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A probabilistic frame is a probability measure on Rd which has finite sec-

ond moment and support spanning Rd. These objects generalize finite frames for

Rd, which are redundant spanning sets. Working in the Wasserstein space P2pRdq,

we investigate the properties of these measures, finding geodesics of frames in the

Wasserstein space and using machinery from probability theory to define more gen-

eral concepts of duality, analysis, and synthesis. We then use the Otto calculus to

construct gradient flows for the probabilistic p-frame potential and a related po-

tential which we term the (p-)tightness potential, the minimizers of which are the

tight probabilistic p-frames. We demonstrate the well-posedness of the minimiza-

tion problem via the minimizing movement scheme, with a focus on the case p � 2.

We link this result to earlier approaches to solving the Paulsen Problem for finite

frames which involved differential calculus.
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Bφpµq the strong (extended) Fréchet subdifferential of φ at µ

vii



Chapter 1

Introduction

1.1 Background

In this thesis we bring together some of the key ideas and methods of two very

lively fields of mathematical research, frame theory and optimal transport, using

the methods of the second to answer questions posed in the first.

1.1.1 Frames

Introduced in 1952 by Duffin and Schaeffer [27] in their paper on nonharmonic

Fourier series, frames are redundant spanning sets of vectors or functions that can

be used to represent signals in various spaces in a faithful but nonunique way. It

is this very nonuniqueness which guarantees that the frame expansion of a signal

may be more stable and robust to noise-induced errors than its expansion in any

orthonormal basis. In finite-dimensional settings, because they provide an intuitive

framework for describing and solving problems in coding theory, analog-to-digital

quantization theory, sparse representation, and compressive sensing, certain classes

of frames have proven useful in work on signal processing for telecommunications

and other applications. This utility was not fully appreciated until the renaissance

of interest in frame theory in infinite-dimensional settings in the late 1980s due

of the work of Daubechies, Meyer, and Grossman on the construction of wavelet
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frames with tractable reconstruction properties [23]. These and other frames have

now become some of the standard tools of image processing: Gabor frames, Fourier

frames, shearlets, curvelets, wavelets, and multiresolution analyses.

Briefly, a frame for Rd is a set tϕiuNi�1 � Rd, N ¥ d for which there exist

constants 0   A ¤ B   8 such that for all x P Rd,

A}x }2 ¤
Ņ

i�1

xϕi , x y2 ¤ B}x }2.

A frame tψiuNi�1 � Rd is said to be dual to tϕiuNi�1 if for all x P Rd,

x �
Ņ

i�1

xϕi , x yψi �
Ņ

i�1

xψi , x yϕi.

Tight frames, that is frames for which A � B in the above definition, are particu-

larly useful because they have a basis-like reconstruction property that is useful in

applicationsthey are self-dual up to a constant. In geometry, they are also known

as eutactic stars. It is a corollary of Naimark’s theorem that finite tight frames

are the projection of an orthonormal basis onto a lower-dimensional space [6, 22];

consequently, in principle, it is easy to construct a tight frame. However, there

are subclasses of tight frames, such as finite unit-norm tight frames (FUNTFs) and

equal-norm Parseval frames, equiangular tight frames, and Grassmannian frames,

which are interesting, as well as desirable from a coding theory perspective, and

which are not always so simple to construct.

Indeed, a number of methods of building tight frames exist for specific ap-

plications [16]. Of particular interest are FUNTFs, which are tight frames all of

whose elements have norm one. These frames combine the stability properties of

tight frames with the control of frames of uniform norm, and they are connected
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to problems of equidistribution on the sphere. In [5], Benedetto and Fickus show

that FUNTFs are minimizers of a functional related to this equidistribution problem

called the frame potential. Equiangular tight frames, those for which the mutual co-

herence between distinct frame elements is of constant magnitude, are another class

of FUNTF that proves elusive, and constructions of them for higher dimensions are

scarce. In [31, 45], it is shown that the minimizers of another functional called the

p-frame potential are precisely the equiangular FUNTFs.

Other approaches exist to constructing FUNTFs. In [13], the authors give an

algorithm for the construction of all frames with a given spectrum and compatible

set of lengths, as defined by the Schur-Horn Theorem. They thus improve on the

state of the art for generating FUNTFs, namely spectral tetris and truncations of

the Discrete Fourier Transform (DFT) matrix. However, this algorithm requires two

challenging decision steps which must be made somewhat blindly. The existence of

the potentials mentioned above suggests that variational methods for construction

of tight frames and FUNTFs might complement these algebraic methods.

Moreover, there are more questions to answer than simply how to construct

classes of tight frames. For instance, Parseval frames are tight frames for which

the frame constant is one, and equal-norm Parseval frames, when used to encode

and decode a signal, are optimally robust to one erasure [8]. The Paulsen problem

asks the distance to the closest equal-norm Parseval frame from a given almost-

equal norm, almost-Parseval frame (see Definition 4.1). This is a question that

constructions à la [13] may not be able to answer. Indeed, while partial results

exist, this problem remains open; in [8, 17], Bodmann and Casazza and Fickus,
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Mixon, and Casazza give two distinct differential calculus approaches to answering

it. It is one of the aims of this thesis to present a framework for addressing the

Paulsen problem related to the approach of [17].

It should also be noted that since in some applications one cannot always

choose the frame used for encoding, let alone require that it be tight, others have

explored optimal dual frames for various error types, such as erasure, quantization,

and noise, with various probabilistic distributions [38, 46]. Additionally, there are

generalizations of finite frames, termed fusion frames which can be used to mimic

the distributed processing of sensor networks; construction of these frames poses

additional interesting questions. We present a new version of frame duality which

can be viewed through the fusion lens.

In line with the development of precise estimates for random frames and opti-

mal frames for probabilistic erasures, the idea of probabilistic frames was developed

in a series of papers ( [29–31]). Simply put, a probabilistic frame µ for Rd is a

probability measure on Rd for which there exist constants 0   A ¤ B   8 such

that for all x P Rd,

A}x }2 ¤
»
Rd
xx , y y2dµpyq ¤ B}x }2.

Importantly for our purposes, the ideas of tightness and equiangularity can be ex-

tended to these objects. Probabilistic frames are related to statistical shape anal-

ysis, as detailed in [31], and they are linked to the classical problem of estimating

the population covariance from a sample [29, 51]. However, the true strength of

probabilistic frames lies in the fact that they embed the space of finite frames for
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Euclidean space in the space of probability measures with finite second moments, a

metric space with distance defined by the concept of optimal transport. Much effort

has been expended over the past 25 years to define a calculus for this space, and

it is this calculus which will allow us to rigorously construct gradient flows for the

potentials mentioned above in order to identify tight probabilistic frames of various

types.

1.1.2 Optimal Transport

The most natural space to explore probabilistic frames is the Wasserstein space

of probability measures with finite second moments, or, more generally, with finite p-

th moments. This space is the realm of optimal transport theory, an area going back

to the work of Monge in the 1780s. The classical question in optimal transport, the

Monge-Kantorovich problem, is to find a joint measure γ on Rd�Rd with marginals

µ and ν, measures on Rd, which minimizes the cost functional

Cγpµ, νq :�
¼

Rd�Rd

cpx, yqdγpx, yq

among all such joint measures, where c : Rd � Rd Ñ R is a lower-semicontinuous

infinitesimal cost function, integrable with respect to γ. This problem was studied

by Kantorovich in the 1930s in both the continuous and discrete settings because of

its many applications in logistics and economics. Today, its methods are commonly

used in a multitude of applications, from radar design to image processing [3,43,48].

In [44], Monge specifically sought a deterministic map T : Rd Ñ Rd such that T

is a change of variables pushing the measure µ to the measure ν, T#µ � ν, on whose
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graph in Rd�Rd a joint measure γ would be concentrated which would be optimal for

the cost cpx, yq � }x�y }, as will be explained in more detail in Section 1.4. Proofs of

the existence of this map were very difficult, and it was not until the late 1980s that a

number of people working independently discovered connections between the Monge

problem and PDE theory which broadened its appeal. Yann Brenier, independently

of Cuesta-Albertos and Matrán and Rachev and Rüschendorf, proved that for the

quadratic cost function, given an absolutely continuous source measure, a unique

solution existed which would be the pushforward of the source by the gradient of a

convex function [10,21,47].

Approaching from the PDE perspective, Evans and Gangbo worked out an

alternative proof, and they were followed by a number of other mathematicians,

including Caffarelli, Ambrosio, and McCann, who worked out many more details

relating to more general cost functions and questions of regularity [11,32,37]. Otto,

in a paper with Jordan and Kinderlehrer, worked out a metric calculus approach

which allowed a much finer exploration of the geometry of the space of probability

measures and a formal calculus for the optimal transport problem [39]. Over the

past 20 years, many more people have contributed to the development of methods

for solving problems in optimal transport; Villani gives an excellent history of the

field in [53]. Still cited by almost every new paper in the field is the survey by

Ambrosio, Gigli, and Savaré [2], upon which we shall call many times. Recasting

some of the above finite frame theory problems as problems for probabilistic frames,

we will use elements of this calculus to establish existence of solutions and then to

construct them.
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1.2 Summary of Results

Motivated in part by the Paulsen problem, we study the space of probabilis-

tic frames from the optimal transport perspective. We consider constructions of

geodesic paths of frames and of paths of frames along gradient flows for various

potentials.

In Chapter 2, we briefly review the basic tools of optimal transport and then

use them to construct paths of frames along geodesics in the Wasserstein space.

We prove structural results about the space of probabilistic frames and identify

conditions under which geodesics will remain in that space. We give examples of

both discrete and continuous probabilistic frames which meet these conditions. On

the discrete side, we connect them to basic results on ranks of convex combinations

of matrices; on the absolutely continuous side, we connect them to deep results

about regularity for optimal transport maps.

In Chapter 3, we reconsider the idea of duality and define transport duals in

the space of probabilistic frames, which generalize the idea of duality in the finite-

frame case. We connect this construction to fusion frames. We also generalize the

operations of analysis and synthesis using decompositions of probability measures

via the disintegration theorem.

In Chapter 4, we use gradient flows in the space of probability measures to find

tight frames. We define a tightness potential related to the frame potential and show

that gradient flow solutions exist to the corresponding minimization problem. This

generalizes a result of Casazza and Fickus ( [17]), which shows that FUNTFs can
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be found as the solution of a system of nonlinear ODEs. We also give preliminary

results indicating that similar problems involving the p-frame potential are also

well-posed.

1.3 Notation

Let Rd denote d-dimensional Euclidean space, and let x� , � y denote the inner

product on this space. For any x P Rd, let }x }p �
�

d°
i�1

|xi|p

 1

p

. When p is not

specified, it can be assumed to be 2. Let Sd�1 � tx P Rd : }x } � 1u denote

the unit ball with respect to the 2-norm in Rd. Let Rm�n denote the set of m � n

matrices with real entries, and given A P Rm�n, let AJ denote its transpose and, if

it is a square matrix, trpAq its trace. We will sometimes write the inner product

xx , y y as xJy and the outer product as xyJ. As above, we say that a set of vectors

tϕiuNi�1 � Rd is a frame if there exist constants 0   A ¤ B   8 such that for all

x P Rd,

A}x }2 ¤
Ņ

i�1

xx , ϕi y2 ¤ B}x }2.

We take A and B to be the frame bounds, the sharpest such values for the frame.

Again, a frame is tight if A � B and Parseval if A � B � 1. We define the

analysis operator for a frame Φ � tϕiuNi�1 with the overloaded notation Φ P RN�d,

Φ �

�
�������
ϕJ1

...

ϕJN

�
�������
.
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Similarly, we define its adjoint, the synthesis operator, as

ΦJ � rϕ1 � � �ϕN s P Rd�N .

We define the frame operator ΦJΦ : Rd Ñ Rd, and note that

ΦJΦx �
Ņ

i�1

xϕi , x yϕi.

We also define the Grammian, ΦΦJ, where

pΦΦJqi,j � xφi , φj y.

We similarly define a probabilistic p-frame as a probability measure µ on Rd for

which there exist frame bounds 0   A ¤ B   8 such that for all x P Rd,

A}x }p ¤
»
Rd
xx , y ypdµpyq ¤ B}x }p.

When we use the term probabilistic frame, we mean a probabilistic 2-frame and

its associated frame bounds. Each probabilistic p-frame, p ¥ 2 is also a probabilistic

2-frame. Given a finite frame Φ � tϕiuNi�1 � Rd, we define the canonical probabilistic

frame for Φ as the uniformly-weighted sum of delta-masses, µΦ � 1
N

N°
i�1

δϕi . Other

terms related to probabilistic frames will be defined in the following preliminaries.

1.4 Preliminaries

To begin the discussion of probabilistic frames, a few definitions are needed.

Definition 1.1. A probability measure µ on Rd is an element of PppRdq, the space

of probability measures with finite p-th moment, if it satisfies:

Mp
p pµq :�

»
Rd
}x }pdµpxq   8

9



Definition 1.2. The support of a probability measure µ on Rd is the set:

supppµq :�  
x P Rd s.t. for all open sets Ux containing x, µpUxq ¡ 0

(
.

Finally, we define a natural metric on PppRdq, the (p-)Wasserstein distance.

Definition 1.3. The p-Wasserstein distance between two probability measures

µ and ν on Rd is:

W p
p pµ, νq :� inf

γ

$&
%

¼
Rd�Rd

}x� y }pdγpx, yq : γ P Γpµ, νq
,.
- ,

where Γpµ, νq is the set of all joint probability measures γ on Rd �Rd such that for

all A,B � BpRdq, γpA� Rdq � µpAq and γpRd �Bq � νpBq.

The search for the set of joint measures which induce the infimum is a variant

of the Monge-Kantorovich problem. A joint distribution γ0 which induces this

infimum is called an optimal transport plan. In the quadratic case, when µ and

ν do not assign positive measure to isolated points, then

W 2
2 pµ, νq :� inf

T

$&
%

¼
Rd�Rd

}x� T pxq }2dµpxq : T#µ � ν

,.
- ,

where T is a deterministic transport map (or deterministic coupling): i.e.,

for all ν-integrable functions φ,

»
Rd
φpyqdνpyq �

»
Rd
φpT pxqqdµpxq.

When the search for the minimizing joint distributions of the Monge-Kantorovich

problem is limited to deterministic transport plans, we have the original Monge

problem. Equipped with the 2-Wasserstein distance, P2pRdq is a complete, separa-

ble metric space. In fact, the set of measures with discrete, finite support is dense
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in P2pRdq. Convergence in the space has several equivalent formulations. We will

make use of the following notions of convergence:

Definition 1.4. ( [53, Definition 6.8]) A sequence of measures tµnu � PppRdq is

said to converge weakly to µ P PppRdq if the following two conditions are met:

• µn Ñ µ weakly or narrowly, i.e.:

@f P CbpRdq
»
Rd
fpxqdµnpxq Ñ

»
Rd
fpxqdµpxq

• For any (and therefore every) x0 in Rd,
³
Rd }x � x0 }pdµnpxq Ñ ³

Rd }x �

x0 }pdµpxq.

A second, equivalent definition is:

Definition 1.5. ( [53, Definition 6.8]) A sequence of measures tµnu � PppRdq is

said to converge weakly to µ in PppRdq if for all continuous functions φ with

|φpxq| ¤ Cp1� }x� x0 }pq,

for some C ¡ 0 and some x0 P Rd,

»
Rd
φpxqdµnpxq Ñ

»
Rd
φpxqdµpxq.

1.5 Probabilistic Frames as a Subset of P2pRdq

With the space above in mind, we give the following definition:

Definition 1.6. A probability measure µ on Rd is a probabilistic frame if and

only if there exist positive constants A and B such that for all y P Rd,

A}y }2 ¤
»
Rd
|xx , y y|2dµpxq ¤ B}y }2.
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A probabilistic frame is said to be tight if A � B.

By [30, Theorem 5], a probability measure µ on Rd is a probabilistic frame if

and only if it has finite second moment, and the linear span of its support is Rd.

This result may be stated in terms of the probabilistic frame operator, which is

defined thus:

Definition 1.7. Given a measure µ P P2pRd, its (probabilistic) frame operator

is Sµ, which for all y P Rd satisfies:

Sµy �
»
Rd
xx , y yx dµpxq.

Clearly, Sµ may be equated with its matrix representation
³
Rd xx

Jdµpxq, and

then the requirement that the support of µ span Rd is the same as requiring that

this matrix be positive definite. Equivalently, the probabilistic frame definition

translates into a requirement on the covariance matrix Covpµq and mean µ of µ,

with:

µ :�
»
Rd
xdµpxq and Covpµq :�

»
Rd
px� µqpx� µqJdµpxq

First, the mean and the covariance matrix must be well-defined since µ has finite

second moment. Second, there must exist A ¡ 0 s.t for all y P Rd,

xy ,Covpµqy y ¥ A}y }2 � |xy , µ y|2.

If µ � 0, then this second condition is equivalent to requiring that Covpµq be positive

definite. Probabilistic frames for Rd are clearly a subset of P2pRdq because of the

upper frame bound. Let us denote the probabilistic frames for Rd by PFpRdq. Let

PFpA,B,Rdq denote the set of probabilistic frames in PFpRdq with upper frame
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bound less than or equal to B and lower frame bound greater than or equal to A.

Let PFpA,Rdq denote the set of tight frames with frame constant A. Let DPFpRdq,

DPFpA,B,N,Rdq, and DPFpA,N,Rdq denote the corresponding sets of probabilistic

frames with finite support containing at most N elements.

Proposition 1.8. Given finite A,B ¡ 0, PFpA,B,Rdq and PFpA,Rdq are nonempty,

convex, closed subsets of P2pRdq.

Proof. The nonemptiness is clear: consider the space of nondegenerate, zero-mean

Gaussian measures on Rd whose covariance matrices have maximum eigenvalue B

and minimum eigenvalue A. For the convexity: consider µ, ν P PFpA,B,Rdq, λ P

r0, 1s. Define µλ � p1 � λqµ� λν. Given y P Rd,

»
Rd
xx , y y2dµλpxq � p1 � λq

»
Rd
xx , y y2dµpxq � λ

»
Rd
xx , y y2dνpxq

¥ p1 � λqA}y }2 � λA}y }2

� A}y }2

The upper bound follows similarly, and the result is clear. Finally, for the closed-

ness, let tµnu be a sequence in PFpA,B,Rdq converging to µ P P2pRdq. Since

³
Rdxx , y y2dµpxq is a continuous function of y P Rd, we can define

y0 � argminyPSd�1

»
Rd
xx , y y2dµpxq.

Since

xx , y0 y2 ¤ }x }2}y0 }2 ¤ }y0 }2p1 � }x }2q,

by the second definition of weak convergence in P2pRdq given in Definition 1.5,

³
Rdxx , y0 y2dµnpxq Ñ

³
Rdxx , y0 y2dµpxq. Since for all n, the values of

³
Rdxx , y0 y2dµnpxq

13



are bounded above and below byB andA, respectively, µ is an element of PFpA,B,Rdq.

Taking A � B, we also have the closedness of PFpA,Rdq.

Remark 1.9. Note that PFpRdq itself is not closed, since one can construct a sequence

of probabilistic frames whose lower frame bounds converge to zero: for example, a

sequence of zero-mean, Gaussian measures with covariances 1
n
I, n P N.

Proposition 1.10. Given finite A,B ¡ 0, DPFpA,B,N,Rdq and DPFpA,N,Rdq

are closed subsets of P2pRdq.

Proof. Consider a sequence tµnu in DPFpA,B,N,Rdq converging weakly to µ in

P2pRdq. By the result above, µ P PFpA,B,Rdq. Thus, it remains to show that the

support of µ is discrete and finite, containing at most N elements.

Suppose #|supppµq| �M ¡ N , possible infinite. Then there exists tynuMn�1 �

supppµq such that for all open subsets U which contain some yn, µpUq ¡ 0. Fix

T � N � 1. Then we have ε ¡ 0 such that }yi � yj } ¡ 3ε for all i, j ¤ T , i � j.

Define the disjoint open balls tBεpykquTk�1, ordered such that µpBεpy1qq ¥

µpBεpy2qq ¥ � � � ¥ µpBεpyT qq ¡ 0. Let δ � µpBεpyT qq. Now, for any n P N, supppµnq

contains at most N elements. Therefore, by the pigeonhole principle, for each n there

exists a subset In � t1, 2, ..., T u such that #|In| ¥ 1 and supppµnq
� pYkPInBεpykqq �

H. In particular, for all x P supppµnq, }x� yk } ¡ ε for all k P In.

Then for all n,

W 2
2 pµn, µq �

¼
Rd�Rd

}x� y }2dγ0px, yq

¥
¸
kPIn

»
Bεpykq

»
Rd
}x� y }2dγ0px, yq
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¥
¸
kPIn

»
Bεpykq

»
Rd
ε2dγ0px, yq

� ε2
¸
kPIn

γ0pRd �Bεpykqq

� ε2
¸
kPIn

µpBεpykqq

¥ ε2 � δ, independent of N

This contradicts the convergence of the sequence, and our result follows.

1.6 Connection between Probabilistic and Continuous Frames

As detailed in [34], the idea of discrete frames was generalized by Ali, An-

toine, and Gazeau to encompass families of elements in some locally compact space

possessing a Radon measure, the so-called continuous frames. Square-integrable rep-

resentations of groups can generate continuous frames by acting on a fixed mother

element, and in mathematical physics, these frames are called coherent states and

can be carefully chosen to simplify certain problems. Rank-one positive operator

valued measures (POVMs) can be written as continuous frames.

