

82 
 

the “starting line” (e.g. the far north edge of the Arabian Sea region) and requires the 

path to end at any point on the “finish line” (e.g. the far south edge of the Arabian Sea 

region, where the danger of encountering pirates has passed).  Shortest paths between 

points inside the matrix are only relevant insofar as they contribute to the shortest path 

from one side of the matrix to the other. 

 

  



 

 

83 
 

6.2 Dijkstra’s Algorithm 

To solve the single-pair shortest path problem, Dijkstra’s Algorithm is the most 

commonly used algorithm.  For a given source node, Dijkstra’s Algorithm finds the 

path with the lowest net cost (sum of edge weights) to get to a particular destination 

node.  The algorithm requires that all edge weights in the matrix be non-negative.  By 

letting it run fully instead of stopping the algorithm once the desired destination is 

reached, Dijkstra’s Algorithm can also be used to solve the single-source shortest path 

problem, giving the shortest path from a defined start node to all other nodes in the 

matrix. 

Dijkstra’s Algorithm starts by labeling the value for the starting point as zero and 

temporarily labeling the value for every other node as infinity.  It then recalculates the 

value for each node directly connected to the starting node as the starting node’s value 

(zero) plus the distance from the starting node to that node.  The starting node is then 

labeled as visited and will not enter the calculations again.  Meanwhile, of all the 

remaining nodes, the one with the smallest value (which is the shortest distance from 

the starting point) becomes the current node of interest.  The values are recalculated for 

all nodes directly connected to the current node.  The values for each of these connected 

nodes equals the value of the current node plus the distance from the current node to 

each of them.  The current node is then labeled as visited and does not enter into future 

calculations.  As before, the remaining node with the smallest value becomes the new 

current node.  The values of all nodes directly connected to it are recalculated, leading 

to selection of the minimum as the next current node.  This process continues until 



 

 

84 
 

every node in the matrix has been labeled as visited.  At this point, the value of each 

node equals the length of the shortest path from the starting node to it (Winston 2004).   

The worst case performance of Dijkstra’s original algorithm, first conceived in 

1956, requires on the order of O(N2) calculations, where N is the number of nodes in 

the matrix (Dijkstra 1959, Winston 2004).  However, by implementing a Min-Priority 

Queue with a Fibonacci Heap along with Dijkstra’s Algorithm, the solution can be 

reached on the order of O(E + N log N) calculations, where N is the number of nodes 

in the matrix and E is the number of edges between nodes (Fredman and Tarjan 1984, 

Cormen et al. 2009).   

In the Min-Priority Queue with Fibonacci Heap method, the matrix is typically 

stored in the form of adjacency lists telling which nodes are directly connected to 

which.  Certain values in these node heaps can be pre-calculated.  Then, instead of 

recalculating values for almost every node in the matrix every time a new current node 

is considered, certain heaps are given priority as the most likely sources of the next 

current node.  Dijkstra’s Algorithm implementing Min-Priority Queue with a Fibonacci 

Heap is especially efficient in dispersed matrices, where all nodes are not connected to 

each other (Cormen et al. 2009).  This is considered the fastest single-source shortest 

path algorithm for matrices with non-negative edge weights.   Because of its speed and 

versatility, Dijkstra’s Algorithm with Min-Priority Queue and Fibonacci Heap is 

widely used in network routing protocols, especially OSPF (Open Shortest Path First) 

and IS-IS (Intermediate System to Intermediate System), as well as most transportation 

routing applications (Chen et al. 2007). 



 

 

85 
 

For most everyday applications involving shortest path calculations, such as 

transportation routing problems, edge weights are typically positive.  For example, 

distances between two locations are always non-negative.  However, for certain 

applications, edge weights could be negative.  For example, if the edge weights in a 

matrix represented financial outcomes, then both positive (financial gain) and negative 

(financial loss) outcomes would be possible.  In such a case, Dijkstra’s Algorithm could 

not be used, and other shortest path methods would have to be utilized.  Some of these 

other options are discussed in the remainder of Chapter 6.   

For the 43x50 PARS matrix used in maritime piracy prediction, there are N = 2,150 

nodes and E = 8,323 edges if motion is allowed in the horizontal, vertical, or diagonal 

directions (e.g if motion is allowed in 8 potential directions from each node).  However, 

in order to keep the distance traveled from one node to the next constant, it may be 

desired to restrict motion to only the horizontal and vertical directions (e.g. motion is 

allowed in only 4 potential directions from each node).  In this case, there are 4,207 

edges. 

Thus, for the case where diagonal motion is permitted, the solution to the traditional 

Dijkstra’s Algorithm would require O(N2) = (2,150)2  = 4.6 million calculations, while 

the Min-Priority Queue with Fibonacci Heap version would require only O(E + N log 

N) = (8,323 + 2,150 * log (2,150) ) =15,500 calculations, for a solution from a single 

node to all other nodes.  Meanwhile, if diagonal motion is not permitted, the solution 

to the traditional Dijkstra’s algorithm would still require O(N2) = (2,150)2  = 4.6 million 

calculations, while the faster version would require only O(E + N log N) = (4,207 + 

2,150 * log (2,150)) =11,372 calculations. 



 

 

86 
 

Because the maritime piracy application allows for starting from any of the 43 

nodes on the “starting line” of the PARS matrix, Dijkstra’s Algorithm would have to 

be run 43 separate times, starting from each of the potential starting points, to reach a 

definite conclusion on the shortest path through the matrix.  Thus, almost 200 million 

calculations would be required for the traditional algorithm.  Meanwhile, only 670,000 

calculations would be required for Dijkstra’s Algorithm implementing Min-Priority 

Queue with a Fibonacci Heap if diagonal motion is allowed.  This number drops to 

490,000 calculations if diagonal motion is not allowed. 

 

  



 

 

87 
 

6.3 Bellman-Ford Algorithm 

Another method commonly used to solve the single-source shortest path problem 

is the Bellman-Ford Algorithm.  As with Dijkstra’s Algorithm, it computes the shortest 

path from a single source node to all other nodes in the matrix.  It is generally slower 

than Dijkstra’s Algorithm, as its solution requires on the order of O(N * E) calculations, 

where N is the number of nodes and E is the number of edges in the matrix.  However, 

the Bellman-Ford Algorithm is more versatile, as it does not require that all edge 

weights be non-negative, though no negative-weight cycles may exist (Bellman 1958, 

Bang-Jensen and Gutin 2009).  For the piracy application, however, all probability and 

cost values are positive numbers, so this benefit of the Bellman-Ford algorithm would 

not be utilized.   

For one pass through the 43x50 PARS matrix, the Bellman-Ford Algorithm would 

require O(N * E) = 2,150 * 8,323 = 17.9 million calculations if diagonal motion is 

included.  If diagonal motion is excluded, the number of required calculations drops to 

O(N * E) = 2,150 * 4,207 = 9.05 million.   

To arrive at a full solution to the Optimized Transit Path problem for maritime 

piracy would require an additional 43 times through the matrix to check on all potential 

starting points.  This would result in 770 million calculations to solve the problem if 

diagonal motion is included or 390 million calculations if it is not. 

 

  



 

 

88 
 

6.4 Floyd-Warshall Algorithm and Johnson’s Algorithm 

To solve the all-pairs shortest path problem, which compares all possible shortest 

paths through the matrix between every pair of nodes, the Floyd-Warshall Algorithm 

and Johnson’s Algorithm are commonly used.  Both algorithms are able to handle both 

positive and negative edge weights, though no negative-weight cycles may exist.  These 

algorithms are probably not appropriate to quick solution of the piracy Optimized 

Transit Path problem, as they add significant capabilities, at the cost of extra 

calculations, not needed in the piracy problem.  Both algorithms solve for the shortest 

path between all possible combinations of points.  The piracy problem, however, only 

requires the shortest path between points on the “starting line” at one end of the matrix 

and those on the “finish line” at the other side.  All of the calculations of shortest paths 

in the middle of the matrix would be superfluous and unnecessary for the piracy 

shortest path application.  Also, both algorithms allow negative edge weights, which 

leads to extra layers of solution complexity.  However, in the piracy problem, all 

probabilities and costs are positive, so there are no negative edge weights.  Thus, this 

capability goes unused. 

The solution to the Floyd-Warshall Algorithm requires on the order of O(N3) 

calculations (Floyd 1962, Rosen 2012).  Johnson’s Algorithm requires on the order of 

O(N2 log N + N * E) calculations (Johnson 1977, Black 2004).  In the case of sparser 

matrices with relatively few edges, Johnson’s Algorithm may be a faster method of 

solving for shortest path.  For the 43x50 PARS matrix with diagonal motion permitted, 

the Floyd-Warshall Algorithm requires O(N3) = (2,150)3  = 994 billion calculations, 

while Johnson’s Algorithm would require O(N2 log N + N * E) =  ((2,150)2 log (2,150) 



 

 

89 
 

+ 2,150 * 8,323 ) = 33 million calculations.  If diagonal motion is not allowed, the 

Floyd-Warshall algorithm still requires 994 billion calculations, while the number for 

Johnson’s Algorithm drops to O(N2 log N + N * E) =  ((2,150)2 log (2,150) + 2,150 * 

4,207 ) = 24.5 million calculations.   

   

 

  



 

 

90 
 

Chapter 7: The Optimized Transit Path (OTP) Algorithm  

In order to efficiently solve for a mariner’s “best” transit path through the 

Arabian Sea, one that allows him to both avoid pirates and minimize costs, the 

Optimized Transit Path (OTP) algorithm was developed.  This algorithm quickly solves 

for the shortest path through a matrix from any point on one side of the matrix, the 

“starting line,” to any point on the opposite side, the “finish line.”   Though developed 

for the piracy problem, it is appropriate for finding the shortest path in many 

applications involving two-dimensional movement on a flat geographic plane. 

Unlike traditional shortest path algorithms, the Optimized Transit Path 

algorithm treats path minimization as more of a “scheduling” problem, rather than an 

Operations Research optimization problem.  The Critical Path Method (CPM), used in 

project scheduling, identifies the maximum length path through a network.  In a like 

manner, the OTP algorithm uses similar approaches to find the minimum length path 

through a matrix.  This “scheduling” approach to the shortest path problem provides 

insights not gained from classical shortest path approaches.  Specifically, the Optimized 

Transit Path algorithm identifies the additional cost associated with diverting from the 

shortest path, information not provided by traditional methods. 

The Optimized Transit Path algorithm can be set up to allow motion between 

nodes in the up/down, left/right, or diagonal directions (8 possible movements from 

each node).  Or, it can easily be adapted to restrict motion between nodes to only 

up/down and left/right directions (4 possible movements from each node).  In 

developing the OTP algorithm, relatively simple examples, for which the solution is 

readily apparent, were first used to test if the logical relationships led to the “obvious” 



 

 

91 
 

answer.  The following sections describe the terminology, logic and calculations of the 

Optimized Transit Path algorithm, using a fairly simple example for illustration. 

 

 

  



 

 

92 
 

7.1 Background and Definitions 

The Optimized Transit Path algorithm uses a methodology analogous to the 

forward pass and backward pass scheduling techniques of the Critical Path Method 

(CPM).  However, while CPM tries to determine the maximum length path through a 

matrix (usually a schedule), the goal of the Optimized Transit Path algorithm is to find 

the minimum length path through a matrix (for the case of Arabian Sea piracy, an array 

of probability values or of costs).  In addition, while CPM’s use of precedence 

relationships keeps a path always moving forward, the Optimized Transit Path 

algorithm allows vertical or even backwards motion through a matrix, in addition to 

forwards, to achieve the minimum length path. 

 

7.1.1 Node Matrix 

For the application in this study, the Optimized Transit Path algorithm will 

determine the best path to follow through the Arabian Sea to minimize one’s probability 

of encountering pirates, minimize the overall costs associated with the transit, or some 

combination thereof.  The entire Arabian Sea region, which is bound by land masses 

on three sides, covers roughly 2,150 miles by 2,500 miles.  The PARS model for piracy 

prediction divides the Arabian Sea into a 43x50 array of equally sized geographic areas.  

Each value in the PARS model represents the probability of encountering a pirate vessel 

within a 50 mile by 50 mile box at a given time.  As discussed in Chapter 5, these 

probability values, along with information about the ship and its defenses, can be used 

to calculate an Expected Monetary Value of piracy cost for each node.  This cost can 

be combined with the transit cost per node to give an overall cost per node.  



 

 

93 
 

Alternatively, the piracy cost and transit cost can be weighted, according to the 

mariner’s priorities, to give a weighted cost. 

A 5x5 array of probability values from the PARS model, representing piracy 

prediction over a 250 mile by 250 mile area, might look like Figure 24.  Each node of 

the matrix could represent any scalar value (e.g. a probability, a cost, or a risk weight).  

The methodology of the Optimized Transit Path algorithm is the same regardless of 

what the nodes represent.  

 

  

 
 

Figure 24: Example 5x5 Matrix of Piracy Prediction Values 
 
 
 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14



 

 

94 
 

For the piracy prediction matrix, whether of probability or cost, each value in 

the matrix is representative of a 50 mile by 50 mile box of area in the Arabian Sea.  In 

drawing the matrix, each value can be represented by a box, as is done with duration 

values in Activity In the Box CPM methods.  For example, the 5x5 matrix of probability 

values in Figure 24 could be represented with boxes, as shown in Figure 25. 

 

  

 
 

Figure 25: Example 5x5 Matrix Represented in Box Format 
 

 

 

 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14



 

 

95 
 

For the piracy application, the values in each box represent either the probability 

of encountering a pirate or an associated cost within that 50 mile by 50 mile region at 

a given time.  In a map representation, the boxes would be touching.  In the matrix 

representation, the boxes are separated in order to show the potential transit paths from 

one box to the next. From a box within the middle of the matrix, one could travel in 

any of eight directions to another box, as highlighted in Figure 26.  

  

 
 

Figure 26: Example 5x5 Matrix with Potential Transit Paths Shown 
 

 

 

 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14



 

 

96 
 

For the piracy application, each of the boxes represents a 50 mile by 50 mile 

square area.  In order to limit travel only to equal distances between nodes, motion 

between nodes can be restricted to only the four directions of up/down and right/left.  

This is especially valuable for calculations involving transit cost, which is related to 

distance traveled, in order to keep the transit cost associated with movement between 

any two nodes equivalent.  However, for demonstrating the Optimized Transit Path 

algorithm, motion will be permitted in all eight directions from any node.  Only minor 

changes are needed in order to restrict motion to the four equidistant directions.  These 

changes will be discussed in section 7.5. 

For illustrative purposes in this paper, a 5x5 array will be used to demonstrate 

the Optimized Transit Path methodology, rather than the full 43x50 matrix of the 

Arabian Sea from the PARS model.  In addition, for simplicity and clarity of graphics, 

the transit path arrows between boxes will be left off in future graphics.  However, it 

should be noted that, for this demonstration of the algorithm, travel is possible in any 

of the eight directions between adjoining boxes. 

 

  



 

 

97 
 

7.1.2 Cost of Each Node 

Within each box in the node field, a cost value is indicated.  In analysis of 

Arabian Sea piracy, this value could represent the probability, at a given moment in 

time, that pirates will be present somewhere within the geographic region represented 

by that box.  These probability values come from the PARS prediction model for pirate 

activity.  Alternatively, the cost value in each node could represent a monetary cost 

associated with traveling through the area represented by that node.  As discussed in 

Chapter 5, this cost could equal the Expected Monetary Value cost of piracy in that 

node, the transit cost for that node, or a weighted combination of the two. 

 

 

7.1.3 Node Identifier 

The unique identifier for each node is its (row number, column number) 

coordinates in the field.  For example, in Figure 26 on the previous page, node (4,3) is 

in the 4th row down and is the 3rd block from the left.  It has a cost value of 2. 

 

  



 

 

98 
 

7.1.4 Minimum Start (MS) and Minimum Finish (MF) of Each Node 

Ultimately, the goal of this algorithm is to determine the Optimized Transit Path 

through the entire matrix, with the lowest net sum of node costs from one side of the 

field to the other.  In the piracy application, this represents the path that a mariner 

should navigate through the Arabian Sea to minimize his chances of encountering 

pirates or to minimize total costs associated with the route. 

To determine the Optimized Transit Path, the Minimum Start (MS) and 

Minimum Finish (MF) for each node are found.  Minimum Start (MS) is the lowest net 

sum of costs of nodes to follow in order to get to that point, starting from the left (e.g. 

the smallest net cost path to get from the starting line to that node).  Minimum Finish 

(MF) is a node’s Minimum Start plus the cost of that node (e.g. the smallest net cost to 

get from the starting line all the way through that node).  MS, MF, and Cost for each 

node are graphically represented as shown in Figure 27.  

 
 

Figure 27: Method of Designating Minimum Start, Minimum Finish, and Cost 
 

 

Cost

MS MF



 

 

99 
 

7.2 Forward Pass Calculations: Determining MS and MF for Each Node 

To determine the Minimum Start (MS) and Minimum Finish (MF) values for 

each node, which will ultimately lead to the Optimized Transit Path through the array, 

a series of calculation passes are made forward through the matrix. 

 

7.2.1 First Forward Pass 

Starting from the left column of the matrix, initial values of MS and MF are 

calculated for each node.  First, the MS value for each node in the left-most column is 

set at zero, 0.  The MF value for each node in the left-most column is then calculated 

by adding the node’s cost to its MS value. 

 

MF = MS + Cost               (21)

    

For nodes in the second column, the MS value for each node is the minimum 

of the MF values of adjoining nodes from the previous column.   For most of the nodes, 

there are 3 adjoining nodes in the previous column: the node directly to its left, the node 

to its left and up, and the node to its left and down.  For the topmost and bottommost 

nodes in each column, there are only 2 adjoining nodes from the previous column.  

Once the MS values for each node are determined, MF values are calculated by adding 

each node’s cost to its MS value. 

Following the same process and moving from left to right, the initial MS and 

MF values for each node in the matrix can be calculated.  For the example 5x5 array 

introduced in Figure 24 through Figure 26, the first forward pass gives MS and MF 



 

 

100 
 

values for each node, as shown in Figure 28.  Note that, during the first forward pass, 

only MF values of the adjacent nodes in the column to a node’s left are used in 

determining its MS value.  This is done in order to initially populate the matrix with 

MS and MF values.  In subsequent forward passes, to be discussed in Sections 7.2.2 

through 7.2.4, MF values from all eight surrounding nodes will be used to determine a 

node’s new MS value. 

