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 This thesis presents the results of an experiment in which the generation of 

spray droplets in two mechanically generated plunging breaking water waves was 

investigated.  In both breaking waves, the wind velocity at the free surface was zero 

and droplets were produced only by means of plunging jet impact, free surface 

turbulence and bubble bursting.  The free surface was kept free of particulates and 

surfactants for each wave in one set of measurements, while in a second set of 

experiments, using only the higher amplitude wave, the tank water was mixed with a 

soluble surfactant. 

 The experiment was able to deliver information on the diameter distributions 

of droplets produced in both waves.  Also, the positional and time dependence of 

droplet production throughout the stages of wave breaking was investigated.   

 Ultimately, it was determined that under these conditions droplet frequency is 

influenced primarily the impact of the plunging jet with the front face of the wave.  

Higher amplitude waves generally lead to markedly higher amounts of droplets 



 

  

produced and a shift towards higher diameters.  The addition of surfactant reduced the 

diameter and suppressed the production of spray droplets.  The positional distribution 

of droplet production within the wave was also altered significantly by the presence 

of surfactant: droplets were more evenly produced throughout the breaking zone in 

the wave with surfactant, whereas the wave generated in clean water had a much 

smaller region of significant droplet production. 
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Chapter 1: Introduction 

 

 The investigation of sea spray generation is a topic of significant oceanographic 

and climatological interest.  Droplet evaporation plays an integral role in the transfer of 

heat to the atmosphere and the formation and strengthening of tropical cyclones 

(Andreas, 2001 and Wang, 2001).  Aside from heat transfer, droplet production greatly 

influences the mass flux of aerosols at this interface.  Sea spray droplet evaporation is 

second only to wind-blown dust in the introduction of suspended particles into the 

atmosphere (Hoppel, et al., 2002).  The aerosol production of sea spray additionally 

affects numerous chemical phenomena in the atmosphere (Erickson, et al., 1999). 

 

1.1  Previous Research in the Field of Sea Spray Generation 

  

Much of the body of research conducted in the area of sea spray production 

focuses on two primary means: droplets torn from the crests of waves by wind and 

droplets produced from the bursting of bubbles at the sea surface (Norris, et al., 2013).  A 

multitude of studies have been conducted—in the environment and in the laboratory—in 

an attempt to characterize droplet production rates and size distributions.  The predictions 

of a number of these models for droplet generation were consolidated and are displayed 

in Figure 1.1 (Andreas, 1998). 
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Figure 1.1:   Summary of droplet surface flux models consolidated by Edgar Andreas.   

  

As evidenced by these plots, there is significant variation between the models.  

Because of this, any investigation into the production of spray droplets is highly 

dependent upon the experimental configuration, the range of droplet diameters capable of 

being detected and the environmental conditions under which the experiment is 
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conducted.  Nevertheless, some agreement in the role of certain phenomena and 

governing distributions can be seen in the literature. 

One of the first attempts to characterize the concentration and size distribution of 

sea spray was conducted by Edward Monahan during 1964 and 1965.  These experiments 

were conducted at sea from a raft-mounted camera using a shadowgraph technique.  He 

published his results in a paper three years later (Monahan, 1968).  Two of his droplet 

diameter distributions are displayed in Figure 1.2. 

 

  

Figure 1.2:  Droplet diameter distributions as a function of droplet radius in µm from 

Monahan’s Experiment (1968). 

 

Though admittedly lean on data, Monahan’s work nevertheless set the precedent 

for a number of follow-on experiments that sought to better characterize droplet 

distributions under varying ocean and laboratory conditions.  His methodology of using 

shadowgraph photography in the ocean environment was repeated many times over. 

In further investigations conducted in the open ocean, Wu et al. (1984) concluded 

also that droplet diameter distributions were segmented into two regions.  Furthermore, 

this study concluded that the shape of the distribution was independent of the elevation 
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above the free surface and the wind velocity.  Figure 1.3 shows the diameter distributions 

from this study and Figure 1.4 shows the droplet flux as a function of radius. 

 

Figure 1.3:  Droplet diameter distributions in open ocean sea spray.  Plot on the left is for 13 

and 18 cm above the free surface and 10 meter wind velocities of 6.4, 7.5 and 8.0 m/s.  Plot on the 

right is for 30, 50, 70 and 90 cm above the free surface and 10 meter wind velocities of 6.0 and 7.5 m/s 

(Wu, 1984). 
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Figure 1.4:  Droplet flux as a function of droplet radius (Wu, 1993). 

 

Whereas characterizing sea spray generation in ocean waves is most valid in 

experiments that are conducted in the field, studies conducting in a laboratory are 

relevant for their ability to consistently and quickly replicate waves with controlled 

parameters.  Thus, numerous studies have been carried out with mechanically generated 

waves and wind.  Bonmarin (1989), Melville and Rapp (1988) and Rapp and Melville 

(1990) are among some of the significant studies conducted using this methodology.  

Additionally, Duncan et al, (1994 and 1999) and Qiao and Duncan (2001) investigated 

mechanically generated spilling breakers with wavelengths from 0.77 m to 1.2 m. 

These laboratory investigations of waves have been conducted both with and 

without surfactants.  Ocean surface tension can vary widely from 73.2 mN/m in the 
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cleanest water to 55 mN/m in near-shore locations.  In some cases, where the presence of 

surfactants is exceptionally high, surface tensions less than 40 mN/m have been observed 

(Frysinger, 1992).   To some extent, surfactants influence ocean surface tension even for 

relatively clean, organism-free water (Liss, et al., 1997). 

It has been concluded that surfactants play a major role in ocean wave dynamics.  

After analyzing his data and some from other researchers (Cox and Munk, 1954, Barger 

et al., 1970, Ermakov et al., 1986 and Croswell, 1982) Wu came to the conclusion that 

surfactants diminish the amplitude of waves from 2 to 40 cm in conditions where the 

wind speeds do not exceed 7 m/s.  Waves exposed to surfactants exhibited decreased 

slopes over those generated in clean water according to studies conducted by Tang and 

Wu (1992) and Bock et al. (1999).  Additionally, it has been shown experimentally by 

Liu and Duncan (2003 and 2006) that surfactant films reduce the number and amplitude 

of capillary waves until their presence is completely eliminated and replaced by small 

plunging jets when the surface tension is extremely low. 

Droplet generation has been shown to favor smaller diameters in the presence of 

surfactants by Sellegri et al. (2006).  The reduction in surface tension enables smaller 

droplets to be produced in higher quantities.  Simultaneously, the reduction in wave 

amplitude with decreasing surface tension contributes significantly to the overall 

production of spray droplets. 
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1.4 Droplet Production Mechanism in Waves 

  

 There are four general means by which droplets can be generated in waves.  The 

names assigned to these mechanisms for this paper are stated below in Table 1.1.  Spume 

droplets constitute a large part of the droplets considered in the literature up to this point.  

Jet and film droplets are even more important when considering sea spray that is present 

at more than a meter from the free surface.  This is because jet and film droplets are 

relatively small and can be carried aloft by wind conditions at the surface.  Splashing 

droplets—which are generally large like spume droplets—are another means of droplet 

production that is driven by the wave motion itself.  Practically, it is difficult to 

distinguish jet and film droplets unless the camera is angled such that the free surface is 

in view.  In laboratory experiments where wind is not present, the larger droplets will be 

exclusively produced via the splashing mode. 

Table 1.1:  Means of droplet production in breaking waves. 

Droplet Name Means of Production 

 

Spume 

 

Sheared from wave surface 

by wind 

 

Splashing Ejected from wave due to 

turbulence and impact of 

wave crest 

 

Jet Central water column 

produced in bubble bursting 

 

Film 

 

Bursting of bubble envelope 
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1.5 Areas Requiring Further Investigation 

 

 This project sought to investigate the character of spray droplets created solely 

from mechanically generated breaking waves in clean water.  Unlike waves found in 

most ocean conditions, which are influenced by the local wind, this experiment only 

considered the dynamics of the wave and its effect on droplet production.  The droplet 

diameter distributions and time-dependent and position-dependent droplet production was 

investigated.  Additionally, the effect of turbulence-generated versus bubble-generated 

droplets on these parameters was sought.  
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1.6 Overview 

 In this thesis, an experimental study of droplets produced by mechanically 

generated plunging breaking waves in clean water and in water mixed with a soluble 

surfactant is presented. The temporal history of the wave profiles during breaking are 

measured with a cinematic laser induced fluorescence technique and the droplets are 

measured with a cinematic pulse shadowgraph technique.  This work is described in the 

following chapters.  The experimental setup is described in Chapter 2.  This is followed 

in Chapter 3 by a detailed description of the calibration methods used for the droplet 

measurements.  The results are then presented in Chapters 4, 5 and 6.  Finally, analysis 

and conclusions from this experimental study are presented in Chapter 7. 

