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A probabilistic frame is a probability measure on R? which has finite sec-
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Chapter 1
Introduction

1.1 Background

In this thesis we bring together some of the key ideas and methods of two very
lively fields of mathematical research, frame theory and optimal transport, using

the methods of the second to answer questions posed in the first.

1.1.1 Frames

Introduced in 1952 by Duffin and Schaeffer [27] in their paper on nonharmonic
Fourier series, frames are redundant spanning sets of vectors or functions that can
be used to represent signals in various spaces in a faithful but nonunique way. It
is this very nonuniqueness which guarantees that the frame expansion of a signal
may be more stable and robust to noise-induced errors than its expansion in any
orthonormal basis. In finite-dimensional settings, because they provide an intuitive
framework for describing and solving problems in coding theory, analog-to-digital
quantization theory, sparse representation, and compressive sensing, certain classes
of frames have proven useful in work on signal processing for telecommunications
and other applications. This utility was not fully appreciated until the renaissance
of interest in frame theory in infinite-dimensional settings in the late 1980s due

of the work of Daubechies, Meyer, and Grossman on the construction of wavelet



frames with tractable reconstruction properties [23]. These and other frames have
now become some of the standard tools of image processing: Gabor frames, Fourier
frames, shearlets, curvelets, wavelets, and multiresolution analyses.

Briefly, a frame for R? is a set {¢;}Y, < RY, N > d for which there exist

constants 0 < A < B < oo such that for all x € R¢,
N
Alz|? < ) {pi ) < Blz |,
i=1
A frame {1;}}¥, < R? is said to be dual to {y;}¥, if for all z € R,

N N
=1 =1

Tight frames, that is frames for which A = B in the above definition, are particu-
larly useful because they have a basis-like reconstruction property that is useful in
applicationsthey are self-dual up to a constant. In geometry, they are also known
as eutactic stars. It is a corollary of Naimark’s theorem that finite tight frames
are the projection of an orthonormal basis onto a lower-dimensional space [6,22];
consequently, in principle, it is easy to construct a tight frame. However, there
are subclasses of tight frames, such as finite unit-norm tight frames (FUNTFs) and
equal-norm Parseval frames, equiangular tight frames, and Grassmannian frames,
which are interesting, as well as desirable from a coding theory perspective, and
which are not always so simple to construct.

Indeed, a number of methods of building tight frames exist for specific ap-
plications [16]. Of particular interest are FUNTFs, which are tight frames all of
whose elements have norm one. These frames combine the stability properties of

tight frames with the control of frames of uniform norm, and they are connected



to problems of equidistribution on the sphere. In [5], Benedetto and Fickus show
that FUNTF's are minimizers of a functional related to this equidistribution problem
called the frame potential. Equiangular tight frames, those for which the mutual co-
herence between distinct frame elements is of constant magnitude, are another class
of FUNTF that proves elusive, and constructions of them for higher dimensions are
scarce. In [31,45], it is shown that the minimizers of another functional called the
p-frame potential are precisely the equiangular FUNTF's.

Other approaches exist to constructing FUNTFs. In [13], the authors give an
algorithm for the construction of all frames with a given spectrum and compatible
set of lengths, as defined by the Schur-Horn Theorem. They thus improve on the
state of the art for generating FUNTFs, namely spectral tetris and truncations of
the Discrete Fourier Transform (DFT) matrix. However, this algorithm requires two
challenging decision steps which must be made somewhat blindly. The existence of
the potentials mentioned above suggests that variational methods for construction
of tight frames and FUNTFs might complement these algebraic methods.

Moreover, there are more questions to answer than simply how to construct
classes of tight frames. For instance, Parseval frames are tight frames for which
the frame constant is one, and equal-norm Parseval frames, when used to encode
and decode a signal, are optimally robust to one erasure [8]. The Paulsen problem
asks the distance to the closest equal-norm Parseval frame from a given almost-
equal norm, almost-Parseval frame (see Definition 4.1). This is a question that
constructions ¢ la [13] may not be able to answer. Indeed, while partial results

exist, this problem remains open; in [8,17], Bodmann and Casazza and Fickus,



Mixon, and Casazza give two distinct differential calculus approaches to answering
it. It is one of the aims of this thesis to present a framework for addressing the
Paulsen problem related to the approach of [17].

It should also be noted that since in some applications one cannot always
choose the frame used for encoding, let alone require that it be tight, others have
explored optimal dual frames for various error types, such as erasure, quantization,
and noise, with various probabilistic distributions [38,46]. Additionally, there are
generalizations of finite frames, termed fusion frames which can be used to mimic
the distributed processing of sensor networks; construction of these frames poses
additional interesting questions. We present a new version of frame duality which
can be viewed through the fusion lens.

In line with the development of precise estimates for random frames and opti-
mal frames for probabilistic erasures, the idea of probabilistic frames was developed
in a series of papers ( [29-31]). Simply put, a probabilistic frame yu for R? is a
probability measure on R? for which there exist constants 0 < A < B < oo such

that for all z € R?,

Al < | o vduto) < Bl P

Importantly for our purposes, the ideas of tightness and equiangularity can be ex-
tended to these objects. Probabilistic frames are related to statistical shape anal-
ysis, as detailed in [31], and they are linked to the classical problem of estimating
the population covariance from a sample [29,51]. However, the true strength of

probabilistic frames lies in the fact that they embed the space of finite frames for



Euclidean space in the space of probability measures with finite second moments, a
metric space with distance defined by the concept of optimal transport. Much effort
has been expended over the past 25 years to define a calculus for this space, and
it is this calculus which will allow us to rigorously construct gradient flows for the

potentials mentioned above in order to identify tight probabilistic frames of various

types.

1.1.2  Optimal Transport

The most natural space to explore probabilistic frames is the Wasserstein space
of probability measures with finite second moments, or, more generally, with finite p-
th moments. This space is the realm of optimal transport theory, an area going back
to the work of Monge in the 1780s. The classical question in optimal transport, the
Monge-Kantorovich problem, is to find a joint measure v on R? x R? with marginals
p and v, measures on R which minimizes the cost functional

Cu) = || ctwirie.y)

R4 xRd

among all such joint measures, where ¢ : R? x R? — R is a lower-semicontinuous
infinitesimal cost function, integrable with respect to . This problem was studied
by Kantorovich in the 1930s in both the continuous and discrete settings because of
its many applications in logistics and economics. Today, its methods are commonly
used in a multitude of applications, from radar design to image processing [3,43,48].

In [44], Monge specifically sought a deterministic map 7' : R¢ — R? such that T

is a change of variables pushing the measure i to the measure v, Tyt = v, on whose



graph in R xR? a joint measure v would be concentrated which would be optimal for
the cost c(z,y) = |r—y |, as will be explained in more detail in Section 1.4. Proofs of
the existence of this map were very difficult, and it was not until the late 1980s that a
number of people working independently discovered connections between the Monge
problem and PDE theory which broadened its appeal. Yann Brenier, independently
of Cuesta-Albertos and Matran and Rachev and Riischendorf, proved that for the
quadratic cost function, given an absolutely continuous source measure, a unique
solution existed which would be the pushforward of the source by the gradient of a
convex function [10,21,47].

Approaching from the PDE perspective, Evans and Gangbo worked out an
alternative proof, and they were followed by a number of other mathematicians,
including Caffarelli, Ambrosio, and McCann, who worked out many more details
relating to more general cost functions and questions of regularity [11,32,37]. Otto,
in a paper with Jordan and Kinderlehrer, worked out a metric calculus approach
which allowed a much finer exploration of the geometry of the space of probability
measures and a formal calculus for the optimal transport problem [39]. Over the
past 20 years, many more people have contributed to the development of methods
for solving problems in optimal transport; Villani gives an excellent history of the
field in [53]. Still cited by almost every new paper in the field is the survey by
Ambrosio, Gigli, and Savaré [2], upon which we shall call many times. Recasting
some of the above finite frame theory problems as problems for probabilistic frames,
we will use elements of this calculus to establish existence of solutions and then to

construct them.



1.2 Summary of Results

Motivated in part by the Paulsen problem, we study the space of probabilis-
tic frames from the optimal transport perspective. We consider constructions of
geodesic paths of frames and of paths of frames along gradient flows for various
potentials.

In Chapter 2, we briefly review the basic tools of optimal transport and then
use them to construct paths of frames along geodesics in the Wasserstein space.
We prove structural results about the space of probabilistic frames and identify
conditions under which geodesics will remain in that space. We give examples of
both discrete and continuous probabilistic frames which meet these conditions. On
the discrete side, we connect them to basic results on ranks of convex combinations
of matrices; on the absolutely continuous side, we connect them to deep results
about regularity for optimal transport maps.

In Chapter 3, we reconsider the idea of duality and define transport duals in
the space of probabilistic frames, which generalize the idea of duality in the finite-
frame case. We connect this construction to fusion frames. We also generalize the
operations of analysis and synthesis using decompositions of probability measures
via the disintegration theorem.

In Chapter 4, we use gradient flows in the space of probability measures to find
tight frames. We define a tightness potential related to the frame potential and show
that gradient flow solutions exist to the corresponding minimization problem. This

generalizes a result of Casazza and Fickus ( [17]), which shows that FUNTFs can



be found as the solution of a system of nonlinear ODEs. We also give preliminary
results indicating that similar problems involving the p-frame potential are also

well-posed.

1.3 Notation

Let R? denote d-dimensional Euclidean space, and let {- ;- ) denote the inner
a »
product on this space. For any x € R?, let |z, = (Z |:L‘i|p> . When p is not
i=1
specified, it can be assumed to be 2. Let S%! = {z e RY: |z| = 1} denote
the unit ball with respect to the 2-norm in R%. Let R™*™ denote the set of m x n
matrices with real entries, and given A € R™*" let AT denote its transpose and, if
it is a square matrix, tr(A) its trace. We will sometimes write the inner product
{x ,y) as x'y and the outer product as zy'. As above, we say that a set of vectors
{pi}Y, = R? is a frame if there exist constants 0 < A < B < oo such that for all
r € RY,
N
Az P < Yz i) < Blz |,
i=1
We take A and B to be the frame bounds, the sharpest such values for the frame.

Again, a frame is tight if A = B and Parseval if A = B = 1. We define the

analysis operator for a frame ® = {;}¥ | with the overloaded notation ® € RV*¢




Similarly, we define its adjoint, the synthesis operator, as
7 = [y on] € RV,
We define the frame operator ®'® : RY — R? and note that

N
O dr = Z<<p2 ) TP

=1

We also define the Grammian, ®® ", where

(@DT)i; =i ¢5).

We similarly define a probabilistic p-frame as a probability measure p on R? for

which there exist frame bounds 0 < A < B < o0 such that for all x € R¢,

Al < [ oy yduty) < Blel”
R

When we use the term probabilistic frame, we mean a probabilistic 2-frame and
its associated frame bounds. Each probabilistic p-frame, p = 2 is also a probabilistic

2-frame. Given a finite frame ® = {¢;}¥; = R? we define the canonical probabilistic

=

frame for ® as the uniformly-weighted sum of delta-masses, pe = % 0y, Other
i=1

(2

terms related to probabilistic frames will be defined in the following preliminaries.

1.4 Preliminaries

To begin the discussion of probabilistic frames, a few definitions are needed.

Definition 1.1. A probability measure x on R? is an element of P,(R?), the space

of probability measures with finite p-th moment, if it satisfies:

M0 = | Lo Pdnte) <0



Definition 1.2. The support of a probability measure p on R? is the set:
supp(p) := {:c e R? s.t. for all open sets U, containing z, u(U,) > O}

Finally, we define a natural metric on P,(R?), the (p-) Wasserstein distance.

Definition 1.3. The p-Wasserstein distance between two probability measures
wand v on RY is:

Wy (n,v) = inf f |z —y|Pdy(z,y) v e (p,v) ¢,

R4 x R4

where I'(p, ) is the set of all joint probability measures v on R? x R? such that for

all A, B < B(RY), v(A x RY) = u(A) and v(R? x B) = v(B).

The search for the set of joint measures which induce the infimum is a variant
of the Monge-Kantorovich problem. A joint distribution vy which induces this
infimum is called an optimal transport plan. In the quadratic case, when p and
v do not assign positive measure to isolated points, then

Winr) =gt $ [[ o= T@) Pduta) : Ty = v ¢

R4 x R4

where T is a deterministic transport map (or deterministic coupling): i.e.,

for all v-integrable functions ¢,

» P(y)dv(y) = y ¢(T'(x))dp ().

When the search for the minimizing joint distributions of the Monge-Kantorovich
problem is limited to deterministic transport plans, we have the original Monge
problem. Equipped with the 2-Wasserstein distance, P»(R?) is a complete, separa-
ble metric space. In fact, the set of measures with discrete, finite support is dense

10



in P,(R%). Convergence in the space has several equivalent formulations. We will

make use of the following notions of convergence:

Definition 1.4. ( [53, Definition 6.8]) A sequence of measures {u,} = P,(R?) is

said to converge weakly to € P,(R?) if the following two conditions are met:
e 1, — u weakly or narrowly, i.e.:
Vf e Cy(RY) f@)dpn(x) — | f(z)dp(z)
Rd Rd
e For any (and therefore every) zo in RY, (., [lv — zo |Pdu, () — §pulz —
o [Pdp ().
A second, equivalent definition is:

Definition 1.5. ( [53, Definition 6.8]) A sequence of measures {u,} < P,(R?) is

said to converge weakly to p in P,(R?) if for all continuous functions ¢ with
()] < OO+ |z =20 "),
for some C' > 0 and some x4 € R?,

o)) > | o(w)dnta).

1.5 Probabilistic Frames as a Subset of P»(R?)

With the space above in mind, we give the following definition:

Definition 1.6. A probability measure 1 on R? is a probabilistic frame if and

only if there exist positive constants A and B such that for all y € RY,

Al < [ 1 w)Fduta) < Bl

11



A probabilistic frame is said to be tight if A = B.

By [30, Theorem 5|, a probability measure g on R? is a probabilistic frame if
and only if it has finite second moment, and the linear span of its support is R%.
This result may be stated in terms of the probabilistic frame operator, which is

defined thus:

Definition 1.7. Given a measure pu € P»(RY, its (probabilistic) frame operator

is S, which for all y € R? satisfies:

Suy = JRd@r VY ) x dp(z).

Clearly, S, may be equated with its matrix representation SRd xx " du(z), and
then the requirement that the support of 4 span R? is the same as requiring that
this matrix be positive definite. Equivalently, the probabilistic frame definition
translates into a requirement on the covariance matrix Cov(u) and mean 7 of p,
with:

- f rdu(z) and Cov(p) = j (r— ) — 1) du(z)

Rd

First, the mean and the covariance matrix must be well-defined since p has finite

second moment. Second, there must exist A > 0 s.t for all y € R,

{y ,Cov(mwy )y = Ally [P = Ky , 1),

If = 0, then this second condition is equivalent to requiring that Cov(u) be positive
definite. Probabilistic frames for R? are clearly a subset of P(R%) because of the
upper frame bound. Let us denote the probabilistic frames for R? by PF(R?). Let
PF(A, B,R%) denote the set of probabilistic frames in PF(RY) with upper frame

12



bound less than or equal to B and lower frame bound greater than or equal to A.
Let PF(A,R%) denote the set of tight frames with frame constant A. Let DPF(RY),
DPF(A, B, N,R%), and DPF(A, N, R?) denote the corresponding sets of probabilistic

frames with finite support containing at most N elements.

Proposition 1.8. Given finite A, B > 0, PF(A, B,R?) and PF(A,R?) are nonempty,
conver, closed subsets of Po(R?).

Proof. The nonemptiness is clear: consider the space of nondegenerate, zero-mean
Gaussian measures on R? whose covariance matrices have maximum eigenvalue B

and minimum eigenvalue A. For the convexity: consider u,v € PF(A, B,R%), X €

[0,1]. Define uy = (1 — A\)p + Av. Given y € RY,

| i@ = -3 [ @ a | gt
= (1= M)Ay I* + Ay |*
= Aly|*
The upper bound follows similarly, and the result is clear. Finally, for the closed-

ness, let {{,} be a sequence in PF(A, B,R?) converging to u € P»(R?). Since

§pax v )*du(z) is a continuous function of y € RY, we can define
Yo = argmin,cga- fRd@ Ly Y du(r).
Since
@ yo)” < o Plyo I* < lyo [ (L + =),
by the second definition of weak convergence in Pp(R?) given in Definition 1.5,

§pale Yo Y2 dpy (@) = (5. yo Y?du(z). Since for all n, the values of {;,(x , yo Y2dpin (2)

13



are bounded above and below by B and A, respectively, 1 is an element of PF(A, B, RY).

Taking A = B, we also have the closedness of PF(A,R?). O

Remark 1.9. Note that PF(RY) itself is not closed, since one can construct a sequence
of probabilistic frames whose lower frame bounds converge to zero: for example, a

sequence of zero-mean, Gaussian measures with covariances %I ,n € N.

Proposition 1.10. Given finite A, B > 0, DPF(A, B, N,R%) and DPF(A, N,R%)

are closed subsets of Py(RY).

Proof. Consider a sequence {u,} in DPF(A, B, N,RY) converging weakly to u in
Py(R%). By the result above, u € PF(A, B,R%). Thus, it remains to show that the
support of p is discrete and finite, containing at most N elements.

Suppose #|supp(u)| = M > N, possible infinite. Then there exists {y,} | <
supp(u) such that for all open subsets U which contain some y,,, u(U) > 0. Fix
T = N + 1. Then we have € > 0 such that ||y; —y; | > 3e for all i, j < T, i # j.

Define the disjoint open balls {B.(yx)}i_,, ordered such that u(B.(y1)) >
1(Be(y2)) = - -+ = p(Be(yr)) > 0. Let 6 = 1i(Be(yr)). Now, for any n € N, supp(pi,)
contains at most N elements. Therefore, by the pigeonhole principle, for each n there
exists a subset I,, < {1,2, ..., T} such that #|7,| = 1 and supp (i) [ (Vker, Be(yr)) =
. In particular, for all z € supp(uy,), |z — yx || > € for all k € I,,.

