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Picocyanobacteria (mainly Synechococcus and Prochlorococcus) contribute significantly 

to oceanic primary production. Unlike Prochlorococcus, which is mainly constrained to the 

warm and oligotrophic ocean, Synechococcus has a ubiquitous distribution. Synechococcus is 

present in freshwater, estuarine, coastal, and open ocean habitats. They have also been found 

in polar regions and hot springs. Endemic to the hot and the cold, the saline and the fresh, and 

every condition in between, Synechococcus appears to have the capability to adapt and tolerate 

nearly any environment and climate. This ability to adapt to any aquatic environment is 

possible through their genome plasticity, a character that is not present in the Prochlorococcus. 

Due to the differential distribution of the genera, Synechococcus is considered a generalist and 



 

Prochlorococcus is considered a specialist in ecological theory. More than 400 

picocyanobacterial genomes have now been sequenced, and this large genomic resource 

enables comprehensive genome mining and comparison. One possibility is to study the 

prevalence of Toxin-Antitoxin (TA) systems in picocyanobacterial genomes. TA systems are 

present in nearly all bacteria and archaea and are involved in cell growth regulation in response 

to environmental stresses. However, little is known about the presence and complexity of TA 

systems in picocyanobacteria.  

By querying 77 complete genomes of freshwater, estuarine, coastal and ocean 

picocyanobacteria, Type II TA systems (the most well studied TA family) were predicted in 27 of 

33 (81%) Synechococcus strains, but no type II TA genes were predicted in any of the 38 

Prochlorococcus strains. The number of TA pairs varies from 0 to 80 in Synechococcus strains, 

with a trend for more type II TA systems being predicted in larger genomes.  A linear correlation 

between the genome size and the number of putative TA systems in both coastal and 

freshwater Synechococcus was established. In general, open ocean Synechococcus contain no or 

few TA systems, while coastal and freshwater Synechococcus contain more TA systems. The 

type II TA systems inhibit microbial translation via ribonucleases and allow cells to enter the 

“dormant” stage in adverse environments. Inheritance of more TA genes in freshwater and 

coastal Synechococcus could confer a recoverable persister state which would be an important 

mechanism to survive in variable environments.  

Different genotypes of Synechococcus are present in the Chesapeake Bay in winter and 

summer. Winter isolates of Synechococcus have shown high tolerance to cold conditions and 

other stressors. To explore their potential genetic capability, complete genomes of five 



 

representative winter Synechococcus strains CBW1002, CBW1004, CBW1006, CBW1107, and 

CBW1108 were fully sequenced. These five winter strains share many homologs that are unique 

to them and not shared with pelagic Synechococcus. Winter Synechococcus genomes are 

enriched with particular desaturases, chaperones, and transposases. Similar amino acid 

sequences and annotated features were not found in distantly related Synechococcus from 

Subcluster 5.1. These shared genomic features between the winter strains imply that 

maintaining membrane fluidity, protein stability, and genomic plasticity are important to cold 

adaption of Synechococcus.  

The winter strains also contain genes that are not traditionally considered with the 

canonical bacterial cold shock response. They contain a particularly high abundance of Type II 

TA pairs with complex association networks. They feature promiscuous toxins, like VapC, that 

pair with multiple antitoxins, which support the mix and match hypothesis. Winter strains also 

contain more monogamous toxins, such as BrnT, which tend to pair with their traditionally 

named antitoxin, BrnA. Expression of certain TA transcripts in response to environmental stress 

has been observed in the model strain CB0101, and the activity of one TA pair in CB0101 for 

growth arrest has been experimentally confirmed via heterologous expression in E. coli. My 

thesis work has identified interesting genetic systems related to niche partitioning of 

picocyanobacteria, particularly among the Chesapeake Bay Synechococcus. Future studies are 

paramount to understand the functional role of TA systems, desaturases, chaperons, and 

transposases of picocyanobacteria under various environmental stressors.  
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Chapter I: Introduction 
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Marine Picocyanobacteria 

Small unicellular cyanobacteria (<3 µm), defined as picocyanobacteria, are widely 

distributed in the marine environment and make up a significant portion of phytoplankton 

biomass in the ocean (Holt et al., 1994; P. W. Johnson & Sieburth, 1979; Waterbury, 1986). In 

most of the world’s oceans, picocyanobacteria are principally comprised of Prochlorococcus and 

Synechococcus. Together, these two cyanobacterial genera can contribute about 25% of carbon 

fixation via photosynthesis or net primary productivity in the ocean (Flombaum et al., 2013). 

Prochlorococcus has a relatively smaller cell size compared to Synechococcus (Morel et al., 

1993). While Prochlorococcus and Synechococcus can co-occur in the ocean, they have 

differential distribution patterns. The distribution of Prochlorococcus is largely constrained to 

pelagic environments between the 40ºN and 40ºS latitudinal transects where temperature is 

usually above 10ºC (Buck et al., 1996; Z. I. Johnson, Zinser, Coe, Mcnulty, et al., 2006). 

Prochlorococcus proliferates in oligotrophic oceans with relatively warm temperature, while 

Synechococcus is ubiquitous (Mackey et al., 2017) and more prevalent in nutrient rich coastal 

areas (Frédéric Partensky et al., 1999). In locations where they cohabitate, Prochlorococcus 

generally has a higher cell concentration than Synechococcus but is limited to open ocean 

environments where the two genera are endemic. Synechococcus transcends not only latitude 

and temperature (Zwirglmaier et al., 2008), but a wide variety of environmental conditions such 

as salinity, turbidity, and many other environmental factors (Callieri, 2008; Callieri & Stockner, 

2002). Because of their abundance in such vast oceanic environments and contributions to 

global primary production, extensive studies have focused on marine picocyanobacteria in open 

ocean environments over the past 30 years (Coleman & Chisholm, 2007; Flombaum et al., 2013; 
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Hess, 2004; Frédéric Partensky et al., 1999; D J Scanlan et al., 2009; David J. Scanlan, 2012; 

David J. Scanlan & West, 2002) . Niche partitioning of Prochlorococcus in the ocean (both 

horizontally and vertically) is better understood compared to Synechococcus which has a much 

wider distribution from coastal to open ocean (Scanlan 2012). The genus Synechococcus also 

includes many species or strains present in freshwater and estuarine ecosystems. When the 

broad group of Synechococcus (from freshwater to marine habitats) is considered, much less is 

known for taxonomy, diversity, genomics, and niche partitioning of Synechococcus compared to 

Prochlorococcus. 

Synechococcus are the dominant picocyanobacteria in estuarine and coastal waters, as 

they seem to have the capability to adapt and survive in diverse environments. Due to their 

global distribution and relatively larger cell size, Synechococcus can contribute more CO2 

fixation than Prochlorococcus (Jardillier et al., 2010). When considering hourly carbon fixation 

rates, estimations suggest that Synechococcus and Prochlorococcus contribute 16.7% and 8.5% 

to global ocean primary productivity, respectively (Flombaum et al., 2013). The abundance of 

marine picocyanobacteria appear to be positively correlated with water temperature. 

Increasing water temperature over time may make cyanobacteria more competitive with other 

phytoplankton. It has been predicted that by the end of 21st century, cellular concentrations of 

Prochlorococcus and Synechococcus are predicted to increase 29% and 14%, respectively, in the 

global ocean. 

Pigmentation differentiates Synechococcus from Prochlorococcus (Morel et al., 1993). 

Prochlorococcus contains divinyl chlorophyll a and b derivitives (Goericke & Repeta, 1992), and 

Synechococcus contains the primary pigment “true” chlorophyll a, along with a range of 
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phycobilisomes including phycocyanin (PC) and phycoerythrin (PE) (Wood et al., 1985). 

Phycobiliproteins allow Synechococcus to have a variety of pigmentation profiles to utilize 

different light spectrums (Figure 1.1) (Six et al., 2007; Waterbury, 1986). PC- and PE-rich 

Synechococcus can be distinguished and quantified under an epifluorescence microscopy 

(Figure 1.2) due to their differential excitation and emission profiles (Wood et al., 1985). 

Different pigmentations enable the use of flow cytometry to count Prochlorococcus and 

Synechococcus in aquatic environments, especially in the open ocean. Rapid enumeration of 

picocyanobacteria with flow cytometry improves cell identification because it allows for high 

throughput and instant pigment identification (Buck et al., 1996). Marine Synechococcus and 

Prochlorococcus are well studied and characterized due to their early discovery and ease of 

accurate enumeration (Coleman & Chisholm, 2007; Flombaum et al., 2013; Hess, 2004; Frédéric 

Partensky et al., 1999; David J. Scanlan, 2012; David J. Scanlan & West, 2002).  

Genetic diversity of picocyanobacteria and their niche adaptation.  

As molecular techniques developed, this ecological information was married with genomic data 

(D J Scanlan et al., 2009) to develop a multidimensional understanding of picocyanobacterial 

diversity in the world’s oceans. A high degree of diversity exists in both the Synechococcus and 

Prochlorococcus groups.  Dozens of clades have been identified using a variety of different 

methods. Novel clades were regularly found in the 2010’s and these clades have differential 

distributions in the world’s oceans that have been studied using many different genetic markers 

(i.e. the ITS, 16S rRNA, narB, ntcA, and rpoC1 loci) (Ahlgren & Rocap, 2006, 2012; Huang et al., 

2011). Due to their ecological significance, work has been done to understand the genetic 
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diversity and the distribution pattern of picocyanobacteria in the ocean. Unfortunately, the 

same attention was not granted to estuarine Synechococcus.   

Ecological Significance of Estuarine Synechococcus 

Estuaries are unique environments which connect freshwater river flow and saline 

coastal water. The mixing of freshwater and saltwater creates strong environmental gradients 

and estuaries are characterized by shifts in abiotic conditions like turbidity, temperature, and 

salinity. Estuaries and coastal waters normally contain higher nutrient concentrations 

compared to offshore waters due to the immediate impact of terrestrial activities as well as 

precipitation via rain and snowfall (Herbert, 1999). Estuaries vary widely in physical and 

chemical conditions, community composition (Brunet & Lizon, 2003), and biogeochemical 

cycling (J. E. Cloern et al., 2014). Carbon fixation by phytoplankton is a vital carbon source in 

estuarine systems which can influence productivity at higher trophic levels (J. E. Cloern et al., 

2014). Phytoplankton which include picocyanobacteria are central to the biogeochemical 

activity in estuarine systems (James E. Cloern & Dufford, 2005). In estuarine systems, 

Synechococcus is the dominant form of picocyanobacteria, while Prochlorococcus are either in 

low abundance or undetectable (Moore et al., 2007).   

Compared to pelagic picocyanobacteria, we know much less about estuarine 

picocyanobacteria. Most of early studies focused on abundance, growth, productivity, spatial 

and temporal distribution of picocyanobacteria in the estuarine environment. In Kiel Bight, 

picocyanobacteria (namely Synechococcus) are vital to the phytoplankton community, 

especially in the summer. Picocyanobacteria abundance peaks at 1.4-2.6 x 108 cells l-1 in the 
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summer and account for up to 97% of all autotrophic picoplankton carbon (Jochem, 1988). 

Carpenter et al., (1988) reported that in the Long Island Sound, active division and growth rate 

for Synechococcus was highest in the summer. Synechococcus has been studied in many 

different estuarine environments each with unique hydrological properties and variable 

Synechococcus abundance and distribution patterns (J E Cloern et al., 2016; Fortunato & Crump, 

2011). While no estuary is identical, it is evident that Synechococcus is ubiquitous in estuarine 

environments around the globe. The Chesapeake Bay was one focus of early research on the 

ecological distribution of Synechococcus in estuarine ecosystems. 

Early studies of Picocyanobacteria in the Chesapeake Bay 

The Chesapeake Bay (CB) is the largest estuary in the United States, with 16 million 

people living and impacting the watershed which creates eutrophic conditions (Harding et al., 

2016). Phytoplankton biomass in the Bay has been increasing over the second half of the 20th 

century due to eutrophication (Harding and Perry 1997). Picocyanobacteria were considered as 

part of picophytoplankton in the earlier studies of CB phytoplankton. In the Lower York river, a 

CB sub-estuary, picocyanobacteria accounted for 51% of the picophytoplankton biomass, and 

had the highest abundance at 7.2 x 105 cells ml-1 in September (Ray et al., 1989). Autotrophic 

picophytoplankton cell concentrations were lowest in the winter at 7.36 x 106 cells L-1 and 

highest in the summer at 9.28 x 108 cells L-1 (Affronti, 1990) (in this case, autotrophic 

picophytoplankton includes both prokaryotic and eukaryotic cells). This seasonal pattern is 

mirrored by picoplankton primary production being highest in July at 55.6% and lowest at 2.3% 

in January (Affronti & Marshall, 1994). These studies suggest that picocyanobacteria have 
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higher cell concentrations and a larger contribution to primary production in the summer than 

in the winter.  The seasonal pattern of picocyanobacteria observed in the CB are also seen in 

other estuarine systems (James E. Cloern & Jassby, 2010). Early studies could also differentiate 

pigmentation profiles among Synechococcus strains. 

The ratio of PC-rich and PE-rich Synechococcus strains has been used to investigate the 

distribution of different pigment types of CB picocyanobacteria over time and space. It has 

been reported that the PC-rich type was 8 times more prevalent than the PE-rich type (Ray et 

al., 1989); a striking contrast to the open ocean where PE-rich Synechococcus are prominent 

(Campbell & Carpenter, 1987). Furthermore, PC-rich Synechococcus dominated in surface 

waters during the summer, they accounted for 73.8% of surface picophytoplankton. In the 

winter, benthic PE-rich Synechococcus were more productive and comprised 65.4% of benthic 

picophytoplankton (Affronti & Marshall, 1993). These early studies of CB picocyanobacteria 

mainly focused on the spatiotemporal distribution of Synechococcus based on their abundance, 

pigmentation, biomass, and productivity. Little was known about ecophysiology and genetic 

diversity of Synechococcus in the Bay, as no CB Synechococcus were isolated and characterized 

until 2004.  

Unique and diverse Synechococcus isolated from the Chesapeake Bay 

To better understand the taxonomy and physiology of CB picocyanobacteria, it is 

necessary to isolate and cultivate cyanobacteria from the Bay. Thirteen picocyanobacteria were 

isolated from various locations in the Chesapeake Bay, including Baltimore Inner Harbor, 

middle, and lower Bay, mostly during the summer months (F. Chen et al., 2004). Microscopic 
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identification of these isolates showed that they are unicellular cyanobacteria with coccoid or 

rod shape and cell size between 1-3 µm. Among these 13 isolates, seven strains are 

phycocyanin-rich and six are phycoerythrin-rich Synechococcus. Five motile strains were also 

identified in these Synechococcus cultures. During the course of isolation, it was estimated that 

80-90% of colonies recovered from the Baltimore Inner Harbor and the upper Chesapeake Bay 

were green picocyanobacteria, while the percentile of green colonies decreased to 56-65% at 

the mouth of the Bay. The salinity is usually in the range of 5-10 ppt in the Inner Harbor, and 

20-30 ppt in the lower bay. These CB Synechococcus isolates are able to grow in culture media 

with a wide range of salinity (0-30 ppt). In contrast, many coastal and open ocean 

Synechococcus strains do not grow at lower salinities (F. Chen et al., 2004). The trend of 

abundant PC-rich Synechococcus at lower salinity, or abundant PE-rich Synechococcus at higher 

salinity was also evident based on the enumeration via epifluorescence microscopy (Figure 1.2) 

(F. Chen et al., 2004). This was the first study focused on isolating and characterizing 

picocyanobacteria from estuarine environments. The availability of these CB Synechococcus 

enables the further phylogenetic and genomic studies. Many CB cyanophages were also 

isolated and characterized when these cultures became available (Wang and Chen 2008). 