In [1], we have the following definition of continuous frame:

Definition 1.11. Let X be a metrizable, locally compact space. Let ν be positive,

inner regular Borel measure for X supported on all of X. Let H be a Hilbert space.

Then a set of vectors tηix, i P t1, � � � , nu, x P Xu is a rank-n (continuous) frame

if, for each x P X, the vectors tηix, i P t1, � � � , nuu are linearly independent, and if
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there exist constants 0   A ¤ B   8 such that @f P H,

A}f }2 ¤
ņ

i�1

»
X

|xηix , f y|2dνpxq ¤ B}f }2.

With this definition in mind, we can detail the following simple relationship

between continuous frames and probabilistic frames.

Proposition 1.12. Any probabilistic frame can be written as a rank-one continuous

frame.

Proof. Let µ P P2pRdq be a probabilistic frame. The support of µ is a closed subset

of Rd, so that we can take X � supppµq in the above definition. Then, clearly, with

n � 1 and ηx � x, txu, x P supppµq � Rd is trivially a continuous frame.

Remark 1.13. Conversely, let tηxu be a rank-one continuous frame for pX � νq,

where X is some metrizable, locally compact space, and ν is a finite, positive, regular

Borel measure. Let β � νpXq. Take H � Rd and consider T : X Ñ Rd, T pxq :� ηx.

µ :� T#p 1
β
νq is then a probabilistic frame for Rd, since for any A P BpRd,

0 ¤ µpAq �
»
Rd
χApyqdµpyq � 1

β

»
X

χApηxqdνpxq ¤ 1,

and for any z P Rd,

»
Rd
xy , z y2dµpyq � 1

β

»
X

xηx , z y2dνpxq,

This equivalence is not particularly interesting, and, as we shall see in the

following chapters, much more can be learned by examining the measure µ and

working in the Wasserstein space.
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Chapter 2

Elementary Paths in the Space of Probabilistic Frames

2.1 Geodesics for the Wasserstein Space

To investigate the distances between probabilistic frames, we consider geodesics

in the Wasserstein space P2pRdq; this notion will be crucial later on when we build

gradient flows in this space. We identify conditions under which every measure on

the geodesic between two probabilistic frames is itself a probabilistic frame, show-

ing that for the case of discrete probabilistic frames, this question can be reduced

to one of ranks of convex combinations of matrices. For probabilistic frames with

density, we show that continuity of the optimal deterministic coupling is sufficient

for geodesic measures to be probabilistic frames. The key results may be found in

Theorems 2.13 and 2.30.

2.1.1 Wasserstein Geodesics

To begin, we work with general geodesics in the Wasserstein space. The

method, taken from [35], is as follows:

Definition 2.1. Let µ0 and µ1 be measures in P2pRdq. Define the map Πt : Rd �

Rd Ñ Rd by

Πtpx, yq � px, p1 � tqx� tyq for t P r0, 1s.
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Let γ0 P Γpµ0, µ1q be an optimal transport plan for µ0 and µ1 with respect to the

2-Wasserstein distance.

Define a probability measure γt on Rd � Rd by :

¼
Rd�Rd

F px, yqdγtpx, yq �
¼

Rd�Rd

F pΠtpx, yqqdγ0px, yq

for all F P CbpRd � Rdq. Note that @F P CbpRdq,
¼

Rd�Rd

F pxqdγtpx, yq �
¼

Rd�Rd

F pxqdγ0px, yq �
»
Rd
F pxqdµ0pxq.

Then, defining µt, t P r0, 1s, to be the probability measure such that for all G P

CbpRdq:
»
Rd
Gpyqdµtpyq �

¼
Rd�Rd

Gpyqdγtpx, yq �
¼

Rd�Rd

Gpp1 � tqx� tyqdγ0px, yq, (2.1)

we call µt a measure on a geodesic between µ0 and µ1, or a geodesic measure

when the endpoints of the path are clear from the context. We call γt a lifting of

µt relative to γ0.

Proposition 2.2. Given µ0, µ1 P P2pRdq, the mapping r0, 1s Ñ P2pRdq given by

t ÞÑ µt, as defined in (2.1), is Lipschitz in t.

Proof. Define ft : Rd � Rd Ñ Rd by ftpx, yq � p1 � tqx � ty. Take µ0, µ1 P P2pRdq

with optimal plan γ0 P Γ0pµ0, µ1q and µt � pftq#γ0. Then

W 2
2 pµt1 , µt2q � inf

πPΓpµt1 ,µt2

¼
Rd�Rd

}u� v }2dπpu, vq

¤
¼

Rd�Rd

}u� v }2dpft1 , ft2q#γ0pu, vq
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�
¼

Rd�Rd

}pp1 � t1qx� t1yq � p1 � t2qx� t2yqq }2dγ0px, yq

�
¼

Rd�Rd

pt2 � t1q2}x� y }2dγ0px, yq

� pt2 � t1q2W 2
2 pµ0, µ1q

where the last equality comes from the fact that γ is an optimal plan for the 2-

Wasserstein distance between µ0 and µ1.

Moreover, from [35], we have the following lemma, which justifies our use of the

term ”geodesic.”

Lemma 2.3. The mapping t Ñ µt is a geodesic of the 2-Wasserstein distance in

the sense that

W2pµ0, µtq �W2pµt, µ1q � W2pµ0, µ1q.

In the rest of this chapter, we consider under what conditions we can con-

struct a “path of frames”–i.e., when are the measures on the geodesic between two

probabilistic frames themselves probabilistic frames? Recall that proving that a

probability measure µ on Rd is a probabilistic frame requires showing that it is an

element of P2pRdq and that Sµ :� Covpµq�µµJ is positive definite. It is easy to show

that µt, as constructed by the method above, always meets the first requirement.

Lemma 2.4. For any measure µt, t P r0, 1s, on the geodesic between two probabilistic

frames µ0 and µ1 with lifting γt relative to an optimal plan γ0, M2
2 pµtq   8.
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Proof. Given µt as above,

M2
2 pµtq �

»
Rd
}y }2dµtpyq �

¼
Rd�Rd

}y }2dγtpx, yq

�
¼

Rd�Rd

}p1� tqx� ty }2dγ0px, yq

�
¼

Rd�Rd

p1 � tq2}x }2 � t2}y }2 � 2tp1� tqxx , y yqdγ0px, yq

� p1� tq2M2
2 pµ0q � t2M2

2 pµ1q � 2tp1 � tq
¼

Rd�Rd

xx , y ydγ0px, yq

Now, »
Rd
}x }dµ0pxq �

�»
Rd
}x }2dµ0pxq


 1
2
�»

Rd
1dµ0pxq


 1
2

,

so »
Rd
}x }dµ0pxq ¤M2pµ0q.

Therefore,

M2
2 pµtq ¤ p1 � tq2M2

2 pµ0q � t2M2
2 pµ1q � 2tp1� tqM2pµ0qM2pµ1q

� pp1 � tqM2pµ0q � tM2pµ1qq2

  8.

The question which remains is showing that Sµt :� ³
Rd yy

Jdµtpyq, the frame

operator of µt, is positive definite (or, equivalently, that the support of µt spans Rd).

Different conclusions can be drawn about the lifting of the geodesic depending on

the characteristics of the support of the measures at the endpoints. For this reason,

we divide much of the remaining analysis into two parts: the discrete case and the
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absolutely continuous case. In both, we will make use of a monotonicity property

(Definition 2.7) that characterizes optimal transport plans. We first address this

question for the canonical probabilistic frames associated with finite frames.

2.2 Paths for Discrete Probabilistic Frames

2.2.1 Probabilistic Frames with Discrete Support

To give the most general statement of the discrete case, we give the following

definition:

Definition 2.5. Let tαiuNi�1 be a set of nonnegative real numbers satisfying

°N
i�1 αi � 1, and let Φ � tϕiuNi�1 be a probabilistic frame. Then the canonical

α-weighted probabilistic frame for Φ is µΦ,α given by dµΦ,αpxq �
°N
i�1 αiδϕipxq

Now suppose we have two frames Φ � tϕiuNi�1 and Ψ � tψjuMj�1, and two sets

of nonnegative weights, tαiuNi�1 and tβiuNi�1, summing to unity. Let µ0 � µΦ,α, and

let µ1 � µΨ,β. In this case, any joint distribution γ for µ0 and µ1 satisfies

dγpx, yq � rδϕ1pxq . . . δϕN pxqsJArδψ1pyq . . . δψM pyqs,

where A P RN�M with

Ņ

i�1

Ai,j � βj,
M̧

j�1

Ai,j � αi, Ai,j ¥ 0 @i, j,

and
°N
i�1

°N
j�1Ai,j � 1. That is, there is a one-to-one correspondence between

Γpµ0, µ1q and a subset of the N �M nonnegative matrices whose entries sum to

one.

In particular, we have:
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Lemma 2.6. [2, Theorem 6.0.1] Given µ0 and µ1 as above, if M � N , and if

αi � βj � 1
N

for all i, j P t1, ..., Nu, then the Monge-Kantorovich problem becomes

the Birkhoff problem, and denoting by Γp 1
N
q the set of matrices with row and column

sums identically 1
N

:

W 2
2 pµ0, µ1q � min

APΓp 1
N
q

Ņ

i�1

Ņ

j�1

ai,j}ϕi � ψj }2

and, by the Birkhoff-von Neumann Theorem, the optimal transport matrix A is a

permutation matrix corresponding to some σ P SN , i.e.:

W 2
2 pµ0, µ1q � min

σPSN
1

N

Ņ

i�1

}ϕi � ψσpiq }2

In this case, for some optimal σ P SN ,

Sµt :� 1

N

Ņ

i�1

rp1 � tqϕi � tψσpiqsrp1 � tqϕi � tψσpiqsJ. (2.2)

Note that the optimality of σ implies that σ maximizes
N°
i�1

xϕi , ψσpiq y among all

elements of SN . This crucial fact motivates the following definition.

Definition 2.7. A set S � Rd � Rd is said to be cyclically monotone if, given

any finite subset tpx1, y1q, ..., pxN , yNqu � S, for every σ P SN holds the inequality:

Ņ

i�1

xxi , yi y ¥
Ņ

i�1

xxi , yσpiq y.

Having defined cyclical monotonicity, it will be useful to note that there are

several examples of pairs of frames whose canonical probabilistic frames meet this

requirement. First, however, we recall a result of [20], restated for Euclidean space,

which gives a useful characterization of frames and their duals:
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Lemma 2.8. [20, Theorem 5.6.5] Let tϕiuNi�1 be a frame for Rd with frame operator

S. The dual frames of tϕiuNi�1 are precisely the families:

tψiuNi�1 �
#
S�1ϕi � hi �

Ņ

j�1

xS�1ϕi , ϕj yhj
+N

i�1

, (2.3)

where thiuNi�1 is some subset of Rd.

Now, we can proceed to discuss cyclical monotonicity of certain frame pairings:

Lemma 2.9. If tϕiuNi�1 is the canonical dual frame to tψiuNi�1, then tpϕi, ψiquNi�1 is

cyclically monotone.

Proof. Let S � ΨJΨ. Then suppose that ΦJ � S�1ΨJ. For any permutation

σ P SN , let Pσ denote the matrix such that for

@x �

�
�������
x1

...

xN

�
�������
P RN , Pσx �

�
�������
xσp1q

...

xσpNq

�
�������
.

Then

Ņ

i�1

xϕi , ψi � ψσpiq y �
Ņ

i�1

xS�1ψi , ψi � ψσpiq y

�
Ņ

i�1

pψi � ψσpiqqJS�1ψi

� TrppΨ� PσΨqS�1ΨJq

� TrppIN � PσqΨS�1ΨJq

� TrppIN � PσqIdNq

¥ 0
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We also use the fact that, denoting by IdN the N �N diagonal matrix with d leading

ones on the diagonal and zeros else, ΨS�1ΨJ � IdN because S�1ΨJ is the Moore-

Penrose pseudoinverse of Ψ. Therefore, the identity is an optimal permutation, i.e.,

the set tpϕi, ψiquNi�1 is cyclically monotone.

Lemma 2.10. Let tϕiuNi�1 be one of the dual frames to tψiuNi�1, as given in Lemma

2.8. Assume that the set thiuNi�1 is ordered so that tphi, ψiquNi�d�1 is cyclically mono-

tone. Then tpϕi, ψiquNi�1 is cyclically monotone.

Proof. Take tϕiuNi�1 to be a dual of the form given in Lemma 2.8. Let W be the

matrix whose rows are the thiuNi�1. Then, noting that ΦJ � pS�1ΨJ �WJpIN �

ΨS�1ΨJqq,
Ņ

i�1

xψi � ψσpiq , ϕi y � TrppIN � PσqΨΦJq

� TrppIN � PσqΨpS�1ΨJ �WJpIN �ΨS�1ΨJqqq

� TrppIN � PσqIdN � pIN � PσqΨWJpIN � IdNqq

� TrppIN � PσqIdNq �
Ņ

i�d�1

xψi � ψσpiq , hi y

¥ 0

Therefore, under these conditions, tpϕi, ψiquNi�1 is cyclically monotone.

Finally, we state this last critical lemma before laying out the main results of

this section.

Lemma 2.11. [49, Theorem 2] Let A and B be m � n complex matrices, m ¥ n.

Let rankpAq � rankpBq � n. If B:A has no nonnegative eigenvalues, then every

24



matrix in

hpA,Bq :� tC : C � p1 � tqA� tB, t P r0, 1su

has rank n. Similarly, if A and B are n � n complex matrices with rank n, we can

define in

rpA,Bq :� tC : C � pI � T qA� TBu,

where T is a real diagonal matrix with diagonal entries in r0, 1s. Then, if B�1A is a

P-matrix–that is, having all principal minors positive–then every matrix in rpA,Bq

will have rank n.

Given this lemma and the cyclical monotonicity condition, we can state the

following proposition which gives sufficient conditions for a geodesic between discrete

probability measures in P2pRdq to be a path of frames.

Proposition 2.12. Let tϕiuNi�1 and tψiuNi�1 be frames for Rd with analysis operators

Φ and Ψ. If Ψ:Φ has no negative eigenvalues, and if tpϕi, ψiquNi�1 is a cyclically

monotone set, then every measure on the geodesic between µΦ and µΨ has support

which spans Rd.

Proof. Note that Sµt , as defined in equation (2.2), is the frame operator for a new

set of vectors, namely tp1� tqϕi � tψσpiquNi�1. Therefore, the support of µt will span

Rd (equivalently, Sµt will be positive definite) provided this set of vectors spans Rd.

Now, let Φ be the matrix whose rows are the frame vectors tϕJi u, and let Ψ be the

matrix whose rows are the frame vectors tψJ
j u. As was done in Lemma 2.9, define

Pσ to be the N �N permutation matrix corresponding to σ P SN , where now σ is
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the optimal permutation for the Wasserstein distance. Let Ψσ be PσΨ. In a slightly

more concise way, we can write:

Sµt �
1

N

�p1 � tqΦJ � tΨJ
σ

� pp1� tqΦ � tΨσq .

Ψ and Ψσ have rank d, and to show that Sµt is positive definite, we must prove

that every matrix in the set hpΦ,Ψσq :� tp1 � tqΦ � tΨσutPr0,1s has rank d. By

Lemma 2.11, a sufficient condition for this to be true is that Ψ:
σΦ be positive semi-

definite, where Ψ:
σ is the Moore-Penrose pseudoinverse of Ψσ. Finally, we note that

if tpϕi, ψiquNi�1 is a cyclically monotone set, then Pσ � I, the identity, is an optimal

permutation, and then Ψ:
σΦ � Ψ:Φ is positive definite by assumption.

By combination of Lemma 2.4 and Proposition 2.12, we have this result:

Theorem 2.13. Let tϕiuNi�1 and tψiuNi�1 be frames for Rd. If Ψ:Φ has no neg-

ative eigenvalues and tpϕi, ψiquNi�1 is cyclically monotone, then every measure on

the geodesic between the canonical probabilistic frames µΦ and µΨ is a probabilistic

frame.

These conditions hold for certain dual frame pairs, as described in the next

proposition.

Proposition 2.14. If tϕiuNi�1 is the canonical dual frame to tψiuNi�1, or if tϕiuNi�1

is a dual frame to tψiuNi�1 of the form given in (2.3), such that the thiuNi�1 is ordered

so that tphi, ψiquNi�d�1 is cyclically monotone, then Ψ:
σΦ is positive definite, where σ

is the optimal permutation.
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Proof. By definition,

Ψ:
σ � pPσΨq: � pΨJPJ

σ PσΨq�1ΨJPJ
σ � pΨJΨq�1ΨJPJ

σ

Note that this is a permutation of the matrix whose columns are the elements of

the canonical dual frame of the rows of Ψσ. If tϕiuNi�1 is any dual of tψiuNi�1, then

ΨJΦ � Id, and therefore, if σ is the identity, then Ψ:
σΦ � pΨJΨq�1, which is positive

definite. It remains to show that the optimal permutation is the identity. Lemma 2.9

shows that if tϕiuNi�1 is the canonical dual to tψiuNi�1, then tpϕi, ψiquNi�1 is cyclically

monotone; Lemma 2.10 shows that if tϕiuNi�1 is any dual to tψiuNi�1 which meets the

above condition, then tpϕi, ψiquNi�1 is cyclically monotone.

Given the preceding results involving the support of the lifting of the geodesic,

we note that it may be profitable to consider the frame operator for the optimal

transport plan γ0 between two discrete probabilistic frames µΦ and µΨ:

Sγ0 :�
¼

Rd�Rd

�
��� x

y

�
����

xJyJ
�
dγ0px, yq.

This operator has the form:

Sγ0 �

�
��� ΦJΦ ΦJΨσ

ΨJ
σΦ ΨJΨ

�
��� .

Moreover, it has the property that for all x P Rd,

xx , Sµtx y � rp1� tqxJ txJsSγ0

�
��� p1 � tqx

tx

�
��� . (2.4)
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Thus, given t P r0, 1s, Sµt is positive definite on Rd if Sγ0 is positive definite on the

subspace

Wt :� trp1� tqx txsJ|x P Rdu � Rd � Rd.

For a class of special discrete probabilistic frames for Rd with N ¥ 2d which

meet the condition defined below, we can show this is the case.

Definition 2.15. A frame tϕiuNi�1 � Rd is full-spark if every d-element subset

contained in it is linearly independent.

Proposition 2.16. Let N ¥ 2d. Let tϕiuNi�1 be a frame for Rd, ordered such that

tϕiudi�1 is linearly independent. Let tψjuNj�1 be a full-spark frame for Rd. Moreover,

let these two sets have the property that for all subsets J � tj1, ..., jdu � t1, ..., Nu,

if there exist tαiuNi�1, not all zero, such that
°d
i�1 αiϕi � ϕl for some l ¡ d, then

°d
i�1 αiψji � ψk for all k P t1, ..., NuzJ . Then every measure on the geodesic between

µΦ and µΨ is a probabilistic frame.

Proof. Given tϕiuNi�1 and tψjuNj�1 as above, supporting canonical discrete probabilis-

tic frames µΦ and µΨ, let γ0 P P2pRd � Rdq be the optimal transport plan for the

Wasserstein distance. Then we can write

Sγ0 �

�
��� ΦJ

ΨJ
σ

�
��� rΦ Ψσs ,

which is the frame operator for the set tγσi uNi�1 :�

$''&
''%

�
��� ϕi

ψσpiq

�
���
,//.
//-
N

i�1

. If this set is

a frame for Wt, or more generally for R2d, then the result follows. Recall that the
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tϕiuNi�1 are ordered such that the tϕiudi�1 are linearly independent. Therefore, the

set tγσi udi�1 spans a d-dimensional subspace of Rd � Rd.

Since tψjuNj�1 is full spark, it is guaranteed that tψσpiqu2d
i�d�1 is linearly indepen-

dent, and it follows that tγσi u2d
i�d�1 spans a d-dimensional subspace for any σ P SN .

Thus, it remains to show that for any σ, spantγσi udi�1

�
spantγσi u2d

i�d�1 � t0u. To do

so, define J � tσpiqu2d
i�d�1. It will be sufficient to show that for all j P td�1, � � � , 2du,

γσj R spantγσi udi�1.

Since tϕiudi�1 is a basis for Rd, for each ϕl, l ¡ d, there exists a unique set

of coefficients tαliudi�1 such that
°d
i�1 α

l
iϕi � ϕl. By assumption, since σplq P J , it

cannot be the case that
°d
i�1 α

l
iψji � ψσplq. Hence, there does not exist a set of

coefficents tαliudi�1 for any l ¡ d such that
°d
i�1 α

l
iγ
σ
i � γσl . Hence γσl R spantγσi udi�1

for any l ¡ d, and our result is proven.

2.2.2 Examples for Discrete Probabilistic Frames

To construct some simple examples, we shall call upon the following lemma

from [41]:

Lemma 2.17. [41, Proposition 6.4] Let tϕiuNi�1 be a frame for a Hilbert Space

H, and let SΦ be its frame operator. Denote by Φ the analysis operator for this

frame. Then tψiuNi�1 is a dual frame of tϕiuNi�1 if and only if there exists a sequence

tζiuNi�1 with analysis operator Z such that for each i, ψi � S�1
Φ ϕi � ζi and for which

ΦpHq K ZpHq–that is, for all u, v P H, xΦu , Zv y �
N°
i�1

xu , ϕi yxv , ζi y � 0.