 

 
 

Figure 28: First Forward Pass MS and MF Values for Example 5x5 Matrix 
 

 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

0 15

0 13

0 10

0 7

0 2

13 23

10 12

7 9

2 6

2 3

12 13

9 13

6 10

3 5

3 8

13 15

10 19

5 15

5 13

5 13

15 20

15 18

13 20

13 25

13 27



 

 

101 
 

7.2.2 Second Forward Pass 

The first forward pass usually does not reveal the Optimized Transit Path 

because it only allows forward motion through the array.  The first forward pass did 

not allow motion straight up or down, nor did it allow backtracking.  The second 

forward pass through the array introduces the ability to go in all directions and moves 

the MS and MF values closer to their optimized minimum values. 

In the second forward pass, each node begins with the MS and MF values it had 

at the end of the first forward pass.  The first column remains identical to the first 

forward pass, since the Minimum Start time for each node in the column could never 

be less than 0.  Likewise, the Minimum Finish values for all nodes in the first column 

remain the same, the Minimum Start (0) plus the node’s cost. 

In the second column of the array, MS values for each node are updated.  For 

each node in the column, its MS value will be the minimum of the MF values of the 8 

other nodes that adjoin it (or 5 adjacent nodes for the topmost and bottommost nodes 

in the column).  The MS value for each node is the minimum of: 

1. The MF values of adjoining nodes from the column to its left.  These are MF 

values that were just updated during consideration of that column in this 

forward pass. 

2. The MF values of nodes immediately above and below it.  These are MF values 

of nodes from the previous forward pass, as MF values in this column have not 

yet been updated. 



 

 

102 
 

3. The MF values of adjoining nodes from the column to its right.  These are also 

MF values of nodes from the previous forward pass, as these MF values have 

not been updated yet either. 

Once all of the new MS values for each node in a column have been determined, 

based on the minimum of adjacent MF values, a new MF value is calculated for each 

node by adding the new MS value plus the node’s cost.  Depending on the arrangement 

of the array, numerous nodes might change their MS and MF values from the previous 

forward pass, or none might change. 

The third column of the array is updated in a like manner to the second.   The new 

MS value for each node is determined by finding the minimum MF value of the 8 (or 

5) nodes immediately surrounding it.  The new MS value for each node will be either 

the minimum MF from the adjacent previous (left) column rows calculated in that same 

forward pass, the minimum MF from the nodes directly above and below it calculated 

in the previous forward pass, or the minimum MF from the adjacent next (right) column 

nodes calculated in the previous forward pass.  Once all MS values are updated in the 

third column, MF values for each node are recalculated. 

In a like manner, MS and MF values for all nodes in the fourth, fifth, and all 

subsequent columns are calculated.  The process goes systematically from the left 

column to the right column in the array, updating MS and MF values in each column 

before proceeding to the next. 

If, upon updating MS and MF values in all columns, no changes were made to any 

values in any columns, then the solution has converged, the path through the array has 

been optimized, and no further updates are needed.  If, however, changes were made 



 

 

103 
 

to any MS or MF values in the matrix compared to the previous forward pass, then an 

additional forward pass is needed in order to move further towards optimization.  

Additional forward passes will continue until no more changes are made from one 

forward pass to the next, at which point the solution will have converged.  Required 

computation time for the OTP algorithm to reach convergence will be derived later in 

Sections 9.3 and 9.4, as well as compared to traditional shortest path algorithms in 

Section 9.5. 

To make the process of updating MS and MF values more clear, the second forward 

pass through the example 5x5 matrix is illustrated.  The columns are updated one at a 

time, from left to right, until the entire array has been updated. 

For the example 5x5 matrix (or any array), MS and MF values in the left-most 

column of the array never change compared to the first forward pass.  In the second 

column, however, changes may occur during the second forward pass (Figure 29).    

For node (1,2), the MS value from the first pass was 13.  The MF values of adjacent 

Column 1 nodes from the second pass are 15 and 13.  The MF value of the node directly 

below it from the first pass is 12.  And the MF values of the Column 3 nodes 

immediately after it from the first pass are 13 and 13.  The minimum of these MF values 

is 12.  Thus, the MS value of node (1,2) changes to 12.  For clarity on the graphics for 

Figure 29, the updated MS value was boxed, as was the MF value that dictated this 

change. 

For node (2,2), the MS value from the first pass was 10.   The MF values of adjacent 

Column 1 nodes from the second pass are 15, 13, and 10.  The MF values of the nodes 

directly above and below it from the first pass are 23 and 9.  And the MF values of 



 

 

104 
 

Column 3 nodes immediately after it from the first pass are 13, 13, and 10.  The 

minimum of these MF values is 9, which is less than the node’s starting MS value.  

Thus, the MS value of node (2,2) changes to 9.  For clarity on the graphics for Figure 

29, the new MS and the originating MF value were circled. 

In a like manner, the MS value for node (3,2) changes from 7 to 5.  This is because 

the MF value of the node immediately after and below it (node (4,3)) in the previous 

pass was 5.  Both the new MS value and the MF value that led to the change are 

highlighted by diamonds in Figure 29.  

 
 

Figure 29: Second Forward Pass - Column 2 of Example 5x5 Matrix 
 
 

 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

0 15

0 13

0 10

0 7

0 2

13 23

10 12

7 9

2 6

2 3

12 13

9 13

6 10

3 5

3 8

13 15

10 19

5 15

5 13

5 13

15 20

15 18

13 20

13 25

13 27

11

7

22

9

5

12

X X

X X

X X



 

 

105 
 

Following the same methodology, neither node (4,2) nor node (5,2) have changes 

to their MS values during the second forward pass.  Once all of the new MS values for 

the second column have been determined, the new MF value for each node in the 

column is calculated by adding the node’s cost to its MS value. 

Next, the third column is updated for the second forward pass (Figure 30).  Note 

that the second forward pass values for Column 2 are used when calculating changes 

in Column 3. 

Node (1,3) previously had an MS value of 12.  From the just-updated column before 

it, MF values of 22 and 11 adjoin it.  From the previous forward pass, MF values of 13, 

15, and 19 surround the node below and after it.  The minimum of these MF values is 

11, so the MS value of node (1,3) changes to 11.  Both the new MS value and the MF 

value that dictated the change are circled in Figure 30. 

Likewise, node (2,3), which previously had an MS value of 9, is surrounded by MF 

values of 22, 11, and 7 before it (from the second pass calculations), MF values  of 13 

and 10 above and below it (from the first pass calculations), and MF values of 15, 19, 

and 15 after it (from the first pass calculations).  The minimum of these is 7, which 

becomes the new value of MS for node (2,3).  This change is highlighted by diamonds 

in Figure 30 

In a like manner, the MS value of node (3,3) is reduced from 6 to 5 (due to the MF 

values of node (4,3) below it).  This change is highlighted by triangles in Figure 30. 

Following this methodology, the MS values of nodes (4,3) and (5,3) do not change 

during the second forward pass. 



 

 

106 
 

Once all of the new MS values for the third column have been determined, the new 

MF value for each node in the column is calculated and updates begin on MS values 

for the fourth column. 

 
 

Figure 30:  Second Forward Pass - Column 3 of Example 5x5 Matrix  
 

 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

0 12

0 11

0 10

0 7

0 2

12 22

9 11

5 7

2 6

2 3

12 13

9 13

6 10

3 5

3 8

13 15

10 19

5 15

5 13

5 13

15 20

15 18

13 20

13 25

13 27

11

X

12

X

7

X

11

X

5

X

9

X



 

 

107 
 

Calculations for the fourth column proceed in a like manner.  For the example 5x5 

matrix, only nodes (1,4) and (2,4) experience changes, which are highlighted by circles 

and diamonds, respectively, in Figure 31. 

 
 

Figure 31: Second Forward Pass - Column 4 of Example 5x5 Matrix 
 
 

 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

0 15

0 13

0 10

0 7

0 2

12 22

9 11

5 7

2 6

2 3

11 12

7 11

5 9

3 5

3 8

13 15

10 19

5 15

5 13

5 13

15 20

15 18

13 20

13 25

13 27

9
X

18

X

11

X

13

X



 

 

108 
 

The process continues methodically from left to right until all columns have been 

updated for the entire array.  For the example 5x5 matrix, nodes (1,5) and (2,5) change 

during second pass calculations of the fifth, and final, column (Figure 32).  

If no changes were made to any MS or MF values in the entire matrix during the 

second pass, then the solution to the array would be optimized.  If changes were made, 

as they were in the above example within Columns 2, 3, 4, and 5, then an additional 

forward pass is needed to move further towards an optimized solution. 

 
 

Figure 32: Second Forward Pass - Column 5 of Example 5x5 Matrix 
 

 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

0 15

0 13

0 10

0 7

0 2

12 22

9 11

5 7

2 6

2 3

11 12

7 11

5 9

3 5

3 8

11 13

9 18

5 15

5 13

5 13

15 20

15 18

13 20

13 25

13 27

13X 18

X

13

X

16X



 

 

109 
 

7.2.3 Additional Forward Passes 

The same methodology is used for the third forward pass through the array, 

with results of the second forward pass providing the starting MS and MF values for 

each node.  The MS value for each node in a column is updated based on MF values of 

the 8 (or 5) nodes adjoining it.  Once all the nodes in a column are updated with new 

MS and MF values, values for the next column are determined. Updating of the array’s 

MS and MF values proceeds from the left-most column to the right, with one column 

at a time updated.   For the example 5x5 matrix, the results of the third forward pass 

are shown in Figure 33.  

 
 

Figure 33: Third Forward Pass MS and MF Values for Example 5x5 Matrix 
 

 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

0 15

0 13

0 10

0 7

0 2

12 22

9 11

5 7

2 6

2 3

11 12

7 11

5 9

3 5

3 8

11 13

9 18

5 15

5 13

5 13

13 18

13 16

13 20

13 25

13 27

12

X

17

X

7

X

9

X
11

X

18
X

9

X

10

X

10

X

12

X

12X

15

X



 

 

110 
 

Because MS and MF values were changed during the third forward pass, 

another forward pass is needed.  The fourth forward pass through the example 5x5 

matrix results in changes to only one node (Figure 34). 

  

 
 

Figure 34: Fourth Forward Pass MS and MF Values for Example 5x5 Matrix 

 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

0 15

0 13

0 10

0 7

0 2

11 18

7 9

5 7

2 6

2 3

9 10

7 11

5 9

3 5

3 8

10 12

9 18

5 15

5 13

5 13

12 17

12 15

13 20

13 25

13 27

9

X

19

X



 

 

111 
 

Only one node had a change in its MS and MF values compared to the previous 

forward pass.  However, another forward pass is needed to confirm whether or not the 

Optimized Transit Path has been determined (Figure 35). 

 

  

 
 

Figure 35: Fifth Forward Pass MS and MF Values for Example 5x5 Matrix 
 

 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

0 15

0 13

0 10

0 7

0 2

9 19

7 9

5 7

2 6

2 3

9 10

7 11

5 9

3 5

3 8

10 12

9 18

5 15

5 13

5 13

12 17

12 15

13 20

13 25

13 27



 

 

112 
 

7.2.4 Final Forward Pass: Optimized Transit Path through the Matrix 

For the example 5x5 matrix, the results for the fifth forward pass are identical 

to those for the fourth.  This means that MS and MF values for all nodes in the array 

have been optimized for their minimum possible values.  For each node in the matrix, 

the minimum possible net cost to travel to that node, starting from the left edge of the 

array, is its Minimum Start (MS) value.  The smallest of the Minimum Finish (MF) 

values of nodes in the right-most column is the minimum net cost to pass through the 

entire matrix.  

For the maritime piracy application, the meaning of MS and MF values depends 

on what the cost of each node represents.  If node cost represents the probability of 

encountering pirates in that 50 mile by 50 mile area, then the MS value for each node 

is the minimum net probability of encountering pirates when traveling to that node’s 

location.  The minimum MF value of all nodes in the right-most column represents the 

net probability of encountering pirates if the Optimized Transit Path is followed.  The 

Optimized Transit Path would be the path through the array with the smallest net 

probability of pirate activity. 

Meanwhile, if the cost of each node represents an actual cost (whether an 

overall cost, a weighted cost, or a risk cost), MS of each node is the minimum cost to 

get to that node.  The minimum MF of nodes is the right-most column is the minimum 

cost of traveling through the matrix by following the Optimized Transit Path.  In this 

case, the Optimized Transit Path is the route through the matrix with the smallest total 

cost. 

 



 

 

113 
 

7.2.5 One Process to Identify the Optimized Transit Path Through the Matrix 

Once the Minimum Start (MS) and Minimum Finish (MF) value have been 

determined for each node in the matrix, the Optimized Transit Path can be identified 

by starting at the finish node with the lowest MF, then drawing a path that connects it 

to the node that determined its MS value (the adjacent node with the lowest MF).  

Likewise, that node is connected to the adjacent node that determined its MS value.   

The process of linking nodes continues until the starting column is reached, thus 

revealing the Optimized Transit Path through the matrix.  For the example 5x5 matrix 

of Figure 35, for which the minimum MS and MF values have been determined for all 

nodes, the Optimized Transit Path through the matrix is shown in Figure 36.  

However, this manual method of determining the Optimized Transit Path can 

be cumbersome and difficult, especially for a large matrix or one with lots of similar 

values in it.  In addition, this method gives no indication of the penalties (increased net 

cost) that would be associated with diverting from the Optimized Transit Path.  In the 

maritime piracy example, such information could be valuable.  For example, if the 

Optimized Transit Path for lowest net piracy probability required traveling twice as far 

in physical distance as another path that had only slightly lower net probability, then a 

mariner might choose to follow the slightly riskier, but shorter, path in order to save on 

fuel costs and travel time. 

Another method is needed in order to better identify the Optimized Transit Path 

and determine the penalty for veering from it. 

 

 



 

 

114 
 

  

 

 
 

 

Figure 36: Optimized Transit Path Forward through Example 5x5 Matrix 

 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

0 15

0 13

0 10

0 7

0 2

9 19

7 9

5 7

2 6

2 3

9 10

7 11

5 9

3 5

3 8

10 12

9 18

5 15

5 13

5 13

12 17

12 15

13 20

13 25

13 27



 

 

115 
 

7.3 Backward Pass Calculations: Determining RS and RF for Each Node 

7.3.1 Definitions: Required Finish, Required Start, and Optimized Slack 

In order to more easily identify the Optimized Transit Path and quantify the 

penalty of diverting from it, three additional terms are determined for each node: 

Required Start (RS), Required Finish (RF), and Optimized Slack (OS).   

Required Finish (RF) is the maximum net cost allowed for being completely 

through a node, if that node is going to be included in a path that reaches the end of the 

array within the optimized minimum total duration, which was found in the final 

forward pass through the array.   

Required Start (RS) is a node’s Required Finish minus its cost.  Required Start 

represents the largest net cost for arriving at a node, if that node is to be part of a path 

that finishes within the optimized minimum total cost.   

Optimized Slack (OS) of a node equals the difference between its Required 

Start and Minimum Start, or between its Required Finish and Minimum Finish.  

Optimized Slack for a node represents the additional cost that will be added to the 

overall total cost of the Optimized Transit Path if that node is diverted to.  Negative 

values of Optimized Slack correspond to increases in the total minimum path duration.  

Optimized Slack can be used to quickly identify the Optimized Transit Path through a 

matrix, as will be discussed in Section 7.4. 

  



 

 

116 
 

Required Start, Required Finish, and Optimized Slack, along with terms already 

defined, are graphically represented for each box via the designation shown in Figure 

37. 

 

 

  

 
 

Figure 37: Method of Designating Required Start, Required Finish, and Optimized Slack 

 

Cost

MS MF

RS RF

OS



 

 

117 
 

7.3.2 First Backward Pass 

In order to determine the Required Start (RS) and Required Finish (RF) values 

for each node, which will be used to clearly identify the Optimized Transit Path through 

the matrix, a series of calculation passes are made backwards through the array. 

Starting from the right column of the matrix, initial values of RS and RF are 

calculated for each node.  First, the RF value for every node in the right-most column 

is set equal to the minimum MF value for the entire column.  This value represents the 

minimum net cost associated with following the Optimized Transit Path through the 

matrix.  The RS value for each node in the right-most column is then calculated by 

subtracting the node’s cost from its RF value. 

 

RS = RF – Cost               (22) 

 

For nodes in the second column from the right, the RF value for each node is 

the maximum of the RS values of the adjacent nodes in the column to its right.   For 

most of the nodes, there are 3 adjacent nodes in the column to its right: the node directly 

to its right, the node to its right and up, and the node to its right and down.  For the 

topmost and bottommost nodes in each column, there are only 2 adjacent nodes from 

the column to its right.  Once the RF value for each node is determined, the RS values 

for each node are calculated by subtracting the node’s cost from its RF value. 

Following the same process and moving from right to left, the initial RS and 

RF values for each node in the matrix are calculated.   



 

 

118 
 

For the example 5x5 matrix introduced earlier, the first backward pass gives RS 

and RF values for each node as shown in Figure 38.  Note that, for the sake of clarity 

and instruction, the MS and MF values for each node are not shown.  Also, note that 

the initial RF value for each node in the right-most column is set equal to 15.  This 

equals the minimum MF value for the nodes in the column and the minimum overall 

cost of the Optimized Transit Path, as calculated during the forward passes.  

 

 
 

Figure 38: First Backward Pass RS and RF Values for Example 5x5 Matrix 
 
 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

-8 7

-6 7

-3 7

-3 4

-3 -1

-1 9

7 9

4 6

-4 0

-1 0

9 10

6 10

-1 3

0 2

-5 0

10 12

3 12

2 12

0 8

-5 3

10 15

12 15

8 15

3 15

1 15



 

 

119 
 

7.3.3 Second Backward Pass 

The first backward pass usually will not reveal the Optimized Transit Path 

because it only allows continuous motion backward through the matrix (e.g. only 

motion from right to left is permitted).  The first backward pass did not allow motion 

straight up or down, nor did it allow backtracking (e.g. motion from left to right).  The 

second backward pass through the array introduces the ability to go in all directions 

and moves the RS and RF values closer to their optimized values. 

In the second backward pass, each node begins with the RS and RF values it 

had at the end of the first backward pass.  The final (right-most) column remains 

identical to the first backward pass.  The Required Finish for each node in the last 

column equals the minimum MF value from that column.  Likewise, the Required Start 

for all nodes in the final column remain the same: Required Finish minus the node’s 

cost. 