The phylogenetic position of these CB Synechococcus was first illustrated based on the 

ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO) large subunit gene (rbcL) 

sequences (F. Chen et al., 2004). The rbcL phylogeny showed that the Chesapeake Bay contains 

diverse Synechococcus and the vast majority of CB Synechococcus do not cluster with marine 

cluster A Synechococcus, which contains coastal and oceanic Synechococcus. In the early 2000’s, 

the taxonomy of marine Synechococcus mainly refers to the three major clusters (marine 
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cluster A, B and C) (Herdman et al., 2001; Waterbury, 1986). At the time, marine cluster A 

contained many Synechococcus strains isolated from coastal and open oceans, while marine 

cluster B and C only contained a few marine Synechococcus strains. Compared to marine cluster 

A and C, marine cluster B had not been well characterized. By including CB Synechococcus 

strains in the rbcL tree, it becomes clear that the majority of CB Synechococcus isolates belong 

to marine cluster B (F. Chen et al., 2004). The rbcL amino acid phylogeny showed that these 

estuarine Synechococcus are more closely related to marine Synechococcus than to freshwater 

Synechococcus, suggesting a close relationship between estuarine and marine Synechococcus. 

Several other interesting findings related to the clustering of Synechococcus include: 1) Marine 

cluster B can contain PE-rich Synechococcus (the previous systematics only included PC-rich 

Synechococcus); 2) motility does not necessarily cluster Synechococcus together; 3) members of 

marine cluster B including WH8007 belong to the Form IA rbcL type, not the Form IB rbcL type 

(Pichard et al., 1997); and 4) the rbcL genotypes varies dramatically from the upper to lower 

bay.  

The study of Chen et al. 2004 suggests that certain phenotypic features like 

pigmentation and motility may no longer be valid for classifying or clustering Synechococcus 

due to their diverse and polyphyletic nature. Both PE and PC rich Synechococcus can be 

clustered closely within the same clade or subcluster, and there is no clear separation between 

PC and PE rich Synechococcus strains. This incongruence was also confirmed by later studies in 

the Baltic Sea (T. Haverkamp et al., 2008; T. H. A. Haverkamp et al., 2009). Characterization of 

CB picocyanobacterial cultures not only provides morphological and physiological information, 

but also sheds light on the diversity and genetic nature of estuarine Synechococcus. This study 
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first confirmed that the vast majority of picocyanobacteria in the Bay are Synechococcus and 

they most likely have a marine rather than freshwater origin based on the rbcL phylogeny. The 

Chesapeake Bay provides a unique environment for marine cluster B to thrive and adapt. 

 In a later study, the MC-B group of Synechococcus was re-defined as subcluster 5.2 

Synechococcus based on the 16S-23S rRNA internal transcribed spacer (ITS) sequences (F. Chen 

et al., 2006b). The ITS is a non-coding RNA region and is less conserved than 16S or 23S rRNA. 

The less conserved nature of the ITS allows for a higher resolution between closely related 

strains. Based on the ITS phylogeny, many Chesapeake Bay Synechococcus isolates fell into two 

subgroups, CB4 and CB5, which form subcluster 5.2. Synechococcus subcluster 5.2 prevailed in 

the upper bay, while subcluster 5.1 or marine cluster A Synechococcus was prevalent in the 

lower bay. This study laid the foundation for the phylogenetic position of subcluster 5.2 

Synechococcus. Many later studies in estuarine and coastal environments identified even more 

diverse members of subcluster 5.2. For example, the presence of subcluster 5.2 Synechococcus 

was also reported in different environments including the East China Sea (Choi & Noh, 2009), 

the coastal estuary of Hong Kong (X. Xia, Vidyarathna, et al., 2015), the Baltic Sea (Larsson et al., 

2014), the Northern South China Sea (X. Xia, Guo, et al., 2015), the Bering Sea and Chukchi Sea 

(Huang et al., 2011), and the Massachusetts Coastal Observatory (Hunter-Cevera et al., 2016). It 

is striking to see that subcluster 5.2 Synechococcus (CB5 clade) comprise the vast majority (ca. 

80%) of picocyanobacteria in the Chukchi Sea at the highest latitude subzero waters with 

temperatures around 0°C (Huang et al., 2011). The Chukchi Sea is a shallow shelf sea (ca. 50m 

deep) which can be influenced by freshwater from ice melt. Due the low picocyanobacterial 

abundance (<1000 cells per ml) in winter Chesapeake Bay or in a cold region like the polar 
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ocean, it is difficult to detect and obtain picocyanobacterial sequences using metagenomics or 

from a 16S rRNA gene clone library. The picocyanobacteria-specific PCR primers based on the 

ITS region should be considered under these conditions (Huang et al., 2011). 

Later studies in the Chesapeake Bay found that Synechococcus populations present in 

winter are distinct from those in the summer (Cai et al., 2010). Environmental clones recovered 

from the upper, middle, and lower Bay in February 2005 showed that two new clades CB6 and 

CB7 are present in the winter. CB6 is more closely related to marine Synechococcus, while CB7 

clusters with Cyanobium, which is commonly found in the freshwater system. It has been 

known that Synechococcus cell counts in winter are usually 2-3 orders of magnitude lower than 

those in summer. A good linear correlation between Synechococcus abundance and water 

temperature in the Bay was reported based on a five-year survey of picocyanobacteria (K. 

Wang et al., 2011). Synechococcus abundance in the Bay often exceeds 1 million cells per 

milliliter in the summer ‘blooming’ season and can be less than 100 cells per ml in winter. The 

seasonal pattern of CB Synechococcus is clear and annually recurring. Co-variation between 

Synechococcus and cyanophages were also observed suggesting that viral infection is an 

important factor that can influence the population dynamics of Synechococcus. 

Winter Chesapeake Bay isolates 

Early studies have shown that distinct genotypes of Synechococcus are present in the 

Chesapeake Bay during winter. The Chesapeake Bay Synechococcus isolates reported by Chen 

et al. in 2004 and 2006 were mainly recovered during warmer months. A total of 17 

picocyanobacterial strains were isolated from the Baltimore during the winter season (Xu et al., 
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2015). These winter cultures were isolated between December 2010 and February 2011, and 

the water temperature fluctuated between 2 and 8°C during this period. Seven PC-rich and ten 

PE-rich strains were recovered. The winter isolates are colorful and exhibit blue-green, 

yellowish, brown, and pink colors, suggesting a wide chromatic adaptation by winter 

picocyanobacteria. The winter Synechococcus strains belong to five distinct phylogenetic 

clusters, which differ from Synechococcus strains that are dominant during summer months (i.e. 

subcluster 5.2 Synechococcus) (Figure 1.3). These five lineages include the Bornholm Sea cluster 

(named after the 50 m halocline Bornholm Basin located in the Baltic Sea (Jakobsen, 1996)), 

subalpine cluster II, CB7 cluster, and two other novel clusters. Interestingly, many winter CB 

isolates are closely related to picocyanobacteria isolated from Baltic Sea, subalpine waters, and 

Arctic Sea, suggesting a common origin of cold-adapted Synechococcus. The Bornholm Sea 

cluster was first established when picocyanobacteria were isolated and identified from the 

Baltic Sea (Ernst et al., 2003a). This cluster only contains the strains isolated from the Baltic Sea 

at two sampling sites where salinity was 7 and 9 ppt, respectively. Noticeably, none of the Baltic 

Sea picocyanobacteria belong to Synechococcus subcluster 5.2 which contains many CB summer 

isolates. The lack of subcluster 5.2 in the Baltic Sea collection could be related to the difference 

in cultivation method. A culture medium comprised of 1 part ASN III and 3 parts BG11 with 

salinity of ~6 ppt was used for isolation of picocyanobacteria in the Baltic Sea (Ernst et al., 

2003a), while SN15, a modified lower nutrient cyanobacterial medium, was used for isolation of 

picocyanobacteria in the Chesapeake Bay (F. Chen et al., 2004; Xu et al., 2015). A later study 

based on metagenomics showed the presence of many contigs related to subcluster 5.2 

Synechococcus in the Baltic Sea (Larsson et al., 2014). The Baltic Sea is one of world’s largest 
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estuaries with strong salinity gradient, but it differs from the Chesapeake Bay in many aspects. 

For example, the Baltic Sea has a larger water volume, deeper water column, much longer 

residence time (25 years), and is located in a colder climate (higher latitude) compared to the 

Chesapeake Bay. Despite this, picocyanobacteria in the Chesapeake Bay and Baltic Sea share 

many common lineages.  

 The effect of temperature (4, 10, 15, 23, 25, or 28°C) on the growth rate of winter and 

summer CB Synechococcus strains, coastal, and open ocean Synechococcus strains was 

compared. Save for CBW1108, all winter Synechococcus (8 representative strains) were able to 

grow slowly at 4 and 10°C, but none of the coastal and open ocean Synechococcus grew at 

these temperatures. The winter CB isolates were able to maintain slow growth or prolonged 

dormancy at 4°C and resume normal growth at room temperature. This phenomenon was not 

observed in open ocean Synechococcus. Interestingly, several Synechococcus strains in the 

Bornholm Sea cluster exhibited various cell lengths during exponential growth. For example, 

the cell length of CBW1112 can vary from 1.21 to 21 µm during exponential growth at 23°C. 

Many winter CB strains displayed a 2-3 fold cell enlargement during prolonged exposure to 4 °C. 

Cell enlargement or increase in cell volume (not elongation) under the cold condition has been 

reported in freshwater Synechococcus like cyanobacteria (Jezberová & Komárková, 2007). Cell 

elongation (up to 50 fold) was found later in freshwater Synechococcus PCC 7942 during the 

stationary phase at room temperature, while elongation was caused by phosphorus limitation  

(Goclaw-Binder et al., 2012).  

Isolation and characterization of CB picocyanobacteria from both warm and cold 

seasons sheds light on taxonomy, physiology, and genetic diversity of estuarine Synechococcus. 
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The Bay Synechococcus spp. exhibit wider range of salt and thermal tolerance compared to 

open ocean counterparts. It appears that subcluster 5.2 Synechococcus dominates in summer, 

while the Bornholm Sea cluster Synechococcus prevails in winter, in the Chesapeake Bay. Early 

studies only included clade CB4 and CB5 into subcluster 5.2 (Ahlgren & Rocap, 2012; F. Chen et 

al., 2006b; Huang et al., 2011), while the number of clades in subcluster 5.2 is much lower 

compared to that in subcluster 5.1. Other picocyanobacterial clusters such as the Bornholm Sea 

cluster, subalpine clusters, CB7 cluster, Cyanobium gracile cluster are close to those in 

subcluster 5.2 (Huang et al., 2011; Xu et al., 2015). The broader question is raised: Should they 

be considered as clades in subcluster 5.2? Or, should subcluster 5.2 be extended to include 

other closely related picocyanobacteria? 

A broader subcluster 5.2? 

When more genomes of freshwater or non-marine picocyanobacteria were sequenced, 

phylogenomic trees showed that freshwater, brackish or estuarine, and some marine 

picocyanobacteria can form a monophyletic subcluster which is broader than previously 

defined subcluster 5.2 (Di Cesare et al., 2018; Patricia Sánchez-Baracaldo et al., 2019). Coutinho 

et al., (2016)  proposed a new genus name Parasynechococcus which includes Synechococcus 

strains isolated from estuarine, coastal, and oceanic Synechococcus based on a phylogenomic 

reconstruction. The original genus Synechococcus only includes freshwater strains according to 

the classification system defined by Coutinho et al. in 2016. This system abandons the division 

of subcluster 5.1, 5.2 and 5.3, and can generate some confusion as subcluster 5.1 has been well 

defined for marine Synechococcus, especially for coastal and open ocean Synechococcus. 
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Recently, a freshwater cyanobacterium, Vulcanococcus limneticus sp. nov. (formerly 

Synechococcus LL) isolated from a volcanic lake in central Italy, was found closely related to CB4 

and CB5 groups in subcluster 5.2 (Di Cesare et al., 2018). According to the recent phylogenomic 

study, it appears that subcluster 5.2 can now be extended to include even more cyanobacterial 

members (i.e. Cyanobium) from diverse habitats such as freshwater, brackish, and coastal 

water. The broader subcluster 5.2 was further confirmed by a most recent phylogenomic study 

based on 136 cyanobacterial proteins (Patricia Sánchez-Baracaldo et al., 2019). These two latest 

studies strongly support that subcluster 5.2 should be extended to include freshwater 

picocyanobacteria (i.e. Cyanobium spp.) and estuarine Synechococcus. While the broader 

subcluster 5.2 was proposed, no further studies were conducted to compare with the 

phylogeny based on the 16S rRNA gene or ITS region. These two gene markers have been 

widely used to study the phylogenetic relationship and genetic diversity of picocyanobacteria in 

various aquatic environments (Callieri et al., 2013; Ernst et al., 2003a; T. H. A. Haverkamp et al., 

2009; Jing et al., 2009; A. Wilmotte et al., 2017). It will be interesting to see if the gene marker-

based phylogeny also supports the broader subcluster 5.2 defined by core genomes of 

picocyanobacteria. We are currently evaluating this newly defined broader subcluster 5.2 based 

on the 16S rRNA gene and ITS sequences. 

In summary, isolation of CB Synechococcus using culture medium with adjusted salinity 

recovered many indigenous estuarine species of Synechococcus from different locations in the 

Chesapeake Bay and from different seasons. Physiological studies showed that these estuarine 

Synechococcus spp. have a higher tolerance to environmental stressors compared to coastal 

and open ocean Synechococcus spp. Phylogenetic analysis demonstrated that the Chesapeake 
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Bay contains diverse and unique Synechococcus distinct from well-studied open ocean 

Synechococcus. It is believed that strong environmental gradients in the Chesapeake Bay select 

for estuarine Synechococcus with diverse pigment types, genotypes, and ecotypes. However, 

little is known about the mechanism used by estuarine Synechococcus to cope with such a 

dynamic ecosystem. 

Genome sequencing of Synechococcus sp. CB0101 

Synechococcus strain CB0101 has been used as a model strain for Chesapeake Bay 

picocyanobacteria as its genotype is commonly found in the Bay. Strain CB0101 has been used 

to understand ecophysiology of estuarine picocyanobacteria and to isolate cyanobacterial 

viruses from the Chesapeake Bay (K. Wang et al., 2011). In physiological growth rate 

evaluations, estuarine Synechococcus CB0101 was more resilient than the coastal 

Synechococcus WH7803 and open-ocean Synechococcus WH7805 in variable growth conditions 

with wide ranges of salinity, temperature, nutrient, and metal concentrations (D. W. Marsan, 

2016). CB0101 had a higher growth rate than the coastal and open-ocean strains in a wider 

array of nutrient, salinity, and temperature conditions. Growth rates of CB0101 show that it is 

well adapted to grow in low light, nutrient replete conditions, exemplary of the turbid 

conditions found in its endemic Chesapeake Bay. These physiological responses suggest that 

Synechococcus CB0101 has a genetic capacity to tolerate more stressful conditions than its 

coastal and open ocean counterparts.    

