
Dynami Real-Time Sheduling in Distributed EnvironmentsSameh M. Elsharkawy Ashok Agrawalafsharkawy, agrawalag�s.umd.eduDepartment of Computer Siene, University of Maryland at College ParkSeptember 24, 2001AbstratReal-time appliations are beoming inreasingly popular in distributed environments. These real-time appliations range from hard real-time appliations with periodi or aperiodi tasks and intertaskrelative timing onstraints to soft real-time appliations with best e�ort timing requirements. This paperintrodues a omplete system model for sheduling and dispathing hard as well as soft real-time taskswith intertask temporal dependenies in distributed environments. The model uses a dynami time basedo�-line sheduler to verify the feasibility of a distributed hard real-time task set, and a parametri run-time kernel that guarantees the temporally determinate dispathing of hard real-time task instanes andbest e�ort performane for soft real-time task instanes. The use of the dynami time based sheduling,provides o�-line guarantees for all the timing requirements of the hard real-time tasks while the parametridispathing mehanism maintains a exible run-time environment that makes use of the slak time with alimited overhead.1 IntrodutionA distributed system is olletion of inter-onneted proessors that does not share memory or lok . Thesystem provides users with aess to various resoures maintained by the system [1℄. Distributed omputingenvironments have beome the dominant operation environment in eduational as well as industry sites. Thisinreasing popularity is due to what this environment o�ers in the sense of improved performane throughmulti-proessing, onnetivity through geographial loation distribution, salability and portability throughmodularity, availability and reliability through resoure repliation, and ost e�etiveness [2℄. Distributedappliations running on these environments require a wide range of Quality of Servie (QoS) guarantees fromthe underlying system. QoS guarantees range from best e�ort performane required by non-real-time andsoft real-time appliations to the prior guarantee to meet all timing requirements and deadlines requested byhard real-time appliations. Among the ommon real-time distributed appliations are teleommuniationssystems, ommand and ontrol, multimedia systems and distributed simulations (�gure 1).To provide timing guarantees for real-time distributed appliations, both individual nodes operating sys-tems and the network management system must ollaborate to provide an end-to-end QoS enforement ofglobal system timing feasibility. Therefore, a omplete system design model needs to be developed that takesinto onsideration resoure sheduling on omputation nodes and ommuniation resoures management inthe underlying network onneting them.
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Figure 1: Distributed Command and Control1.1 MotivationThis paper addresses the problem of distributed real-time sheduling with various types of QoS requirementsand arhitetural models.Many real-life distributed appliations have strit timing requirements and require timely interation amongthe various tasks in the appliation. The existing solutions for suh hard real-time appliations use stati (o�line), dynami (on line) or hybrid sheduling method to alloate resoures to the di�erent tasks in the system.Stati sheduling algorithms provide time preditability at the expense of exibility and performane at runtime. Dynami algorithms, on the other hand, provide a more exible and time eÆient solution but do notprovide aeptable timing guarantees to many hard-real time appliations. The use of the dynami time-based parametri sheduling method provides o�-line timing guarantees for hard real-time tasks and exibleparametri dispathing mehanism at run-time that makes use of the slak time with a limited overhead. Someof the urrently existing appliations that losely math the system environment under onsideration are:1. Distributed interative simulations (DIS): Interative simulations are used to dupliate the experiene ofsituations that are too expensive, dangerous, or impratial to failitate in the real world. For example,in the ase of Syntheti theater of war training (STOW) problem, military units around the globean partiipate a joint exerise that involve a simulation of real global ombat situations [3℄. STOWappliations usually involve the timely initiation of several distributed events and reations that requirea strit timing and QoS guarantees from the underlying system.2. Mission-ritial real-time distributed systems: These systems inlude avionis mission omputing sys-tems, tatial ommand and ontrol systems, and manufaturing proess ontrol systems. This typeof real-time appliations require the support for various types of QoS aspets suh as bandwidth, la-teny, jitter, and time-dependability [4℄. Reent large-sale mission-ritial appliations require theinteration among large numbers of distributed tasks that are running on several distributed omputingnodes. For instane, in avionis mission omputing systems, the airraft ontroller must ollaborate withremote ommand and ontrol systems, provide on-demand browsing apabilities for human operators,interat with satellite systems to alulate geographial position, and respond, in a timely manner, to2



unantiipated fators that might arise in the run-time environment [4℄.3. Distributed eletroni medial imaging systems (EMIS): Advanes in the areas of high-speed networkingand hierarhial storage management failitate the building of large-sale, distributed, performane-sensitive EMISs. Distributed EMISs require a great deal of exibility, performane and QoS from theunderlying ommuniation infrastruture in order to be able to provide message-oriented and stream-oriented media on-demand to any of the distributed diagnosti stations aross loal and wide areanetworks [5℄.1.2 ApproahThe main problem addressed in this paper is that of sheduling and dispathing real-time tasks running ona network of distributed omputing nodes. The major sheduling methodology used is the Dynami time-based parametri sheduling method initially introdued by M. Saksena et al [6℄ and further extended toinlude periodi tasks by S. Choi [7℄. This method uses Fourier-Motzkin variable elimination tehnique [8℄in the o�-line phase to verify the shedulability of the real-time task set and alulate a dynami alendar fordispathing jobs at runtime. The dynami alendar represents the start time of eah job �i with two parametrifuntions (Fminsi ;Fmaxsi ) whose evaluation generate the minimum and maximum feasible starting times of theorresponding job. The parameters to these funtions onsist of time event variables, like jobs' start and �nishtimes, whose values are generated at runtime by previously exeuted jobs. The parametri sheduling methodwas hosen beause it provides hard real-time shedulability guarantees, as well as, exibility to manage slaktimes without a�eting the task set shedulability [7℄.1.3 OutlineThe rest of this paper is organized as follows. Setion 2, summarizes prior work in the areas of hard anddistributed real-time sheduling. The problem of Distributed Hard Real-Time Sheduling is presented in theremainder of the paper's setions. We start by desribing the problem de�nition and the system model forthis problem in setion 3. Next, we de�ne the parametri shedulability ondition of the global system as wellas eah of the distributed nodes in setion 4. Then we introdue the solution algorithms for verifying globalsystem shedulability, alulating dispathing alendars for distributed nodes, and timely dispathing taskinstanes in onformane with the system timing requirements in setion 5. Setion 6 provides the orretnessproof for the sheduling algorithms. The struture of the run-time dynami dispather is desribed in setion8. Finally, we desribe the omplete model implementation, pratial experiments, and results in setion 9.2 Related WorkThe area of real-time sheduling has been an ative researh topi for a relatively long period of time dueto the wide and hanging demands of the real-time appliations. With the distributed workstations environ-ment beoming the dominant operation environment, real-time sheduling work in distributed environmentsis rapidly growing.In the following setions, we briey present some of the work that have been done in the losely relatedareas to the presented problem.
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jFigure 2: Stati Cyli Sheduling2.1 Hard Real-Time ShedulingMany real-time sheduling algorithms have been presented for various task models and harateristis. Themajor parameters aording to whih the sheduling methods an be lassi�ed are the possibility of task pre-emption, task periodiity and ritiality of meeting tasks timing requirements and deadline. A omprehensivedesription of the various sheduling algorithms and their appliable task models is presented by Giorgio C.Buttazzo in [9℄.Hard real-time tasks require all their deadlines and timing requirements to be stritly enfored to ensureorret behavior. This needs feasibility tests to be performed prior to run-time in order to guarantee all theirtiming requirements to be met. The problem of guaranteeing timing onstraints in hard real-time systems hasreeived signi�ant attention, however, few tehniques have addressed the problem of guaranteeing inter-tasktemporal dependenies suh as relative timing onstraints. Most real-time sheduling tehniques onsider thesheduling of real-time tasks with ready times and deadlines [10, 11, 12, 13, 14, 15, 16, 17℄. These onstraintsimpose onstant intervals in whih a task must be exeuted. In ontrast, in the presene of relative timeonstraints, the time window within whih a task must exeute may depend on the sheduling and exeutionparameters of the other tasks in the system. Some of the systems that onsider the problem of shedulingperiodi and aperiodi tasks with relative timing onstraints were introdued in [18, 6, 7℄.Some of the sheduling method that are losely related to the presented work are desribed below. Theyall involve sheduling non-preemptive hard real-time tasks.Stati Cyli Sheduling: Presented by S. Cheng and Ashok Agrawala in [19℄. The algorithm studiesperiodi tasks with release time, deadline, and jitter onstraints. It onstruts a stati alendar for thetasks. The alendar is invoked repeatedly by wrapping around again to its starting point as shown in�gure 2.Parametri Sheduling: Gerber et al. [20℄ presents a sheduling sheme for aperiodi tasks with relativetiming onstraints. The algorithm uses Fourier-Motzkin variable elimination tehnique [8℄ to alulatea parametri alendar in the o�-line sheduler, and uses it to dispath the task instanes at run-time. Inthis alendar, the start time of eah task is presented by two parametri bound funtions. A. Mok el al.4