Then for all n,

W2t 1) = f Iz — y 2oz, y)

R4 xRd

>§jf

kel,, e(yk)

fz—yQMM%w
Rd

14



> J J62d70(rv,y)
kez]:n e(yr) JR?

= ¢ Z 0(R? x Be(yr))

kel,

=€ ) 1(Be(yr))

kel,

> ¢% . §, independent of N

This contradicts the convergence of the sequence, and our result follows. O

1.6 Connection between Probabilistic and Continuous Frames

As detailed in [34], the idea of discrete frames was generalized by Ali, An-
toine, and Gazeau to encompass families of elements in some locally compact space
possessing a Radon measure, the so-called continuous frames. Square-integrable rep-
resentations of groups can generate continuous frames by acting on a fixed mother
element, and in mathematical physics, these frames are called coherent states and
can be carefully chosen to simplify certain problems. Rank-one positive operator
valued measures (POVMs) can be written as continuous frames.

In [1], we have the following definition of continuous frame:

Definition 1.11. Let X be a metrizable, locally compact space. Let v be positive,
inner regular Borel measure for X supported on all of X. Let H be a Hilbert space.
Then a set of vectors {n:,i€ {1,--- ,n},z € X} is a rank-n (continuous) frame

if, for each x € X, the vectors {n’,i € {1,--- ,n}} are linearly independent, and if
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there exist constants 0 < A < B < o such that Vf e H,

AP <Y | 1k DPavie) < BI7
i=1

With this definition in mind, we can detail the following simple relationship

between continuous frames and probabilistic frames.

Proposition 1.12. Any probabilistic frame can be written as a rank-one continuous

frame.

Proof. Let pu € P»(R?) be a probabilistic frame. The support of x is a closed subset
of RY, so that we can take X = supp(u) in the above definition. Then, clearly, with

n=1andn, =, {z}, v € supp(u) = R? is trivially a continuous frame. O

Remark 1.13. Conversely, let {n,} be a rank-one continuous frame for (X = v),
where X is some metrizable, locally compact space, and v is a finite, positive, regular
Borel measure. Let 8 = v(X). Take H = R? and consider T : X — R?, T(z) := 7,.

W= T#(%l/) is then a probabilistic frame for R?, since for any A € B(R¢,
1
0<puA) = J Xa(y)dp(y) = —f Xa(ne)dv(z) < 1,
Rd ﬂ X
and for any z € RY,
2 1 2
| @ oorauty) = 5 | ez yav),
R BJx

This equivalence is not particularly interesting, and, as we shall see in the
following chapters, much more can be learned by examining the measure p and

working in the Wasserstein space.

16



Chapter 2
Elementary Paths in the Space of Probabilistic Frames

2.1 Geodesics for the Wasserstein Space

To investigate the distances between probabilistic frames, we consider geodesics
in the Wasserstein space P(R?); this notion will be crucial later on when we build
gradient flows in this space. We identify conditions under which every measure on
the geodesic between two probabilistic frames is itself a probabilistic frame, show-
ing that for the case of discrete probabilistic frames, this question can be reduced
to one of ranks of convex combinations of matrices. For probabilistic frames with
density, we show that continuity of the optimal deterministic coupling is sufficient
for geodesic measures to be probabilistic frames. The key results may be found in

Theorems 2.13 and 2.30.

2.1.1 Wasserstein Geodesics

To begin, we work with general geodesics in the Wasserstein space. The

method, taken from [35], is as follows:

Definition 2.1. Let o and p; be measures in Py(R?). Define the map II* : R? x
R? — R? by

' (x,y) = (x, (1 —t)x + ty) for te[0,1].
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Let vo € I'(p0, 1) be an optimal transport plan for pg and gy with respect to the
2-Wasserstein distance.
Define a probability measure +* on R? x R? by :

JJ (z,y)dy' (2, ) fJ F('(x,y))dyo(r,y)

Rd x R4 R4 xR

for all F'e Cy(R? x RY). Note that VF € Cy(R?),

” x)dy' (z,y) H z)dyo(z,y) = JRd F(x)dpo().

R4 xRd R4 xR4

Then, defining puy, t € [0,1], to be the probability measure such that for all G €
Cb(Rd)t

JRd y)dp(y Jf y)dy' (z,y) Jj (1 =t)z + ty)dy(x,y), (2.1)

R2 xRd R4 x R4

we call y; a measure on a geodesic between py and p;, or a geodesic measure
when the endpoints of the path are clear from the context. We call ; a lifting of

1y relative to vp.

Proposition 2.2. Given g,y € Py(RY), the mapping [0,1] — Po(R?) given by

t — g, as defined in (2.1), is Lipschitz in t.

Proof. Define f; : R? x R — R? by fi(x,y) = (1 —t)z + ty. Take po, pty € Pr(RY)

with optimal plan vy € To(po, p1) and gy = (fi) 7. Then

W) = _inf [ Ju= v (a0
" Z]Rded
|| 1= vt st
R xR?

18



- J (1 =tz + tiy) — (1 — t2)z + toy)) |Pdyo(z, )

_ Jf (ta —t1)?|z — y|*dvo(z, y)

R4 x R4

= (t2 — t1)* W3 (o, p11)

where the last equality comes from the fact that v is an optimal plan for the 2-

Wasserstein distance between pg and p;. O]

Moreover, from [35], we have the following lemma, which justifies our use of the

term ”geodesic.”

Lemma 2.3. The mapping t — p; is a geodesic of the 2-Wasserstein distance in

the sense that

Wa(po, pe) + Walpue, 1) = Walto, pi1)-

In the rest of this chapter, we consider under what conditions we can con-
struct a “path of frames”—i.e., when are the measures on the geodesic between two
probabilistic frames themselves probabilistic frames? Recall that proving that a
probability measure ;2 on R? is a probabilistic frame requires showing that it is an
element of P»(R?%) and that S, := Cov(u)+n" is positive definite. It is easy to show

that u;, as constructed by the method above, always meets the first requirement.

Lemma 2.4. For any measure i, t € |0, 1], on the geodesic between two probabilistic

frames o and py with lifting v; relative to an optimal plan o, M3 (p:) < o0.
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Proof. Given p; as above,

M) = | WP = || Parey

R xRd
= || 1002+t Parfo)
R4 xRd
= || = tRe 21y 4 260 - 0 o)
R x R4
= (1= M o) + M) + 21 1) [ @ wdibole)
R x R4
Now,
3 3
| ||x||duo<as>=(f ||x2duo<as>) (j 1d#0($)> ,
Rd ]Rd Rd
SO
| e ot < MaGo)
Therefore,

M3 () < (1= )2 M5 (o) + 12 M3 (pin) + 2t(1 — ) Mo (o) Ma (1)
= ((1 = t) My (o) + tM3(p11))?

< Q0.

]

The question which remains is showing that S, := SRd vy du(y), the frame
operator of i, is positive definite (or, equivalently, that the support of y; spans R?).
Different conclusions can be drawn about the lifting of the geodesic depending on
the characteristics of the support of the measures at the endpoints. For this reason,
we divide much of the remaining analysis into two parts: the discrete case and the
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absolutely continuous case. In both, we will make use of a monotonicity property
(Definition 2.7) that characterizes optimal transport plans. We first address this

question for the canonical probabilistic frames associated with finite frames.

2.2 Paths for Discrete Probabilistic Frames

2.2.1 Probabilistic Frames with Discrete Support

To give the most general statement of the discrete case, we give the following

definition:

Definition 2.5. Let {a;}Y | be a set of nonnegative real numbers satisfying
Zi]il a; = 1, and let ® = {p;}}¥, be a probabilistic frame. Then the canonical
a-weighted probabilistic frame for ® is pg , given by due o(z) = Zf\il a;0,, ()

Now suppose we have two frames ® = {p;})¥ | and ¥ = {¢;}}1,, and two sets
of nonnegative weights, {a;}¥; and {3;},, summing to unity. Let po = g o, and

let u; = py g. In this case, any joint distribution 7y for uo and p; satisfies

dy(x,y) = (04, () .- Opp, ()] Aldy, (y) - - Oy, (1)),

where A € RV*M with

N M
ZAZ‘,J' =5, Z Aij=a; Ay =0 Vijg,
=1 j=1
and vazl Z;VZI A;; = 1. That is, there is a one-to-one correspondence between

(o, p1) and a subset of the N x M nonnegative matrices whose entries sum to
one.
In particular, we have:
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Lemma 2.6. [2, Theorem 6.0.1] Given py and uy as above, if M = N, and if
a; = B = % for alli,j € {1,...,N}, then the Monge-Kantorovich problem becomes
the Birkhoff problem, and denoting by F(%) the set of matrices with row and column

sums identically % :

W3 (o, 1) = mln ZZGHH@Z ;|2

1, 15=1
and, by the Birkhoff-von Neumann Theorem, the optimal transport matriz A is a

permutation matriz corresponding to some o € Sy, i.e.:
1 X
2 o o 2
W (0, pi2) = min — Z} lpi = Yo |
In this case, for some optimal o € Sy,

N
Z [(1 = )i + o ][(1 = )i + toe)] - (2.2)

N
Note that the optimality of ¢ implies that o maximizes ) {y; , %5 ) among all
i=1

elements of Sy. This crucial fact motivates the following definition.

Definition 2.7. A set S < R? x R? is said to be cyclically monotone if, given

any finite subset {(z1,41), ..., (xn,yn)} © S, for every o € Sy holds the inequality:

N N
Z<xz ayz Z X 7%(1
=1 i=1

Having defined cyclical monotonicity, it will be useful to note that there are
several examples of pairs of frames whose canonical probabilistic frames meet this
requirement. First, however, we recall a result of [20], restated for Euclidean space,

which gives a useful characterization of frames and their duals:
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Lemma 2.8. [20, Theorem 5.6.5] Let {o;}Y | be a frame for R® with frame operator
S. The dual frames of {¢;}, are precisely the families:

N N
(i}, = {5_1%' + hi — Z<S_1<Pi s Q5 >h]} ; (2.3)
i=1

J=1

where {h;}¥, is some subset of RY.
Now, we can proceed to discuss cyclical monotonicity of certain frame pairings:

Lemma 2.9. If {p;}Y, is the canonical dual frame to {1}, then {(v;, )}, is

cyclically monotone.

Proof. Let S = U'W. Then suppose that ®' = S~'WT  For any permutation

o € Sy, let P, denote the matrix such that for

T To(1)

Ve=|: |eRY Pao=

TN To(N)

Then

(S i — Vo(s) )

(2

iD=

N
Z<90i i — wa(i)> =
i=1

.

-
I
—

(Vs = Yo(i) TS
=Tr((¥ — P, ¥)S 0T
= Tr((Iy — P,)¥S'0T)
= Te((Iy — P,)IR)

=0
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We also use the fact that, denoting by I¢ the N x N diagonal matrix with d leading
ones on the diagonal and zeros else, WS~ = ¢ because S~ '¥' is the Moore-
Penrose pseudoinverse of W. Therefore, the identity is an optimal permutation, i.e.,

the set {(¢i,¥;)}Y, is cyclically monotone. O

Lemma 2.10. Let {o;}Y | be one of the dual frames to {1} |, as given in Lemma
2.8. Assume that the set {h;}Y, is ordered so that {(hi, i)} g1 18 cyclically mono-

tone. Then {(¢i, Vi) }Y, is cyclically monotone.

Proof. Take {¢;}I¥, to be a dual of the form given in Lemma 2.8. Let W be the
matrix whose rows are the {h;}»,. Then, noting that ®" = (S 20T + WT(Iy —
ERL))
N
i = agiy iy = Tr((Iy — P,)U")
i=1
=Tr((Iy — P)U(ST'0" + W (Iy — US™1U)))
=Tr((Ixy — P)I% + (In — P)UW ' (Iy — I%))
N
= Tr((]N - PO')-[?V) + Z <77Z)z - wa(i) ;hz>

i1=d+1

=0

Therefore, under these conditions, {(¢;,1;)}Y, is cyclically monotone. O

Finally, we state this last critical lemma before laying out the main results of

this section.

Lemma 2.11. [/9, Theorem 2] Let A and B be m x n complex matrices, m = n.
Let rank(A) = rank(B) = n. If B'A has no nonnegative eigenvalues, then every
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matrix in

h(A,B) :={C: C=(1—-t)A+tB, tel0,1]}

has rank n. Similarly, if A and B are n x n complex matrices with rank n, we can
define in

r(A,B):={C: C=(I-T)A+TB},

where T is a real diagonal matriz with diagonal entries in [0,1]. Then, if B~'A is a
P-matriz—that is, having all principal minors positive—then every matrixz in r(A, B)

will have rank n.

Given this lemma and the cyclical monotonicity condition, we can state the
following proposition which gives sufficient conditions for a geodesic between discrete

probability measures in P (R?) to be a path of frames.

Proposition 2.12. Let {¢;}Y, and {1;}Y | be frames for R? with analysis operators
® and U. If UVI® has no negative eigenvalues, and if {(p;, i)}, is a cyclically
monotone set, then every measure on the geodesic between je and g has support

which spans RY.

Proof. Note that S,,, as defined in equation (2.2), is the frame operator for a new
set of vectors, namely {(1 —t)p; + ty(;)}r,. Therefore, the support of 4 will span
R? (equivalently, S, will be positive definite) provided this set of vectors spans R?.
Now, let ® be the matrix whose rows are the frame vectors {¢]}, and let ¥ be the
matrix whose rows are the frame vectors {]}. As was done in Lemma 2.9, define

P, to be the N x N permutation matrix corresponding to ¢ € Sy, where now o is
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the optimal permutation for the Wasserstein distance. Let ¥, be P, V. In a slightly

more concise way, we can write:

1 T T
Sy, = v (=)@ +t0 ) (1 —t)® +t7,).

U and W, have rank d, and to show that S, is positive definite, we must prove
that every matrix in the set h(®,¥,) := {(1 — t)® + t W, }ep1] has rank d. By
Lemma 2.11, a sufficient condition for this to be true is that ¥} ® be positive semi-
definite, where ¥! is the Moore-Penrose pseudoinverse of ¥,. Finally, we note that
if {(¢:, %)}, is a cyclically monotone set, then P, = I, the identity, is an optimal

permutation, and then U] ® = Ui is positive definite by assumption. ]
By combination of Lemma 2.4 and Proposition 2.12, we have this result:

Theorem 2.13. Let {o;}Y, and {1}, be frames for RY. If UId has no neg-
ative eigenvalues and {(pi, 1)}, is cyclically monotone, then every measure on
the geodesic between the canonical probabilistic frames pge and py is a probabilistic

frame.

These conditions hold for certain dual frame pairs, as described in the next

proposition.

Proposition 2.14. If {¢;}, is the canonical dual frame to {1}, or if {pi}¥,

is a dual frame to {1} | of the form given in (2.3), such that the {h;}Y | is ordered
so that {(hi, ¥:)}N 4,1 is cyclically monotone, then W ® is positive definite, where o

18 the optimal permutation.
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Proof. By definition,
Ul = (P,0) = (O'PIPU) P = (W) RS

Note that this is a permutation of the matrix whose columns are the elements of
the canonical dual frame of the rows of W,. If {¢;}¥, is any dual of {1;},, then
UTd = [, and therefore, if o is the identity, then U ® = (U TW)~1 which is positive
definite. It remains to show that the optimal permutation is the identity. Lemma 2.9
shows that if {¢;}Y , is the canonical dual to {1;}},, then {(¢;,;)}Y, is cyclically
monotone; Lemma 2.10 shows that if {i;}¥, is any dual to {¢);}¥, which meets the

above condition, then {(¢;,%;)}, is cyclically monotone. O

Given the preceding results involving the support of the lifting of the geodesic,
we note that it may be profitable to consider the frame operator for the optimal

transport plan vy between two discrete probabilistic frames pe and py:

Sy 1= U ' [y | dyol, ).

Ré x R4 Yy
This operator has the form:
OTd PTU,
S’Yo =
Uie vy

Moreover, it has the property that for all z € R¢,

(1—t)x
(x,S,z)y=[1-t)x" tz"]S,, : (2.4)

tx
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Thus, given ¢ € [0,1], S

.. 18 positive definite on R? if S,  is positive definite on the

subspace

W, = {[(1 —t)x tz] |z e R} < R x R™.

For a class of special discrete probabilistic frames for R? with N > 2d which

meet the condition defined below, we can show this is the case.

Definition 2.15. A frame {p;}Y, < R? is full-spark if every d-element subset

contained in it is linearly independent.

Proposition 2.16. Let N > 2d. Let {¢;}}Y, be a frame for RY, ordered such that
{@i}d, is linearly independent. Let {4;}}., be a full-spark frame for R®. Moreover,
let these two sets have the property that for all subsets J = {j1, ..., ja} < {1, ..., N},
if there exist {a;}Y,, not all zero, such that Zle ajp; = @ for some | > d, then
S g, # by forallk € {1,..., N\J. Then every measure on the geodesic between

e and py 1s a probabilistic frame.

Proof. Given {p;};L, and {¢;}}L, as above, supporting canonical discrete probabilis-
tic frames pg and g, let 4y € Po(R? x RY) be the optimal transport plan for the

Wasserstein distance. Then we can write

CI)T
570 = [(I) \IJU] )
\IIT
N
o Pi : :
which is the frame operator for the set {77}, := . If this set is
Yo (i)

i=1
a frame for W,, or more generally for R??, then the result follows. Recall that the
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{¢i}¥ | are ordered such that the {¢;}¢ | are linearly independent. Therefore, the
set {7719 | spans a d-dimensional subspace of R? x R¢.