The draft genome of CB0101 was reported by Marsan et al. in 2014, representing the 

first genome sequence for subcluster 5.2 Synechococcus isolated from the Chesapeake Bay. The 
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genome of CB0101 contains many genes related to transport, store, utilize, and export metals, 

especially copper, nickel, cobalt, and magnesium, indicating its extensive capacity to sense and 

respond to changes in the Chesapeake Bay (D. Marsan et al., 2014). The complete genome of 

Synechococcus CB0101 was sequenced (Fucich et al., 2019). As a representative Synechococcus 

strain for the estuarine environment, the genome sequence of CB0101 can be compared to the 

genome sequences of Synechococcus isolated from coastal and oceanic waters to understand 

the genetic features involved in such a niche adaptation. Unique genetic features may be 

present in estuarine Synechococcus strains that are not found in marine, coastal, and 

freshwater strains. This may give estuarine strains a specialized ability to adapt and cope with 

environmental conditions unique to turbulent estuarine environments. More Synechococcus 

strains from estuarine environments would have to be isolated and sequenced to investigate 

the “pangenome” of estuary Synechococcus which could provide insight on genes that are most 

important for estuarine life.   

Toxin-antitoxin genes are present in marine Synechococcus 

Toxin-Antitoxin (TA) systems are small genetic elements that are traditionally comprised 

up of a two-component system: a toxin, which can act on cellular targets to arrest growth, and 

a cognate antitoxin which negates its toxin (Unterholzner et al., 2014a). TA systems are nearly 

ubiquitous in bacteria and archaea and are known to regulate cell growth in response to 

environmental stressors (Page and Peti 2016).  Toxin-Antitoxin systems are classified into four 

main types I-IV (Harms et al., 2018a) which can be differentiated by their method of action, or 

cellular target, and molecular type of the antitoxin; either RNAs or amino acids (Figure 1.4). 
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Toxin-antitoxin types affect many central cellular actions including translation, replication, 

cellular membrane integrity and biosynthesis, among others (Unterholzner et al., 2014a). These 

outcomes can be permanent or recoverable depending on their method of action. 

Type II TA systems are the most well studied and experimentally verified TA systems. 

These systems are characterized by a protein-protein toxin-antitoxin system where the 

antitoxin nullifies the action of the toxin through direct interaction (Pandey & Gerdes, 2005). 

Type II TA systems, such as RelE/RelB, can act as effectors of bacterial persister cells and are 

often associated with the activation of proteases, such as Lon, for antitoxin degradation. Type II 

toxins often interrupt translation by endonuclease activity, either in a ribosomal-dependent or 

ribosomal-independent manner. In this way, they temporarily disrupt translation without 

effecting cellular death. When the toxin and antitoxin are at equilibrium, the antitoxin negates 

the toxin, and the toxin is rendered inactive; cellular activity continues as normal (Figure 1.5). 

However, in a stressful environment where the secondary messenger alarmone (p)ppGpp is 

present and Lon protease is activated, the antitoxin is degraded and the toxin is free to act on 

its cellular targets (Maisonneuve & Gerdes, 2014). This process results in reversible growth 

arrest which is advantageous in conditions of interim cellular stress.  

However, little is known about the presence of TA systems in cyanobacteria because 

current research is narrowly focused on few, scattered model organisms using methods lacking 

a repeatable and systematic approach. Prediction software can quickly become defunct as 

support may end abruptly. The source database may lie stagnant (Sevin & Barloy-Hubler, 2007) 

in contrast to the ever-increasing knowledge of TA families, their methods of action, and 

conserved domains (Figure 1.4) (Harms et al., 2018a).   
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TA systems have been predicted in freshwater cyanobacteria including Microcystis 

aeruginosa (Makarova et al., 2009), Synechocystis PCC6803 (Kaneko et al., 2003), and on the 

pANL plasmid in Synechococcus PCC7942 (Y. Chen et al., 2011). The scope of these TA genes 

was small with only a few cyanobacterial genomes being available or included.  TA families like 

VapB, VapC and PemK were reported in these well studied freshwater cyanobacterial strains, 

however no uniform, systematic survey of TA genes was performed at the genomic level for all 

sequenced strains of marine Synechococcus.  

TA systems in CB0101 

The first 7 chromosomal TA systems in marine Synechococcus were described in the 

estuarine Synechococcus strain CB0101 (D. Marsan et al., 2017). These include some common 

TA families such as relE/relB and vapC/vapB (Figure 1.6).   CB0101, isolated from the 

Chesapeake Bay, belongs to Synechococcus subcluster 5.2 (F. Chen et al., 2006b). In vivo 

transcriptomics of CB0101 reveals a tight coupling between the upregulation of particular 

toxins, such as relE, with simulated stress conditions, suggesting that TA systems could be an 

important genetic feature for estuarine Synechococcus to adapt to a highly variable 

environment like the Chesapeake Bay (D. Marsan et al., 2017).  

More recently, the search for chromosomal TA systems in CB0101 and other 

picocyanobacteria continued, using improved methodology and ever-expanding subject 

databases (Shao et al., 2011; Xie et al., 2018). In CB0101, the original 7 predicted chromosomal 

TA pairs were confirmed, and 14 more potential TA pairs were predicted. Of the original 7 

predicted TA pairs, a correction to a misidentified toxin and antitoxin pair at the locus: 
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gsyne_1326 and gsyne_1325 was made. These were originally annotated as the antitoxin yoeB 

and toxin yefM. Newer prediction methods identified gsyne_1326 as the toxin and gsyne_1325 

as the antitoxin. Conserved domains in each of these open reading frames annotated as the 

toxin relE/parE family and PhD/yefM family, respectively. When coupled with available 

transcriptomic data, the statistically significant upregulation of the toxin relE (gsyne_1326) is 

apparent during oxidative stress simulated by nitrogen starvation and zinc toxicity (Fucich, 

Unpublished).   

Further, new TA prediction and annotation coupled with access to available 

transcriptomic data suggest an active TA system at loci gsyne_2550-2551. This toxin is 

annotated with a conserved domain of DUF5616 which includes a PIN domain, which is the 

active RNase N-terminus of the vapC toxin (Rocker & Meinhart, 2016). This putative vapC toxin 

has a cognate open reading frame (ORF) with the conserved domain of unknown function (DUF) 

433 that may act as an antidote antitoxin, as it is frequently predicted alongside PIN associated 

antitoxins (Makarova et al., 2009). Regardless of lack of conserved domains to known TA 

systems in some cases, this putative vapC at gsyne_2550 shows upregulation during all 

simulated stressors: nitrogen and phosphorous starvation as well as zinc toxicity (Fucich, 

Submitted).   

TA systems in greater Synechococcus 

We recently investigated complete genomes of Synechococcus and Prochlorococcus to 

understand the prevalence of TA systems in picocyanobacteria (Fucich and Chen, in press). 

Using the TAfinder software, Type II TA systems were predicted in 27 of 33 (81%) 
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Synechococcus strains, but none of the 38 Prochlorococcus strains contain TA genes. 

Synechococcus strains with larger genomes tend to contain more putative type II TA systems. 

The number of TA pairs varies from 0 to 42 in Synechococcus strains isolated from various 

environments (Fucich and Chen, in press). Linear correlations between the genome size and the 

number of putative TA systems in coastal and freshwater Synechococcus was established, 

respectively (r2= 0.9152, p<0.00001 and r2=0.8296, p<0.005). In general, open ocean 

Synechococcus contain no or few TA systems, while coastal and freshwater Synechococcus 

contain more TA systems. Type II TA systems inhibit microbial translation via ribonucleases and 

allow cells to enter the persister or “dormant” stage under adverse conditions. Our survey 

shows that TA systems are widely present in many freshwater, coastal, and estuarine 

Synechococcus. Inheritance of more TA genes in these strains could be an important 

mechanism for them to survive in their highly dynamic environments.  

Diversity of putative TA systems in Synechococcus 

Synechococcus toxin genes have more conserved protein domains than their cognate 

antitoxins. When considering the putative TA pairs of all 27 Synechococcus species with 

predicted TA pairs, the majority of those toxins were identified as VapC (41%), either from their 

direct annotation, or from their inclusion of a PilT N-terminus (PIN) domain (Fucich and Chen, 

2020). This is consistent with other bacterial TA modules, as the VapBC family is the most 

abundant family (Robson et al., 2009). Putative antitoxin sequences were less conserved than 

toxins. Only 35% of antitoxin genes contained a conserved domain with a traditionally named 

TA system. Many conserved domains in putative antitoxin genes had generic names such as 
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“domains of unknown function” (DUF) or “cluster of orthologous groups” (COG). These COG’s 

and DUF’s are cryptic, so the identity of the putative TA system could be unknown.  But in all 

observed cases, antitoxin sequences contain less conserved domains than toxins. 

Interesting questions 

The prevalence of TA genes in freshwater and estuarine environments and absence of 

TA genes in Prochlorococcus and open ocean Synechococcus imply an interesting environmental 

selection on the TA systems. Marine Synechococcus evolved from freshwater Synechococcus 

(Patricia Sánchez-Baracaldo et al., 2019). It is plausible that TA genes were lost when marine 

Synechococcus occupied the ocean. Synechococcus adapted to the estuarine environment could 

serve as excellent models to understand the evolution of TA systems in unicellular 

cyanobacteria. Cyanobacteria are ancient and diverse organisms, and widely distributed in 

nearly all aquatic habitats. Because of this nature, extensive studies have been done to 

understand the ecology, evolution, and molecular biology of cyanobacteria. However, little is 

known about the role of TA systems in the ecological adaption of cyanobacteria.  

TA genes are not conserved and are involved in frequent horizontal gene transfer. These 

characteristics makes it difficult to study conserved domains or genes. Genomics and 

metagenomics are becoming extremely powerful to study the TA genes in microorganisms. Do 

certain network patterns exist for picocyanobacterial TA genes? Why do freshwater and 

estuarine Synechococcus carry more TA genes and marine Synechococcus? Which TA genes are 

functional or important? How do they respond to environmental stress? How do they function 
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in concert with other stress response systems in cyanobacteria? How do TA system coordinate 

with other stress response systems such as heat shock or cold shock proteins? 

Recently, the full genomes of four winter CB Synechococcus (CBW1002, CBW1004, 

CBW1006, and CBW1108) have been sequenced. Phylogenomic analysis has placed these four 

strains into the broader subcluster 5.2 Synechococcus (Luo et al., unpublished data). Genomic 

analysis of these winter Synechococcus will deepen our understanding of cold adaptation of 

Synechococcus. Our preliminary analysis showed that one of winter strains contains 80 TA gene 

pairs, a number that is considered very high in all microorganisms. What biological features 

does this strain gain by carrying such a high number of TA genes? 

Learning more about stress, and specifically cold stress, genes in CBW strains is 

important to understand their ability to survive in cold weather conditions.  Cold stress 

response genes in the cyanobacterial model Synechocystis sp. PCC 6803 have been studied 

(Sinetova & Los, 2016).  Homologs for these cold induced genes in Chesapeake Bay strains 

revealed that winter CB strains did not contain more cold induced genes than summer CB 

strains, or other marine Synechococcus. Similar numbers of cold induced homologs found 

between Synechococystis and other Synechococcus strains is surprising, as cold adapted strains 

were expected to have significantly more cold adapted genes than summer, or open ocean 

Synechococcus.  It may be possible that the high number of TA systems in CBW strains could 

play a role in cold adaptation. This remains as an interesting hypothesis to test in the future. 

While there are many interesting questions related to TA systems in cyanobacteria, I plan to 

address a few important ones in my dissertation such as:   



24 
 

1. How common are TA systems in picocyanobacteria? 

2. What are the ecological implications of the TA systems in picocyanobacteria; Is there 

a link between endemic habitat and TA system abundance? 

3. Are TA systems important to the cold adaptation of winter Synechococcus? 

4. Are TA systems conserved among Synechococcus? 

 

Specifically, I raise three hypotheses as follows: 

Hypothesis 1: Synechococcus spp. from highly variable environments, like the 

Chesapeake Bay, contain more toxin-antitoxin systems compared to Synechococcus spp. 

and Prochlorococcus spp. from relatively stable environments with streamlined 

genomes.  

Hypothesis 2: Synechococcus strains isolated during the winter in the Chesapeake Bay 

harbor more stress response genes compared to the summer CB Synechococcus and 

other marine Synechococcus species. 

Hypothesis 3: TA systems are not conserved in Synechococcus even among closely 

related Synechococcus strains making it impossible to identify conserved domains for 

the broader group of Synechococcus. 

Brief outline of my dissertation chapters 

Chapter I: Introduction 
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Chapter II: Presence of toxin-antitoxin systems in picocyanobacteria and their ecological 

implications 

In this chapter, I searched for the presence of TA genes in all complete and publicly 

available Synechococcus and Prochlorococcus genomes, to gain an insight on the distribution of 

TA genes in picocyanobacterial genomes. The finding of TA systems in Synechococcus CB0101 

(D. Marsan et al., 2017) is interesting and raises many new questions. There is no systematic 

survey to investigate how many TA genes could be found in picocyanobacteria. The strains 

included in this chapter represented picocyanobacteria from a wide array of environments, 

including freshwater, estuary, coastal and open ocean. We found that coastal, estuarine, and 

freshwater Synechococcus tend to have larger genomes and contain more TA genes compared 

to Synechococcus and Prochlorococcus living in the open ocean (Hypothesis 1). Interestingly, a 

novel correlation between genome size and putative TA systems were found. Synechococcus 

from highly variable environments contain more TA systems than Synechococcus. The 

prevalence of TA systems in Synechococcus from marine and non-marine environments was 

first reported in our study. The linear relationship between the number of TA genes and 

genome size has not been observed in other bacteria, at the domain or genera-specific level. 

We speculate that having more TA genes could be important for Synechococcus to adapt to 

more variable and even stressful conditions. This work has been published in the ISME Journal.   

Chapter III: Genomic features for cold adaptation of winter Chesapeake Bay Synechococcus  

 In an earlier study, many Synechococcus strains were isolated from the Baltimore Inner 

Harbor during the winter time, and they exhibited impressive cold tolerance through 
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physiological testing (Xu et al., 2015). Recently, complete genomes of four representative CB 

winter Synechococcus were sequenced. To explain this phenomenon, homologs of known cold 

induced stress genes from Synechocystis PCC 6803 were queried in CB winter Synechococcus 

genomes in order to test hypothesis 2. Surprisingly, all four winter CB Synechococcus isolates 

did not contain more cold induced Synechocystis homologs than summer CB, and open ocean 

Synechococcus. This result suggests there could be other unique genetic elements involved in 

cold adaptation of winter Synechococcus. CBW strains contain an impressive amount of 

putative toxin-antitoxin systems.  We hypothesize that TA systems are important for cold 

adaption of CB winter Synechococcus. Future experiments are needed to test this hypothesis. 