For nodes in the second column from the right, RF values for each node are 

updated.  For each node in the column, its RF value will be the maximum of the RS 

values of the 8 other nodes that adjoin it (or 5 adjacent nodes for the topmost and 

bottommost nodes in the column).  The RF value for each node is the maximum of the 

following. 

 

1. RS values of nodes adjoining it from the column to its right.  These are the RS 

values that were just updated during consideration of that column in this 

backward pass. 



 

 

120 
 

2. RS values of nodes immediately above and below it.  These RS values are from 

the previous backward pass, as RS values in this column have not yet been 

updated. 

3. RS values of nodes adjoining it from the column to its left.  These are also RS 

values from the previous backward pass, as these RS values have not been 

updated yet either. 

 

Once all of the new RF values for each node in a column have been determined, 

based on the maximum of the RS values adjacent to it, a new RS value is calculated for 

each node by subtracting the new RF value minus the node’s cost.  Depending on the 

arrangement of the matrix, numerous nodes might change their RF and RS values from 

the previous backward pass, or none might change. 

Nodes in the third column from the right are updated in a like manner to the second 

column from the right.   The new RF value for each node is determined by finding the 

maximum RS value of the 8 (or 5) nodes immediately surrounding it.  The new RF 

value for each node will be either the maximum RS from the adjacent previous (right) 

column nodes calculated in that same backward pass, the maximum RS from the nodes 

directly above and below it calculated in the previous backward pass, or the maximum 

RS from the adjacent next (left) column nodes calculated in the previous backward 

pass.  Once all RF values are updated in the third column from the right, RS values for 

each node are recalculated by subtracting the node’s cost from its new RF value. 

In a like manner, RF and RS values for all nodes in the fourth, fifth, and all 

subsequent columns from the right are calculated.  The process goes systematically 



 

 

121 
 

from the right column to the left column in the matrix, updating RF and RS values in 

each column before proceeding to the next. 

If, upon updating RF and RS values in all columns, no changes were made to any 

values, then the path backward through the array has been optimized and no further 

updates are needed.  If, however, changes were made to any RF or RS values compared 

to the previous backward pass, then an additional backward pass is needed to move 

further towards optimization.  

The process of updating RF and RS values while passing backward through the 

array may be made clearer by looking at an example.  Figure 39 shows the results of 

the second backward pass through the example 5x5 matrix. 

The final, right-most column of the array (column 5) does not change compared to 

the first backward pass. 

In this example, no changes are necessary in the second column from the right 

(column 4) on the second backward pass either.  For node (1,4), the RF value from the 

first pass was 12.  The RS values of nodes adjoining it from the column to its right are 

still 10 and 12 on the second backward pass.  Likewise, the RS value of the node 

directly below it from the first pass is 3.  The RS values of nodes immediately to its left 

from the first pass are 9 and 6.  The maximum of these RS values is 12, the same as the 

node’s starting RF value.  Thus, the RF value of node (1,4) does not change. 

 



 

 

122 
 

For node (2,4), the RF value from the first backward pass is 12.   The RS values of 

nodes adjoining it from the column to its right from the second pass are 10, 12, and 8.  

The RS values of the nodes directly above and below it from the first backward pass 

are 10 and 2.   The RS values of the nodes immediately to its left from the first backward 

pass are 9, 6, and -1.  The maximum of these RS values is 12, which is the same as the 

node’s starting RF value.  Thus, the RF value of node (2,4) also does not change.   

In a like manner, none of the other RF values for the nodes in the second column 

from the right change during the second backward pass.  The RF value for node (3,4) 

 
 

Figure 39: Second Backward Pass RF and RS Values for Example 5x5 Matrix 
 

 

 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

-8 7

-6 7

-3 7

-3 4

-3 -1

-1 9

7 9

4 6

-4 0

-1 0

9 10

6 10

-1 3

0 2

-5 0

10 12

3 12

2 12

0 8

-5 3

10 15

12 15

8 15

3 15

1 15

-2

X

5

X
-1

X

1

X

5

X

7

X

0

X

4

X

1

X

2

X

3

X

7

X

2

X

4

X



 

 

123 
 

remains at 12. The RF value for node (4,4) remains at 8.  And the RF value for node 

(5,4) remains at 3. 

Once all of the new RF values for the second column from the right have been 

determined, new RS values for each node in the column are calculated.  Required Start 

equals Required Finish minus cost. 

The third column from the right (column 3) is updated next.  Following the same 

process as used in the previous column, neither node (1,3) nor node (2,3) have changes 

to their RF values.  However, node (3,3) experiences a change.  Previously, node (3,3) 

had an RF value of 3.  From the just-updated column to its right, RS values of 3, 2, and 

0 adjoin it.  The nodes immediately above and below it have RS values of 6 and 0 from 

the previous backward pass.  The adjacent nodes in the column to its left have RS values 

of 7, 4, and -4 from the previous backward pass.  The maximum of these RS values is 

7, so the RF value of node (3, 3) changes to 7.  For clarity on the graphics for Figure 

39, both the updated RF value and the RS values from which it came are highlighted 

by diamonds.  Following the same methodology, the RF value of node (3,4 ) changes 

to 4, due to the RS value of node (3,3) above and to its left.  The changed RF value and 

its source RS value are circled in Figure 39.  Node (3, 5) does not have changes to its 

RF value.  Finally, once all of the RF values for the third column from the right have 

been determined, new RS values are calculated for each node by subtracting cost from 

RF. 

Next, updates begin on RF values for the fourth column from the right (column 2).  

For the second backward pass of this example, three nodes change their RF values.  The 

RF value of node (3, 2) is increased to 7 due to the RS value of node (2, 2) above it.  



 

 

124 
 

This change is designated by squares on Figure 39.  Likewise, the RF values of nodes 

(4, 2) and (5, 2) change to 4 and 2, respectively, with the changes highlighted by 

triangles and crosses.  After all RF values in the column are updated, RS values are 

calculated for each node in this column. 

The process continues methodically from right to left until all columns have been 

updated for the entire array.  In this example, for the fifth and final column from the 

right, both nodes (4, 1) and (5, 1) change their RF values compared to the previous 

backward pass, increasing to 5 and 1, respectively, as shown in Figure 39.  Likewise, 

only nodes (4, 1) and (5, 1) have new RS values. 

If no changes are made to any RF or RS values in the entire matrix during the 

second backward pass, then the array is optimized.  If changes were made, as they are 

in the above example within three of the columns, then an additional backward pass is 

needed to move towards an optimized route through the matrix. 

 

 

  



 

 

125 
 

7.3.4 Additional Backward Passes 

The same methodology is used for the third backward pass through the matrix, 

with the results of the second backward pass providing the starting RF and RS values 

for each node.  The RF value for each node in a column is updated based on the RS 

values of the 8 (or 5) nodes adjacent to it.  Once all the nodes in a column are updated 

with new RF and RS values, the values for the next column to its left are determined. 

Updating of the array’s RF and RS values proceeds from the right-most column to the 

left, with one column at a time updated. 

 
 

Figure 40: Third Backward Pass RS and RF Values for Example 5x5 Matrix 
 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

-8 7

-6 7

-3 7

-2 5

-1 1

-1 9

7 9

5 7

0 4

1 2

9 10

6 10

3 7

2 4

-5 0

10 12

3 12

2 12

0 8

-5 3

10 15

12 15

8 15

3 15

1 15

0

X

2

X

1

X

5

X

2

X

3

X

3

X

5

X

-3

X

2

X



 

 

126 
 

The third backward pass through the example 5x5 matrix gives the results 

shown in Figure 40.  Five nodes had change in their RS and RF values compared to the 

previous pass, so another backward pass is needed to move closer to the solution.   

The fourth backward pass through the example 5x5 matrix gives the results 

shown in Figure 41.  Only one node had a change in its RS and RF values compared to 

the previous pass.  However, another backward pass is needed to confirm whether or 

not the Optimized Transit Path has been determined.  

  

 
 

Figure 41: Fourth Backward Pass RS and RF Values for Example 5x5 Matrix 
 

 

 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

-8 7

-6 7

-3 7

-2 5

0 2

-1 9

7 9

5 7

1 5

2 3

9 10

6 10

3 7

3 5

-3 2

10 12

3 12

2 12

0 8

-5 3

10 15

12 15

8 15

3 15

1 15

-2

X

3

X



 

 

127 
 

The results for the fifth backward pass (Figure 42) are identical to those for the 

fourth.  This means that the RF and RS values for all nodes in the matrix have been 

optimized for their maximum possible values.  

 

 

  

 
 

Figure 42: Fifth Backward Pass RS and RF Values for Example 5x5 Matrix 

 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

-8 7

-6 7

-3 7

-2 5

0 2

-1 9

7 9

5 7

1 5

2 3

9 10

6 10

3 7

3 5

-2 3

10 12

3 12

2 12

0 8

-5 3

10 15

12 15

8 15

3 15

1 15



 

 

128 
 

7.4 Identifying the Optimized Transit Path 

7.4.1 Determining Optimized Slack 

Once the optimized path backward through the array has been determined, 

Optimized Slack (OS) can be calculated for each node.  Optimized Slack for a node 

equals the difference between its Required Finish and its Minimum Finish values. 

 

OS = RF – MF              (23) 

 

Alternatively, Optimized Slack for a node also equals the difference between 

its Required Start and its Minimum Start.  

 

OS = RS – MS              (24) 

 
 Graphically, Optimized Slack is represented in Figure 43.  The top row in the 

figure represents Forward Pass calculations for the shortest path through the matrix that 

 
 

Figure 43: Graphical Representation of Optimized Slack 

 

MS

OS

Node X

RS RF

Node X

Forward Pass

Backward Pass

OS

Total Path Cost

MF



 

 

129 
 

includes Node X.  The bottom row represents Backward Pass calculations that include 

Node X.  The difference in the location of Node X between the rows is the Optimized 

Slack for that node. 

 Optimized Slack (OS) is analogous to Total Slack (or Total Float) used in 

Critical Path Method (CPM) scheduling.  In CPM, the Total Slack for a node represents 

the difference between the required completion time of the project and the maximum 

length path that passes through that node.  In the OTP algorithm, the Optimized Slack 

for a node represents the difference between the shortest possible path through a matrix 

and the shortest path through the matrix that includes that node.  Thus, OS indicates 

the minimum “penalty” associated with diverting to a particular node.  The additional 

insight provided by Optimized Slack is one of the greatest strengths of the OTP 

algorithm compared to traditional shortest path methods.  Classical methods do not 

quantify the additional cost of deviating from the shortest path.   

 



 

 

130 
 

For the example 5x5 matrix, Optimized Slack for each node, along with MS, 

MF, RS, and RF, is shown in Figure 44.  

 

  

 
 

Figure 44: Optimized Transit Path MS, MF, RS, RF, and OS Values for 

Example 5x5 Matrix 
 

 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

0 15

0 13

0 10

0 7

0 2

9 19

7 9

5 7

2 6

2 3

9 10

7 11

5 9

3 5

3 8

10 12

9 18

5 15

5 13

5 13

12 17

12 15

13 20

13 25

13 27

-8 7

-6 7

-3 7

-2 5

0 2

-1 9

7 9

5 7

1 5

2 3

9 10

6 10

3 7

3 5

-2 3

10 12

3 12

2 12

0 8

-5 3

10 15

12 15

8 15

3 15

1 15

-8 -10 0 0 -2

-6 0 -1 -6 0

-3 0 -2 -3 -5

-2 -1 0 -5 -10

0 0 -5 -10 -12



 

 

131 
 

7.4.2 Identifying the Optimized Transit Path 

Nodes with Optimized Slack values of zero are on the Optimized Transit Path 

through a matrix.  (This is equivalent to how nodes with minimum values of Total Slack 

are on the critical path in CPM scheduling.)  A sequence of nodes, each with Optimized 

Slack of zero, should be followed in order to minimize the total cost in passing through 

the array.  Figure 45 shows the Optimized Transit Path through the example 5x5 matrix. 

For a particular node, a negative value of Optimized Slack represents the 

minimum additional cost to transit through the matrix if that node were included as a 

waypoint.  Positive values of Optimized Slack do not occur. 

 
 

Figure 45: Optimized Transit Path through Example 5x5 Matrix 
 

 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

0 15

0 13

0 10

0 7

0 2

9 19

7 9

5 7

2 6

2 3

9 10

7 11

5 9

3 5

3 8

10 12

9 18

5 15

5 13

5 13

12 17

12 15

13 20

13 25

13 27

-8 7

-6 7

-3 7

-2 5

0 2

-1 9

7 9

5 7

1 5

2 3

9 10

6 10

3 7

3 5

-2 3

10 12

3 12

2 12

0 8

-5 3

10 15

12 15

8 15

3 15

1 15

-8 -10 0 0 -2

-6 0 -1 -6 0

-3 0 -2 -3 -5

-2 -1 0 -5 -10

0 0 -5 -10 -12



 

 

132 
 

7.5 Variations to the Optimized Transit Path Algorithm 

7.5.1 Defining a Specific Start and/or End Point 

 At times, it may be desired to start and/or end from a specific point when 

calculating the Optimized Transit Path through a matrix.  For example, in the piracy 

application, a mariner already in transit might want to calculate the lowest cost path a 

starting point of his current position to the “finish line” on other side of the Arabian 

Sea, where he will have cleared the piracy danger zone.  Likewise, a mariner preparing 

to enter the Arabian Sea might have the flexibility to enter from any point on the 

“starting line” but have a specific port that he must transit to as his ending point.  In 

still other applications, a mariner could desire to know the Optimized Transit Path from 

his current starting position to a defined finish location, in which case both a desired 

start and end point would be specified. 

 A specific start and/or end point can be easily incorporated into shortest path 

calculations for the Optimized Transit Path algorithm via the following steps. 

1. Add a column either ahead of the starting line (the first column) or after the 

finish line (the last column), or both, depending on whether a specific start 

and/or end point is desired.  Set the cost value of every node in this column 

equal to infinity, except for the node that is horizontally adjacent to the desired 

start/end node.  Set the cost value of this adjacent node equal to the cost of the 

desired start/end node. 

2. Set the cost value of the desired start/end node equal to zero. 

3. Solve the Optimized Transit Path algorithm for the entire matrix, with the extra 

column(s) included. 



 

 

133 
 

 

The shortest path will definitely include the adjacent node in the added column, as 

it is the only node in the column with a non-infinite cost.  The path will also travel 

through the actual, desired start/end point because it has zero cost, so it does not add to 

the path length.  The total, overall cost of the Optimized Transit Path will be correct 

because the sum of costs of the non-infinite node from the added column, plus the zero 

cost of the desired start/end point still equals the true cost of the desired start/end point. 

For example, for the example 5x5 matrix previously analyzed in Sections 7.1 to 

7.4, if it was desired to start the transit at node (2,1) (e.g. because that is a merchant 

ship’s current position), the process would be as follows. 

1. Add a column to the left of the matrix with infinity cost values for all nodes 

except the second row.  Set this node’s cost equal to that of the desired start 

point, which is 13. 

2. Set the cost value of the desired start point equal to zero. 

3. Solve the Optimized Transit Path algorithm for the new matrix for the MS, MF, 

RS, RF, and OS value of each node.   

4. Identify the Optimized Transit Path, which consists of those nodes with OS 

values of zero.  This path will pass through the desired start point. 

Figure 46 shows the setup of the matrix with the additional column and the editing 

of the cost of the desired start point node.  Figure 47 shows the MS, MF, RS, RF, and 

OS values for each node, with the Optimized Transit Path highlighted.  The impact of 

specifying a specific starting point on computation time will be discussed in Section 

9.3.1.  



 

 

134 
 

  

 
 

Figure 46: Editing of Example 5x5 Matrix to Include a Specific Start Point 
 

 

 

 

15

0

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

∞

13

∞

∞

∞



 

 

135 
 

 

 

 

 

 

 

 

 

  

 
 

Figure 47: Optimized Transit Path Solution of Example 5x5 Matrix to 

Include a Specific Start Point 
 

 

 

 

15

0

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

13 28

13 13

13 23

15 22

18 20

13 23

13 15

13 15

15 19

17 18

15 16

15 19

15 19

15 17

17 22

16 18

16 25

17 27

17 25

17 25

18 23

18 21

25 32

25 37

25 39

-2 13

13

3 13

4 11

6 8

5 15

13 15

11 13

7 11

8 9

15 16

12 16

9 13

9 11

4 9

16 18

9 18

8 18

6 14

1 9

16 21

18 21

14 21

9 21

7 21

-15 -8 0 0 -2

0 0 -3 -7 0

-10 -2 -3 -9 -11

-11 -8 -6 -11 -16

-12 -9 -13 -16 -18

∞

13

∞

∞

∞

0 ∞

0 13

0 ∞

0 ∞

0 ∞

-∞ 13

13

13

6

6

0

0

-∞

-∞

-∞

-∞

-∞

-∞

-∞

13



 

 

136 
 

7.5.2 Limiting Directions of Motion 

 At times, it may be beneficial to limit motion through the matrix to only the 

horizontal (left/right) and vertical (up/down) directions.  Thus, from each node, travel 

would be limited to only four potential directions, rather than eight.  In the piracy 

application, an example of when this option might be desirable is when transit cost is 

included in consideration of the Optimized Transit Path.  Because transit cost is directly 

related to distance traveled, in order to keep the transit cost consistent between any two 

adjacent nodes, the distance traveled between them must remain constant.  Within the 

PARS matrix of piracy probability values, horizontally or vertically adjacent nodes are 

50 miles apart from center to center.  Meanwhile, diagonally adjacent nodes are √2 * 

50 miles = 70.5 miles apart from center to center.   

If transit costs are considered, an easy way to keep node-to-node distances equal 

is to limit travel to only the horizontal and vertical directions. The Optimized Transit 

Path algorithm easily incorporates such a limitation.  In order to restrict travel to equal 

distances between nodes, on each forward and backward pass, nodes should look only 

to their immediate left and right, as well as directly up and down, for potential updates 

to their MS and RF values. 

For the example 5x5 matrix previously analyzed, restricted motion through the 

matrix would be limited to only the directions shown in Figure 48.  Note that the 

diagonal directions of motion have been removed from consideration.  The Optimized 

Transit Path algorithm proceeds in the same manner as previously discussed.  The only 

difference is that each node only looks at four adjacent nodes for updates, rather than 

eight.   