We also define a type of dual-frame pairing:
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Definition 2.18. Let H and K be Hilbert Spaces, and consider the finite sequences

tϕiuNi�1 � H and tψiuNi�1 � K with respective analysis operators Φ and Ψ. Then

the finite sequences are disjoint if ΦpHq�ΨpKq � t0u. They are orthogonal if

Φ�Ψ � 0.

Proposition 2.19. If tϕiuNi�1 and tψiuNi�1 are disjoint frames for Rd, associated

canonically with the probabilistic frames µΦ and µΨ, then every measure on the

geodesic between µΦ and µΨ is a probabilistic frame.

Proof. Given v P Rd, consider:

Ņ

i�1

xv , p1 � tqψi � tψi y2 �
Ņ

i�1

xv , p1 � tqΨ�ei � tΨ�ei y2

�
Ņ

i�1

xp1� tqΨv � tΨv , ei y2

� }p1� tqΨv � tΨv }2
RN

¥ Crp1 � tq2}Ψv }2 � t2}Ψv }2s

for some C ¡ 0. Since the two sequences in question are finite frames, choosing the

minimum of the two lower frame bounds, say A0, we can bound the last quantity

below by p1 � 2t� 2t2qC � A0}v }2 and obtain our result.

2.2.3 Nongeodesic Paths between Discrete Probabilistic Frames

Given two frames tϕiuNi�1 and tψjuMj�1 with analysis operators Φ and Ψ, we

wish to characterize paths between the canonical probabilistic frames supported on

them. In this section we consider the equal-cardinality case.
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Definition 2.20. Let Lptq, t P r0, 1s be an N � N diagonal matrix with diagonal

entries diptq satisfying Lp0q � I, Lp1q � 0, and diptq P p0, 1q @t P p0, 1q and i P

t1, � � � , Nu. Then the interpolating frame is ΘpΦ,Ψ, Lptqq � tθtiuNi�1 by θti � p1 �

diptqqψi � diptqϕi.

Proposition 2.21. If tϕiuNi�1 and tψjuNj�1 are dual frames, then ΘpΦ,Ψ, Lptqq will

be a frame for all t P p0, 1q.

Proof. The sets tθtiuNi�1 will be frames provided that their analysis operator, the

matrix pI�LptqqΨ�LptqΦ,is full rank. By Lemma 2.11, this holds provided that Φ:Ψ

is a P-matrix, which is certainly true if the two frames are dual to one another.

In the same spirit as Proposition 2.19, we can state the following proposition:

Proposition 2.22. Let Lptq � p1 � tqI. Given orthogonal frames tϕiuNi�1 and

tψjuNj�1, and their canonical duals tϕ̃iuNi�1 and tψ̃juNj�1, for each t P p0, 1q, ΘpΦ,Ψ, Lptqq

and ΘpΦ̃, Ψ̃, L̂ptqq will be dual to each other. Here, L̂ptq � 1?
1�2t�2t2

Lptq.

Proof. Let Θt be the frame operator for ΘpΦ,Ψ, Lptqq, and let Θ̃t be the analysis

operator for ΘpΦ̃, Ψ̃, L̂ptqq. Denoting by SΦ the frame operator of tϕiu, the synthesis

operator of any dual to tϕiu can be written: Φ̂J
W � S�1

Φ ΦJ � W pI � ΦS�1
Φ ΦJq,

where W P Rd�N . In the case that Φ̂ is the canonical dual to Φ, W � 0, and

Φ̃JΨ � S�1
Φ ΦJΨ � 0. Then:

Θ̃J
t Θt � 1

1 � 2t� 2t2
ptΨ � p1 � tqΦqJptΨ̃� p1� tqΦ̃q

� 1

1 � 2t� 2t2
ppt2ΨJΨ̃q � p1 � tq2pΦJΦ̃q � tp1 � tqpΨJΦ̃ � ΦJΨ̃q

� 1

1 � 2t� 2t2
pt2 � p1� tq2qI
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Remark 2.23. In fact, if instead of the canonical duals we chose Φ̂W1 and Ψ̂W2 with

W1Ψ � 0 and W2Φ � 0, then the result would still hold. Additionally, note that

two orthogonal frames always share the dual frame tS�1
Φ ϕi � S�1

Ψ ψiuNi�1, and this

frame will be dual to ΘpΦ,Ψ, Lptqq for all t P p0, 1q.

2.3 Paths for Probabilistic Frames with Density

2.3.1 Absolutely Continuous Probabilistic Frames

The question of the nature of the optimal transport plan for the 2-Wasserstein

distance is simpler for absolutely continuous measures. From [2, Theorem 6.2.10

and Proposition 6.2.13], which gather together a long list of characteristics, we can

extract two key facts about this plan, which we collect in the following lemma. First,

a definition:

Definition 2.24. µ P PpXq is a Gaussian regular measure, written µ P PrpXq, if

µpBq � 0 for any Gaussian null set B. When X � Rd, these coincide with the sets

of Lebesgue-measure zero.

Lemma 2.25. [2, Chapter 6.2.3] If µ0 and µ1 are Gaussian regular measures in

P2pRdq, then there exists a unique optimal transport plan for the 2-Wasserstein

distance which is induced by a transport map r. This transport map is defined
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(and injective) µ0-a.e. Indeed, there exists a µ0-negligible set N � Rd such that

xrpx1q � rpx2q , x1 � x2 y ¡ 0 for all x1, x2 P RdzN .

Then we have the following result for absolutely continuous probabilistic frames:

Proposition 2.26. If µ0 and µ1 are absolutely continuous (with respect to Lebesgue

measure) probabilistic frames for which there exists a linear, positive semi-definite

deterministic coupling which minimizes the Wasserstein distance, then all measures

on the geodesic between these frames have support which spans Rd and will therefore

be probabilistic frames.

Proof. Given the assumptions, let rpxq denote the linear transformation which in-

duces the coupling µ1 � r#µ0. Defining htpxq � p1� tqx� trpxq µ0-a.e., the geodesic

measure is given by

µt :� ht#µ0. (2.5)

Then Sµt �
³
Rd htpxqhtpxqJdµ0pxq. If rpxq � Ax for some A P Ad�d, then:

Sµt �
»
Rd
pp1 � tqIx� tAxqpp1� tqIx� tAxqJdµ0pxq

� pp1 � tqI � tAqSµ0pp1 � tqI � tAqJ

Since A must be nonsingular–recall that Sµ1 � ASµ0A
J, which is certainly of rank

d–by Lemma 2.11, p1� tqI � tA will also nonsingular for all t P r0, 1s provided that

A has no negative eigenvalues, as we assumed.

Example 2.1. An example in which the assumptions of the above proposition hold

is the case of nondegenerate Gaussian measures on Rd. Let µ0 and µ1 be zero-

mean Gaussians. Let rpxq � S
1
2
µ1S

� 1
2

µ0 x. r is a positive definite linear deterministic
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coupling of µ0 and µ1. According to a result in [26], if X and Y are two zero-mean

random vectors with covariances ΣX and ΣY , respectively, then a lower bound for

Ep}X�Y }2q is TrrΣX�ΣY �2pΣXΣY q 1
2 s, and the bound is attained, for nonsingular

ΣX , when Y � Σ
� 1

2
X Σ

1
2
YX. But this simply states that a general lower bound exists

for the square of the 2-Wasserstein distance between two probability measures, and

that is obtained when at least one is nonsingular and they are related by the linear

deterministic coupling given above. Therefore, the coupling given for the Gaussian

measures is optimal.

2.3.2 Injectivity of Transport for Probabilistic Frames with Density

Now, given absolutely continuous probabilistic frames µ, ν for Rd, take rpxq to

be the optimal transport map pushing µ to ν guaranteed by Lemma 2.25. Define

htpxq � p1� tqx� trpxq for t P r0, 1s;

then Sµt �
³
htpxq b htpxqdµpxq, with µt � phtq#µ.

Proposition 2.27. Given two such probabilistic frames, there exists a set N with

µpNq � 0 such that ht is injective for all t P r0, 1s on supppµqzN .

Proof. Given x, y P RdzN , with N as defined in Lemma 2.25, suppose htpxq � htpyq

for some t P r0, 1s. Then, since:

0 � xhtpxq � htpyq , x� y y

� xp1 � tqpx� yq � tprpxq � rpyqq , x� y y

� p1 � tq}x� y }2 � txrpxq � rpyq , x� y y
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it follows that

xrpxq � rpyq , x� y y � t� 1

t
}x� y }2.

This implies that xrpxq�rpyq , x�y y ¤ 0. However, from the proposition above, we

also know that xrpxq � rpyq , x� y y ¥ 0. Therefore }x� y } � 0, and ht is injective

on N .

For the next result, we shall need the following lemma from [24, Theorem 3.3],

which builds on the results in [11].

Lemma 2.28. Regularity Result, [24, Theorem 3.3] Let µ, ν P P r
2 pRdq, and let r

be the unique optimal transport map relative to the cost cpx, yq � }x�y }2
2

. Define

densities such that dµpxq � fpxqdx, dνpxq � gpxqdx. Let

X � tx P Rd : fpxq ¡ 0u, Y � tx P Rd : gpxq ¡ 0u

be two bounded open sets. Then if f and g are bounded away from zero and infinity

on X and Y , and Y is convex, it follows that r is continuous.

Corollary 2.29. Let µ, ν P P r
2 pRdq, and let r be the unique optimal transport map

relative to the cost cpx, yq � }x�y }2
2

. Then if µ and ν are supported on bounded

convex subsets of Rd, r is continuous.

In general, regularity results swiftly become more complicated as the under-

lying space changes or the cost functional become less friendly. We note that if

we relax the convexity requirement on Y , then we obtain regularity up to sets of

measure zero in X and Y ( [25], Theorem 1.3). The purpose of the inclusion of this
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information is simply to show that the conditions of the following theorem can be

met.

Theorem 2.30. Let µ, ν P P r
2 pRdq, and let r be the unique optimal transport map

relative to the cost cpx, yq � }x�y }2
2

. Let N be the set of measure zero define in

Proposition 2.27 If r is continuous, and if supppµqzN contains an open set, then

every geodesic measure µt is a probabilistic frame.

Proof. Now, since r is continuous and, by proposition 2.27, monotone outside a set

N of measure zero, so is ht for each t. Let x0 P supppµqzN . First, we show that for

any ε ¡ 0, h�1
t pBεphtpx0qqq contains an open set containing x0.

Since ht is continuous at any such x0, given ε ¡ 0, there exists δ ¡ 0 such that

@x P Bδpx0q, }htpxq � htpx0q }   ε. Hence for any x P Bδpx0q, x P h�1
t pBεphtpx0qqq–

i.e., Bδpx0q � h�1
t pBεphtpx0qqq.

Then @x0 P supppµqzN , consider B 1
k
phtpx0qq:

µtpB 1
k
phtpx0qqq �

»
1�

B 1
k
phtpx0qq

�phtpyqqdµpyq

�
»
1�

h�1
t pB 1

k
phtpx0qqq

�dµpyq

� µph�1
t pB 1

k
phtpx0qqqq

¡ 0

where the last inequality holds since x0 P supppµq and, as shown above, h�1
t pB 1

k
phtpx0qqqq

contains an open set containing x0. Thus, we have shown that for any k P N, the

open ball of radius 1
k

around htpx0q has positive µt-measure, and therefore htpx0q

lies in supppµtq. Thus htpsupppµqzNq � supppµtq.
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Therefore, since ht is injective and continuous on supppµqzN and by assump-

tion, there exists open set U � supppµqzN , by invariance of domain, htpUq �

supppµtq is open, and therefore ht#µ has support which spans Rd.

37



Chapter 3

Duality, Analysis, and Synthesis

3.1 Duality

In this chapter, we explore the familiar concept of duality, analysis, and syn-

thesis that are well-understood in finite frame theory, using the extra flexibility of

the probabilistic setting to extend their definitions. The key ideas, results, and ex-

amples may be found in Definition 3.1, Proposition 3.16, Definition 3.27, and the

examples.

3.1.1 Definition of Duality and Properties

Definition 3.1. Given a probabilistic frame µ for Rd, we define the set of transport

duals to µ to be

Dµ :�
$&
%ν P P2pRdq

��� Dγ P Γpµ, νq with

¼
Rd�Rd

xyJdγpx, yq � I

,.
- .

We denote the set of joint distributions on Rd�Rd with first marginal µ (π1
#γ � µ)

for which
´

Rd�Rd xy
Jdγpx, yq � I by ΓDµ.

The restriction of the set of transport duals Dµ to lie inside P2pRdq is necessary,

unlike in the finite frame case. One might consider the following simple example:

Example 3.1. Let teiudi�1 � Rd denote the standard orthonormal basis. Let tϕiud�1
i�1

be given by ϕi �
?
i2iei, i P t1, � � � , du, and let ϕd�1 � 0. Take the weights αi �
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1
2i
, i P N, and let α0 � 1 �

d°
i�1

1
2i
. Define

µ1 � α0δ0 �
ḑ

i�1

αiδϕi .

Let tψiu8i�1 be given by ψi �
b

2i

i
erpi�1q mod dq�1s, i P N. Let

µ2 �
8̧

i�1

αiδψi .

Then µ1 P P2pRdq, but

M2
2 pµ2q �

8̧

i�1

1

2i
}ψi }2 �

8̧

i�1

1

2i
2i

i
� 8.

Hence, µ2 R P2pRdq. However, letting γ P P pRd � Rdq be given by

γ �
ḑ

i�1

αiδpϕi,ψiq �
8̧

i�d�1

αiδpϕi,0q,

it is clear that γ P Γpµ1, µ2q, and

¼
Rd�Rd

xyJdγpx, yq �
ḑ

i�1

1

2i

?
i2i

c
2i

i
eie

J
i � I.

However, once we have this Bessel-like restriction on the class of transport

duals, we can assert the following proposition:

Proposition 3.2. Let µ be a probabilistic frame, and take ν P Dµ. Then ν is also a

probabilistic frame.

Proof. Since Dµ � P2pRdq by definition, it is sufficient to show that supppνq spans

Rd. Let us assume the contrary. There exists some γ P Γpµ, νq such that
´
xyJdγpx, yq �

I. Suppose there exists z P Rd, z � 0, such that z K w for all w P spanpsupppνqq.

Then for all x P supppνq, zJx � 0. Then

}z }2 �
¼

xz , x yxz , y ydγpx, yq
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�
¼

xz , x yxz , y y1rsupppνq�Rdspx, yqdγpx, yq

� 0

Thus, by contradiction we have our result.

Remark 3.3. The transport plan for the canonical dual to a probabilistic frame is

γ � pι� S�1
µ q#µ,

i.e., ¼
Rd�Rd

xyJdγpx, yq �
¼

Rd�Rd

xpS�1
µ xqJdµpxq � SµS

�1
µ � I.

This was the only type of duality defined in [29–31].

Proposition 3.4. Given µ P PFpRdq, Dµ is a closed subset of P2pRdq with respect

to the weak topology.

Proof. Let µ P PFpRdq. Suppose νn is a sequence of duals to µ converging weakly to

some ν in P2pRdq. Let P :� tνnunPN Y tνu and Q :� tµu. Then P and Q are tight,

so ΓpP,Qq is tight in P2pRd �Rdq and therefore precompact for the weak topology.

Let tγnu be a sequence of joint measures yielding the duality. Since tγnu � ΓpP,Qq,

there exists a subsequence tγnku converging weakly in P2pRd�Rdq to some γ. First,

we show that γ P Γpµ, νq: For all ϕ P CbpRd � Rdq,
¼

ϕpx, yqdγnkpx, yq ÝÑ
¼

ϕpx, yqdγpx, yq.

In particular, for all ψ P CbpRdq,
¼

ψpxqdγnkpx, yq ÝÑ
¼

ψpxqdγpx, yq
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and ¼
ψpyqdγnkpx, yq ÝÑ

¼
ψpyqdγpx, yq.

But since for all k,
´
ψpxqdγnkpx, yq �

³
ψpxqdµpxq, it follows that

¼
ψpxqdγpx, yq �

»
ψpxqdµpxq,

so π1#γ � µ. Similarly, for all k, π2#γnk � νnk , and

lim
k

¼
ψpyqdγnkpx, yq � lim

k

»
ψpyqdνnkpyq

and since tνnu is a weakly convergent sequence, νnk
wÝÑ ν, passing to the limit on

both sides, ¼
ψpyqdγpx, yq �

»
ψpyqdνpyq.

Thus, γ P Γpµ, νq

Then, for all ϕ P CpRd � Rdq satisfying for some C ¡ 0 |ϕpx, yq| ¤ Cp1 �

}x }2 � }y }2q, ¼
ϕpx, yqdγnkpx, yq ÝÑ

¼
ϕpx, yqdγpx, yq.

Since |xiyj| ¤ 1
2
p}x }2 � }y }2q, it follows that

¼
xiyjdγnkpx, yq ÝÑ

¼
xiyjdγpx, yq.

Then, since for each nk,
´
xiyjdγnkpx, yq � δi,j, it follows that

´
xiyjdγpx, yq � δi,j,

and therefore ν P Dµ.

As a corollary we have:

Proposition 3.5. Given µ P PFpRdq, Dµ is a closed subset of PFpRdq with respect

to the weak topology on P2pRdq.
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Proof. Given the above result about the closedness of Dµ in P2pRdq, this follows fom

Proposition 3.2.

Using Proposition 3.1.1, we can then prove weak compactness of the set of

transport duals.

Theorem 3.6. Given µ P PFpRdq, Dµ is a compact subset of P2pRdq with respect

to the weak topology.

Proof. Consider the lifting of the dual set, ΓDµ :� tγ P Γpµ, νq s.t.
´
xyJdγpx, yq �

Iu. Since tµu is tight, given ε ¡ 0, there exists a compact set Kε � Rd such that

³
Kε
dµ   ε. Then, given any compact set L � Rd, Kε � L is compact, and for all

γ P ΓDµ, ¼
Kε�L

dγ ¤
¼

Kε�Rd

dγ �
»
Kε

dµ   ε.

Therefore, ΓDµ is tight and hence by Prokhorov is precompact. That is, given tγnu �

ΓDµ, there exists a subsequence tγnku converging weakly to a limit γ P P2pRd�Rdq.

With this in mind, if tνnu is a sequence in Dµ, choose the corresponding tγnu, and

let νnk � π2
#γnk . For all ϕ P CbpRd � Rdq, ´ ϕpx, yqdγnk ÝÑ

´
ϕpx, yqdγpx, yq. In

particular, for all ϕ P CbpRdq,
¼

ϕpxqdγnkpx, yq �
»
ϕpxqdνnkpxq ÝÑ

¼
ϕpxqdγpx, yq �

»
ϕpxqdpπ2

#γqpxq.

Thus νnk
wÝÑ π2

#γ, so that tνnu contains a weakly convergent subsequence.

Therefore Dµ is precompact, and since it is also closed, it follows that it is compact.
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3.1.2 Deterministic Couplings for Duality

We recall from Chapter 1 that probabilistic frames form a subclass of the set

of continuous frames for Rd. However, as we have seen above, we can broaden our

approach to how duality is induced. In some cases, there exists a clear deterministic

coupling which induces duality. Generalizing the set of duals for discrete frames

outlined in [20, Theorem 5.6.5], we have the following construction:

Theorem 3.7. Let µ be a probabilistic frame for Rd, and let h : Rd Ñ Rd be any

function in L2pµ,Rdq. Define ψh : Rd Ñ Rd by ψhpxq � x�hpxq�³RdxS�1
µ x , y yhpyqdµpyq.

Then ψh#µ P Dµ.

Proof. Consider µ, ψh#µ as above. Define γ :� pι, ψhq#µ P Γpµ, ψh#µq. Then

¼
Rd�Rd

xyJdγpx, yq �
»
Rd
x

�
x� hpxq �

»
Rd
xS�1

µ x , z yhpzqdµpzq
�J
dµpxq

� I �
»
Rd
xhpxqJ �

¼
Rd�Rd

xpS�1
µ xqJzhpzqJdµpxqdµpzq

� I

Remark 3.8. However, all transport duals cannot be constructed this way. Let

µ P P2pRdq be a probabilistic frame which is the first marginal of the standard

normal probability measure η on Rd�Rd. Let ν be the second marginal of η, so that

ν P Dµ. Then the support of η is all of Rd�Rd; in particular, η is not supported on

a curve in Rd � Rd, so that there does not exist a mapping T : Rd Ñ Rd such that

pι, T q#µ � η, even though, clearly, η P ΓDµ.
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3.2 Constructions of Discrete Transport Duals and Fusion Frames

In what follows, we shall construct transport duals for discrete probabilistic

frames which generalize the case of finite frame theory. From Definition 3.1, it is

clear that the construction of a transport dual depends on the construction of a

probability distribution on the product space with predetermined second-moments

matrix and first and second marginals. In the finite case, these joint distributions

will correspond to the set of matrices defined in the next section.

3.2.1 Doubly-Stochastic Matrices

Definition 3.9. Let DSpM,Nq denote the set of matrices A P RM�N satisfying$'''''''''&
'''''''''%

ai,j ¥ 0 @i, j
M°
i�1

ai,j � 1
N

@j
N°
j�1

ai,j � 1
M

@i.

Remark 3.10. Given A P DSpM,Nq, we have N � M � 1 linear constraints on

the entries of A, yielding an affine subspace of dimension MN � N � M � 1 �

pN � 1qpM � 1q.