Chapter IV: Abundance and complexity of toxin-antitoxin systems in Synechococcus from 

various aquatic environments 

 Chapter IV investigates the abundance, diversity, and activity of TA systems in 

Synechococcus strains isolated from the Chesapeake Bay, and other marine and freshwater 

environments. The winter CB Synechococcus genomes contain an unusually high frequency of 

putative TA pairs which are diverse and form complex association patterns compared to those 

from coastal and oceanic waters. Freshwater strains (i.e. PCC6307 and PCC6312) are 

comparable to winter CB TA systems in terms of abundance and complexity. CBW1002 and 

CBW1006 are in the Bornholm Sea cluster, making the similar TA profile to freshwater strains 

notable. Amino acid sequences from putative CB strains contain a wide variety of conserved 

domains. However, even sequences in the same TA family are not “conserved” at the level of 

marker genes where meaningful alignments could be constructed (hypothesis 3). This result 

suggests that unlike many house-keeping or core genes, TA genes are subject to frequent 
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horizontal gene transfer, which is seen in other bacteria (Leplae et al., 2011). Therefore, TA 

systems are not conserved at the genomic level. In most cases, it is not possible to use a 

conserved domain within a toxin or antitoxin gene as a genetic marker to investigate the 

genetic diversity of TA genes in the natural environment. One RelE toxin from CB0101 was 

confirmed to arrest the growth of E. coli through plasmid induction. However, another toxin, 

VapC, did not significantly arrest E. coli growth. These mixed results suggest that different TA 

pairs in Synechococcus may not have the same function or activity when exposed to certain 

stressors and environmental conditions. This was also evident when the expression of TA genes 

in CB0101 were examined under different stress conditions. Having a high number of putative 

TA genes in estuarine and freshwater Synechococcus is an interesting observation. We believe 

that TA genes play an important role in ecological adaptation of Synechococcus, but specific 

function and coordination under environmental stressors is a future focus of research. 

Chapter V: Conclusion and future prospects 
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Figures

 

Figure 1.1.  Chromatic adaptation of estuarine Synechococcus and their light absorption 

spectra. A) Accessory pigments such as phycoerythrin (PE) and phycocyanin (PC) in variable 

ratios result in unique phenotypes in many Chesapeake Bay Synechococcus strains.  B) These 

phenotypic changes result in differential absorption spectra. When these absorption spectra 

are overlaid, several Synechococcus strains can maximize absorption between 400-700 nm (Xu 

et al., 2015). 
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Figure 1.2.  Picocyanobacterial community from the Baltimore Inner Harbor, viewed under 

epifluorescence microscopy. PC-rich and PE-rich strains can be differentiated as red and orange 

color, respectively (Courtesy of Feng Chen).   
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Figure 1.3.   Winter Chesapeake Bay picocyanobacteria neighbor joining tree based on partial 

16S rRNA gene (Xu et al., 2015). Chesapeake Bay winter strains are diverse and unique, distinct 

from Chesapeake Bay strains isolated from summer months.  

 

 

Figure 1.4. Four Main Toxin-Antitoxin Families (Harms et al., 2018a). “Different modes of 

toxins (red) are controlled by cognate antitoxins (blue) in type I–IV TA modules. Genetic loci and 

the positions of promoters are shown with colored and black arrows, respectively. RNAs are 

drawn as curly lines. Active toxin molecules that have been freed from antitoxin control are 

highlighted by exclamation marks. (A) Type I TA module. (B) Type II TA module. (C) Type III TA 

module. (D) Type IV TA module...” 
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Figure 1.5. Method of action for RelE/RelB.  Adapted from Unterholzner, Poppenberger, and 

Rozhon 2014: Free RelE toxin results in the inhibition of translation via the cleavage of 

ribosome-bound mRNA.   
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Figure 1.6.  RelE/RelB and VapC/VapB Toxin Antitoxin system operons in Synechococcus 

CB0101.  RelE/RelB has a 20 nucleotide overlap region. VapC/VapB does not overlap with ORFs 

that are immediately sequential.  Green arrows indicate primer sites for gene amplification and 

heterologous expression.  
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Chapter II: Presence of toxin-antitoxin systems in picocyanobacteria and their ecological implications 
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Abstract  

 Picocyanobacteria (mainly Synechococcus and Prochlorococcus) contribute significantly 

to oceanic primary production. Toxin-Antitoxin (TA) systems present in bacteria and archaea 

are known to regulate cell growth in response to environmental stresses. However, little is 

known about the presence of TA systems in picocyanobacteria. This study investigated 

complete genomes of Synechococcus and Prochlorococcus to understand the prevalence of TA 

systems in picocyanobacteria. Using the TAfinder software, Type II TA systems were predicted 

in 27 of 33 (81%) Synechococcus strains, but none of 38 Prochlorococcus strains contain TA 

genes. Synechococcus strains with larger genomes tend to contain more putative type II TA 

systems. The number of TA pairs varies from 0 to 42 in Synechococcus strains isolated from 

various environments.  A linear correlation between the genome size and the number of 

putative TA systems in both coastal and freshwater Synechococcus was established. In general, 

open ocean Synechococcus contain no or few TA systems, while coastal and freshwater 

Synechococcus contain more TA systems. The type II TA systems inhibit microbial translation via 

ribonucleases and allow cells to enter the “dormant” stage in adverse environments. TA 

systems are widely present in many freshwater and marine Synechococcus. Inheritance of more 

TA genes in freshwater and coastal Synechococcus could confer a recoverable persister state 

which would be an important mechanism to survive in highly dynamic environments.  
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Introduction 

Picocyanobacteria are small unicellular cyanobacteria, and they contribute greatly to carbon 

fixation in the aquatic ecosystem. Marine picocyanobacteria contain two major genera, 

Prochlorococcus and Synechococcus, which together can contribute about 25% of net primary 

production in the ocean (Flombaum et al., 2013; Li & Url, 1994). While Prochlorococcus is more 

restricted to warm oligotrophic water, Synechococcus is widely distributed in various aquatic 

environments ranging from open oceans to freshwater (Dvořák et al., 2014a). The average cell 

size of Synechococcus (0.9 µm) is larger than that of Prochlorococcus (0.6 µm) (Morel et al., 

1993). In addition, the average genome size of Prochlorococcus (1.8 Mb) is also smaller than 

that of Synechococcus (2.9 Mb) (Frédéric Partensky et al., 1999). Genome streamlining provides 

less ecological flexibility to marine Prochlorococcus, on the other hand, the relatively large 

genome size of Synechococcus provides more genomic plasticity which enables them to adapt 

to more variable habitats (Biller et al., 2015; Dufresne et al., 2005; Larsson et al., 2011; Sun & 

Blanchard, 2014).  

Diverse Synechococcus strains have been isolated from freshwater, estuarine, coastal, and 

oceanic water (Li & Url, 1994; P. Sánchez-Baracaldo et al., 2005; D J Scanlan et al., 2009; David J. 

Scanlan, 2012), suggesting that Synechococcus can adapt to distinct aquatic environments. In 

the estuarine environment, picocyanobacteria (mostly Synechococcus) can make up 20-40% of 

phytoplankton chlorophyll a and up to 60% of primary production in summer (K. Wang et al., 

2011). Freshwater Synechococcus can also play an important role in carbon fixation and 

nutrient cycling in ponds, lakes, and rivers (Callieri, 2008; Callieri & Stockner, 2002; Stockner, 
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1988). Phylogenetic analyses of freshwater and marine Synechococcus show that 

Synechococcus is polyphyletic (Dvořák et al., 2014a; Honda et al., 1999; Rippka et al., 1979; A. 

M. R. Wilmotte & Stam, 1984). Molecular systematics has challenged the traditional taxonomy 

of Synechococcus in the past 20 years (Coutinho et al., 2016; Honda et al., 1999; Robertson et 

al., 2001). Genetic diversity of Synechococcus has been studied in various aquatic environments 

(Fuller et al., 2003; Rocap et al., 2002; Toledo & Palenik, 1997; Zwirglmaier et al., 2008). In 

marine waters, three subclusters of Synechococcus have been defined (Dufresne et al., 2008; D 

J Scanlan et al., 2009) and subdivided into 28 clades based on the ITS sequences (Huang et al., 

2011). In the freshwater system, 6-8 clusters of Synechococcus have been identified based on 

the 16S rRNA gene or other genetic markers (Callieri et al., 2013; Crosbie et al., 2003; Ernst et 

al., 2003b; Huang et al., 2011; Jasser et al., 2011). Freshwater Synechococcus are deeply 

branched and are less congruent compared to marine Synechococcus (P. Sánchez-Baracaldo et 

al., 2005). Because of their ubiquity in aquatic systems, Synechococcus contain highly diverse 

phylotypes and ecotypes. 

Comparative genomics of cyanobacteria has greatly advanced our understanding of molecular 

evolution, metabolic potential and ecological adaptation of different cyanobacterial types 

(Dufresne et al., 2008; D J Scanlan et al., 2009). Unicellular cyanobacteria with smaller genomes 

(<3.3 Mb) appear to have relatively more genes involved in amino acid metabolism, but fewer 

genes for environmental sensing (signal transduction) and cell motility compared to 

cyanobacteria with larger genomes (>3.3 Mb) (Larsson et al., 2011). In the marine environment, 

ecological adaptation of Synechococcus to different niches is evident at the genomic level. The 

first marine Synechococcus genome (strain WH8102) was sequenced in 2003 (B. Palenik et al., 
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2003). By comparing the genomes of a coastal Synechococcus strain (CC9311) and the oceanic 

Synechococcus strain (WH8102), Palenik et al. showed that the coastal strain has a greater 

capacity to sense and respond to changes in their environment compared to the oceanic 

counterpart (Brian Palenik et al., 2006). Open ocean Synechococcus (‘specialists’) tend to have 

smaller genomes and less genome islands than coastal Synechococcus (‘opportunists’ or 

‘generalists’) (Dufresne et al., 2008; D J Scanlan et al., 2009). Coastal Synechococcus strains 

have an increased tolerance for copper and oxidative stress through distinct transcriptional 

responses and genomic features (Stuart et al., 2009, 2013). Coastal Synechococcus genomes 

contain a large portion of accessory and unique genes which provide them considerable 

flexibility to adapt to diverse habitats (Dufresne et al., 2008). Novel genes in picocyanobacterial 

genome islands can provide selective advantage for niche adaptation (D J Scanlan et al., 2009). 

Recently, genome sequencing of a Chesapeake Bay Synechococcus strain CB0101 unveiled its 

increased capacity in environmental sensing, transportation, regulation, and stress response 

(Fucich et al., 2019). The presence of toxin-antitoxin (TA) genes and their functional assignment 

in Synechococcus CB0101 suggests that TA systems can be important to the high environmental 

endurance of estuarine Synechococcus (D. Marsan et al., 2017).   

TA systems are known to be involved in stress responses in microbes, but little is known about 

TA systems in picocyanobacteria. TA systems are genetic modules comprised of a toxin, which 

often arrests translation and subsequently growth, and a cognate antitoxin which negates the 

interruption of the toxin (Page & Peti, 2016; Unterholzner et al., 2013). TA system activation 

often results in persister cell formation which can be advantageous for bacterial survival in 

highly variable environments. While TA systems have been broadly described as ubiquitous in 
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nearly all bacterial species, TA systems in cyanobacteria have only recently been described.  TA 

systems have been predicted in freshwater cyanobacteria including Microcystis aeruginosa 

(Makarova et al., 2009), Synechocystis PCC6803 (Kaneko et al., 2003), and Synechococcus 

PCC7942 (Y. Chen et al., 2011). Only a few TA genes, i.e. VapB, VapC and PemK were reported in 

the freshwater cyanobacterial strains, no systematic survey on TA genes was performed at the 

genomic level on those strains. The first chromosomal TA system in marine Synechococcus was 

described in the estuarine Synechococcus strain CB0101 (D. Marsan et al., 2017). CB0101, 

isolated from the Chesapeake Bay, belongs to Synechococcus subcluster 5.2 (F. Chen et al., 

2006a). Transcriptomic analysis of CB0101 reveals a tight coupling between the upregulation of 

particular toxins, such as relE, with environmental stressors like zinc heavy metal toxicity and 

high light intensity (D. Marsan et al., 2017). Marsan et al. showed that TA systems can be 

important to the environmental stress response in Synechococcus (D. Marsan et al., 2017). 

However, little is known about the occurrence, diversity, evolution, and ecological functions of 

type II TA systems in Synechococcus and other picocyanobacteria.   

 The goal of this study is to investigate the presence of TA genes in picocyanobacteria 

using the TAfinder software (Xie et al., 2018). Our search comprised of 71 complete 

picocyanobacterial genomes, including 33 Synechococcus and 38 Prochlorococcus genomes. An 

interesting linear relationship between the number of TA pairs and genome size was found in 

Synechococcus.   
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Methods 

Complete Synechococcus (n=33) and Prochlorococcus (n=38) genomes were downloaded in 

September, 2019 from both the National Center for Biotechnology Information (NCBI) RefSeq 

database (Agarwala et al., 2017a; O’Leary et al., 2016) and the Joint Genome Institute (JGI) 

genome portal (Nordberg et al., 2014). To ensure quality, we omitted incomplete genomes 

from this study. The Synechococcus and Prochlorococcus genomes included in this study cover 

the majority of major known phylogenetic clades and subclusters (Table 2.1).    

Toxin-antitoxin systems were predicted using the TAfinder software which utilizes the Toxin-

Antitoxin Database (TADB) (Shao et al., 2011; Xie et al., 2018). Genomes that were not included 

in the TAfinder’s available genome list were downloaded locally and manually uploaded to 

TAfinder. TAfinder was used to predict type II TA pairs in Synechococcus (freshwater, estuarine, 

coastal, and open ocean strains) and marine Prochlorococcus genomes using default settings 

(BLAST e-value=0.01, HMMer=1, Maximum length =300 aa, Distance=-20_150). Synechococcus 

strains were classified into habitats based on literature searches for original isolation 

information. Because estuarine strains, Synechococcus CB0101 and PCC7002, are 

underrepresented, they were categorized into the coastal habitat category for the purpose of 

linear regression data analysis.  

To estimate relative diversity of the putative TA families, predicted amino acid sequences were 

searched against the NCBI conserved domain database (version CDD v3.18 - 55570 PSSMs) 

(Marchler-Bauer et al., 2017). Short names for conserved domains were manually reviewed and 

determined to be of a consensus of a major TA family. If the gene did not fall into one of the 
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traditional TA families, it was categorized as “Other” for the consensus. If the predicted amino 

acid sequence did not have a significant match to the conserved domain database, it was 

categorized as “Unknown”.   

Linear regression and linear models were completed using Rstudio software (Core, 2017) and 

figures were made using ggplot2 (Wickham, 2009). Genome Island regions were predicted using 

IslandViewer 4 software (Bertelli et al., 2017).     

Results  

 TAfinder predicted at least one TA pair in 27 of 33 Synechococcus genomes (81%). The 

number of TA systems in Synechococcus varies from 0 to 42 (A toxin antitoxin system is 

normally comprised of one toxin gene and one cognate antitoxin gene). Only five strains of 

Synechococcus did not contain putative TA systems. A total of 986 putative toxin and antitoxin 

genes were predicted, constituting 493 TA systems, in 27 complete Synechococcus genomes. 