Since {¢;}IL, is full spark, it is guaranteed that {1, (;}7¢,, , is linearly indepen-
dent, and it follows that {y7}??,., spans a d-dimensional subspace for any o € Sy.
Thus, it remains to show that for any o, span{y?}., ()span{y7}?¢,.; = {0}. To do
so, define J = {o(i)}24,, ;. It will be sufficient to show that for all j € {d+1,--- ,2d},
3 ¢ spanfaf I

Since {p;}%_, is a basis for RY, for each ¢, | > d, there exists a unique set
of coefficients {a/}¢ | such that 3% alp; = ¢;. By assumption, since o(l) € J, it
cannot be the case that Z?Zl al;, = Ysq). Hence, there does not exist a set of
coefficents {al}d | for any | > d such that 3.7 | aly? = 7. Hence 47 ¢ span{y7}%

for any [ > d, and our result is proven. O

2.2.2 Examples for Discrete Probabilistic Frames

To construct some simple examples, we shall call upon the following lemma

from [41]:

Lemma 2.17. [41, Proposition 6.4] Let {@;}¥, be a frame for a Hilbert Space
H, and let S be its frame operator. Denote by ® the analysis operator for this
frame. Then {;}Y | is a dual frame of {@;}Y | if and only if there exists a sequence
{GYN.| with analysis operator Z such that for each i, ; = Sg'¢; + ¢ and for which

N
O(H) L Z(H)-that is, for allu,ve H, {Pu ,Zvy= Y {u ,p; Xv ,( ) =0.
i—1
We also define a type of dual-frame pairing:
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Definition 2.18. Let H and K be Hilbert Spaces, and consider the finite sequences
{oi}N, < H and {¢;}}Y., = K with respective analysis operators ® and ¥. Then
the finite sequences are disjoint if ®(H) [V (K) = {0}. They are orthogonal if

O*P = 0.

Proposition 2.19. If {o;}N, and {1}, are disjoint frames for R?, associated
canonically with the probabilistic frames pe and py, then every measure on the

geodesic between e and py is a probabilistic frame.
Proof. Given v € R?, consider:
N
2<U wz + th >2 Z<U 1 - t)\IJ*el + t\IJ*ei >2
i=1
N
Z (1 =)V +tTv e )

= [|(1 = t)¥v + t¥o |4

> C[(1 =) |Wo |* + 2o ]

for some C' > 0. Since the two sequences in question are finite frames, choosing the
minimum of the two lower frame bounds, say Ay, we can bound the last quantity

below by (1 — 2t + 2t*)C - Ag|v |* and obtain our result. O

2.2.3 Nongeodesic Paths between Discrete Probabilistic Frames

Given two frames {¢;}¥, and {@Z)] ~, with analysis operators ® and ¥, we
wish to characterize paths between the canonical probabilistic frames supported on

them. In this section we consider the equal-cardinality case.
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Definition 2.20. Let L(t), t € [0,1] be an N x N diagonal matrix with diagonal
entries d;(t) satisfying L(0) = I, L(1) = 0, and d;(¢t) € (0,1) V¢t € (0,1) and i €
{1,---,N}. Then the interpolating frame is O(®, ¥, L(t)) = {01}, by 6! = (1 —
di(t))i + di(t)pi-

Proposition 2.21. If {;}X, and {¢;}}", are dual frames, then ©(®, ¥, L(t)) will

be a frame for all t € (0,1).

Proof. The sets {6}, will be frames provided that their analysis operator, the
matrix (I—L(t)) ¥+ L(t)®,is full rank. By Lemma 2.11, this holds provided that ®'¥

is a P-matrix, which is certainly true if the two frames are dual to one another. [J

In the same spirit as Proposition 2.19, we can state the following proposition:

Proposition 2.22. Let L(t) = (1 — t)I. Given orthogonal frames {©;}Y | and

Y ¥, and their canonical duals {G;}Y | and VY foreacht € (0,1), O(P, U, L(t
755=1 i=1 J

=1
and ©(®, U, L(t)) will be dual to each other. Here, L(t) = \/ﬁ[,(t).

Proof. Let ©; be the frame operator for ©(®, ¥, L(t)), and let ©, be the analysis
operator for O(®, ¥, L(t)). Denoting by S the frame operator of {¢;}, the synthesis
operator of any dual to {p;} can be written: @], = Sp'®T + W(I — S;'®7),
where W € RN, In the case that ® is the canonical dual to &, W =0, and

®T¥ = S;'®TW = 0. Then:

- 1 - ~
T - - o T o
0,0, = ot 1 o U+ (1—-t)D) (t¥ + (1 —1t)P)

= ﬁ((#qﬁ@) + (1= D)+ t(1—1)(T'd+ D)

1
1= 2t+2t2(t2 (1=t
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[]

Remark 2.23. In fact, if instead of the canonical duals we chose (i)W1 and \if% with
Wi¥ = 0 and Wyd = 0, then the result would still hold. Additionally, note that
two orthogonal frames always share the dual frame {Sz'p; + Sy i}, and this

frame will be dual to ©(®, ¥, L(t)) for all ¢t € (0,1).

2.3 Paths for Probabilistic Frames with Density

2.3.1 Absolutely Continuous Probabilistic Frames

The question of the nature of the optimal transport plan for the 2-Wasserstein
distance is simpler for absolutely continuous measures. From [2, Theorem 6.2.10
and Proposition 6.2.13], which gather together a long list of characteristics, we can
extract two key facts about this plan, which we collect in the following lemma. First,

a definition:

Definition 2.24. p € P(X) is a Gaussian regular measure, written p € P"(X), if
p(B) = 0 for any Gaussian null set B. When X = R?, these coincide with the sets

of Lebesgue-measure zero.

Lemma 2.25. [2, Chapter 6.2.3] If o and p1 are Gaussian reqular measures in
Py(R%), then there exists a unique optimal transport plan for the 2-Wasserstein

distance which is induced by a transport map r. This transport map is defined
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(and injective) po-a.e. Indeed, there exists a po-negligible set N < RY such that

(r(zy) —r(ze) ,o1 — 22 ) > 0 for all 1,719 € RAN.
Then we have the following result for absolutely continuous probabilistic frames:

Proposition 2.26. If o and py are absolutely continuous (with respect to Lebesque
measure) probabilistic frames for which there exists a linear, positive semi-definite
deterministic coupling which minimizes the Wasserstein distance, then all measures
on the geodesic between these frames have support which spans RY and will therefore

be probabilistic frames.

Proof. Given the assumptions, let r(x) denote the linear transformation which in-
duces the coupling 1y = rypo. Defining hy(z) = (1—t)z +1tr(x) po-a.e., the geodesic
measure is given by

e 2= Py flo. (2.5)

Then S,, = §zu he(2)hy(x) Tdpo(z). If r(z) = Az for some A e A? then:

Spe = J d((l — )z + tAx)((1 — t) 2 + tAx) " dpo(z)
= (1=t +tA)S,, (1 —t) +tA)"

Since A must be nonsingular-recall that S,, = AS,, A", which is certainly of rank
d-by Lemma 2.11, (1 —t)I +tA will also nonsingular for all ¢ € [0, 1] provided that

A has no negative eigenvalues, as we assumed. O

Example 2.1. An example in which the assumptions of the above proposition hold
is the case of nondegenerate Gaussian measures on RY. Let o and pp be zero-

11
mean Gaussians. Let r(x) = S Su’x. 1 is a positive definite linear deterministic
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coupling of po and py. According to a result in [26], if X and Y are two zero-mean
random vectors with covariances Xx and Xy, respectively, then a lower bound for
E(|X=Y |2) is TH{Ex+3y —2(SxSy)2], and the bound is attained, for nonsingular
Yx, whenY = 2)_{% ZéX. But this simply states that a general lower bound exists
for the square of the 2-Wasserstein distance between two probability measures, and
that is obtained when at least one is nonsingular and they are related by the linear
deterministic coupling given above. Therefore, the coupling given for the Gaussian

measures is optimal.

2.3.2 Injectivity of Transport for Probabilistic Frames with Density

Now, given absolutely continuous probabilistic frames y, v for RY, take r(z) to

be the optimal transport map pushing p to v guaranteed by Lemma 2.25. Define
hi(z) = (1 —t)x +tr(z) for te[0,1];

then S, = § hi(z) @ hy(x)dp(z), with g = (he) g p

Proposition 2.27. Given two such probabilistic frames, there exists a set N with

w(N) = 0 such that hy is injective for all t € [0,1] on supp(u)\N.

Proof. Given x,y € R\N, with N as defined in Lemma 2.25, suppose h;(z) = h:(y)

for some ¢ € [0,1]. Then, since:

0 = (hi(x) = hi(y) 2 —y)
={(I-t)(xz —y) +t(r(z) —r(y)) , v —y)
==tz -y >+ tr(@) —r(y) ,x—y)
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it follows that

t—1
t

(r(x) =r(y) , v —y)=

lz —y*.

This implies that {r(z) —r(y) ,x —y » < 0. However, from the proposition above, we
also know that (r(z) —r(y) ,x —y) = 0. Therefore |z —y | = 0, and h; is injective

on N. OJ

For the next result, we shall need the following lemma from [24, Theorem 3.3,

which builds on the results in [11].

Lemma 2.28. Regularity Result, [24, Theorem 3.3] Let u,v € Py(R?), and let r

lz—y?

be the unique optimal transport map relative to the cost c(x,y) =

Define

densities such that du(z) = f(x)dz, dv(x) = g(x)dx. Let
X={zeR’: f(x) >0}, Y ={reR?: g(x)>0}

be two bounded open sets. Then if f and g are bounded away from zero and infinity

on X and Y, and Y is convex, it follows that r is continuous.

Corollary 2.29. Let p,v € Py(RY), and let r be the unique optimal transport map

lz—y|?

2

relative to the cost c(x,y) = Then if p and v are supported on bounded

convex subsets of R, r is continuous.

In general, regularity results swiftly become more complicated as the under-
lying space changes or the cost functional become less friendly. We note that if
we relax the convexity requirement on Y, then we obtain regularity up to sets of

measure zero in X and Y ( [25], Theorem 1.3). The purpose of the inclusion of this
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information is simply to show that the conditions of the following theorem can be

met.

Theorem 2.30. Let p,v € Py(RY), and let r be the unique optimal transport map

lz—y?

2

relative to the cost c(z,y) = Let N be the set of measure zero define in
Proposition 2.27 If r is continuous, and if supp(u)\N contains an open set, then

every geodesic measure i 1S a probabilistic frame.

Proof. Now, since r is continuous and, by proposition 2.27, monotone outside a set
N of measure zero, so is h; for each t. Let x¢ € supp(u)\N. First, we show that for
any € > 0, h; ' (B.(h:(70))) contains an open set containing .

Since h; is continuous at any such xg, given € > 0, there exists 6 > 0 such that
Vo € Bs(xo), |hi(z) — hi(xo) | < e. Hence for any x € Bs(xg), v € h, *(Bc(hy(20)))~
i.e., Bs(zo) < hi ' (Bc(hy(20))).

Then Yz, € supp(u)\N, consider B%(ht(xo)):

(B} By (hu(x0))

1
k

(he(0))) = f 1 |

— |1 d
f (1B o] )

= u(h ' (By (he(x0))))

1
k

>0

where the last inequality holds since x( € supp () and, as shown above, h, (B

(hu(20))))

contains an open set containing xy. Thus, we have shown that for any k € N, the

1
k

open ball of radius % around h;(zo) has positive pi-measure, and therefore hy(zy)

lies in supp(p). Thus he(supp(u)\N) < supp(s).
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Therefore, since h; is injective and continuous on supp(u)\N and by assump-
tion, there exists open set U < supp(u)\N, by invariance of domain, h,(U) <

supp(p;) is open, and therefore hyyp has support which spans R O

37



Chapter 3
Duality, Analysis, and Synthesis

3.1 Duality

In this chapter, we explore the familiar concept of duality, analysis, and syn-
thesis that are well-understood in finite frame theory, using the extra flexibility of
the probabilistic setting to extend their definitions. The key ideas, results, and ex-
amples may be found in Definition 3.1, Proposition 3.16, Definition 3.27, and the

examples.

3.1.1 Definition of Duality and Properties

Definition 3.1. Given a probabilistic frame p for R?, we define the set of transport
duals to i to be

D,:={ve PR’ | 3Iyel(uv)with H vy dy(w,y) =1

R4 xRd

We denote the set of joint distributions on R? x R? with first marginal p (7 = p)

for which (§5, pa 2y dy(x,y) =1 by I'D,,.

The restriction of the set of transport duals D,, to lie inside P»(IR?) is necessary,

unlike in the finite frame case. One might consider the following simple example:

Example 3.1. Let {¢;}¢, = R? denote the standard orthonormal basis. Let {p;}¢]

be given by p; = Vi2ie;, i € {1,--- ,d}, and let @441 = 0. Take the weights «; =

38



1eN, and let ag =1 — Z - Define

27,7

M1 = 05050 + Z Qi5¢i.

=1

Let {1);}2, be given by ¢; = \/je[(Z 1) mod d)+1], ¢ € N. Let

o0
M2 = Z &i5¢i.
i=1
Then p1 € Py(RY), but

L1 121

M (n2) = D ol |* = 5y =

Hence, o ¢ Py(R?). However, letting v € P(R? x R?) be given by

V= ZO‘Z (i) T Z i0(;;.0)5

i=d+1

it is clear that vy € T'(uy, p2), and

d
1 /2
jf xy dy(x,y) = 22— —e,Tzl.

Ra xR4

However, once we have this Bessel-like restriction on the class of transport

duals, we can assert the following proposition:

Proposition 3.2. Let 1 be a probabilistic frame, and take v € D,. Then v is also a

probabilistic frame.

Proof. Since D, = P»(R?%) by definition, it is sufficient to show that supp(v) spans
R?. Let us assume the contrary. There exists some v € I'(u1, v) such that {§ zy T dy(z,y) =
I. Suppose there exists z € RY, 2z # 0, such that z | w for all w € span(supp(v)).

Then for all z € supp(v), 2"z = 0. Then

N f (= o)z 9@, y)
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= J <Z y L ><Z Y >]]-[supp(1/)><Rd] (:E: y)d/)/('ra y)
=0
Thus, by contradiction we have our result. O]

Remark 3.3. The transport plan for the canonical dual to a probabilistic frame is

v = (xS e,

ie.,

ﬂ wy dy(z,y) = “ z(S,'x) Hdp(x) = 8,8, = 1.
Rd xR Rd xR
This was the only type of duality defined in [29-31].

Proposition 3.4. Given u € PF(RY), D, is a closed subset of P»(R?) with respect

to the weak topology.

Proof. Let p € PF(R?). Suppose v, is a sequence of duals to p converging weakly to
some v in P(R%). Let P := {t,}nen U {v} and Q := {u}. Then P and Q are tight,
so ['(P, Q) is tight in P»(R? x RY) and therefore precompact for the weak topology.
Let {v,} be a sequence of joint measures yielding the duality. Since {v,} < I'(P, Q),
there exists a subsequence {7,, } converging weakly in P»(R? x R?) to some . First,

we show that v € I'(u, v): For all p € Cy(R? x R?),

|[ it — [[ @y,

In particular, for all ¢ € Cy(R?),

ﬂw(fr)dm (z,y) — ﬂw(l‘)dv(% y)
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and

wammWweﬂﬂ@mww

But since for all k, {{ ¢ (2)dvy,, (z,y) = (¥ (x) , it follows that

\memmw=fw@ww>

so mxy = p. Similarly, for all k, moxv,, = vn,, and

hmJJw YAV, (2, y) —hmfw Ydvn, (y

and since {v,} is a weakly convergent sequence, v,,, — v, passing to the limit on

|[ vwartew = [ vwary)

both sides,

Thus, v € T'(u, v)

Then, for all p € C(R? x R?) satisfying for some C' > 0 |o(z,y)] < C(1 +

|[ it — [[ oy,

Since |z;y;] < 3(Jz | + [y |?), it follows that

fj zyidy, (T, y) — fj iy dy (@, y).

Then, since for each ng, {§z;y;dv,, (z,y) = 6, ;, it follows that {§ 2;y;dv(z,y) = 6;,

l 12+ Ty 1),

and therefore v € D,,. n
As a corollary we have:

Proposition 3.5. Given u € PF(RY), D,, is a closed subset of PF(RY) with respect
to the weak topology on Py(R?).
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Proof. Given the above result about the closedness of D,, in Py(R?), this follows fom

Proposition 3.2. O

Using Proposition 3.1.1, we can then prove weak compactness of the set of

transport duals.

Theorem 3.6. Given € PF(R?), D, is a compact subset of Po(R?) with respect

to the weak topology.

Proof. Consider the lifting of the dual set, [ Dy := {y € T'(,v) s.t. {{zyTdvy(z,y) =
I}. Since {u} is tight, given ¢ > 0, there exists a compact set K. < R? such that

SKE du < e. Then, given any compact set L < R? K, x L is compact, and for all

|| &< ] dy:j&duq.

KexL KexRd

vel'D,,

Therefore, I'D,, is tight and hence by Prokhorov is precompact. That is, given {7, } <
I'D,, there exists a subsequence {7,, } converging weakly to a limit 7 € Py(R? x RY).
With this in mind, if {7, } is a sequence in D,, choose the corresponding {v,}, and

let vy, = T2n,. For all ¢ € Co(R? x RY), {{o(z,y)dv,, — (§o(z,y)dy(z,y). In

particular, for all ¢ € Cy(RY),

| et = [e@in@ — [[e@ire = [ew@arine.

Thus v, - Wi’}/, so that {v,} contains a weakly convergent subsequence.
Therefore D, is precompact, and since it is also closed, it follows that it is compact.

O
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3.1.2  Deterministic Couplings for Duality

We recall from Chapter 1 that probabilistic frames form a subclass of the set
of continuous frames for R%. However, as we have seen above, we can broaden our
approach to how duality is induced. In some cases, there exists a clear deterministic
coupling which induces duality. Generalizing the set of duals for discrete frames

outlined in [20, Theorem 5.6.5], we have the following construction:

Theorem 3.7. Let u be a probabilistic frame for R?, and let h : R? — R? be any
function in L (u, RY). Define iy, : RY — R by thp(x) = x+h(x)—§5.08, z ,y Yh(y)du(y).