 

 

 

 

 

 

 

 

 

 

 



 

 10 

 

Chapter 2: Experimental Setup 

 

2.1 Wave Tank 

 
 

 The experiments were performed within a 14.8m long by 1.22m wide 

wave tank with a water depth of 0.909m (3 feet).  At one end of the tank are a wedge-

shaped programmable wave maker and a set of two 7.5 hp fans that blow air at speeds up 

to 10 m/s through honeycomb flow straighteners across the free surface.  Though these 

fans were used in other experiments to simulate wave-wind interactions, in this series of 

experiments the air above the water surface was kept calm.  A beach is located at the end 

of the tank opposite to the wave maker.  This beach is used to dissipate wave energy.  A 

water surface skimmer is also located behind the beach and is used to remove particulate 

or surfactants from the free surface.  From the skimmer, the water is directed through a 

filtration system before being returned to the tank near the wave maker assembly.  The 

walls of the tank consist of Plexiglas windows separated by steel supporting columns.  

The entire series of wave and droplet measurements were conducted within one of the 

Plexiglas windows.  The beginning of this window is approximately 60 inches from the 

minimum carriage position.  Figure 2.1 illustrates the setup of the full wave tank.  Not 

depicted in Figure 2.1 is the moveable instrument carriage which is supported on the top 

of the wave tank on four hydrostatic oil bearings.  In the present experiments, the 

measurement systems were mounted on the instrument carriage, which was held in a 

fixed position during each breaking wave event. 
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Figure 2.1:  Schematic of full wave tank as configured for experiments. 

 

 At the beginning and end of a series of wave runs the surface tension of the water 

within the tank was measured and recorded.  Water from inside the tank was siphoned to 

a three liter beaker and allowed to overflow so that the surface of this sample was 

skimmed of particulates and surfactants.  Then, a Wilhelmy Plate tensiometer from 

NIMA was used to record the surface tension continuously for the duration of the 

experimental runs (up to 12 hours on some occasions).  In measurements of this type, the 

initial surface measurement is the surface tension of clean water.  Then, as surfactants 

adsorb on the water surface, the surface tension drops.  In all cases in the present 

experiments, the surface tension remained at the clean water surface tension for the entire 

duration of the experimental runs.  This indicates that during the breaking wave 

experiments, the surface was essentially surfactant free. 
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2.2  Wave Generation 

 The breaking waves were generated by a dispersive focusing technique.  In this 

technique, a packet of wave composed of 32 frequency components is generated in 

manner such that the packet focuses to a single wave at position xb and time tb.  The 

amplitudes of these waves were high enough such that a breaking wave was formed at the 

focal point.  This technique is described briefly below; a detailed description can be 

found in (Duncan, et. al 1999). The wave maker motion is given by: 
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where A is the overall wave maker amplitude, ki and ωi are the wavenumber and 

frequency of the ith components and  ̅ is given by the equation: 
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The leading term, w(t) is a window function that permits wave maker motion only when 

its contribution to the wave packet is significant and is given by: 
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In this equation   is selected as 5.0 and  ̅ is the average of the 32 frequencies.  The times 

t1 and t2 were selected in a manner such that the desired waveform was created and are 

derived from the following equations: 

 

     (
 

 ̅
 
 

  
) 

     (
 

 ̅
 
 

  
) 

 

 For this series of experiments, three waves were investigated.  Between them, 

only two parameters were changed enabling two comparisons to be drawn.  The first 

comparison was between the wave amplitudes.  The second investigated one wave with 

clean water, and then the same wave in a tank with surfactant.  The control parameters, 

where h is the vertical distance between the mean water level and the vertex of the 

wedge, H is the water depth in the tank and         ̅, are displayed below in Table 

2.1. 
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Table 2.1:  Dimensionless parameters for both types of waves generated. 

Parameter Value 

 

N 

 

 

32 

 
 

     ̅ 
 

 

 

0.35792 

 
 

     ̅ 
 

 

 

0.7458 

 
   

 ̅
 

 

 

0.77 

 

    
  
  

 

 

 

1.15 

 
  
  

 

 

 

6.2 

 

 

2.3  Wave Profile Measurement 

 

 In order to correlate droplet generation and behavior on the microscopic scale to 

phenomenon in the breaking wave behavior on the large scale, profile measurements of 

both the 0.074 and 0.070 amplitude waves were taken.  For these measurements, a 

Phantom v9 camera with an image resolution of 1632x1200 was positioned at the mid-
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point of the measurement window and angled downward at approximately 30° to view 

the horizontal profile of each passing wave.  A 24 mm Nikon lens was fixed to the v9 for 

all measurements.  In order for the images to yield quantitative measurements of the 

wave profile at the center plane of the tank, a Laser-Induced Fluorescence (LIF) 

technique was used (Liu and Duncan, 2006; Liu et a. 2003, Duncan et al 1999).  In this 

technique, a vertically oriented light plane—produced from a 7 Watt Argon-Ion laser 

operating at 488 and 514 nm—was projected along the long axis of the tank mid-way 

between the Plexiglas windows.  The water was mixed with Fluorescein dye which, when 

excited by the laser light sheet, emitted light in the green wavelength range.  An optical 

filter was placed in front of the camera lens.  This filter blocked out the laser light while 

transmitting the light from the glowing dye into the camera lens.  Thus, specular 

reflections of laser light were eliminated.  A schematic for this set-up is shown in Figure 

2.2. 

 



 

 16 

 

 

Figure 2.2:  Schematic of the set-up for wave profile measurement. 

  

 The wave profiles from the movies generated by the v9 cameras spanned the 

width of the measurement window and recorded the full time that the breaking wave 

passed through this interval.  One still image from each of the two wave profile movies is 

shown in Figure 2.4.  These images show the jet in each wave just prior to impact.   
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Figure 2.3:  Still images from the profile movies of the 0.074 amplitude (Top) and 0.070 amplitude 

(bottom) waves at the instant of crest impact for each wave. 

 

 

2.4  Droplet Measurements 

The droplet measurements were performed with a cinematic pulsed shadowgraph 

technique that employs an Nd:YLF pulsed laser and a high-speed digital movie camera 

fitted with a long distance microscope lens.  The laser was a Photonics Industries DM50-

527 designed for particle image velocimetry (PIV).  The laser head was mounted on the 

instrument carriage and a set of optical components was used expand and re-direct the 

laser beam down from the top of the carriage to near the water level where it was split 

into two 5-cm-diameter beams.  These beams were directed perpendicular to the tank 

walls and at the same height above the undisturbed water surface, see Figure 2.5.  The 

laser was operated in PIV mode with a time delay of 200 s between pulses in each pulse 

pair.  With this time delay, the typical displacement of the droplet images was a small 
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fraction of the total image width, thus enabling accurate measurements of droplet 

velocity.   

The shadowgraph images were recorded by two Phantom v640 high-speed movie 

cameras which have sensor consisting of 12-bit pixels in a 2560 by 1600 array with a 

pixel pitch of 10 m.  The cameras were fitted with Infinity K2 long-distance microscope 

lenses.  The cameras were positioned on the opposite side of the tank from the incoming 

laser beams and oriented so that the beam axes were coincident with the optical axes of 

the camera lenses.    The lenses were focused at the midplane of the tank and produced a 

1 to 1 magnification ratio.  This results in a resolution of 10 µm/pixel.  A sample 

shadowgraph image of droplets generated by a breaking wave is shown in Figure 2.6.  (A 

detailed description of the calibration procedures and accuracy of the droplet 

measurements is presented in the following chapter.) The two cameras and laser beams 

were positioned 40.64 cm apart in the streamwise direction.  The camera nearest the wave 

maker had a serial number ending in 9138 and for the purposes of naming, will hereafter 

be referred to as “Camera 9138.”  The camera positioned further from the wave maker is 

named “Camera 9139” for precisely the same reason.  

The time sequences of laser pulse pairs and camera images were controlled by an 

8-channel digital time-delay device (Berkeley Nucleonics, Inc.).  The device was set to 

send a 325 Hz trigger signal to the laser and a 650 Hz trigger signal to the camera.  The 

laser control unit then produced two laser pulses with the above mentioned 200 µs time 

delay between pulses for each trigger signal from the delay device.  The phasing between 

the laser trigger signal and the camera trigger signal were adjusted so that each image 

received a single light pulse from the laser.  The frame pair rate of 325 Hz chosen such 
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that approximately two seconds of data was recorded in each camera’s internal memory 

per run.  This time fully included the passage and breaking sequence of the wave packet 

through the measurement window.   