 

 

137 
 

 

Figure 49 shows the MS, MF, RS, RF, and OS values for each node in the 

example 5x5 matrix, as well as the Optimized Transit Path, when motion is restricted 

to the horizontal and vertical directions.  Note that the overall cost of the Optimized 

Transit Path goes up slightly, since the path is no longer able to “cut the corner” by 

traveling diagonally between nodes.  The impact of limiting motion direction on 

computation time will be discussed in Section 9.3.2. 

 

 

 
 

Figure 48: Limited Motion Paths Between Nodes in Example 5x5 Matrix 
 

 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14



 

 

138 
 

 

 

 

 
  

 
 

Figure 49: Optimized Transit Path Solution of Example 5x5 Matrix to 

Include Limited Motion 
 
 

15

13

10

7

2

10

2

2

4

1

1

4

4

2

5

2

9

10

8

8

5

3

7

12

14

0 15

0 13

0 10

0 7

0 2

11 21

9 11

7 9

3 7

2 3

15 16

11 15

9 13

7 9

3 8

16 18

15 24

13 23

9 17

8 16

18 23

24 27

23 30

17 29

16 30

-10 5

-4 9

-3 7

-4 3

0 2

5 15

9 11

7 9

3 7

2 3

15 16

11 15

7 11

5 7

0 5

16 18

11 20

6 16

3 11

1 9

18 23

20 23

16 23

11 23

9 23

-10 -6 0 0 0

-4 0 0 -4 -4

-3 0 -2 -7 -7

-4 0 -2 -6 -6

0 0 -3 -7 -7



 

 

139 
 

Chapter 8: Computer Modeling of the OTP Algorithm 

In order to quantify the performance of the Optimized Transit Path algorithm, a 

computer model was written in MATLAB based on its logic.  One of MATLAB’s 

greatest strength is in matrix calculations, so it is well suited for the required 

calculations of this research.  In addition, MATLAB is readily available and is able to 

run on computers with moderate computing power.  One sub-goal in developing a 

computer algorithm for this research was to minimize computer processing 

requirements, so that relatively inexpensive processors could perform the needed 

calculations.   Writing the code in MATLAB lends itself well to achieving this goal. 

The complete MATLAB code written for this study, annotated with comments, is 

included in Appendix 1.  The subroutines of this code are detailed in Appendices 1A 

through 1M.  In generic terms, the computer code consists of the following logic. 

 

A. INPUT AND PREPARE THE MATRIX TO BE ANALYZED 

a. Input the external matrix that an Optimized Transit Path is desired for 

(Appendix 1A) 

b. Start a timer so that the overall computation time can be calculated. 

c. Create bounding rows along the top and bottom of the matrix with very 

high cost values in each node.  By adding these extra rows, every row 

in the actual matrix can follow the same logic and look at 8 nodes 

surrounding it, rather than nodes in the top and bottom row of the matrix 

only looking at 5 nodes around them.  Because the nodes in the 



 

 

140 
 

bounding rows have very high values, the shortest path through the 

matrix will never want to include these nodes.  (Appendix 1B) 

 

B. FORWARD PASS CALCULATIONS 

a. Set initial values of Minimum Start (MS) and Minimum Finish (MF) to 

be very high.  These values will be lowered through successive forward 

passes.  (Appendix 1C) 

b. Begin a “for” loop that will repeat itself until the forward pass 

Optimized Transit Path solution is found. 

i. Copy the current values of MS and MF into two new matrices 

called Previous_MS and Previous_MF.  These will be used to 

determine when to stop the “for” loop.  When, at the end of a 

forward pass, the new value of MS or MF equals the previous 

value of MS or MF for every node in the matrix, then no further 

changes are possible, so the loop can stop.  Until then, the “for” 

loop will continue repeating itself. 

ii. Conduct forward pass calculations, as discussed in Chapter 7, to 

determine new values of MS and MF for each node in the matrix.  

In these calculations, MS for each node is compared to MF of 

the nodes immediately surrounding it, and MS is lowered to 

match the minimum of the surrounding MF values.  After new 

MS values are calculated for a column, its new MF values are 

calculated by adding node cost to MS.   Columns are updated 



 

 

141 
 

one at a time, from left to right through the matrix.  (Appendix 

1D) 

iii. Compare new MS and MF values to Previous_MS and 

Previous_MF values.  If they are identical for all nodes, stop the 

“for” loop.  If they are not identical for all nodes, the “for” loop 

must be repeated again.  

c. Count the number of forward passes and the time needed to arrive at the 

Optimized Transit Path solution values of MS and MF. (Appendix 1E) 

 

C. BACKWARD PASS CALCULATIONS 

a. Set initial values of Required Start (RS) and Required Finish (RF) to be 

very large negative numbers.  These values will be increased through 

successive forward passes.  Set values in the last column of the RF 

matrix equal to the Minimum Finish (MF) of the last node on the 

Optimized Transit Path, which equals the smallest MF value of nodes 

in the last column as found in the final forward pass.  (Appendix 1F) 

b. Begin a “for” loop that will repeat itself until the forward pass 

Optimized Transit Path solution is found. 

i. Copy the current values of RS and RF into two new matrices 

called Previous_RS and Previous_RF.  These will be used to 

determine when to stop the “for” loop.  When, at the end of a 

backward pass, the new value of RS or RF equals the previous 

value of RS or RF for every node in the matrix, then no further 



 

 

142 
 

changes are possible, so the loop can stop.  Until then, the “for” 

loop will continue repeating itself. 

ii. Conduct backward pass calculations, as discussed in Chapter 7, 

to determine new values of RS and RF for each node in the 

matrix.  In these calculations, RF for each node is compared to 

RS of the nodes immediately surrounding it, and RF is increased 

to match the maximum of the surrounding RS values.  After new 

RF values are calculated for a column, its new RS values are 

calculated by subtracting node cost from RS.   Columns are 

updated one at a time, from right to left through the matrix.  

(Appendix 1G) 

iii. Compare new RS and RF values to Previous_RS and 

Previous_RF values.  If they are identical for all nodes, stop the 

“for” loop.  If they are not identical for all nodes, the “for” loop 

must be repeated again.  

c. Count the number of backward passes and the time needed to arrive at 

the Optimized Transit Path solution values of RS and RF. (Appendix 

1H) 

 

D. OPTIMIZED SLACK CALCULATIONS AND OPTIMIZED TRANSIT 

PATH RECOMMENDATIONS 

a. Calculate Optimized Slack (OS) for every node in the matrix.  

Optimized Slack equals the difference between Required Finish (RF) 



 

 

143 
 

and Minimum Finish (MF) for each node, or the difference between 

Required Start (RS) and Minimum Start (MS).  Those nodes with OS 

values of zero are the nodes on the Optimized Transit Path through the 

matrix.  Negative values of OS for all other nodes indicated the 

additional cost that would be incurred if that node were diverted to, in 

the most efficient manner possible.  (Appendix 1I) 

b. Strip the high value bounding rows from the MS, MF, RS, RF, and OS 

matrices.  (Appendix 1J) 

c. Measure the total time spent on all calculations since the start of the 

analysis.  (Appendix 1K) 

d. Present the final results to the user in a concise manner, which includes 

both the Optimized Transit Path as well as OS values for each node.  

(Appendix 1L) 

e. If desired, write the OS values to an external source so that they may be 

used to best convey the Optimized Transit Path recommended route.  

(Appendix 1M) 

 

At its most stripped-down level, the code for the Optimized Transit Path 

algorithm could be reduced to the following steps. 

 

A. Input matrix from external source 

B. Add bounding rows of high values to top and bottom of matrix. 



 

 

144 
 

C. Run forward pass calculations up to (Number of Rows) times, until new MS 

and MF values equal Previous_MS and Previous_MF values from the 

previous pass. 

D. Strip off bounding rows from MS and MF matrices 

 

This simplified code would give the lowest possible MS and MF value for each 

node.  From the node on the “finish line,” or far right column, with the lowest MF 

value, one could backtrack through the matrix to find the Optimized Transit Path by 

identifying the source of the MF value that determined each node’s MS value.  This is 

much the same way that the shortest path is found with Dijkstra’s Algorithm and other 

shortest path methods.   

Such a simplification would cut the number of required calculations in half, 

since it would eliminate backward pass calculations.  However, this change would 

eliminate the ability to calculate Optimized Slack.  OS is one of the most important 

features of the Optimized Transit Path algorithm.  Not only does it clearly identify the 

shortest route through the matrix (those nodes with OS = 0), it also quantifies the 

penalty in additional cost associated with diverting from the shortest path.  Such 

information is especially valuable to the piracy application.  It gives a mariner 

quantifiable feedback as to the impact of his choices to divert from the recommended 

Optimized Transit Path.  Thus, for the piracy application, it is recommended to run the 

entire model, including forward passes, backward passes, and Optimized Slack 

calculations. 

  



 

 

145 
 

Chapter 9:  Performance Results of the OTP Algorithm 

9.1 Structure of the Experimental Test Plan 

The MATLAB computer code for the Optimized Transit Path algorithm, as 

described in Chapter 8, was tested with a series of progressively more complex 

matrices, for which shortest path solution was already known.  These matrices were 

imported into MATLAB and solved via the computer code.  The answers were 

compared to the known solutions, verifying that the code worked properly.  These test 

matrices had shortest paths that required motion in all directions, including straight up 

and down as well as backtracking.  The code worked properly to incorporate potential 

motion in all directions in its solution for the shortest path through the matrix.  

All performance tests of the OTP algorithm were run using MATLAB on a laptop 

computer of moderate computing power.  System characteristics of the test bed laptop 

computer were as follows. 

 

Manufacturer:   Toshiba 

Model:    Satellite P745 

Operating System:   Windows 7 Home Premium 

Processor:    Intel Core i3-2350M CPU @ 2.30 GHz 

Installed Memory (RAM): 6.00 GB 

 

To measure the performance of the OTP algorithm, one hundred randomly 

generated matrices of each of the following sizes were generated. 



 

 

146 
 

 

• To test the effect of overall matrix size on performance: 

o 10x10, 20x20, 30x30, 40x40, 50x50, 60x60, 70x70, 80x80, 90x90, 

100x100 

• To test the effect of number of rows on performance: 

o 10x50, 20x50, 30x50, 40x50, 50x50, 60x50, 70x50, 80x50, 90x50, 

100x50 

• To test the effect of number of columns on performance:  

o 50x10, 50x20, 50x30, 50x40, 50x50, 50x60, 50x70, 50x80, 50x90, 

50x100 

Thus, performance characteristics were recorded for 2,800 different, randomly 

generated matrices.  The same 50x50 matrices were used in all three cases for 

consistency and comparison between data sets. 

The Optimized Transit Path solution was determined for each of these 2,800 

matrices.  For each solution, the following data was recorded. 

• Number of forward passes required to reach solution 

• Time (sec) for forward passes to reach solution 

• Number of backward passes required to reach solution 

• Time (sec) for backward passes to reach solution 

• Time (sec) overall to reach entire solution, including MS, MF, RS, RF, and 

OS 



 

 

147 
 

In addition, based on the number of forward and backward passes required for 

each matrix, the total number of calculations required to reach the solution was also 

determined.  The methodology for determining number of calculations will be 

discussed in Section 8.3. 

 Finally, one thousand randomly generated 43x50 matrices were solved using 

the OTP algorithm, with the number of calculations required to reach the solution 

recorded for each matrix.  This data was compared to the number of calculations that 

would be required to solve a 43x50 matrix with each of the commonly used shortest 

path algorithms discussed previously in Chapter 6.  

  



 

 

148 
 

9.2 Number of Forward and Backward Passes Required to Reach a Solution 

During the Optimized Transit Path solution to each of the test matrices, both the 

number of forward passes and the number of backward passes required to reach the 

solution were recorded. 

The number of forward passes required to reach a solution to the Optimized Transit 

Path algorithm was recorded for each of the 2,800 test matrices, with the results as 

shown in Figure 50.  At every node count value, the number of forward passes varied 

greatly, suggesting that some of the randomly generated matrices were more 

complicated than others and required a greater amount of vertical motion and 

backtracking than others.   At many of the node count values, there were two distinct 

datasets of test values recorded.  This is because of the symmetrical nature of the test 

 
 

Figure 50: Number of Nodes vs. Number of Forward Passes – All Test Matrices 
 

 

0

5

10

15

20

25

30

35

40

45

50

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
u

m
b

e
r 

o
f 

Fo
rw

a
rd

 P
a

ss
e

s 
to

 R
e

a
ch

 S
o

lu
ti

o
n

Number of Nodes in Matrix - All Matrices Included

Number of Nodes in Matrix vs. Number of Forward Passes to Reach Solution

All Iterations of All Matrices

= Square Matrices (# Rows = # Columns)

= Fixed Number of Rows (50 x n Matrices)

= Fixed Number of Columns (n x 50 Matrices)



 

 

149 
 

plan.  For example, there is a set of 10x50 matrices and a set of 50x10 matrices, both 

of which have the same number of nodes, 500, in each matrix.  At each of the node 

count numbers in which two different matrix sizes are represented, the results vary 

widely and suggest that there are two distinct sets of results for that number of nodes.  

This suggests that something beyond number of nodes influences the number of 

forward passes required to reach a solution. 

To further investigate the effect of number of nodes on required number of forward 

passes, the test results for square matrices, those with an equal number of rows and 

columns, were plotted next.   These matrices behaved in a much more linear fashion, 

as shown in Figure 51.  This implies that, as the number or rows and the number of 

 
 

Figure 51: Number of Nodes vs. Number of Forward Passes – Square Matrices 
(X = Mean Value for Each Number of Nodes) 

 
 
 

 

0

5

10

15

20

25

30

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
u

m
b

e
r 

o
f 

Fo
rw

a
rd

 P
a

ss
e

s 
to

 R
e

a
ch

 S
o

lu
ti

o
n

Number of Nodes in Matrix - Square Matrices Only - (n x n Matrices)

Number of Nodes in Matrix vs. Number of Forward Passes to Reach Solution

Square (n x n) Matrices Only



 

 

150 
 

columns increases, the required number of forward passes also increases. However, the 

results of Figure 50 suggest that one of these may have a greater impact on the results 

than the other. 

  In order to investigate the effect of number of rows on the required number of 

forward passes, results from those matrices with a fixed number of fifty columns and 

increasing numbers of rows were plotted, as shown in Figure 52. Likewise, results from 

matrices with a fixed number of fifty rows and increasing numbers of columns were 

also plotted, as shown in Figure 53.   

 
 

 
 

Figure 52: Matrix Size vs. Number of Forward Passes – Fixed # of Columns 
(X = Mean Value for Each Matrix Size) 

 
 

 
 

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r 

o
f 

Fo
rw

a
rd

 P
a

ss
e

s 
to

 R
e

a
ch

 S
o

lu
ti

o
n

Matrix Size - Fixed Number of Columns - (n x 50 Matrices)

Matrix Size vs. Number of Forward Passes to Reach Solution

Fixed Number of Columns (50) in each Matrix (n x 50 Matrices)

10x50 20x50 30x50 40x50 50x50 60x50 70x50 80x50 90x50 100x50

Stubby Matrices Tall Matrices



 

 

151 
 

 
Figure 53: Matrix Size vs. Number of Forward Passes – Fixed # of Rows 

(X = Mean Value for Each Matrix Size) 
 

In Figure 52, in which the number of columns is held fixed while the number 

of rows is increased, the number of forward passes seems to increase quadratically 

(related to number of rows squared), with the required number of forward passes never 

exceeding the number of rows.  Meanwhile, in Figure 53, in which the number of rows 

is held fixed while the number of columns is increased, the number of forward passes 

is quite high for the relatively short and stubby matrices (e.g. 50x10, 50x20, and 

50x30), gradually decreasing as the matrix lengthens.  Then, as the matrix approaches 

a square shape and lengthens past that, the number of required forward passes remains 

fairly constant, with a slight rise in both mean and standard deviation.   

 

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r 

o
f 

Fo
rw

a
rd

 P
a

ss
e

s 
to

 R
e

a
ch

 S
o

lu
ti

o
n

Matrix Size - Fixed Number of Rows - (50 x n Matrices)

Matrix Size vs. Number of Forward Passes to Reach Solution

Fixed Number of Rows (50) in each Matrix (50 x n Matrices)

50x10 50x20 50x30 50x40 50x50 50x60 50x70 50x80 50x90 50x100

Tall Matrices Stubby Matrices



 

 

152 
 

Typically, the number of forward or backward passes possible in an OTP algorithm 

solution will be less than or equal the number of rows in the matrix.  This is because 

information within a particular column can only be transmitted straight up or down a 

distance of one node at a time within that particular column.  Diagonal motion to 

subsequent columns speeds the exchange of information and reduces the required 

number of forward passes.  However, if the shortest path involves significant vertical 

motion within a relatively small number of columns, this exchange of information will 

require a larger number of forward passes. 

An example where the required number of forward passes would equal the number 

of rows in the matrix would be for an extremely short and stubby matrix, in which the 

entry point was at the absolute top of the first column and the exit point was at the 

absolute bottom of the last column.  For example, consider a 50x3 matrix in which the 

first column consisted of all infinity valued nodes except the node in row 1, the last 

column consisted of all infinity valued nodes except the node in row 50, and the middle 

column consisted of all non-infinity nodes.  Information about the first column’s lone 

non-infinity node would require 49 forward passes to be transmitted to the last 

column’s lone non-infinity node.  Then, on the 50th forward pass, results would be 

identical to the 49th, so the algorithm would stop.  Thus, for this extreme example, the 

number of required forward passes would equal the number of rows in the matrix.  

However, for most matrices, the number of required passes will be much lower than 

the number of rows in the matrix.  The experimental results from the tests of 2,800 

matrices support this conclusion.  Only in the most out-of-square matrices (e.g. 50x10, 

50x20, 10x50, 20x50) did the required number of forward passes ever approach the 



 

 

153 
 

number of rows.  And only once of the 2,800 tests of randomly generated matrices (one 

instance in the hundred results for 10x50 matrices) did the number of forward passes 

ever equal the number of rows. 

Experimental results for the number of backward passes required to reach a 

solution, as shown in Figure 54 through Figure 57, follow similar trends as the number 

of forward passes, though the effect of number of rows is not as pronounced.  As with 

the forward passes, the number of backward passes needed to reach the OTP solution 

will typically be less than or equal to the number of rows.  For the 2,800 test matrices, 

the number of backward passes never equaled the number of rows. 