Then Ypyp € D,

Proof. Consider p, ¥4 p as above. Define v := (¢, 15) 41 € U'(i, Ypypt). Then

[l xdew<x,y>=:J;dar{x+-h<x>——j;d<splar,z>h<z>du<z{lrdu<x>

— 1 | b= ] el T Tt

R4 x R4

=1
[l

Remark 3.8. However, all transport duals cannot be constructed this way. Let
p € Po(R?) be a probabilistic frame which is the first marginal of the standard
normal probability measure n on R? x R%. Let v be the second marginal of 7, so that
v € D,,. Then the support of 7 is all of R? x R% in particular, 7 is not supported on
a curve in R? x R?, so that there does not exist a mapping 7" : R — R? such that

(¢, T)gpr = 1, even though, clearly, ne I'D,,.
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3.2 Constructions of Discrete Transport Duals and Fusion Frames

In what follows, we shall construct transport duals for discrete probabilistic
frames which generalize the case of finite frame theory. From Definition 3.1, it is
clear that the construction of a transport dual depends on the construction of a
probability distribution on the product space with predetermined second-moments
matrix and first and second marginals. In the finite case, these joint distributions

will correspond to the set of matrices defined in the next section.

3.2.1 Doubly-Stochastic Matrices

Definition 3.9. Let DS(M, N) denote the set of matrices A € R™*V satisfying

-

ai,j = 0 VZ,j

41\241(1»-—i vy
] %) — N j

N
Z CLZ'J' = % VZ

\J=1

Remark 3.10. Given A € DS(M,N), we have N + M — 1 linear constraints on

the entries of A, yielding an affine subspace of dimension MN — N — M + 1 =

(N —1)(M —1).
M

Remark 3.11. At times, we may explicitly relax Definition 3.9 to allow >, a;; = «;
i-1

N N M
and ) a;; = f; where >, o; = >, 5; = 1. In what follows, we choose the stricter
i=1 j=1 i-1

definition unless otherwise noted.

44



Consider A e DS(M, N). Let

and let {E; ;}M" denote the set of elementary M x N matrices which have e;; = 1

2]1

and zero in all other places. Then A can be decomposed as

A= A0+ZZ)\” i

i=1j5=1
where
1
Aij 2 =3 and ZA” jZlA” =
Together, these constraints imply that A, ; € [— MlN, v min{N — 1, M — 1}].

Then given two frames {¢;}), and {¢;}}7, with analysis operators ® and ¥,

to show that pg € D,,,, one must construct a matrix A € DS(M, N) solving:

N M
(TTAD),, = > Z Vix®ji( 55 + Ai)
j=11i=1

= Ok,

3.2.2 Construction of Transport Duals
The previous section begs two questions:

A Given frames {¢;}Y, and {¢;}}1, for R? with analysis operators ® and ¥,
under what conditions on ® and ¥ can we construct A € DS(M, N) with

UIAD = 1.
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B Given a frame ®, what conditions on A € DS(M, N) guarantee that there

exists a frame W such that VT AP = [.

Remark 3.12. Clearly, a necessary and sufficient condition to answer question B is
that rank(A®) = d, but this is very general. If M > N, then a sufficient condition
is simply that rank(A) = N; in this case rank(A®) is guaranteed to be d [42].
To guarantee the existence of such a W, it is sufficient to require that some subset
of the rows of AP of cardinality d is linearly independent. That is, for some [ =
{i1, . ig} < {1,..., M}, given any {\;}¢_, not identically zero,
d N N d
Z Ak Z aik7j¢]T = Z cpjT Z i@, ; # 0.
k=1 j=1 j=1 k=1
Thus, if we choose a subset J = {ji, ..., ja} < {1, ..., N} such that {¢;}es is linearly
independent and then choose a set I of row indices as above, any A € DS(M, N)
satisfying a;; = 0 for all i € I, j € {1,..., N}\J will be a transport plan inducing
duality between {p;}¥, and the columns of any generalized inverse of A®.
Given such a frame {¢;}Y,, let Ng denote the number of distinct linearly
independent subsets of the frame vectors of cardinality d. (If the frame is full spark,
then Ng = (JZ ).) There will then be (J\j )Ng sets of entries of A to zero out in order

to guarantee that A is a duality-inducing transport plan.

Theorem 3.13. If {¢;}Y, < R? has centroid zero, then it has no transport dual of

cardinality d.

Proof. Suppose that a frame {1;})¥;, = R? has centroid zero. Recall that, given
{udly, oty < RN AL ws , Nj—y vy ) o= det([Cui ,v;))).
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Let {vj};l:l < RY denote the columns of ¥, the analysis operator for our
frame, and let {u;}9_; = RY denote the rows of A, where A € DS(d, N) in the strict
sense of Definition 3.9. {1;}¥, will have a transport dual of cardinality d if and

only if for some A, AV = [[(u; ,v;)]] is invertible. Recall that each u; = ag + \',

where ap = [+ -+ 73]
N .
Z w =0 foreachie {1,...,d}
k=1
d .
Z/\ZZOfOT each ke {1,..., N} (3.1)
i=1
Then

d
AN ui = (a0 + X' A (ag+ M) Ao A (ag + A7)
i=1

—ag AN A AN F A A AN A AN

1 d

FA A AXNT A g+ A A AN

N

Because of the zero-centroid condition, Vj € {1,...,d} vf = 0, and it follows
k=1

that {ag ,v; ) = 0 for each j € {1, ..., d}. Therefore,
d d
det([[¢ui ,v)]]) = (N wi s [\ vi)
=1 j=1

=\ A AN oA LAY

=0
where the last equality follows from equation (3.1)-i.e., the fact that the {\'}¢_, are
linearly dependent. O]

Corollary 3.14. In particular, Theorem 3.13 implies that no equiangular tight

frame in R? has a transport dual of cardinality 2.
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3.2.3 Relationship to Fusion Frames

Consider the following generalization of finite frames:

Definition 3.15. [9, Definition 2.2] Let I be an index set, let {IW;};c; be a family
of closed subspaces of RY, and let {v;};c; be a family of positive weights. Let P;
denote the orthogonal projection onto W;. Then {{W;, v;)};es is a fusion frame for

R? if there exist 0 < C' < D < oo such that for all x € R,

Cla|® < Y v |Pa|* < Dl |

iel

First introduced as “frames of subspaces” in [19], fusion frames are designed
to formalize a signal processing or measurement scheme in which the analysis of a
signal must be performed in a distributed way, either because of the dimension of
the problem or because the measurement system is not centralized, as is the case
for a wireless sensor network. Some reconstruction can and must be done locally,
and the results of that distributed processing, which will be of smaller dimension
than the original signal, pieced back together in a meaningful way at the end of the
process. From a frame theory perspective, one considers the projections of the signal
onto a series of overlapping, possibly nonorthogonal ( [12]) subspaces and formulates
sufficient conditions on a recombination scheme for perfect reconstruction from the
sets of coefficients derived from those projections to be achievable. It turns out that
by simply using transport plans between discrete probabilistic frames with supports
of different cardinalities, we can construct objects similar to fusion frames.

In general, if ¥ is a transport dual to ® via A € DS(M, N), one can decompose
the set {1,..., M} into disjoint subsets Iy, ..., I, and {1,..., N} into Ji, ..., Js. Then
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one may write
T S
.
EDWINIPICETE
k=11=11i€l} jeJ;

If A is block diagonal (i.e., r = s and a;; = 0 for i € I, j € J; if k # 1), then one

has
1= aing) (3.2
k=1 1iel} jeJy

This leads us to the following decomposition:

Proposition 3.16. If we allow the relaxed definition of DS(M, N), as in Remark
3.11, then the frame operator of any fusion frame can be decomposed as a coupling

of two discrete probabilistic frames.

Proof. Given a fusion frame {(Wj,vz)};_, for RY, its analysis operator is T : R? —

>, @®Wy, given by T'(z) = {vpPr(z)}}_,, where Py is an orthogonal projector onto
k=1

,
Wy. Its synthesis operator is T'({xr}5_;) = D, vkxy, and its frame operator is given
k=1

by S(x) = Y v2P(x). Let U[d, = P, be a decomposition for each projection
k=1
operator, so that {@?,@f}?ﬁl is a frame/dual-frame pair for Wy. Let > w, =1 for
k=1
some arbitrary positive sequence. Then define ¥ = vy, g—i@f and 1 = v /Z—’;zﬁf
for all j e {1,...,nx},

ke{l,..,r}. Let N = Y n,, and define A € RV*V by

k=1
A 0 - 0
0 Ay -+ 0
A=
0 0 A,
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where Afi ;= Z—:ém. Note that A is doubly stochastic in the relaxed sense, and if we

choose w, = %, then it is doubly stochastic in the stricter sense, as well. Then with

Vi

\IJT=[¢11 [ O R S T R

and ¢ defined similarly,

UIAD = 3 WA,
k=1

r 2
oy ( /%) PTé,
=1 'k Wk
= Z ’U]%Pk
k=1
O

Remark 3.17. To do reconstruction with fusion frames, one would in general still
have to invert the fusion frame operator and apply the inversion to each subspace.

We can speculate, however, that an efficient reconstruction scheme for dis-
tributed processing could be devised using a cleverly constructed fusion-like trans-
port duals. Given a set of subspaces {W;};_, of RY one would choose frames for
those subspaces {{¢¥}7%,};_,. Letting N = >} _| ny, one would choose a set {my};_;,

T

with 0 < my, < ny for each k, and a positive sequence wy with > wy = 1.

k=1
my
Then, one would define a block matrix A as above with ] afij = = and
i=1 "
N
>, af; = 2= for each k. One could use the constraints outlined in Remark 3.12 to
j=1 "

guarantee that A® would have a generalized inverse ®' and form the columns of
such an inverse into dual frames for the subspaces {{yF}"%}7_,.
If M < rd, this could model a reconstruction algorithm for a distributed sensor

network, doing a partial local reconstruction if a signal z at each of r sensors using
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A, @, and transmitting the result to reconstruct fully with ¥, which might require
sending fewer bits than doing a full reconstruction on each subspace viS—!Py(z)

and transmitting the result.

3.2.4 Decomposition of Full Rank Matrices

Finally, we have the following interesting result about decompositions of full-
rank matrices in R¥*¥ in terms of doubly-stochastic matrices. This resulted from

an attempt to answer question A, which still remains open.

Proposition 3.18. Given a full-rank matriz B € RN, where d < N, B can always
be decomposed as B = UAF, where U € R¥? is a unitary matriz, A € DS(d, N),

and F e RV*N s nonsingular.

Proof. Take B as above, and consider its singular value decomposition B = UDV ',

Since rk(B) = d, D € R is of the form:
p=[a o

o; fori=j

where

Aij =

0 otherwise

where {0;}¢_, are the singular values of B. Then let

1 L 1
Nal NO’1
d A1
A
T —
No‘d NO'd
0 T,!

o1



with T, ' the inverse of some (N — d) x (N — d) real matrix Tp. Then, letting Ry

denote the upper-right block of T, i.e.,

Noq Noq
Ry =
_1 _1
Noyg Noyg
we construct:
NA —NART
T =

0 1o
Letting A = DT, we note that A € DS(d, N), and letting F' = T~'V'T, we note that

F' is nonsingular. Therefore,

B=UDV' =UDTT'VT = UAF.

3.3 Analysis and Synthesis

By now, we have made use many times of the analysis and synthesis opera-
tors which are the backbone of finite frame theory. However, our construction of
transport duals suggests that for probabilistic frames, a more probability-theoretic
definition of analysis and synthesis may be called for.

In [29-31], the analysis and synthesis operators are defined in a manner similar
to that of continuous frames. To wit, we quote:

Definition 3.19. Analysis and Synthesis, [30, 2.2] Given a probabilistic frame pu,
its analysis operator is 4, : R — L?(u,R?) given by x +— {(z ,-). Its synthesis
operator is A% : L?(u, RY) — R? given by f — {,, = f(z)dpu(z).
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As defined here, the analysis operator A, is independent of the measure f.
Indeed, it is not clear from this definition how one could do “analysis” with one
probabilistic frame and “synthesis” with another. However, finite frame theory itself
gives us a clue about how to think about analysis and synthesis in the probabilistic

context.

Example 3.2. Consider two frames for RY, {p;}, and {¢;},. Let {e;}, « RY
be an orthonormal basis for RN. Then the analysis operator for ®, Ay : R — RN
given by

N
Ag(z) = Pz = Z<<pl xYe; forxeRY

i=1

The synthesis operator for U, A% : RY — RY, is given by
N
Ay() =¥y =Dy ;e forye RN
i=1

N

Then we can compose the operators simply by writing A% Ae(z) = >.{p; ,x ;. If,
i=1

however, we choose some o and 7 in Sy, and instead choose to do analysis and

synthesis with the two frames as

N
A:‘I/Aq’ (l’) = Z<§00(z) 7x>1/)7r(i)7
=1

then it will be as if we had chosen two different finite frames to work with. This
18 because the ordering of the frame vectors is implicitly tied to the ordering of the

reference basis {e;} ;.

In what follows, we shall generalize this idea of a reference ordering through

the use of disintegration of measure—the construction of conditional probabilities
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with respect to some reference measure. The orthogonality of the reference basis in
the above example will turn out not to be crucial; its function is to match up frame
coefficients with the appropriate vectors. What will be crucial is that transport
plans exist between the probabilistic frame and the reference measure and that no
information be lost in the encoding. For this reason, we will use reference measures
that are absolutely continuous probabilistic frames, except in the discrete case, where
we will simply need a reference measure with enough elements in its support to define

a transport plan between finite frames of interest.

3.3.1 Measure-Valued Maps and Disintegration

To make this idea of coefficient-matching rigorous, we shall use some ideas
from machinery from probability theory.
Remark 3.20. First, we note that for brevity we will sometimes use the expected
value notation in place of integral notation in what follows, i.e., for a measure 1 and

a function f € £'(n), we will write:

B/ = | f(w)dn

We start with conditional probabilities. Let X', ) be separable metric spaces;

following [2, Section 5.3], we define:

Definition 3.21. Let x € X — pu, € P()) be a measure-valued map. Then p, is

Borel if = — p,(B) is a Borel map for any Borel set B € B()).

With this in hand, we recall the following key result on disintegration, origi-
nally attributed to Rokhlin:
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Lemma 3.22. [2, Theorem 5.3.1] Let X, X be Radon separable metric spaces (i.e.,
having every Borel probability measure inner reqular), p € P(X), and w : X — X
a Borel map.

Let v = myp € P(X). Then there exists a v-a.e. uniquely determined Borel

family of probability measures {ji;}rex < P(X) such that

e (X @) = 0

for v-a.e. x € X, and for every Borel map f: X — [0, +0],

[ st = | (] r@an)ww

Remark 3.23. [2, p.122] In particular, if X = X x Y, pe P(X x V), v =p' = 7wip,
then one can canonically identify each fiber (7*)~!(z) with ) and find a Borel family
of probability measures {1, },ex = P(Y) which is u'-a.e. uniquely determined such
that p = {, padp' ().

That is, for any f € Cy(X x )), we can write

|| femdute = | Lf(w,y)du(ylx)dul(x)-

XxY

Secondly, we have the following result about gluings, which we state in its full
generality. We note that a Radon space is a separable metric space on which every

Borel probability measure is inner regular, so that R? is certainly within its purview:

Lemma 3.24. Gluing Lemma [2, Lemma 5.3.2] Let X, X5, X3 be Radon separable
metric spaces and let v*2 € P(X; x Xy), v'* € P(X) x X3) such that mpy'? = 14" =
u'. Then there exists p € P(Xy x Xy x X3) such that 77#2;1, =2 and Wi;?’p, = 13,
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1

Moreover, if v'* = {~y22du', v** = §42%dpt, and p = §p, dp' are the disinte-

grations of v'2, 43, and p with respect to ', then the first statement is equivalent

to g, € T(1:2,723) € P(Xo, Xs) for pt-a.e. z1 € X).

3.3.2 Construction of Analysis and Synthesis Operators

From Lemma 3.24, we know that given u,n € PF(R?) and v € I'(u1, 1), we have
set of conditional probability measures {y(-|w)},ere that are uniquely defined n-a.e.

such that for any test function f € Cy(R? x R?),

[ swwneo-[ (] f(y,w)dv(mw)) dn(w).

R4 x R4

Proposition 3.25. If f € L*(R? xR? v), it follows that g(w) := o, f(y, w)dy(y|w)

is in L?(R%,n).

Proof. By conditional Jensen’s inequality,

f(jf Yy, w dv(ylw) dn(w f F2(y, w)dy (ylw)dn(w)

= f F2(y, w)dy(y, w)

= f IZ2@axze )

< Q0.

Remark 3.26. In particular, if f(y,w) = {(x ,y) for some x € R?, then
1f |2 (rasra yy < o 2M5 ().
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Now we are ready to construct analysis and synthesis operators which are truly

tied to their probabilistic frames, as suggested in the introduction to this section.

Definition 3.27. Given u € PF(R?), choose a reference measure n € PF(R?) which
is absolutely continuous with respect to Lebesgue measure. Then we define the
analysis and synthesis operators for p with respect to 7.

The analysis operator, A, : R? x T'(u,n) — L*(R%n), is given by

Al = [ @),
Noting that h(z,w) := |z | € L*(y) for any v € I'(u,n) provided that p € Py(R?),
the vector-valued function {zdy(z|w) lies in L?*(n). Therefore, we can define the

synthesis operator, Z, : L*((R%),n) x I'(u, n) — R%, is given by

2,07 = || st

R2 xRd4

- 5 |1(w) | sartelu]

_ <f(w) , fRd () >L2<n>

3.3.3 Adjoints and Composition

Given p,v € PF(RY), and a fixed reference measure 1 as above, we write,

somewhat formally,

21,9 = [[[@ s wlwdeeloyinw),
knowing that a gluing ¢ € P(R? x R? x R?) exists with the marginals satisfying
7@1;2( = v and WizC = ¢ and marginal conditional probabilities agreeing with the
versions we chose n-a.e.
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Then, given v,z € R?,

W Zo(A(2,7),€)) = f f f (o) 0 (ylw) e w)dn(w)

R4 xR x R4
= {Zu(Ay(v,€),7) sz

= (A (©,€) , Au(@,7) D2y

Similarly, we can define for f € L*(R% n),

82190 = || @ s )

R4 x R4 x R4

ﬂj Y 5 2)f (w)d€(z, w)dy(ylw)

R4 x R4 xR

Then, given f,ge L*(R% n),

G A = || @21 (o))

R4 x R4 x R4

= <Zli(g7’7) ’Zu(fa §)>
= <AV(ZM(97’7)7£) 7f>L2(77)

We have the next result concerning the continuity of this construction:

Proposition 3.28. Let u € PF(R?) and fiz a reference measure n and v € T'(u,n).