The laser is nominally rated for a maximum output of 50 W in single pulse mode 

and a 1000 Hz frequency.  Due to deterioration of the diode due to extensive use and 

excessive humidity, the maximum power of the laser during the course of the experiment 

was 32 W. Unfortunately, the laser’s performance in twin pulse mode was only 

guaranteed at the maximum energy output.  Since this was not possible for the reasons 

mentioned above, there were two difficulties that had to be overcome during the 

experiments.  First, when manipulating the laser’s controls, the energy distributions 

between the two pulses could not be made equal.  A result of this was that one pulse 

would be brighter than the other.  This led to some degree of complication with regards to 

data processing.  Second, the manufacturer warned that time separation between the 

pulses might be inaccurate and vary from one pulse pair to another.  To determine the 

accuracy of the laser pulse separation in each pulse pair, one of the Phantom v640 

cameras was set to record 32x8 pixel images with a frame rate of 341,463 Hz and an 

exposure of 1.43µs.  It was found that the laser consistently illuminated the camera with 

325 pulse pairs per second with a separation of 200±1.43µs.  Thus, despite the 

manufacturer’s reservations, the laser pulse separation was deemed accurate enough to 

proceed with measurements. 
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2.4  Procedures and Plan of Experiments 

Two investigations were undertaken.  The first investigation dealt with the 

influence of wave maker amplitude on droplet generation.  The wave maker motion for 

these two different waves had non-dimensionalized amplitude parameters (A/λ0) of 0.074 

and 0.070.  Since the wave maker motions are identical except for their respective 

amplitudes, the corresponding waves are hereafter referred to in this paper as the “0.070 

Amplitude Wave” and the “0.074 Amplitude Wave”  It should be noted, however, that 

these amplitudes refer to the amplitude of the wave maker, not the amplitude of the wave 

it generates.  The 0.070 amplitude wave is a weak plunging breaker and the 0.074 

amplitude wave is a strong plunging breaker. 

 In the second investigation, surfactant was added to the tank and its effects on the 

0.074 amplitude wave were observed.  In this study, 50 mL of Triton X-100 surfactant 

manufactured by BASF were added to the tank and allowed to mix so that it was 

homogenously distributed throughout the water.  The water surface tension was reduced 

to 42.4 mN/m for the course of these runs.  All of the measurements were taken 

continuously over 48 hours so as to minimize the deterioration of Triton X-100. 

The wave profile measurements were done with the wave profile camera centered 

in the middle of the measurement window and with the water mixed with fluorescein dye.  

The droplets were measured in a separate set of experiments without dye in the water.  

For each wave maker motion, the droplets were measured at approximately 16 locations 

in a horizontal line located just above the highest point that the wave profile reaches.  

This resulted in the bottom of the images being located at 11 cm and 12 cm above the 

undisturbed water level for the 0.070 wave and the 0.074 wave, respectively. This 
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distance was chosen such that the wave crest would not be visible within the images yet 

pass just below the lower edge of this area.   

Measurements were taken for 10 waves at each camera position.  The manner in 

which this was carried out is detailed in Figure 2.5.  For the complete measurement of 

one breaking condition, it was necessary to record 160 movies each consisting of 2 

seconds of images and 10 GB of data apiece.   

For each experimental run, the following procedure was followed.  In order to 

ensure a clean water surface, the wind generation fans were operated at low speed for 

about 10 minutes to blow surfactants and any particulate matter that settled on the free 

surface down the tank towards the skimmer behind the beach between.  Simultaneously, 

the pump and filter were operated. Following this, both the fans and pump were shut off 

and the free surface was allowed to calm.  The calming of the free surface required at 

least an additional 10 minutes of waiting time between runs.  While the surface was being 

cleaned and then calmed, the movies from the previous runs were written to an external 

hard drive.  Saving these two 10 GB files required approximately 20 minutes which was 

consumed concurrently with the tank cleaning procedure.  Surface tension was monitored 

periodically throughout the course of the runs.  Once these steps were completed, another 

wave was generated, measurements were taken, and then the process was repeated over 

again. 
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Figure 2.4:  Still image through K2 microscopic lens showing droplets suspended in air.  Image 

resolution is 2560x1600 pixels. 

 

 

 

Figure 2.5:  Top-Down view of measurement window and positioning of Cameras 9138 and 

9139.  Note that each camera is moved in tandem to the next position such that the 16 in separation is 

maintained regardless of run. 
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Figure 2.6:  Schematic of the set-up for droplet measurement. 
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Chapter 3: The Diameter-Dependent Out-of-Focus and Depth-of-

Field Corrections 

 

3.1 The Diameter Dependent Out-of-Focus Correction 

 
 

 Images of droplets that are located in the focal plane of the camera lens will 

appear well focused with sharp edges and black intensity in the camera image.  Droplets 

that are measured either closer to or father from the focal plane will appear out of focus 

resulting in dilated diameters and increased image intensity (grey instead of black).  

Additionally, the images of droplets that are not in the focal plane are subject to light 

diffraction.  Both of these effects increase with increasing distance from the focal plane 

and with decreasing droplet diameter.  As such, a calibration method to determine both an 

effective depth of field for the measurement volume for each droplet and the accuracy of 

the droplet diameter measurements was developed.  

 In this calibration method, a glass reticle with black circles of known diameters 

was photographed at various distances from the focal planes of the K2 lenses.  Both focal 

planes were located at the midpoint of the tank width.  The dot on the reticle varied in 

diameter from 3000 µm at the largest to 30 µm at the smallest, arranged in two horizontal 

rows across its surface.  An image of this reticle located at the focal plane of the K2 lens 

is displayed below in Figure 3.1. 
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Figure 3.1: Image of the glass reticle used to generate out-of-focus and depth of field corrections. 

 

 

 The reticle was positioned within the measurement volume and was moved across 

the width of the wave tank using a NEAT 310M motorized traverser as can be seen in the 

schematic diagram shown in Figure 3.2Images were taken with the reticle placed at the 

focal plane and positions toward and away from the focal plane in 0.1 mm steps up to a 

distance of ± 4 mm from the focal plane and in 40mm steps outside the ± 4 mm range.  

The smallest dot becomes too faint for its diameter to be determined accurately within the 

± 4 mm range, whereas the largest dot’s diameter can be determined accurately even 

when positioned at the near and far walls of the tank.  
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Figure 3.2:  Wave tank configured for traversing of reticle for the generation of out-of-focus and 

depth-of-field corrections. 

 

 

 As mentioned previously, the laser light being delivered to the two cameras is 

separated into two distinct pulses for the purpose of calculating the velocities of the 

droplets.  The laser, however, delivered these pulses with unequal energies resulting in 

the first pulse being brighter than the second.  Thus, each camera will alternate between 

recording one bright and one darker image per pulse pair.  Additionally, the beam splitter 

that separates the laser light traveling to Camera 9138 and Camera 9139 does not divide 

the energy evenly.  Altogether, each twin pulse from the laser results in four images of 

differing intensities: a bright and a dark image on Camera 9138, and a bright and dark 

image on Camera 9139.  These differences in intensities can be observed in Figure 3.3. 
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Figure 3.3: Difference in laser light intensity due to uneven distribution of pulse energy and optical 

beam splitter. 

 

 

 Since the light intensity affects the degree to which the diameters of droplets are 

dilated when they are out of focus, it was necessary to perform the calibration procedure 

on both cameras.  However, since the diameters were only calculated from the brighter of 

the two pulses in each camera, only two separate image sets were generated.  The darker 

images were only used for velocity calculations. 

After the calibration images for both cameras were collected, the diameters and 

intensities of each dot image were calculated using a MATLAB script.  This script 

inverted the original image intensity and then used an edge detection algorithm to 
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identify the dots.  Then, using a least squares regression of an inverse hyperbolic tangent 

function, a fit of the dot was generated.  Figures 3.4 and 3.5 show an intermediate step in 

this MATLAB script where the dot image intensity is plotted and the least squares 

regression. 

 

Figure 3.4:  Contours of relative intensity as a function of position for an image of a 1500 µm dot 

near the focal plane.  Plot at left shows intensity from original image showing noise surrounding dot 

due to speckle and dust.  Plot at right shows the fit of the dot after applying a least-squares 

regression of a hyperbolic tangent function. 

 

 
Figure 3.5:  Contours of relative intensity as a function of position for an image of a 1250 µm dot 210 

mm away from the focal plane.  Note the characteristic rings of the interference pattern in the 

intensity plot at the left.  The fit is plotted on the right.  Note that the slope of the hyperbolic tangent 

function is more gradual due to the image being less distinct. 

 

 

  This MATLAB script was applied to the calibration images and the measured 

radius and measured intensity data of the dots at various positions was compiled.  The 
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results of the calibration for the dots with diameters ranging from 1,250 to 3,000 µm are 

plotted below in Figures 3.6 through 3.9. 