 

 

Figure 54: Number of Nodes vs. Number of Backward Passes – All Test Matrices 
 

0

5

10

15

20

25

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
u

m
b

e
r 

o
f 

B
a

ck
w

a
rd

 P
a

ss
e

s 
to

 R
e

a
ch

 S
o

lu
ti

o
n

Number of Nodes in Matrix - All Matrices Included

Number of Nodes in Matrix vs. Number of Backward Passes to Reach Solution

All Iterations of All Matrices

= Square Matrices (# Rows = # Columns)

= Fixed Number of Rows (50 x n Matrices)

= Fixed Number of Columns (n x 50 Matrices)



 

 

154 
 

 

Figure 55: Number of Nodes vs. Number of Backward Passes – Square Matrices 
 (X = Mean Value for Each Number of Nodes) 

 

Figure 56: Matrix Size vs. Number of Backward Passes – Fixed # of Columns 
 (X = Mean Value for Each Matrix Size) 

0

5

10

15

20

25

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
u

m
b

e
r 

o
f 

B
a

ck
w

a
rd

 P
a

ss
e

s 
to

 R
e

a
ch

 S
o

lu
ti

o
n

Number of Nodes in Matrix - Square Matrices Only - (n x n Matrices)

Number of Nodes in Matrix vs. Number of Backward Passes to Reach Solution

Square (n x n) Matrices Only

0

2

4

6

8

10

12

14

16

18

20

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r 

o
f 

B
a

ck
w

a
rd

 P
a

ss
e

s 
to

 R
e

a
ch

 S
o

lu
ti

o
n

Matrix Size - Fixed Number of Columns - (n x 50 Matrices)

Matrix Size vs. Number of Backward Passes to Reach Solution

Fixed Number of Columns (50) in each Matrix (n x 50 Matrices)

10x50 20x50 30x50 40x50 50x50 60x50 70x50 80x50 90x50 100x50

Stubby Matrices Tall Matrices



 

 

155 
 

 

 

Figure 57:  Matrix Size vs. Number of Backward Passes – Fixed # of Rows 
 (X = Mean Value for Each Matrix Size) 

 

 

 

  

0

5

10

15

20

25

0 10 20 30 40 50 60 70 80 90 100

N
u

m
b

e
r 

o
f 

B
a

ck
w

a
rd

 P
a

ss
e

s 
to

 R
e

a
ch

 S
o

lu
ti

o
n

Matrix Size - Fixed Number of Rows - (50 x n Matrices)

Matrix Size vs. Number of Backward Passes to Reach Solution

Fixed Number of Rows (50) in each Matrix (50 x n Matrices)

50x10 50x20 50x30 50x40 50x50 50x60 50x70 50x80 50x90 50x100

Tall Matrices Stubby Matrices



 

 

156 
 

9.3 Number of Calculations Required to Reach a Solution 

For each forward pass, there are nine calculations for each node in the “middle” 

columns of the matrix (8 calculations to check its MS value vs. MF values of the 8 

nodes surrounding it and update its MS value as necessary; plus 1 calculation to 

determine its new MF value as MF = MS + Cost).  There are six calculations for each 

node in the last column (5 to check its MS value vs. MF values of the 5 surrounding 

nodes and update it as necessary; plus 1 to calculate its new MF value as MF = MS + 

Cost).  After the first pass, no calculations are needed for the first column, as its MS 

and MF values never change.  However, in the computer code used to find the solution 

to the OTP algorithm, these values were recalculated as part of each pass, so there is 

one calculation for each node in the first row for each forward pass. 

For R = Number of Rows, C = Number of Columns, and N = Number of Nodes, 

the number of calculations required to reach the Optimized Transit Path solution via 

forward passes is as follows. 

 

#CalcFwdPasses = #FwdPasses* [#Calcfirst column+ #Calcmiddle columns+ #Calclast column]   (25) 

#CalcFwdPasses = #FwdPasses * [R + (C-2) * R * 9 + 1 * R * 6] 

#CalcFwdPasses = #FwdPasses * R * [1 + (9C - 18) + 6] 

           #CalcFwdPasses = #FwdPasses * R * [9C - 11]             (26) 

 

 The number of backward pass calculations required to reach the Optimized 

Transit Path solution values for RS and RF follows the same pattern as for the forward 

pass. 



 

 

157 
 

 

           #CalcBackPasses = #BackPasses * R * [9C - 11]             (27) 

 

 The overall number of calculations needed to reach the full Optimized Transit 

Path solution, including MS, MF, RS, RF, and OS values, equals the sum of the number 

of calculations for all forward passes, all backward passes, and Optimized Slack 

calculations.  Since they are not done until all MS, MF, RS, and RF values are found 

for every node, finding OS only requires one calculation per node, either OS = RF – 

MF (Equation 23) or OS = RS – MS (Equation 24). 

 

#CalcTotal =  #CalcFwdPasses + #CalcBackPasses + #CalcOS                       (28) 

     #CalcTotal = #FwdPasses*R*[9C-11] + #BackPasses*R*[9C- 11] + R*C           (29) 

 

As expected, Figure 58 to Figure 61 show that the number of calculations 

required to find the Optimized Transit Path solution for each of the test matrices follow 

the same trends as the number of forward pass and number of backward pass figures. 

 

 

 

 



 

 

158 
 

 

Figure 58: Number of Nodes vs. Number of Calculations – All Test Matrices 
 (Number of Calculations Determined per Equations 25-29) 

 
 

 

Figure 59: Number of Nodes vs. Number of Calculations – Square Matrices 
 (Number of Calculations Determined per Equations 25-29) 

 (X = Mean Value for Each Number of Nodes) 

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

To
ta

l 
N

u
m

b
e

r 
o

f 
C

a
lc

u
la

ti
o

n
s 

to
 R

e
a

ch
 O

T
P

 S
o

lu
ti

o
n

Number of Nodes in Matrix - All Matrices Included

Number of Nodes in Matrix vs. Total Number of Calculations

All Iterations of All Matrices

= Square Matrices (# Rows = # Columns)

= Fixed Number of Rows (50 x n Matrices)

= Fixed Number of Columns (n x 50 Matrices)

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

4000000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

To
ta

l N
u

m
b

e
r 

o
f 

C
a

lc
u

la
ti

o
n

s 
to

 R
e

a
ch

 O
T

P
 S

o
lu

ti
o

n

Number of Nodes in Matrix - Square Matrices Only - (n x n Matrices)

Number of Nodes in Matrix vs. Total Number of Calculations

Square (n x n) Matrices Only



 

 

159 
 

 

Figure 60: Matrix Size vs. Number of Calculations – Fixed # of Columns 
 (Number of Calculations Determined per Equations 25-29) 

 (X = Mean Value for Each Matrix Size) 

 

Figure 61: Matrix Size vs. Number of Calculations – Fixed # of Rows 
 (Number of Calculations Determined per Equations 25-29) 

 (X = Mean Value for Each Matrix Size)  

0

500000

1000000

1500000

2000000

2500000

3000000

0 10 20 30 40 50 60 70 80 90 100

To
ta

l 
N

u
m

b
e

r 
o

f 
C

a
lc

u
la

ti
o

n
s 

to
 R

e
a

ch
 O

T
P

 S
o

lu
ti

o
n

Matrix Size - Fixed Number of Columns - (n x 50 Matrices)

Matrix Size vs. Total Number of Calculations

Fixed Number of Columns (50) in each Matrix (n x 50 Matrices)

10x50 20x50 30x50 40x50 50x50 60x50 70x50 80x50 90x50 100x50

Stubby Matrices Tall Matrices

0

500000

1000000

1500000

2000000

2500000

3000000

0 10 20 30 40 50 60 70 80 90 100

To
ta

l 
N

u
m

b
e

r 
o

f 
C

a
lc

u
la

ti
o

n
s 

to
 R

e
a

ch
 O

T
P

 S
o

lu
ti

o
n

Matrix Size - Fixed Number of Rows - (50 x n Matrices)

Matrix Size vs. Total Number of Calculations

Fixed Number of Rows (50) in each Matrix (50 x n Matrices)

50x10 50x20 50x30 50x40 50x50 50x60 50x70 50x80 50x90 50x100

Tall Matrices Stubby Matrices



 

 

160 
 

9.3.1 Number of Computations to Solve the Specified Starting Point Case 

 Solving the Specified Point to Finish Line problem with the Optimized Transit 

Path algorithm, as previously discussed in Chapter 7.5.1, would have a minimal effect 

on the required number of calculations to reach a solution.  Modifying the matrix to 

incorporate this requirement effectively adds one additional column to the matrix.  

Thus, (C + 1) is used instead of C within the equations to determine required number 

of calculations, as follows.   

 

#CalcSpecific-Start-Point  = #FwdPasses*R*[ 9(C + 1) - 11] 

+ #BackPasses*R*[ 9(C + 1) - 11] + R*(C + 1)       (30) 

#CalcSpecific-Start-Point  = #FwdPasses * R * [ 9C - 2]  

+ #BackPasses * R * [ 9C - 2] + R * (C + 1)            (31) 

 

  



 

 

161 
 

9.3.2 Number of Computations to Solve the Limited Motion Case 

 The other special case of the Optimized Transit Path algorithm, discussed in 

Section 7.5.2, was the limited motion problem, in which motion between nodes was 

restricted to only the 4 directions of up/down and right/left.  In this case, the number of 

motion directions between nodes was reduced from 8 to 4 (or 5 to 3 for the first and 

last columns).  Likewise, the number of calculations for each node during a pass 

through the matrix is reduced from 9 to 5 (or 6 to 4 for the last column).  This change 

reduces the number of calculations required to reach the shortest path solution as 

follows. 

 

        #CalcFwdPasses-Limited Motion = #FwdPasses * [R + (C-2) * R * 5 + 1 * R * 4]      (32) 

          #CalcFwdPasses-Limited Motion = #FwdPasses * R * [5C - 6]            (33) 

 

       #CalcBackPasses-Limited Motion = #BackPasses * [R + (C-2) * R * 5 + 1 * R * 4]     (34) 

          #CalcBackPasses-Limited Motion = #BackPasses * R * [5C - 6]            (35) 

 

   #CalcTotal-Limited Motion =  #CalcFwdPasses + #CalcBackPasses + #CalcOS             (36) 

#CalcTotal-Limited Motion= #FwdPasses*R*[5C–6]+ #BackPasses*R*[5C–6]+ R*C     (37) 

 

   



 

 

162 
 

9.4 Computing Time Required to Reach a Solution 

  During the Optimized Transit Path solution to each of the 2,800 test matrices, a 

timer was started as soon as the matrix was generated.  The time was recorded for all 

forward pass calculations, all backward pass calculations, and the overall solution time.  

For all three cases, the relationship between matrix size and solution time follows the 

same patterns as the relationship between matrix size and number of calculations.  This 

is to be expected, as the dominant activities that require computing time are the matrix 

calculations.  In Figure 62 to Figure 65, the effect of number of nodes and matrix size 

on total solution time is presented.  

 

 

Figure 62: Number of Nodes vs. Calculation Time – All Test Matrices 
 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
p

ti
m

iz
e

d
 T

ra
n

si
t 

P
a

th
 S

o
lu

ti
o

n
 T

im
e

 (
se

c)

Number of Nodes in Matrix - All Matrices Included

Number of Nodes in Matrix vs. Optimized Transit Path Solution Time

All Iterations of All Matrices

= Square Matrices (# Rows = # Columns)

= Fixed Number of Rows (50 x n Matrices)

= Fixed Number of Columns (n x 50 Matrices)



 

 

163 
 

It is worth noting that the computing time for the OTP Algorithm is extremely 

quick.  Though a somewhat outdated laptop was running the code, the solution times 

for all matrices were but fractions of a second.  Even the largest of the matrices, the 

100x100 matrix with 10,000 nodes, averaged just over half a second for its total 

solution time, with a maximum value of 0.8 seconds.  Thus, for the size of matrices 

involved in the piracy avoidance problem, total solution time for the OTP algorithm is 

not likely to be an issue for even older computers found aboard merchant ships.  

 

 

Figure 63: Number of Nodes vs. Calculation Time – Square Matrices 
 (X = Mean Value for Each Number of Nodes) 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

O
p

ti
m

iz
e

d
 T

ra
n

si
t 

P
a

th
 S

o
lu

ti
o

n
 T

im
e

 (
se

c)

Number of Nodes in Matrix - Square Matrices Only - (n x n Matrices)

Number of Nodes in Matrix vs. Optimized Transit Path Solution Time

Square (n x n) Matrices Only



 

 

164 
 

 

Figure 64: Matrix Size vs. Calculation Time – Fixed # of Columns 
 (X = Mean Value for Each Matrix Size) 

 

Figure 65: Matrix Size vs. Calculation Time – Fixed # of Rows 
 (X = Mean Value for Each Matrix Size) 

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40 50 60 70 80 90 100

O
p

ti
m

iz
e

d
 T

ra
n

si
t 

P
a

th
 S

o
lu

ti
o

n
 T

im
e

 (
se

c)

Matrix Size - Fixed Number of Columns - (n x 50 Matrices)

Matrix Size vs. Optimized Transit Path Solution Time

Fixed Number of Columns (50) in each Matrix (n x 50 Matrices)

10x50 20x50 30x50 40x50 50x50 60x50 70x50 80x50 90x50 100x50

Stubby Matrices Tall Matrices

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 10 20 30 40 50 60 70 80 90 100

O
p

ti
m

iz
e

d
 T

ra
n

si
t 

P
a

th
 S

o
lu

ti
o

n
 T

im
e

 (
se

c)

Matrix Size - Fixed Number of Rows - (50 x n Matrices)

Matrix Size vs. Optimized Transit Path Solution Time

Fixed Number of Rows (50) in each Matrix (50 x n Matrices)

50x10 50x20 50x30 50x40 50x50 50x60 50x70 50x80 50x90 50x100

Tall Matrices Stubby Matrices



 

 

165 
 

9.5 Comparison of OTP Performance to Other Shortest Path Algorithms 

In order to compare the performance of the OTP algorithm to that of the most 

commonly used shortest path algorithms, one thousand 43x50 matrices were randomly 

generated and solved with the OTP algorithm.  This is the same size matrix as is used 

in the Arabian Sea piracy problem.  From each node within the matrix, except those on 

the outer edges, travel could occur in eight directions: up/down, left/right, and 

diagonally.  The algorithm was set up to conduct its standard solution methodology, 

providing the shortest possible path from any point on the “starting line” on one side 

of the matrix to any point on the “finish line” on the other side of the matrix. 

The results of the thousand tests of the OTP algorithm with 43x50 matrices are 

summarized in Table 7.   The thousand test solutions required an average of 386,000 

simple calculations, which averaged less than a tenth of a second to complete.  The 

most complicated matrix, with the longest solution time, required 606,000 calculations, 

which was completed in just under 0.15 seconds.  

 

 

Table 7: OTP Algorithm Solution Results for One Thousand 43x50 Matrices 
 

 
 

Number 

of 

Forward 

Passes

Number 

of 

Backward 

Passes

Total 

Solution 

Time 

(sec)

Number of 

Calculations 

for 43x50 

Piracy Matrix

Mean 10.1 10.2 0.0970 386,000

Standard Deviation 2.3 2.1 0.0178 68,600

Maximum Value 18 17 0.1472 606,000

Minimum Value 6 6 0.0633 248,000



 

 

166 
 

The results for the OTP algorithm were then compared to the required number of 

calculations to solve a 43x50 piracy matrix for some of the most common shortest path 

algorithms in use today.  Each of these algorithms was discussed briefly in Chapter 6.  

The Dijkstra and Bellman-Ford algorithms are traditionally used to solve single-source 

shortest path algorithms, giving the shortest path from a specific point in the matrix to 

all other nodes in the matrix.  In order to transform these into a “starting line” to “finish 

line” type of application, these algorithms would need to be run once for each node on 

the starting line.  In the case of the 43x50 piracy matrix, this would mean that the 

Dijkstra and Bellman-Ford algorithms would need to be run 43 times in order to 

evaluate every potential starting point, were a “starting line” solution desired.  Both the 

Floyd-Warshall algorithm and Johnson’s algorithm solve the all-pairs shortest path 

problem.  Because they solve for the shortest path from every node in the matrix to 

every other node, their solution includes the subset of finding the shortest path from 

any node on the starting line to any node on the finish line. 

Table 8 summarizes the required number of calculations for each of these common 

shortest path algorithms in order to solve a 43x50 piracy matrix.  As discussed in 

Section 6.2, Dijkstra’s Algorithm implementing a Min-Priority Queue with a Fibonacci 

Heap is considered the fastest possible solution to the single-source shortest path 

problem with non-negative edge weights (Cormen et al. 2009).  For the 43x50 piracy 

matrix, this is certainly the case, as its solution requires orders of magnitude fewer 

calculations than the other methods evaluated.  Dijkstra with Fibonacci Heap is 

especially well suited for applications that have a limited number of connections 

between nodes, rather than having all nodes interconnected with each other.  The piracy 



 

 

167 
 

matrix is an excellent example of such a matrix, as each of its nodes is only connected 

to eight other nodes.  Thus, it is not surprising that Dijkstra with Fibonacci Heap 

performs so much better than the other methods.  Even if this method were modified to 

provide the starting line to finish line solution to the 43x50 piracy matrix, by running 

the application an extra 43 times, it is still significantly faster than all other methods. 

 Based on the data in Table 7 and Table 8, the Optimized Transit Path algorithm 

and Dijkstra’s Algorithm with a Fibonacci Heap had similar orders of magnitude for 

the required number of calculations to solve for the shortest path through the piracy 

43x50 matrix.  Dijkstra with Fibonacci heap will typically be an order of magnitude 

 

Table 8: Number of Calculations Required to Solve a 43x50 Piracy Matrix for 

Common Shortest Path Algorithms 
 

 

 

Algorithm Name Route Type

Formula for 

Number of 

Calculations

Number of 

Calculations 

for 43x50 

Piracy Matrix

Traditional Dijkstra Specific Point to Finish Line N
2

4,620,000

Traditional Dijkstra Starting Line to Finish Line R * (N
2
) 199,000,000

Dijkstra with Fibonacci Heap Specific Point to Finish Line E + N log N 15,500

Dijkstra with Fibonacci Heap Starting Line to Finish Line R * (E + N log N) 666,000

Bellman-Ford Specific Point to Finish Line N * E 17,900,000

Bellman-Ford Starting Line to Finish Line R * (N * E) 769,000,000

Floyd-Warshall All Points to All Points N
3

9,940,000,000

Johnson All Points to All Points N
2
 log N  + N * E 33,300,000

List of Abbreviations Values for 43x50 Piracy Matrix

N = Number of Nodes in Matrix N = 43 * 50 = 2,150 nodes

E = Number of Edges in Matrix E = 8,323 edges

R = Number of Rows in Matrix R = 43 rows

C = Number of Columns in Matrix C = 50 columns



 

 

168 
 

faster for the single-source problem, while the OTP algorithm will usually be a little 

faster for the starting line to finish line problem.  Both algorithms are significantly 

faster at solving the problem than the other methods investigated.  And both are so fast 

that, for most modern computers, their solution times for the 43x50 piracy matrix would 

be almost negligible compared to the overhead time associated with generating and 

downloading the matrix. 