Then x — A,(-,7) is continuous in its first argument; in fact, it is Lipschitz.

Proof. The key point in the proof is again conditional Jensen.

Mt~ Ao By = [ ([ o0 o) anto

U (w1 — 22,y Y2dy(y, w)

R4 xRd
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= Rd<$1 — X2 7Z/>2dﬂ(y)

< |z — @2 |PM3 (1)

3.3.4 Examples of Analysis/Synthesis Pairings

As a preliminary, we discuss the transport of an absolutely continuous measure

to a discrete measure using power (Voronoi) cells, following [43].

Definition 3.29. Given a probability measure 1 on R, a finite set P of points in
R% and w : P — R, a weight vector, the power diagram or weighted Voronoi
diagram of (P, w) is a decomposition of R? into cells corresponding to each member

of P. A point x belongs to Vorp(p) if and only if for every q € P,

|z —p|* —w(p) < |z —q]* — w(g).

Definition 3.30. Call the application 7% which maps every point = in a power cell

Vorg(p) to the “center” of that power cell p, the weighted Voronoi mapping. Then

TElep = Y, n(Vorp(p))d,.

peP

It is a consequence of some of Brenier’s work, cited in [43, Theorem 1], that
T} is an optimal transport map between p and T |4p for the Wasserstein distance

when g is absolutely continuous with respect to Lebesgue measure.

Definition 3.31. Let n be an absolutely continuous measure in P,(R%), and let v
be a discrete measure in P»(R%) supported on a finite set of points P with weights
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{\,} summing to unity. Then we say that a vector weight w : P — R is adapted

to (n,v) if for all pe P, \, = n(Vorg(p)) = Svorgj(p) dn(x).

Example 3.3. Now given discrete frames {@;}, and {1; évzl for R, and n a
reference measure in Definition 3.27, choose v1 = (1, Tg")sn and v2 = (1, Tg?)un,

where wy and we are adapted to (e, n) and (wy,n), respectively. Then

Zp (A (2, 7), 72) = f (& T2 () YT (y)dn(y).

Example 3.4. Recovering the old definitions of analysis and synthesis

In the special case M = N, we could choose {ca;}Y |, = RY and wy adapted
to (fa,n). Then let fy : a — W be given by fy(a;) = 1y, and let fo : a — D be
similarly defined. Then if y1 = (¢, fo 0 T)4n and o = (1, fo © T")4n, it follows

that

Zyug (Apg (T,71),72) = J@f oo T (y) 2w o T (y)dn(y) = Y (@i .

i=1

Hence, we have recovered the analysis and synthesis operation of finite frames.

Example 3.5. Discrete dual to absolutely continuous probabilistic frame

Finally, let us tmagine that n is an absolutely continuous probabilistic frame
for R% and choose a frame contained in its support, say {1} ,. Let TY be the
transport map between 1 and py, as constructed above. Choose {p;}, to be any
dual to {1}, and let f : U — ® be given by f(v;) = ¢;. Then v = (1, f o
TE)en € Po(RYxRY) is a joint transport plan in T'(n, py) such that §§ zy " dy(z,y) =

S2T¥ (z)dn(z) = I, so that n and py are dual to one another in PF(RY).
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Chapter 4
Frame Forces and Gradient Flows

4.1 Introduction

While spanning sets are a dime a dozen, certain frames with specified structure
are in high demand. First among these are, of course, the FUNTFs and the other
equal-norm, tight frames. Examples of this sort of frame for R? can be constructed
easily, as remarked in [17], by the technique of majorization of matrices, by spectral
tetris methods [18], or by simply using submatrices of the DF'T matrix of the correct
dimension. However, these methods produce only a few samples from the nontrivial
manifolds contained in the set of all FUNTF's of sufficiently high cardinality modulo
rotations [28]. For that reason, it might be useful to find methods to “traverse”
the set of frames in a continuous manner in order to find approximations to tight
frames.

In particular, we might also ask: “How close is the nearest FUNTF to a given
frame which is almost tight and almost unit norm?” We state this more precisely

as:

Definition 4.1. The Paulsen Problem

Given a frame ® = {p;}¥, c R? and € > 0, ® is e-almost unit norm if

lpille 1 —€,14€ Vie{l,--- N}
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and e-almost tight if

(1-e)A< Se < (1+¢€A

in the operator sense for some A > 0. Then the Paulsen Problem is, given § > 0,
N, and d, to find the largest ¢ > 0 such that whenever ® = {¢;}, is e-almost tight

and e-almost unit norm, there is a FUNTF {¢;}, such that
N
Z los — i |I* < €%,
i=1

There are multiple approaches to this two-sided problem: identifying the clos-
est FUNTF and calculating a minimum distance to that FUNTEF. In [8], the ap-
proach is to start with a tight frame which is almost unit-norm and to solve a
system of ODEs based on a quantity termed the “frame energy.” The solution
maintains the tightness of the starting frame and solves the Paulsen problem in the
case that the number of frame vectors and the dimension of the space are relatively
prime (RP). In [17], an alternate approach is taken; the starting frame is assumed
to be unit-norm, and a discretized gradient descent for the frame potential of [5] is
constructed which maintains the norm of the frame vectors while pushing the frame
toward a tight frame. In [17], the authors can guarantee linear convergence of their
method to a FUNTF provided that either the RP condition holds or that the frames
along the descent are not almost orthogonally partitionable. In [6], the authors con-
sidered a related frame optimization problem based on minimizing a potential tied
to the probability of error in quantum detection. To do so, they constructed a flow
over the set of orthonormal bases in a higher-dimensional space which converged to
a minimum for this quantity and then used Naimark’s theorem to obtain a tight
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frame from this solution. Thus, the idea of using differential calculus to find useful
frames is not new. However, the setting of probabilistic frames in the Wasserstein
space allows the construction of much more general gradient flows for frame po-
tentials because of the sophisticated machinery which has been developed for this
space, which is outlined in brief in the following section. The following sections,
beginning with Section 4.3 then explain its application to probabilstic frames, with

the main results in Theorems 4.29, 4.38, and 4.41.

4.2 Gradient Flows

4.2.1 Transport Equation

The connection between the transport equation and the 2-Wasserstein distance
has been studied for years ( [2,10,32,37]). Indeed, as noted in [4], in Monge’s original
problem ( [44]), there was already an implicit continuum mechanics formulation, and
what is now considered Monge’s problem is the result of a clever elimination of the
time variable. Reintroducing the time variable, as in [4], allows one to use methods
from numerical PDEs to find solutions to the Monge-Kantorovich. However, this
reintroduction of the time variable has much larger implications because the space
P,(R?) is a Polish (separable, complete, metric) space. As a result, much effort
has gone into developing a rich theory of gradient flows on this space, with weak
solutions to flows based on the theory of 2-absolutely continuous curves (e.g. [2,
36]). Tangent spaces can be defined and with them a formal calculus. Many PDEs

can be reformulated as energy minimization problems in this space (e.g., [14, 39)]).

63



The authors of [36] had in mind the goal of viewing gradient flows on P»(R?) as
Hamiltonian flows and therefore, of necessity, developing a symplectic formalism
for the space. However, a great deal of technical effort is required, in particular
because P»(R?) is a stratified, rather than smooth, manifold [36, Chapter 6]. For
our purposes, the technical basis for weak solutions provided by [2] will be enough,

although we will refer to intuitions and certain reformulations provided by [36].

Definition 4.2. [36, 2.10, Absolutely continuous curves in Py(R?)]
A curve oy : (a,b) — Py(RY) is 2-absolutely continuous if 3 3 € L?((a,b)) such
that
t
Wa(oy, 05) < J- pB(r)dr foralla<s<t<b.

WZ(Uty‘Ts)
[t—s]

For such o € ACy(a, b; P,(R?)), the metric derivative |o’|(t) := lim,_; exists

for L'-a.e. t € (a,b).

Definition 4.3. [2, p.169] Let p; be a family of Borel probability measures on R?

for t € (0,T) and v : (x,t) — v;(x) € R? a Borel velocity field satisfying

T
| [ o) oy < .
0 JRd
Then the continuity equation
6t,ut + V- (Ut,ut) =0 (41)
is interpreted in the sense of distributions, i.e. Yo € C*(R? x (0,7)),

f Ap(,1) + (oy(x) , Vol £) o) dt = 0. (4.2)

0 JRd
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In order to discuss representation of solutions to the continuity equation, we
require the following technical lemma on characteristics which provides us with the

definition of flow.

Lemma 4.4. [2, Lemma 8.1.4] Let v, : (x) = v(x,t) be a Borel vector field such

that for every compactly subset B < R?,

T
f (Sup Jve || + Lip(o, B)) it < o (4.3)
0 B

Then, for every x € R% and s € [0, T], we let @i(x,s) denote the location in RY at

time t of a trajectory passing through a point x at time s which satisfies the ODE:

orle,s) =2, ales) = ulae, ) (4.4

This ODE admits a unique maximal solution defined on an interval I(x, s) relatively
open in [0, T] and containing s as a point in its relative interior. We say that ¢, is
the flow of v;.

Furthermore, if t — |pi(z,s)| is bounded on the interior of I(x,s), then

I(z,s) =[0,T]; finally, if v satisfies

T
S f (sup [vs | + Lip(v, RY))dt < oo

0 Rd

then the flow map @, satisfies

T
J sup |Gupi(x, 8)|dt < S (4.5)
0 zeR4
and
sup Lip(i(- ). B < ¢ (4.6)
t,s€[0,T]

When s = 0, write ¢i(x) := @(x,0).
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Having defined a flow for a vector field in terms of characteristics, we can now

address solutions to the continuity equation.

Lemma 4.5. Representation formula for continuity equation, [2, Proposition 8.1.8]
Let g, t € [0,T] be a narrowly continuous (i.e. continuous in the weak topology)
family of Borel probability measures solving the continuity equation (4.1) with respect
to a Borel vector field v, satisfying equations (4.2) and (4.3). Then for pg-a.e.
r € RY, the characteristic system (4.4) admits a globally-defined solution ¢ (x) in
[0, T], and

pe = (e)gpo Yt e [0,T] (4.7)

Moreover, if for some p > 1,

LT fRd |ve(2)[Pdp (z)dt < o

then the velocity field vy is the time derivative of ¢, in the LP-sense, i.e.

T—h

12%1 0 JRd ‘@Hh(x)h_ p(z) _ vt(got(x))‘pduo(x)dt —0 (4.8)

and

t —

lim : = vy(x) in LP(u; RY) for L' —a.e. te (0,T) (4.9)

Lemma 4.6. Absolutely continuous curves and the continuity equation, [2, Theorem
8.3.1] Let I be an open interval in R, let ji; : I — Po(R?) be an absolutely continuous

curve, and let |i/| € L' (I) be its metric derivative, i.e.

- Walps, 1)
"1(t) := lim ————~,
) o= tim =
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Then there exists a Borel vector field v : (z,t) — vi(x) such that vy € L2 (py; RY) with
e | L1 ueray < |1|(E) for L' — ace. tel (4.10)
and the continuity equation
Orpte + V- (vppy) = 0 in R x [ (4.11)
holds in the sense of distributions, i.e.
L fRd(ﬁtw(x,t) (o) Vet ) ) du(@)dt = 0 Ve CPREx T)  (4.12)

Conversely, if a narrowly continuous curve ji; = I — Py(R?) satisfies the continuity
equation for some Borel velocity field v, with ||v; ||2(,re € L'(I), then py = I —

Py(RY) is absolutely continuous and |1/'|(t) < ||vg ||2(u, ray for L'—ae. teI.

The above lemma is also formulated in [36, Proposition 2.12].

4.2.2  Calculus on Py(RY)

4.2.2.1 Tangent Spaces

Following [36, Section 2.3], let X, denote the space of compactly-supported,
smooth vector fields on R?. Let VC® := {Vf : f € C*} ¢ X.. For u € P(R%),
let L*(p,R?) denote the set of Borel maps X : R? — R? such that |X |2 =

$pa | X [Pdp < .

Definition 4.7. [2, Definition 8.4.1] Given pu € Py(R?), let T}, P,(R?) denote the
closure of VO in L?(p), the tangent space of P»(R?) at . The tangent bundle
TPo(R?) is defined as the union of all such tangent spaces.
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Definition 4.8. [36, Definition 2.6] Given u € P»(R?), we define the divergence
operator

div, - X, — (C*)*
by {div,(X) , [ := §pa df (X)dp

Lemma 4.9. [2, Lemma 8.4.2] A vector f € L?(u; RY) belongs to the tangent cone

T,,Po(R?) if and only if

1f+ 92 = f 2y Yoe L2 (w) st. V- (gu) = 0.

In particular, for every f € L*(pn), there exists a unique m,f € T,P(RY) in the
equivalence class of f modulo divergence-free vector fields which is the element of

minimal L*-norm in this class, and

JRd<f g —Tugydp(z) =0 VfeT,PR?Y, ge L*(u).

It is proved in [36], by Lemma 4.9, that one obtains the orthogonal decompo-
sition:

L*(p) = VO @ Ker(div,,)

so that one can define the projection 7, : L*(u) — VC®".

4.2.2.2 Functionals and Their Subdifferentials

In what follows, we shall explain how the ideas above can be used to create a

calculus for the Wasserstein space. This is the subject of [2,53].
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Definition 4.10. Let F : P,(RY) — (—o0, 0] be a functional on the (2-) Wasserstein
space. The the domain of F' is D(F) = {u € P,(RY) : F(u) < oo}. A functional

is proper if its domain is nonempty.

Definition 4.11. /36, Definition 4.9] If F : Po(R?) — R is a functional on Py(R%),
then a function ¢ € L?(u) belongs to the subdifferential 0_F(u), which we will

also write as 0F (u), if

Fw) 2 P+ s [ )y i)+ oWa(pv)

WEFO 8%
Rd x R4
as v — p. Similarly, € belongs to the superdifferential 0t F(u) if —¢ € 0(—F)(u).
If3&ed F(u)()0tF(u) then for any v € T'g(u, v)) we have:
FO) =F+ [ €@ =0 +oWalur).  (413)

Ra xR4

In this case, F is differentiable at p, and its gradient vector is V,F := 7,(§).

Remark 4.12. To give a concrete example of the meaning of this differential in
P5(RY), we consider the following two examples of the utility of the gradient given
in [36]: For a differentiable functional F': P»(RY) — R and a compactly supported,

smooth vector field X € VC®(R?), with flow ¢y,

a. If vy := (¢ + tX)yp, then
F(v) = F(u) + tJRd<VuF X Hdp + o(t).
b. If piy := ¢y p and |V, F | is bounded on compact subsets of Py(R?), then
F(u) = F(u) + tJRd<V#F , X Hdp + o(t).

That is, the functions ¢t — F'(v;) and t — F(u,) are differentiable.
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The above definition gives an intuition into the nature of these subdifferentials,
but it is technically only correct for absolutely continuous measures; for this reason,
we will give the following more technical definition which holds for a much more
general class of measures and, indeed, can be extended to p-Wasserstein spaces with

p > 2.

Definition 4.13. [2, The strong subdifferential, Definition 10.3.1] Let ¢ : Py(R?) —
(—o0,0] be a proper and lower semi-continuous functional, and let u' € D(¢).
Then v € Py(R? x R?) belongs to the extended Fréchet subdifferential d¢(u')
if mhy = p' and

o)~ o) = _int |[[Gea vy = w1 4 oWl 1),

We say that v € d¢(u') is a strong Fréchet subdifferential if for every

v e (y,p?), it satisfies

0(s%) = ) > [ [[aa s = 00+ ofCo it %), (4.14)

where Cy, (u', ) is the pseudo-distance given by the cost

2, (4 1) = ﬂ 21 — 3 |2dv (o1, 2, 7).

The following definition was given for functionals on general metric spaces,

but can be made specific to the Wasserstein space:

Definition 4.14. [2, Definition 1.2.4] The metric slope |0¢|(n) of a functional

¢ : Py(RY) : (—o0,00] at pu is given by

0ol() = Timsup P =9

, (4.15
Wa(p,v)—0 Ws (:ua V) )
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where u+ = max(0, u).

Definition 4.15. /2, Regular functionals, Definition 10.5.9] A proper, lower semi-
continuous functional ¢ : Py(R?) — (—o0, 0] is regular if whenever the strong

subdifferentials v, € 0¢p(u,,) satisty:
O(pn) = R,  p, — p in Py(RY),

sup My(n) <00, v, — v in P(R? x RY)

then v € dg(u), and p = ¢(u).

4.2.2.3 Gradient Flows and the Variational Method

Now, the subdifferential d¢(u) of a functional ¢ at p in Py(RY) may be multi-

valued. Thus, we define a gradient flow in terms of a differential inclusion:

Definition 4.16. [2, Definition 11.1.1] Given a map u; € AC2 ((0,0); P, (RY))
with v, € T'an,,, P (R?) the velocity vector field of p;, p; is a solution of the gradient
flow equation

v € —0p(pe) t>0 (4.16)

if v; belongs to the subdifferential of ¢ at w; for a.e. ¢t > 0, or, equivalently,
(L, —v) g pte € Op(p) for a.e. t > 0.