 

Figure 3.6:  Camera 9138—Average intensity of the images of the dots versus position across 

the tank width for the top row of dots on the reticle (see Figure 3.3).  The focal plane of the camera is 

at a distance of 560 mm and 0 mm is the location of the tank wall on the opposite side of the tank 

from the camera. 
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Figure 3.7:  Camera 9138—Average intensity of the images of the dots versus position across 

the tank width for the dots ranging in diameter from 200 to 1000 µm.  The focal plane of the camera 

is at a distance of 560 mm.  Measurements taken at 1 mm intervals ± 40 mm from the focal plane. 

 

 
 

Figure 3.8:  Camera 9138—Ratio of measured dot diameter to actual dot diameter versus 

position across the tank width for dots ranging in diameter from 1250 to 3000 µm.  The focal plane of 

the camera is at a distance of 560 mm and 0 mm is the location of the tank wall on the opposite side 

of the tank from the camera. 
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Figure 3.9:  Camera 9138—Ratio of measured dot diameter to actual dot diameter versus 

position across the tank width for dots ranging in size from 200 to 1000 µm.  The focal plane of the 

camera is at a distance of 560 mm and the reticle has been traversed in 1mm steps ± 40 mm from the 

focal plane. 

 

 
 

Figure 3.10:  Camera 9139— Average intensity of the images of the dots versus position 

across the tank width for the top row of dots on the reticle (see Figure 3.3).  The focal plane of the 

camera is at a distance of 560 mm and 0 mm is the location of the tank wall on the opposite side of 

the tank from the camera. 
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Figure 3.11:  Camera 9139—Average intensity of the images of the dots versus position 

across the tank width for the dots ranging in diameter from 300 to 1000 µm.  The focal plane of the 

camera is at a distance of 560 mm.  Measurements were taken at 1mm intervals ± 20 mm from the 

focal plane. 

 

 
 

Figure 3.12:  Ratio of measured dot diameter to actual dot diameter versus position across 

the tank width for the top row of dots on the reticle (see Figure 3.3).  The focal plane of the camera is 

at a distance of 560 mm and 0 mm is the location of the tank wall on the opposite side of the tank 

from the camera. 
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Figure 3.13:  Camera 9139—Ratio of measured dot diameter to actual dot diameter versus 

position across the tank width for dots ranging in size from 300 to 1000 µm.  The focal plane of the 

camera is at a distance of 560 mm and the reticle has been traversed in 1mm steps ± 20 mm from the 

focal plane. 

 

 

From this set of figures it is apparent that the droplets appear to increase in size as 

they are moved away from the focal plane.  The largest dot, at 3,000 µm is affected the 

least and generally experiences less than 10% change in its calculated diameter at the 

sides of the wave tank.  The dot with a diameter of 1,250 µm, however, appeared to 

increase in diameter by nearly 20% at the tank edge. 

Whereas the calculated diameter of the dots increases as the distance from the 

focal plane increases, the inverted intensity (4095 – I, where I is the average intensity 

measured from the image) decreases with the increasing distance from the focal plane 

(see Figure 3.6 and 3.8).  In the plot, higher values correspond to darker and more distinct 

dots.  As the intensity decreases, the dot becomes fainter and the edge around it less 

sharp.  In dots with intensities much lower than 3,000, diffraction patterns can be 

observed, thereby further complicating the calculation of its diameter. 
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The lower row of dots (ranging in diameter from 1,000 µm to 50 µm) was 

assessed over a range less than the full width of the tank.  These dots experience the same 

trends as the top row yet over a markedly smaller displacement of the reticle.  At 30 mm 

from the focal plane, dots less than 100 µm become invisible.  The images of these dots 

can also experience over 150% dilation of their apparent radii.  In Figure 3.10, an image 

of the reticle taken at 560 mm from the focal plane is shown to demonstrate the effects of 

diameter dilation and inverted intensity drop.  Note that the out-of-focus and diffraction 

effect increase with decreasing dot diameter.  Many of the dots in the bottom row are 

nearly invisible, and the ones that can be distinguished are too faint for any useful data to 

be extracted.  The increase in dot diameter with distance is also apparent—the calculated 

diameter in red always is larger than that of the actual dot radius shown in green.   

 

Figure 3.14:  Image of the reticle taken from 560 mm away from the focal plane.  The 

calculated diameter is shown in red while the actual diameter is shown in green. 

 

 

It can be seen in Figures 3.6 through 3.9 that the intensity and diameter dilation 

calculations were noisy.  This is because the border around each dot is not definitive and 
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the presence of dust on the lens or on the walls of the tank caused the calculated diameter 

to change even with successive images taken with the reticle in the same position.  The 

speckle pattern from the laser light itself further contributed to the error in these 

calculations. 

The actual radius, measured (from the image) radius and measured intensity for 

these dots at the varying positions of the reticle were consolidated into one three-

dimensional plot per camera and are shown in Figures 3.11 and 3.12.  In these plots, the 

dot radius is measured in pixels. 

 

 

Figure 3.15:  Actual dot radius as a function of measured dot intensity and measured radius 

for Camera 9138. 
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Figure 3.16: Actual dot radius as a function of measured dot intensity and measured radius for 

Camera 9139. 

 

 

From these plots it is apparent that there is a functional relationship between the actual 

radius of the dot and the measured radius and intensity of the image of the dot: 
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the object from the focal plane.  The intensity, however, decreases as the square of the 

distance from the focal plane. 

Using a least-squares fit of this function to the experimental data in Figures 3.11 

and 3.12, the following functions for the out-of-focus correction were obtained: 

 

9138:                                        
             

        

9139:                                        
              

        

 

where Ra, Rm, and I are the actual radius in µm, measured radius in µm and measured 

intensity, respectively.  The surfaces associated with these functions are plotted along 

with their respective data sets in Figure 3.13 and 3.14.  The R
2
 value for these fits are 

0.9999 for camera 9138 and 0.9995 for camera 9139.  These fits intuitively make sense as 

the actual radius will always be less than the measured radius and higher intensity levels 

indicate a sharper image meaning that the calculated and actual radius are relatively 

close.  In the breaking wave experiments, the droplet image diameters and intensities 

were entered into these functions to obtain an improved estimate of the actual droplet 

diameters. 
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Figure 3.17:  Out-of-focus function fitted over the data from the reticle calibration for 

Camera 9138. 

 

 

0

50

100

150

200

2000

3000

4000

5000
-50

0

50

100

150

200

250

Measured Radius (Pixels)Measured Intensity

A
c
tu

a
l 
R

a
d
iu

s
 (

P
ix

e
ls

)



 

 39 

 

 
Figure 3.18:  Out-of-focus function fitted over the data from the reticle calibration for 

Camera 9139. 
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3.2 The Diameter-Dependent Depth-of-Field Correction 

It was shown previously that as the droplet position moves away from the focal 

plane, the diameters and intensities of the images of the smaller droplets change more 

rapidly than those of the larger droplets.  One consequence of this phenomenon is that the 

effective distance from the focal plane (depth-of-field) over which droplets can be 

measured with a given accuracy is a function of a droplet’s diameter.  For example, a 

droplet with a diameter of 1250 µm has a depth of field of 400 mm whereas a droplet 

with a diameter of 2000 µm has a depth of field of 950 mm.  This effect is displayed in 

Figure 3.15. 

 
Figure 3.19:  The differing effects of increasing distance from the focal plane as a function of droplet 

diameter. 

  Thus, to normalize number of droplets of a given diameter measured in the 

images to correspond to the same depth of field as the largest droplets, i.e. the 1.2 meter 
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width of the wave tank, a correction factor n must be applied to the number of droplets of 

each diameter.  To estimate the number of droplets expected (Nc) within this 1.2 m long 

experimental volume, the correction factor, ni(di) was multiplied by the number of 

droplets for a given diameter, N(di).  Thus: 

 

  (  )   (  )  (  )  
 

 

The correction factor ni for a droplet of diameter di was determined from the maximum 

depth-of-field over which a droplet of that size could be measured and is computed as 

follows: 

 

    
 

  (  )
  

    
  (  )    

 

 

 Where V
*
 denotes the volume over which a droplet of a given diameter di can be 

accurately processed, Ac denotes the cross-sectional area of the depth-of-field which is 

determined by the size of the camera sensor and L denotes the width of the tank.  Since 

the cross-sectional area of the depth-of-field does not change over the width of the tank 

because the laser light is parallel, this equation simplifies to the ratio of the width of the 

tank to the width over which a droplet can be processed.  Furthermore, this width, L
*
, is a 

function of the droplet’s actual diameter and the intensity cutoff that is used to ensure that 

the error in droplet diameter does not exceed ± 5 %.  From the data, this intensity was 

chosen as 3500.  Therefore, the expression for the correction factor can be also written as 

follows: 
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 (       )
 

      

 (       )
 

  

where L denotes the width of the tank and f denotes the function that governs the depth-

of-field for a droplet of diameter di and an intensity cutoff of Icut.   The expression for the 

length over which the droplets of a given diameter can be processed was derived in a 

similar manner to the function governing the out-of-focus correction.  Distance from the 

focal point was used as the dependent variable with actual dot radius and intensity as the 

independent variables.  Figures 3.16 and 3.17 show these three dimensional plots for 

Cameras 9138 and 9139, respectively. 
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Figure 3.20:  Camera 9138—Plot of distance from the far wall of the wave tank as a function of 

measured dot radius and measured dot intensity.   
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Figure 3.21:  Camera 9139—Plot of distance from the far wall of the wave tank as a function of 

measured dot radius and measured intensity. 
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Camera 9139 have an unacceptable amount of error in its correction factors.  More noise 
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0

50

100

150

200

3000

3500

4000

4500
0

200

400

600

800

1000

Actual Radius (Pixels)Measured Intensity

D
is

ta
n
c
e
 f

ro
m

 f
a
r 

w
a
ll 

o
f 

ta
n
k
 (

m
m

)



 

 45 

 

 

 

9138: 

                                                   

                                                             

 

9139: 

                                                      

                                         

               

 

 The R
2
 value for the 9138 and 9139 fits are 0.9798 and 0.8799, respectively.  