in [18℄ presented a method that uses graph representation of tasks and their relative timing onstraintsto test the shedulability of a real-time task set.Dynami Cyli Sheduling: Presented by S. Choi et al. in [7, 21℄. Extends the parametri shedulingalgorithm to periodi tasks with relative timing onstraints. The algorithm uses a graph to representthe tasks and their timing onstraints. It alulates a yli parametri alendar to be used repeatedlyto dispath task instanes at run-time.2.2 Distributed Real-Time ShedulingThe area of real-time sheduling in distributed environment has beome an ative area of researh due to theinreasing demand on distributed appliations with various QoS and timing requirements. Providing temporalpreditability aross a network of distributed omputing nodes requires the support of QoS-sensitive resouresheduling of the CPU time on the nodes, transfer time in the underlying network, and the network interfaeson the host omputers. All sheduling systems has to ollaborate to be able to provide end-to-end quality ofservie guarantees. Some of the major projets involving real-time sheduling in distributed environments aredesribed in the following subsetions.2.2.1 HARTS and ARMADA ProjetsThe HARTS projet, developed in the real-time omputing laboratory of University of Mihigan, involved thedesign and implementation of a real-time multi-omputer system. The work mainly foused on the hardwareand software support for time-onstrained ommuniation in point-to-point networks. The projet studiesreal-time ommuniation in multi-hop point-to-point networks [22℄. It provides the design and evaluation fora QoS sensitive ommuniation subsystem arhiteture that is mainly based on the use of real-time hannels[23℄. A real-time hannel is a simplex, ordered, unreliable, virtual onnetion between two networked hoststhat provides deterministi or statistial bound on the end-to-end delay by analyzing the traÆ rates andtiming requirements on every link on the message delivery route. The network nodes are running a ommondistributed real-time operating system whih is responsible for network ontrol as well as maintaining a globaltime base by synhronizing loks on the nodes.The ARMADA projet is mainly the ontinuation of its predeessor projet (HARTS). The goal of thisresearh projet is to develop and demonstrate an integrated set of tehniques and software tools for designing,implementing, and integrating omputation, I/O, or ommuniation intensive embedded real-time appliationon a parallel or distributed environments. The main methodology to ahieve this goal is the development ofmodular and omposable middleware servies for onstruting distributed real-time appliations on a standardRTOS like Mah-RT from the open software foundation (OSF). The ARMADA projet inherits the real-time ommuniation arhiteture from the HARTS projet and also uses a fault-tolerant real-time multiastommuniation servie (RTCAST) [24℄. The RTCAST method supports bounded time message transport bysimulating a time based token-ring protool on point-to-point networks. The ARMADA projet is urrentlyunder development in University of Mihigan and Honeywell.2.2.2 EPIQ ProjetDeveloped at University of Illinois at Urbana-Champaign, the EPIQ projet was designed with the meta-omputing framework in mind. It supports end-to-end quality of servie ontrol and resoure managementstrategies. The EPIQ projet adopts an open environment for real-time appliations, whih allows for theappliations to be developed and validated independent of eah other and on�gured dynamially to run on5



the same platform. This sheduler analyzes the shedulability of an appliation based on the assumptionthat it runs alone on a proessor with a speed that is a fration of the speed of the target proessor. Thekey omponent of the open system is the two level hierarhial sheduler, whih onsists of an OS shedulerresponsible for dispathing the proessor to the di�erent appliations and a seond layer of server shedulers,one for eah appliation, whih are responsible for sheduling the di�erent tasks and threads within eahappliation aording to its spei�ed sheduling algorithm [25℄.In order to provide end-to-end QoS guarantees in a networked environment, the EPIQ projet extendsthe Fast Messages (FM) high performane network software model developed in University of Illinois tosupport preditable performane in terms of deterministi latenies and guaranteed bandwidth. The FM-QoSmodel inorporates feedbak-based synhronization (FBS) of senders and self-synhronizing ommuniationshedules to avoid resoure onits for network links and outputs. Elimination of suh resoure onits leadsto preditable ommuniation performane. FM-QoS uses a Petri net model to haraterize the struture ofthe self organizing shedules and to tolerate the lok drifts [26℄.3 Problem DesriptionAll the existing variations of the parametri time-based sheduling method are based on a single node model.They mainly fous on non-preemptive periodi/aperiodi hard real-time tasks with inter-task relative timingonstraints. Our basi objetive is to extend the single node parametri time-based sheduling method to beused with a distributed hard real-time task set with inter-task relative timing and ommuniation onstraints.This distributed algorithm is then used as a basis to develop a omplete time-based sheduling and dispathingmodel for a distributed set of hard/soft real-time tasks. In order to develop suh model, several sub-problemshave to be addressed:� De�ning the task and network model.� De�ning shedulability onditions to ahieve global, network, and single node loal shedulability.� Designing o�-line algorithms for verifying these shedulability onditions.� Proving the orretness of the shedulability onditions and veri�ation algorithms.� Developing a time-based dispathing mehanism to ensure the orret timely exeution of the real-timetasks.To better understand the distributed time-based parametri sheduling problem, we present the task modelunder onsideration followed by the model desription for the network that onnets the distributed omputingnodes.3.1 Task ModelThe environment under onsideration onsists of a set of M omputer nodes fNode1; Node2; :::; NodeMg. Oneah node, runs a group of periodi non-preemptive hard real time tasks. The least ommon multiple (LCM)of tasks periods on all the nodes is L, whih is also known as the sheduling window on all nodes. In eahsheduling window, there is Nm task instanes (jobs) that run on node m, suh that 1 <= m <= M . Thetotal number of jobs running on all nodes in one sheduling window is N =PMm=1Nm .6



Let �jm = f� ji;m j i = 1 : : :Nmg denote the ordered set of Nm jobs to be dispathed sequentially in thejth sheduling window [(j � 1)L; jL℄ on node m. Jobs are non-preemptively exeuted in the given order forevery sheduling yle. The exeution order for this job set is predetermined, and enfored by order timingonstraints. The set of tasks to be dispathed on all nodes in the jth sheduling window is represented by�j = f�j1 [ �j2 [ : : :�jMg.Eah periodi real-time task in the system needs to speify the parameters that are ommon for all itsinstanes (jobs). These parameters are:1. Task period P2. Low jitter �3. High jitter �In addition to the parameters inherited from the task, there exist a number of parameters for eah job � ji;mthat speify its timing behavior and harateristis, these parameters are:1. Start time sji;m2. Exeution time eji;m3. Finish time f ji;m4. Minimum exeution time lji;m5. Maximum exeution time uji;m6. Release time rji;m7. Deadline dji;mThe values of some of the parameters vary aording to the runtime behavior of the task, suh as start-time,exeution time, and �nish time. The rest of the task parameters are onstants for eah job and are determinedprior to the shedulability test phase.For every job, only two time event points an be used as time variables, the start time s and the �nish timef . Between any two time variables on the same node, there an be at most two relative timing onstraints.These onstraints form the lower or upper bounds on the time period between the two variables. A relativetiming onstraint involving only two time variables is referred to as Standard. A standard relative timingonstraint an be de�ned as follows.De�nition 3.1 (Standard Constraints) A standard onstraint involves the variables of at most two jobsrunning on the same node, � ja;m and � lb;m(1 � a � b � Nm, j j � l j� 1), where sja;m(or sja;m + eja;m) appearson one side of \�", and slb;m(or slb;m + elb;m) appears on the other side of the \�". For the two jobs, � ja;m,� lb;m, the following onstraints are permitted(where i is an arbitrary onstant) and alled relative standardonstraints (the node number m is eliminated in this example for larity purposes):
7



sja � slb � 1sja � (slb + elb) � 2sja + eja � slb � 3sja + eja � (slb + elb) � 4 slb � sja � 5slb � (sja + eja) � 6slb + elb � sja � 7slb + elb � (sja + eja) � 8 (1)In addition, release time and deadline onstraints for eah job are alled Absolute standard onstraints. Ajob � ja;m has the following absolute onstraints:9 � sja;m sja;m + eja;m � 10 (2)Any onstraint that an be rewritten in one of the above forms is also onsidered a standard onstraint;e.g., sja;m � slb;m + elb;m � eja; +  falls into this ategory [7℄.The set of all relative timing onstraints among jobs running on physial node m is represented by Cm.The system timing onstraints set onsists of the union of all loal timing onstraint sets on all the separatenodes Cm; 1 � m �M plus the ommuniation onstraints C (De�nition 3.3).C = C1 [ C2 : : : [ CM [ C (3)3.2 Network ModelThe network model onsidered in this problem onsists of M proessor nodes onneted by point-to-pointdual simplex links. A link onneting Nodei to Nodej is referred to as Linki;j . A node in the system anhave several inoming and outgoing links attahed to it, eah of whih an operate in parallel with the others.Eah link end is onneted to a front end proessor that performs all the data transfer funtionality. Figure 3shows the point-to-point network model under onsideration. The nodes are assumed to maintain synhronizedloks aording to a global time-base for the system. The maximum skew between loks on di�erent nodes isassumed to be very small ompared to message transfer delays. An algorithm for synhronizing the distributednodes' alendars is presented as part of the run-time dispather in setion 8.2. There exist di�erent shemesfor ahieving distributed loks synhronization suh as the method presented in [27℄.3.2.1 Communiation ChannelsBetween two tasks running on two di�erent nodes, a periodi ommuniation hannel an be established whihan transfer periodi messages from one task to another. Communiation hannels an span multiple networkpoint-to-point links. The links that a hannel goes through are determined using a stati routing algorithmto ensure transfer time preditability. Communiation hannels an only be established from a soure taskinstane in one sheduling window and a destination instane in the same or next sheduling window, thatexeutes on a di�erent physial node. A ommuniation hannel is spei�ed by the following parameters:� Soure task instane.� Destination task instane. 8
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Figure 3: Network Model� Message generation sheme{ Maximum message size (S).{ Maximum message Rate (R).{ Burst size (B).� Desired end-to-end maximum message delay (q).The ommuniation hannel imposes an upper bound on the message delivery time (De�nition 3.2) ex-periened by eah message transferred on this hannel. The delay limitations imposed by ommuniationhannels on transferred messages is referred to as Communiation onstraints (De�nition 3.3). The set of allommuniation onstraints among the M nodes is represented by C.De�nition 3.2 (Message Delivery Time (MDT)) The Message Delivery Time MDT for a ommunia-tion hannel is de�ned to be the total time elapsed from the time the soure job starts sending out the messagetill the message is ompletely reeived by the target job. This is equal to the sum of the following omponents[28℄:1. Communiation proessing time tC: Whih is the time required for preparing the information for trans-mission. For example, the time taken to organize data into pakets.2. Queuing time tQ: This is the time spent by the pakets waiting in queues for di�erent resoures.3. Transmission time tT : This is the time it takes for the omplete information to be transmitted from thesoure.4. Propagation time tP : Whih is time taken by a single bit in the paket to travel from the ommuniationhannel soure to the destination.Therefore, The overallMDT an be represented as the sum of all these omponents. The worst ase messagedelivery timeMDTw has to be less than or equal to the maximum delay required for the ommuniation hannelq. 9
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Figure 4: Communiation onstraintsMDT = tC + tQ + tT + tP �MDTw � qDe�nition 3.3 (Communiation Constraints) A ommuniation onstraint is the upper limit qk;l;ni;j;m im-posed on the delivery time of a message sent over a ommuniation hannel established from one job � ji;m toanother job � lk;n on two di�erent nodes m;n. Therefore, a lower limit is imposed on the time distane betweenthe �nish-time of the soure job f ji;m and the start-time of the target job slk;n to aommodate the worst asedelivery time. Communiation messages are assumed to be periodi. Eah message is assumed to be sent at theend of the soure job exeution, and ompletely reeived by the destination node before beginning the exeutionof the target job. Figure 4 shows a ommuniation onstraint on the time-line orresponding to onstraintequation 4. slk;n � f ji;m � qk;l;ni;j;m (4)If a worst ase message delivery time MDTw an be obtained, it an be used as an upper limit for theommuniation onstraint if it is less than or equal to the original onstraint upper limit q as shown in equation5. slk;n � f ji;m � (MDTw)k;l;ni;j;m (5)4 ShedulabilityThe Global shedulability of the whole task model is established if and only if we an �nd starting times forall jobs that will satisfy all timing onstraints for all possible exeution times. The possible exeution timefor eah task lies between the lower and upper bounds for its exeution [l; u℄. The system timing onstraints10