This may also be expressed as the requirement that there exist a Borel vector
field v, which that v, € Tan,, Po(R?) for a.e. t > 0, with |v; |12¢,,) € L7,.((0,0))
satisfying the continuity equation in the sense of distributions and satisfying (4.16)

for a.e. t > 0.
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One approach to solving the gradient flow equation in the Wasserstein space is
to draw an analogy with the usual setting of gradient flows on a Riemannian manifold
and perform a time discretization of the steepest descent equation. This scheme was
pioneered by [39], and its convergence is equivalent to the above formulation of the
gradient flow, as laid out in [2, Chapter 11]. To describe this scheme, we will

follow [40] and [2, Chapter 11.1.3].
Definition 4.17. The Minimizing Movement Scheme Assume the following:

A Let ¢ : Py(R?) — (—o0,00] be a proper, lower semicontinuous functional such
that

1
v (i) i= 5 WE () + 0(0)

admits a minimum point for all 7 € (0, 7*) for u € P(R?) and some 7* > 0.

Fix a measure pig € P»(R?). Given any step size 7 > 0, we can partition (0, o] into

>, I, with I := ((n — 1)7, n7]. For a given family of initial values M? such that

M — po in B(RY) (M) — ¢(uo) as 7|0

0

we can define for each 7 € (0,7*) a family of sequences {M"}*_,

satisfying
M!" = argmin ®(r, M ';v),
veD(®)

where the choice of M may not be unique, but such a measure will always exist.

Then the piecewise constant interpolant path in Py(R?),

M(t) = M2, te ((n—1)7n7],
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is termed the discrete solution. A curve p will be a Generalized Minimizing

Movement for & and p if there exists a sequence 73 | 0 such that

M, (t) — p; narrowly in P(R?) for every t >0, as k — 0.

For u € D(¢), by a compactness argument, this solution always exists and is an

absolutely continuous curve € AC?,.([0, 00); Po(R%)).

As observed by [2] to illustrate the goal of this method, if we can restrict the
domain of the functional ¢ and its gradient to the regular measures, then we can
define a sequence of optimal transport maps 7" pushing M" to M"~!. Then the

discrete velocity vector can be defined as

n
" —
T

V=

T

€ dp(M7),

which is an implicit Euler discretization of (4.16). The piecewise constant inter-
polant

V.(t):=V" forte ((n—1)1,n7],
converges distributionally in R? x (0, 00) up to subsequences to a vector field which
solves the continuity equation. The problem which remains is proving that this
vector field is also a solution of (4.16).

For regular functionals, without having to restrict ourselves to the convex case
or to regular measures, it can be shown that this convergence occurs; the following
lemma gives sufficient conditions for this convergence.

Before we state the key lemma, [2, Theorem 11.3.2.], we have the following im-
portant result about strong subdifferentials related to the metric slope of Definition

4.14.
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Lemma 4.18. [2, Theorem 10.5.11] Let ¢ be a regular functional on Py(R?) sat-
isfying assumption A, and let i be a point of strong subdifferentiability. Then there

exists a unique plan vy € 0p(p) which attains the minimum

Vol2.2 = min {|y|a,2 : v € dp()} .

Indeed, when, for instance vy = (¢, &)« u, we can choose the barycenter £ €

L?(()ut) and denote it by the symbol °¢(u).

Lemma 4.19. [2, Theorem 11.3.2.] Let ¢ : Py(RY) — (—o0, 0] be a proper and
lower semicontinuous reqular functional with relatively compact sublevel sets. Then
for every initial datum uy € D(¢), each sequence of discrete solutions M, of the

variational scheme admits a subsequence such that

1. M, (t) narrowly converges in P(R?) to p; locally uniformly in [0, 00), with

pu € AC3([0, 00); Po(R)).

2.y is a solution of the gradient flow equation

ve=—="d(u), o |22 ma) = |MI|(75), forae. t>0
with py — po ast | 0, where vy is the tangent vector to the curve .

3. The energy inequality

f J;Rd |Ut($)|2dﬁbt($)dt + ¢(Mb) < d)(,ua)

holds for every b € [0,00) and a € [0,b)\N, where N is a L'-negligible subset
of (0, 00).
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4.3 Frame Forces

With the above gradient flow framework established, we can apply it to po-

tentials useful for characterizing probabilistic frames.

4.3.1 The Frame Potential

To begin our discussion of frame forces, we define the frame potential for finite

frames and the analogous quantity for probabilistic frames.

Definition 4.20. Given a probabilistic frame y, the probabilistic frame poten-
tial for p is given by

PFP(u) = f (& vy Ydu(o)du(y) (4.17)

R4 xRd

As a special case, we define the frame potential for a finite frame, ® = {¢;}¥, <
R?, by

FP(®) = Y (¢ ;)" = N*PFP(ua) (4.18)

ij=1
Remark 4.21. The frame potential is a well-studied object. In their celebrated
paper on finite unit-norm tight frames (FUNTFs), Benedetto and Fickus establish
that, among all unit-norm frames, FUNTFs are the minimizers of equation 4.18
[5]. Because FUNTFs (and tight frames in general) have a multitude of uses in
pure mathematics, statistics, and coding theory, this consequently made the frame
potential a very useful quantity. The frame potential and related potentials are also

studied in the context of spherical t-designs.
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In what follows, we explore several functionals on the space P(RY) related to
questions in frame theory, starting with the probabilistic frame potential. For equal-
norm frames restricted to spheres, this potential is sufficient to identify tightness.
For more general probabilistic frames, we tweak this to a quantity we term the
tightness potential. We also explore higher-order potentials related to other classes

of tight frames.

4.3.2 Locating tight probabilistic frames

Some further analysis is needed before we can use the frame potential to find
probabilistic tight frames. In the following propositions and lemmas, we narrow our
search space, establish a lower bound on how close the nearest probabilistic tight
frame can be, and show that, as in the finite case, the frame potential is indeed a
crucial quantity in constructing gradient flows that will lead us to tight probabilistic
frames.

In fact, for a given probabilistic frame u, we have control on the spectrum of

the frame operators of the measures nearby in P(IR?), as seen in the next result.

Lemma 4.22. Suppose {v,} is a sequence converging to p in Py(RY). Then there
exists some positive constant C,, such that ||S,, — S, | < C,Wa(u,vy,). In partic-
ular, convergence of a sequence of measures in the Wasserstein space implies the

convergence of their frame operators.

Proof. Since v, — p in Po(R%), for n sufficiently large, My(v,,) < 2My(1). Then,
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for v, € I'(vy, ),

ISy, — S, | = max v’ (S, — S, v

veSd-1

= max J (<JJ ,U>2 - <y ,U>2)d7n(l’,y)

veS§d—1
Rd x R4
= max J W,z —y Xz +y,v)dym(z,y)
Rd xR
3
S nax) ({RH (v & —y)) dy(z,y) ({R” (v, +y)) dy (e, y)
dxRd dywRd
1
(‘ 2
< (m || ta=v1raney (Je + y1)dvaa,)
dxRd de

< V205, (1 vn) (RJ " + Ny P dyn (2, )

dxRd

\/702 yIn (ILL’ Vn 3M2 /"L

where the last inequality holds for n sufficiently large. In particular, if we choose

Yn € Do(vn, 1), then for n sufficiently large,
1S, = Sull < V2Wa(p, v) - 3Ma(p) (4.19)
O

This control on the spectrum of the frame operator allows us to prove the

following;:

Proposition 4.23. Let {v,} be a sequence converging in Py(R?) to a probabilistic
frame p. Then there exists N sufficiently large such that ¥Yn = N, v, is also a

probabilistic frame.

7

1
2



Proof. Let {v,} and p be as above, and let S,,,, S,, denote the matrix representations
of their respective frame operators which exist since the measures in question are in

Py(R%). Let the eigenvalues of S,, be given by A\;(S,,) < --- < A\g(S,, ). Then

A(S,) = min (v ,S,v)

veSd—1

= rr;in (v, Sy —=<Cv,S,v)+{v,S,v))
veSd-1
<{x,Sa)—{x,S,z)+{x,S,x) VreSt!
< max ((v,S0) = ,S,v)) +{(x,S,xz) VreS¥!

veSd—1

= Xa(S, = S,,) +<{x, 5, Vo e 941

Since the last statement above holds for all z in S%!, it holds in particular for

Ty 1= argmingega1{z , S, ). Hence
M(Sy) < XSy — Su, + Ai(Su,).
Therefore, since by Lemma 4.22,
Aa(Sy — S ) < Sy = Su | =0
as v, — p in Py(RY), given « € (0, 1), we can choose N such that Vn > N,
[Ad (S = S, )| < a- Ai(Sp),

and for such n,
M(Suy) > (1 —a)A(S,) > 0.

]

As one might expect, given a probabilistic frame p, this control also allows us
to obtain a lower limit on the distance in P»(R%) to the nearest tight frame.
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Proposition 4.24. Suppose 11 is a probabilistic frame for R® which is not tight. Let

0 = Aa(p) — Ai(p) € (0, Aa(p)).

Then for any tight frame v, Wo(pu,v) = 4(]\42()6—4-]\42(1/))'

Proof. From Lemma 4.22, we know that measures close to u in Py(R?) will have
frame operators whose spectra are close to that of the frame operator of y. Let v be

a tight frame with frame constant A := @. Then

max A () = Ae(v)] = max{|As(u) — Al [Aa(p) — Al} =

N)IO')

(4.20)

Moreover, for any k € {1,...,d}, | \e(p) — Ae(v)| < |S, — S, ||. Therefore, since from

the proof of Lemma 4.22 we know that for any v € I'o(u, v),

N

IS, = S, < V2Wa(y1,v) (J o P+ Iy [y (.

dxRd
< 2Wo(p, v o(p) + My (v
lt fOHOWS from (420) that WQ(,M, V) Z m D

Remark 4.25. We note that if
supp(p) c {zeR?: (1—e€) < o] < (1+€)}

and

Vke{1,...,d}, (Mi(u) —€) < Me(p) < (

then the lower bound on the Wasserstein distance to the nearest probabilistic tight

frame v supported on S%! can be pushed correspondingly small:

M) =) 2 ‘
4(My(p) + My(v)) ~ 4((1—€e)+1) 3 —2¢
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This relates to the problem in finite frame theory of finding the closest unit-norm

tight frame to a given e-nearly unit norm, e-nearly tight frame.

We also note that the identification of tight frames with minimizers of the
frame potential holds in the case of probabilistic frames. The next theorem depends
on a result due to [29, Theorem 4.2], a version of which we reproduce in the following

lemma.

Lemma 4.26. Let y be a measure in Py(R?). The the following bound holds for the

M4
> 5 () )

probabilistic frame potential: PFP(u) y

Proof. Note that, writing m; ; (1) = (5. zx;du(z), we have:

PFP(p) = f (x ,y YPdp(z)du(y)

R xRd
d d
- [ XY swmmdntodnty
Rixpd =1I=t
d d
= Z Z m?] (1)
i—1j=1
And by Hoélder,
d
M3 (1) = > mii()
i=1

d d

Therefore, 3} > m7 (1) = %, and the result follows. O
i=1j=1
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Remark 4.27. Clearly, minimizers exist. In particular, if p is a tight probabilistic

frame, then equality holds in the above claim, since the frame bound of a proba-

bilistic tight frame p is precisely @, and

PFP() = J (o, y)*dp()du(y) ZJRd<5uy’?/>d“(y)

Rd x R4
M3() 2 M; (1)
e —_— d _ = 7
| = e =2
Theorem 4.28. A probabilistic frame pu with My(p) = 1 is tight if and only if it is

a minimizer among {v € Py(R?) : My(v) = 1} of the probabilistic frame potential.

Proof. The necessity is clear from Remark 4.27. For the sufficiency, we consider a
measure j in P(R?) which minimizes the probabilistic frame potential among

{v e B(RY) : My(v) = 1}. Given any v € {v € Po(R?) : My(v) = 1}, and X € [0, 1],
let ) := Ap + (1 — A)v. That is, given a test function f(x) with at most quadratic

growth,
| @@ = @) +0-0 | @i
Rd Rd ]Rd
Then
M) = | o P (o)
Rd
— () 2d 11—\ 2d
O [l Pauta) + =) | e Pavie)
— AME() + (1= ) ME()
—1
Therefore, since it follows that PFP(u) < PFP(uy) VA € |0, 1], we obtain:
0 < PFP(u)) — PFP(u)
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H oy dpn(z)dua(y U (o y Y2du(x)du(y)

R x R4 Rd xR

= (AN —1)PFP(u) + (1 = N?PFP(v) +2)\(1 — J (r ,y H2du(x)dr(y)

R2 xRd

= (AN = 1)PFP(p) + (1 = A\)?*PFP(v) + 2\(1 — \) L@@ , S,y Hdv(y)
=(\A=1) (()\ + 1)PFP(u) — (1 = \)PFP(v) — 2\ JRd<y Sy >dl/(y)>

<(A—1) ((AJF D _ (1;” —QAJ {y ,Suy>d7/(y)>

d

—(A—1) (——QAJWZM@ vk v (y )>

where the second inequality comes from the fact that PFP(v) > MQZ(V) = 1 and

PFP(u) = 1, and in the last equality, the values {\;}{_, are the eigenvalues of

Ul

the frame operator S, and the {v;}¢_, are the corresponding orthonormal set of
eigenvectors guaranteed by the spectral theorem. From this inequality it follows

that

[ S0 ot =

k=1

Let A\; denote the smallest eigenvalue of u, and v; the corresponding eigenvector of

S,. Since v was chosen arbitrarily in {v € P,(R?) : My(v) = 1}, it follows that for

9
d
any € > 0, one can choose dv = (1 — €)4,, Z . Then

<] 3y ()

k=1

= (L= eNor|* + il |

€
=2
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Since \; < M) g any probabilistic

and as € —> 0, we see that, in fact, \; > %1' v

frame 7, with equality if and only if 7 is tight, it follows that our minimizer of the

probabilistic frame potential, u, is tight. O
Moreover, we can broaden the above result to assert the following:

Theorem 4.29. Given a measure i € Py(R?), pu # &y, PFP(u) = @ if and

only if p is tight or p = d.

Proof. Again, if p is a tight probabilistic frame, then the equality clearly holds
by Remark 4.27. Suppose that p is not tight. Then the eigenvalues of S, are
Al = - = Ng with A\ > % > )\g with a corresponding orthonormal basis of

eigenvectors {v;}9_, for R%. Then

PFPW):J‘@HyV@K@@Mw ==J@»3WWW@)
:‘fQ/,éékﬂ%U;y>dNQD
_ Zj;)\ J@i Y duly)
_ izd;)‘i@i Sy = izd?\?

But, by Holder,

d 2 1 d i M24(M)
;&>3 ;& -

with equality if and only if A\ = --- = A4, that is, if and only if u is tight. O]
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4.3.3 The Tightness Potential

With propositions 4.26 and 4.29 in hand, we define the tightness potential and
use a method outlined in [2] to show that a gradient flow solution exists for its

minimization.

Definition 4.30. Given p € P»(R%), we define the tightness potential TP () by

TP() = PFP(i) - 220

o T P

R2 xRd

Definition 4.31. For p € P»(R?), we also define the tightness operator 7T, :

R? — R? by

1 M2(p
i) i= [ | o= Gl ] au) = S0 - 22
Rd
We immediately obtain:
Proposition 4.32. For a measure p € Py(R%), |T,, | < (TP(n))z.

Proof. Given p € Po(R%), let Ay = Xy = --- = Ay = 0 be the eigenvalues of S,,.
d
Noting that MZ(u) = Z Ai, we have the following equivalence for the tightness

potential:

TP(u) = f (& ,y)* - éllx 1|y [Pdp(z)dp(y)



Now, ||T,, | = max{\; — %>\, 23 X, — Ag}. Without loss of generality, let |7, | =

A1 — éz Ai. Then, by Cauchy’s inequality, noting that A\, — A\; = 0if k > j,

53D NCTEPOLEETEH ) YEPY

i=1j>i i=1j>i

ok () VISPV D NCYRE Y

7>1 J>1k>j
d
2N
j=1

From the above, we see that TP(u) = [T}, |, with equality if and only if \; = );

= A\ —

ISR

Vi, 7. O
Corollary 4.33. The tightness potential is zero if and only if p s tight.

Proof. Clearly, if 1 is a tight probabilistic frame, then TP(u) = 0. If p is not tight,

then |7}, |* > 0, so that by the above, TP(u) > 0. O

4.3.4 Construction of gradient flows for the tightness potential

Most approaches to establishing the well-posedness of a gradient flow for a

particular potential use the convexity or A-convexity of the functional, if it can be

established.

Definition 4.34. A function W on R% x R? is said to be A\-convex for some \ € R

if the function (z,y) — W (z,y) — 3(|z |*> + [y |?) is convex.

For instance, [15] considers a class of potentials W : R x R? — R describing
the interaction of two particles of unit mass at positions x and y by the value
W (z,y). The total energy of a distribution under this potential is then given by the
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functional

1

Wil = f  Wa)dn()dn() (4.21)

They assume the A-convexity of the functional, however. While the tightness po-
tential has a similar form it is not A-convex. However, they still define well-posed

gradient flow problems in the Wasserstein space.
Proposition 4.35. The tightness potential is not A\-convex on Py(R?).

Proof. Define the function W : R? x RY — R by

_ o _ =Py ?
Wiz, y):={z,y) R

x
Then, writing w := , W can be rewritten as:

Y

1 1
W($7y) = Z<w ,Kw>2 - E<w 7llw><w 7I2w>7

where K, I, I, € R?¥*24 are given by

0 I I 0 00
K= = ,and [, =
I 0 00 0 I

By [2, Proposition 9.3.2, Remark 9.3.3., and Proposition 9.3.5], it is sufficient
to show that W is not A-convex on R? x R?. Differentiating twice, we obtain the

Hessian of W{(x,y):

4
VAW (2,y) = {w , Kw)K + 2Kww' K — 7 (Lhww' I, + Luw' L)

- 3 ((w , Lw)l + {w , [w )
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yy" = gly[?1 ya! — oy’ +{x y)l
vy’ — JyaT +(w,y)l zr’ — gz |?
u
Therefore, given € 5241 we write
v
-
1w u u Y 4
2 2
o VW(l',y) :< ) > +2<u,v><x,y>—g<u,x><v,y>
v v v x
1 20,112 201,112
= Sy [Pl ™+ = [Flv %)
u
Thus, if we take € S?1 with uw L v, u # 0, v # 0, we can find y = Rm and
v
T = Rm. Then
-
LY o2 Y Reulllv] 2R
- — —4 _
5 VW (z,y) 0+0 y g
v v

Hence for every A € R, taking R = 4/|A|d, from the above we see that there exists
(z,y) € RY x R? for which the minimum eigenvalue of V2W (z,y) is less than —|A|.