Remark 3.11. At times, we may explicitly relax Definition 3.9 to allow
M°
i�1

ai,j � αj

and
N°
j�1

ai,j � βi where
N°
j�1

αj �
M°
i�1

βi � 1. In what follows, we choose the stricter

definition unless otherwise noted.
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Consider A P DSpM,Nq. Let

A0 �

�
�������

1
MN

� � � 1
MN

...
. . .

...

1
MN

� � � 1
MN

�
�������

and let tEi,juM,N
i,j�1 denote the set of elementary M �N matrices which have ei,j � 1

and zero in all other places. Then A can be decomposed as

A � A0 �
M̧

i�1

Ņ

j�1

λi,jEi,j,

where

λi,j ¥ � 1

MN
and

M̧

i�1

λi,j �
Ņ

j�1

λi,j � 0.

Together, these constraints imply that λi,j P r� 1
MN

, 1
MN

mintN � 1,M � 1us.

Then given two frames tϕiuNi�1 and tψjuMj�1 with analysis operators Φ and Ψ,

to show that µΨ P DµΦ
, one must construct a matrix A P DSpM,Nq solving:

pΨJAΦqk,l �
Ņ

j�1

M̧

i�1

Ψi,kΦj,lp 1

MN
� λi,jq

� δk,l

3.2.2 Construction of Transport Duals

The previous section begs two questions:

A Given frames tϕiuNi�1 and tψjuMj�1 for Rd with analysis operators Φ and Ψ,

under what conditions on Φ and Ψ can we construct A P DSpM,Nq with

ΨJAΦ � I.
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B Given a frame Φ, what conditions on A P DSpM,Nq guarantee that there

exists a frame Ψ such that ΨJAΦ � I.

Remark 3.12. Clearly, a necessary and sufficient condition to answer question B is

that rankpAΦq � d, but this is very general. If M ¥ N, then a sufficient condition

is simply that rankpAq � N ; in this case rankpAΦq is guaranteed to be d [42].

To guarantee the existence of such a Ψ, it is sufficient to require that some subset

of the rows of AΦ of cardinality d is linearly independent. That is, for some I �

ti1, ..., idu � t1, ...,Mu, given any tλkudk�1 not identically zero,

ḑ

k�1

λk

Ņ

j�1

aik,jϕ
J
j �

Ņ

j�1

ϕJj

ḑ

k�1

λkaik,j � 0.

Thus, if we choose a subset J � tj1, ..., jdu � t1, ..., Nu such that tϕjujPJ is linearly

independent and then choose a set I of row indices as above, any A P DSpM,Nq

satisfying ai,j � 0 for all i P I, j P t1, ..., NuzJ will be a transport plan inducing

duality between tϕiuNi�1 and the columns of any generalized inverse of AΦ.

Given such a frame tϕiuNi�1, let NΦ denote the number of distinct linearly

independent subsets of the frame vectors of cardinality d. (If the frame is full spark,

then NΦ � �
N
d

�
.) There will then be

�
M
d

�
NΦ sets of entries of A to zero out in order

to guarantee that A is a duality-inducing transport plan.

Theorem 3.13. If tψiuNi�1 � Rd has centroid zero, then it has no transport dual of

cardinality d.

Proof. Suppose that a frame tψiuNi�1 � Rd has centroid zero. Recall that, given

tuiudi�1, tviudi�1 � RN , x�d
i�1 ui ,

�d
j�1 vj y :� detprxui , vj ysq.
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Let tvjudj�1 � RN denote the columns of Ψ, the analysis operator for our

frame, and let tuiudi�1 � RN denote the rows of A, where A P DSpd,Nq in the strict

sense of Definition 3.9. tψiuNi�1 will have a transport dual of cardinality d if and

only if for some A, AΨ � rrxui , vj yss is invertible. Recall that each ui � a0 � λi,

where a0 � r 1
Nd

� � � 1
Nd
sJ,

Ņ

k�1

λik � 0 for each i P t1, ..., du
ḑ

i�1

λik � 0 for each k P t1, ..., Nu (3.1)

Then

d©
i�1

ui � pa0 � λ1q ^ pa0 � λ2q ^ � � � ^ pa0 � λdq

� a0 ^ λ2 ^ � � � ^ λd � λ1 ^ a0 ^ λ3 ^ � � � ^ λd � � � �

� λ1 ^ � � � ^ λd�1 ^ a0 � λ1 ^ � � � ^ λd.

Because of the zero-centroid condition, @j P t1, ..., du
N°
k�1

vkj � 0, and it follows

that xa0 , vj y � 0 for each j P t1, ..., du. Therefore,

detprrxui , vj yssq � x
d©
i�1

ui ,
d©
j�1

vj y

� xλ1 ^ � � � ^ λd , vi ^ ...^ vd y

� 0

where the last equality follows from equation (3.1)–i.e., the fact that the tλiudi�1 are

linearly dependent.

Corollary 3.14. In particular, Theorem 3.13 implies that no equiangular tight

frame in R2 has a transport dual of cardinality 2.
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3.2.3 Relationship to Fusion Frames

Consider the following generalization of finite frames:

Definition 3.15. [9, Definition 2.2] Let I be an index set, let tWiuiPI be a family

of closed subspaces of Rd, and let tviuiPI be a family of positive weights. Let Pi

denote the orthogonal projection onto Wi. Then tpWi, viquiPI is a fusion frame for

Rd if there exist 0   C ¤ D   8 such that for all x P Rd,

C}x }2 ¤
¸
iPI
v2
i }Pix }2 ¤ D}x }2

First introduced as “frames of subspaces” in [19], fusion frames are designed

to formalize a signal processing or measurement scheme in which the analysis of a

signal must be performed in a distributed way, either because of the dimension of

the problem or because the measurement system is not centralized, as is the case

for a wireless sensor network. Some reconstruction can and must be done locally,

and the results of that distributed processing, which will be of smaller dimension

than the original signal, pieced back together in a meaningful way at the end of the

process. From a frame theory perspective, one considers the projections of the signal

onto a series of overlapping, possibly nonorthogonal ( [12]) subspaces and formulates

sufficient conditions on a recombination scheme for perfect reconstruction from the

sets of coefficients derived from those projections to be achievable. It turns out that

by simply using transport plans between discrete probabilistic frames with supports

of different cardinalities, we can construct objects similar to fusion frames.

In general, if Ψ is a transport dual to Φ via A P DSpM,Nq, one can decompose

the set t1, ...,Mu into disjoint subsets I1, ..., Ir and t1, ..., Nu into J1, ..., Js. Then
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one may write

I �
ŗ

k�1

ş

l�1

¸
iPIk

¸
jPJl

ai,jψiϕ
J
j .

If A is block diagonal (i.e., r � s and ai,j � 0 for i P Ik, j P Jl if k � l), then one

has

I �
ŗ

k�1

¸
iPIk

¸
jPJk

ai,jψiϕ
J
j (3.2)

This leads us to the following decomposition:

Proposition 3.16. If we allow the relaxed definition of DSpM,Nq, as in Remark

3.11, then the frame operator of any fusion frame can be decomposed as a coupling

of two discrete probabilistic frames.

Proof. Given a fusion frame tpWk, vkqurk�1 for Rd, its analysis operator is T : Rd Ñ
r°

k�1

`Wk given by T pxq � tvkPkpxqurk�1, where Pk is an orthogonal projector onto

Wk. Its synthesis operator is T ptxkurk�1q �
r°

k�1

vkxk, and its frame operator is given

by Spxq �
r°

k�1

v2
kPkpxq. Let Ψ̂J

k Φ̂k � Pk be a decomposition for each projection

operator, so that tϕ̂kj , ψ̂kj unkj�1 is a frame/dual-frame pair for Wk. Let
r°

k�1

wr � 1 for

some arbitrary positive sequence. Then define ϕkj � vk
b

nk
wk
ϕ̂kj and ψkj � vk

b
nk
wk
ψ̂kj

for all j P t1, ..., nku,

k P t1, ..., ru. Let N �
r°

k�1

nr, and define A P RN�N by

A �

�
�����������

A1 0 � � � 0

0 A2 � � � 0

... � � � . . .
...

0 0 � � � Ar

�
�����������
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where Aki,j � wk
nk
δi,j. Note that A is doubly stochastic in the relaxed sense, and if we

choose wr � nr
N
, then it is doubly stochastic in the stricter sense, as well. Then with

ΨJ �
�
ψ1

1 � � � ψ1
n1

ψ2
1 � � � ψ2

n2
� � � ψr1 � � � ψrnr

�

and Φ defined similarly,

ΨJAΦ �
ŗ

k�1

ΨJ
kAkΦk

�
ŗ

k�1

wk
nk

�
vk

c
nk
wk


2

Ψ̂J
k Φ̂k

�
ŗ

k�1

v2
kPk

Remark 3.17. To do reconstruction with fusion frames, one would in general still

have to invert the fusion frame operator and apply the inversion to each subspace.

We can speculate, however, that an efficient reconstruction scheme for dis-

tributed processing could be devised using a cleverly constructed fusion-like trans-

port duals. Given a set of subspaces tWkurk�1 of Rd, one would choose frames for

those subspaces ttϕkj unkj�1urk�1. LettingN � °r
k�1 nk, one would choose a set tmkurk�1,

with 0   mk ¤ nk for each k, and a positive sequence wk with
r°

k�1

wk � 1.

Then, one would define a block matrix A as above with
mk°
i�1

aki,j � wr
nr

and

nk°
j�1

aki,j � wr
mr

for each k. One could use the constraints outlined in Remark 3.12 to

guarantee that AΦ would have a generalized inverse ΦJ and form the columns of

such an inverse into dual frames for the subspaces ttψki umki�1urk�1.

If M   rd, this could model a reconstruction algorithm for a distributed sensor

network, doing a partial local reconstruction if a signal x at each of r sensors using
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ArΦrx and transmitting the result to reconstruct fully with Ψ, which might require

sending fewer bits than doing a full reconstruction on each subspace v2
kS

�1Pkpxq

and transmitting the result.

3.2.4 Decomposition of Full Rank Matrices

Finally, we have the following interesting result about decompositions of full-

rank matrices in Rd�N in terms of doubly-stochastic matrices. This resulted from

an attempt to answer question A, which still remains open.

Proposition 3.18. Given a full-rank matrix B P Rd�N , where d ¤ N, B can always

be decomposed as B � UAF, where U P Rd�d is a unitary matrix, A P DSpd,Nq,

and F P RN�N is nonsingular.

Proof. Take B as above, and consider its singular value decomposition B � UDV J.

Since rkpBq � d, D P Rd�N is of the form:

D �
�

Λ 0

�

where

Λi,j �

$'''&
'''%
σi for i � j

0 otherwise

where tσiudi�1 are the singular values of B. Then let

T �

�
�����������

1
Nσ1

� � � 1
Nσ1

d
N

Λ�1 ...
. . .

...

1
Nσd

� � � 1
Nσd

0 T�1
0

�
�����������
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with T�1
0 the inverse of some pN � dq � pN � dq real matrix T0. Then, letting R0

denote the upper-right block of T, i.e.,

R0 �

�
�������

1
Nσ1

� � � 1
Nσ1

...
. . .

...

1
Nσd

� � � 1
Nσd

�
�������

we construct:

T�1 �

�
���
N
d

Λ �N
d

ΛR0T0

0 T0

�
���

Letting A � DT, we note that A P DSpd,Nq, and letting F � T�1V J, we note that

F is nonsingular. Therefore,

B � UDV J � UDTT�1V J � UAF.

3.3 Analysis and Synthesis

By now, we have made use many times of the analysis and synthesis opera-

tors which are the backbone of finite frame theory. However, our construction of

transport duals suggests that for probabilistic frames, a more probability-theoretic

definition of analysis and synthesis may be called for.

In [29–31], the analysis and synthesis operators are defined in a manner similar

to that of continuous frames. To wit, we quote:

Definition 3.19. Analysis and Synthesis, [30, 2.2] Given a probabilistic frame µ,

its analysis operator is Aµ : Rd Ñ L2pµ,Rdq given by x ÞÑ xx , � y. Its synthesis

operator is A�
µ : L2pµ,Rdq Ñ Rd given by f ÞÑ ³

Rd xfpxqdµpxq.
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As defined here, the analysis operator Aµ is independent of the measure µ.

Indeed, it is not clear from this definition how one could do “analysis” with one

probabilistic frame and “synthesis” with another. However, finite frame theory itself

gives us a clue about how to think about analysis and synthesis in the probabilistic

context.

Example 3.2. Consider two frames for Rd, tϕiuNi�1 and tψiuNi�1. Let teiuNi�1 � RN

be an orthonormal basis for RN . Then the analysis operator for Φ, AΦ : Rd Ñ RN

given by

AΦpxq � Φx �
Ņ

i�1

xϕi , x yei for x P Rd.

The synthesis operator for Ψ, A�
Ψ : RN Ñ Rd, is given by

A�
Ψpyq � ΨJy �

Ņ

i�1

xy , ei yψi for y P RN .

Then we can compose the operators simply by writing A�
ΨAΦpxq �

N°
i�1

xϕi , x yψi. If,

however, we choose some σ and π in SN , and instead choose to do analysis and

synthesis with the two frames as

A�
ΨAΦpxq �

Ņ

i�1

xϕσpiq , x yψπpiq,

then it will be as if we had chosen two different finite frames to work with. This

is because the ordering of the frame vectors is implicitly tied to the ordering of the

reference basis teiuNi�1.

In what follows, we shall generalize this idea of a reference ordering through

the use of disintegration of measure–the construction of conditional probabilities
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with respect to some reference measure. The orthogonality of the reference basis in

the above example will turn out not to be crucial; its function is to match up frame

coefficients with the appropriate vectors. What will be crucial is that transport

plans exist between the probabilistic frame and the reference measure and that no

information be lost in the encoding. For this reason, we will use reference measures

that are absolutely continuous probabilistic frames, except in the discrete case, where

we will simply need a reference measure with enough elements in its support to define

a transport plan between finite frames of interest.

3.3.1 Measure-Valued Maps and Disintegration

To make this idea of coefficient-matching rigorous, we shall use some ideas

from machinery from probability theory.

Remark 3.20. First, we note that for brevity we will sometimes use the expected

value notation in place of integral notation in what follows, i.e., for a measure η and

a function f P L1pηq, we will write:

Eηpfq �
»
fpwqdη.

We start with conditional probabilities. Let X ,Y be separable metric spaces;

following [2, Section 5.3], we define:

Definition 3.21. Let x P X ÞÑ µx P P pYq be a measure-valued map. Then µx is

Borel if x ÞÑ µxpBq is a Borel map for any Borel set B P BpYq.

With this in hand, we recall the following key result on disintegration, origi-

nally attributed to Rokhlin:
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Lemma 3.22. [2, Theorem 5.3.1] Let X , X be Radon separable metric spaces (i.e.,

having every Borel probability measure inner regular), µ P P pX q, and π : X Ñ X

a Borel map.

Let ν � π#µ P P pX q. Then there exists a ν-a.e. uniquely determined Borel

family of probability measures tµxuxPX � P pX q such that

µxpXzπ�1pxqq � 0

for ν-a.e. x P X , and for every Borel map f : X Ñ r0,�8s,

»
X
fpxqdµpxq �

»
X

�»
π�1pxq

fpxqdµxpxq


dνpxq.

Remark 3.23. [2, p.122] In particular, if X � X �Y , µ P P pX �Yq, ν � µ1 � π1
#µ,

then one can canonically identify each fiber pπ1q�1pxq with Y and find a Borel family

of probability measures tµxuxPX � P pYq which is µ1-a.e. uniquely determined such

that µ � ³
X µxdµ

1pxq.

That is, for any f P CbpX � Yq, we can write

¼
X�Y

fpx, yqdµpx, yq �
»
X

»
Y
fpx, yqdµpy|xqdµ1pxq.

Secondly, we have the following result about gluings, which we state in its full

generality. We note that a Radon space is a separable metric space on which every

Borel probability measure is inner regular, so that Rd is certainly within its purview:

Lemma 3.24. Gluing Lemma [2, Lemma 5.3.2] Let X1,X2,X3 be Radon separable

metric spaces and let γ12 P P pX1�X2q, γ13 P P pX1�X3q such that π1
#γ

12 � π1
#γ

13 �

µ1. Then there exists µ P P pX1 � X2 � X3q such that π1,2
# µ � γ12 and π1,3

# µ � γ13.
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Moreover, if γ12 � ³
γ12
x1
dµ1, γ13 � ³

γ13
x1
dµ1, and µ � ³

µx1
dµ1 are the disinte-

grations of γ12, γ13, and µ with respect to µ1, then the first statement is equivalent

to µx1
P Γpγ12

x1
, γ13

x1
q � P pX2,X3q for µ1-a.e. x1 P X1.

3.3.2 Construction of Analysis and Synthesis Operators

From Lemma 3.24, we know that given µ, η P PFpRdq and γ P Γpµ, ηq, we have

set of conditional probability measures tγp�|wquwPRd that are uniquely defined η-a.e.

such that for any test function f P CbpRd � Rdq,
¼

Rd�Rd

fpy, wqdγpy, wq �
»
Rd

�»
Rd
fpy, wqdγpy|wq



dηpwq.

Proposition 3.25. If f P L2pRd�Rd, γq, it follows that gpwq :� ³
Rd fpy, wqdγpy|wq

is in L2pRd, ηq.

Proof. By conditional Jensen’s inequality,

» �»
fpy, wqdγpy|wq


2

dηpwq ¤
¼

f 2py, wqdγpy|wqdηpwq

�
¼

f 2py, wqdγpy, wq

� }f }2
L2pRd�Rd,γq

  8.

Remark 3.26. In particular, if fpy, wq � xx , y y for some x P Rd, then

}f }L2pRd�Rd,γq ¤ }x }2M2
2 pµq.
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Now we are ready to construct analysis and synthesis operators which are truly

tied to their probabilistic frames, as suggested in the introduction to this section.

Definition 3.27. Given µ P PFpRdq, choose a reference measure η P PFpRdq which

is absolutely continuous with respect to Lebesgue measure. Then we define the

analysis and synthesis operators for µ with respect to η.

The analysis operator, Aµ : Rd � Γpµ, ηq Ñ L2pRd, ηq, is given by

Aµpx, γqpwq �
»
Rd
xx , y ydγpy|wq.

Noting that hpz, wq :� }z } P L2pγq for any γ P Γpµ, ηq provided that µ P P2pRdq,

the vector-valued function
³
zdγpz|wq lies in L2pηq. Therefore, we can define the

synthesis operator, Zµ : L2ppRdq, ηq � Γpµ, ηq Ñ Rd, is given by

Zµpf, γq �
¼

Rd�Rd

zfpwqdγpz|wqdηpwq

� Eη

�
fpwq

»
Rd
zdγpz|wq

�

�
B
fpwq ,

»
Rd
zdγpz|wq

F
L2pηq

3.3.3 Adjoints and Composition

Given µ, ν P PFpRdq, and a fixed reference measure η as above, we write,

somewhat formally,

Z�
ν pTµpx, γq, ξq �

½
xx , y yzdγpy|wqdξpz|wqdηpwq,

knowing that a gluing ζ P P2pRd � Rd � Rdq exists with the marginals satisfying

π1,2
# ζ � γ and π3,2

# ζ � ξ and marginal conditional probabilities agreeing with the

versions we chose η-a.e.
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Then, given v, x P Rd,

xv , ZνpAµpx, γq, ξq y �
½

Rd�Rd�Rd

xx , y yxz , v ydγpy|wqdξpz|wqdηpwq

� xZµpAνpv, ξq, γq , x y

� xAνpv, ξq , Aµpx, γq yL2pηq

Similarly, we can define for f P L2pRd, ηq,

AµpZνpf, ξq, γq �
½

Rd�Rd�Rd

xy , z yfpuqdξpz|uqdηpuqdγpy|wq

�
½

Rd�Rd�Rd

xy , z yfpuqdξpz, wqdγpy|wq

Then, given f, g P L2pRd, ηq,

xg , AµpZνpf, ξq, γq yL2pηq �
½

Rd�Rd�Rd

xy , z yfpuqgpwqdξpz|uqdηpuqdγpy|wqdηpwq

� xZµpg, γq , Zνpf, ξq y

� xAνpZµpg, γq, ξq , f yL2pηq

We have the next result concerning the continuity of this construction:

Proposition 3.28. Let µ P PFpRdq and fix a reference measure η and γ P Γpµ, ηq.

Then x ÞÑ Aµp�, γq is continuous in its first argument; in fact, it is Lipschitz.

Proof. The key point in the proof is again conditional Jensen.

}Aµpx1, γq � Aµpx2, γq }2
L2pηq �

»
Rd

�»
Rd
xx1 � x2 , y ydγpy|wq


2

dηpwq

¤
¼

Rd�Rd

xx1 � x2 , y y2dγpy, wq
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�
»
Rd
xx1 � x2 , y y2dµpyq

¤ }x1 � x2 }2M2
2 pµq

3.3.4 Examples of Analysis/Synthesis Pairings

As a preliminary, we discuss the transport of an absolutely continuous measure

to a discrete measure using power (Voronoi) cells, following [43].

Definition 3.29. Given a probability measure µ on Rd, a finite set P of points in

Rd and w : P Ñ R� a weight vector, the power diagram or weighted Voronoi

diagram of pP,wq is a decomposition of Rd into cells corresponding to each member

of P . A point x belongs to VorwP ppq if and only if for every q P P ,

}x� p }2 � wppq ¤ }x� q }2 � wpqq.