The occurrence frequency of TA systems in Synechococcus is shown in Figure 2.1. The 27 TA-

containing Synechococcus strains were isolated from various aquatic environments including 

freshwater, Antarctic (cold adapted), hot spring (thermophile), estuarine, coastal, and oceanic 

waters and belong to diverse phylogenetic lineages (Table 2.1). 

TAfinder did not predict any TA systems in any of the Prochlorococcus genomes (n=38). These 

Prochlorococcus genomes were representative of many clades from both high light and low 

light adapted strains. These queried Prochlorococcus genomes ranged in size from 1.6 to 2.7 

Mb. 
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Freshwater and coastal Synechococcus contained many putative TA systems. For example, 

freshwater Synechococcus strains PCC6312 and PCC6307 both contained 42 putative TA 

systems. These 84 genes accounted for ~1.2% of their total coding sequences (Table 2.1). 

Coastal strains PCC7003, and PCC7117 contained 38, and 37 TA pairs, respectively, accounting 

for 1.24% and 1.17% of their coding sequences.  

In general, Synechococcus living in coastal, estuarine, and freshwater environment tend to have 

larger genomes compared to their counterparts living in the open ocean. It appears that 

Synechococcus with larger genomes contain more TA genes than Synechococcus with smaller 

genomes. Interestingly, a good linear correlation between the genome size and the number of 

putative TA pairs (r2=0.6235, p<0.0001) (Figure. 2.2a) was found in Synechococcus, further 

confirming the above observation that larger Synechococcus genomes contain more TA genes. 

This apparent relationship between genome size and putative TA pairs becomes more clear in 

cases when endemic ecological conditions are considered; specifically, for coastal and 

freshwater Synechococcus. When analyzed separately, better linear regressions (r2= 0.9152, 

p<0.00001 and r2=0.8296, p<0.005) between genome size and putative TA pairs were found 

when coastal and freshwater Synechococcus were analyzed separately (Figure 2.2b). 

Conversely, the general correlative trend between genome size and the number of TA pairs in 

all Synechococcus strains was not found when only the open ocean strains were analyzed. 

Synechococcus toxin genes contained more known conserved domains than antitoxins (Figure 

2.3). About 77% of toxin genes had a known conserved domain with an annotation of a 

traditionally named TA system. The most common toxin gene included a conserved PIN domain 
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which is characteristic of the VapC toxin which cleaves tRNAs or rRNAs (Winther & Gerdes, 

2011). Nearly 41% of putative toxin genes contained the conserved domain for VapC. 

Putative antitoxin sequences contained fewer NCBI conserved domains than toxins. Only 35% 

of antitoxin genes had a conserved domain with a traditionally annotated TA system. Many 

conserved domains in putative antitoxin genes had generic names such as “domains of 

unknown function” (DUF) or COG. 

Discussion 

A survey on picocyanobacterial TA systems leads to an interesting finding that Synechococcus 

strains with larger genome size contain more TA systems. Although many genetic features of 

picocyanobacterial genomes have been explored (Dufresne et al., 2005; D J Scanlan et al., 

2009), little is known about the prevalence of TA genes in picocyanobacteria. Synechococcus 

has a remarkable adaptation capability, which is reflected by their occupancy in diverse 

environments ranging from lakes, rivers, estuaries, coastal and oceanic water. The presence of 

a specific group or genus over such a wide range of habitats makes Synechococcus an ideal 

model to explore the relationship between their ecological adaptation and genomic features. 

TA systems have been well studied in bacteria and archaea. One of well-known functions of TA 

systems is that it enables cells to go dormant or enter the persister stage under stressed 

conditions and recover when the adverse stresses are released (Harms et al., 2018b; Makarova 

et al., 2009; Unterholzner et al., 2013). While the actual functions of Synechococcus TA genes 

have not be tested, it is believed that inheritance of more TA genes may allow some 

Synechococcus strains to endure more variable environments which could confer a competitive 
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advantage against other less resilient picocyanobacteria. Coastal, estuarine, and freshwater 

environments are characterized by rapid changes in environmental conditions, the higher 

occurrence frequency of TA genes can provide adaptive advantages for Synechococcus living in 

these types of aquatic habitats. 

TA systems have been shown to provide recoverable persister states when Synechococcus cells 

were exposed to conditions to induce oxidative stress (D. Marsan et al., 2017). These conditions 

are expected in rapidly changing environments such as estuaries, coastal, and some freshwater 

environments. In another cyanobacterial species, Synechococystis PCC 6803, TA systems have 

been found and were predicted to have RNase activity which could have a drastic effect on the 

transcriptomic remodeling (Kopfmann et al., 2016). Such a remodeling is possible through RNA 

degradation as a result of toxin overexpression, which can have a significant impact on slowing 

translation. Type II TA systems can have other methods of actions in other bacteria including 

post segregational killing and abortive infection (Harms et al., 2018b). Unfortunately, these 

remain poorly studied and understood in picocyanobacterial systems.   

Interestingly, a linear correlation was found between the genome size and the number of TA 

genes in Synechococcus. Previous studies have had mixed results. One study found a similar 

linear correlation in prokaryotes (Makarova et al., 2009). In other similar work, such a linear 

correlation has not been found in bacteria (Leplae et al., 2011). When testing 2,181 genomes of 

prokaryotes (archaea and bacteria from both obligate intracellular species to free living species) 

(Leplae et al., 2011) and 65 genomes of Acetobacter (with sources ranging from fermented 

food, to fruits, to symbiotes in the fruit fly Drosophila melanogaster) (K. Xia et al., 2019), the 

number of TA gene pairs does not increase linearly with increased genome size. The clear linear 



45 
 

trend seen in Synechococcus is likely related to larger genome sizes having a wide array of CDS. 

For strains with expanded genetic capacity, it may be advantageous to retain a multitude of TA 

systems in aquatic habitats with highly variable chemical and physical features. While 

Synechococcus is ubiquitous in nearly all aquatic ecosystems, the presence of Synechococcal TA 

systems is not; this suggests that TA systems are advantageous in some, but not all, aquatic 

environments. The genome size of Synechococcus available for this in this study ranges from 2.1 

to 3.7 Mb. Synechococcus genomes have previously been shown to correlate strongly with the 

length of hypervariable genome island regions (Dufresne et al., 2008). In Synechococcus, TA 

genes can be located on these genome islands, but the majority of the TA pairs are not located 

on hypervariable genome islands (Table 2.1). 

The lack of TA systems in Prochlorococcus is likely related to their relatively stable habitats. The 

endemic habitat of Prochlorococcus is the pelagic ocean which is characterized by its stable, 

nutrient limiting environment coupled with a predictably high cellular density (Frédéric 

Partensky et al., 1999). The genus Prochlorococcus is a highly diverse group comprised of 12 

specialized clades with genomic features uniquely adapted to specific conditions in oceanic 

ecosystems (Biller et al., 2015). High light adapted group II has some of the smallest genomes 

(~1.7 Mb) and lowest GC content (~33 %), which is indicative of genomic reduction (Dufresne et 

al., 2005). Some Prochlorococcus strains (such as low light adapted group IV) have relatively 

large genomes (2.4 to 2.6 Mb) and many unique genes (Biller et al., 2014). Regardless of their 

large genetic capacity, no TA genes were detected in the genomes of group IV Prochlorococcus 

strains. Despite the diversity of Prochlorococcus ecotypes, TA systems may not be needed due 

to Prochlorococcus specific adaptation to the oligotrophic ocean.  
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Among the 33 Synechococcus strains examined in this study, 11 are open ocean strains. Oceanic 

Synechococcus strains in general contain no TA genes or only a few TA genes. The five open 

ocean Synechococcus strains that are void of TA genes are WH8109, KORDI-52, KORDI-100, 

CC9605, and CC9902, while four oceanic Synechococcus strains (MIT9504, MIT9508, MIT9509, 

and KORDI-49) contain few (1 to 5) putative TA pairs. The exception of this is open ocean 

Synechococcus strain WH8102, which contains 15 putative systems. WH8102 was originally 

isolated from the Sargasso Sea, and its genome is more indicative of a ‘generalist’ with features 

acquired via horizontal gene transfer (B. Palenik et al., 2003). Like marine Prochlorococcus, 

oceanic Synechococcus may not need TA genes due to their acclimation to the stable 

oligotrophic environment. 

Along with genome size, endemic ecological conditions and habitats are an important indicator 

of the prevalence of TA systems in Synechococcus, and more broadly picocyanobacteria. 

Synechococcus strains from more variable environments like coastal and freshwater locations 

tend to have more TA pairs than open ocean strains that are streamlined to a stable pelagic 

lifestyle. This phenomenon may also explain the broader pattern of TA system distribution in 

picocyanobacteria; the prevalence of TA pairs in picocyanobacteria living in the nutrient rich 

and dynamic habitats and the rareness and complete absence of TA in picocyanobacteria living 

in the oligotrophic open ocean. The presence of TA systems may be one of the many genetic 

features that allow Synechococcus to inhabit a wide array of aquatic ecosystems and achieve a 

cosmopolitan distribution. The lack of TA systems in Prochlorococcus is consistent with their 

reduced genomes and oligotrophic lifestyle (David J. Scanlan & West, 2002).    
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Originally, 7 TA pairs were predicted in CB0101 using BLASTCLUST (McWilliam et al., 2013) and 

confirmed using the RASTA-bacteria (Sevin & Barloy-Hubler, 2007) and TADB (Shao et al., 2011). 

More recently, the TAfinder search tool was used to search whole genomes (Xie et al., 2018), 

rather than specific gene pairs to predict type II TA systems. Due to the ever-expanding TADB 

and improved prediction methods like TAfinder, 22 TA systems, including the original 7 pairs, 

were found in CB0101. These new pairs were confirmed manually, and conserved domains 

were predicted using NCBI’s conserved domain database and Interpro for protein functional 

analysis.   

The scope of this study is constrained by the use of TAfinder. TAfinder is capable of predicting 

type II TA systems, which are the most well studied and characterized TA systems. Type II TA 

systems comprise 99% of the TA genes in the TADB (Shao et al., 2011). To ensure that other, 

less known TA families (I, II-VI) were not overlooked, a blast search for those few systems 

against all the genomes of Synechococcus and Prochlorococcus was completed. No significant 

matches were reported using default settings. Antitoxin sequences contained fewer conserved 

domains than toxins. Antitoxin sequences appear to be highly diverse and variable among 

Synechococcus strains. Multiple antitoxin structures may function to bind their cognate toxin. 

When the paired gene can sufficiently neutralize the toxin, it acts as an antitoxin and selection 

for highly conserved sequences may be relaxed. Although toxins contain more conserved 

domains than antitoxins, it is important to note that TA systems are not present in all 

Synechococcus and they are highly variable in terms of the number and type of TA systems. 

Even within the closely related Synechococcus strains, it is difficult to identify suitable genetic 

markers for phylogenetic analysis due to the overall poor gene conservation. VapC, and its 
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cognate VapB antidote, are the largest family of bacterial toxin-antitoxin modules (Robson et 

al., 2009). A wide variety of toxin functionality is represented in Synechococcus as both 

ribosomal-dependent mRNA endonucleases like RelE and ribosomal-independent mRNA 

endonucleases like HicA and MazF were predicted (Harms et al., 2018b).   

Conclusion 

The tight correlation of genome size and the number TA genes in coastal and freshwater 

Synechococcus suggest that the retention of TA systems could be advantageous for 

Synechococcus living in highly variable environments. All the tested Prochlorococcus genomes 

(n=38) do not contain any TA genes, given that their genome sizes range from 1.6 to 2.7 Mb. 

This result suggests that Prochlorococcus do not have a TA system mediated dormancy in 

response to changing environments. This also applies to some Synechococcus living in open 

oceans where chemical and hydrological conditions are relatively stable compared to coastal, 

estuarine, and freshwater environments. It is interesting that the number of TA genes is linearly 

correlated with increasing genome sizes of Synechococcus. It appears that the acquisition and 

retention of TA genes in Synechococcus is not only influenced by genome size, but also 

environmental stability. Synechococcus strains with large genomes, especially those that inhabit 

fluctuating ecosystems (coastal, estuarine, and freshwater) have more TA systems than strains 

with smaller genomes that are present in stable environments like the open ocean. Compared 

to Prochlorococcus, Synechococcus has a relatively large genome, with space for more coding 

sequences, ample TA systems, and a wide variety of environmental response genes that allow 

for their ubiquitous distribution in diverse aquatic environments. TA systems in Synechococcus 
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could confer an ability to enter persister states in the presence of stressful stimuli, which is 

advantageous in highly variable conditions which characterize coastal and freshwater 

environments.  
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Figures 

 

Figure 2.1.  Occurrence frequency of putative TA systems in 33 strains of Synechococcus 

isolated from various aquatic environments 
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Figure 2.2.  Relationship between genome size and the number of putative TA pairs in 

Synechococcus. A) Linear correlation between genome size and putative TA systems for all 

complete genomes of Synechococcus strains isolated from all habitats (r2= 0.6235, p<0.0001); 

B) Linear correlation between genome size (Mb) and the number of putative TA pairs in coastal 

and freshwater Synechococcus, (r2= 0.9152, p<0.00001 and r2=0.8296, p<0.005 respectively). 

No such correlation was found in open ocean Synechococcus.   
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Figure 2.3.  Conserved domain regions of putative A) Toxins and B) Antitoxins.  Putative 

toxin and antitoxin sequences that contained a conserved domain that was not a traditional TA 

system were categorized as ‘Other’. Sequences that did not contain a conserved domain were 

categorized as ‘Unknown’. 