set onsists of the union of all loal timing onstraint sets on all the separate nodes Cm; 1 � m �M plus theommuniation onstraints C. C = C1 [ C2 : : : [ CM [ C (6)The shedulability test prediates are presented in de�nitions 4.1 through 4.3. The shedulability of a setof N tasks holds if and only if there exist a start time assignment that preserves all required task ordering andtiming onstraints. Ordering information is normally given as preedene onstraints represented as part ofthe timing onstraints set C. Therefore, the neessary and suÆient ondition for the task set shedulability(Shed1) is de�ned in 4.1.De�nition 4.1 (Stati Shedulability of � [6℄) The set of N tasks � is shedulable if and only if thefollowing prediate holds: Shed1 � 9si :: 8ei 2 [li; ui℄ :: C : : :8i : 1 � i � N (7)where C is the set of relative timing onstraints de�ned on fs1; e1; : : : sN ; eNg.Shed1 represents the stati shedulability ondition for a �xed set of aperiodi tasks. The neessary andsuÆient shedulability ondition for a set of N tasks repeating k times is represented as Shed2 and de�nedin 4.2.De�nition 4.2 (Stati Shedulability of �1;k) The k � fold distributed set of N tasks � is shedulable ifand only if the following prediate holds:Shed1;k2 � 9sji;m :: 8eji;m 2 [lji;m; uji;m℄ :: C1;k : : : [8i : 1 � i � N;8j : 1 � j � k;8m : 1 � m �M ℄ (8)where C1;k is the set of relative timing onstraints de�ned on fs11; e11; : : : skN ; ekNg.Stati shedulability o�ers simpler o�-line temporal orretness veri�ation of the task set as well asfaster run-time dispathing whih, merely needs to do table look up to �gure out the next task instane to bedispathed and its dispath time. The drawbak of the stati approah, is that it doesn't aount for variationsin run-time behaviour of various tasks and uses their worst ase exeution time in the orretness analysiswhih leads to ineÆieny in the resulting dispathing alendars. Parametri sheduling introdued by [6, 7℄generalizes stati sheduling by deferring the atual start-time alulation proess to the run-time dispather,whih an use the atual exeution times of the previous tasks in the dispathing proess.The parametri shedulability ondition of a distributed set of N tasks repeating k times is represented byShed3 de�ned in 4.3. The steady state shedulability of a set of N periodi tasks repeating inde�nitely anbe established by testing Shed1;k3 for large values of k, spei�ally as k ! 1. The steady state orretnessveri�ation prediate Shed1;1 is de�ned in 4.4.De�nition 4.3 (Parametri Shedulability of �1;k) The k � fold distributed set of N tasks � is shedu-lable with respet to parametri sheduling if the following prediate holds:
11



Shed1;k3 �9s11;1 :: 8e11;1 2 [l11;1; u11;1℄ :: 9s12;1 :: 8e12;1 2 [l12;1; u12;1℄ :: : : : :: 9skN1;1 :: 8ekN1;1 2 [lkN1;1; ukN1;1℄ :: C1;k1.̂..̂9s11;m :: 8e11;m 2 [l11;m; u11;m℄ :: : : : :: 9skNm;m :: 8ekNm;m 2 [lkNm;m; ukNm;m℄ :: C1;km.̂..̂9s11;M :: 8e11;M 2 [l11;M ; u11;M ℄ :: : : : :: 9skNM ;M :: 8ekNM ;M 2 [lkNM ;M ; ukNM ;M ℄ :: C1;kMĈ
(9)

De�nition 4.4 (Parametri Shedulability of �1;1 [7℄) The periodi task set �1;1 is shedulable if andonly if Shed1;1 = limk!1Shed1;k3 = True (10)The terms Shed1;1 and Shed will be used interhangeably to represent the global shedulability of thedistributed onstrained task set.5 Distributed Dynami ShedulingThis setion introdues the framework for establishing the global shedulability of the distributed task modeldesribed in setion 3.1, and reating a separate dynami parametri alendar for eah of the distributed nodesin the distributed system that satis�es all system timing and ommuniation onstraints.5.1 Shedulability Veri�ationThe shedulability veri�ation proess is performed o�-line and assumes that the timing onstraints and om-muniation parameters of all hard real-time tasks are known prior to runtime. In ase the global shedulabilityof the system is proven, the algorithm produes dynami alendars whih are then used by the on-line dy-nami dispather desribed in setion 8 to ontrol the dispathing and exeution of all hard real-time tasksaording to their spei�ed timing requirements. The shedulability veri�ation proess steps are desribed inthe following subsetions.5.1.1 Communiation feasibilityEstablishes the feasibility of all the ommuniation hannels to be established between periodi real-time tasksresiding on di�erent nodes. This is performed by means of Real Time hannels [22℄, a method for establishingtime-onstrained ommuniation in multi-hop networks.This proess starts by alulating the optimum stati route fNodes; Node1; :::; Noden; Nodetg for eah oneof the ommuniation hannels. The messages of the ommuniation hannels are added to the message-table12
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Figure 5: Global task order generationof eah one of the point-to-point links along the alulated route fLinks;1; :::; Linkn;tg. Using the Messagegeneration sheme [Maximum message size (S), Maximum message Rate (R), and Burst size (B)℄, the RealTime hannels method is used for eah point-to-point link to establish the feasibility of the messages passingthrough eah link in the ommuniation network, and alulating the worst ase delay eah message experienesto pass through the link. By adding the message delays on all the ommuniation hannel route links, the end-to-end worst ase message delivery time (MDTw)ts experiened by messages of the ommuniation hannelis obtained. If the hannel's alulated worst ase message delivery time is less than or equal to the messagedelivery time upper limit qts required by the ommuniation hannel, then this hannel is feasible, otherwise,it is not.Total ommuniation feasibility of the system is established if all the system ommuniation hannels aswell as point-to-point network links are feasible.The detailed steps for the ommuniation feasibility veri�ation proess are shown in step (1) of theDynami O�-Line Sheduler algorithm 5.3.5.1.2 Global task orderThe Global task order is a single ordered list ontaining all the distributed task instanes (jobs) in the system.Jobs in this list are ordered in the reverse order in whih they will be eliminated using the variable eliminationalgorithm used to verify the global system feasibility.The Global task order maintains all job orders spei�ed by system preedene onstraints, relative timingonstraints, jitter onstraints, as well as all ommuniation onstraints. A heuristi is used to insert jobs inthe Global order list when system timing requirements does not uniquely identify a spei� order. Some ofthe heuristis used are Earliest Deadline First (EDF ), Earliest Ready-time First (ERF ), Least Laxity First(LLF ), or Rate Monotoni (RM). 13