Figures 3.18 and 3.19 show these functions fit over half of the data. 
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Figure 3.22: Camera 9138—Distance from the far wall of the wave tank as a function of actual radius 

and measured intensity and the fit function corresponding to data collected on the near side of the 

focal plane. 
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Figure 3.23:  Camera 9139— Distance from the far wall of the wave tank as a function of actual 

radius and measured intensity and the fit function corresponding to data collected on the near side of 

the focal plane. 
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 These functions intercept with the focal length of their respective lenses.  In order 

to obtain the length over which a droplet of a specific diameter can be observed, this 

function must be subtracted from the focal length and then multiplied by two since each 

function is fitted over only half of the data.  The correction factor ni for a droplet of 

radius Ri expressed in pixels was then computed for each camera individually using these 

expressions: 

 

9138: 

   
    

                  
              

  

 

9139: 

   
    

                
              

  

  

These correction factors were used later in the droplet diameter distribution 

graphs in figures displayed in the following chapter.  This ensured that all droplets were 

being assessed over the same depth-of-field.  As would be expected, the frequency of 

smaller droplets increased significantly when the corrected depth-of-field was considered.  

Very large droplets (> 2500 µm) made negligible contributions to these distributions after 

correction because they can be observed over depths-of-field greater than the width of the 

tank and therefore their correction factors were often less than one.  The plots for the 
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correction factor as a function of droplet radius are shown for Cameras 9138 and 9139 in 

Figures 3.24 and 3.25, respectively. 

 

   

Figure 3.24:  Plot of correction factor ni as a function of droplet radius for camera 9138 (left). Same 

function plotted on log-log axes at right. 

 

  

Figure 3.25:  Plot of correction factor ni as a function of droplet radius for camera 9139 (left). Same 

function plotted on log-log axes at right. 
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3.3 Assessing the Accuracy of the Corrections 

 Since the reticle has dots of known diameters it is possible to assess how 

accurately the out-of-focus correction function reproduces these values by feeding it the 

calibration data.  Ideally, regardless of the position of the reticle, the function will be able 

to reliably reproduce the exact diameter of a given dot.  The errors from these 

recalculations are shown in Figures 3.21 through 3.23. 

 

 

Figure 3.26:  Camera 9138—Error for calibration data after having applied the out-of-focus 

correction.  Green: 100 µm.  Blue: 200 µm. Cyan: 300 µm.  Magenta: 750 µm.  Red: 1000 µm. 
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Figure 3.27:  Camera 9138—Error for calibration data after having applied the out-of-focus 

correction.  Green: 1250 µm.  Blue: 1500 µm. Cyan: 2000 µm.  Magenta: 2500 µm.  Red: 3000 µm. 

 

 
 

Figure 3.28:  Camera 9139—Error for calibration data after having applied the out-of-focus 

correction.  Green: 300 µm.  Blue: 500 µm. Cyan: 750 µm.  Magenta: 1000 µm. 
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Figure 3.29:  Camera 9139—Error for calibration data after having applied the out-of-focus 

correction.  Green: 1250 µm.  Blue: 1500 µm. Cyan: 2000 µm.  Magenta: 2500 µm.  Red: 3000 µm. 
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Chapter 4:  Droplet Measurement and Results for the 0.074 

Amplitude Breaking Wave 
 

 

 The measurements for the 0.074 amplitude breaking wave were initially taken at 

16 positions along the width of the viewing window.  The naming scheme for the camera 

positions presented throughout the remainder of the paper is somewhat arbitrary.  The 

camera positions range from 62 to 92 inches measured from the zero point of the 

instrument carriage from which the laser optics and cameras are suspended.  The 62 inch 

carriage position corresponds roughly to 16 feet from the front bulkhead where the wave 

maker is located.  The spacing between camera positions was 2 inches.  The locations of 

the first and last camera positions were selected such that no droplets were observed 

throughout the course of 10 waves.  This ensured that the remainder of the camera 

positions encompassed the full distance over which the wave produced droplets at 11.5 

cm above the free surface. 

 After having conducted 10 runs at these 16 positions, it was noticed that a large 

number of droplets were produced at the 64 and 66 inch camera positions.  The droplets 

at 64 inches were ejected from the wave with a horizontal component of velocity opposite 

to that of the wave packet’s motion.  At 66 inches the droplets were ejected with a 

horizontal velocity in the same direction as the travel of the wave packet.  It was believed 

that the 65 inch camera position would also yield a large number of droplets with nearly 

completely vertical velocity.  To confirm this, 10 additional runs were performed at the 

65 inch carriage position.  Indeed, this position yielded the most droplets of all positions 

and had droplet velocities which were almost completely in the vertical direction.  Figure 

5.1 below shows still frames with droplets and their general direction of travel. 
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Figure 4.1:  Shadowgraph images from image sequences taken at the camera positions around the 65 

in camera position with approximate velocity vectors. 

 

 

 

 Thus, in all for the 0.074 amplitude wave, there were 17 measurement positions.  

Nine positions, including the additional runs at 65 inches were recorded with Camera 

9138.  The other eight positions were recorded with camera 9139.  Figure 4.2 below 

shows these positions against the wave profile of the 0.074 amplitude wave. 

 

Figure 4.2:  Camera positions for the 0.074 amplitude breaking wave runs.  Note the addition of a 

measurement position at 65 inches to capture the densest droplet production region along the length 

of the wave. 
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 To ensure that the surface tension was uniform from run to run, water was taken 

from the wave tank and the surface tensions was measured using the NIMA tensiometer 

mentioned previously.  The results from these surface tension measurements are recorded 

in Table 4.1 below. 

 

Table 4.1:  Surface tension of the water in the tank for all runs of the 0.074 amplitude breaking wave. 

 

Camera Position 

 

 

Surface Tension (mN/m) 

 

62-64” 

 

72.4 

66-68” 73.5 

70-72” 73.0 

74” 73.5 

76” 72.8 

65” 74.0 

 

 

 Following the completion of 10 runs each at all camera positions, the data was 

processed in a manner similar to the MATLAB script used for the calibration.  The script 

used for the droplets, however, subtracted the intensity of the first image of each movie 

from each successive image.  This removed much of the speckle, dust and droplets on the 

tank walls in the images and left the only the droplets.  Then, the same hyperbolic tangent 

fit as was used before was applied to the droplets.  For the remainder of this paper, a 

cutoff of 3900 for the uncorrected droplet statistics was selected to ensure a bias of no 

more than + 5%.  These uncorrected statistics are only shown once (only for the 0.074 

amplitude wave) to demonstrate the effect of this correction.  They are not shown for the 
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remainder of the conditions.  As noted previously, 3500 was used as the cutoff for the 

corrected distributions so that the error was limited to ±5%.   

One statistic compiled from the data was the total number of droplets observed at 

each position over the course of the runs.  For all of the following data, the movies of 

image pairs were used to count only the droplets with a positive (upward) vertical 

velocity component and to only count each droplet once during the breaking event.  

Displayed below in Figure 4.3 are the droplet counts at each per position divided by the 

total number of droplets observed over the entire wave.  This data is uncorrected for the 

effect of the droplet diameter-dependent depth-of-field on the measurement volume. 

 

 

Figure 4.3:  Positional distribution of all droplets detected in the 0.074 amplitude breaking wave. 
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 As will be shown below, the droplets observed at the 64, 65 and 66 inch positions 

tend to be larger than the droplets observed further down the length of the wave tank.  

The positional droplet distribution after correcting for focus and depth-of-field is shown 

in Figure 4.4.  Two of the three positions with the most droplets in Figure 4.3 still have 

the most droplets after correction, though the difference is reduced.  Another potential 

bias, however, could have been that there were so many larger droplets in the imagery 

taken at the 64-66 inch range that they obscured some of the smaller droplets.  Thus, the 

importance of the physical mechanism which contributed to the large number of observed 

droplet over this range of distances should not be ignored. 