  



53 
 

Tables 

Table 2.1. Synechococcus and Prochlorococcus genome accession numbers, strain names, 

classification, reference, putative TA pairs, genome size, coding sequences, habitat, TA as a 

function of total open reading frames (ORFs), and percent of TA pairs located on genomic 

islands.  
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Accession 
Number 

Name Classificat
ion 

Reference Numb
er of 

Putati
ve TA 
Pairs 

Geno
me 
Size 
Mb 

Coding 
Seque
nces 

Habitat TA 
Perce
nt of 
Total 
ORFs 

Perce
nt of 
TA 

Syste
ms 

locate
d on 
Geno
me 

Island
s 

CP000576 Prochlorococcus 
marinus MIT 9301 

HLII Kettler et al. 
2007 

0 1.64 1785 
 

0.00 0.00 

NZ_CP01834
4 

Prochlorococcus 
RS50 

Unclassifi
ed 

Sosa et al. 2019 0 1.66 1951 
 

0.00 0.00 

NZ_CP01834
6 

Prochlorococcus 
RS04 

Unclassifi
ed 

Sosa et al. 2019 0 1.66 1952 
 

0.00 0.00 

NZ_CP01834
5 

Prochlorococcus 
RS01 

Unclassifi
ed 

Sosa et al. 2019 0 1.66 1945 
 

0.00 0.00 

GCA_00001
1465.1 

Prochlorococcus 
marinus pastoris 

CCMP1986 

Unclassifi
ed 

 
0 1.66 1790 

 
0.00 0.00 

CP000551 Prochlorococcus 
marinus AS9601 

HLII Kettler et al. 
2007 

0 1.69 1787 
 

0.00 0.00 

CP000878 Prochlorococcus 
marinus MIT 9211 

LLIII Kettler et al. 
2007 

0 1.69 1902 
 

0.00 0.00 

CP000552 Prochlorococcus 
marinus MIT 9515 

HLI Kettler et al. 
2007 

0 1.70 1792 
 

0.00 0.00 

2681813573 Prochlorococcus 
MIT1314 

HLII Becker et al. 
2019 

0 1.70 1982 
 

0.00 0.00 

CP000111 Prochlorococcus 
marinus MIT 9312 

HLII Kettler et al. 
2007 

0 1.71 1826 
 

0.00 0.00 

2681812903 Prochlorococcus 
MIT0919 

Unclassifi
ed 

 
0 1.72 1927 

 
0.00 0.00 

CP000825 Prochlorococcus 
marinus MIT 9215 

HLII Kettler et al. 
2007 

0 1.74 1983 
 

0.00 0.00 

GCF_000007
925.1 

Prochlorococcus 
marinus 

CCMP1375 

Unclassifi
ed 

 
0 1.75 1882 

 
0.00 0.00 

CP007753 Prochlorococcus 
MIT0604 

HLII Biller et al. 2014 0 1.78 2089 
 

0.00 0.00 

2681812902 Prochlorococcus 
MIT0918 

Unclassifi
ed 

 
0 1.79 1997 

 
0.00 0.00 
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2681813568 Prochlorococcus 
MIT1223 

LL.MIT12
23 

Berube et al. 
2019 

0 1.80 1991 
 

0.00 0.00 

CP000095 Prochlorococcus 
marinus NATL2A 

LLI Kettler et al. 
2007 

0 1.84 1953 
 

0.00 0.00 

2681813570 Prochlorococcus 
MIT1300 

Unclassifi
ed 

 
0 1.86 2020 

 
0.00 0.00 

CP000553 Prochlorococcus 
marinus NATL1A 

LLI Kettler et al. 
2007 

0 1.86 1976 
 

0.00 0.00 

2681812900 Prochlorococcus 
MIT0913 

LLI Berube et al. 
2019 

0 1.88 2203 
 

0.00 0.00 

2681812899 Prochlorococcus 
MIT0912 

LLI Berube et al. 
2019 

0 1.90 2206 
 

0.00 0.00 

2681812859 Prochlorococcus 
MIT0917 

LLI Berube et al. 
2019 

0 1.92 2224 
 

0.00 0.00 

CP007754 Prochlorococcus 
MIT0801 

LLI Biller et al. 2014 0 1.93 2218 
 

0.00 0.00 

2681813567 Prochlorococcus 
MIT1214 

LLI Berube et al. 
2019 

0 1.93 2206 
 

0.00 0.00 

2681813574 Prochlorococcus 
MIT1341 

Unclassifi
ed 

 
0 1.94 2090 

 
0.00 0.00 

2681812901 Prochlorococcus 
MIT0915 

LLI Berube et al. 
2019 

0 1.99 2252 
 

0.00 0.00 

2681813572 Prochlorococcus 
MIT1307 

Unclassifi
ed 

 
0 2.03 2198 

 
0.00 0.00 

2681812904 Prochlorococcus 
MIT1013 

Unclassifi
ed 

 
0 2.05 2428 

 
0.00 0.00 

ASM16179v
2 

Synechococcus 
WH8109 

Subcluste
r 5.1 

(Clade II) 

Rocap et al. 
2002 

0 2.11 2696 Open 
Ocean 

0.00 0.00 

ASM6352 Synechococcus 
RCC307 

Subcluste
r 5.3 

Dufresne et al. 
2008 

0 2.22 2388 Open 
Ocean 

0.00 0.00 

ASM1250 Synechococcus 
CC9902 

Subcluste
r 5.1 

(Clade IV) 

Dufresne et al. 
2008 

0 2.23 2337 Open 
Ocean 

0.00 0.00 

ASM6350 Synechococcus 
WH 7803 

Subcluste
r 5.1 

(Clade V) 

Rocap et al. 
2002 

1 2.37 2456 Open 
Ocean 

0.04 0.00 

BX548175 Prochlorococcus 
marinus MIT 9313 

LLIV Kettler et al. 
2007 

0 2.41 2369 
 

0.00 0.00 
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ASM19597 Synechococcus 
WH 8102 

Subcluste
r 5.1 

(Clade III) 

Rocap et al. 
2002 

15 2.43 2513 Open 
Ocean 

0.60 0.00 

2681812948 Prochlorococcus 
marinus MIT1323 

LLIV Cubillos-Ruiz et 
al. 2017 

0 2.44 2577 
 

0.00 0.00 

2681812928 Prochlorococcus 
marinus MIT1320 

LLIV Cubillos-Ruiz et 
al. 2017 

0 2.50 2661 
 

0.00 0.00 

2681812924 Prochlorococcus 
MIT1306 

LLIV Cubillos-Ruiz et 
al. 2017 

0 2.50 2699 
 

0.00 0.00 

NZ_LVHU01
000000 

Synechococcus 
MIT9508 

Subcluste
r 5.1 

(CRD1) 

Cubillos-Ruiz et 
al. 2017 

1 2.50 2983 Open 
Ocean 

0.03 0.00 

ASM1262 Synechococcus 
CC9605 

Subcluste
r 5.1 

(Clade II) 

Dufresne et al. 
2008 

0 2.51 2665 Open 
Ocean 

0.00 0.00 

2681812950 Prochlorococcus 
marinus MIT1342 

LLIV Cubillos-Ruiz et 
al. 2017 

0 2.54 2702 
 

0.00 0.00 

2681812925 Prochlorococcus 
marinus MIT1312 

LLIV Cubillos-Ruiz et 
al. 2017 

0 2.55 2732 
 

0.00 0.00 

2681812923 Prochlorococcus 
MIT1303 

LLIV Cubillos-Ruiz et 
al. 2017 

0 2.56 2849 
 

0.00 0.00 

ASM73759 Synechococcus 
KORDI-52 

Subcluste
r 5.1 

(WPC2) 

Choi et al. 2009 0 2.57 2598 Open 
Ocean 

0.00 0.00 

2681812927 Prochlorococcus 
marinus MIT1318 

LLIV Cubillos-Ruiz et 
al. 2017 

0 2.58 2710 
 

0.00 0.00 

ASM73757 Synechococcus 
KORDI-49 

Subcluste
r 5.1 

(WPC1) 

Choi et al. 2009 4 2.59 2528 Open 
Ocean 

0.16 0.00 

2681812949 Prochlorococcus 
marinus MIT1327 

LLIV Cubillos-Ruiz et 
al. 2017 

0 2.59 2701 
 

0.00 0.00 

2681812926 Prochlorococcus 
marinus MIT1313 

LLIV Cubillos-Ruiz et 
al. 2017 

0 2.59 2707 
 

0.00 0.00 

ASM1458 Synechococcus 
CC9311 

Subcluste
r 5.1 

(Clade I) 

Dufresne et al. 
2008 

3 2.61 2663 Coastal 0.11 0.00 

ASM420977 Synechococcus 
WH8101 

Subcluste
r 5.1 

(Marine 
B) 

Rocap et al. 
2002 

17 2.63 2693 Coastal 0.63 0.00 

ASM275493 Synechococcus 
PCC6715 

Unclassifi
ed 

 
1 2.66 2227 Thermo

phile 
0.04 0.00 
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ASM1006 Synechococcus 
elongatus PCC 

6301 

Unclassifi
ed 

Sugita et al. 
2007 

10 2.70 2602 Freshw
ater 

0.38 0.00 

PRJNA61805 Synechococcus 
WH8016 

Subcluste
r 5.1 

(Clade I) 

Rocap et al. 
2002 

14 2.71 3046 Coastal 0.46 0.00 

ASM1252 Synechococcus 
elongatus PCC 

7942 

Unclassifi
ed 

 
13 2.74 2685 Freshw

ater 
0.48 0.00 

ASM81732 Synechococcus 
UTEX2973 

Unclassifi
ed 

 
16 2.74 2678 Freshw

ater 
0.60 0.00 

ASM188521 Synechococcus 
SynAce01 CS-601 

Antarctic Tang et al. 2019 31 2.75 2701 Cold 
Adapte

d 

1.15 0.13 

ASM73753 Synechococcus 
KORDI-100 

Subcluste
r 5.1 (UC-

A) 

Choi et al. 2009 0 2.79 2822 Open 
Ocean 

0.00 0.00 

CP039373 Synechococcus 
CB0101 

Subcluste
r 5.2 
(CB4) 

Chen et al. 2006 22 2.79 3126 Coastal 
(Estuary

) 

0.70 0.27 

ASM395780 Synechococcus 
UTEX3055 

Unclassifi
ed 

 
17 2.88 2815 Freshw

ater 
0.60 0.00 

ASM1320 Synechococcus JA-
3-3Ab 

Unclassifi
ed 

Schirrmeister et 
al. 2005 

2 2.93 2611 Thermo
phile 

0.08 0.00 

ASM1322 Synechococcus JA-
2-3Ba(2-13) 

Unclassifi
ed 

Schirrmeister et 
al. 2005 

17 3.05 2692 Thermo
phile 

0.63 0.94 

NZ_LVHT00
000000 

Synechococcus 
MIT9504 

Subcluste
r 5.1 

(CRD1) 

Cubillos-Ruiz et 
al. 2017 

2 3.09 3712 Open 
Ocean 

0.05 0.00 

NZ_LVHV01
000000 

Synechococcus 
MIT9509 

Subcluste
r 5.1 

(CRD1) 

Cubillos-Ruiz et 
al. 2017 

1 3.09 3752 Open 
Ocean 

0.03 0.00 

ASM235621 Synechococcus 
NIES-970 

Unclassifi
ed 

Shimura et al. 
2017 

24 3.12 2864 Coastal 0.84 0.08 

ASM152185 Synechococcus 
PCC73109 

Group 5 Robertson et al. 
2001 

30 3.30 3037 Coastal 0.99 0.07 

ASM169329 Synechococcus 
PCC8807 

Group B 
(Subalpin

e I) 

Everroad et al. 
2012 

28 3.30 3083 Coastal 0.91 0.00 

PRJNA15869
5 

Synechococcus 
PCC6307 

Cyanobiu
m Group 

A 

Havercamp et 
al. 2009 

42 3.34 3439 Freshw
ater 

1.22 0.24 
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ASM169325 Synechococcus 
PCC7003 

Group 5 Robertson et al. 
2001 

38 3.35 3073 Coastal 1.24 0.13 

ASM1948 Synechococcus 
PCC 7002 

Group 5 Robertson et al. 
2001 

35 3.41 3148 Coastal 1.11 0.00 

ASM169327 Synechococcus 
PCC7117 

Group 5 Robertson et al. 
2001 

37 3.43 3162 Coastal 1.17 0.00 

ASM31708 Synechococcus 
PCC 7502 

Unclassifi
ed 

Walter et al. 
2017 

30 3.58 3442 Freshw
ater 

0.87 0.28 

ASM31668 Synechococcus 
PCC 6312 

Unclassifi
ed 

 
42 3.72 3528 Freshw

ater 
1.19 0.25 
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Chapter III: Genomic features for cold adaptation of winter Chesapeake Bay Synechococcus. 
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Abstract 

Synechococcus are abundant and important to aquatic ecosystems. They contribute 

significantly to the world’s oceans primary productivity and are endemic to freshwater, 

estuarine, coastal, and pelagic environments. Diverse and unique Synechococcus are present in 

the Chesapeake Bay during cold winter months, they differ from the summer Synechococcus 

populations in the Bay. Seventeen strains of Synechococcus were isolated from the Baltimore 

Inner Harbor in the winter months, and they belong to 5 different phylogenetic clusters. Five 

Chesapeake Bay winter (CBW) strains (CBW1002, CBW1004, CBW1006, 1107 and CBW1108) 

were selected for genome sequencing, and they represent each major phylogenetic lineage that 

lacks genome sequences. The complete genome sequences from these five CBW strains allow 

us to explore their genomic characteristics and compare them with Synechococcus from 

different aquatic habitats. The genome size of these five CBW strains range from 3.20 Mb to 

3.86 Mb, with CBW1002 and CBW1006 among the largest genome size for picocyanobacteria 

(~3.8 Mb). The five CBW strains have relatively high GC content (64 To 67%) and share many 

homologs that are unique and not shared with pelagic Synechococcus. CBW strains contain 

relatively high numbers of fatty acid desaturase, lipid A biosynthesis, chaperone, and 

transposase genes compared to coastal and open ocean Synechococcus, and these genes are 

known to play key roles in maintaining membrane fluidity, proper metabolite folding, and 

genome plasticity.   
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Introduction 

Estuarine Synechococcus in winter 

Synechococcus is a major cyanobacterial genus that contributes significantly to global 

primary productivity because of their abundance (Flombaum et al., 2013). Synechococcus has a 

ubiquitous distribution and has the capability to adapt to nearly every aquatic environment 

(Dvořák et al., 2014b; Waterbury, 1986). Many genomes of freshwater and marine 

Synechococcus strains have been reported and used for comparative genomics and 

phylogenomic analysis (Coutinho et al., 2016; Dufresne et al., 2008; B Palenik et al., 2003; Brian 

Palenik et al., 2006; Salazar et al., 2020), but few genomes of estuarine Synechococcus been 

reported. The draft genome sequences of estuarine Synechococcus WH5701, CB0101 and 

CB0205 were deposited in GenBank in 2006, 2009, and 2009, respectively. The first complete or 

closed genome of estuarine Synechococcus CB0101 isolated from the Chesapeake Bay was 

reported recently (Fucich et al., 2019). CB0101 was isolated from the Chesapeake Bay during 

the summer along with a dozen of other Synechococcus strains (F. Chen et al., 2004). These 

summer estuarine Synechococcus isolates have fortified the subcluster 5.2 lineage (F. Chen et 

al., 2006b). In the Chesapeake Bay, the winter picocyanobacterial community is dominated by 

distinct subpopulations which are not present in the summer (Cai et al., 2010). The abundance 

of picocyanobacteria exhibits a strong seasonal pattern in the Bay, high in summer and low in 

winter (K. Wang et al., 2011). In the winter season, the surface water of upper Chesapeake Bay 

can be frozen. Synechococcus cells are still present at the subzero temperature, but little is 

known about how they survive the cold and even freezing conditions in winter. To learn more 
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about the physiology of winter Synechococcus, 17 Synechococcus strains were isolated during 

the winter season (December 2010 to February 2011) in Baltimore’s Inner Harbor (Xu et al., 

2015). The growth data suggest that these winter isolates can grow in low temperature and 

have wide salinity tolerance. Winter Synechococcus isolates are not affiliated with subcluster 

5.2 but related to several phylogenetic lineages for freshwater and brackish water 

picocyanobacteria. Of these Chesapeake Bay winter isolates, five strains (CBW1002, CBW1004, 

CBW1006, CBW1107 and CBW1108) were chosen for genome sequencing. The five CBW strains 

represent four different phylogenetic clades (subalpine cluster II, Bornholm Sea cluster, CB7 

cluster, and the novel CBW1004 cluster) based on their 16S rRNA gene phylogeny (Xu et al., 

2015). Many non-marine picocyanobacteria belong to subalpine cluster II, Bornholm Sea 

cluster, CB7 cluster, but no complete picocyanobacterial genomes have been reported for these 

well-defined clusters. 