In order to be able to apply the variable elimination tehnique, jobs need to be ordered suh that thestart time of eah job depends only on the preeding jobs in the global order. In the same time, we need tomaintain eah node's loal jobs order. To ahieve the required global order, we onstrut a Topologial graphwhih onsists of 2N nodes representing all jobs in two onseutive sheduling windows and Preedene linkswhih speify that the job represented by the soure node of the link must preede the job represented by thetarget node of the same link.To generate the Global task order, the in-degree (number of links entering a graph node) of eah job nodeis alulated. The jobs with in-degree equal to 0 are inserted into a priority queue ordered aording to theheuristi to be used (Heuristi Priority Queue HPQ). We repeatedly extrat the job at the head of the HPQ,add it to the Global Order List (GOL), derement the in-degree of all the target nodes of preedene linksoriginating from the extrated job, and insert the nodes with in-degree equal to 0 into the HPQ. The proessis stopped one there is no more jobs in the HPQ. The global task order generation proess is illustrated in�gure 5.If the GOL does not ontain all the system jobs, then the Global task order annot be onstruted due toirular dependenies in the system timing requirements, and therefore, the system is infeasible.The detailed steps for onstruting the Global task order are presented in algorithm 5.1.Algorithm 5.1 (Global Task Order) The algorithm for �nding the Global Jobs Order is as follows:1. Create a node in the Topologial graph for eah job in two onseutive sheduling windows of the taskset.2. Create a Preedene link from eah node to the node diretly after it in its loal node job order.3. For (eah ommuniation hannel) f(3.1) Create a Preedene link from the node representing the soure job of the ommuniation hannelto the hannel's target job.g4. Calulate the in-degree for eah job node in the Topologial graph.5. Insert jobs with in-degree=0 into the Heuristi Priority Queue (HPQ).6. While (HPQ is not empty) do f(6.1) Extrat �rst job in the HPQ.(6.2) Insert job into the Global Order List (GOL).(6.3) For (eah preedene link originating at the extrated job) f6.3.1. Derement the in-degree of the target job of the Preedene link by 1.6.3.2. If job's in-degree is equal to 0, insert job into the HPQ.gg7. If an order ontaining all the system jobs is found, it is used as the Global order for the variable elimi-nation proess.8. Else, Task set timing onstraints ontain irular dependenies and the system is not feasible.14
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Figure 6: Distributed timing onstraints5.1.3 Global onstraint graph GgThe next step in the shedulability veri�ation proess is to onstrut the Global Constraint Graph, whihrepresents all the system task instanes, absolute and relative timing requirements, as well as ommuniationonstraints of the system in two onseutive sheduling windows. An example of the graph representation ofthe system model is shown in �gure 6.The global onstraint graph Gg onsists of 4N+1 time event nodes representing the task model jobs. Eahjob is represented by four time event nodes in the graph [sji;m; f ji;m; sj+1i;m ; f j+1i;m ℄ whih represent the start and�nish times for that job in two onseutive sheduling windows. A v0 node is added to the graph to representthe referene time t0 starting from whih all time values are measured.The graph weighted links represent the loal relative timing onstraints among the jobs if they link twotime events that belong to jobs on the same system node, and they represent ommuniation onstraints ifthey link time events belonging to two jobs on separate system nodes. Links to or from the v0 node representabsolute timing onstraints suh as the ready-time or deadline of a spei� task instane. Timing onstraintsbetween jobs within one sheduling window are repeated in the two represented sheduling windows. Timingonstraints between jobs in di�erent sheduling windows is represented one between the �rst and seondsheduling windows. The di�erent types of timing onstraints are represented in the graph as shown in �gure7 aording to the following rules:� Minimum/Maximum exeution times are represented by two mutually exlusive links between thestart time and �nish time events of the same job. The minimum exeution time is represented by a linkfrom the job's start time node s to the job's �nish time node with a weight l. The maximum exeutiontime is represented by a link in the reverse diretion with a weight �u.� Relative timing onstraints are represented in the graph by a single link for eah onstraint. Aonstraint v2 � v1 � w is represented by a link from event node v1 to event node v2 with a weight w.� Ready-times and deadlines are absolute timing onstraints and are therefore represented by linksto/from the time referene node v0. The ready time r is represented by a link from the job's start time15
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Algorithm 5.2 (Cyli Variable Elimination tehnique)1. Initialize Global onstraint graph Gg.2. Let iteration = 0.3. Let n = number of jobs in the �rst sheduling window that have timing onstraints with jobs in the seondsheduling window.4. While (iteration < n2 � n+ 2) do f(4.1) For (j = 2N to 1) do f4.1.1. Eliminate graph event node j from seond sheduling window.4.1.2. If (resulting graph ontains a negative weight yle) f� Task set is not feasible� Exitgg(4.2) If (New updates were generated in the graph's �rst sheduling window as a result of the eliminationproess) f4.2.1. Reonstrut graph seond sheduling window.4.2.2. Add elimination graph updates to the seond sheduling window.4.2.3. iteration = iteration+ 1g(4.3) Else f4.3.1. Task set is feasible4.3.2. Exitgg5. Task set is not feasible6. Exit5.2 Loal node alendarsIn the distributed environment under onsideration, eah node has to operate independently and interat withthe tasks running on other nodes only through the ommuniation hannels spei�ed. Therefore, we alulatea separate yli dynami alendar for eah one of the distributed nodes. Eah of the loal node alendars musthave all the information required to dispath the loal real-time jobs aording to their timing onstraints,and in the same time, adhere to the global system feasibility and ommuniation timing onstraints.To onstrut loal node alendars, a separate loal onstraint graph is built for eah one of the nodes usingonly its loal jobs and loal timing onstraints as desribed in setion 5.1.3. By applying the Cyli VariableElimination Method on the loal onstraint graph, the loal parametri alendar for the node is generated. Thenode alendar onsists of two parametri funtions for eah one of the jobs, minimum start time Fmin() andmaximum start time Fmax(). The ommuniation timing onstraints are then appended to the generated loaldynami alendars by adding the arrival time of the ommuniation messages as parameters to the minimum17



start time funtions of jobs that are targets of ommuniation hannels. The resulting parametri alendar isthen used by the dynami dispather to start the exeution of hard real-time jobs aording to their timingonstraints as desribed in setion 8.Algorithm 5.3 (Dynami O�-Line Sheduler) The O�-line sheduling and alendar alulation is per-formed by the following algorithm:1. Communiation feasibility:(1.1) For (every ommuniation hannel) f1.1.1. Calulate the optimum rout1.1.2. Add the ommuniation hannel messages to the message tables of all the links on hannel routg(1.2) For (Every network link) f1.2.1. Chek the feasibility of this link using the real-time hannel method1.2.2. If (any link is not feasible) f1.2.2.1. Reord infeasible link1.2.2.2. Real-time ommuniation is not feasible1.2.2.3. Exitg1.2.3. Else f1.2.3.1. Calulate the worst ase delay that eah message experiene passing through this linkgg(1.3) For (Every ommuniation hannel) f1.3.1. Calulate the end-to-end worst ase message delivery time (MDTw)ts1.3.2. If ((MDTw)ts � qts) f1.3.2.1. Reord infeasible ommuniation hannel1.3.2.2. Real-time ommuniation is not feasible1.3.2.3. Exitgg(1.4) System Real-time ommuniation is feasible2. Global onstraint graph (Gg):(2.1) Create a referene node v0 representing the global time t0 = 0(2.2) For (All soure/target nodes of Real-time hannels) f2.2.1. Let the global node v0 represent the node's referene time2.2.2. For (eah job) f2.2.2.1. Add four time event nodes to the onstraint graph� Start time in �rst sheduling window� Finish time in �rst sheduling window� Start time in Seond sheduling window� Finish time in Seond sheduling window18



2.2.2.2. Add job's minimum and maximum exeution times onstraint links to the graph2.2.2.3. Add job's ready time and deadline onstraint links to the graphg2.2.3. Add jitter onstraints as links between onseutive jobs of the same real-time task2.2.4. Add relative timing onstraints as links in the graph2.2.5. Add ommuniation onstraints to the graph as links from the start time of the target job to the�nish time of the soure job with a weight equal to the negative value of the worst ase messagedelivery time (�MDTw)ts of the orresponding ommuniation hannelg3. Global system feasibility:(3.1) Use algorithm 5.1 to �nd the Global Jobs Order.(3.2) If (a global order is not found) f3.2.1. Task set is not feasible3.2.2. Exitg(3.3) Apply Cyli Variable Elimination tehnique desribed in algorithm 5.2 to establish the global shedu-lability of the system(3.4) If (System is not feasible) f3.4.1. Mark onstraints that lead to infeasibility3.4.2. Task set is not feasible3.4.3. Exitg(3.5) Global system is feasible4. Loal node alendars:(4.1) For (All nodes) f4.1.1. Build the loal onstraint graph for the node using only loal jobs and loal timing onstraints4.1.2. Apply Cyli Variable Elimination tehnique to establish the loal shedulability of the node4.1.3. If (Node is not shedulable) f� Mark the node as infeasible for re-evaluation and re-shedulingg4.1.4. Calulate the minimum and maximum start-time parametri funtions for eah job4.1.5. For (Eah job that is a target of a Communiation hannel) f� Add the arrival-time of the ommuniation message as a parameter to the job's minimumstart time parametri funtiong4.1.6. Store the node's dynami parametri funtions into its loal alendar to be used by the run-timedispather.g6 Algorithm CorretnessTo prove the orretness of the distributed sheduling method, we need to establish the orretness of few sub-problems whih onstitute the total orretness of the main algorithm. Eah of the individual sub-problemsis introdued separately in one of the following sub-setions.19



6.1 Cyli Variable Elimination and Parametri ShedulingThe use of variable elimination tehniques for non-periodi dynami parametri sheduling has been introduedin [6℄. The extension of the parametri sheduling method to inlude periodi and sporadi tasks in a single-node environment has been presented in setion 5.1.4. The algorithm details as well as its proof of orretnessare desribed in [7℄. Therefore, we onsider the single-node yli variable elimination method to be orret,and basially use it as a blak-box.6.2 Real-time Channels Feasibility TestingReal-time hannels is an algorithm used to verify the timing feasibility of ommuniation messages on eahnetwork link and alulate the worst ase delivery time for eah message. The algorithm is desribed brieyin setion 5.1.1. The details of the algorithm as well as the proof of orretness are desribed in [22℄. We alsoonsider this method to be orret and use in a blak-box manner as well.6.3 Global Shedulability ValidationThis sub-setion establishes the orretness of the global feasibility analysis step performed by the o�-linesheduler. In order to verify the global shedulability orretness we need to establish few major points asdesribed in the sub-setions below.6.3.1 Representation ompletenessAll system omponents are represented in the global onstraint graph Gg used for shedulability analysis.Eah of the distributed jobs is represented in the global onstraint graph by two time event nodes (s; f),and eah of the timing onstraints is represented in the global onstraints graph as follows:� Ready time of a job is represented by a link from the start time event node s to the referene time nodev0.� Deadline is represented by link from node v0 to the �nish time event node f of the job.� Minimum exeution time is represented as a link from the start time event node s to the �nish timeevent node f of the job.� Maximum exeution time is represented as a link from the �nish time event node f of the job to thestart time event node s.� Low jitter onstraint is represented as a link from the �nish time of a task instane fi to the start timeof the next instane in the same task si+1.� High jitter onstraint is represented as a link from the start time of a task instane si to the �nish timeof the previous instane in the same task fi�1.� Preedene onstraints are represented as a link from the �nish time of a job f to the start time of thenext job s. 20