Thus, W is not A-convex for any A in R. O]

Because we cannot use A-convexity, we use the minimizing movement scheme
and related existence result for regular measures. For this approach, we establish a

few facts about the frame and tightness potentials.

Theorem 4.36. The frame potential F(p) := (o4, palx sy Y2dp(x)dp(y) is a strongly
differentiable function on Py(RY).
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Proof. Take i, v € Po(R?) as above. Define f,(x) = S,z. Then F(u) = (. {fu(x),z du(z),

and for v € T'(u, v),

FO) = F 0 = [ S ivts) = | (S )i
- || s w0t

R4 xRd

j f (S ,x) =4S, y) + (S y)dy(x,y)

R2 xRd

Then, considering the second term in the preceding line, for v sufficiently close to

22

f f 3(Sur ) — S ¥y + (S ,y)dy(x, )

R4 xR4

= J Suly—z),y—z)+Suly—2) ,y—x)

R4 xRd

+2{(Sy = Su)r ;v —y ) +{(Sur ,w) —(Suy ,y ydy(,y)

_ J Syly—x),y—x)+Suly—2) ,y—x)

R4 x R4

+2{(Sy = Sy)x ,x — y ydy(z,y)

< J 180 ly =2 I + 1S, My = = [* + 2/(S,, = S)z lllx =y [dy(, y)]

Rd xR4

< (180 | + 15 NC3, (1, v) + 2018, = Sy |- Ma(p) - Coy (11, v)

< (I8, |+ 18u 13 (1, v) + 6V2MZ () - O3 (1, v)

where the second equality comes from the cancellation of the cross-frame potential,

and the last inequality comes from the CBS inequality and Lemma 4.22.
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Therefore, F(v) — F(p) = (§papa Suz .y — ) + o(Wa(p, v)) for v suffi-
ciently close to u, and it follows that the gradient vector of F(u) is V,F = 45,(z).

Moreover, since
19, F Gl = | 14, dita)
<16 | 15, |2« du(o)
< 16M; (),
it follows that ||V, F (1) |z2(.) is bounded on compact subsets of Pa(IR?). O

Theorem 4.37. The square of the second moment M3(p1) = ({ou pa |2 [[Pdp(z).
Furthermore, any even power of the second moment is a strongly differentiable func-

tion on Py(RY).

Proof. Take v and i as above. Then

MEO) = M30) = [y Pavio) = | Jolduto

_ j|w2—meuy>

R4 xRd

for v € To(u,v)

U Y—z,y+a)dy(z,y)

Ré xR4
—a‘[<xw—xwwxy |[ b= vPry
R4 xRd Rd xRd
Therefore, M3 (v) — M3 (1) = $§pa e 2{x ,y — ) + 0o(Capy (1, v)) for v sufficiently

close to p, and it follows that the gradient vector of M3(p) is V,F = 2.
To prove the second statement of the theorem, we will proceed by induction.
Suppose that for j € {1,--- ,k}, M2?(u) is a differentiable functional with gradient
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Vung = 2jM22(j71)(pJ):r. Then, with v, v as above,

MEH() — M () = M ) (M30) — M) + M) (20D () — 22D
= M2 () (Mg(y) — M3 (n)) + M3 (1) ((Mg(k_l)(y) _ M;(k;—l))

k 1)(]/) _ M22(k71))

o ([J Qu y —x)ydy(x,y) + o(Cop(p,v)) | +

dxRd

M) { (k=032 ) [[ 2oy —adr o) + ofCa () | +

(ME(w) = M3 () (M54 V() = 15" )

= kMQZ(kfl) J Qx y—xydy(z,y) + o(Copy(p,v))

R4 xRd

where we have used the inductive hypothesis for the second to last equality. Hence

V, M2t = 2k M * Vg O

Theorem 4.38. The tightness potential is differentiable, and the gradient of the

tightness potential lies in its strong subdifferential.

Proof. Given pu € Py(RY), take v = (1,47),) 4. Then by Theorems 4.36 and 4.37, v

clearly satisfies equation (4.14). ]

Moreover, we have that this gradient is the minimal selection in the strong

subdifferential:
Proposition 4.39. Given p e Po(RY), v := (1,4T,) s p € O°TP().

Proof. Recalling Definition 4.14 and Lemma 4.18, it is sufficient to show that
V32 = [0TP|(p). 1t is clear by definition of subdifferentiability that |y[3, >
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|0T P|(1). Now, we make use of the fact that the tightness potential is, in some
sense, truly differentiable. Letting ¢:(z) = x + 4tT,z, and a; € I'(p, (g¢) s pt),

: (TP(p) —TPv))"
TP (k) = Vllflgr(r;lzsu;lgo Wa(p, v)
o (TP = TP((g) o)
=0 Walp, (9r)sn)
> lim TP(p) —TP((ge) 41
20 Cy o, (1, (ge) 1)
- SaarradTuzy — x  dyou(x,y) + o(Co, (1, (91) £ 1))

=1i
t—0 C&¢u(ﬂw(gtlﬁﬂ)
1
= lln(l)g J <4TMZL‘ Y — $>dat(xay)
R xR4

_ JRd<4TM:L“ VAT, ydp(x)

= |7|g,2

o(Caa; (1s(gt) 1)) _
“Coogltatar) = - -

since Co o (pt, (gr)spt) = t, and lim,_,o
We can also explicitly calculate the derivative of the frame potential along a

flow.

Proposition 4.40. Let ¢, : R — R? be the flow of some compactly supported
smooth vector field X : RY — R?, i.e. % = X(¢(x)), do(x) = x, and given a

probabilistic frame u, consider vy := (¢¢) . Then the map

t > PFP(iy) = f (Gu(x) only) Ydu(x)duly). te0,00)

R4 x R4
1s differentiable.

Proof. Therefore,

o - Fw) = || Ko@) .60 = 0le) 0u(0)))

R4 xRd
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Kn() o) > + (bule) + 60 (y) Vdpa()dpu(y)
ﬂ (6e(2) — 6u(2) » du®) ) + (6u(x)  duy) — :(v) )]

R4 xR4

(D) + 0s(x) , Ge(y) ) = (Ds(2) , De(y) — G5 () )]dp(z)dp(y)

Hence,

FQn) — Flvs) _ J [(¢e(z) — ds(2) s Pe(y) ) + {Ps(x) , Ee(y) — ds(y) )]
t—s

t—s

s—t

R4 x R4

[(be(w) + ds(x) , e (y) ) — {Ps(®) , e (y) — ¢s(y) Dldp(w)dp(y)
= J [KVéi(x) , de(y) ) + () , Ver(y) )]

2{¢u() , de(y) ydp(x)dp(y)
— 4 f (X(4(x) . Sune() ()

4.3.5 Well-posedness of the Minimization Problem

Since we could not establish the well-posedness of the problem of construct-
ing gradient flows for the tightness potential using the standard machinery of A-
convexity, we will instead follow the approach of [2, Chapter 11.3], using in par-
ticular Lemma 4.19 introduced earlier in this chapter. This machinery does not
provide a proof of uniqueness, which a priori seems natural, since, given a nontight
probabilistic frame, there are a multitude of tight probabilistic frames outside a ball
of the radius established in Proposition 4.24.

First, we state our main result:
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Theorem 4.41. Gradient flows exist for the tightness potential, i.e. for every initial
datum g € Py(R?), each sequence of discrete solutions M, of the variational scheme

admits a subsequence such that

1. M, (t) narrowly converges in P(R?) to py locally uniformly in [0, 00), with

fue € AC3([0, 00); Po(RY)).
2. g is a solution of the gradient flow equation
v = —"TP(u), v |22 me) = |M/|(t), fora.e. t>0

with e — po as t | 0, where vi(x) = —4T,,(x) is the tangent vector to the

cuTve [iy.

3. The energy inequality

b
| [ 1o@Pautyde + 7PGu) < TP
a JR
holds for every b € [0,00) and a € [0,b)\N, where N is a L'-negligible subset
of (0, 00).

Proof. This will follow from Proposition 4.42 and Theorem 4.45 by Lemma 4.19,
with the identification of the minimal selection with the barycenter 47}, coming

from Proposition 4.39. O]

To begin, following [2], we define the sublevel sets of a functional ¢ : Po(R?) —
R by

Sn(9) = {ne B[R o) <m, Mj(p) <m}.
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Proposition 4.42. The sublevels of the tightness potential are compact with respect

to the narrow convergence.

Proof. Suppose that {u,} is a sequence in 3,,,(T'P). Since the sublevels of

f(z) = |z |? are compact in R and sup,.cy, | |z |?dv(z) < m < o0, &, (T'P) is tight
( [2, Remark 5.1.5]), and therefore by Prokhorov’s theorem, it is precompact for the
narrow convergence. Therefore, there exists a subsequence i, converging weakly

to some p in P(R?). It remains to show that pu € X,,(TP).

For R € N, define np : R — [0, 1] such that ngp € C*(R?) with

1 if|z| <R
nr(z) =
0 ifflz|>R+1
Let fr(z) = nr(x)|z|?>. Now, fg is an acceptable test function for the narrow

convergence, so YR € N,

i [ fa@)dji (z ffR \dju(z

k—o0 Rd

Since for all &,

. fR($)d:unk (I) < m,

it follows that for all R,

fim | oo () = | fa(a)dp(e) < m

R—w Rd
Then, since {fr(x)} is a nonnegative sequence of measurable functions converging

to f(z) = [z [ by Fatou,

[ e ) < timgnt [ gutorite) < m.

R R4
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Thus M3 (1) < m.

Second, we define g : R x R — R by
1
9(w,y) = (o y)” = < Ply [
Then, as above, we can define

gr(z,y) = nr(@)nr(y)g(z,y).

We note that for all (x,y),

d+1

l9r(z, y)| < lg(z, )| < [y |17,

which by the above is integrable with respect to p x i in addition to pi,, % p,, for
all ke N.
Since fi,, X fin, converges weakly to p x g, and for each R € N,

SUP ” 9r(x,y)dptn, X pn, (T, y) <M

R4 x R4
and,
hm Jf gr(, y)dpn, X pin, (,y) Jf gr(z,y)du x p(z,y) <
Rded Ré x R4
(This holds since for v € ¥,,(T'P), defining vg by vg(A) = M for all Borel
rd 77R( )d:u $)
sets A< R, TP(vg) =0.)

Then, by another application of Fatou (to the sequence gr(z, y)+ <2z ||ly |%,

initially), since limg_,o gr(z,y) = g(x,y) pointwise, we obtain

Hg(x, y)dp(x)du(y) < lim inf H gr(e, y)du(x)duly) < m
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Thus,
TP(u) = ”g(l’, y)du(x)du(y) < m,

and it follows that p € X,,(TP). O

To prove the regularity of the tightness potential, the following standard tech-

nical lemmas about projections and uniformly integrable moments will be needed.

Lemma 4.43. Tightness criterion ( [2|, Lemma 5.2.2) Let X, Xy, Xo,..., Xn be
separable metric spaces, and let ' : X — X; be continuous maps such that the
product map

ro=rtxrtx.oxrV X 5 X x. . Xy
is proper. Let I < P(X) be such that IC; := r, K is tight in P(X;) forie {1,---,N}.

Then K is also tight in P(X).

Lemma 4.44. Uniform Integrability ( [2], Lemma 5.2.4) Let p,, © P(R? x R?) be a
sequence narrowly converging to p in P(R? x R?) with sup,, Ma(u,) < cc. If either

’/T#l*,un or Wiun has uniformly integrable second moments, then
nh_r)xgo fj<x1 , Lo yd L, = Jf@l , T ydp.
The preceding two lemma will be needed to prove the following key result:
Theorem 4.45. The tightness potential is a reqular functional.

Proof. Let ¢ denote the tightness potential. Suppose that 7, € 0¢(u) is a sequence

of strong subdifferentials for a sequence of measures y,, € P,(R?) satisfying:

O(pn) > peR, p, > p in PQ(Rd)7
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sup My(n,) < o0, n, —n in P(R? x R

n

First, we show that ¢(u,) — ¢(u). By our differentiability result of Theorem
4.36, for any v, € I'(i, tn), and in particular for v, € Topu, pn,

) = 600 = ||| ATy = 2)(a,) | + oWalins )

R4 xR

< AT, | Ma () Wa g, pn) + o(Wa(pin, 1))

Thus, as jin — o in Po(RY), Wy(yt, 1) — 0, and ¢(p) — ¢(u). Hence, ¢ = 6(s1).
Second, we consider the limit of the sequence of strong subdifferentials, n,, — 7.
Given any u° € Po(R?) and v € I'(n, u°), we can choose a sequence v, € I'(n,, u°).

Then we have for all n € N,

() — d(j1n) > f (s 5 — 02 321, 02, 73) + 0(Co (s 1)) (4.22)

Then as n — o, the left-hand side of equation(4.22) converges to ¢(u®) — ¢(u)
by our first result.

As for the right-hand side, we write,

To , X3 — x1 ydv, = To , X3 d7r2’31/n - To , X1 d7r1’21/n,
¥ #

noting that the same decomposition can be done for the integral with respect to v,
the limit point.

And, applying lemma 4.44 to Wisl/n, whose second marginal, gy € Pg(Rd)
clearly has a [uniformly| integrable second moment, and to 7T41*’21/n, whose second

marginals, y, are converging in P(R?) and hence have uniformly integrable second
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moments, we conclude that

7}1_r)r010 ij<x2 ,r3 — x1 ydy, = 7}1_1)210 Jf@@ , T3 >d7ri’3l/n — T}I_I)IOIO ij<x2 . T1 >d7rig21/n
= Jf<$2 3 5dmy Y — JJ (g a1 Ydmy v
= JJ<$2 , 1 — X3 )dv

Finally, by the lower semicontinuity property for narrowly convergenging sequences

of probability measures on Hilbert spaces (c.f. [2, Lemma 7.1.4, Equation 5.1.15]),

Cop (1) < liminf Gy, (17, 1),

and we conclude that

P(u°) — d(p) = jf@fz , 3 — o1 ydv (11, 19, 23) + o(Wa(p, uv)),
so that n € do(p). O

Remark 4.46. Let ug be a probabilistic frame. By Theorem 4.41, there exists a flow

¢, such that ¢o(z) = x and

Opi(x) = vi(Pe()) = _4Tut¢t($)v

and ;= (¢¢) 4o is a solution to the continuity equation with

|| | 1o ety + TP ) < TP

for every b € [0,00) and a € [0,b)\N, where N is a L'-negligible subset of (0, o0).
Therefore, as long as the first term in the preceding equation is a.e. nonzero

with respect to i, then for any ¢ € [a, b], the tightness potential is strictly decreasing
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on that interval. Since 7T}, is nonzero unless j, is tight or zero, this will hold until
i 1s tight unless ¢, = 0 on the support of u; for some t € [a, b].

This is related to the question of whether i, remains a probabilistic frame for
t€]0,b]. Let A} = --- = A, > 0 denote the eigenvalues of S,,. Clearly, A > 0 if po
is a probabilistic frame, and for y; to be a probabilistic frame, we must have \; > 0.

We denote the “frame gap” by:
e = A=\,

and we note that

1

1 1
d

1
N = M) = Ny and T, | = max{X - M3 (u)

M22 (Nt) - Atd}a
where strict inequality holds in the first statement unless p; is a tight frame or dy.

From these statements and Proposition 4.32, it follows that
& < 2|T,, | < 2ATP(w))z.

Thus, as one intuits, the frame gap is shrinking along the flows as the tightness

potential decreases.

4.3.6 The Tightness Potential on the Sphere

As noted in the introduction to this chapter, the gradient flows we consider
here, while developed independently, have been considered previously under more
limited conditions. In [17], the authors started from a finite, unit-norm frame.
They wished to push that frame to a FUNTF in an optimal way, and to do so,
they constructed a system of first-order, nonlinear ODEs using the frame potential.
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The metric which they used for closeness of one frame to another was the Hilbert-
Schmidt norm of the difference of the frames’ analysis operators, i.e., if ¥ = {¢;}¥,
and ® = {p;}¥, are two finite frames for R? with respective analysis operators ¥

and ®, then

|@ =0 s = tr[(® —0) (P — 0)]

N
= > g — i |2
i=1
This can easily be superseded by the Wasserstein distance between the canonical

probabilistic frames associated with the two frames in question, which corresponds

to a stronger topology on the same set:

Wi (1, pta) = <7 min ZII% Yo [

N
Z loe — P
= 1o - v

The main results of [17] constitute a special case of Theorem 4.41 giving a flow
on a finite unit-norm frame as a series of ODEs. Using the notation of [17], we
define H, to be a d-dimensional real or complex Hilbert space and HY to be the
sets of N vectors in that space. Let S; be the unit sphere in Hy, and let S be the
N-fold product of that sphere. For simplicity, to denote the analysis and synthesis
operators, we shall use our notation F and F*, as we will use Sr for the frame

operator of the frame F'. The statement of the main result then comes in two parts:

Lemma 4.47. [17, Proposition 1] For any F = {f;}}, € S and

{gn}n le@n lfJ_ _{{gn 1€HN <fn 7gn>:07vn}7
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let
Falt) = cos(lgn [£) fu — sin(lgn 1£) 2 o H

whenever g, # 0, and let f,(t) := f, otherwise. Then F(t) = {f.(t)}, € S} for

any t € R, and the frame F and F(t) with analysis operators denoted by F' and F(t)

satisfy
|F(t) = Fls < Z 9. [*
and
N N
FP(F(t)) < FP(F) —4tRe Y {Spfu . gn) + 8Nt > |gu | (4.23)
n=1 n=1
Moreover,

Lemma 4.48. [17, Theorem 2] Pick F' = {f;}¥, € S, and let P, denote the
orthogonal projection from Hy onto the orthogonal complement of f,. Then, the
minimizer of the bound in (4.23) over all t € R and {g,}Y_, € ®_, f1 is given by

1
t—mand

gn:PnSan:San_<San 7fn>fm TLE{l,"' 7N} (424)

Moreover, for any t € R, this choice for {g,}_, gives:

|F(t) = Fls <t° Z | Sk fa|® (4.25)

and

FP(F(t)) < FP(F) — 4t(1 — 2Nt) i |P.SEfal? (4.26)

i=1

The authors points out that “as t — 0, we expect to approach a solution to

the system of nonlinear ordinary differential equations:

fu(8) = = (Sp(s)fuls) = (Sr(s)fuls) , fuls) 2fu(s)), Yne{l,.-- N}
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a matter we leave for future research.” Indeed, their flow is analogous to the flow
of our tightness potential. The difference lies in the fact that they constrain their
frame to live on the unit sphere, whereas we allow the support of our probabilistic
frame to vary. Because of this, the second moment of the canonical probabilistic
frame corresponding to their frames is fixed to 1.