 

Figure 4.4:  Positional distribution of all droplets detected in the 0.074 amplitude breaking wave after 

applying the depth-of-field and focus correction. 
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 Droplet production is most abundant in the 64, 65 and 66 inch camera positions in 

the 0.074 amplitude wave.  Overall, this region contributed over 40 % of all droplets 

observed.  As the wave packet traveled down the length of the tank it generated droplets 

at a significantly reduced, albeit more steady rate.  As the wave neared the end of the 

viewing window the fraction of total droplets produced waned and eventually went to 

zero at the final camera position.  No droplets were observed at the two extreme camera 

positions over the course of 10 waves. 

 When this droplet distribution was correlated with the wave profile history, it 

became apparent that this observation coincided with the time and position of the impact 

of the wave’s plunging jet with the front face of the wave.  This event dissipates a portion 

of its turbulent kinetic energy in droplet generation. 

 Another issue of interest is the run-to-run variability in droplet generation.  Figure 

5.5 shows box plots for the droplet counts per run at each camera position.  This graph 

displays the mean droplet count pert run as a red horizontal line.  The blue box 

surrounding this represents the middle 50 % of data recorded and the dashed black line 

extends to the maximum and minimum values.  Red crosses represent statistical outliers 

from this distribution.  As mentioned above, the first and last positions consistently 

recorded no droplets whatsoever.  In the region of high droplet density from 64 to 66 

inches a very large range of droplet counts per run was observed.  Though the mean value 

reflects the spike recorded at these points, there are also runs at each one of these 

positions which record very few droplets at all.  One potential explanation for this dearth 

of droplets is that the location of the impact of the wave crest varies slightly from run to 

run.  Since each of the minima for these positions were recorded from different waves, it 
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may be possible that the wave broke in a manner that deposited significantly less droplets 

in this position while expending its energy elsewhere.  Additionally, though the plunging 

jet impact occurred underneath the 65 inch camera position most often, one run from the 

66 inch position recorded the highest number of drops of any run from any position.  Of 

note, this run was a statistical outlier. 

 Throughout the remainder of the camera positions there are a significant number 

of statistical outliers.  This is attributable to a large number of the camera runs in these 

positions recorded no droplets whatsoever.  Despite there being more relative variation in 

runs at these positions, the range of droplet counts was much narrower. 

 

 

Figure 4.5:  Box plot of uncorrected droplet counts per wave per camera position.  Blue box encircles 

middle 50% of data observed and black lines extend to maxima and minima excluding statistical 

outliers.  Red line is the median droplet count of the 10 measurements at each position.  Outliers are 

shown with a red cross. 
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 The observed droplet diameters were also calculated and consolidated for the 

entire wave event.  The distribution of these diameters was normalized.  Then, using the 

correction techniques discussed in the preceding chapters, these droplet measurements 

were adjusted.  The uncorrected droplet distribution is shown in Figure 4.6 and the 

corrected distribution in shown in Figure 4.7. 

 

Figure 4.6:  Uncorrected droplet diameter distribution for all droplets observed in 10 breaking 

events of the 0.074 amplitude wave. 
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Figure 4.7:  Corrected (focus and depth-of-field) droplet diameter distribution for all droplets 

observed in 10 breaking events of the 0.074 amplitude wave. 

 

 
Figure 4.8:  Log-log corrected (focus and depth-of-field) droplet diameter distribution for 0.074 

amplitude wave. 
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 In the uncorrected distribution, droplet diameters associated with splashing 

droplets predominate with significant contributions from the smaller diameter jet and film 

droplets from the bursting of bubbles rising to the surface.  There are also a number of 

observed droplets that exceeded 3000 µm.  Most likely, these droplets were torn from the 

wave rather than being produced through the bursting of air bubbles.  The shape of these 

droplets was asymmetric and oscillatory rather than spherical as was the case for the 

smaller droplets.  This behavior is likely due to the influence of surface tension, which is 

known to decrease with increasing droplet diameter.  For the processing of these droplets, 

the frame in which the droplet appeared most closely spherical was chosen to calculate 

the diameter.  In many cases however, this was merely an approximation as the droplets 

sometimes never fully appeared spherical.   

Due to the droplet diameter corrections, the diameter distribution was shifted from 

a sigmoidal shape to an exponential one—heavily favoring the smaller droplet diameters.  

At the very low end of droplet diameters, the distribution appears to decrease.  This may 

not be present in the actual distribution of diameters because the experimental method 

used is not capable of detecting droplets down to an infinitesimally small size.  As stated 

in Chapter 2, the absolute lower threshold on droplet detection is 3 pixels, which 

corresponds to approximately 30 µm.  Practically, when dust and speckle are introduced 

into the image, this limit is raised to 50 µm.  Thus, it may be possible that the probability 

density increases with decreasing droplet size beyond the diameter shown in Figure 4.7.   

On the other hand, the probability density of the large, asymmetric droplets is 

very small in the corrected distribution.  The distribution is not perfectly exponential, 

either.  Due to the largest probability densities occurring from 1,000 to 1,500 µm in the 
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uncorrected data, there appears to be a shelf around these lengths on the corrected 

distribution.   

The droplet diameter distribution was re-plotted in a log-log coordinates and is 

shown above in Figure 4.8.  This graph has two distinctive negatively sloped sections 

with a jump from the shallower to the steeper slope at approximately 1,250 µm.  

Interestingly, the shape of this distribution is similar to the findings of Wu, et al. (1984). 

Also, the droplet diameter distributions were separated by camera position to 

investigate whether the droplet size was affected by the stage of the wave breaking event, 

which increases in distance from the wave maker as the breaker progresses in time.  This 

is displayed in Figure 4.9 in which only the positions that had a sufficient number of 

droplets to compute a stable distribution are displayed.  An interesting feature of this 

splitting of the diameter distributions is that the piecewise shape is confined to the 

positions where the jet impacts the surface, 64, 65 and 66 inches.  The droplet diameter 

distributions of these positions resemble that of the all droplets from all positions.  

However, at the later positions, the distributions appear to follow a single power law.  

Because the majority of the droplets in the entire wave are observed within the 64-66 

inch interval, the overall distribution appears piecewise as well.  However, if one were 

merely interested in droplet generation away from the breaking event, this model would 

be inappropriate. 
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Figure 4.9:  Corrected (focus and depth-of-field) droplet diameter distributions for the 0.074 

amplitude wave in log-log plots for various camera positions as noted above each plot. 
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Figure 4.9 (Continued). 
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Next, the number of droplets produced per frame (recall that all the droplet 

movies are synchronized to the start of the wave maker motion) was plotted as a function 

of time and position in order to determine when and where the majority of the droplets 

were produced.  Unsurprisingly, the 64, 65 and 66 inch positions see proportionately 

more droplets than any other locations as was shown in Figures 4.3 and 4.4.  Not only are 

the majority of the droplets associated with the location of the crest impacting the front 

face of the wave, but this droplet production is also compacted into a relatively short 

amount of time.  More than 50 % of all the droplet production is confined to an interval 

of less than 150 ms.  As the wave travels down the tank, the camera positions further 

down the tank record droplets at correspondingly later times—though not nearly at the 

generation frequency of the three positions centered on the impact of the jet. 

The dramatic influence of the sudden release of droplets is even more apparent in 

the normalized and corrected probability distribution.  Again, this distribution indicates 

that many of the droplets in the 0.074 amplitude wave are being generated in this impact 

through the production of splashing droplets, rather than later as entrained air rising to the 

surface and producing film or jet droplets. 
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Figure 4.10:  Corrected (focus and depth-of-field), normalized total droplet number probability 

density versus distance along the wave tank and time for droplets at 12cm from the free surface in 

the 0.074 amplitude breaking wave. 

 

 Graphs showing droplet production rate versus time were generated to further 

investigate the expending of energy.  The corrected plot is shown in Figures 4.11.  In 

these graphs the droplet count on a 15 frame interval was multiplied by the 650 Hz frame 

rate in order to track the droplet production rate.  It was necessary to bin this rate together 

into 23 ms intervals in order to reduce noise in the distribution.  The droplet production 
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after the first maximum.  To some extent, the timing of droplet observation is influenced 

by the location of the free surface relative to the camera.  Prior to the passage of the wave 

packet, the free surface is undisturbed and the camera height is held at a constant 12cm.  

As the wave passes, however, the surface is at times much farther or closer than 12cm.  

Droplet densities increase with proximity to the surface.  Thus, any following spikes in 

the production of droplets may be attributable to the free surface approaching the 

experimental volume, and correspondingly any troughs in droplet production could be 

caused by a more distant free surface. 