Definition 3.30. Call the application TwP which maps every point x in a power cell

VorwP ppq to the “center” of that power cell p, the weighted Voronoi mapping. Then

TwP |#µ �
¸
pPP

µpVorwP ppqqδp.

It is a consequence of some of Brenier’s work, cited in [43, Theorem 1], that

TwP is an optimal transport map between µ and TwP |#µ for the Wasserstein distance

when µ is absolutely continuous with respect to Lebesgue measure.

Definition 3.31. Let η be an absolutely continuous measure in P2pRdq, and let ν

be a discrete measure in P2pRdq supported on a finite set of points P with weights
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tλpu summing to unity. Then we say that a vector weight w : P Ñ R� is adapted

to pη, νq if for all p P P , λp � ηpVorwS ppqq �
³
VorwS ppq dηpxq.

Example 3.3. Now given discrete frames tϕiuMi�1 and tψjuNj�1 for Rd, and η a

reference measure in Definition 3.27, choose γ1 � pι, Tw1
Φ q#η and γ2 � pι, Tw2

Ψ q#η,

where w1 and w2 are adapted to pµΦ, ηq and pµΨ, ηq, respectively. Then

ZµΨ
pAµΦ

px, γ1q, γ2q �
»
xx , Tw1

Φ pyq yTw2
Ψ pyqdηpyq.

Example 3.4. Recovering the old definitions of analysis and synthesis

In the special case M � N , we could choose tαiuNi�1 � Rd and w0 adapted

to pµα, ηq. Then let fΨ : α Ñ Ψ be given by fΨpαiq � ψi, and let fΦ : α Ñ Φ be

similarly defined. Then if γ1 � pι, fΦ � Tw0
α q#η and γ2 � pι, fΨ � Tw0

α q#η, it follows

that

ZµΨ
pAµΦ

px, γ1q, γ2q �
»
xx , fΦ � Tw0

α pyq yfΨ � Tw0
α pyqdηpyq �

Ņ

i�1

xx , ϕi yψi.

Hence, we have recovered the analysis and synthesis operation of finite frames.

Example 3.5. Discrete dual to absolutely continuous probabilistic frame

Finally, let us imagine that η is an absolutely continuous probabilistic frame

for Rd and choose a frame contained in its support, say tψiuNi�1. Let TwΨ be the

transport map between η and µΨ, as constructed above. Choose tϕiuNi�1 to be any

dual to tψiuNi�1, and let f : Ψ Ñ Φ be given by fpψiq � ϕi. Then γ � pι, f �

TwΨ q#η P P2pRd�Rdq is a joint transport plan in Γpη, µΨq such that
´
xyJdγpx, yq �

³
xTwΨ pxqdηpxq � I, so that η and µΨ are dual to one another in PFpRdq.
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Chapter 4

Frame Forces and Gradient Flows

4.1 Introduction

While spanning sets are a dime a dozen, certain frames with specified structure

are in high demand. First among these are, of course, the FUNTFs and the other

equal-norm, tight frames. Examples of this sort of frame for Rd can be constructed

easily, as remarked in [17], by the technique of majorization of matrices, by spectral

tetris methods [18], or by simply using submatrices of the DFT matrix of the correct

dimension. However, these methods produce only a few samples from the nontrivial

manifolds contained in the set of all FUNTFs of sufficiently high cardinality modulo

rotations [28]. For that reason, it might be useful to find methods to “traverse”

the set of frames in a continuous manner in order to find approximations to tight

frames.

In particular, we might also ask: “How close is the nearest FUNTF to a given

frame which is almost tight and almost unit norm?” We state this more precisely

as:

Definition 4.1. The Paulsen Problem

Given a frame Φ � tϕiuNi�1 � Rd and ε ¡ 0, Φ is ε-almost unit norm if

}ϕi } P p1� ε, 1 � εq @i P t1, � � � , Nu
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and ε-almost tight if

p1 � εqA ¤ SΦ ¤ p1 � εqA

in the operator sense for some A ¡ 0. Then the Paulsen Problem is, given δ ¡ 0,

N , and d, to find the largest ε ¡ 0 such that whenever Φ � tϕiuNi�1 is ε-almost tight

and ε-almost unit norm, there is a FUNTF tψiuNi�1 such that

Ņ

i�1

}ϕi � ψi }2 ¤ ε2.

There are multiple approaches to this two-sided problem: identifying the clos-

est FUNTF and calculating a minimum distance to that FUNTF. In [8], the ap-

proach is to start with a tight frame which is almost unit-norm and to solve a

system of ODEs based on a quantity termed the “frame energy.” The solution

maintains the tightness of the starting frame and solves the Paulsen problem in the

case that the number of frame vectors and the dimension of the space are relatively

prime (RP). In [17], an alternate approach is taken; the starting frame is assumed

to be unit-norm, and a discretized gradient descent for the frame potential of [5] is

constructed which maintains the norm of the frame vectors while pushing the frame

toward a tight frame. In [17], the authors can guarantee linear convergence of their

method to a FUNTF provided that either the RP condition holds or that the frames

along the descent are not almost orthogonally partitionable. In [6], the authors con-

sidered a related frame optimization problem based on minimizing a potential tied

to the probability of error in quantum detection. To do so, they constructed a flow

over the set of orthonormal bases in a higher-dimensional space which converged to

a minimum for this quantity and then used Naimark’s theorem to obtain a tight
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frame from this solution. Thus, the idea of using differential calculus to find useful

frames is not new. However, the setting of probabilistic frames in the Wasserstein

space allows the construction of much more general gradient flows for frame po-

tentials because of the sophisticated machinery which has been developed for this

space, which is outlined in brief in the following section. The following sections,

beginning with Section 4.3 then explain its application to probabilstic frames, with

the main results in Theorems 4.29, 4.38, and 4.41.

4.2 Gradient Flows

4.2.1 Transport Equation

The connection between the transport equation and the 2-Wasserstein distance

has been studied for years ( [2,10,32,37]). Indeed, as noted in [4], in Monge’s original

problem ( [44]), there was already an implicit continuum mechanics formulation, and

what is now considered Monge’s problem is the result of a clever elimination of the

time variable. Reintroducing the time variable, as in [4], allows one to use methods

from numerical PDEs to find solutions to the Monge-Kantorovich. However, this

reintroduction of the time variable has much larger implications because the space

P2pRdq is a Polish (separable, complete, metric) space. As a result, much effort

has gone into developing a rich theory of gradient flows on this space, with weak

solutions to flows based on the theory of 2-absolutely continuous curves (e.g. [2,

36]). Tangent spaces can be defined and with them a formal calculus. Many PDEs

can be reformulated as energy minimization problems in this space (e.g., [14, 39]).
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The authors of [36] had in mind the goal of viewing gradient flows on P2pRdq as

Hamiltonian flows and therefore, of necessity, developing a symplectic formalism

for the space. However, a great deal of technical effort is required, in particular

because P2pRdq is a stratified, rather than smooth, manifold [36, Chapter 6]. For

our purposes, the technical basis for weak solutions provided by [2] will be enough,

although we will refer to intuitions and certain reformulations provided by [36].

Definition 4.2. [36, 2.10, Absolutely continuous curves in P2pRdq]

A curve σt : pa, bq Ñ P2pRdq is 2-absolutely continuous if D β P L2ppa, bqq such

that

W2pσt, σsq ¤
» t

s

βpτqdτ for all a   s   t   b.

For such σ P AC2pa, b;P2pRdqq, the metric derivative |σ1|ptq :� limsÑt
W2pσt,σsq

|t�s| exists

for L1-a.e. t P pa, bq.

Definition 4.3. [2, p.169] Let µt be a family of Borel probability measures on Rd

for t P p0, T q and v : px, tq Ñ vtpxq P Rd a Borel velocity field satisfying

» T

0

»
Rd
}vtpxq }dµtpxqdt   8.

Then the continuity equation

Btµt �∇ � pvtµtq � 0 (4.1)

is interpreted in the sense of distributions, i.e. @ϕ P C8
c pRd � p0, T qq,

» T

0

»
Rd
Btϕpx, tq � xvtpxq ,∇xϕpx, tq ydµtpxqdt � 0. (4.2)
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In order to discuss representation of solutions to the continuity equation, we

require the following technical lemma on characteristics which provides us with the

definition of flow.

Lemma 4.4. [2, Lemma 8.1.4] Let vt : pxq � vpx, tq be a Borel vector field such

that for every compactly subset B � Rd,

» T

0

�
sup
B
}vt } � Lippvt, Bq



dt   8 (4.3)

Then, for every x P Rd and s P r0, T s, we let ϕtpx, sq denote the location in Rd at

time t of a trajectory passing through a point x at time s which satisfies the ODE:

ϕspx, sq � x,
d

dt
ϕtpx, sq � vtpϕtpx, sqq. (4.4)

This ODE admits a unique maximal solution defined on an interval Ipx, sq relatively

open in r0, T s and containing s as a point in its relative interior. We say that ϕt is

the flow of vt.

Furthermore, if t ÞÑ |ϕtpx, sq| is bounded on the interior of Ipx, sq, then

Ipx, sq � r0, T s; finally, if v satisfies

S :�
» T

0

psup
Rd

}vt } � Lippvt,Rdqqdt   8

then the flow map ϕt satisfies

» T

0

sup
xPRd

|Btϕtpx, sq|dt ¤ S (4.5)

and

sup
t,sPr0,T s

Lippϕtp�, sq,Rdq ¤ eS (4.6)

When s � 0, write ϕtpxq :� ϕtpx, 0q.
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Having defined a flow for a vector field in terms of characteristics, we can now

address solutions to the continuity equation.

Lemma 4.5. Representation formula for continuity equation, [2, Proposition 8.1.8]

Let µt, t P r0, T s be a narrowly continuous (i.e. continuous in the weak topology)

family of Borel probability measures solving the continuity equation (4.1) with respect

to a Borel vector field vt satisfying equations (4.2) and (4.3). Then for µ0-a.e.

x P Rd, the characteristic system (4.4) admits a globally-defined solution ϕtpxq in

r0, T s, and

µt � pϕtq#µ0 @t P r0, T s (4.7)

Moreover, if for some p ¡ 1,

» T

0

»
Rd
|vtpxq|pdµtpxqdt   8

then the velocity field vt is the time derivative of ϕt in the Lp-sense, i.e.

lim
hÓ0

» T�h

0

»
Rd

��ϕt�hpxq � ϕtpxq
h

� vtpϕtpxqq
��pdµ0pxqdt � 0 (4.8)

and

lim
hÑ0

ϕt�hpx, tq � x

h
� vtpxq in Lppµt;Rdq for L1 � a.e. t P p0, T q (4.9)

Lemma 4.6. Absolutely continuous curves and the continuity equation, [2, Theorem

8.3.1] Let I be an open interval in R, let µt : I Ñ P2pRdq be an absolutely continuous

curve, and let |µ1| P L1pIq be its metric derivative, i.e.

|µ1|ptq :� lim
sÑt

W2pµs, µtq
|s� t| .
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Then there exists a Borel vector field v : px, tq ÞÑ vtpxq such that vt P L2pµt;Rdq with

}vt }L1pµt;Rdq ¤ |µ1|ptq for L1 � a.e. t P I (4.10)

and the continuity equation

Btµt �∇ � pvtµtq � 0 in Rd � I (4.11)

holds in the sense of distributions, i.e.

»
I

»
Rd
pBtψpx, tq � xvtpxq ,∇xψpx, tq yqdµtpxqdt � 0 @ψ P C8

c pRd � Iq (4.12)

Conversely, if a narrowly continuous curve µt : I Ñ P2pRdq satisfies the continuity

equation for some Borel velocity field vt with }vt }L2pµtqRd P L1pIq, then µt : I Ñ

P2pRdq is absolutely continuous and |µ1|ptq ¤ }vt }L2pµt,Rdq for L1�a.e. t P I.

The above lemma is also formulated in [36, Proposition 2.12].

4.2.2 Calculus on P2pRdq

4.2.2.1 Tangent Spaces

Following [36, Section 2.3], let Xc denote the space of compactly-supported,

smooth vector fields on Rd. Let ∇C8
c :� t∇f : f P C8

c u � Xc. For µ P P2pRdq,

let L2pµ,Rdq denote the set of Borel maps X : Rd Ñ Rd such that }X }2
µ �

³
Rd }X }2dµ   8.

Definition 4.7. [2, Definition 8.4.1] Given µ P P2pRdq, let TµP2pRdq denote the

closure of ∇C8
c in L2pµq, the tangent space of P2pRdq at µ. The tangent bundle

T P2pRdq is defined as the union of all such tangent spaces.
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Definition 4.8. [36, Definition 2.6] Given µ P P2pRdq, we define the divergence

operator

divµ : Xc Ñ pC8
c q�

by xdivµpXq , f y :� ³
Rd dfpXqdµ

Lemma 4.9. [2, Lemma 8.4.2] A vector f P L2pµ;Rdq belongs to the tangent cone

TµP2pRdq if and only if

}f � g }L2pµq ¥ }f }L2pµq @g P L2pµq s.t. ∇ � pgµq � 0.

In particular, for every f P L2pµq, there exists a unique πµf P TµP2pRdq in the

equivalence class of f modulo divergence-free vector fields which is the element of

minimal L2-norm in this class, and

»
Rd
xf , g � πµg ydµpxq � 0 @f P TµP2pRdq, g P L2pµq.

It is proved in [36], by Lemma 4.9, that one obtains the orthogonal decompo-

sition:

L2pµq � ∇C8
c

µ `Kerpdivµq

so that one can define the projection πµ : L2pµq Ñ ∇C8
c

µ
.

4.2.2.2 Functionals and Their Subdifferentials

In what follows, we shall explain how the ideas above can be used to create a

calculus for the Wasserstein space. This is the subject of [2, 53].
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Definition 4.10. Let F : P2pRdq Ñ p�8,8s be a functional on the (2-)Wasserstein

space. The the domain of F is DpF q � tµ P P2pRdq : F pµq   8u. A functional

is proper if its domain is nonempty.

Definition 4.11. [36, Definition 4.9] If F : P2pRdq Ñ R is a functional on P2pRdq,

then a function ξ P L2pµq belongs to the subdifferential B�F pµq, which we will

also write as BF pµq, if

F pνq ¥ F pµq � sup
γPΓ0pµ,νq

¼
Rd�Rd

xξpxq , y � x ydγpx, yq � opW2pµ, νqq

as ν Ñ µ. Similarly, ξ belongs to the superdifferential B�F pµq if �ξ P Bp�F qpµq.

If D ξ P B�F pµq
� B�F pµq then for any γ P Γ0pµ, νqq we have:

F pνq � F pµq �
¼

Rd�Rd

xξpxq , y � x ydγpx, yq � opW2pµ, νq. (4.13)

In this case, F is differentiable at µ, and its gradient vector is ∇µF :� πµpξq.

Remark 4.12. To give a concrete example of the meaning of this differential in

P2pRdq, we consider the following two examples of the utility of the gradient given

in [36]: For a differentiable functional F : P2pRdq Ñ R and a compactly supported,

smooth vector field X P ∇C8
c pRdq, with flow ϕt,

a. If νt :� pι� tXq#µ, then

F pνtq � F pµq � t

»
Rd
x∇µF ,X ydµ� optq.

b. If µt :� ϕt#µ and }∇µF } is bounded on compact subsets of P2pRdq, then

F pµtq � F pµq � t

»
Rd
x∇µF ,X ydµ� optq.

That is, the functions t ÞÑ F pνtq and t ÞÑ F pµtq are differentiable.
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The above definition gives an intuition into the nature of these subdifferentials,

but it is technically only correct for absolutely continuous measures; for this reason,

we will give the following more technical definition which holds for a much more

general class of measures and, indeed, can be extended to p-Wasserstein spaces with

p ¡ 2.

Definition 4.13. [2, The strong subdifferential, Definition 10.3.1] Let φ : P2pRdq Ñ

p�8,8s be a proper and lower semi-continuous functional, and let µ1 P Dpφq.

Then γ P P2pRd � Rdq belongs to the extended Fréchet subdifferential Bφpµ1q

if π1
#γ � µ1 and

φpµ3q � φpµ1q ¥ inf
νPΓ0pγ,µ3q

½
xx2 , x3 � x1 ydν � opW2pµ1, µ3qq.

We say that γ P Bφpµ1q is a strong Fréchet subdifferential if for every

ν P Γpγ, µ3q, it satisfies

φpµ3q � φpµ1q ¥
½

xx2 , x3 � x1 ydν � opC2,νpµ1, µ3qq, (4.14)

where C2,νpµ1, µ3q is the pseudo-distance given by the cost

C2
2,νpµ1, µ3q �

½
}x1 � x3 }2dνpx1, x2, x3q.

The following definition was given for functionals on general metric spaces,

but can be made specific to the Wasserstein space:

Definition 4.14. [2, Definition 1.2.4] The metric slope |Bφ|pµq of a functional

φ : P2pRdq : p�8,8s at µ is given by

|Bφ|pµq � lim sup
W2pµ,νqÑ0

pφpµq � φpνqq�
W2pµ, νq , (4.15)
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where u� � maxp0, uq.

Definition 4.15. [2, Regular functionals, Definition 10.3.9] A proper, lower semi-

continuous functional φ : P2pRdq Ñ p�8,8s is regular if whenever the strong

subdifferentials γn P Bφpµnq satisfy:

φpµnq Ñ ϕ P R, µn Ñ µ in P2pRdq,

sup
n
M2pγnq   8, γn Ñ γ in P pRd � Rdq

then γ P Bφpµq, and ϕ � φpµq.

4.2.2.3 Gradient Flows and the Variational Method

Now, the subdifferential Bφpµq of a functional φ at µ in P2pRdq may be multi-

valued. Thus, we define a gradient flow in terms of a differential inclusion:

Definition 4.16. [2, Definition 11.1.1] Given a map µt P AC2
locpp0,8q;P2pRdqq

with vt P TanµtP2pRdq the velocity vector field of µt, µt is a solution of the gradient

flow equation

vt P �Bφpµtq t ¡ 0 (4.16)

if vt belongs to the subdifferential of φ at µt for a.e. t ¡ 0, or, equivalently,

pι,�vtq#µt P Bφpµq for a.e. t ¡ 0.

This may also be expressed as the requirement that there exist a Borel vector

field vt which that vt P TanµtP2pRdq for a.e. t ¡ 0, with }vt }L2pµtq P L2
locpp0,8qq

satisfying the continuity equation in the sense of distributions and satisfying (4.16)

for a.e. t ¡ 0.
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One approach to solving the gradient flow equation in the Wasserstein space is

to draw an analogy with the usual setting of gradient flows on a Riemannian manifold

and perform a time discretization of the steepest descent equation. This scheme was

pioneered by [39], and its convergence is equivalent to the above formulation of the

gradient flow, as laid out in [2, Chapter 11]. To describe this scheme, we will

follow [40] and [2, Chapter 11.1.3].

Definition 4.17. The Minimizing Movement Scheme Assume the following:

A Let φ : P2pRdq Ñ p�8,8s be a proper, lower semicontinuous functional such

that

ν ÞÑ Φpτ, µ; νq :� 1

2τ
W 2

2 pµ, νq � φpνq

admits a minimum point for all τ P p0, τ�q for µ P P2pRdq and some τ� ¡ 0.

Fix a measure µ0 P P2pRdq. Given any step size τ ¡ 0, we can partition p0,8s into

�8
n�1 In, with Inτ :� ppn� 1qτ, nτ s. For a given family of initial values M0

τ such that

Mn
τ Ñ µ0 in P2pRdq , φpM0

τ q Ñ φpµ0q as τ Ó 0

we can define for each τ P p0, τ�q a family of sequences tMn
τ u8n�1 satisfying

Mn
τ � arg min

νPDpφq
Φpτ,Mn�1

τ ; νq,

where the choice of Mn
τ may not be unique, but such a measure will always exist.

Then the piecewise constant interpolant path in P2pRdq,

M τ ptq :�Mn
τ , t P ppn� 1qτ, nτ s,
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is termed the discrete solution. A curve µ will be a Generalized Minimizing

Movement for Φ and µ if there exists a sequence τk Ó 0 such that

M τkptq Ñ µt narrowly in P pRdq for every t ¡ 0, as k Ñ 8.

For µ P Dpφq, by a compactness argument, this solution always exists and is an

absolutely continuous curve µ P AC2
locpr0,8q;P2pRdqq.

As observed by [2] to illustrate the goal of this method, if we can restrict the

domain of the functional φ and its gradient to the regular measures, then we can

define a sequence of optimal transport maps T nτ pushing Mn
τ to Mn�1

τ . Then the

discrete velocity vector can be defined as

V n
τ :� T nτ � ι

τ
P BφpMn

τ q,

which is an implicit Euler discretization of (4.16). The piecewise constant inter-

polant

V τ ptq :� V n
τ for t P ppn� 1qτ, nτ s,

converges distributionally in Rd � p0,8q up to subsequences to a vector field which

solves the continuity equation. The problem which remains is proving that this

vector field is also a solution of (4.16).

For regular functionals, without having to restrict ourselves to the convex case

or to regular measures, it can be shown that this convergence occurs; the following

lemma gives sufficient conditions for this convergence.