 As discussed earlier in Chapter 7, one of the greatest strengths of the Optimized 

Transit Path algorithm is the additional insight it gives about the cost of diverting from 

the shortest path.  Through its calculation of Optimized Slack, the OTP algorithm 

provides extra information to the route decision-maker that other methods, including 

Dijkstra, do not.  For the piracy problem, the computation time is similar between the 

OTP algorithm and Dijkstra with Fibonacci Heap.  Thus, because it also provides 

Optimized Slack data, the OTP algorithm would be a preferred method of solving for 

the shortest path in the piracy application. 

 However, the Optimized Transit Path algorithm has a fairly limited set of 

potential uses outside of the piracy application because it relies on an equal number of 

connections between nodes – the 8 geographic travel directions between nodes (or 4 if 

diagonal travel is not permitted).  Thus, extensive use of the OTP algorithm only seems 

applicable to 2-dimensional geographic travel, for finding the shortest path across a flat 

plane.  It is not nearly as versatile of a method as Dijkstra’s Algorithm with Fibonacci 

Heap, which can be used to solve a wider range of shortest path applications. 

 Another strength of the Optimized Transit Path algorithm for use in the piracy 

application is that it directly uses an input matrix that is in the same format as the PARS 



 

 

169 
 

model for piracy prediction.  The OTP algorithm uses a matrix in which each node has 

a cost associated with it.  In the algorithm, the net cost of a path through the matrix 

equals the sum of the costs of the nodes on that path.  No transformation is needed of 

the piracy prediction matrix in order to solve for its shortest path with the OTP 

algorithm. 

To use Dijkstra’s Algorithm with Fibonacci Heap for the piracy application, the 

input matrix must be restructured to match the format required by the algorithm.  

Dijkstra’s method requires a listing of all nodes in the matrix, with a separate matrix 

listing which nodes are connected to which and what the associated edge costs are 

between those nodes.  Especially because the piracy application always involves the 

same size of matrix, a computer code could be written to transform the piracy matrix 

into the format required for Dijkstra’s method.  However, this does add an extra layer 

of complexity to solving the problem, though it is certainly not a major difficulty that 

cannot be overcome. 

 

  



 

 

170 
 

Chapter 10: Potential Uses in Other Applications 

 Because it relies on a consistent number of edge connections coming out of 

each node in the matrix, the Optimized Transit Path algorithm is not foreseen as being 

useful for computer network or transportation routing problems.  It is not versatile 

enough to handle the variable number of edges associated with each node in these 

applications.  However, it may be well suited for a variety of search applications, 

especially those involving probability of discovery in a flat plane allowing unlimited 

motion directions. 

  

10.1 Single Attribute Search 

For many applications involving search, especially those in which a matrix map is 

generated with probability of discovering the lost item, the Optimized Transit Path 

algorithm could provide a simple and quick method of planning out one’s search route.  

This would be especially true for scenarios in which it is desired to follow a relatively 

straight path through the matrix, without significant turning or looping, unless it 

provided significant benefit.  Underwater search, in which a towed array sonar is 

dragged behind the ship, is one such application.  Because of the towed array, quick 

and tight turns are not feasible, so an optimized path across the matrix would be 

desirable. 

In search scenarios, however, the probability matrix usually displays the probability 

of discovering the missing item, Pdiscovery, in each node.  A path through the matrix that 

maximizes Pdiscovery would be desirable.  In such cases, a shortest path algorithm such 



 

 

171 
 

as the OTP algorithm or Dijkstra’s algorithm could still be used to find the best search 

path.  This would be done by creating a matrix of probabilities of not discovering the 

item in each node, Pno discovery, then optimizing for the shortest path across this matrix.  

The shortest path across the Pno discovery matrix would give the path with the lowest net 

chances of not discovering the missing item.  This same path would, in turn, be the 

most efficient path through the matrix to maximize one’s chances of finding the item 

with a minimal total distance traveled. 

For example, suppose the 5x5 matrix shown in Figure 66 represents the probability 

of finding a missing object at any of 25 different locations.   If it were certain that the 

object was located somewhere within this matrix, then the total probability represented 

by the sum of all the nodes would be 100%.   

 
 

Figure 66: Probability of Discovery Matrix for Search Example 
 
 

2

3

3

6

4

3

6

5

4

3

5

9

7

5

3

2

6

5

3

2

3

4

3

2

2

Note: Pdiscovery Values are in Percent



 

 

172 
 

If it were desired to travel across this matrix with a minimal distance traveled while 

maximizing one’s chances of finding the missing object, a shortest path algorithm could 

be used by transforming the matrix into the probability of not finding the object at each 

node, as shown in Figure 67.   The probability of not discovering the object at each 

node equals 100% minus the probability of finding it at that location: Pno discovery = 100% 

- Pdiscovery. The shortest path across Figure 67 would, in turn, represent the shortest path 

across Figure 66 that had the highest probability of finding the object.  

However, in cases like this one, where the probabilities of finding the missing 

object are very low, the probabilities in the Pno discovery matrix would all be very high 

numbers.  Such high costs at every node would make it unlikely that the optimized path 

would ever divert from a relatively straight path through the matrix.  Any diversion 

 
 

Figure 67: Probability of No Discovery Matrix for Search Example 
 
 
 

98

97

97

94

96

97

94

95

96

97

95

91

93

95

97

98

94

95

97

98

97

96

97

98

98

Note: Pno discovery Values are in Percent



 

 

173 
 

upwards or backwards would add a very high cost value to the overall sum, making it 

unlikely that the optimized path would ever divert that direction.  A better option, rather 

than subtracting Pdiscovery from 100%, as was done in Figure 67, would be to create a 

modified “No Discovery” matrix with very low, but still positive, values in it.  One 

option for doing this would be to subtract Pdiscovery for each node from the maximum 

Pdiscovery value in the matrix.  For example, in Figure 66, the maximum value of Pdiscovery 

in the matrix is 9%.  Thus, to create the Modified No Discovery matrix, the value of 

each node was subtracted from 9, with results as shown in Figure 68.   The shortest 

path was then found across this matrix in order to give an optimized path 

recommendation.  Although, in this example for a small x5 matrix, the recommended 

path remained the same, the optimized path has much more ability to divert from a 

 
 

Figure 68: Modified No Discovery Matrix for Search Example 
 
 

 

7

6

6

3

5

6

3

4

5

6

4

0

2

4

6

7

3

4

6

7

6

5

6

7

7

Note: Pmodified-no-discovery Values equal Pdiscovery-maximum – Pdiscovery



 

 

174 
 

completely straight line using the Modified No Discovery matrix than it did with the 

true Pno discovery matrix. 

Because the input required by the Optimized Transit Path algorithm is a matrix of 

node values in the same format as the probability maps of Figure 66, Figure 67, and 

Figure 68, it is especially well suited to solving such a search problem.  

   

  



 

 

175 
 

10.2 Multiple Attribute Search 

For applications with multiple attributes of each node (or edge between nodes), 

each of which it is desirable to optimize, the methods of combining multiple attributes 

developed in Chapter 5 might have value.  In this case, each of the desirable attributes 

would be expressed in terms of a single, common attribute then combined, either 

directly or via weighting, into a single value of this attribute for each node in the matrix.  

The matrix could then be optimized for that common attribute.   

For example, in Chapter 5, it was desired to minimize the two attributes of net 

piracy probability and total transit costs.  The piracy probability was transformed into 

an Expected Monetary Value cost of piracy in each node, which was then combined 

with transit cost per node to give a single attribute, overall cost for each node.  Overall 

cost could then be optimized for the shortest possible path through the matrix.  A similar 

methodology might be useful in other applications besides piracy.  

 

  



 

 

176 
 

10.2.1 Underwater Search Applications 

 Many aspects of underwater search, as discussed in Section 4.3, are similar to 

the piracy avoidance problem.  The most similar feature is the use of a matrix with 

probability values to represent an area.  As with piracy prediction, each node in the 

underwater search matrix represents an equally sized geographic area of the sea.  The 

value of each node represents the probability that the missing object is located within 

the area represented by that node.  Another similarity is that, in underwater search, 

there is a cost associated with transiting each node.  It is very expensive to conduct an 

underwater search with towed array sonar, costing many thousands of dollars each day, 

so each node passed through in the search probability matrix will have a transit cost 

associated with it. 

 However, the underwater search problem has many differences from piracy 

avoidance as well.  First, in underwater search, the goal of transiting the search area is 

to maximize one’s probability of locating the missing object while minimizing transit 

costs.  In the piracy application, the goal was to minimize both the total probability of 

a pirate encounter and the transit cost simultaneously.  Second, in underwater search, 

the plan is typically to transit the matrix area multiple times until either the missing 

object is found or the allocated time and funds for the search have been exhausted.  To 

this end, after each node of the matrix has been unsuccessfully searched, the probability 

for that node is decreased, though usually not to zero, according to Bayes’ Theorem.  

Likewise, the unsuccessful search of one node results in a small increase in the 

probability associated with every other node in the matrix.  Thus, the values in the 

probability matrix are constantly changing.  In the piracy application, because there is 



 

 

177 
 

never a fixed nor a known number of pirates in the Arabian Sea at a given time, the 

absence of pirate activity in one node of the matrix does not mean that the probability 

of pirate activity will be increased in the other nodes.  The PARS piracy probability 

matrix is updated every twelve hours, while the underwater search probability matrix 

can be updated constantly. 

 Despite the differences, a similar approach could be used to solve the optimized 

underwater search problem as was used to solve the piracy problem.  The methods of 

combining multiple node attributes (Chapter 5) could be used along with the Optimized 

Transit Path algorithm (Chapter 7) and Bayes’ Theorem (Chapter 4) to provide an 

optimized plan for underwater search.  This plan would be one that maximizes the 

chances of finding the missing object over the course of multiple passes through the 

matrix area, while minimizing the costs associated with such a search. 

 Underwater search has two attributes that it is desired to optimize: maximum 

probability of finding the missing object and minimum transit cost.  To combine these 

two attributes, the probability of finding the missing object could be transformed into 

a cost value, from which the transit cost of searching that node would be subtracted. 

 

      EMVsearch per node = Pobject in node * Pdiscovery * Benefitobject discovered – Ctransit              (38) 

 

The Expected Monetary Value for each node equals the product of three terms – the 

probability that the missing object is located in that area, the probability that the missing 

object would be detected by a search of that area if it were located there, and the 

financial benefit that would be realized if the missing object were found - from which 



 

 

178 
 

is subtracted the cost associated with transiting through and conducting the search in 

that node.  In order to find the optimized path through the matrix, the value of each 

node would first be transformed into an EMVsearch per node value. 

Note that EMVsearch per node could be either a positive or a negative number, so 

the matrix may include both.  For low probability locations, the cost of transiting and 

searching the location could outweigh the benefit of searching that area, resulting in a 

negative number.  Meanwhile, in high probability locations, the financial benefit of a 

search would hopefully be greater than the search costs, resulting in positive values.   

 Both the Optimized Transit Path algorithm and Dijkstra’s algorithm find the 

shortest path across a matrix.  To use either algorithm to find the optimized path across 

the EMVsearch per node matrix, the matrix would need to be transformed again into a 

modified matrix related to costs of not finding the object, in the same fashion as was 

described in section 9.1 for a single attribute probability matrix.  In this case, the EMV 

value for each node would be subtracted from the maximum EMV value in the matrix 

to get the Modified No Discovery matrix.  Either the OTP algorithm or Dijkstra’s 

algorithm could then be used to determine the optimized path across the algorithm. 

 As each node is unsuccessfully searched, its probability value decreases, also 

decreasing its EMV but increasing its node value in the Modified No Discovery matrix.  

Likewise, the probability of every other node in the matrix would increase slightly, also 

increasing its EMV and decreasing its node value in the Modified No Discovery matrix.  

Because the OTP and Dijkstra calculations are performed so quickly, the optimized 

path recommendation could be updated almost instantaneously with each unsuccessful 

search of a node.  Such path calculations from within the matrix would be based on 



 

 

179 
 

starting from a specified point in the matrix, the search vessel’s current location.  Once 

the end of the matrix was reached, a new optimized path back through the matrix in the 

opposite direction would be calculated, the vessel would turn around, and the search 

would continue. 

 For a scenario such as the underwater search application, the entire search plan 

could be determined ahead of time.  As long as transit and search costs, an initial 

probability matrix for the missing object’s location, and probability of detection 

information were available ahead of time, the search plan could be created ahead of 

time in order to maximize the overall probability of finding the missing object while 

keeping the total transit costs at or below a specified value. 

 

  



 

 

180 
 

10.2.2 Other Multiple Attribute Applications 

 For applications with multiple attributes for each node or edge, it is often 

desired to optimize more than one of these attributes at a time.  In such cases, the idea 

of combining multiple attributes into a single common attribute, introduced in Chapter 

5, may be have value, whether by directly combining the attributes or weighting them 

based on importance. 

 A simple example of such an application would be related to transportation 

routing and traffic avoidance.  Two attributes that one might want to minimize would 

include typical driving time and amount of traffic encountered on a particular road.  As 

is commonly done, these two attributes could be combined by expressing them both in 

terms of time – no traffic driving time for the road and amount of delay time associated 

with traffic – then combining them to give overall driving time for the road.  Overall 

driving time would then be optimized for a shortest path route between two points. 

However, the idea of weighting one or more of the attributes, as discussed in 

Chapter 5, could have value to this application.  Based on a driver’s priorities and 

preferences, the traffic routing algorithm might apply a weighting factor to the traffic 

time portion of the overall time.  For a driver just interested in getting to his destination 

as quickly as possible, the weighting between typical driving time and traffic time 

would be equal, and the optimized route would be the one that gets him to his 

destination most quickly.  However, the driver might be given an “I hate traffic!  I just 

want to keep moving, even if it takes longer.” weighting option, in which the time spent 

waiting in traffic was more heavily weighted than the regular driving time.  A weighted, 

combined sum of times would populate each node or edge in the matrix of overall drive 



 

 

181 
 

times, for which a shortest path route would be found.  This shortest path would not 

necessarily be the absolutely quickest drive time option.  It also wouldn’t necessarily 

guarantee that all traffic was avoided, depending on the level of priority placed on 

traffic avoidance.  But it would provide a path that avoids most traffic, keeps the 

driver’s car moving as much as possible, and still gets him to his destination in a 

reasonable amount of time. 

Other applications, in which it is desirable to optimize multiple attributes of a 

node or edge, could certainly take advantage of these methods.  First, combine multiple 

attributes into a single, common attribute to be optimized.  Next, employ a weighting 

factor to allow some attributes to be more heavily prioritized than the others. 

 

  



 

 

182 
 

Chapter 11: Conclusions and Future Work 

Despite a lowered number of incidents in the past two years, maritime piracy in the 

Arabian Sea remains a real problem that will not go completely away any time soon.  

Mostly due to large amounts of military interdiction by multinational forces, the 

number of pirate attacks in the region has dropped dramatically.  However, as long as 

the factors of geographic location, lawless government, and extreme poverty remain in 

Somalia, piracy will likely flourish again in the Arabian Sea once enforcement efforts 

wane.  Meanwhile, off the coast of Nigeria, piracy in West Africa has grown 

tremendously in the past five years, due to mostly the same reasons as it will thrive 

again in Somalia. 

The methods developed in this paper allow a mariner to take maximum advantage 

of the piracy avoidance tools that might be available to him, most notably the PARS 

piracy prediction matrix.  By taking into account the specific characteristics of an 

individual ship and its counter-piracy measures, an optimized route through the 

Arabian Sea can be calculated for each vessel.  Based on a mariner’s priorities, this 

route can be optimized for minimum probability of a pirate encounter, minimum overall 

cost, or a weighted combination of the two.  This ability to see the financial impact of 

his choices allows a mariner to select the optimized route that is best for him. 

As part of this research, a new algorithm was developed for finding the shortest 

path from one side of a two-dimensional matrix array to the other, the Optimized 

Transit Path algorithm.  The OTP algorithm uses a matrix input in the same format as 

that provided by the PARS model, with each node of the matrix representing an equally 

sized geographic area and the value of the node representing the attribute to be 



 

 

183 
 

optimized.  In addition to the simplicity and speed of its calculations, one of the most 

useful features of the OTP algorithm is its calculation of Optimized Slack.  Nodes with 

OS values of zero are on the shortest path through the matrix.  Non-zero values of OS 

indicate the penalty, in terms of increased path length, that would be incurred if a point 

were diverted to in the most efficient manner possible.  Such information could also be 

useful to a mariner in his route decisions. 

A computer code was written of the Optimized Transit Path algorithm, allowing 

extensive experimental testing to be done on the algorithm.  These results were used 

both to characterize and understand the behavior of the OTP algorithm and to compare 

its performance to that of the shortest path algorithms that are most commonly used 

today.  Based on this testing, it was found that the OTP algorithm required a similar 

number of calculations to solve the piracy matrix as the fastest of the common 

algorithms, Dijkstra’s Algorithm implementing a Min-Priority Queue with a Fibonacci 

Heap.  Both the OTP algorithm and Dijkstra’s Algorithm with Fibonacci Heap were 

multiple orders of magnitude faster at solving the piracy matrix than any of the other 

algorithms investigated. 

Because it is able to use the piracy prediction matrix directly as an input, the 

Optimized Transit Path algorithm is especially well suited for use in solving the piracy 

problem.  More importantly, its calculation of Optimized Slack provides an insight into 

the route decision-making process that other methods do not.  However, the use of the 

OTP algorithm is fairly limited, as it is only well suited for matrices that represent a 

flat plane of interconnected geographic areas, with movement from a node limited only 

to the eight adjacent nodes surrounding it.  Dijkstra’s Algorithm with Fibonacci Heap, 



 

 

184 
 

meanwhile, requires significant alteration of the format of the piracy prediction matrix 

in order to calculate its solution, and it does not provide awareness of the additional 

cost of diverting from the shortest path.  However, the Dijkstra method is far more 

versatile, as it allows any number of edges between nodes in the matrix.  Hence the 

reason it is used as the backbone for the majority of shortest path applications today. 