� Loal relative timing onstraints between di�erent jobs are inluded as links between the appropriatetime event nodes of these jobs.� Communiation onstraints are inluded as a link from the �nish time event node of the soure job fsto the start time event node of the destination job st.These itemized ategories represent all system absolute timing onstraints CA, relative timing onstraintsCR and ommuniation onstraints C. Where:CA = SMm=1 CA;mCR = SMm=1 CR;m (11)From equation (6), the omplete set of system onstraints an be represented as:C = C1 [ C2 : : : [ CM [ CSine: Cm = CA;m [ CR;m 8m = 1 : : :MThen: C = CA;1 [ CR;1 [ CA;2 [ CR;2 : : : [ CA;M [ CR;M [ CRearranging: C = CA;1 [ CA;2 : : : [ CA;M [ CR;1 [ CR;2 : : : [ CR;M [ CTherefore form equation 11: C = CA [ CR [ C (12)From equation (12), we an onlude that the timing onstraints represented in the global onstraintgraph onstitute all the system timing requirements. Therefore, we established that all system jobs andtiming requirements are ompletely represented in the global onstraint graph and onsequently are inludedin the global shedulability analysis.6.3.2 Mapping problem into single-node domainThe global shedulability analysis maps to a yli variable elimination problem, whose orretness is alreadyestablished in ( [7, 6℄). 21



The global onstraints graph Gg used in the feasibility analysis onsists of a set of nodes representing thestart and �nish times of all the jobs in the task set, a single referene time node v0, and links to representabsolute and relative timing onstraints among the system task instanes. Communiation onstraints arerepresented by relative timing onstraints among the soure and destination jobs. The start time of any jobinstane depends only on the timing harateristis of the previous job instanes sine the global jobs ordertopologially sorts jobs aording to their timing dependenies. Therefore, we an onlude that the globalonstraint graph used for the global feasibility analysis represents a valid single-node dynami shedulingmodel, on whih yli variable elimination tehniques an be applied.6.3.3 Mapping shedulability output into distributed domainThe outome of the single-node yli variable elimination problem on the global onstraint graph representsthe global distributed system shedulability. This an be established based on two assertions:Positive shedulability assertion: if the single-node problem is shedulable, then the distributed systemis also shedulable.Negative shedulability assertion: If the single-node problem is not shedulable, then the distributedsystem is not shedulable as well.Sine the global onstraint graph on whih the single-node yli dynami sheduling method is appliedinludes:� All model jobs� Absolute timing onstraints� Relative timing onstraints� Communiation onstraintsand the relative order of the jobs is the same as in all loal nodes orders, �nding a feasible solutionto that dynami sheduling problem guarantees a feasible starting time for eah of the system jobs thatsatis�es all the node's loal absolute and relative timing requirements as well as global ommuniation timingrequirements. The starting times are guaranteed feasible for all periodi repetitions of system shedulingwindow (k; 8k = 1!1).9s11 :: 8e11 2 [l11; u11℄ :: 9s12 :: 8e12 2 [l12; u12℄ :: : : : :: 9s1N :: 8e1N 2 [l1N ; u1N ℄.̂..̂9sk1 :: 8ek1 2 [lk1 ; uk1 ℄ :: 9sk2 :: 8ek2 2 [lk2 ; uk2 ℄ :: : : : :: 9skN :: 8ekN 2 [lkN ; ukN ℄ĈA ^ CR ^ C8k = 1!1 (13)
22



Equation 13 guarantees the satisfation of all global model timing requirements of the distributed real-timesystem and onsequently establishes its global shedulability. As a result, the Positive shedulability assertionis established.In order to establish the negative shedulability assertion, we assume that the global onstraint graph Ggbuilt using the method desribed in setion 5.1.3 (using a spei� heuristi like EDF as a seondary sortingriteria for the global task order) was found to be infeasible by the single-node yli variable eliminationproess.If the negative assertion is not orret, then we an onstrut a di�erent global onstraint graph G0g thatrepresents all the harateristis of the distributed real-time system, in addition to being feasible with respetto the single-node yli variable elimination method. In order for the feasible onstraint graph to representthe distributed system, it is required to satisfy the following requirements:� Contain a single referene time node v0.� Inlude all the system's jobs, with all their absolute timing requirements.� Satisfy all loal nodes job ordering requirements.� Inlude all nodes' loal preedene and relative timing onstraints.� Inlude all system's ommuniation onstraints.� Have a global job order that satis�es all system global preedene requirements diretly or indiretlyresulting from the system's preedene, timing, and ommuniation onstraints. This order is to be usedby the yli variable elimination method.For the feasible graph G0g to satisfy the desribed requirements, it has to be similar to the original globalonstraint graph Gg exept for the global ordering of its jobs. Sine the global job order of G0g has to satisfy allglobal preedene requirements mandated by the system's timing onstraints and onsequently, its jobs mustbe topologially sorted. Therefore we an onlude that the two onstraint graphs Gg and G0g are identialexept for the ordering of jobs that do not have any diret or indiret preedene relations among them, andwhose relative order is determined using the seondary global ordering heuristi method.Sine the heuristi ordering riteria is used as a seondary riteria after using the topologial order, thenwe an onlude that the jobs ordered using the heuristi riteria are plaed in onseutive plaes within theglobal task order. And sine these jobs do not have any relative timing onstraints among them, therefore,they adhere to the job requirements of theorem A.1 presented in appendix A. Consequently, we an onludethat the relative order of jobs ordered using the seondary ordering heuristi method does not a�et the�nal outome of the Fourier-Motzkin variable elimination proess. This onlusion was also enfored by thesimulation results generated in setion 9.3.This result indiates that the onstraint graph G0g annot be feasible while the original graph Gg is infeasi-ble. Consequently, We an onlude that a feasible global onstraint graph G0g that represents the requirementsof the distributed system annot be generated if the original global onstraint graph Gg was veri�ed to beinfeasible by the yli variable elimination method.By ontradition, we onlude that if the system was delared to be infeasible in the single-node domain,it must be due to infeasibility in the distributed system timing requirements not the mapping proedure andonsequently, we establish the Negative shedulability assertion, whih indiates that if the single-node problemwas veri�ed not to be shedulable, then the distributed system is also not shedulable.23



By establishing both the positive and the negative shedulability assertions, we an onlude that thedistributed system is shedulable if and only if the mapped single-node system is also shedulable. In otherwords, the outome of the single-node variable elimination analysis represents the shedulability of the originaldistributed real-time system.6.4 Loal Calendars FeasibilityThis sub-problem presents the feasibility of loal alendars alulated for eah of the systems' nodes separately,with added ommuniation onstraints and its onformane with global shedulability. To establish this point,we need to show that the parametri bound funtions in the loal alendars satisfy global timing requirements.In other words the loal alendars should satisfy loal timing onstraints as well as inter-node ommuniationonstraints.1. Loal timing onstraintsSine� All loal timing onstraints were inluded in onstraint graphs used to establish the global feasibilityas well as the loal alendars.� Loal order of the jobs in the loal onstraint graphs is the same as that in the global onstraintgraph.It is lear that loal timing onstraints that are proven to be loally feasible by the loal alendaralulation proess are also guaranteed to be globally feasible.Therefore, it is onluded that the loal alendars satisfy all loal timing onstraints previously provenfeasible in the global shedulability phase.2. Communiation onstraintsThe minimum start time funtion Fmins () of a job is of the form:Fmins () =Max(p1; p2; p3; : : :)Where, (p1; p2; p3; : : :) are linear funtions of the exeution timing parameters of previously exeutedjobs.Therefore, adding the arrival time of a ommuniation message to the minimum start time of the targetjob guarantees that the start time of that target job st is more than or equal to the message arrival time.In other words, the target start time st is guaranteed to be larger than the soure job �nish time fs byat least the message delivery time MDT , for any feasible value of the MDT that is less than or equalto the worst ase message delivery time MDTw.st � fs +MDT 8MDT �MDTwAnd sine the ommuniation hannel delay (MDT ) is already proven to be less than or equal to theworst ase message delivery time MDTw by the Real-time hannels method, whih is in turn less thanor equal to the maximum hannel delay q as established in the ommuniation feasibility veri�ationstep (setion 5.1.1). MDT �MDTw � q24



Therefore, it is onluded that the loal node alendars guarantee that ommuniation hannels' targetjobs annot start before the arrival of their orresponding ommuniation messages whih are, in turn,guaranteed by the ommuniation feasibility proess to arrive in a feasible time. As a result, all om-muniation timing onstraints proven feasible in the global shedulability test are satis�ed by the loalnode alendars.So far, it has been proven that loal alendars satisfy� Jobs absolute timing requirements� Relative timing onstraints� Communiation timing onstraintswhih means that eah of the nodes' loal alendars guarantee a feasible start time for eah of its loaljobs that onforms to its ready time and deadline, satis�es loal node timing requirements, and onforms tothe inter-node ommuniation onstraints.9s11;m :: 8e11;m 2 [l11;m; u11;m℄ :: : : : :: 9skNm;m :: 8ekNm;m 2 [lkNm;m; ukNm;m℄ :: C1;km 8m = 1 : : :MĈ (14)By adding equation (14) for all the nodes in the system (1 : : :M), we get:9s11;1 :: 8e11;1 2 [l11;1; u11;1℄ :: 9s12;1 :: 8e12;1 2 [l12;1; u12;1℄ :: : : : :: 9skN1;1 :: 8ekN1;1 2 [lkN1;1; ukN1;1℄ :: C1;k1.̂..̂9s11;m :: 8e11;m 2 [l11;m; u11;m℄ :: : : : :: 9skNm;m :: 8ekNm;m 2 [lkNm;m; ukNm;m℄ :: C1;km.̂..̂9s11;M :: 8e11;M 2 [l11;M ; u11;M ℄ :: : : : :: 9skNM ;M :: 8ekNM ;M 2 [lkNM ;M ; ukNM ;M ℄ :: C1;kMĈ
(15)