Before we state the key lemma, [2, Theorem 11.3.2.], we have the following im-

portant result about strong subdifferentials related to the metric slope of Definition

4.14.
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Lemma 4.18. [2, Theorem 10.3.11] Let φ be a regular functional on P2pRdq sat-

isfying assumption A, and let µ be a point of strong subdifferentiability. Then there

exists a unique plan γ0 P Bφpµq which attains the minimum

|γ0|2,2 � min t|γ|2,2 : γ P Bφpµqu .

Indeed, when, for instance γ0 � pι, ξq#µ, we can choose the barycenter ξ P

L2ppqµq and denote it by the symbol B0φpµq.

Lemma 4.19. [2, Theorem 11.3.2.] Let φ : P2pRdq Ñ p�8,8s be a proper and

lower semicontinuous regular functional with relatively compact sublevel sets. Then

for every initial datum µ0 P Dpφq, each sequence of discrete solutions M τk of the

variational scheme admits a subsequence such that

1. M τkptq narrowly converges in P pRdq to µt locally uniformly in r0,8q, with

µt P AC2
2pr0,8q;P2pRdqq.

2. µt is a solution of the gradient flow equation

vt � �B0φpµtq, }vt }L2pµt;Rdq � |µ1 |ptq, for a.e. t ¡ 0

with µt Ñ µ0 as t Ó 0, where vt is the tangent vector to the curve µt.

3. The energy inequality

» b

a

»
Rd
|vtpxq|2dµtpxqdt� φpµbq ¤ φpµaq

holds for every b P r0,8q and a P r0, bqzN , where N is a L1-negligible subset

of p0,8q.
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4.3 Frame Forces

With the above gradient flow framework established, we can apply it to po-

tentials useful for characterizing probabilistic frames.

4.3.1 The Frame Potential

To begin our discussion of frame forces, we define the frame potential for finite

frames and the analogous quantity for probabilistic frames.

Definition 4.20. Given a probabilistic frame µ, the probabilistic frame poten-

tial for µ is given by

PFP pµq �
¼

Rd�Rd

xx , y y2dµpxqdµpyq (4.17)

As a special case, we define the frame potential for a finite frame, Φ � tϕiuNi�1 �

Rd, by

FP pΦq �
Ņ

i,j�1

xϕi , ϕj y2 � N2PFP pµΦq (4.18)

Remark 4.21. The frame potential is a well-studied object. In their celebrated

paper on finite unit-norm tight frames (FUNTFs), Benedetto and Fickus establish

that, among all unit-norm frames, FUNTFs are the minimizers of equation 4.18

[5]. Because FUNTFs (and tight frames in general) have a multitude of uses in

pure mathematics, statistics, and coding theory, this consequently made the frame

potential a very useful quantity. The frame potential and related potentials are also

studied in the context of spherical t-designs.
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In what follows, we explore several functionals on the space P2pRdq related to

questions in frame theory, starting with the probabilistic frame potential. For equal-

norm frames restricted to spheres, this potential is sufficient to identify tightness.

For more general probabilistic frames, we tweak this to a quantity we term the

tightness potential. We also explore higher-order potentials related to other classes

of tight frames.

4.3.2 Locating tight probabilistic frames

Some further analysis is needed before we can use the frame potential to find

probabilistic tight frames. In the following propositions and lemmas, we narrow our

search space, establish a lower bound on how close the nearest probabilistic tight

frame can be, and show that, as in the finite case, the frame potential is indeed a

crucial quantity in constructing gradient flows that will lead us to tight probabilistic

frames.

In fact, for a given probabilistic frame µ, we have control on the spectrum of

the frame operators of the measures nearby in P2pRdq, as seen in the next result.

Lemma 4.22. Suppose tνnu is a sequence converging to µ in P2pRdq. Then there

exists some positive constant Cµ such that }Sνn � Sµ } ¤ CµW2pµ, νnq. In partic-

ular, convergence of a sequence of measures in the Wasserstein space implies the

convergence of their frame operators.

Proof. Since νn ÝÑ µ in P2pRdq, for n sufficiently large, M2pνnq ¤ 2M2pµq. Then,
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for γn P Γpνn, µq,

}Sνn � Sµ } � max
vPSd�1

vJpSνn � Sµqv

� max
vPSd�1

¼
Rd�Rd

pxx , v y2 � xy , v y2qdγnpx, yq

� max
vPSd�1

¼
Rd�Rd

xv , x� y yxx� y , v ydγnpx, yq

¤ max
vPSd�1

�
� ¼

Rd�Rd

pxv , x� y yq2dγnpx, yq
�



1
2

�
�
� ¼

Rd�Rd

pxv , x� y yq2dγnpx, yq
�



1
2

¤
�
� ¼

Rd�Rd

p}x� y }q2dγnpx, yq
�



1
2

�
�
� ¼

Rd�Rd

p}x� y }q2dγnpx, yq
�



1
2

¤
?

2C2,γnpµ, νnq
�
� ¼

Rd�Rd

}x }2 � }y }2dγnpx, yq
�



1
2

¤
?

2C2,γnpµ, νnq � 3M2pµq

where the last inequality holds for n sufficiently large. In particular, if we choose

γn P Γ0pνn, µq, then for n sufficiently large,

}Sνn � Sµ } ¤
?

2W2pµ, νnq � 3M2pµq (4.19)

This control on the spectrum of the frame operator allows us to prove the

following:

Proposition 4.23. Let tνnu be a sequence converging in P2pRdq to a probabilistic

frame µ. Then there exists N sufficiently large such that @n ¥ N, νn is also a

probabilistic frame.
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Proof. Let tνnu and µ be as above, and let Sνn , Sµ denote the matrix representations

of their respective frame operators which exist since the measures in question are in

P2pRdq. Let the eigenvalues of Sνn be given by λ1pSνnq ¤ � � � ¤ λdpSνnq. Then

λ1pSµq � min
vPSd�1

xv , Sµv y

� min
vPSd�1

pxv , Sµv y � xv , Sνnv y � xv , Sνnv yq

¤ xx , Sµx y � xx , Sνnx y � xx , Sνnx y @x P Sd�1

¤ max
vPSd�1

pxv , Sµv y � xv , Sνnv yq � xx , Sνnx y @x P Sd�1

� λdpSµ � Sνnq � xx , Sνnx y @x P Sd�1

Since the last statement above holds for all x in Sd�1, it holds in particular for

x� :� arg minxPSd�1xx , Sνnx y. Hence

λ1pSµq ¤ λdSµ � Sνn � λ1pSνnq.

Therefore, since by Lemma 4.22,

|λdpSµ � Sνnq| ¤ }Sµ � Sνn } Ñ 0

as νn Ñ µ in P2pRdq, given α P p0, 1q, we can choose N such that @n ¥ N,

|λdpSµ � Sνnq|   α � λ1pSµq,

and for such n,

λ1pSνN q ¡ p1 � αqλ1pSµq ¡ 0.

As one might expect, given a probabilistic frame µ, this control also allows us

to obtain a lower limit on the distance in P2pRdq to the nearest tight frame.
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Proposition 4.24. Suppose µ is a probabilistic frame for Rd which is not tight. Let

δ :� λdpµq � λ1pµq P p0, λdpµqq.

Then for any tight frame ν, W2pµ, νq ¥ δ
4pM2pµq�M2pνqq .

Proof. From Lemma 4.22, we know that measures close to µ in P2pRdq will have

frame operators whose spectra are close to that of the frame operator of µ. Let ν be

a tight frame with frame constant A :� M2
2 pνq
d

. Then

max
k

|λkpµq � λkpνq| � maxt|λ1pµq � A|, |λdpµq � A|u ¥ δ

2
. (4.20)

Moreover, for any k P t1, ..., du, |λkpµq � λkpνq| ¤ }Sν � Sµ }. Therefore, since from

the proof of Lemma 4.22 we know that for any γ P Γ0pµ, νq,

}Sν � Sµ } ¤
?

2W2pµ, νq �
�
� ¼

Rd�Rd

}x }2 � }y }2dγpx, yq
�



1
2

¤ 2W2pµ, νq � pM2pµq �M2pνqq ,

it follows from (4.20) that W2pµ, νq ¥ δ
4pM2pµq�M2pνqq .

Remark 4.25. We note that if

supppµq � tx P Rd : p1� εq ¤ }x } ¤ p1 � εqu

and

@k P t1, ..., du, pM
2
2 pµq
d

� εq ¤ λkpµq ¤ pM
2
2 pµq
d

� εq,

then the lower bound on the Wasserstein distance to the nearest probabilistic tight

frame ν supported on Sd�1 can be pushed correspondingly small:

λdpµq � λ1pµq
4pM2pµq �M2pνqq ¤

2ε

4pp1 � εq � 1q �
ε

3 � 2ε
.
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This relates to the problem in finite frame theory of finding the closest unit-norm

tight frame to a given ε-nearly unit norm, ε-nearly tight frame.

We also note that the identification of tight frames with minimizers of the

frame potential holds in the case of probabilistic frames. The next theorem depends

on a result due to [29, Theorem 4.2], a version of which we reproduce in the following

lemma.

Lemma 4.26. Let µ be a measure in P2pRdq. The the following bound holds for the

probabilistic frame potential: PFP pµq ¥ M4
2 pµq
d

.

Proof. Note that, writing mi,jpµq �
³
Rd xixjdµpxq, we have:

PFP pµq �
¼

Rd�Rd

xx , y y2dµpxqdµpyq

�
¼

Rd�Rd

ḑ

i�1

ḑ

j�1

xiyixjyjdµpxqdµpyq

�
ḑ

i�1

ḑ

j�1

m2
i,jpµq

And by Hölder,

M2
2 pµq �

ḑ

i�1

mi,ipµq

¤
�

ḑ

i�1

m2
i,ipµq

� 1
2
�

ḑ

i�1

1

� 1
2

¤
?
d

�
ḑ

i�1

ḑ

j�1

m2
i,jpµq

� 1
2

Therefore,
d°
i�1

d°
j�1

m2
i,jpµq ¥ M4

2 pµq
d

, and the result follows.
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Remark 4.27. Clearly, minimizers exist. In particular, if µ is a tight probabilistic

frame, then equality holds in the above claim, since the frame bound of a proba-

bilistic tight frame µ is precisely
M2

2 pµq
d

, and

PFP pµq �
¼

Rd�Rd

xx , y y2dµpxqdµpyq �
»
Rd
xSµy , y ydµpyq

�
»
Rd

M2
2 pµq
d

}y }2dµpyq � M4
2 pµq
d

Theorem 4.28. A probabilistic frame µ with M2pµq � 1 is tight if and only if it is

a minimizer among tν P P2pRdq : M2pνq � 1u of the probabilistic frame potential.

Proof. The necessity is clear from Remark 4.27. For the sufficiency, we consider a

measure µ in P2pRdq which minimizes the probabilistic frame potential among

tν P P2pRdq : M2pνq � 1u. Given any ν P tν P P2pRdq : M2pνq � 1u, and λ P r0, 1s,

let µλ :� λµ� p1 � λqν. That is, given a test function fpxq with at most quadratic

growth, »
Rd
fpxqdµλpxq � λ

»
Rd
fpxqdµpxq � p1� λq

»
Rd
fpxqdνpxq.

Then

M2
2 pµλq �

»
Rd
}x }2dµλpxq

� pλq
»
Rd
}x }2dµpxq � p1 � λq

»
Rd
}x }2dνpxq

� λM2
2 pµq � p1 � λqM2

2 pνq

� 1

Therefore, since it follows that PFP pµq ¤ PFP pµλq @λ P r0, 1s, we obtain:

0 ¤ PFP pµλq � PFP pµq
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�
¼

Rd�Rd

xx , y y2dµλpxqdµλpyq �
¼

Rd�Rd

xx , y y2dµpxqdµpyq

� pλ2 � 1qPFP pµq � p1 � λq2PFP pνq � 2λp1� λq
¼

Rd�Rd

xx , y y2dµpxqdνpyq

� pλ2 � 1qPFP pµq � p1 � λq2PFP pνq � 2λp1 � λq
»
Rd
xy , Sµy ydνpyq

� pλ� 1q
�
pλ� 1qPFP pµq � p1 � λqPFP pνq � 2λ

»
Rd
xy , Sµy ydνpyq




¤ pλ� 1q
�pλ� 1q

d
� p1 � λq

d
� 2λ

»
Rd
xy , Sµy ydνpyq




� pλ� 1q
�

2λ

d
� 2λ

»
Rd

ḑ

k�1

λkxy , vk y2dνpyq
�

where the second inequality comes from the fact that PFP pνq ¥ M4
2 pνq
d

� 1
d

and

PFP pµq � 1
d
, and in the last equality, the values tλkudk�1 are the eigenvalues of

the frame operator Sµ, and the tvkudk�1 are the corresponding orthonormal set of

eigenvectors guaranteed by the spectral theorem. From this inequality it follows

that »
Rd

ḑ

k�1

λkxy , vk y2dνpyq ¥ 1

d
.

Let λ1 denote the smallest eigenvalue of µ, and v1 the corresponding eigenvector of

Sµ. Since ν was chosen arbitrarily in tν P P2pRdq : M2pνq � 1u, it follows that for

any ε ¡ 0, one can choose dν � p1 � εqδv1 � ε
d�1

d°
k�2

δvk . Then

1

d
¤
»
Rd

ḑ

k�1

λkxy , vk y2dνpyq

� p1 � εqλ1}v1 }2 � ε

d� 1

ḑ

k�2

λk}vk }2

� p1 � εqλ1 � ε

d� 1

ḑ

k�2

λk
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and as ε ÝÑ 0, we see that, in fact, λ1 ¥ 1
d
. Since λ1 ¤ M2

2 pηq
d

for any probabilistic

frame η, with equality if and only if η is tight, it follows that our minimizer of the

probabilistic frame potential, µ, is tight.

Moreover, we can broaden the above result to assert the following:

Theorem 4.29. Given a measure µ P P2pRdq, µ � δt0u, PFP pµq � M4
2 pµq
d

if and

only if µ is tight or µ � δ0.

Proof. Again, if µ is a tight probabilistic frame, then the equality clearly holds

by Remark 4.27. Suppose that µ is not tight. Then the eigenvalues of Sµ are

λ1 ¥ � � � ¥ λd with λ1 ¡ M2
2 pµq
d

¡ λd with a corresponding orthonormal basis of

eigenvectors tviudi�1 for Rd. Then

PFP pµq �
¼

xx , y y2dµpxqdµpyq �
»
xy , Sµy ydµpyq

�
»
xy ,

ḑ

i�1

λiviv
J
i y ydµpyq

�
ḑ

i�1

λi

»
xvi , y y2dµpyq

�
ḑ

i�1

λixvi , Sµvi y �
ḑ

i�1

λ2
i

But, by Hölder,

ḑ

i�1

λ2
i ¡

1

d

�
ḑ

i�1

λi

�2

� M4
2 pµq
d

with equality if and only if λ1 � � � � � λd, that is, if and only if µ is tight.
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4.3.3 The Tightness Potential

With propositions 4.26 and 4.29 in hand, we define the tightness potential and

use a method outlined in [2] to show that a gradient flow solution exists for its

minimization.

Definition 4.30. Given µ P P2pRdq, we define the tightness potential TP pµq by

TP pµq � PFP pµq � M4
2 pµq
d

�
¼

Rd�Rd

�
xx , y y2 � }x }2}y }2

d

�
dµpxqdµpyq

Definition 4.31. For µ P P2pRdq, we also define the tightness operator Tµ :

Rd Ñ Rd by

Tµpxq :�
»
Rd

�
xx , y yy � 1

d
}y }2x

�
dµpyq � Sµx� M2

2 pµq
d

x.

We immediately obtain:

Proposition 4.32. For a measure µ P P2pRdq, }Tµ } ¤ pTP pµqq 1
2 .

Proof. Given µ P P2pRdq, let λ1 ¥ λ2 ¥ � � � ¥ λd ¥ 0 be the eigenvalues of Sµ.

Noting that M2
2 pµq �

d°
i�1

λi, we have the following equivalence for the tightness

potential:

TP pµq �
¼

xx , y y2 � 1

d
}x }2}y }2dµpxqdµpyq

� TrpSµq2 � 1

d
M4

2 pµq

�
ḑ

i�1

λ2
i �

1

d

�
ḑ

i�1

λi

�2

� 1

d

ḑ

i�1

¸
j¡i
pλi � λjq2
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Now, }Tµ } � maxtλ1 � 1
d

°
λi,

1
d

°
λi � λdu. Without loss of generality, let }Tµ } �

λ1 � 1
d

°
λi. Then, by Cauchy’s inequality, noting that λk � λj ¥ 0 if k ¡ j,

p1
d

ḑ

i�1

¸
j¡i
pλi � λjq2q 1

2 ¥ 1

d

ḑ

i�1

¸
j¡i
pλi � λjq

� 1

d
rpd� 1qλ1 �

¸
j¡1

λj �
¸
j¡1

¸
k¡j

pλj � λkq

¥ λ1 � 1

d

ḑ

j�1

λj

From the above, we see that TP pµq ¥ }Tµ }2, with equality if and only if λi � λj

@i, j.

Corollary 4.33. The tightness potential is zero if and only if µ is tight.

Proof. Clearly, if µ is a tight probabilistic frame, then TP pµq � 0. If µ is not tight,

then }Tµ }2 ¡ 0, so that by the above, TP pµq ¡ 0.

4.3.4 Construction of gradient flows for the tightness potential

Most approaches to establishing the well-posedness of a gradient flow for a

particular potential use the convexity or λ-convexity of the functional, if it can be

established.

Definition 4.34. A function W on Rd�Rd is said to be λ-convex for some λ P R

if the function px, yq ÞÑ W px, yq � λ
2
p}x }2 � }y }2q is convex.

For instance, [15] considers a class of potentials W : Rd � Rd Ñ R describing

the interaction of two particles of unit mass at positions x and y by the value

W px, yq. The total energy of a distribution under this potential is then given by the
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functional

Wrµs :� 1

2

»
Rd�Rd

W px, yqdµpxqdµpyq (4.21)

They assume the λ-convexity of the functional, however. While the tightness po-

tential has a similar form it is not λ-convex. However, they still define well-posed

gradient flow problems in the Wasserstein space.

Proposition 4.35. The tightness potential is not λ-convex on P2pRdq.

Proof. Define the function W : Rd � Rd Ñ R by

W px, yq :� xx , y y2 � }x }2}y }2

d
.

Then, writing w :�

�
���x
y

�
��� , W can be rewritten as:

W px, yq � 1

4
xw ,Kw y2 � 1

d
xw , I1w yxw , I2w y,

where K, I1, I2 P R2d�2d are given by

K �

�
���0 I

I 0

�
��� , I1 �

�
���I 0

0 0

�
��� , and I2 �

�
���0 0

0 I

�
���

By [2, Proposition 9.3.2, Remark 9.3.3., and Proposition 9.3.5], it is sufficient

to show that W is not λ-convex on Rd � Rd. Differentiating twice, we obtain the

Hessian of W px, yq:

∇2W px, yq � xw ,Kw yK � 2KwwJK � 4

d

�
I1ww

JI2 � I2ww
JI1

�
� 2

d
pxw , I2w yI1 � xw , I1w yI2q
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� 2

�
��� yyJ � 1

d
}y }2I yxJ � 2

d
xyJ � xx , y yI

xyJ � 2
d
yxJ � xx , y yI xxJ � 1

d
}x }2

�
���
J

Therefore, given

�
���u
v

�
��� P S2d�1, we write

1

2

�
���u
v

�
���
J

∇2W px, yq

�
���u
v

�
��� � x

�
���u
v

�
��� ,

�
���y
x

�
��� y2 � 2xu , v yxx , y y � 4

d
xu , x yxv , y y

� 1

d
p}y }2}u }2 � }x }2}v }2q

Thus, if we take

�
���u
v

�
��� P S2d�1 with u K v, u � 0, v � 0, we can find y � R u

}u } and

x � R v
}v } . Then

1

2

�
���u
v

�
���
J

∇2W px, yq

�
���u
v

�
��� � 0� 0� 4

R2}u }}v }
d

� 2R2

d

Hence for every λ P R, taking R � a|λ|d, from the above we see that there exists

px, yq P Rd � Rd for which the minimum eigenvalue of ∇2W px, yq is less than �|λ|.

Thus, W is not λ-convex for any λ in R.

Because we cannot use λ-convexity, we use the minimizing movement scheme

and related existence result for regular measures. For this approach, we establish a

few facts about the frame and tightness potentials.

Theorem 4.36. The frame potential F pµq :� ´
Rd�Rdxx , y y2dµpxqdµpyq is a strongly

differentiable function on P2pRdq.
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Proof. Take µ, ν P P2pRdq as above. Define fµpxq � Sµx. Then F pµq � ³
Rdxfµpxq , x ydµpxq,

and for γ P Γpµ, νq,

F pνq � F pµq �
»
Rd
xSνy , y ydνpyq �

»
Rd
xSµx , x ydµpxq

�
¼

Rd�Rd

4xSµx , py � xq ydγpx, yq�

¼
Rd�Rd

3xSµx , x y � 4xSµx , y y � xSνy , y ydγpx, yq

Then, considering the second term in the preceding line, for ν sufficiently close to

µ,������
¼

Rd�Rd

3xSµx , x y � 4xSµx , y y � xSνy , y ydγpx, yq
������

�
������
¼

Rd�Rd

xSνpy � xq , y � x y � xSµpy � xq , y � x y

� 2xpSµ � Sνqx , x� y y � xSνx , x y � xSµy , y ydγpx, yq
����

�
������
¼

Rd�Rd

xSνpy � xq , y � x y � xSµpy � xq , y � x y

� 2xpSµ � Sνqx , x� y ydγpx, yq
����

¤
¼

Rd�Rd

}Sν }}y � x }2 � }Sµ }}y � x }2 � 2}pSµ � Sνqx }}x� y }dγpx, yq|

¤ p}Sν } � }Sµ }qC2
2,γpµ, νq � 2}Sµ � Sν } �M2pµq � C2,γpµ, νq

¤ p}Sν } � }Sµ }qC2
2,γpµ, νq � 6

?
2M2

2 pµq � C2
2,γpµ, νq

where the second equality comes from the cancellation of the cross-frame potential,

and the last inequality comes from the CBS inequality and Lemma 4.22.
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Therefore, F pνq � F pµq � ´
Rd�Rd 4xSµx , y � x y � opW2pµ, νqq for ν suffi-

ciently close to µ, and it follows that the gradient vector of F pµq is ∇µF � 4Sµpxq.