Cold Adaptation in Picocyanobacteria, Bacteria, and Beyond 

 Full genome sequences allow for broad genomic comparisons among the CB winter 

strains as well as model strains of interest. Availability of these sequences also allows for in 

depth comparison of specific genes with relevant known function. Cold stress response in 

cyanobacteria has been explored, based on what is known about cold stress in bacteria 

(Gualerzi et al., 2003; Weber & Marahiel, 2003). Major categories have been found to be 

important in the bacteria cold stress response signal recognition and transduction, membrane 

fluidity, protein folding, translational regulation. 
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Signal transduction is mediated by sensors and reporters, most famously the 

transmembrane histidine kinase hik33, which perceives cold and triggers response of many 

proteins such as desaturases and pathways for lipid production (Mikami et al., 2002; Suzuki et 

al., 2001). Hik33 is the histidine kinase involved in cold sensing in bacteria. However, the cold 

response is not solely controlled by hik33. Gene expression of desaturases and other response 

genes can be controlled: 1) completely by hik33, 2) partially controlled by hik33, or 3) 

unaffected by the hik33-1 mutant (Suzuki et al., 2001).  

 Cold stress response in Synechocystis is controlled by multiple interacting genes and 

regulatory systems (Los et al., 2008). Synechocystis can modify membrane fluidity with 

alternate desaturases, without delta-12 and delta-6 desaturases (Mironov et al., 2012). 

Therefore, cold response genes can fall into two categories: 1) Genes that are controlled by 

hik33, membrane fluidity, and light and 2) Genes that are not controlled by hik33, which are 

membrane fluidity and light independent.  

Other membrane proteins necessary to retain membrane fluidity is phosphatidic acid 

formation, a precursor to phospholipid formation. This process is controlled by plsX, plsY (yneS), 

and plsC (yhdO). In Bacillus subtilis, a knockout of plsX ceases both phospholipid and fatty acid 

synthesis completely, plsY and plsC knockouts only arrests fatty, denoting the importance of 

plsX (Paoletti et al., 2007). 

Retention of membrane fluidity is a universal response to low temperatures by 

modification of fatty acids, usually through desaturation or synthesis (Barria et al., 2013; Los & 

Murata, 1999). There are several desaturase genes, with different methods of action, pathway, 
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placement, and metabolic products. The 3 main lineages of loosely related desaturases are 

delta-9 (desC and desE), delta-12 (desA) /omega-3 (desB and pfaA), and “front-end” or delta-5, 

delta-6, or delta-8 (desD) desaturases (López Alonso et al., 2003; L. Wang et al., 2020). These 

are believed to share a common origin because of a conserved histidine kinase region. There 

are many orthologs in various species across the tree of life, showing the universal necessity of 

fatty acid desaturation to retain membrane fluidity. In cyanobacteria, cold shock membrane 

composition change is achieved through acyl-lipid desaturases (Murata & Wada, 1995; 

Phadtare, 2004). 

Chaperone proteins are also vital in cold acclimation and adaptation to ensure properly 

folded metabolites. The main bacterial cold shock protein in E. coli, cspA, is an RNA chaperone 

(Jiang et al., 1997) that prevents secondary structures of RNA at low temperatures. Inactivation 

of chaperonins such as GroE/L/S resulting in protein refolding failure have suggested the 

importance of chaperones in cold stress response (Strocchi et al., 2006). In the cyanobacterial 

system Synechocystis PCC6803, hik33 regulates protein chaperones such as DnaJ, GroEL, DnaK, 

and more (Mikami et al., 2002).  

In addition to chaperones and desaturases, there are other miscellaneous genes 

associated with cold acclimation in bacteria and cyanobacteria. These include but are not 

limited to, translation initiation factors (e.g. infB), proteases (e.g. HtrA), RNA helicases (e.g. 

deaD), and proteases (e.g. HtrA which is also regulated by hik33 (Mikami et al., 2002), among 

others.  
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 Although not explicitly linked to the cold stress response in bacteria, transposases are 

mobile genetic elements that are involved in genome plasticity. Transposases are high in both 

abundance and expression in bacteria, specifically the Synechococcus, found in the Baltic Sea 

(Vigil-Stenman et al., 2017). This environment is highly dynamic, with strong gradients of 

salinity, nutrients, oxygen, and temperature. Temperature ranges from -3 to 20 ⁰C in the Baltic 

Sea, and the low temperature range is reminiscent of the CB during winter months.  

Here, we investigate the genome sequences of five winter CB Synechococcus, and compared 

them with reference genomes of Synechococcus spp. isolated from freshwater, coastal and 

marine environments, in order to gain insight into cold adaptation of winter Synechococcus. 

Materials and Methods 

Strain Selection for Genome Sequencing 

A total of five winter Synechococcus strains (CBW1002, CB1004, CBW1006, CBW1107, 

and CBW1108) were chosen for genome sequencing. CBW1002 and CBW1006 were selected 

because of their membership to the Bornholm Sea cluster. More than half of our winter isolates 

(9 out of 17) are in the Bornholm Sea cluster and are closely related to several 

picocyanobacteria isolated from the Baltic Sea (Ernst et al., 2003a). CBW1004 represents a 

novel branch without closely related Synechococcus in the phylogeny based on 16S rRNA 

sequences. CBW1107 represents subalpine cluster II, a well-defined phylogenetic cluster which 

contains freshwater and estuarine picocyanobacteria. CBW1108 was chosen for genome 

sequencing because it is the only cultured member in the CB7 clade, which is a predominant 

group of picocyanobacteria in the Bay during the winter time (Cai et al., 2010).  



66 
 

Selection of reference genomes 

A total of 13 reference genomes were chosen to represent Synechococcus (except for 

Synechocystis PCC6803) in various habitats. Strains CB0101 and CB0205 were isolated from the 

Chesapeake Bay in the summer months, they represent estuarine Synechococcus in marine 

subcluster 5.2. WH8101 and CC9311 were chosen to represent coastal Synechococcus. Open 

ocean strains are represented by WH8102, WH7803, and RCC307. The five coastal and open 

ocean strains are all the members of marine subcluster 5.1. Four freshwater strains were 

selected to represent different genome sizes. Strains PCC6301 and UTEX2973 represent two 

freshwater Synechococcus with relatively small genome size, and PCC6312 and PCC7502 with 

relatively large genome size.  Synechococcus CS-601 (SynAce01), a Synechococcus strain isolated 

from the Antarctic Ocean is included. A freshwater Synechocystis strain, PCC6803, was also 

included as a reference because it has been well studied with respect to cold adaptation and 

other stress responses  (Mironov et al., 2012; Suzuki et al., 2001).   

Sequencing Methods 

The five CBW strains were grown in SN15 media (Xu et al., 2015). Genomic DNA was 

extracted by using phenol-chloroform (Kan et al., 2006). The DNA samples were sent to the 

Beijing Genome Institute (BGI) for sequencing. CBW complete genome sequences were 

obtained using a combination of Illumina HiSeq and PacBio Sequel platforms. For the raw reads 

from Illumina sequencing, low quality (<=20), high N nucleotide percentage (>10%), adapter 

and duplication reads were removed to obtain clean reads. For PacBio raw sequences, adapters 

and poor-quality reads were cut from polymerase reads to generate multiple subreads. 
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Subreads with less than 1,000 nucleotides were filtered out, and remaining subreads were 

integrated into one Circular Consensus Sequencing (CCS) read of insert. Subreads were 

corrected and constructed using Celera and Falcon to yield optimal assemblies. The yielded 

assemblies were checked with 2nd Generation Illumina seq for single-nucleotide correction 

(Quiver, GATK, SOAPsnp/SOAPindel) for the final assemblies. All five CBW strains are circular 

and contain only one chromosome with no plasmids. 

To learn more about the cold stress response in genomes of Chesapeake Bay strains, 

several bioinformatic methods were used. Originally, a list of cold induced genes of known 

(n=64) and unknown function (n=47) was adapted from Synechocystis PCC6803 (Sinetova & Los, 

2016). From this list of 111 genes, in silico homologs were predicted using reciprocal best hits 

(RBH) with blastp at the stringency level of e-value < 1e-20 (Table 3.5). Homologs were 

determined using reciprocal best hits of open reading frames with blastp (e-value < 1 x 10-10) 

from one group of CDS to the other. Shared homologs are represented as ribbons between 

genomes. Highly shared homologs are in color (top 50th percentile) while the fewest shared 

homologs are in grey. Stringency value was based on a histogram analysis of total hits at several 

different test e-values. To gain a better understanding of the broader bacterial cold stress 

response, a more simplistic blastp approach was adapted from Tang et al., 2019. A shorter list 

of genes from E. coli was used to tabulate the amount of blastp hits at a stringency of e-value < 

1e-5. This gene list was adapted from Barria et al., 2013 and the e-value was chosen to replicate 

the methods of Tang et al., 2019. Finally, a manual text search of gene functions from 

automatic annotation was completed and verified using three sources, the RAST server (Aziz et 

al., 2008; Overbeek et al., 2014), PATRIC, the bacterial bioinformatics resource center (Brettin 
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et al., 2015; Davis et al., 2020), and the Beijing Genome Institute (BGI) standard output. For 

reference sequences, feature tables were downloaded from NCBI and compared to feature 

table for CBW strains. Coupling these annotations with a literature search, genes implicated in 

cold adaptation i.e. fatty acid desaturases, chaperones, and transposases were compared.  

Results 

Genomic Comparisons 

The genome sequencing of all five (CBW1002, CBW1004, CBW1006, CBW1107, and 

CBW1108) resulted in one circular contig per genome. Genome sizes of the five CBW strains 

ranges from 3.20 Mb (CBW1107) to 3.86 Mb (CBW1006). Their GC content ranges from 64.35% 

(CBW1108) to 67.35% (CBW1004). For Synechococcus, the genome sizes and GC contents of 

these five strains are both relatively high, averaging at ~2.5 Mb and ~58.9% respectively. 

Complete genome sequences have been submitted to NCBI under the accession number 

PRJNA657291. Individual accession numbers can be found in Table 3.1.    

Interestingly, the two winter Synechococcus strains (CBW1002 and CBW1006) in the 

Bornholm Sea cluster contain very large genomes. The genome size of CBW1002 and CBW1006 

is 3.85 Mb and 3.86 Mb, respectively. These genome sizes are among the largest genomes for 

Synechococcus. According to the publicly available JGI and NCBI databases, the largest complete 

Synechococcus genome was the freshwater Synechococcus PCC6312 (3.72 Mb) in current 

databases. The CBW core genome contains 1,295 ORFs shared between all five strains, and a 

pan-genome of 8,274 ORFs. Around 49% of the genes remain hypothetical proteins without any 
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functional prediction. CBW strains have large genomes, an expansive pan-genome, and largely 

unknown functional annotation.  

 Functional annotation of the CBW strains was compared using the RAST server (Aziz et 

al., 2008; Brettin et al., 2015; Overbeek et al., 2014). Annotated genes are categorized into 

subsystems based on predicted metabolic activity automatically. Subsystem coverage and 

subsystem breakdown give an idea of the proportion of the genome with a putative functional 

assignment (Figure 3.1). CBW strains are compared to marine WH8102 and coastal CC9311. It 

should be noted that the annotation for the latter two strains is much more complete than any 

CB strain. They have more subsystem coverage (45% and 40%, respectively) than any CB strain 

(only ~25%). CBW strains contained between 35-38 stress response genes, including genes 

involved in osmotic, oxidative, and detoxification stress. Chesapeake Bay strains contain a 

variable number of phage and prophage elements. CBW1107 had six phage elements, while 

CBW1002, CBW1004, and CBW1006 had two and CBW 1108 had just one. Annotation of 

CB0101 did not predict any phage elements. The summer strain CB0101 had more phosphorous 

metabolism genes (n=48) than any CBW strain which ranged between as few as 19 (CBW1107) 

and as many as 37 (CBW1002). The subsystem for fatty acid metabolism contains between 19-

31 genes for CBW strains. Fatty acid desaturases are the subject of closer investigation in this 

work. For many CBW strains, subsystem totals are fewer than CB0101 (Fucich et al., 2019), a CB 

strain isolated from the Inner Harbor during the summer. This is the result of all CBW strains 

contain more genes that fall outside of subsystems than CB0101. These unique genes have 

unknown functions yet to be determined.  
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CBW strains share unique homologs among themselves. In congruence with the 

phylogeny described previously (Xu et al., 2015), all CBW strains share more homologs with 

each other than with CB0101 (subcluster 5.2), marine Synechococcus WH8102, or freshwater 

Synechocystis PCC6803 (Figure 3.2). The proportion of a strains shared homologs can be seen 

on the outer most ring, while the number of homologs shared between any two strains can be 

read on the inner ring and in supplemental Table 3.6. CBW1002 and CBW1006 share the most 

homologs among the CBW strains (n=3,023), have the largest genomes and are the most closely 

related with regard to the partial 16S rRNA gene marker (Xu et al., 2015).  

Cold induced genes in Chesapeake Bay Winter Synechococcus strains 

All CBW strains contain the hik33 homolog, a histidine kinase involved in cold sensing 

and transcriptional regulation (blastp evalue=0, pident >50%) (data not shown). This two 

component module is responsible for recognition and cold response regulation in 

Synechococystis sp. PCC 6803 (Sinetova & Los, 2016). Hik33 is also present in other 

Synechococcus strains.  

CBW strains contain many genes implicated in the bacterial cold response. Originally, a 

list of 111 upregulated genes from Synechocystis PCC6803 from (Sinetova & Los, 2016) was 

compiled and queried against available CBW strains (Table S4.6) as RBH. Some of these amino 

acid sequences were involved in the general stress response, whole some were specific to cold 

stress (highlighted in blue). Many of these genes were upregulated during stress without known 

function (Sinetova & Los, 2016). CBW strains contained 43 to 47 of these 111 stress-related 

genes as reciprocal best hits (Table 3.5). The results of this RBH search were inconclusive, as 
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few CBW strains contained more in silico homologs of these stress genes than CB0101 (43) and 

none contained more than the marine WH8102 (54). This could be the result of a high threshold 

(e-value 1e-20) and the cross-genus nature of the blastp experiment. In any case, further 

methods, including further blastp and text annotation searches were used. Threshold for this 

experiment was determined using a histogram of hits to retain a high degree of specificity 

without missing potential bona fide homologs. This is a different method than used in Table 3.2, 

where the methods in Tang et al., 2019 were replicated.   

Cold stress responses have been well studied in bacteria and cyanobacteria, and the 

genes involved in cold shock have been summarized (Los & Murata, 1999; Weber & Marahiel, 

2003). These genes have been used to search for the presence of cold stress genes in bacteria 

and picocyanobacteria (Barria et al., 2013; Tang et al., 2019). To compare the presence of these 

cold stress genes in CBW strains and reference strains, 28 genes were queried against all 18 

Synechococcus genomes in this study. Amino acid sequences were sourced from E. coli K-12 

(Barria et al., 2013). A simple blastp search (e-value < 1e-05) was performed to count 

occurrences of these cold implicated amino acid sequences in five CBW Synechococcus, and 13 

reference strains (Table 3.2).  

CBW strains tended to have multiple copies of the deaD helicase (~6), dnaJ molecular 

chaperone (~8), and infB initiation factor 2 (~6). These tended to be higher than open ocean 

strains and freshwater strains with both large and small genomes (Table 3.2). Overall, CBW 

strains tended to have the same or a few more blastp hits to genes implicated in the bacterial 

cold stress response. Strain CBW1108 had surprising blastp hits for 2 genes, lpxP and otsB. 