Observe that we can rewrite (4.24) in our language. Beginning with a proba-
bilistic frame p supported on the unit sphere, we can restrict our flow by reprojecting
the flow of the gradient onto the sphere. Letting P, denote the projection onto the
tangent plane to the unit sphere at x € S%~!, we can define ¢;(z) to be the flow of
the vector field X (x) = —4S,,x, with p:(z) = (¢4)xp.

P,(—45,,(z)) = (I —z2")(—45,,(x)). Then (¢;)4u is a flow of probabilistic

frames supported on S¢~!, analogous to (4.24), and by Proposition 4.40,

%PFP(%&) =4 JSd_1<Xt(¢t(fL’)) , Sy () Ydp(x)

— 16 | = 0@)6(a) Suh(a) Sua) M)
— 16 | 18,00) 2 = (01(0)  Sputn(a) (o)

<0

with equality if and only if S, is a multiple of the identity, i.e. if and only if p, is

tight because supp(¢;)«u) = S 1.
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4.3.7 The Fourth and Higher Potentials

In addition to the frame potential, we are interested in higher-order potentials

which are only defined on P,(R?), for example:

Definition 4.49. For p € P,(R?) and p € (0, ], we can define the p-frame po-

tential, PFP,(u) by

PFP, (1) = f o,y )Pdu(a)du(y).

R4 xRd

It is a key result of [31] that the minimizers of this potential among proba-
bilistic frames supported on the S¢~! are precisely the probabilistic tight p-frames,

which we define next.

Definition 4.50. Given p € (0, ), a probability measure on R? is a probabilistic

p-frame for R? if there exist 0 < A < B < 0 such that for all y € RY,

AllP < [ K pldu) < Bly P
and g is a tight probabilistic p-frame if A = B.

In this case, the Otto calculus which we have used above can be extended to
P,(R%), the Wasserstein space of order p. There is a similar notion of subdifferential
in this space, although the construction of gradient flows is a bit more involved.

One must first define the mixed space
qu(Rd X Rd) = {'Y € P(Rd X Rd) vl +]2g < OO}

with

R4 xRd
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Then, for p > 1,

Definition 4.51. [2, The strong subdifferential, Definition 10.5.1] Let ¢ : P,(RY) —
(—o0, 0] be a proper and lower semi-continuous functional, and let u' € D(¢). Let

q = -%;. Then v € P,y(R? x R?) belongs to the extended Fréchet subdifferential
P

Op(p') if miy = pt and
o)~ o) > _int |[[oa o — w4 010,019,

We say that v € d¢(u') is a strong Fréchet subdifferential if for every

v e (v, u?), it satisfies

00 = o) = [ [ s =200 + ool 1), (4.27)

where C,,, (', 1) is the pseudo-distance given by the cost

Cr (1) = ﬂ o — 2 [Pdu(ar, 2, 33).

Now we can show:

Proposition 4.52. The p-frame potential is a differentiable function in P,(R?) for

p > 2.

Proof. Given i as above, let v € P,(R%). Define g#(x) := {(x , 2 2dp(z). Then,
letting v € I', (1, v),
PFP,(v)— PFP,(1)

= [[[[ew w7 = rarepnew

~[[J€w=2w-2> 4@ w-2)4 G y=a)+ e ayy
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— (@, 2 )Pdy (@, y)dy (2, w)

- Jﬂh@ Yoz ey b oz P 4

A
p i j
1) @) ey -0 ) (e
{(i,4,k,1)EN4: z+]+;€jz P\ Bi(
{(0,0,0,p),(0,1,0,p—1),(0,0,1,p—1)} gkt

_A+Z(Zj 2 l) ikl

Then

A= [[[[ oz v -axe oyt ap w2y @i
= [[[ 226 v =3 o s w

= Pj 2p<gg(l‘) Yy— >d7($7 y)

J

Bugadl =| [[[[ =5 -0 =2y - i
< [[[[ 1 = 21y =2 4 1 i )

_ f fw — =[]z [ (2, w) - f ly — x [** ]z P dy (2, )

k41

([ srmen)” ([eracn)’

z+k

([Jrn-sraen)” (] ||x||pdwy>)

_ Wp(,u, V)2i+j+k X Mp(u)j+k+2l

by generalized Holder. Therefore

PFP,(v) — PFP,( H 2p(gk(x) ,y — x Hdy(z,y)
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T B L R AR
= i

{(irg o, D)eNd: 1+7+;c+
{(0,0,0,9),(0,1,0,p—1),(0,0,1,p—1)}

ff 2p<gp Yy — =T >d’}/($, y) + O(Wp(,u, V)2i+j+k)

since 2¢ + j + k = 3 for the set of admissible indices, so that PF P, is differentiable

in B,(RY). O

Proposition 4.53. The derivative of the p-th frame potential is continuous in

P,(RY).

Proof. Taking p and v, probabilistic frames with finite p-th moments, again, we let
g, and g, denote the respective derivatives of the p-th frame potential at the each
measure.

Defining
hs(a,b,c) :={a e +<{a,c) b e+ - +{a,cXb,cy 2+, e)

Then, since for i € {1,--- ,p — 1},

1 p—i -1
S S )
p P P

we have by generalized Holder,

00 = 3500 = | [ e =)+ (G = )
<ol [0 = wdn ) + [ ol = w s o i o)
<yl [( [ i)™ ([ 1= o)’
o | e T o A PP T [ P F e T
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=yw*kw*wmwmm+§ﬂjwpWVWWﬂam]

<y I [ Wi, )

(] V—-wlﬂv@ﬂw);jj(JwWWVWMM)Zﬁ(fﬂzpwﬂzu
=yw*wumm[Mﬁ%m+§i%”wm@*wﬂ

Noting that by Minkowski, M} (v) < 2¥(M,(u)* + W} (u,v)), we have control over

|95(y) — g5 (y)] in terms of the p-th Wasserstein distance. O

And, as with the case p = 2, we have a lower bound, which generalizes the

lower bound given in [31]:

Theorem 4.54. Let ji be a probabilistic p-frame for RY for p = 2 an even number.

Then

(p—1(p—3)---1 , i
Prp > 0O ([ )

with equality if and only if v is tight.
Proof. Let u be a measure in Py(R%). Let p = 2k, k € N. Let
o) = | o v rduta).
R

Then p(y) is a homogeneous polynomial of degree p in (the components of y.
Following [50], we have the following formal constructions for homogeneous

polynomials:

1. We can construct write any homogeneous polynomial f(x) in x as




where i = (nq,---,ng) is a d-element multiindex,c(i) = (m P nd), a(i) is the

coefficient corresponding to that multiindex, and x(4) is the monomial corre-

sponding to that multiindex, z(i) = x}* - - -z},
2. We let p" = (@121 + -+« + agzqg)™.

3. We define an inner product on these homogeneous polynomials: given

we define

[f,9] = ), e(i)ald)bi).

li|=p
The fact that this is an inner product on this space is validated in [50]. We can use

this construction by noting that for any constant A,

[p(y) = Aly |, p(y) — Aly ["] = 0, (4.28)

with equality if and only if p is a tight probabilistic p-frame.
First, suppose that p is a tight probabilistic p-frame. Then it is clear that
equality holds in (4.28), and we can determine A using the following computations

from [50]:
LAy =plp— 1)z 2 )(w ,y )P
2. Ay ,y  =2k(2k +d —2)y ,y !

3. Au[Cw 2 Wy 2 )] = 2021+ 2m+d—2) x , 2 Y Na , y Y +m(m—1){y ,y Xx , 2 Yz ,y )" 2
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Supposing that
pa) = | @ = el

we can apply the above operators to each side of the equation recursively to identify

the constant. In this way, we obtain

- DE-3- -
1) = g el e P

Suppose, conversely, that equality holds in (4.28). We will use the following

relations from [50] related to homogeneous polynomials F, G of degree p = 2k:
L [p2, F] = F(2)
2. [F,G] = ﬁF(V)G, where by V we mean (0,,, ..., 0,).

With these in hand, we note that

p(y) = Jd(ﬂf"lyl + ... xqya)Pdp(x) = pg,
R

where B, n, = $ga @1" -+ 2)dp(z), and that [V [|> = A.

(p—1)(p—3)--1

Top—2)(dop—a)—a> Ve can then rewrite:

Letting ¢, = 0

fRd ) = Aly 17, p(0) = Aly 1Pln(0) = [(o(0).p(0)] + A0y . 1y 1] = 240000, 1y [*}dn(v)
- fRd [ Rd<z ,y>pd,u(z),p(y)] d’u(y)
Y f f [,y Y. Iy IP] dpu()dpu(y)

R4 xRd

w4 [ LlP. by P)uto)

D

- | pwaut) =24 WlPdut + | Afly Paut)

109



2

= | podutn) =24 [ 1y Pt + -

P
Since for all A € RY, [p(y) — Aly [P, p(y) — Aly |P] = 0, we can use the discriminant

of this quadratic to show that

Cp URd ly Ipdu(y)]2 < fde(y)du(y%

and, in particular, if we choose

A= ][ wla]

then equality holds in (4.28). O

Remark 4.55. Future work would include constructing Wasserstein gradient flows in
P,(R?) for this potential to obtain tight p-frames, which are linked to equiangular

tight frames.

4.3.8 Other Potentials

Given a path of probabilistic frames in P(R?), it might be useful to consider

how frame/dual-frame pairs coevolve. Thus, we consider the following construction:
Definition 4.56. Given a probabilistic frame p € Py(R? and v € Py(R? x R?) with
7y = p, we define the duality potential

G(y) = zd] zd] ({RH ziy); — Oidy(w,y) |

i=17=1 \Gi “pa

The motivation for the name comes from the fact that if p is a probabilistic
frame and v € T'D,,, then {§,, .2y dy(x,y) = I, so that for all v € T'D,,, we see
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that G(v) = 0. Similarly, as an alternate approach to the Paulsen problem, we can
consider a support potential for a given probabilistic frame pu:

H(u) = f f (2| = ly ?du(x)du(y).

R4 x R4

Clearly, H(y) = 0, and H(p) = 0 if and only if supp(u) = kS? !, where kS9! is
the sphere of radius k > 0 centered around the origin. A better potential for the

Paulsen problem could then be

PP(u) = PFPy(p) + H(p).

4.4  Scaling Result

Finally, to conclude our investigation of tight frames, we end with a result
about scalable frames, which we approach from the probabilistic frame perspective.
We seek to scale discrete probabilistic frames by changing their weights in order
to obtain tight probabilistic frames. This is a different perspective on the scalable
frames problem dictated by the constraints of the probabilistic point of view; the
usual approach would be equivalent to scaling the magnitudes of the vectors in the

support of a probabilistic frame.

N N N
Let pig = . 6y, and pa = >, a6y, with > a;, =1, a;, >0 and |¢; | =1 Vi. In
i—1 =1 =1
this case,
N
PFP(ua) = Y aiailpi ;)"
ij=1

We know that PFP(ua) = % = =, with equality if and only if p, is tight.

1
a’
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Letting Q := [[{¢: , ¢; »*]]i;, We see that

PFP(us) =a'Qa, where a= [al GN] .
We note that:
Lemma 4.57. Q) s positive semidefinite.

Proof. @ is the Hadamard product of the Grammian matrix with itself, i.e.,
G = [[{ei , ¢ »*]]ij, and Q@ = GOG. Since the Grammian is positive semi-definite,

() will also be positive semi-definite. n

Because ) is symmetric positive semidefinite, letting m = rank(Q), we can

write
m
-
Q = Z )\ivivi )
i=1
where A\; > -+ = \,, > 0 are the nonzero eigenvalues, and {v;}¥, < R are the
N
orthonormal eigenvectors. We can therefore express any vector a € RY asa = Y. c;v;
i=1

for some constants ¢;. We are trying to obtain
— 1
T 2
a Qa= )Y c;h\ =—.
Q ; 77\ d

Since the diagonals of Q are the fourth powers of the norms of the {¢;}Y |, we know

that for each k€ {1,--- , N},
Qur = > N(vf)* = 1.
i=1

N
Thus, letting s; = > vF, the constraints of our problem reduce to solving
k=1
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N

> Aic? =% constraint (1) on quadratic form
N

1 >l cvF = 0 nonnegativity constraint (2) on a

> ¢is; =1 constraint (3) on sum of entries of a
Li=1
Eliminating the free variables in constraint (1), and rewriting constraint (3)

with slack variables, we obtain a revised version in R%:
(

m

>Nk =12 constraint (1*) on quadratic form

i=1

N
1> v =0 nonnegativity constraint (2) on a

i=1

m N

dicisi=1— > ¢s; constraint (3%) on sum of entries of a
Li=1 i=m+1

Constraints (1*) and (3*) make this a problem of finding the intersection of
a hyperplane H and an ellipsoid F in R™, where the variable is the vector ¢ =
lcl o CN:|' In particular, any intersection point y should lie between two parallel
hyperplanes tangent to the ellipsoid. In particular, the coordinates of y should
be bounded in magnitude by the magnitudes of the coordinates of the intersection
points of the hyperplanes with the coordinate axes. That is, if z is the intersection
of a tangent plane with the first coordinate axis, then |y;| < |z1]|. Given a point u

on F, the equation of its tangent plane is

A1ty

2 |- (x—=u)=0 (4.29)

AdlUqg

i=1 i=1
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Thus, the i-th intercept of the tangent plane, obtained by setting x; = 0 for all
J # 1,18 vy = ﬁ Conversely, if we have the coordinates of the intercepts of a
tangent plane, we can obtain the point of tangency via u; = ﬁ

The equation of the hyperplane H; whose points satisfy constraint (3*) can

be written as s- (x —t), with ¢t = >  s;¢; — 1, and if it is parallel to a tangent plane

>m N _
)\1U1
Hy to E, then there is some k£ # 0 and some v € E such that s =k | = |. The
A U,
point of tangency of H, is u, with u; = ks—)\l, satisfying: ) -
“ Si 1
M) == 4.32
and the intercepts of the H, are
1 k
.= - 4.33
The i-th intercept of Hy is x; = _s%» so that from equation 4.33 and equation
4.32, we see that we must require for each i € {1,--- ,m}:
- <
S; ds;
||
1-— G —
| Z sici| < y
=>m
1Y sl <4135 (4.34)
— S;C; - — .
i>m d= A

We have thus proven:
N
Lemma 4.58. If a = Y, cyv; with {c;}Y, and {v;}Y, satisfying (4.34), then a sat-
i=1

isfies constraints (1*) and (3%).
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We use this result to prove the following.

Proposition 4.59. Given {_(pi f-i’zl c S et Q € RVXN be the matriz defined by

1
N
Qi =<{pi vpj )2 Letz= | | e RN. Then if 2TQ'z = &, there exists {a;}}Y,
1
N
N - N
with a; =0, Y, a; = 1 such that v := ) a;0,, is a tight probabilistic frame.
i1 i=1

Proof. Again, by Lemma 4.57, () is symmetric, positive semi-definite. Letting
rank(Q) = m > 0, we have m positive eigenvalues {\;}!”, and an orthonormal basis
of eigenvectors {v;}¥, and can decompose Q as Q = Z Aivv) . Given r € [15, 1,
i—1
there exists a probability vector a € RY (i.e., a; = 0, € {l,---, N}, % a; = 1) as
i=1

above such that [a|* = R.

Now suppose +5 < z'Qz = Z 3w , 2 Y2, so that

N1 9 1
EZA_<U’L 20 2 N2
i=1""
Then there exists some probability vector a such that

a]* <

N1 )
a2y

\\Mg

First, |la |? = Z(vl ,a)? = Y {v; ,a)?* implies that
i=1
— N1
2 2
;@i,@ <EZA—U1,z> (4.35)

Second, [z > = &, so that

Z@z 202 < (4.36)

i=1
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Thus, by (4.35) and (4.36) and the CBS inequality, we have:

— N1
N;<vi,z>22<vz,a>2 Ezy@i,z}Q
(NZ@z' ,2 v a))? < 72 y@z‘ 2 )
i—1 i
N
Then, noting that 1—N{z ,a ) = 0, and recalling that N(z ,a ) = > ,{z,v; Xv; ,a ),
i=1
we obtain
(1= N Y v 2Xv; ,a))? = (1= Nz ,a)y+ N Y (v, 2 X ,a))
i>m 1=1
N2 1
< 7 Z )\_Z<U7, ) % >2

But a quick calculation shows that this last inequality is equivalent to

(1= Y s o) < 3 D15

N
where, as in the lemma 4.58, s, = > v¥. Thus, by that lemma, we have that a, in
i=1

addition to satisfying constraint (2), satisfies also constraints (1*) and (3*). O

N
Corollary 4.60. Let A\ = Ao, (Q). If N2d < Y] Q;, then there exists a such that
ij=1
N j
pi= > a;dy, is a tight probabilistic frame.
=1
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