Whih basially onstitutes the Parametri Shedulability ondition (Shed1;k3 ) of a distributed set of tasks�1;k (de�nition 4.3). Therefore we onlude that applying loal node alendars on all distributed system nodessatisfy global system shedulability requirements.7 ExampleIn this example, we demonstrate the appliation of the variable elimination method on a simple distributedsystem with two nodes and two ommuniation hannels established between them. The example system is25



represented graphially in �gure 6. The timing and ommuniation onstraints in the �gure translates to thefollowing onstraint equations: Node1e11 � 5e11 � 8s11 � 0s11 + e11 � 15e12 � 3e12 � 7s12 � 26s12 + e12 � 40s12 � (s11 + e11) � 5Communiations22 � (s11 + e11) � 3s12 � (s22 + e22) � 2

Node2e21 � 6e21 � 9s21 � 0s21 + e21 � 15e22 � 4e22 � 8s22 � 15s22 + e22 � 30e23 � 2e23 � 5s23 � 25s23 + e23 � 35s22 � (s21 + e21) � 1s23 � (s22 + e22) � 1
(16)

Arranging the jobs aording to their timing and preedene onstraints. The Earliest Deadline First(EDF) method is used as a seondary sorting heuristi. The global order generated is shown in the followingsequene of variables: s11; e11; s21; e21; s22; e22; s23; e23; s12; e12We start by eliminating variables in the reverse order of their global order.Eliminate e12 (substituted by 7) s12 + e12 � 40 =) s12 � 33Eliminate s12 20 � s12s11 + e11 + 5 � s12s22 + e22 + 2 � s12s12 � 33 =) 20 � 33s11 + e11 � 28s22 + e22 � 31Eliminate e23 (substituted by 5) s23 + e23 � 35 =) s23 � 30Eliminate s23 26



25 � s23s22 + e22 + 1 � s23s23 � 30 =) 25 � 30s22 + e22 � 29Eliminate e22 (substituted by 8) s22 + e22 � 29 =) s22 � 21Eliminate s22 15 � s22s21 + e21 + 1 � s22s11 + e11 + 3 � s22s22 � 21 =) 15 � 21s21 + e21 � 20s11 + e11 � 18Eliminate e21 (substituted by 9) s21 + e21 � 15 =) s21 � 6Eliminate s21 0 � s21s21 � 6 =) 0 � 6Eliminate e11 (substituted by 5) s11 + e11 � 15 =) s11 � 7Eliminate s11 0 � s11s11 � 7 =) 0 � 7Sine no ontraditions were introdued in the variable elimination proess, we onlude that the globalsystem is Shedulable. 27



8 Dynami Time-based DispathingThe funtion of the on-line dispather is to start the exeution of the real-time task instanes aording to thealulated alendars as well as the timing information generated at run-time. Therefore, enforing the systemshedulability established by the o�-line sheduler while being exible enough to make use of the slak CPUtime.The dynami time-based dispather proesses the information transferred to it from the o�-line shedulingmodule to reate and populate the run-time data strutures that are used in the proess of determining theabsolute dispath time for the di�erent task instanes aording to run-time parameters. The Dispather analso determine the shedulability of new aperiodi real-time tasks introdued to the system at run-time. Thisis done by moving task instanes around in aordane with their parametri funtions to preserve total systemshedulability. The algorithm to insert an aperiodi task at run-time is desribed in [7℄.This setion desribes the data strutures used by the on-line omponent, and then explains the use ofthese data strutures to handle the task dispathing proess.Fmins1 () � s1 � Fmaxs1 ()Fmins2 (s1; e1) � s2 � Fmaxs2 (s1; e1)... ...FminsN (s1; e1; s2; : : : ; sN�1; eN�1) � sN � FmaxsN (s1; e1; s2; : : : ; sN�1; eN�1)Figure 8: Parametri Calendar Struture8.1 Run-time data struturesSheduling information needed for the dispathing proess are transferred to the on-line omponent. Thisinformation onsists of task desriptions, task-node assignment, task relative ordering on eah node, andrelative timing onstraints in the form of parametri alendar onsisting of funtions used to determine theminimum and maximum feasible bounds on the exeution start times for the task instanes. The generalstruture of the parametri alendar generated by the o�-line sheduler is shown in �gure 8. The Run-timeinformation is stored in the form of a dependeny graph of the tasks and their timing properties. The DynamiCalendar built by the on-line dispather has three main omponents:Dependeny Graph (DG) shown in Figure 9, it onsists of a graph like struture that ontains all taskinstanes that are ative in the system at the urrent time along with all their timing requirements, inter-task relative timing onstraints, inter-node ommuniation onstraints, and inter-node task instanedependenies. A separate Dependeny graph is onstruted for eah of the distributed nodes in thesystem. The Dependeny graph is represented as a list of task objets eah ontaining the followinginformation:� Task ID.� Exeution period.� Low jitter.� High jitter.� A linked list of the task's instane pro�les, eah ontaining the following information:{ Instane ID.{ Minimum exeution time. 28
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Figure 9: Dependeny Graph{ Maximum exeution time (WCET).{ Ativation ounter that desribes the number of life yles of the task that this instane is goingto remain ative in.{ Instane funtions, a list of parametri funtions, eah ontaining a pointer to funtion ode,a list of the funtion parameters, and an Evaluation ounter for the unresolved parameters inthe funtion.{ Result lists, whih are lists of pointers (Evaluation pointers) to the loations of parameters forthe parametri funtion of other tasks instanes. These pointers indiate that timing valuesfrom this task instane are the atual parameters for the formal parameters in the other tasksinstanes funtions. A separate list is maintained for eah value to be propagated.{ Communiation list, a list of the messages to be delivered to other task instanes, running ondi�erent nodes, at the end of the exeution of this task instane.Time Ordered List (TOL) A time ordered list of task instanes is maintained by the run-time module,its entries represent task instanes that the run-time module have full knowledge about their exeutionpro�le. This means that the parameters to their parametri funtions are all satis�ed and the funtionsare evaluated to yield an absolute time to start the exeution of the task instane. Entries in theTOL onsist of the absolute minimum and maximum feasible times that this task instane an start itsexeution. It also inlude a pointer to the task instane pro�le in the dependeny graph. Entries in thislist are ordered aording to their earliest feasible starting times.External Event Queue (EEQ) This is a First-In-First-Out (FIFO) queue of the inoming ommuniationmessages reeived from external nodes. Eah message should inlude the following information:� Message ID. 29



� Target Task ID.� Target Instane ID.� Event arrival time.� Information about instane funtion parameters to be substituted by the message arrival time.� Message appliation data.8.2 Run-time Exeution ModelThe major funtionality of the on-line dispather is to propagate parameters of the parametri funtions,and dispath the orret task instanes aording to the guidelines of the alendar generated by the o�-linesheduler. The dispather system onsists of three major phases: The Initialization phase, the Calendarsynhronization phase, and the Task exeution phase.8.2.1 Initialization phaseThe Initialization phase of the run-time module starts by proessing the alendar information passed by theo�-line sheduler in the form of parametri funtions. The sheduling information is used at run-time topopulate dispather's dependeny graph. The TOL is initialized with one task instane, whih is the taskmarked by the o�-line sheduler to be exeuted �rst. This instane exeution time is not dependent on timevalues generated by the other task instanes.8.2.2 Calendar synhronization phaseThe purpose of the Calendar synhronization phase is to make all the distributed nodes dispathers startexeuting their real-time alendars at the same referene time t0. The alendar synhronization proess ismaintained by a single node alled the Time Referene Node whih repeats the synhronization proess foreah one of the distributed nodes (Client Nodes). The proess assumes that the message delivery time of thesynhronization ommuniation messages between the Time referene node and the Client node will alwaysbe the same (Æ) during the Calendar synhronization proess.The Calendar synhronization proess between the Time Referene node A and a Client node B is illus-trated in �gure 10. The Time referene node A starts by measuring the proess start time TA1 aording toits own lok. Next, node A sends a message MA1 to node B ontaining TA1 and the message send time sA1.When node B reeives message MA1 oming from node A, it measures its arrival time rB1, whih is measuredusing node B lok. Node B then sends a message bak MB1 to node A ontaining rB1 and the the messagesend time sB1. Finally, Node A reords message MB1 arrival time rB2, and sends a third message bak MA2to node B ontaining rB2 and the the message send time sB2. At this moment, eah one of the two nodes analulate three time intervals Æ1; Æ2; and Æ3 aording to equation set 17. All three time intervals are generatedas the di�erene between two time measurements generated by the same node lok to avoid errors resultingfrom the di�erenes among the nodes' system loks.Æ1 = sA1 � TA1Æ2 = sB1 � rB1Æ3 = sA2 � rA2 (17)30
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Figure 10: Calendar synhronization phaseWhen the lient node B reeives the third message MA2 at time rB2, it an alulate an estimate of thesynhronization message delivery time Æ aording to equation 18. Using the Æ value, node B an alulateits equivalent version of the time instane TA1 aording to its lok T 0A1 using equation 19.Æ = rB2 � sB1 � Æ32 (18)T 0A1 = sB1 � Æ2 � Æ1 � Æ (19)By hoosing a synhronization waiting period W long enough for all the nodes to �nish their alendarsynhronization proess, all nodes an alulate the referene time t0 aording to their own system lokusing the following equations.For the lient node B: t0 = T 0A1 +W31