  

 
Figure 4.11:  Corrected (focus and depth-of-field) droplet production rate as a function of time for 

the 0.074 amplitude breaking wave. 
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Chapter 5:  Droplet Measurement and Results for the 0.070 

Amplitude Breaking Wave 
 

 The 0.070 amplitude breaking wave was measured using the 16 camera positions 

detailed in Chapter 2.  Interestingly, this lower amplitude wave did not possess as 

extensive of a positional bias that the 0.074 amplitude wave did.  Whereas previously 

nearly 50% of the droplet production was confined to a 3 inch wide volume, the droplets 

were more uniformly distributed in the 0.070 amplitude wave.  Because of this, there was 

no need to include an additional measurement position. 

 Using the same method as the previous wave, the probability density of droplet 

detection was plotted as a function of distance from the wave maker.  The breaking 

location of the lower amplitude wave was also very nearly coincident with the 65 inch 

camera position.  Despite this, droplet probability density was not highest here.  Overall 

the distribution was moved downstream relative to the 0.074 amplitude wave.  

 After having applied the droplet diameter corrections, the positional distribution 

shifted somewhat closer towards the breaking location of the wave.  This is contrary to 

the shift observed in the higher amplitude wave wherein the probability density increased 

in the latter positions after having applied the correction.  This was partly attributable to 

the higher incidence of smaller droplets across a wider positional distribution.  The high 

density of droplets in some images may have blocked observation of some of the smaller 

droplets.  In the 0.070 amplitude wave, however, smaller droplets are more commonly 

observed closer to the breaking location.  The incidence of drops also trails off more 

quickly in the lower amplitude wave.  The amplitude of the wave maker’s motion is 

lower meaning that there is less energy in the wave.  The lower amount of droplets 
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observed overall reflects this.  Figure 5.1 shows the corrected positional distribution for 

spray droplets in the 0.070 amplitude wave. 

 

Figure 5.1:  Corrected (focus and depth-of-field) probability distribution of droplets as a function of 

position in the 0.070 amplitude breaking wave. 

 

 

 As with the higher amplitude wave, the run-to-run variation was displayed with a 

box plot, shown in Figure 5.2.  Beyond 82 inches, any detection of droplets is an outlier.  

Like the higher amplitude wave, the largest variation in droplet counts is observed in the 

positions with highest average counts.  At each position throughout the distribution, it 

would not be unexpected to observe a wave run in which very few droplets were 

recorded.  Overall, though, the average droplet count per position was significantly less 

than those observed in the 0.074 amplitude wave. 
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Figure 5.2:  Box plots of droplet counts for the 0.070 amplitude breaking wave. 
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more noise in the 0.070 case.  This would be expected as overall fewer droplets were 

observed in ten runs of the 0.070 amplitude wave than the 0.074 amplitude wave.  For the 

same reasons cited in Chapter 4, the falloff in the distribution at the lowest observed 

diameters may be a result of measurement limitations rather than any physical 

phenomenon. 

 

Figure 5.3:  Corrected (focus and depth-of-field) diameter distribution for 10 runs of the 0.070 

amplitude breaking wave. 
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Figure 5.4:  Log-Log corrected (focus and depth-of-field) diameter distribution for the 0.070 

amplitude wave. 
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position and is displayed in Figure 5.5.  The piecewise shape is not nearly as apparent in 
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there were significantly less droplets overall, making it improper to display a distribution 

for the sparsely populated camera locations. 
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Figure 5.5:  Corrected (focus and depth-of-field) droplet diameter distributions for the 0.070 

amplitude wave in log-log plots separated by camera position. 
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The contour plot of droplet count as a function of position and time is displayed in 

Figure 5.6.  The timing and position of the highest droplet intensities is approximately the 

same as the previous wave.  However, there appears to be two peaks in droplet 

production at approximately the same position but different times.  It is difficult to 

associate this shape to any distinct wave phenomenon, other than the more gradual and 

less dramatic plunging action of the wave crest in the 0.070 amplitude wave.   

 

Figure 5.6:  Corrected (focus and depth-of-field), normalized total droplet number probability 

density versus distance along the wave tank and time for droplets at 11cm from the free surface in 

the 0.070 amplitude breaking wave. 
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production rate reaches its high point later at 13.2 seconds which is roughly associated 

with the second positional peak.  However, at this time droplet production is high at 

many other positions which contributed to the absence of the double peak feature.  

Overall, the magnitude of the production rate is significantly less than the higher 

amplitude wave due to the lower amount of energy being dissipated. 

 

 

Figure 5.7:  Corrected (focus and depth-of-field) droplet production rate as a function of time for the 

0.070 amplitude wave. 
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Chapter 6: Droplet Measurement and Results from the 0.074 

Amplitude Wave with Surfactant 

 
 In the experiments described in this chapter, all of the parameters of the 0.074 

amplitude wave were kept constant but surfactant was added to the tank.  The 

measurement locations were altered to focus on the locations where the most droplets 

were observed in the 0.074 amplitude wave without surfactant.  Additionally, 

measurements at 62 inches were dropped as no droplets were found at this position 

previously.  One circumstance of omitting measurement at 62 inches on the Camera 9138 

was that no measurements were taken at 78 inches on Camera 9139.  The loss in overall 

data was initially presumed to be negligible, as the fraction of all droplets observed at this 

position previously was less than five percent.  With this approach it was believed that 

only 5 runs instead of 10 would be sufficient to produce enough data to draw conclusions.  

The measurement scheme is shown below in Figure 6.1: 

 

 

Figure 6.1:  Camera positions for the 0.074 amplitude with surfactant runs.  Measurement locations 

have been concentrated around the location of the wave breaking phenomenon in the 0.074 

amplitude wave. 

 

 The addition of surfactant significantly altered the positional distribution of 

observed droplets compared to the 0.074 amplitude wave in clean water.  This can be 
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seen in the probability distribution shown in Figures 6.2 compared to the distributions 

shown in Figure 4.3 and 4.4.  Unfortunately, the positioning of the additional 

measurement locations was less than fortuitous: the locations of the highest droplet 

densities shifted farther down the wave tank and were not observed in the region of 

closely space measurement positions.  The large spike around the 65 inch position seems 

to have been suppressed or at least delayed and reduced in intensity.  The position-based 

probability is also more evenly distributed.  Perhaps also, the most interesting part of the 

droplet generation was omitted unintentionally.  Whereas the region after the 78 inch 

camera position produced very few droplets, the 78 inch position constitutes a transition 

from upstream positions where only a few droplets are generated.  In the corrected 

distribution the 72 inch position is the maximum of the distribution.  Thus, more runs are 

needed to make any definitive statement on droplet generation between 72 and 80 

positions. 

 

Figure 6.2:  Corrected (focus and depth-of-field) probability distribution of droplets as a function of 

position in the 0.074 amplitude wave with surfactant. 
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 The run-to-run variation in the surfactant waves is rather unremarkable.  This 

distribution can be seen in Figure 6.3.  For every position, it is possible to have a run in 

which no droplets were observed.  In fact, the runs in which the majority of the droplets 

had been observed were quite far from the median value.  One significant outlier was 

observed in the 5 runs taken at the 76 inch position.  The movie associated with this event 

resembled the behavior from the 65 inch position in the same wave without surfactant, 

except that the observed droplets were smaller in size. 

 

Figure 6.3:  Box plots of  droplet counts for the 0.074 amplitude wave with surfactant. 
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1,500 µm and beyond is significantly lower than the same wave except without 

surfactant.  These effects can be seen in Figure 6.4.  In the log-log distribution, shown in 

Figure 6.5, the droplet size seems as though it may not obey a piecewise distribution as 

seen before. 

 

 

Figure 6.4:  Corrected (focus and depth-of-field) diameter distribution for 10 runs of the 0.074 

amplitude wave with surfactant. 
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Figure 6.5:  Log-log diameter distribution for the 0.074 amplitude wave with surfactant. 

  

Additionally, the droplet diameter distributions have been broken down by 

camera position and are displayed below in Figure 6.6.  While the 0.074 amplitude wave 

without surfactant had piecewise distributions at the locations of highest droplet density 

this effect was largely absent from the wave after surfactant was added to the tank.  On 

the log-log axes, these distributions take a roughly linear shape.  
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Figure 6.6:  Corrected (focus and depth-of-field) droplet diameter distributions for the 0.074 

amplitude wave with surfactant in log-log plots separated by camera position.  Positions selected 

represent those with the highest droplet densities.  Note that the piecewise shape previously observed 

in this wave without surfactant is largely absent. 
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 The contour plot of probability versus time and measurement position for the 

surfactant runs is displayed in Figure 6.7.  One significant difference from the wave 

without surfactant is that droplet production seems to be confined to the same time range 

across the length of the measurement positions.  Without surfactant, measurement 

positions that were further down the tank detected droplets at a later time than the 

positions closer to the wave maker.  With surfactant present, this is no longer true:  

regardless of position, detection occurs within the same time frame.  Similar to the wave 

without surfactant, there is a large spike in which a large portion of droplets were 

observed.  However, instead of being located around 65 inches it is now at 76 inches and 

occurs approximately 1/10
th

 of a second later. 