Moreover, since

}∇µF pµq| }µ �
»
}4Sµx }2dµpxq

¤ 16

»
}Sµ }2}x }2dµpxq

¤ 16M4
2 pµq,

it follows that }∇µF pµq }L2pµq is bounded on compact subsets of P2pRdq.

Theorem 4.37. The square of the second moment M2
2 pµq :� ´

Rd�Rd }x }2dµpxq.

Furthermore, any even power of the second moment is a strongly differentiable func-

tion on P2pRdq.

Proof. Take ν and µ as above. Then

M2
2 pνq �M2

2 pµq �
»
Rd
}y }2dνpyq �

»
Rd
}x }dµpxq

�
¼

Rd�Rd

}y }2 � }x }2dγpx, yq

for γ P Γ0pµ, νq

�
¼

Rd�Rd

xy � x , y � x ydγpx, yq

� 2

¼
Rd�Rd

xx , y � x ydγpx, yq �
¼

Rd�Rd

}x� y }2dγpx, yq

Therefore, M2
2 pνq �M2

2 pµq �
´

Rd�Rd 2xx , y � x y � opC2,γpµ, νqq for ν sufficiently

close to µ, and it follows that the gradient vector of M2
2 pµq is ∇µF � 2x.

To prove the second statement of the theorem, we will proceed by induction.

Suppose that for j P t1, � � � , ku, M2j
2 pµq is a differentiable functional with gradient

89



∇µM
2j
2 � 2jM

2pj�1q
2 pµqx. Then, with ν, γ as above,

M2k
2 pνq �M2k

2 pµq �M
2pk�1q
2 pµq �M2

2 pνq �M2
2 pµq

��M2pνq
�
M

2pk�1q
2 pνq �M

2pk�1q
2

	

�M
2pk�1q
2 pµq �M2

2 pνq �M2
2 pµq

��M2
2 pµq

�
pM2pk�1q

2 pνq �M
2pk�1q
2

	

� �
M2

2 pνq �M2
2 pµq

� �
M

2pk�1q
2 pνq �M

2pk�1q
2

	

�M
2pk�1q
2

�
� ¼

Rd�Rd

x2x , y � x ydγpx, yq � opC2,γpµ, νqq
�

�

M2
2 pµq

�
�pk � 1qM2pk�2q

2 pµq
¼

Rd�Rd

x2x , y � x ydγpx, yq � opC2,γpµ, νqq
�

�

�
M2

2 pνq �M2
2 pµq

� �
M

2pk�1q
2 pνq �M

2pk�1q
2 pµq

	

� kM
2pk�1q
2

¼
Rd�Rd

x2x , y � x ydγpx, yq � opC2,γpµ, νqq

where we have used the inductive hypothesis for the second to last equality. Hence

∇µM
2k
2 � 2kM

2pk�1q
2 x.

Theorem 4.38. The tightness potential is differentiable, and the gradient of the

tightness potential lies in its strong subdifferential.

Proof. Given µ P P2pRdq, take γ � pι, 4Tµq#µ. Then by Theorems 4.36 and 4.37, γ

clearly satisfies equation (4.14).

Moreover, we have that this gradient is the minimal selection in the strong

subdifferential:

Proposition 4.39. Given µ P P2pRdq, γ :� pι, 4Tµq#µ P B0TP pµq.

Proof. Recalling Definition 4.14 and Lemma 4.18, it is sufficient to show that

|γ|22,2 � |BTP |pµq. It is clear by definition of subdifferentiability that |γ|22,2 ¥
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|BTP |pµq. Now, we make use of the fact that the tightness potential is, in some

sense, truly differentiable. Letting gtpxq � x� 4tTµx, and αt P Γpµ, pgtq#µq,

|BTP |pµq � lim sup
W2pµ,νqÑ0

pTP pµq � TP pνqq�
W2pµ, νq

¥ lim
tÑ0

pTP pµq � TP ppgtq#µq�
W2pµ, pgtq#µq

¥ lim
tÑ0

TP pµq � TP ppgtq#µ
C2,αtpµ, pgtq#µq

� lim
tÑ0

´
Rd�Rdx4Tµx, y � x , d yαtpx, yq � opC2,αtpµ, pgtq#µqq

C2,αtpµ, pgtq#µq

� lim
tÑ0

1

t

¼
Rd�Rd

x4Tµx , y � x ydαtpx, yq

�
»
Rd
x4Tµx , 4Tµ ydµpxq

� |γ|22,2

since C2,αpµ, pgtq#µq � t, and limtÑ0
opC2,αt pµ,pgtq#µqq
C2,αt pµ,pgtq#µq

� 0.

We can also explicitly calculate the derivative of the frame potential along a

flow.

Proposition 4.40. Let φt : Rd ÝÑ Rd be the flow of some compactly supported

smooth vector field X : Rd ÝÑ Rd, i.e. dφtpxq
dt

� Xpφtpxqq, φ0pxq � x, and given a

probabilistic frame µ, consider νt :� pφtq#µ. Then the map

t ÞÑ PFP pνtq �
¼

Rd�Rd

xφtpxq , φtpyq y2dµpxqdµpyq, t P r0,8q

is differentiable.

Proof. Therefore,

F pνtq � F pνsq �
¼

Rd�Rd

rxφtpxq , φtpyq y � xφspxq , φspyq ys�
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rxφtpxq , φtpyq y � xφspxq , φspyq ysdµpxqdµpyq

�
¼

Rd�Rd

rxφtpxq � φspxq , φtpyq y � xφspxq , φtpyq � φspyq ys�

xφtpxq � φspxq , φtpyq y � xφspxq , φtpyq � φspyq ysdµpxqdµpyq

Hence,

lim
sÑt

F pνtq � F pνsq
t� s

�
¼

Rd�Rd

rxφtpxq � φspxq , φtpyq y � xφspxq , φtpyq � φspyq ys
t� s

�

rxφtpxq � φspxq , φtpyq y � xφspxq , φtpyq � φspyq ysdµpxqdµpyq

�
¼

Rd�Rd

rx∇φtpxq , φtpyq y � xφtpxq ,∇φtpyq ys�

2xφtpxq , φtpyq ydµpxqdµpyq

� 4

»
xXpφtpxqq , Sνtφtpxq ydµpxq

4.3.5 Well-posedness of the Minimization Problem

Since we could not establish the well-posedness of the problem of construct-

ing gradient flows for the tightness potential using the standard machinery of λ-

convexity, we will instead follow the approach of [2, Chapter 11.3], using in par-

ticular Lemma 4.19 introduced earlier in this chapter. This machinery does not

provide a proof of uniqueness, which a priori seems natural, since, given a nontight

probabilistic frame, there are a multitude of tight probabilistic frames outside a ball

of the radius established in Proposition 4.24.

First, we state our main result:
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Theorem 4.41. Gradient flows exist for the tightness potential, i.e. for every initial

datum µ0 P P2pRdq, each sequence of discrete solutions M τk of the variational scheme

admits a subsequence such that

1. M τkptq narrowly converges in P pRdq to µt locally uniformly in r0,8q, with

µt P AC2
2pr0,8q;P2pRdqq.

2. µt is a solution of the gradient flow equation

vt � �B0TP pµtq, }vt }L2pµt;Rdq � |µ1 |ptq, for a.e. t ¡ 0

with µt Ñ µ0 as t Ó 0, where vtpxq � �4Tµtpxq is the tangent vector to the

curve µt.

3. The energy inequality

» b

a

»
Rd
|vtpxq|2dµtpxqdt� TP pµbq ¤ TP pµaq

holds for every b P r0,8q and a P r0, bqzN , where N is a L1-negligible subset

of p0,8q.

Proof. This will follow from Proposition 4.42 and Theorem 4.45 by Lemma 4.19,

with the identification of the minimal selection with the barycenter 4Tµx coming

from Proposition 4.39.

To begin, following [2], we define the sublevel sets of a functional φ : P2pRdq Ñ

R by

Σmpφq :� tµ P P2pRdq : φpµq ¤ m, M2
2 pµq ¤ mu.
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Proposition 4.42. The sublevels of the tightness potential are compact with respect

to the narrow convergence.

Proof. Suppose that tµnu is a sequence in ΣmpTP q. Since the sublevels of

fpxq � }x }2 are compact in Rd and supνPΣm

³ }x }2dνpxq ¤ m   8, ΣmpTP q is tight

( [2, Remark 5.1.5]), and therefore by Prokhorov’s theorem, it is precompact for the

narrow convergence. Therefore, there exists a subsequence µnk converging weakly

to some µ in P pRdq. It remains to show that µ P ΣmpTP q.

For R P N, define ηR : Rd Ñ r0, 1s such that ηR P C8
c pRdq with

ηRpxq �

$'''&
'''%

1 if }x } ¤ R

0 if }x } ¥ R � 1

.

Let fRpxq � ηRpxq}x }2. Now, fR is an acceptable test function for the narrow

convergence, so @R P N,

lim
kÑ8

»
Rd
fRpxqdµnkpxq �

»
Rd
fRpxqdµpxq.

Since for all k, »
Rd
fRpxqdµnkpxq ¤ m,

it follows that for all R,

lim
RÑ8

»
Rd
fRpxqdµnkpxq �

»
Rd
fRpxqdµpxq ¤ m.

Then, since tfRpxqu is a nonnegative sequence of measurable functions converging

to fpxq � }x }2, by Fatou,

»
Rd
}x }2dµpxq ¤ lim inf

R

»
Rd
fRpxqdµpxq ¤ m.
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Thus M2
2 pµq ¤ m.

Second, we define g : Rd � Rd Ñ R by

gpx, yq � xx , y y2 � 1

d
}x }2}y }2.

Then, as above, we can define

gRpx, yq � ηRpxqηRpyqgpx, yq.

We note that for all px, yq,

|gRpx, yq| ¤ |gpx, yq| ¤ d� 1

d
}x }2}y }2,

which by the above is integrable with respect to µ� µ in addition to µnk � µnk for

all k P N.

Since µnk � µnk converges weakly to µ� µ, and for each R P N,

supk

¼
Rd�Rd

gRpx, yqdµnk � µnkpx, yq ¤ m,

and,

lim
kÑ8

¼
Rd�Rd

gRpx, yqdµnk � µnkpx, yq �
¼

Rd�Rd

gRpx, yqdµ� µpx, yq ¤ m.

(This holds since for ν P ΣmpTP q, defining νR by νRpAq �
³
A ηRpxqdµpxq³
Rd ηRpxqdµpxq

for all Borel

sets A � Rd, TP pνRq ¥ 0.)

Then, by another application of Fatou (to the sequence gRpx, yq� d�1
d
}x }2}y }2,

initially), since limRÑ8 gRpx, yq � gpx, yq pointwise, we obtain

¼
gpx, yqdµpxqdµpyq ¤ lim inf

RÑ8

¼
gRpx, yqdµpxqdµpyq ¤ m.
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Thus,

TP pµq �
¼

gpx, yqdµpxqdµpyq ¤ m,

and it follows that µ P ΣmpTP q.

To prove the regularity of the tightness potential, the following standard tech-

nical lemmas about projections and uniformly integrable moments will be needed.

Lemma 4.43. Tightness criterion ( [2], Lemma 5.2.2) Let X,X1, X2, . . . , XN be

separable metric spaces, and let ri : X Ñ Xi be continuous maps such that the

product map

r :� r1 � r2 � ...� rN : X Ñ X1 � . . . XN

is proper. Let K � P pXq be such that Ki :� ri#K is tight in P pXiq for i P t1, � � � , Nu.

Then K is also tight in P pXq.

Lemma 4.44. Uniform Integrability ( [2], Lemma 5.2.4) Let µn � P pRd�Rdq be a

sequence narrowly converging to µ in P pRd � Rdq with supnM2pµnq   8. If either

π1
#µn or π2

#µn has uniformly integrable second moments, then

lim
nÑ8

¼
xx1 , x2 ydµn �

¼
xx1 , x2 ydµ.

The preceding two lemma will be needed to prove the following key result:

Theorem 4.45. The tightness potential is a regular functional.

Proof. Let φ denote the tightness potential. Suppose that ηn P Bφpµq is a sequence

of strong subdifferentials for a sequence of measures µn P P2pRdq satisfying:

φpµnq Ñ ϕ P R, µn Ñ µ in P2pRdq,
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sup
n
M2pηnq   8, ηn Ñ η in P pRd � Rdq

First, we show that φpµnq Ñ φpµq. By our differentiability result of Theorem

4.36, for any γn P Γpµ, µnq, and in particular for γn P Γ0µ, µn,

|φpµnq � φpµq| �
������
¼

Rd�Rd

x4Tµx , y � x ydγnpx, yq
������� opW2pµn, µqq

¤ 4}Tµ }M2pµqW2pµ, µnq � opW2pµn, µqq

Thus, as µn Ñ µ in P2pRdq, W2pµ, µnq Ñ 0, and φpµnq Ñ φpµq. Hence, ϕ � φpµq.

Second, we consider the limit of the sequence of strong subdifferentials, ηn Ñ η.

Given any µ0 P P2pRdq and ν P Γpη, µ0q, we can choose a sequence νn P Γpηn, µ0q.

Then we have for all n P N,

φpµ0q � φpµnq ¥
¼

xx2 , x3 � x1 ydνnpx1, x2, x3q � opC2,ηnpµn, µ0qq (4.22)

Then as nÑ 8, the left-hand side of equation(4.22) converges to φpµ0q�φpµq

by our first result.

As for the right-hand side, we write,

½
xx2 , x3 � x1 ydνn �

½
xx2 , x3 ydπ2,3

# νn �
½

xx2 , x1 ydπ1,2
# νn,

noting that the same decomposition can be done for the integral with respect to ν,

the limit point.

And, applying lemma 4.44 to π2,3
# νn, whose second marginal, µ0 P P2pRdq

clearly has a [uniformly] integrable second moment, and to π1,2
# νn, whose second

marginals, µn are converging in P2pRdq and hence have uniformly integrable second
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moments, we conclude that

lim
nÑ8

½
xx2 , x3 � x1 ydνn � lim

nÑ8

¼
xx2 , x3 ydπ2,3

# νn � lim
nÑ8

½
xx2 , x1 ydπ1,2

# νn

�
¼

xx2 , x3 ydπ2,3
# ν �

½
xx2 , x1 ydπ1,2

# ν

�
¼

xx2 , x1 � x3 ydν

Finally, by the lower semicontinuity property for narrowly convergenging sequences

of probability measures on Hilbert spaces (c.f. [2, Lemma 7.1.4, Equation 5.1.15]),

C2,νpµ, µ0q ¤ lim inf
nÑ8

C2,νnpµ0, µnq,

and we conclude that

φpµ0q � φpµq ¥
¼

xx2 , x3 � x1 ydνpx1, x2, x3q � opW2pµ, µ0qq,

so that η P Bφpµq.

Remark 4.46. Let µ0 be a probabilistic frame. By Theorem 4.41, there exists a flow

φt such that φ0pxq � x and

Btφtpxq � vtpφtpxqq � �4Tµtφtpxq,

and µt � pφtq#µ0 is a solution to the continuity equation with

» b

a

»
Rd
|vtpxq|2dµtpxqdt� TP pµbq ¤ TP pµaq

for every b P r0,8q and a P r0, bqzN , where N is a L1-negligible subset of p0,8q.

Therefore, as long as the first term in the preceding equation is a.e. nonzero

with respect to µt, then for any t P ra, bs, the tightness potential is strictly decreasing
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on that interval. Since Tµt is nonzero unless µt is tight or zero, this will hold until

µt is tight unless φt � 0 on the support of µt for some t P ra, bs.

This is related to the question of whether µt remains a probabilistic frame for

t P r0, bs. Let λt1 ¥ � � � ¥ λtd ¥ 0 denote the eigenvalues of Sµt . Clearly, λ0
d ¡ 0 if µ0

is a probabilistic frame, and for µt to be a probabilistic frame, we must have λtd ¡ 0.

We denote the “frame gap” by:

εt :� λt1 � λtd,

and we note that

λt1 ¥
1

d
M2

2 pµtq ¥ λtd and }Tµt } � maxtλt1 �
1

d
M2

2 pµtq,
1

d
M2

2 pµtq � λtdu,

where strict inequality holds in the first statement unless µt is a tight frame or δ0.

From these statements and Proposition 4.32, it follows that

εt ¤ 2}Tµt } ¤ 2pTP pµtqq 1
2 .

Thus, as one intuits, the frame gap is shrinking along the flows as the tightness

potential decreases.

4.3.6 The Tightness Potential on the Sphere

As noted in the introduction to this chapter, the gradient flows we consider

here, while developed independently, have been considered previously under more

limited conditions. In [17], the authors started from a finite, unit-norm frame.

They wished to push that frame to a FUNTF in an optimal way, and to do so,

they constructed a system of first-order, nonlinear ODEs using the frame potential.
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The metric which they used for closeness of one frame to another was the Hilbert-

Schmidt norm of the difference of the frames’ analysis operators, i.e., if Ψ � tψiuNi�1

and Φ � tϕiuNi�1 are two finite frames for Rd with respective analysis operators Ψ

and Φ, then

}Φ �Ψ }2
HS � trrpΦ �ΨqJpΦ �Ψqs

�
Ņ

i�1

}ϕi � ψi }2

This can easily be superseded by the Wasserstein distance between the canonical

probabilistic frames associated with the two frames in question, which corresponds

to a stronger topology on the same set:

W 2
2 pµΨ, µΦq � 1

N
min
σPSN

Ņ

i�1

}ϕi � ψσpiq }2

¤ 1

N

Ņ

i�1

}ϕi � ψi }2

� 1

N
}Φ �Ψ }2

HS

The main results of [17] constitute a special case of Theorem 4.41 giving a flow

on a finite unit-norm frame as a series of ODEs. Using the notation of [17], we

define Hd to be a d-dimensional real or complex Hilbert space and HN
d to be the

sets of N vectors in that space. Let Sd be the unit sphere in Hd, and let SNd be the

N -fold product of that sphere. For simplicity, to denote the analysis and synthesis

operators, we shall use our notation F and F �, as we will use SF for the frame

operator of the frame F . The statement of the main result then comes in two parts:

Lemma 4.47. [17, Proposition 1] For any F � tfiuNi�1 P SNd and

G � tgnuNn�1 P `N
n�1f

K
n :�  tgnuNn�1 P HN

d : xfn , gn y � 0, @n( ,
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let

fnptq :� cosp}gn }tqfn � sinp}gn }tq gn
}gn }

whenever gn � 0, and let fnptq :� fn otherwise. Then F ptq � tfnptquNi�1 P SNd for

any t P R, and the frame F and F ptq with analysis operators denoted by F and F ptq

satisfy

}F ptq � F }2
HS ¤ t2

Ņ

n�1

}gn }2

and

FP pF ptqq ¤ FP pF q � 4tRe
Ņ

n�1

xSFfn , gn y � 8Nt2
Ņ

n�1

}gn }2 (4.23)

Moreover,

Lemma 4.48. [17, Theorem 2] Pick F � tfiuNi�1 P SNd , and let Pn denote the

orthogonal projection from Hd onto the orthogonal complement of fn. Then, the

minimizer of the bound in (4.23) over all t P R and tgnuNn�1 P `N
n�1f

K
n is given by

t � 1
4N

and

gn � PnSFfn � SFfn � xSFfn , fn yfn, n P t1, � � � , Nu (4.24)

Moreover, for any t P R, this choice for tgnuNn�1 gives:

}F ptq � F }2
HS ¤ t2

Ņ

n�1

}PnSFfn }2 (4.25)

and

FP pF ptqq ¤ FP pF q � 4tp1 � 2Ntq
Ņ

i�1

}PnSFfn }2 (4.26)

The authors points out that “as t Ñ 0, we expect to approach a solution to

the system of nonlinear ordinary differential equations:

f 1npsq � � pSF psqfnpsq � xSF psqfnpsq , fnpsq yfnpsqq , @n P t1, � � � , Nu
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a matter we leave for future research.” Indeed, their flow is analogous to the flow

of our tightness potential. The difference lies in the fact that they constrain their

frame to live on the unit sphere, whereas we allow the support of our probabilistic

frame to vary. Because of this, the second moment of the canonical probabilistic

frame corresponding to their frames is fixed to 1.