Future work, building on the methods in this paper, would include piracy 

prediction and route optimization in other parts of the world, user-friendly GUI output 

of the optimized route through a geographic region, other applications with multiple 

attributes to simultaneously optimize, and other two-dimensional, geographic routing 

problems involving matrix distributions.  One other application where these methods 

seem especially promising and useful is within the field of underwater search.  In much 

the same way that it can quickly identify optimized routes for multiple parameters of 

the piracy problem and comparison between them, the Optimized Transit Path 

algorithm could likewise provide similar path optimization based on multiple 

parameters of the underwater search problem.  

 

  

 

  



 

 

185 
 

Appendices 

Appendix 1: MATLAB Code for Optimized Transit Path Algorithm 

%% 
  
%File Name: Optimized_Transit_Path_Algorithm_Read_External_File_Input 
  
clear; clc 
  
 
%INPUT AND PREPARE THE MATRIX TO BE OPTIMIZED 
  
%Input the matrix that an Optimized Transit Path is desired for. 
%Read the matrix from an external source, in this case an Excel file. 
  
run Read_matrix_from_external_file_source 
  
  
%Start a timer so the overall computation time can be tracked. 
  
tic; 
  
 

%Create Rows along the top and bottom of the original matrix with very high values 
%to act as a boundary that the Optimized Transit Path will not ever cross into. 
%Also, count the number of rows, a, number of columns, b, and number of nodes in  
%the matrix. 
 
run Bound_original_matrix 
  
  
%Set initial values of Minimum Start (MS) and Minimum Finish (MF) to be very 
%high. These will be lowered through successive forward passes. 
  
run Prepare_initial_MS_and_MF_matrices 
  
  
%FORWARD PASS CALCULATIONS 
  
%Conduct a forward pass of calculations for the Minimum Start and Minimum Finish 
%values for each node, with a methodology analogous to forward pass scheduling 
%techniques of the Critical Path Method.  However, because it allows backtracking 
%and vertical motion, the forward pass process for finding the Optimized Transit 
%Path will be an iterative one that may require multiple passes.  Each pass will build 
%upon the values from the previous path.   



 

 

186 
 

  
%Use a "for" loop to allow forward passes to occur until a solution is reached.  Set  
%the "for" loop to repeat up to number_of_nodes times, a number which will never  
%be reached.  An "if" statement later in the code, along with a "break" statement,  
%will stop the code from looping once the Optimized Transit Path has been found, 
%rather than running all of the potential loops. 
  
for number_of_forward_loops = 1:number_of_nodes 
 
     
%Set up confirmation matrices, Previous_MS and Previous_MF, equal to the 
%previous MS and MF values.  At the end of each "for" loop, these will be compared 
%to the newly calculated MS and MF values.  If, at the end of the loop,  
%MS = Previous_MS and MF = Previous_MF, then no further changes to MS and 
%MF are possible, the Optimized Transit Path values have been found, and the "for" 
%loop can stop. 
  
Previous_MS = MS; 
Previous_MF = MF; 
  
  
%Conduct forward pass calculations to calculate updated MS and MF values. 
  
 run Forward_pass_calculations 
  
  
%If no changes were made during a forward pass compared to the previous forward 
%pass, as confirmed by MF equaling Previous_MF and by MS equaling 
%Previous_MS, then the MS and MF values of the Optimized Transit Path have 
%been found and the "for" loop can stop. 
  
%If any changes were made to MS and MF compared to the previous forward 
%pass, then at least one additional forward pass must be completed to 
%find the Optimized Transit Path. 
  
%To save calculation time, if MF equals Previous_MF, then the forward pass loop 
%will stop.  A "break" command is inserted within an "if" statement to stop the  
%program from running all of its loops if this has been achieved.  
  
Stop_Loop_Check = MF - Previous_MF; 
if abs(Stop_Loop_Check) < 0.00001 
    break 
end 
  
  
%If MF does not equal Previous_MF, then another series of forward passes will be 



 

 

187 
 

%conducted up to number_of_forward_loops times.  The below "end" command 
%cycles back to the start of the number_of_forward_loops "for" loop. 
  
 end 
  
  
%Count the number of forward passes needed to arrive at the Optimized Transit Path 
%solution and the time it took to reach the solution. 
  
run Forward_pass_timer 
  
  
%BACKWARD PASS CALCULATIONS 
  
%To more easily identify which nodes are on the Optimized Transit Path, a backward 
%pass is conducted to identify the Required Finish (RF) and Required Start (RS) 
%values for each node. 
  
%Set initial values of Required Start (RS) and Required Finish (RF) to be very high. 
%These will be lowered through successive backward passes. 
  
run Prepare_initial_RS_and_RF_matrices 
  
 
%Use a "for" loop to allow backward passes to occur until a solution is reached.  Set 
%the "for" loop to repeat up to number_of_nodes times, a number which will never 
%be reached. An "if" statement later in the code, along with a "break" statement,  
%will stop the code from looping once the Optimized Transit Path has been found, 
%rather than running all of the potential loops.   
  
 for number_of_backward_loops = 1:number_of_nodes 
  
  
%Set up confirmation matrices, Previous_RS and Previous_RF, equal to the previous 
%RS and RF values.  At the end of each "for" loop, these will be compared to the 
%newly calculated RS and RF values.  If, at the end of the loop, RS = Previous_RS 
%and RF = Previous_RF, then no further changes to RS and RF are possible, the 
%Optimized Transit Path values have been found, and the "for" loop can stop. 
      
Previous_RS = RS 
Previous_RF = RF 
  
  
%Begin backward pass calculations 
  
run Backward_pass_calculations 



 

 

188 
 

  
  
%If no changes were made during a backward pass compared to the previous 
%backward pass, as confirmed by RF equaling Previous_RF and by RS equaling 
%Previous_RS, then the RS and RF values of the Optimized Transit Path have 
%been found and the "for" loop can stop. 
  
%If any changes were made to RS and RF compared to the previous backward 
%pass, then at least one additional backward pass must be completed to find the 
%Optimized Transit Path. 
  
%To save calculation time, if RF equals Previous_RF, then the backward pass  
%loop will stop.  A "break" command is inserted within an "if" statement to stop the  
%program from running all of its loops if this has been achieved. 
  
Stop_Loop_Check = RS - Previous_RS; 
if abs(Stop_Loop_Check) < 0.00001 
    break 
end 
  
  
%If RS does not equal RS_Confirm, then another series of backward passes will be 
%conducted up to number_of_backward_loops times. The below "end" command  
%cycles back to the start of the number_of_backward_loops "for" loop. 
  
 end 
  
  
%Count the number of backward passes needed to arrive at the Optimized Transit 
%Path solution and the time it took to reach the solution. 
  
run Backward_pass_timer 
  
  
%OPTIMIZED SLACK CALCULATIONS TO IDENTIFY OPTIMIZED TRANSIT 
PATH 
  
%Optimized Slack (OS) is used to identify the Optimized Transit Path through the 
%matrix.  This methodology is analogous to how Total Slack is used in CPM to find 
%the critical path through a network diagram. 
  
%Optimized Slack is the difference between Required Finish (RF) and Minimum 
%Finish (MF) for a node. Optimized Slack also equals the difference between 
%Required Start (RS) and Minimum Start (MS) for a node. Relationships to find 
%Optimized Slack:  OS = RF - MF   or   OS = RS - MS 
  



 

 

189 
 

%Those nodes with an Optimized Slack of zero are the nodes on the Optimized 
%Transit Path through the matrix. 
  
run Optimized_Slack_calculation 
  
  
%Strip the bounding rows from the MS, MF, RS, RF, and OS matrices. 
  
run Simplify_optimized_matrices 
  
  
%Measure the total time spent on all calculations since the beginning. 
  
run Final_timer 
  
  
%Present the final results to the user in a concise manner. Final results include the 
%Optimized Slack matrix plus statistics about the solution time and number of 
%passes. 
  
run Final_results_summary 
  
  
%Write the Optimized Slack matrix to Excel for visual presentation 
 
run Write_OS_solution_to_excel 
  
 
  



 

 

190 
 

Appendix 1A: MATLAB Subroutine to Read Matrix Input from External File 

%File Name: Read_matrix_from_external_file_source 
 
  
%Read the input matrix from an external file that contains the matrix 
  
Matrix_input = xlsread('External_Matrix_Source.xlsx') 
 

  



 

 

191 
 

Appendix 1B: MATLAB Subroutine to Bound Matrix with High Value Rows 

%File Name: Bound_original_matrix 
                 
%Define a and b as the number of rows and columns, respectively, in the 
%original input matrix. 
 
[a b] = size(Matrix_input); 
  
  
%Determine the number of nodes in the matrix. 
 
number_of_nodes = a * b; 
  
  
%Create Rows along the top and bottom of the original matrix with very 
%high values to act as a boundary that the optimized path will not ever 
%want to cross into. 
 
High_Value = 1000000000; 
Bounding_Row = High_Value * ones(1,b); 
  
Bounded_Matrix_input = [Bounding_Row; Matrix_input; Bounding_Row]; 
  

 

 

 

  



 

 

192 
 

Appendix 1C: MATLAB Subroutine to Prepare Initial MS and MF Matrices 

%File Name: Prepare_initial_MS_and_MF_matrices 
  
  
%Set initial values of Minimum Start (MS) and Minimum Finish (MF) to be very 
%high. These will be lowered through successive forward passes.  
  
MF = ones(a+2,1) * Bounding_Row; 
MS = MF; 
  
 
%Set the values in the first column of the Minimum Start (MS) matrix to zero, except 
%for the values in the bounding rows, which will each stay as a very high number to 
%keep the optimized path contained to the original matrix. 
  
for i = 2:b+1             %All rows except top and bottom bounding rows 
 MS(i,1) = 0; 
 end 
  
 

 

 

 

 

  



 

 

193 
 

Appendix 1D: MATLAB Subroutine to Conduct Forward Pass Calculations 

%File Name: Forward_pass_calculations 
  
 
%Begin forward pass calculations. 
 
  
%Calculate MS and MF values for column 1. 
%Minimum Finish (MF) for each node in column 1 equals its Minimum Start (MS),  
%which is zero for column 1, plus the node's cost value. 
 
 for i = 2:a+1                        %All rows except top and bottom bounding rows 
     MF(i,1) = MS(i,1) + Bounded_Matrix_input(i,1);            %Column 1 values 
 end 
   
    
%Conduct a forward pass to determine the new MS and MF values for all remaining 
%columns except the last column. 
 
for j = 2:b-1                 %All columns except the first and last 
  
%Initially, set the Minimum Start (MS) for each node as the smallest of the 
%Minimum Finish (MF) values of the 3 nodes in the previous column feeding into it. 
 
 for i = 2:a+1    %All rows except top and bottom bounding rows 
     Prev_MF = [MF(i,j-1) MF(i+1,j-1) MF(i-1,j-1)]; 
     MS(i,j) = min(Prev_MF); 
 end 
 
  
%Next, check whether a path going vertically up or down or else a path that  
%backtracks would have resulted in a lower MS value.  If so, replace the MS value 
%for each node with these values. 
 
for i = 2:a+1    %All rows except top and bottom bounding rows 
      
     %Check if vertically downward Minimum Finish (MF) values are lower  
     %than the current Minimum Start (MS) value.  If so, replace MS. 
 
     if MF(i+1,j) < MS(i,j) 
         MS(i,j) = MF(i+1,j);            
     end 
 
 
      



 

 

194 
 

     %Check if vertically upward Minimum Finish (MF) values are lower  
     %than the current Minimum Start (MS) value.  If so, replace MS. 
     
     if MF(i-1,j) < MS(i,j) 
         MS(i,j) = MF(i-1,j);            
     end 
 
      
     %Check if backtracking Minimum Finish (MF) values are lower 
     %than the current Minimum Start (MS) values.  If so, replace MS. 
      
     %Check reverse and horizontal MF value. 
 
     if MF(i,j+1) < MS(i,j) 
         MS(i,j) = MF(i,j+1);            
     end 
 
       
     %Check reverse and downward MF value. 
     if MF(i+1,j+1) < MS(i,j) 
         MS(i,j) = MF(i+1,j+1);            
     end 
 
       
     %Check reverse and upward MF value. 
     if MF(i-1,j+1) < MS(i,j) 
         MS(i,j) = MF(i-1,j+1);            
     end     
 
%End the calculation for all of the nodes in the column from the ”for” loop of  
%i values begun earlier (for i = 2:a+1). 
 
 end 
 
  
%Now that all of the Minimum Start (MS) values have been set, recalculate 
%the Minimum Finish (MF) values for each node in the column. 
%MF = MS + Node Cost 
 
for i = 2:a+1    %All rows except top and bottom bounding rows 
    MF(i,j) = MS(i,j) + Bounded_Matrix_input(i,j); 
end 
 
  
 
 



 

 

195 
 

 
%End the calculation for all of the columns except the last one from the 
%”for” loop of j values begun earlier (for j = 2:b-1). 
 
end 
  
 
%Conduct calculations for the last column in a similar manner to the others. 
%However, there is no need to conduct checks for going vertically or backwards 
%because once the last column has been reached, the path is completed.  Adding 
%more steps would just add more cost to the path. 
 
for j = b    %last column 
  
    
 %The Minimum Start (MS) for each node is the smallest of the Minimum  
 %Finish (MF) values of the 3 nodes in the previous column feeding into it. 
    
 for i = 2:a+1    %All rows except top and bottom bounding rows 
     Prev_MF = [MF(i,j-1) MF(i+1,j-1) MF(i-1,j-1)]; 
     MS(i,j) = min(Prev_MF); 
 end 
  
 
%Now that all of the Minimum Start (MS) values have been set for the last 
%column, recalculate the Minimum Finish (MF) values for each node. 
%MF = MS + Node Cost 
 
 for i = 2:a+1    %All rows except top and bottom bounding rows 
     MF(i,j) = MS(i,j) + Bounded_Matrix_input(i,j); 
 end 
  
 
%End calculations for the final column  
end 
 
  
%This round of forward pass calculations for the Minimum Start (MS) and  
%Minimum Finish (MF) values for each node is now complete. 
 

 

  



 

 

196 
 

Appendix 1E: MATLAB Subroutine to Time and Count Forward Passes 

%File Name: Forward_pass_timer 
  
  
%Count the number of forward passes needed to arrive at the Optimized Transit Path 
%solution. 
  
number_of_forward_passes = number_of_forward_loops; 
  
  
%Record the time it took to determine the Optimized Transit Path solution via  
%forward pass calculations. 
  
time_for_forward_pass = toc; 
 

 

 

 

 

 

 

  



 

 

197 
 

Appendix 1F: MATLAB Subroutine to Prepare Initial RS and RF Matrices  

%File Name: Prepare_initial_RS_and_RF_matrices 
  
 
%Set initial values of Required Start (RS) and Required Finish (MF) to be large 
%negative numbers. These will be increased through successive backward passes. 
%Values in the last column of the Required Finish (RF) matrix are set equal to the 
%Minimum Finish of the last node on the Optimized Transit Path, which was found 
%in the final forward pass. 
  
%Set initial values of Required Start (RS) and Required Finish (RF) to be very large 
%negative numbers.   
  
Negative_Bounding_Row = Bounding_Row * -1; 
RF = ones(a+2,1) * Negative_Bounding_Row; 
RS = RF; 
  
  
%Set the values in the last column of the Required Finish (RF) matrix to equal the 
%Minimum Finish value of the last node in the Optimized Transit Path, as calculated 
%from the final forward pass.  However, the values in the bounding rows will stay as 
%a very high number to keep the Optimized Transit Path contained to the original 
%matrix. 
  
Optimized_Path_Minimum_Finish = min(MF(:,b)); 
  
 for i = 2:a+1 
 RF(i,b) = Optimized_Path_Minimum_Finish; 
 end 
 
 

 

 

 

 
  



 

 

198 
 

Appendix 1G: MATLAB Subroutine to Conduct Backward Pass Calculations 

%File Name: Backward_pass_calculations 
  
 
%Determine Required Finish (RF) and Required Start (RS) values of nodes in the 
%final (right-most) column.  RF of final column nodes was already set equal to the 
%Minimum Finish of the last node on the Optimized Transit Path forward through 
%the matrix.  RS of each node equals its Required Finish (RF) minus the node's cost 
%value from the original input matrix. 
  
 for i = 2:a+1    %All rows except top and bottom bounding rows 
     RS(i,b) = RF(i,b) - Bounded_Matrix_input(i,b);  %Final column 
  
 end 
  
  
%Conduct a backward pass of calculations to determine the RF and RS values for all  
%columns except the first column and the final column. 
 
for j = 1:b-2    %Loop that repeats number of columns minus two times 
  
 
%Initially, set the Required Finish (RF) for each node as the smallest of the Required 
%Start (RS) values of the 3 nodes in the column feeding into it (the column 
%immediately to its right). 
  
for i = 2:a+1    %All rows except top and bottom bounding rows 
     Prev_RS = [RS(i,b-j+1) RS(i+1,b-j+1) RS(i-1,b-j+1)]; 
     RF(i,b-j) = max(Prev_RS); 
end 
  
  
%Next, check whether a path going vertically up or down or else a path that 
%backtracks would have resulted in a lower RF value.  If so, replace the RF value for 
%each node with these values. 
 
for i = 2:a+1    %All rows except top and bottom bounding rows 
      
     %Check if vertically upward Required Start (RS) values are greater  
     %than the current Required Finish (RF) value.  If so, replace RF. 
 
     if RS(i+1,b-j) > RF(i,b-j) 
         RF(i,b-j) = RS(i+1,b-j);            
     end 
      



 

 

199 
 

     %Check if vertically downward Required Start (RS) values are greater  
     %than the current Required Finish (RF) value.  If so, replace RF. 
     
     if RS(i-1,b-j) > RF(i,b-j) 
         RF(i,b-j) = RS(i-1,b-j);            
     end 
  
      
     %Check if backtracking Required Start (RS) values are greater 
     %than the current Required Finish (RF) values.  If so, replace RF. 
      