For the time referene node A: t0 = TA1 +WThe steps of the alendar synhronization proess for the Time Referene node are desribed in algorithm8.1. The steps for a lient node are desribed in algorithm 8.2.Algorithm 8.1 (Calendar synhronization for Time Referene node)1. Let TA1 = Current time.2. For (M � 1 lient nodes) do f(2.1) Send a synhronization message MA1 ontaining TA1 and the message send time sA1.g3. For (M � 1 lient nodes) do f(3.1) Wait for synhronization message MB1 from lient node.(3.2) Reord message arrival time rA2.(3.3) Send a seond synhronization message to the lient node ontaining rA2 and the message send timesA2.g4. Let t0 = TA1 +W .5. Sleep for (t0� Current time) time units.6. Start Loal alendar exeution phase.Algorithm 8.2 (Calendar synhronization for Client node)1. Wait for synhronization message MA1 from the time referene node.2. Reord the message arrival time rB1.3. Send a message bak to the time referene node ontaining rB1 and the message send time sB1.4. Wait for a seond synhronization message MA2 from the time referene node.5. Reord the seond message arrival time rB2.6. Calulate Æ1; Æ2, and Æ3 aording to equation set 17.7. Calulate synhronization message delivery time:Æ = (rB2 � sB1 � Æ3)=28. Calulate synhronization proess starting time aording to loal lok:T 0A1 = sB1 � Æ2 � Æ1 � Æ9. Let t0 = T 0A1 +W .10. Sleep for (t0� Current time) time units.11. Start Loal alendar exeution phase. 32



8.2.3 Task exeution phaseAt the uni�ed alendar start referene time t0, the run-time dispather extrats the �rst task instane in theTOL, and start exeuting it in the earliest possible time between its minimum and maximum feasible startingtimes. The kernel shedules an interrupt at the end of the WCET of that task instane in order to be able togain ontrol and maintain the shedule of the remaining tasks exeution.After the urrent task instane �nishes exeution, kernel gains ontrol again, it starts by propagating thetiming information generated from the �nished task instane to all the funtion parameters that are dependenton these values using the results lists of these values in the task instane pro�le. The kernel then inspets theexternal event queue (EEQ) and delivers all the messages in the queue to their destination task instanes. Thedispather maintains the unresolved parameter ounter for the task instane parametri funtions to whih theparameters were propagated. If the unresolved parameters ounter in any one of target task instanes reaheszero, this means that the parameters to its funtions are all satis�ed and funtions an be evaluated at thispoint. The absolute boundaries on the starting times for these task instanes are alulated, the instanes areinserted in the TOL, and their evaluation ounters are reset to their original values in the instane pro�les.The dispather also maintains the information in the task-instane pro�les regarding the number of ylesthe instane is going to be ative in, this ounter is deremented every time the instane is exeuted. If thisounter was initialized with a negative value, this will ause the dispather to run this task periodially foras long as the operating system kernel is running this partiular appliation. The on line dispather timeomplexity is O(N), were N is the total number of task instanes in one sheduling window.The main steps for the On-line dispather is shown in the following algorithm.Algorithm 8.3 (On-Line Dispather) The on-line dispathing of the hard real-time jobs is performed bythe following algorithm:1. Populate the Dependeny graph using the tasks parametri funtions generated by the o�-line sheduler.2. If (Time referene node) f� Run the time referene node alendar synhronization proess as desribed in algorithm 8.1.g Else f� Run the lient node alendar synhronization proess as desribed in algorithm 8.2.g3. Insert the �rst task instane in the TOL.4. While (TOL not empty) f(4.1) Get �rst task instane in TOL (Itop).(4.2) Calulate atual starting time of instane stop = Currenttime.(4.3) Shedule a time interrupt to our immediately after stop +WCET (Itop).(4.4) Yield ontrol to Itop.(4.5) When Itop �nishes or the sheduled interrupt ours4.5.1. Stop the exeution of Itop if it is still running.4.5.2. Reord its �nishing time fItop .4.5.3. Substitute the start time stop in all items in its evaluation list.33



4.5.4. Derement the evaluation ounters of all the elements on the evaluation list of stop.4.5.5. Substitute the �nish time ftop in all items in its evaluation list.4.5.6. Derement the evaluation ounters of all the elements on the evaluation list of ftop.4.5.7. while (EEQ not empty) f� Get �rst message it the EEQ (Mtop).� Substitute the arrival time of Mtop in its target instane parametri funtions.� Derement the evaluation ounter of target instane.g4.5.8. If the evaluation ounters of any instane reahes zero, then f� Insert this instane in TOL.� Derement its ativation ounter by 1, if it reahes 0, the instane is removed from thedependeny graph.� Restore all its evaluation ounters to their initial values.gg9 Implementation and ResultsThe goals of the experiments onduted on the distributed dynami sheduling and dispathing model are:� Verify the orretness and ompleteness of the sheduling and dispathing methods, and determine allthe �ne details required for the presented model to be used as a omplete distributed real-time shedulingand dispathing environment.� Investigate the e�et of varying the heuristi used as a seondary sorting riteria to generate the globaltask order on the shedulability veri�ation proess.� Measure the impat of varying the di�erent system parameters suh as the number of tasks or the averagetasks exeution time on the parametri shedulability of a real-time system.The following subsetions desribe the implementation and simulation experiments onduted to ahievethe previous goals. The results of these experiments follows along with a disussion of the onlusions derivedfrom them.9.1 ImplementationThe dynami time-based sheduler is implemented as a entral objet. The sheduler objet provides methodsto add system nodes, ommuniation links, tasks, relative timing onstraints, preedene onstraints, andommuniation onstraints. After all the real-time system omponents have been entered, the feasibilityveri�ation proess an be started. The sheduler also provides methods for the distributed node dispathersto query system parameters and to retrieve their loal run-time parametri alendars. The run-time alendarsare available only if the system is onluded to be shedulable.The run-time dispathers are implemented as multiple objets, one for eah of the system nodes. Eahdispather objet starts its initialization phase by retrieving its dynami alendar from the sheduler and34
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Figure 11: Simulation system on�guration diagraminitializing its run-time data strutures. The task exeution phase starts by exeuting the alendar synhro-nization proess whih uni�es the starting time for the exeution of all node alendars. The node dispathersstart dispathing the �rst task instane at the referene time t0 = 0 and ontinue as desribed in setion 8.2.3.The sheduler and dispather objets are used to implement an example system that onsists of twonodes onneted using a bidiretional link. The example system's on�guration, task struture, and timingonstraints are shown in �gure 11. The example system feasibility was veri�ed in the o�-line analysis phaseusing the sheduler objet that generated two separate node alendars, whih were saved into node alendaron�guration �les. Two dispather objets were run on two Windows NT mahines, and initialized withtheir orresponding alendar on�guration �les. They start by the lok synhronization proess, and at thereferene time t0 = 0 they start dispathing the loal jobs using their dynami alendars. Communiationhannels were simulated using soket onnetions over an Ethernet network. The system tasks were dummytasks that announed their existene, onsumed a random CPU time (Limited by their minimum and maximumexeution times), and �nally generate a ommuniation message to their target if they are the soure of aommuniation hannel.9.2 Experiments DesriptionIn order to test the e�et of parameter variation on the shedulability veri�ation proedure, few simulationexperiments were onduted. The experiments are based on generating a random set of distributed real-timetasks. Absolute as well as relative timing onstraints among the tasks are randomly generated as well. Thetask set is generated using the following steps: 35



Trunated Normal Distribution: Most of the timing parameters for the tasks and onstraints are gener-ated using a trunated Normal distribution. The distribution is spei�ed by the minimum trunationpoint, maximum trunation point, mean �, and standard deviation �. The mean � is onsidered tobe the median point between the minimum and maximum trunation points. The parameter used toontrol the time intervals generation in the onduted experiments is the Normal distribution standarddeviation to mean ratio �=�.Nodes generation: The simulation environment onsists of M nodes that form a fully onneted networkwith all links having the same ommuniation delay.Tasks generation: A set of N tasks are generated. The tasks timing parameters are generated aording tothe following rules:Period (P ): The task repetition period is seleted randomly from a pre-spei�ed ordered set of periods.The period set onsists of np entries whih are generated by assigning the �rst period in the seta pre-spei�ed time period, and alulating eah subsequent period in the set to be equal to halfof its predeessor. The number of entries in the period set np is referred to as Number of PeriodLevels.Exeution Node: Randomly seleted from the M distributed nodes.Jitter onstraints (�; �): Jitter onstraints are randomly generated using a trunated Normal distri-bution. The minimum and maximum trunation points are alulated as perentages from thetask's period, Jmin and Jmax respetively.Ready time (r): Generated as a trunated Normally distributed perentage of the task's period withtrunation perentages rmin and rmax.Deadline (d): Generated as a trunated Normally distributed perentage of the task's period withtrunation perentages dmin and dmax.Minimum exeution time (l): Generated as a trunated Normally distributed perentage of thetask's period with trunation perentages lmin and lmax.Maximum exeution time (u): Generated as a trunated Normally distributed perentage of thetask's period with trunation perentages umin and umax.Relative timing onstraints: Nr relative timing onstraints are generated at random in eah experimentaording to the following guidelines:Node: The relative timing onstraint onstraint is assigned to a randomly seleted node out of the Msystem nodes.Soure and destination jobs: The soure and target task instanes are two randomly seleted jobsthat reside on the same node. The soure and target jobs are not allowed to be the same. Theearlier of the two jobs is onsidered to be the soure of the timing onstraint. However, sine theatual start times of jobs are not known until run-time, the heuristi used as the seondary orderingriteria in the global order generation proess is also used to deide whih of the two jobs is earlier,and therefore to be onsidered the soure of the relative timing onstraint.Constraint time interval: The relative timing onstraint interval is onsidered to the distane be-tween the �nish time of the soure job to the start time of the target job. The interval is generatedas a trunated Normally distributed perentage of the task's period with trunation perentagesRCmin and RCmax.Communiation onstraints: N ommuniation onstraints are generated at random in eah experimentaording to the same guidelines as those used for the relative timing onstraints, exept that the soureand target jobs are not allowed to be on the same system node. The ommuniation onstraint timeinterval is also generated as a trunated Normally distributed perentage of the task's period withtrunation perentages CCmin and CCmax. 36