Observe that we can rewrite (4.24) in our language. Beginning with a proba-

bilistic frame µ supported on the unit sphere, we can restrict our flow by reprojecting

the flow of the gradient onto the sphere. Letting Px denote the projection onto the

tangent plane to the unit sphere at x P Sd�1, we can define φtpxq to be the flow of

the vector field Xtpxq � �4Sµtx, with µtpxq � pφtq#µ.

Pxp�4Sµtpxqq � pI � xxJqp�4Sµtpxqq. Then pφtq#µ is a flow of probabilistic

frames supported on Sd�1, analogous to (4.24), and by Proposition 4.40,

d

dt
PFP pµtq � 4

»
Sd�1

xXtpφtpxqq , Sµtφtpxq ydµpxq

� �16

»
Sd�1

xpI � φtpxqφtpxqJqSµtφtpxq , Sµtφtpxq ydµpxq

� �16

»
Sd�1

}Sµtφtpxq }2 � xφtpxq , Sµtφtpxq y2dµpxq

¤ 0

with equality if and only if Sµt is a multiple of the identity, i.e. if and only if µt is

tight because supppφtq#µq � Sd�1.
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4.3.7 The Fourth and Higher Potentials

In addition to the frame potential, we are interested in higher-order potentials

which are only defined on PppRdq, for example:

Definition 4.49. For µ P PppRdq and p P p0,8s, we can define the p-frame po-

tential, PFPppµq by

PFPppµq �
¼

Rd�Rd

|xx , y y|pdµpxqdµpyq.

It is a key result of [31] that the minimizers of this potential among proba-

bilistic frames supported on the Sd�1 are precisely the probabilistic tight p-frames,

which we define next.

Definition 4.50. Given p P p0,8q, a probability measure on Rd is a probabilistic

p-frame for Rd if there exist 0   A ¤ B   0 such that for all y P Rd,

A}y }p ¤
»
Rd
|xx , y y|pdµpxq ¤ B}y }p,

and µ is a tight probabilistic p-frame if A � B.

In this case, the Otto calculus which we have used above can be extended to

PppRdq, the Wasserstein space of order p. There is a similar notion of subdifferential

in this space, although the construction of gradient flows is a bit more involved.

One must first define the mixed space

PpqpRd � Rdq :�  
γ P P pRd � Rdq : |γ|1,p � |γ|2,q   8(

with

|γ|pj,p �
¼

Rd�Rd

|xj|pdγpx1, x2q, j � 1, 2, p ¡ 1.
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Then, for p ¡ 1,

Definition 4.51. [2, The strong subdifferential, Definition 10.3.1] Let φ : PppRdq Ñ

p�8,8s be a proper and lower semi-continuous functional, and let µ1 P Dpφq. Let

q � p
p�1

. Then γ P PpqpRd�Rdq belongs to the extended Fréchet subdifferential

Bφpµ1q if π1
#γ � µ1 and

φpµ3q � φpµ1q ¥ inf
νPΓ0pγ,µ3q

½
xx2 , x3 � x1 ydν � opWppµ1, µ3qq.

We say that γ P Bφpµ1q is a strong Fréchet subdifferential if for every

ν P Γpγ, µ3q, it satisfies

φpµ3q � φpµ1q ¥
½

xx2 , x3 � x1 ydν � opCp,νpµ1, µ3qq, (4.27)

where Cp,νpµ1, µ3q is the pseudo-distance given by the cost

Cp
p,νpµ1, µ3q �

½
}x1 � x3 }pdνpx1, x2, x3q.

Now we can show:

Proposition 4.52. The p-frame potential is a differentiable function in PppRdq for

p ¡ 2.

Proof. Given µ as above, let ν P PppRdq. Define gµp pxq :� ³xx , z yp�1zdµpzq. Then,

letting γ P Γppµ, νq,

PFPppνq � PFPppµq

�
»»»»

xw , y yp � xx , z ypdγpx, yqdγpz, wq

�
»»»»

pxw � z , y � x y � xx ,w � z y � xz , y � x y � xz , x yqp
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� xx , z ypdγpx, yqdγpz, wq

�
»»»»

pxz , y � x yxz , x yp�1 � pxx ,w � z yxx , z yp�1loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon
A

�

¸
tpi,j,k,lqPN4: i�j�k�l�puz

tp0,0,0,pq,p0,1,0,p�1q,p0,0,1,p�1qu

�
p

i, j, k, l



xw � z , y � x yixx ,w � z yjxz , y � x ykxz , x ylloooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

Bi,j,k,l

dγpx, yqdγpz, wq

� A�
¸�

p

i, j, k, l



Bi,j,k,l

Then

A �
»»»»

pxz , y � x yxz , x yp�1 � pxx ,w � z yxx , z yp�1dγpx, yqdγpz, wq

�
»»»»

2pxz , y � x yxz , x yp�1dγpx, yqdγpz, wq

�
¼

2pxgµp pxq , y � x ydγpx, yq

and, for tpi, j, k, lq P N4 : i� j� k� l � puztp0, 0, 0, pq, p0, 1, 0, p� 1q, p0, 0, 1, p� 1qu,

|Bi,j,k,l| �
����
»»»»

xw � z , y � x yixx ,w � z yjxz , y � x ykxz , x yldγpx, yqdγpz, wq
����

¤
»»»»

}w � z }i�j}y � x }i�k}x }j�l}z }k�ldγpx, yqdγpz, wq

�
¼

}w � z }i�j}z }k�ldγpz, wq �
¼

}y � x }i�k}x }j�ldγpx, yq

¤
�¼

}w � z }pdγpz, wq

 i�j

p
�¼

}z }pdγpz, wq

 k�l

p

�
�¼

}y � x }pdγpx, yq

 i�k

p
�¼

}x }pdγpx, yq

 j�l

p

� Wppµ, νq2i�j�k �Mppµqj�k�2l

by generalized Hölder. Therefore

PFPppνq � PFPppµq �
¼

2pxgµp pxq , y � x ydγpx, yq
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�
¸

tpi,j,k,lqPN4: i�j�k�l�puz

tp0,0,0,pq,p0,1,0,p�1q,p0,0,1,p�1qu

�
p

i, j, k, l



Wppµ, νq2i�j�k �Mppµqj�k�2l

�
¼

2pxgµp pxq , y � x ydγpx, yq � opWppµ, νq2i�j�kq

since 2i� j � k ¥ 3 for the set of admissible indices, so that PFPp is differentiable

in PppRdq.

Proposition 4.53. The derivative of the p-th frame potential is continuous in

PppRdq.

Proof. Taking µ and ν, probabilistic frames with finite p-th moments, again, we let

gµ and gν denote the respective derivatives of the p-th frame potential at the each

measure.

Defining

hspa, b, cq :� xa , c ys�1 � xa , c ys�2xb , c y � � � � � xa , c yxb , c ys�2 � xb , c ys�1.

Then, since for i P t1, � � � , p� 1u,

1

p
� p� i

p
� i� 1

p
� 1,

we have by generalized Hölder,

|gµp pyq � gνppyq| �
����
¼

xz , y yp�1pz � wq � pxz , y yp�1 � xw , y yp�1qwdγpz, wq
����

¤ }y }p�1

¼
}z }p�1}z � w }dγpz, wq �

¼
}w }}z � w }|hp�1pz, w, yq|dγpz, wq

¤ }y }p�1

��¼
}z }pdµpzq


 p�1
p
�»

}z � w }pdγpz, wq

 1

p

�
¼

}w }}z � w }p}w }p�2 � }w }p�3}z } � � � � � }w }}z }p�3 � }z }p�2qdγpz, wq
�
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� }y }p�1

�
Mp�1

p pµqWppµ, νq �
p�1̧

i�1

¼
}w }p�i}z }i�1dγpz, wq

�

¤ }y }p�1
�
Mp�1

p pµqWppµ, νq

�
�¼

}z � w }pdγpz, wq

 1

p
p�1̧

i�1

�»
}w }pdγpz, wq


 p�i
p
�»

}z }pdγpz, wq

 i�1

p

�

� }y }p�1Wppµ, νq
�
Mp�1

p pµq �
p�1̧

i�1

Mp�i
p pνqM i�1

p pµq
�

Noting that by Minkowski, Mk
p pνq ¤ 2kpMppµqk �W k

p pµ, νqq, we have control over

|gµp pyq � gνppyq| in terms of the p-th Wasserstein distance.

And, as with the case p � 2, we have a lower bound, which generalizes the

lower bound given in [31]:

Theorem 4.54. Let µ be a probabilistic p-frame for Rd for p ¥ 2 an even number.

Then

PFPppµq ¥ pp� 1qpp� 3q � � � 1
pd� p� 2qpd� p� 4q � � � d

�»
Rd
}x }pdµpxq


2

with equality if and only if µ is tight.

Proof. Let µ be a measure in P2pRdq. Let p � 2k, k P N. Let

ppyq �
»
Rd
xx , y ypdµpxq.

Then ppyq is a homogeneous polynomial of degree p in (the components of y.

Following [50], we have the following formal constructions for homogeneous

polynomials:

1. We can construct write any homogeneous polynomial fpxq in x as

fpxq �
¸
|i|�p

cpiqapiqxpiq,
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where i � pn1, � � � , ndq is a d-element multiindex,cpiq � �
p

n1,��� ,nd
�
, apiq is the

coefficient corresponding to that multiindex, and xpiq is the monomial corre-

sponding to that multiindex, xpiq � xn1
1 � � � xndd .

2. We let ρmα � pa1x1 � � � � � adxdqm.

3. We define an inner product on these homogeneous polynomials: given

fpxq �
¸
|i|�p

cpiqapiqxpiq,

gpxq �
¸
|i|�p

cpiqbpiqxpiq,

we define

rf, gs �
¸
|i|�p

cpiqapiqbpiq.

The fact that this is an inner product on this space is validated in [50]. We can use

this construction by noting that for any constant A,

rppyq � A}y }p, ppyq � A}y }ps ¥ 0, (4.28)

with equality if and only if µ is a tight probabilistic p-frame.

First, suppose that p is a tight probabilistic p-frame. Then it is clear that

equality holds in (4.28), and we can determine A using the following computations

from [50]:

1. ∆ypxx , y yp � ppp� 1qxx , x yxx , y yp�2

2. ∆xy , y yk � 2kp2k � d� 2qxy , y yk�1

3. ∆xrxx , x ylxy , x yms � 2lp2l�2m�d�2qxx , x yl�1xx , y ym�mpm�1qxy , y yxx , x ylxx , y ym�2
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Supposing that

ppxq �
»
Rd
xx , y yp � cppµq}y }2,

we can apply the above operators to each side of the equation recursively to identify

the constant. In this way, we obtain

cppµq � pp� 1qpp� 3q � � � 1
pd� p� 2qpd� p� 4q � � � dr

»
Rd
}x }pdµpxqs2.

Suppose, conversely, that equality holds in (4.28). We will use the following

relations from [50] related to homogeneous polynomials F,G of degree p � 2k:

1. rρ2k
z , F s � F pzq

2. rF,Gs � 1
p2lq!F p∇qG, where by ∇ we mean pBx1 , . . . , Bxdq.

With these in hand, we note that

ppyq �
»
Rd
px1y1 � . . . xdydqpdµpxq � ρβy ,

where βn1,...,nd �
³
Rd x

n1
1 � � � xndd dµpxq, and that }∇ }2 � ∆.

Letting cp � pp�1qpp�3q���1
pd�p�2qpd�p�4q���d , we can then rewrite:

»
Rd
rppyq � A}y }p, ppyq � A}y }psdµpyq �

»
rppyq, ppyqs � A2r}y }2, }y }2s � 2Arppyq, }y }2sdµpyq

�
»
Rd

�»
Rd
xz , y ypdµpzq, ppyq

�
dµpyq

� 2A

¼
Rd�Rd

�xx , y yp, }y }2
�
dµpxqdµpyq

� A2

»
Rd
r}y }p, }y }psdµpyq

�
»
Rd
ppyqdµpyq � 2A

»
Rd
}y }pdµpyq �

»
Rd

∆
p
2 }y }2dµpyq
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�
»
Rd
ppyqdµpyq � 2A

»
Rd
}y }pdµpyq � A2

cp

Since for all A P Rd, rppyq �A}y }p, ppyq �A}y }ps ¥ 0, we can use the discriminant

of this quadratic to show that

cp

�»
Rd
}y }pdµpyq

�2

¤
»
Rd
ppyqdµpyq,

and, in particular, if we choose

A � cp

�»
Rd
}y }pdµpyq

�2

,

then equality holds in (4.28).

Remark 4.55. Future work would include constructing Wasserstein gradient flows in

PppRdq for this potential to obtain tight p-frames, which are linked to equiangular

tight frames.

4.3.8 Other Potentials

Given a path of probabilistic frames in P2pRdq, it might be useful to consider

how frame/dual-frame pairs coevolve. Thus, we consider the following construction:

Definition 4.56. Given a probabilistic frame µ P P2pRd and γ P P2pRd � Rdq with

π1
#γ � µ, we define the duality potential

Gpγq :�
ḑ

i�1

ḑ

j�1

�
� ¼

Rd�Rd

xiyj � δijdγpx, yq
�



2

The motivation for the name comes from the fact that if µ is a probabilistic

frame and γ P ΓDµ, then
´

Rd�Rd xy
Jdγpx, yq � I, so that for all γ P ΓDµ, we see
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that Gpγq � 0. Similarly, as an alternate approach to the Paulsen problem, we can

consider a support potential for a given probabilistic frame µ:

Hpµq :�
¼

Rd�Rd

p}x } � }y }q2dµpxqdµpyq.

Clearly, Hpµq ¥ 0, and Hpµq � 0 if and only if supppµq � kSd�1, where kSd�1 is

the sphere of radius k ¡ 0 centered around the origin. A better potential for the

Paulsen problem could then be

PP pµq � PFP2pµq �Hpµq.

4.4 Scaling Result

Finally, to conclude our investigation of tight frames, we end with a result

about scalable frames, which we approach from the probabilistic frame perspective.

We seek to scale discrete probabilistic frames by changing their weights in order

to obtain tight probabilistic frames. This is a different perspective on the scalable

frames problem dictated by the constraints of the probabilistic point of view; the

usual approach would be equivalent to scaling the magnitudes of the vectors in the

support of a probabilistic frame.

Let µ0 �
N°
i�1

δϕi and µA �
N°
i�1

aiδϕi with
N°
i�1

ai � 1, ai ¥ 0 and }ϕi } � 1 @i. In

this case,

PFP pµAq �
Ņ

i,j�1

aiajxϕi , ϕj y2.

We know that PFP pµAq ¥ M4
2 pµA
d

� 1
d
, with equality if and only if µA is tight.
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Letting Q :� rrxϕi , ϕj y2ssi,j, we see that

PFP pµAq � aJQa, where a �
�
a1 � � � aN

�
.

We note that:

Lemma 4.57. Q is positive semidefinite.

Proof. Q is the Hadamard product of the Grammian matrix with itself, i.e.,

G :� rrxϕi , ϕj y2ssi,j, and Q � GdG. Since the Grammian is positive semi-definite,

Q will also be positive semi-definite.

Because Q is symmetric positive semidefinite, letting m � rankpQq, we can

write

Q �
m̧

i�1

λiviv
J
i ,

where λ1 ¥ � � � ¥ λm ¡ 0 are the nonzero eigenvalues, and tviuNi�1 � RN are the

orthonormal eigenvectors. We can therefore express any vector a P RN as a �
N°
i�1

civi

for some constants ci. We are trying to obtain

aJQa �
m̧

i�1

c2
iλi �

1

d
.

Since the diagonals of Q are the fourth powers of the norms of the tϕiuNi�1, we know

that for each k P t1, � � � , Nu,

Qk,k �
m̧

i�1

λipvki q2 � 1.

Thus, letting si �
N°
k�1

vki , the constraints of our problem reduce to solving
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$'''''''''&
'''''''''%

N°
i�1

λic
2
i � 1

d
constraint (1) on quadratic form

N°
i�1

civ
k
i ¥ 0 nonnegativity constraint (2) on a

N°
i�1

cisi � 1 constraint (3) on sum of entries of a

Eliminating the free variables in constraint (1), and rewriting constraint (3)

with slack variables, we obtain a revised version in Rd:$'''''''''&
'''''''''%

m°
i�1

λic
2
i � 1

d
constraint (1*) on quadratic form

N°
i�1

civ
k
i ¥ 0 nonnegativity constraint (2) on a

m°
i�1

cisi � 1 �
N°

i�m�1

cisi constraint (3*) on sum of entries of a

Constraints (1*) and (3*) make this a problem of finding the intersection of

a hyperplane H and an ellipsoid E in Rm, where the variable is the vector c ��
c1 . . . cN

�
. In particular, any intersection point y should lie between two parallel

hyperplanes tangent to the ellipsoid. In particular, the coordinates of y should

be bounded in magnitude by the magnitudes of the coordinates of the intersection

points of the hyperplanes with the coordinate axes. That is, if z is the intersection

of a tangent plane with the first coordinate axis, then |y1|   |z1|. Given a point u

on E, the equation of its tangent plane is

2

�
�������
λ1u1

. . .

λdud

�
�������
� px� uq � 0 (4.29)

m̧

i�1

λiuixi �
m̧

i�1

λiu
2
i (4.30)

m̧

i�1

λiuixi � 1

d
(4.31)
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Thus, the i-th intercept of the tangent plane, obtained by setting xj � 0 for all

j � i, is xi � 1
dλiui

. Conversely, if we have the coordinates of the intercepts of a

tangent plane, we can obtain the point of tangency via ui � 1
dλixi

.

The equation of the hyperplane H1 whose points satisfy constraint (3*) can

be written as s � px� tq, with t � °
i¡m

sici � 1, and if it is parallel to a tangent plane

H2 to E, then there is some k � 0 and some u P E such that s � k

�
�������
λ1u1

. . .

λmum

�
�������

. The

point of tangency of H2 is u, with ui � si
kλi

, satisfying:

m̧

i�1

λip si
kλi

q2 � 1

d
(4.32)

and the intercepts of the H2 are

xi � 1

dλiui
� k

dsi
. (4.33)

The i-th intercept of H1 is xi � � t
si

, so that from equation 4.33 and equation

4.32, we see that we must require for each i P t1, � � � ,mu:

| � t

si
|   | k

dsi
|

|1�
¸
i¡m

sici|   |k|
d

|1�
¸
i¡m

sici|  
d

1

d

m̧

i�1

s2
i

λi
(4.34)

We have thus proven:

Lemma 4.58. If a �
N°
i�1

civi with tciuNi�1 and tviuNi�1 satisfying (4.34), then a sat-

isfies constraints (1*) and (3*).
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We use this result to prove the following.

Proposition 4.59. Given tϕiuNi�1 � Sd�1, let Q P RN�N be the matrix defined by

Qi,j � xϕi , ϕj y2. Let z �

�
�������

1
N

. . .

1
N

�
�������
P RN . Then if zJQ:z ¥ d

N3 , there exists taiuNi�1

with ai ¥ 0,
N°
i�1

ai � 1 such that µ :�
N°
i�1

aiδϕi is a tight probabilistic frame.

Proof. Again, by Lemma 4.57, Q is symmetric, positive semi-definite. Letting

rankpQq � m ¡ 0, we have m positive eigenvalues tλiumi�1 and an orthonormal basis

of eigenvectors tviuNi�1 and can decompose Q as Q �
m°
i�1

λiviv
J
i . Given r P r 1

N2 ,
1
N
s,

there exists a probability vector a P RN (i.e., ai ¥ 0, P t1, � � � , Nu,
N°
i�1

ai � 1) as

above such that }a }2 � R.

Now suppose d
N3 ¤ zJQ:z �

m°
i�1

1
λi
xvi , z y2, so that

N

d

m̧

i�1

1

λi
xvi , z y2 ¥ 1

N2
.

Then there exists some probability vector a such that

}a }2 ¤ N

d

m̧

i�1

1

λi
xvi , z y2

First, }a }2 �
N°
i�1

xvi , a y2 ¥
m°
i�1

xvi , a y2 implies that

m̧

i�1

xvi , a y2 ¤ N

d

m̧

i�1

1

λi
xvi , z y2 (4.35)

Second, }z }2 � 1
N

, so that
m̧

i�1

xvi , z y2 ¤ 1

N
(4.36)
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Thus, by (4.35) and (4.36) and the CBS inequality, we have:

N
m̧

i�1

xvi , z y2
m̧

i�1

xvi , a y2 ¤ N

d

m̧

i�1

1

λi
xvi , z y2

pN
m̧

i�1

xvi , z yxvi , a yq2 ¤ N2

d

m̧

i�1

1

λi
xvi , z y2

Then, noting that 1�Nxz , a y � 0, and recalling thatNxz , a y �
N°
i�1

xz , vi yxvi , a y,

we obtain

p1 �N
¸
i¡m

xvi , z yxvi , a yq2 � p1 �Nxz , a y �N
m̧

i�1

xvi , z yxvi , a yq2

¤ N2

d

m̧

i�1

1

λi
xvi , z y2

But a quick calculation shows that this last inequality is equivalent to

p1 �
¸
i¡m

sixvi , a yq2 ¤ 1

d

m̧

i�1

s2
i

λi
,

where, as in the lemma 4.58, sk �
N°
i�1

vki . Thus, by that lemma, we have that a, in

addition to satisfying constraint (2), satisfies also constraints (1*) and (3*).

Corollary 4.60. Let λ � λmaxpQq. If λ2d ¤
N°

i,j�1

Qi,j, then there exists a such that

µ :�
N°
i�1

aiδϕi is a tight probabilistic frame.
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