     %Check reverse and up RS value 
. 
     if RS(i,b-j-1) > RF(i,b-j) 
         RF(i,b-j) = RS(i,b-j-1);            
     end 
 
       
     %Check reverse and horizontal RS value. 
 
     if RS(i+1,b-j-1) > RF(i,b-j) 
         RF(i,b-j) = RS(i+1,b-j-1);            
     end 
 
       
     %Check reverse and down RS value. 
 
     if RS(i-1,b-j-1) > RF(i,b-j) 
         RF(i,b-j) = RS(i-1,b-j-1);            
     end     
 
 
%End the calculation for all of the nodes in the column from the ”for” loop of  
%i values begun earlier (for i = 2:a+1). 
 
 end 
  
  
%Now that all of the Required Finish (RF) values have been set, recalculate the 
%Required Start (RS) values for each node in the column.  RS = RF - Node Cost 
 
for i = 2:a+1    %All rows except top and bottom bounding rows 
    RS(i,b-j) = RF(i,b-j) - Bounded_Matrix_input(i,b-j); 
end 
  
  



 

 

200 
 

%End the calculation for all of the columns except the first column from the 
%”for” loop of j values begun earlier (for j = 1:b-2). 
 
end 
  
  
%Conduct calculations for the first column in a similar manner to the others. 
%However, there is no need to conduct checks for going vertically or backwards  
%because once the first column has been reached, the path is completed.  Adding  
%more steps would just add cost to the path. 
 
for j = 1 
 
     
%The Required Finish (RF) for each node in the first column is the greatest of the 
%Required Start (RS) values of the 3 nodes in the column feeding into it (column 2). 
    
for i = 2:a+1    %All rows except top and bottom bounding rows 
     Prev_RS = [RS(i,j+1) RS(i+1,j+1) RS(i-1,j+1)]; 
     RF(i,j) = max(Prev_RS); 
end 
  
 
%Now that all of the Required Finish (RF) values have been set for the first column, 
%recalculate the Required Start (RS) values for each node in the column. 
%RS = RF - Node Cost 
 
for i = 2:a+1    %All rows except top and bottom bounding rows 
     RS(i,j) = RF(i,j) - Bounded_Matrix_input(i,j); 
end 
  
%End calculations for the first column  
end 
  
 
%This round of backward pass calculations for the Required Start (RS) and  
%Required Finish (RF) values for each node is now complete. 
 
 
 

 

  



 

 

201 
 

Appendix 1H: MATLAB Subroutine to Time and Count Backward Passes 

%File Name: Backward_pass_timer 
  
 
%Count the number of backward passes needed to arrive at the Optimized Transit 
%Path solution. 
 
number_of_backward_passes = number_of_backward_loops; 
  
 
%To calculate the time it took to determine Optimized Transit Path solution via 
%backward passes, subtract the forward pass time from the total elapsed time 
 
time_for_backward_pass = toc - time_for_forward_pass; 
 
 

 

 

 

 

 

 

 

 

 

  



 

 

202 
 

Appendix 1I: MATLAB Subroutine to Calculate Optimized Slack 

 
%File Name: Optimized_Slack_calculation 
  
 
%Optimized Slack (OS) is used to identify the Optimized Transit Path through the 
%matrix.  This methodology is analogous to how Total Slack is used in CPM to find 
%the critical path through a network diagram. 
  
%Optimized Slack is the difference between Required Finish (RF) and Minimum 
%Finish (MF) for a node. Optimized Slack also equals the difference between 
%Required Start (RS) and Minimum Start (MS) for a node. 
%Relationships to find Optimized Slack:  OS = RF - MF   or   OS = RS - MS 
  
%Those nodes with an Optimized Slack of zero are the nodes on the Optimized 
%Transit Path through the matrix. 
  
OS = RF - MF; 
 

 

 

 

 

 

 

 

 

 

  



 

 

203 
 

Appendix 1J: MATLAB Subroutine to Simplify the Optimized Matrices 

%File Name: Simplify_optimized_matrices 
  
 
%Present the optimized transit path MS, MF, RS, RF, and OS matrices without the  
%bounding rows. 
  
MS_Optimized_Transit_Path = MS(2:a+1,:); 
 
MF_Optimized_Transit_Path = MF(2:a+1,:); 
 
RS_Optimized_Transit_Path = RS(2:a+1,:); 
 
RF_Optimized_Transit_Path = RF(2:a+1,:); 
 
OS_Optimized_Transit_Path = OS(2:a+1,:); 
 

 

 

 

 

 

 

 

  



 

 

204 
 

Appendix 1K: MATLAB Subroutine to Record the Time for All Calculations 

%File Name: Final_timer 
  
 
%Measure the total time spent on all calculations since the beginning of the process, 
%not including time spent to import the matrix. 
  
time_for_all_calculations = toc; 
 

 

 

 

 

 

 

 

 

  



 

 

205 
 

Appendix 1L: MATLAB Subroutine to Present the Final Results 

%File Name: Final_results_summary 
  
 
%Present the final results to the user in a concise manner. 
%Final results include the Optimized Slack matrix plus statistics about the solution 
%time and number of passes. 
  
%Display the Optimized Slack matrix for the Optimized Transit Path. 
 
OS_Optimized_Transit_Path 
  
 
%Add verbiage instructing the user how to interpret Optimized Slack values to 
%determine the Optimized Transit Path. 
 
fprintf('The Optimized Transit Path for minimum total cost follows those nodes\n') 
fprintf('with Optimized Slack (OS) values of zero in the above matrix, 
OS_Optimized_Transit_Path.\n\n') 
 
  
fprintf('Non-zero, negative values of Optimized Slack indicate the penalty 
associated\n') 
fprintf('with diverting to that node in terms of increase in the total cost.\n\n') 
 
  
%Display statistics about the overall solution time, as well as about the solution time 
%and number of passes for the forward pass and backward pass calculations. 
 
fprintf('Arriving at the optimized solution took %3.4f 
seconds.\n',time_for_all_calculations) 
 
fprintf('Of this total time, %3.4f seconds was spent completing %d forward 
passes.\n',time_for_forward_pass, number_of_forward_passes) 
 
fprintf('Of this total time, %3.4f seconds was spent completing %d backward 
passes.\n',time_for_backward_pass, number_of_backward_passes) 
 
  



 

 

206 
 

Appendix 1M: MATLAB Subroutine to Write Solution to External Source 

%File Name: Write_OS_solution_to_excel 
 
 
%Copy the original input matrix to Excel for ease of visual presentation, in case the 
%matrix did not originate from Excel. 
  
xlswrite('Input_Matrix.xls',Matrix_input) 
 
 
%Copy the Optimized Slack matrix for the Optimized Transit Path solution to Excel 
%for ease of visual presentation. 
 
xlswrite('OS_Values_for_Optimized_Transit_Path.xls',OS_Optimized_Transit_Path) 
 

 

  



 

 

207 
 

Bibliography 
 
Abraham, I., Fiat, A., Goldberg, A., and Werneck, R. 2012. “Highway Dimension, 

Shortest Paths, and Provably Efficient Algorithms.” ACM-SIAM Symposium 
on Discrete Algorithms. 
http://research.microsoft.com/pubs/115272/soda10.pdf 

Archibugi, D., and M. Chiarugi. 2009. “Piracy Challenges Global Governance.” 
http://www. Opendemocracy. Net/article/piracy-challenges-global-governance 

Bang-Jensen, J. and Gutin, G. 2009. Digraphs: Theory, Algorithms and Applications, 
2nd edition. London UK.  Springer-Verlag.  

Bateman, S. 2012. “Killing Pirates: Dilemma of Counter-piracy.” 
http://dr.ntu.edu.sg/handle/10220/7579. 

Berger, J. 1985. Statistical Decision Theory and Bayesian Analysis. New York, NY:  
 Springer-Verlag. 
Bhandari, R. 1999. Survivable Networks: Algorithms for Diverse Routing. New  
 York, NY. Springer-Verlag. 
Bellman, R. 1958. "On a Routing Problem." Quarterly of Applied Mathematics 16. 
 https://www.ams.org/mathscinet-getitem?mr=0102435 
Black, P. 2004. Dictionary of Algorithms and Data Structures. National Institute of 
  Standards and Technology.  
 http://www.nist.gov/dads/HTML/johnsonsAlgorithm.html 
Bridger, James. 2011. “The Atlantic Council of Canada » Somali Piracy and the 

World’s Response.”  
http://atlantic-council.ca/somali-piracy-and-the-worlds-response/. 

Chalk, P. 2008. The Maritime Dimension of International Security: Terrorism, Piracy, 
and Challenges for the United States. Vol. 697. Rand Corporation.  

Chalk, P. 2009. Maritime Piracy: Reasons, Dangers and Solutions. DTIC Document. 
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=
ADA493656. 

Chen, M., Chowdhury, R., Ramachandran, V., Roche, D., and Tong, L. 2007. 
  "Priority Queues and Dijkstra's Algorithm - UTCS Technical Report TR-07- 
 54 - 12 October 2007."  Austin, TX. The University of Texas at Austin, 
  Department of Computer Sciences. 
Cho, J. 2003. Shortest Path Problems in a Stochastic and Dynamic Environment. 
  Wright-Patterson Air Force Base, OH. Air Force Institute of Technology. 
Cisco. 2014. Internetworking Technology Handbook. 

http://www.cisco.com/c/en/us/td/docs/internetworking/technology/handbook/ 
ito_doc.html 

Cormen, T., Leiserson, C., and Rivest, R. 2009. Introduction to Algorithms, 3rd  
edition. Cambridge, MA. MIT Press. 

DeGroot, M. 2005. Optimal Statistical Decisions. Hoboken, NJ: Wiley. 
Dijkstra, E. 1959. "A Note on Two Problems in Connection with Graphs." 
  Numerische Mathematik 1. 
   http://www.m3.ma.tum.de/twiki/pub/MN0506/WebHome/dijkstra.pdf 
Dillon, D. R. 2005. “Maritime Piracy: Defining the Problem.” SAIS Review 25 (1): 
  155–165. 



 

 

208 
 

Duda, D., and T. Szubrycht. 2009. “The Somali Piracy New or Old Challenge for 
  International Community.” Marine Navigation and Safety of Sea 
  Transportation. CRC Press, London: 743–750. 
Flament, M. 2005. "ActMAP Final Report." ActMAP Consortium. 
 http://www.transport-research.info/Upload/Documents/201007/ 

20100726_152452_50550_ActMAP-final%20report.pdf 
Floyd, R. 1962. "Algorithm 97: Shortest Path." Communications of the ACM 5. 
 http://dx.doi.org/10.1145%2F367766.368168 
Fredman, M. and Tarjan, R. 1984. "Fibonacci Heaps and Their Uses in Improved 
  Network Optimization Algorithms." 25th Annual Symposium on Foundations 
  of Computer Science. IEEE.  

http://dx.doi.org/10.1109%2FSFCS.1984.715934 
Galletti, S.C. 2007. “Old and New Threats: Piracy and Maritime Terrorism.” 

EuroCrime.  
http://www. Southchinasea. org/docs/Galletti-Piracy,% 20Old% 20and% 
20New% 20Threats. Pdf. 

Gardner, F. 2012. "Seeking Somali Pirates, From the Air." 
http://www.bbc.co.uk/news/world-middle-east-17095887 

Geopolicity Inc. 2011. “The Economics of Piracy: Pirate Ransoms & Livelihoods Off 
the Coast of Somalia”. Geopolicity. 
http://www.geopolicity.com/upload/content/pub_1305229189_regular.pdf. 

Gido, J. and J. Clements. 2012. Successful Project Management, 5th edition. New 
York: Cengage Learning. 

Hummel, M. L. 2011. “Defeating Maritime Piracy.” Review 6 (2): 157. 
Hunt, K. 2012. “Report: Sea Piracy Drops to Lowest Level in Four Years”. 

CNN.com.  
http://www.cnn.com/2012/10/23/world/sea-piracy-
decline/index.html?hpt=hp_bn2. 

ICC-IMB. 2014. “Piracy and Armed Robbery Against Ships: Report for the Period 1 
January - 31 December 2013.” 

Iida, K. 1992. Studies on the Optimal Search Plan. New York, NY: Springer. 
ISO 14825. 2004. Intelligent Transport Systems - Geographic Data Files (GDF). 

Switzerland: ISO. 
Johnson, D. 1977. "Efficient Algorithms for Shortest Paths in Sparse Networks." 

Journal of the ACM 24.   
http://dx.doi.org/10.1145%2F321992.321993 

Jones, S. 2011. “Security Concerns: Piracy at Sea and the Carriage of Essential 
Commodities by Merchant Shipping–The Impact on Commodity Pricing and 
Availability.” Maastricht School of Management Working Papers. 
ftp://ftp.repec.org/opt/ReDIF/RePEc/msm/wpaper/MSM-WP2011-19.pdf. 

Kurose, J. and Ross, K. 2012. Computer Networking: A Top Down Approach, 6th 
edition. Boston, MA: Pearson.  

La Boon, D.  2012. “The Problem of Piracy: The Evolving Military Dynamic.” The 
Challenge of Piracy Off the Horn of Africa: 107. 

Mineau, M. 2010. “Pirates, Blackwater and Maritime Security: The Rise of Private 
Navies in Response to Modern Piracy.” J. Int’l Bus. & L. 9: 63. 



 

 

209 
 

Moody, D. 2006. "40th Anniversary of Palomares." Naval Sea Systems Command 
Faceplate (10:2): 15-19. 

Moreto, W. and J. Caplan. 2010. “Forecasting Global Maritime Policy Using the Risk 
Terrain Model”. Rutgers Center on Public Security.  

Murphy, M. 2009. “Somali Piracy: Not Just a Naval Problem.” Center for Strategic 
and Budgetary Assessments 16.  
http://www.csbaonline.org/site/wp-content/uploads/2011/02/2009.04.17-
Somali-Piracy-Not-Just-a-Naval-Problem.pdf. 

Murphy, M. 2010. Small boats, weak states, dirty money : piracy and maritime 
terrorism in the modern world. New York: Columbia University Press. 

Ng, E. 2014. “World Sea Piracy Drops for Third Straight Year”. Military.com. 
http://www.military.com/daily-news/2014/01/15/world-sea-piracy-falls-for-
third-straight-year.html?ESRC=eb.nl#.Utaqy9U9LGI.mailto 

Nincic, D. 2009. “Maritime Piracy in Africa: The Humanitarian Dimension.” African 
Security Studies 18 (3): 1–16. 

PADI. 2003. PADI Search & Recovery Diver Manual. United States: PADI. 
Richardson, H. and Discenza, J. 1980. "The United States Coast Guard Computer-

Assisted Search Planning System (CASP)." Naval Research Logistics 
Quarterly, Vol. 27, Number 4. 659-680. 

Ritchie, I. 2010. “Life on the Ocean Wave: Prediction Models for Royal Navy 
Operations”. Meteorology Technology International. 

Rosen, K. 2012. Discrete Mathematics and Its Applications, 7th edition. New York, 
  NY. McGraw-Hill. 
Scheffler, A. 2010. Piracy-Threat or Nuisance? NATO Defense College, Research 

Division. 
http://kms2.isn.ethz.ch/serviceengine/Files/ESDP/113596/ipublicationdocume
nt_singledocument/9dd6ecd2-5d29-4383-92c0-2f03a1c60f92/en/rp_56en.pdf. 

Slootmaker, L. 2011. Countering Piracy with the Next-Generation Piracy 
Performance Surface Model. DTIC Document. 
http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=
ADA543021. 

Stone, L. 1975. The Theory of Optimal Search (Mathematics in Science and 
Engineering). Philadelphia, PA: Elsevier Science. 

Stone, L. 1992. "Search for the SS Central America: Mathematical Treasure 
  Hunting." Technical Report of Metron, Inc. Reston, VA. 
Stone, L. 2011. "In Search of Air France Flight 447." Institute of Operations Research  
 and the Management Sciences. 
 https://www.informs.org/ORMS-Today/Public-Articles/August-Volume-38- 

Number-4/In-Search-of-Air-France-Flight-447 
Suurballe, J. 1974. "Disjoint Paths in a Network." Networks, 4: 125–145. 

doi: 10.1002/net.3230040204 
Tanenbaum, A. and Wetherall, D. 2010. Computer Networks, 5th edition. Upper 

Saddle River, NJ: Prentice Hall. 
Toth, P. and Vigo, D. 2001. The Vehicle Routing Problem. Philadelphia: Siam. 
TSA Carriers. 2015. "Eastbound Bunker Charge Calculator." 

http://www.tsacarriers.org/calc_bunker.html 



 

 

210 
 

United Kingdom Hydrographic Office. 2010. “Anti-Piracy Planning Chart - Red Sea, 
Gulf of Aden and Arabian Sea.” 

U.S. Department of Transportation Maritime Administration. 2011. "Comparison of 
U.S. and Foreign-Flag Operating Costs." 

U.S. Navy. 2015.  Photo of Fire Hose Countermeasure. 
http://www.navy.mil/management/photodb/webphoto/web_090914-N- 
5345W-246.jpg 

U.S. Navy. 2015.  Photo of Pirate Mother Ship. 
http://www.navy.mil/management/photodb/webphoto/web_110202-N-2907P- 
002.jpg 

U.S. Navy. 2015.  Photo of Pirate Mother Ship. 
http://www.navy.mil/management/photodb/webphoto/web_120105-N-ZZ999- 
001.jpg 

U.S. Navy. 2015.  Photo of Somali Pirate Skiff. 
  http://www.navy.mil/management/photodb/webphoto/web_090211-N-1082Z-

111.jpg 
Warbrick, C. 2008. “II. Piracy Off Somalia: UN Security Council Resolution 1816 

and IMO Regional Counter-Piracy Efforts.” ICLQ 57: 690–699. 
White, R. 2010. "Ocean Shipping Lines Cut Speed to Save Fuel Costs." 

http://articles.latimes.com/2010/jul/31/business/la-fi-slow-sailing-20100731 
Whiteneck, D. 2011. “Piracy Enterprises in Africa.” Center for Naval Analyses 

Research Memorandum CRM D 23394. 
http://www.cna.org/sites/default/files/OTA%20Piracy%20Enterprises%20in%
20Africa%20D0023394%20A2.pdf. 

Winston, W. 2004. Operations Research Applications and Algorithms, 4th edition. 
Belmont, CA: Brooks/Cole - Thomson Learning. 

World Vision Inc. 2014. “Information and Facts About Somalia.” 
  http://www.worldvision.org/our-work/international-work/somalia. 

 

 
 
 
 
 