Parameter desription Symbol Nominal valueTrunated Normal distribution standard deviation to mean ratio �=� 0.70Number of nodes M 20Number of tasks N 50Number of period levels np 3Jitter onstraints minimum period perentage Jmin 0.40Jitter onstraints maximum period perentage Jmax 0.60Ready-time minimum period perentage rmin 0.01Ready-time maximum period perentage rmax 0.10Deadline minimum period perentage dmin 0.90Deadline maximum period perentage dmax 0.99Minimum exeution time minimum period perentage lmin 0.01Minimum exeution time maximum period perentage lmax 0.05Maximum exeution time minimum period perentage lmin 0.05Maximum exeution time maximum period perentage lmax 0.15Number of relative timing onstraints Nr 40Relative timing onstraint time interval minimum period perentage RCmin 0.20Relative timing onstraint time interval maximum period perentage RCmax 0.50Number of ommuniation onstraints N 20Communiation onstraint time interval minimum period perentage CCmin 0.20Communiation onstraint time interval maximum period perentage CCmax 0.50Figure 12: Real-time system random generation parametersTherefore, the parameters that ontrol the real-time system generation proess an be summarized in �gure12 that inludes the parameter name, symbol, as well as a nominal value for the parameter in order to ahievean average Shedulability Suess Ratio (De�nition 9.1).The Criteria for performane evaluation used in the onduted experiments to measure the of the dis-tributed sheduling algorithm under various parameter setup is the Shedulability Suess Ratio (SSR) (De�-nition 9.1).De�nition 9.1 (Shedulability Suess Ratio (SSR)) The perentage of real-time systems (task sets)veri�ed to be shedulable by a sheduling algorithm over the randomly generated set of real-time systems.In the following subsetions, we present the simulation experiments that are based on the distributedreal-time system random generation method desribed here.9.3 Experiment 1In this experiment, we investigate the e�et of varying the seondary ordering heuristi used in the global ordergeneration proess on the distributed dynami hard real-time shedulability veri�ation method desribed insetion 5.In order to ahieve this goal, 500 distributed real-time systems are generated randomly. Eah one of thegenerated systems is run through the dynami hard real-time sheduler to hek its shedulability few times.Eah time a di�erent ordering heuristi method is used. The heuristi methods tested are:� Earliest Deadline First (EDF ). 37



Heuristi EDF ERF LLF RM RANDOMTotal 273 273 273 273 273SSR % 54.6 % 54.6 % 54.6 % 54.6 % 54.6Figure 13: SSR for di�erent heuristi methods� Earliest Ready-time First (ERF ).� Lease Laxity First (LLF ).� Rate Monotoni (RM).� Random seletion (RANDOM).The SSR is alulated for eah of the heuristi methods. Throughout the test, we keep trak of thedi�erenes in the outome of the shedulability test for the same systems as measured using the di�erentheuristis.9.3.1 ResultsRepeating the experiment several times, we noted that there were no systems rendered shedulable by oneheuristi method and not shedulable by another. We also measured the number of shedulable systems ineah run, and found out that the numbers are always idential for all heuristi methods. The results of thisexperiment are shown in �gure 13.9.3.2 ConlusionsFrom this experiment, we onlude that the heuristi used as a seondary sorting riteria to get the distributedsystem global order does not a�et the outome of the shedulability veri�ation proess. This result enforesthe orretness of theorem A.1 presented in appendix A, and onsequently the orretness of the shedulabilityveri�ation algorithm established in setion 6. Therefore, the distributed parametri shedulability ondition�1;k (de�nition 4.3) is the neessary and suÆient ondition for the parametri shedulability of a distributedperiodi real-time system, and the real-time sheduling algorithm desribed in setion 5 is suÆient to verifythe dynami shedulability of distributed set of periodi real-time tasks with intertask relative timing andommuniation onstraints.9.4 Experiment 2In this experiment we investigate the e�et of varying some of the parameters governing the real-time sys-tems generation proess on the shedulability veri�ation algorithm. The parameter variation e�et on thesheduling algorithm is measured by its e�et on the shedulability suess ratio (SSR) as measured by thedistributed sheduling algorithm. A nominal value is �xed for eah of the parameters as shown in �gure 12.Then we start varying eah of the parameters separately in a range around its nominal point using small steps.The parameters varied in this experiment are shown in �gure 14 along with their nominal values, variationrange, and step. In eah step of a parameter variation, we generate 500 real-time systems for eah of theheuristis used (EDF, ERF, LLF, RM). The shedulability of eah of the generated systems is heked usingthe dynami sheduler, and the average SSR is alulated for eah one of the heuristis separately.38



Parameter Nominal value Range StepN 50 10 - 100 1M 20 2 - 50 1np 3 1 - 6 1Nr 40 2 - 100 1N 20 2 - 50 10.70 0.10 - 1.45 0.05Figure 14: Parameter variation ranges and steps9.4.1 ResultsThe variation in the shedulability suess ratio (SSR) as a result of varying eah of the parameters (N , M ,np, Nr, N, �=�) are shown in �gures 15, 16, 17, 18, 19, 20 respetively.9.4.2 ConlusionsFrom the results of this experiments we an draw the following onlusion in regards of the dynami shedulingalgorithm under onsideration:� The shedulability of a distributed real-time system is diretly proportional to the number of nodes andinversely proportional with the number of tasks. Therefore we an onlude that the shedulability of adistributed system is inversely proportional with the density of tasks on the distributed system nodes.� By inreasing the number of system period levels allowed to the ontrol tasks, the system shedulabilitydramatially dereases. This is due to the inreased variability in the system tasks periods and instan-iation frequeny, whih produes high probability for generating infeasible relative timing onstraintsamong task instanes with large di�erene between their frequenies.� Inreasing the number of timing onstraints, whether they represent relative timing onstraints or om-muniation onstraints, dereases the shedulability of the system. Whih is due to the inreased numberof feasibility onditions that the system will have to satisfy to ahieve shedulability. The tighter thesystem timing onstraints, the larger their e�et on the system feasibility.� Inreasing the standard deviation to mean ratio of the trunated Normal distribution used to generatethe time interval values dereases the system shedulability. This is due to the inreased variabilityin the system timing onstraints time interval values, and onsequently the probability of generatingontraditing onstraints is also inreased.
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Varying Number of Control Tasks
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Figure 15: Varying the number of real-time ontrol tasks
Varying Number of Distributed Nodes
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Figure 16: Varying the number of real-time system nodes40



Varying number of Period Levels
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Figure 17: Varying the number of period levels
Varying Number of Relative Timing Constraints
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Figure 18: Varying the number of relative timing onstraints
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Varying Number of Communication Constraints
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Figure 19: Varying the number of ommuniation onstraints
Varying Normal Distribution SD/Mean Ratio
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Figure 20: Varying Normal Distribution SD/Mean Ratio
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A Variable Elimination OrderTheorem A.1 Given a set of ordered variables XN = [x1; x2; : : : ; xn�1; xn; : : : ; xN ℄ with standard relativeonstraints among them. If the two onseutive variables xn�1 and xn do not have any onstraints betweenthem, then their relative order does not a�et the �nal outome of the Fourier-Motzkin variable eliminationproess.Proof:After eliminating the variables xN through xn+1, the remaining variables are:Xn = [x1; x2; : : : ; xn�1; xn℄The orresponding set of standard relative timing onstraintsCn � AXn � bAfter eliminating the variable xn, the remaining variable vetor is:X 0n = Xn�1 = [x1; x2; : : : ; xn�1℄Eliminating xn�1 as well, the remaining variable vetor is:X 0n�1 = Xn�2 = [x1; x2; : : : ; xn�2℄Sine there is no timing onstraints between xn�1 and xn, then there is no onstraint in the equation setCn that has both variables. Therefore, we an partition the onstraint set into the following disjoint sets:Cn � CPn ^ CNn ^ CPn�1 ^ CNn�1 ^ CZwhere:� CPn : is the set of onstraints that ontain the variable xn with a positive oeÆient.CPn � fxn � Di(X 0n); 1 � i � pg� CNn : is the set of onstraints that ontain the variable xn with a negative oeÆient.CNn � fxn � Ej(X 0n); 1 � j � qg� CPn�1 : is the set of onstraints that ontain the variable xn�1 with a positive oeÆient.CPn�1 � fxn�1 � Fk(X 0n�1); 1 � k � rg45



� CNn�1 : is the set of onstraints that ontain the variable xn�1 with a negative oeÆient.CNn�1 � fxn�1 � Gl(X 0n�1); 1 � l � sg� CZ : whih is the set of onstraints that ontain neither xn�1 nor xn.CZ � f0 � Hm(X 0n�1); 1 � m � tgEliminating xn using the Fourier-Motzkin elimination proess leads to a new equivalent system of on-straints: C 0n � 9xn :: Cn � 8>><>>: Di(X 0n) � Ej(X 0n); 1 � i � p; 1 � j � qxn�1 � Fk(X 0n�1); 1 � k � rxn�1 � Gl(X 0n�1); 1 � l � s0 � Hm(X 0n�1); 1 � m � tEliminating xn�1, the new onstraint system is:C 0n�1 � 9xn :: 9xn�1 :: Cn �8<: Di(X 0n) � Ej(X 0n); 1 � i � p; 1 � j � qFk(X 0n�1) � Gl(X 0n�1); 1 � k � r; 1 � l � s0 � Hm(X 0n�1); 1 � m � t (20)From equation 20, sine the elimination of variables xn and xn�1 a�et two disjoint sets of onstraints, it isobvious that applying the elimination proess in the reverse order would result in the same set of onstraintsrepresented in equation 20. As a result, we onlude that the order of elimination of two onseutive variablesthat do not have any onstraints between them does not a�et the outome of the Fourier-Motzkin variableelimination proess.
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