 

Figure 6.7:  Corrected (focus and depth-of-field), normalized probability density for droplets at 12cm 

from the free surface in the 0.074 amplitude wave with surfactant. 
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 Droplet production rates were altered significantly when compared to the wave 

without surfactant.  The peak in production is much wider and reaches its apogee later in 

time.  Overall, the amount of droplets produced per wave after the addition of surfactant 

was lower for the 0.074 amplitude wave.   

 

 

Figure 6.8:  Corrected (focus and depth-of-field) droplet production rate as a function of time for the 

0.074 amplitude wave with surfactant. 
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Chapter 7:  Wave Comparison and Concluding Remarks 

 

 
7.1  Comparing the 0.074 and 0.070 Amplitude Waves 

 

 
The droplet diameter distributions were organized in log-log plots.  Both waves 

were plotted together on the same axes in Figure 7.1.  Superimposed over the data points 

are the power laws fits to these distributions.  A two power law fits were selected for the 

steep and shallow slope sections of the 0.074 amplitude wave diameter distribution while 

a single power law was fit to the 0.070 amplitude wave.  These power laws excluded the 

data points at the extreme low end of droplet diameters due to the aforementioned issues 

with detecting droplets near the lower limit of image resolution.   

The transition between functions occurs at very nearly the same diameter in both 

waves: 1250 µm.  Other than this transition point and the general shape of the 

distribution, the wave distributions lack similarity.  Whereas the stepped shape of the 

distribution is sharp in the 0.074 amplitude wave, it is much less distinctly defined in the 

0.070 amplitude wave.  It would be expected, though, that the lower amplitude wave 

distribution exhibit more error because less than half of the droplets as the other wave 

were observed over the course of all 16 positions and 10 runs. 

A caveat to the use of these power laws is the fact that the piecewise shape of the 

droplet diameter distributions is confined to the region of the wave in which the breaking 

action is most violent.  Outside of this region, the droplets appear to follow a single 

power law distribution over the entire range of diameters.  In these locations, jet and film 

droplets may be more prevalent than the splashing droplets that are ejected as a result of 

the plunging jet impact.  However, because the droplets produced as a result of the 
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breaking event are much more numerous than the droplets observed in other locations, 

the overall droplet distribution assumes a piecewise shape. 

The droplet generation frequency for the lower amplitude wave was frequencies 

in the lower end of the droplet diameter distribution.  For the higher amplitude wave, 

larger droplets are observed more frequently than in the 0.070 amplitude waves.  One 

potential explanation of this phenomenon is that the higher amplitude wave possessed 

higher levels of turbulent kinetic energy which produced more massive droplets.  What is 

notable also for the higher amplitude wave is the location of these larger droplets.  

Whereas the droplet diameter distributions at the further camera positions are similar for 

both waves, there is a considerable difference between them at the camera positions 

closest to the location of the plunging jet impact.  In the higher amplitude wave, the 

droplets produced by the plunging jet tend to have much larger diameters than at the 

other positions.  In the lower amplitude wave, since the breaking event is less dramatic, 

this increase in droplet diameters is not observed.   

Overall, it remains to be seen whether or not the amplitude of the wave will 

consistently have the effect of shifting the diameter distribution in this manner.  It may be 

possible that more energetic waves will produce relatively more droplets at higher 

diameters and lower amplitude waves will do the opposite. 
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Figure 7.1:  Droplet diameter distributions for the 0.070 (black) and 0.074 (red) amplitude waves. 

Their respective power laws are fitted over the distributions. 

 

 

 

 The fit for the 0.074 amplitude wave was made piecewise whereas the fit for the 

0.070 amplitude wave was fitted to a single function of the diameter.  Some precedent 

does exist for piecewise droplet diameter distributions: similar observations were made 

by Wu (1984).  The equations governing the normalized probability density for the 

diameters encountered in the 0.070 and 0.074 amplitude waves are shown below. 
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When comparing the number of raw droplets observed between the two waves 

there are considerable differences.  Despite all parameters besides the wave amplitude 

(and height of observation—which was tied to the amplitude) being the same, the shape 

and total droplet counts are quite dissimilar.  A comparison of the total droplet counts 

between the three wave conditions at the two different intensity cutoffs is shown in Table 

7.1 below.  The observed droplets at positions beyond 68 inches, however, do coincide 

fairly well between the waves.  The lower amplitude wave even has more droplets 

present at these positions than the higher amplitude wave.  The reason behind this 

reversal is the delay in the droplet maximum in the lower amplitude wave.  The most 

noticeable disparity, however, is the spike in observed droplets at the first few camera 

positions on the 0.074 amplitude wave.   

 

Table 7.1:  Comparison of measurable droplets for each wave condition for the two image intensity 

cutoffs.  3900 was used for the uncorrected droplet statistics and 3500 was used for the statistics 

corrected for focus and depth-of-field. 

 

Wave Condition 

 

 

Measureable Droplets 

with I > 3900 Cutoff 

 

 

Measureable Droplets 

with I > 3500 Cutoff 

 

0.070 Amplitude 

(10 Runs) 

 

 

532 

 

608 

 

0.074 Amplitude 

(10 Runs) 

 

 

968 

 

1,582 

 

0.074 Amplitude with 

Surfactant 

(5 Runs) 

 

 

 

380 

 

 

634 



 

 90 

 

 

 

 
Figure 7.2:  Comparison of number of observed (uncorrected) droplets per position for the 0.074 

amplitude (red) wave and the 0.070 amplitude (black) wave. 

 

 

 

 

 Two generalities can be drawn from the droplet measurements:  Increasing the 

non-dimensionalized mechanical wave maker amplitude by 0.004 increased the observed 

number of droplets by over double and the location of spray droplet generation is more 

localized for the larger amplitude wave.  Also, the larger amplitude waves produced 

spray with higher concentrations of larger droplets.  The distributions of droplets nearest 

to the plunging jet impact take the shape of a two power laws.  Droplets generated 

outside of this region of intense droplet density follow single power laws. 

 

 

62 64 66 68 70 72 74 76 78 80 82 84 86 88 90 92
0

50

100

150

200

250

300

350

400

Camera Position (in)

N
u
m

b
e
r 

o
f 

O
b
s
e
rv

e
d
, 

P
ro

c
e
s
s
a
b
le

 D
ro

p
le

ts



 

 91 

 

7.2  Comparing the 0.074 Amplitude Wave with and without Surfactant 

  

The diameter distributions for the same wave with and without surfactant are 

shown in Figure 7.3.  Droplets with diameters less than approximately 800 µm are more 

probably produced by the wave with added surfactant.  Beyond 800 µm, the wave with 

clean water generates larger droplets more often than the wave with surfactant.  

Additionally, whereas the distribution for the wave generated in clean water showed a 

piecewise shape, the wave with surfactant was more closely linear beyond 500 µm. 

  

 

Figure 7.3:  Droplet diameter distributions for the 0.074 amplitude wave with (red) and without 

(black) surfactant. 
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The addition of surfactant resulted in immense changes to the positional 

distribution.  The large spike observed in the clean water wave is absent in the presence 

of surfactant.  The droplets are distributed more uniformly over a much wider range of 

positions in the surfactant waves.  Adding surfactant additionally led to suppression of 

the overall number of droplets observed per wave, and delayed their observation in time 

and distance. 

 
Figure 7.4:  Comparison of uncorrected normalized droplet densities for the 0.074 amplitude wave 

with (red) and without (black) surfactant. 
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7.3 Comparing the Three Wave Conditions 

 
 

 A log-log plot of the diameter distribution of all three wave conditions is shown in 

Figure 7.5.  From this it can be seen that the 0.070 amplitude wave was more likely to 

produce droplets with diameters less than 1,250 µm than the 0.074 amplitude waves.  The 

addition of surfactant, however, to the 0.074 amplitude wave drastically increased the 

probability of generation for droplets below this threshold and was quite close to the 

overall shape of the 0.070 amplitude distribution.  Droplets less than 100 µm are far more 

likely to be produced in the 0.074 amplitude in water with surfactant than in the other two 

waves that were produced in clean water.  Unsurprisingly, droplets with diameters greater 

than 1,250 µm were most commonly produced by the 0.074 amplitude wave in clean 

water.  Additionally, the shapes of the distributions are quite similar, especially above 

1,250 µm.   



 

 94 

 

 

Figure 7.5:  Droplet diameter distributions for the 0.070 wave (red) and the 0.074 wave with (blue) 

and without (black) surfactant in the wave tank. 
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