CBW1108 was the only picocyanobacterial strain with significant sequence similarity to lpxP, a 
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palmitoleoyl transferase, and otsB, a cold induced trehalose phosphate phosphatase. These 

alignments resulted in good query coverage (84% and 100%, respectively), but lukewarm 

percent identities (21% and 31%, respectively).  

lpxP is a palmitoleoyl transferase which is an enzyme involved in the lipid A pathway and 

is induced by cold shock at 12⁰C in E. coli (Carty et al., 1999). Cyanobacteria are known to have 

the first four enzymes in the pathway: lpxA, B, C, and D, but not lpxP. As a result, the pathway is 

only capable of producing lipid A disaccharide, what is believed to be a ‘primordial form’ of lipid 

A (Opiyo et al., 2010). Further inspection of PARTIC annotation reveals that CBW1108 has 26 

genes involved in the cellular envelope maintenance, many of them with subclasses involved in 

lipid A biosynthesis.   

otsB encodes for a trehalose phosphate phosphatase which, together with otsA, plays a 

critical role in bacterial viability at low temperatures (Kandror et al., 2002). Most 

picocyanobacterial strains had a hit to otsA, with notable exceptions being CBW1004 and all 

freshwater strains PCC6301, UTEX2973, PCC6312, and PCC7502. CBW1107 and CBW1108 

actually had two hits to otsA. Conversely, otsB was rare as it had only one significant hit to 

CBW1108.   

CBW strains contain many annotated genes that could function to maintain membrane 

fluidity and promote proper metabolite folding. Several desaturase and chaperone amino acid 

sequences from CBW strains were used as queries. These include genes implicated in the cold 

stress response, namely chaperones (Htp, hslO, GrpE, ComM, GroEL, GroES, HtrA) and 

desaturases (ctrQ, HopC, desE, desE2, fad, desE3, Slr1293, PfaA, and ERG3). These sequences 
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originated in multiple CBW strains (CBW1002, CBW1004, CBW1006, and CBW1108) and were 

queried against the CBW strains, as well as representative picocyanobacterial strains from 

estuarine, open ocean, coastal, and freshwater environments (Table 3.3). A blastp search based 

on the amino acid sequences of these key genes was performed with e value of 1e-05.  

For certain desaturases such as the pro-zeta carotene desaturase ctrQ and 

squalene/phytoene desaturase HopC, CBW strains and freshwater Synechococystis PCC6803 

seemed to have more hits than Synechococcus from freshwater, coastal, and marine sources. 

The sterol desaturase, ERG3, was sourced from CBW1108, and had hits in all freshwater strains. 

However, it only had hits to CBW1107 and CB0205, and the coastal WH8101. PfaA was sourced 

from CBW1004 and had 10 instances of sequence similarity, the most of any other genomes. 

Other CBW strains also had multiple hits to PfaA. Closer inspection found that these hits have 

poor query coverage as they were only gene fragments. The chaperone HtrA generally has 

more hits to CBW strains than freshwater, coastal, and open ocean strains.  

Finally, the occurrence of fatty acid desaturase, transposase, and chaperone among 

these 18 Synechococcus genome annotations was compared (Table 3.4). This was completed 

with a simple text search of gene names against the feature annotation tables. Freshwater 

Synechococcus PCC7502 with a large genome has the highest number (223) of transposase 

genes, higher than Synechocystis PCC6803 which has 116 transposase genes. The number of 

transposase genes varied from 7 to 59 among the five CBW strains. CBW1002 and CBW1006 

had 59 and 35 transposase genes (Table 3.4), and the high number of transposase genes in 

these two strains is consistent with their large genome sizes.  The other three CBW strains 

(CBW1004, CBW1107 and CBW1108) had fewer transposase genes (7-15). The coastal and open 
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ocean Synechococcus strains appear to lack or have very few transposase genes except for 

WH8101. No clear trend could be seen when the term “desaturase” was searched. The number 

of desaturase genes varied from 6 to 16 among the 18 picocyanobacterial strains. PCC7502 has 

the highest number of desaturases. When searched against the term “fatty acid desaturase”, 

the number of fatty acid desaturase genes varied from 1 to 7 in all the 18 picocyanobacterial 

strains. CBW strains had 3-5 fatty acid desaturase genes, similar to many reference strains. 

Coastal strain PCC9311 and open ocean strain RCC307, and freshwater strain UTEX2973 only 

contained one fatty acid desaturase gene. In general, searching with “fatty acid desaturase” 

resulted in nearly one third of the results searched by “desaturase” (“desaturase” avg=9.11, 

“fatty acid desaturase” avg=~3.61). This indicates that many other desaturases are present in 

picocyanobacteria, and their role in cold adaptation is not known. CBW strains contained 16 to 

21 chaperone genes, higher than all the reference strains. Most of marine and freshwater 

Synechococcus contained 9-12 chaperone genes (Table 3.4).  

Discussion 

Desaturases 

Three homologs of delta-9 TA desaturases were found in all CBW strains and at least 1 

omega-3 desaturase, pfaA, only found in CBW1004. Delta-5 desaturases are not found in CBW 

strains which is expected as delta-5 desaturases are not present in higher plants and 

cyanobacteria (López Alonso et al., 2003). In Synechococcus PCC 7002, the delta-9 desaturase 

desE is responsible for the formation of the double bond of 1,14-nonadecadiene, a hydrocarbon 

that accumulated when cells are grown at low temperatures (Mendez-perez et al., 2014). ΔdesE 
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knock outs showed that at these low temperatures, this desaturase is necessary for growth. In 

cyanobacteria, the amount of desaturases present is likely related to habitat, given that 

thermophilic Synechococcus only have 1 delta-9 desaturase in contrast to mesophilic 

Synechococcus, which normally contain 2 delta-9 desaturase genes (Chi et al., 2008). CBW1004 

is unique in that it also contains an omega-3 desaturase pfaA. Blastp shows that there are hits 

in other CBW strains (Table 3.3). However, most of these hits are incomplete with poor percent 

identity and low conservation (data not shown). 

Polyunsaturated fatty acids (PUFAs) are directly related to the fluidity of biological 

membranes (Sakamoto & Murata, 2002). Together with PUFAs, pigments are believed to play a 

role in membrane fluidity. Carotenoids are believed to be an important component of the cold 

adaptive strategy in Staphylococcus xylosus (Seel et al., 2020) while chlorophyll-a and PUFAs 

were core components of the cellular membrane in the cyanobacteria Nodularia spumigena 

CHS1 (Hassan et al., 2020).  

Other desaturases were annotated in CBW strains. For example, a zeta-carotene 

desaturase was annotated in the CBW strains and has between 3-5 copies in the strains 

endemic to the Chesapeake Bay. Other Synechococcus strains do not have any hits to this 

interesting gene besides WH8102, WH7803, and Synechocystis PCC6803. Such a carotenoid 

desaturase would be seemingly unrelated to cold response, despite some evidence in PCC7803 

showing that crtQ, a 9 9-di-cis-zeta-carotene desaturase expression is constant in low 

temperature despite oscillating low and high light conditions (Guyet et al., 2020).  

Chaperones 
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Protein folding, fatty acid and phospholipid synthesis are important for the bacterial 

adaptation of many bacteria to survive in cold environments. Various fatty acid desaturases, 

chaperone proteins, and other code associated genes are regularly predicted in CBW strains, 

often in higher abundance than open ocean Synechococcus strains (Table 3.2). Among another 

cold adapted Synechococcus strain,  SynAce01 compared to other picocyanobacteria, no major 

difference in number of homologs was found between genomes (Tang et al., 2019). This is not 

true when expanding both the cold induced genes list and reference genome list in comparison 

to the CB winter strains. CBW strains tend to have more copies of select cold induced genes of 

interest.   

In E. coli, DnaK, DnaJ, and GrpE are considered heat shock proteins which refold 

denatured proteins. Under temperature stress, these genes can arrest the refolding of such 

proteins, and recoverably resume refolding after the stress condition has been removed 

(Diamant & Goloubinoff, 1998).  Various chaperones, such as DnaJ and DnaK have more blastp 

hits among the CBW strains than other Synechococcus representatives. Three of the CBW 

strains contain the most hits to DnaJ (8), while other strains such as WH8101 and CC9311 

contain only half as many hits.   

CBW1002 and CBW1006, two very closely related strains, with some of the most 

homology (Figure 3.1) contain 5 hits to hscA, a DnaK-like molecular chaperone (Table 3.2). In 

Shewanella sp. Ac10, DnaK increased ATPase activity at low temperatures than the DnaK in E. 

coli, which is characteristic of a cold active enzyme (Yoshimune et al., 2005). Determining the 

expression and ATPase activity of these copies of hscA under cold temperatures could indicate 

cold adaptation.   
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Surprisingly, all known E. coli cold shock protein are absent from CBW strains, and all 

other Synechococcus in the survey. This may suggest that CBW strains may have a differential 

cold shock mechanism, or that the E. coli sequences were not similar enough to the 

Synechococcus strains to transcend the e-value of 1e-5. Two copies of GroEL were found in all 

CBW, but this result is not different than other strains.  

Transposases 

 These mobile genetic elements are not generally conserved among species and have 

loose relation to the bacterial cold response. Namely, for their apparent duplication in the 

psychrophilic Methanococcoides burtonii. Upon close inspection of the CBW strain annotations, 

there are 37 transposase genes shared among the strains with multiple duplications in each 

genome. The most interesting and abundant transposase in CBW strains is an IS5 family variant 

of transposases. This particular transposase (CBW1006GL001879 

locus=Chromosome1:1864150:1865853:+) is frequently duplicated and highly conserved among 

CBW strains. IS5 transposase is present in CBW genomes between 27 and 33 times (Figure 3.3). 

In the Baltic Sea, cyanobacteria were responsible for ~40% of IS5 transposase metagenomic 

reads and ~50% of the metatranscriptomic reads for the appropriate size fraction (0.8-3.0 µm) 

(Vigil-Stenman et al., 2017). To search for this particular IS5 transposase in other Synechococcus 

genomes, a blastp was conducted against the coding sequences in a similar fashion to Table 3.3. 

Partial duplications were removed by applying a threshold of e-value < 1e-5, percent identity > 

35%, and query coverage > 50%.  

Other cold induced genes in CBW Synechococcus  
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 Various elements such as helicases, initiation factors, and histidine kinases are involved 

in the bacterial cold stress response. CBW strains contain some of these elements in higher 

frequencies than their temperate Synechococcus representatives (Tables 3.2, 3.3, and 3.4).  

First, CBW1107 contains the most hits (7) to the deaD helicase, while all other CBW 

strains contain 5, save CBW1004, with 4 hits. Compared to coastal, freshwater, and especially 

open ocean strains, which only have 1-3 copies (Table 3.2). This is significant as RNA helicases 

are involved in the cold acclimation in cyanobacteria (Chamot et al., 1999). Further, deaD 

helicase is essential for survival at low temperatures for Caulobacter crescentus (Aguirre et al., 

2017). 

Initiation factors (infA, infB, and infC) are often implicated in bacterial cold response 

(Barria et al., 2013). While initiation factor 1 (infA) and 3 (infC) contained 1 hit in all CBW and all 

other picocyanobacterial representatives, initiation factor 2 (infB) was highly variable among 

strains. CBW strains have among the most copies of infB (6), second only to the Antarctic 

SyneAce01 (7) (Table 3.2).  

All CBW strains contain at least one copy of the histidine kinase hik33. Additionally, 

according to the BGI annotation (data not shown), CBW strains contain five core histidine 

kinases; 3 signal transduction histidine kinase and 2 K+ sensing KdpD (their function is unclear, 

but they could sense turgor pressure or osmolarity) (Mascher et al., 2006). 

CBW strains contain important genes for phosphatidic acid formation, a precursor to 

membrane phospholipids (Paoletti et al., 2007). All CBW winter strains contain plsX (acyl-acyl 

carrier protein [ACP]: phosphate acyltransferase) and plsY (acyl-phosphate: glycerol-phosphate 



79 
 

acyltransferase). These genes were annotated using RAST annotation as well as annotation 

completed by the Beijing Genome Institute. 

Interestingly, the presence of plsC (acyl-ACP:1-acylglycerol-phosphate acyltransferase) 

was not present in any CBW annotation or blastp search (hits had high [0.09] e-values and low 

percent identities [~23%]) (data not shown) The function of plsC was the least necessary when 

compared to the other pls genes during phosphatidic acid formation, as fatty acid formation 

continued at a high rate despite its deletion (Paoletti et al., 2007).  

CBW strains contain relatively large genome sizes (between 3.2-3.8 Mb) and high GC 

content (between 64-67%). These features are comparable to the genomes of several 

freshwater picocyanobacteria, particularly freshwater Synechococcus spp. and Cyanobium spp. 

CBW1002 and CBW1006 have the largest genome size among known picocyanobacterial 

genomes. They are members of the Bornholm Sea cluster, which contain most the 

picocyanobacteria isolated from the Baltic Sea and Chesapeake Bay. It is possible that 

picocyanobacteria in this phylogenetic lineage share the characteristic trait of large genome 

size with high GC content. Given what is known about evolutionary genomics, this free living 

clade may have such features as a result of exposure to more complex and variable 

environments and therefore have a higher chance to exchange genes horizontally (Mann & 

Chen, 2010).  

CB0101 shares many homologs with CBW strains compared to the marine WH8102 and 

freshwater Synechococystis PCC6803. These results suggest that homologs among the CB 

strains could harbor genes that are important for surviving in the Chesapeake Bay.  The high 
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number of homologs shared by CBW1002 and CBW1006 displays that the phylogenetic 

relationship based on 16S rRNA is accurate and could be confirmed using further phylogenomic 

studies.  

Except for a few genes (deaD, dnaJ, and infB) CBW strains are similar to the reference 

strains in terms of the occurrence of well-studied cold stress genes from E. coli. CBW have 1-2 

more copy of these genes (deaD, dnaJ, and infB) compared to open ocean Synechococcus (Table 

3.2). Although this comes as a surprise, a recent study also showed no clear indication of more 

cold stress genes in the genome of Antarctic Synechococcus sp. CS-601 (SynAce01) was 

sequenced (Tang et al., 2019). Previous analysis of reciprocal blast hits on stress and cold 

induced genes from Synechocystis PCC6803 (Sinetova & Los, 2016) had not provided a clear 

indication about how these CBW Synechococcus are capable of cold adaptation (Table 3.5). 

Early work on Synechocystis PCC6803 was focused on hik33 the histidine kinase which senses 

cold and osmotic stress (Mikami et al., 2002; Suzuki et al., 2001). It is possible that other 

searching methods and different genetic markers should be considered.  

CBW strains contain more chaperone proteins than selected reference genomes, this is 

especially true of HtrA (Table 3.3) and dnaJ (Table 3.3). Chaperones are known to be vital for 

proper protein folding at cold temperatures (Strocchi et al., 2006). CBW strains may have more 

chaperones than Synechococcus in stable, warm climates with less seasonal temperature 

change. Cold Shock Proteins like CspA act as RNA chaperones to prevent mRNAs from forming 

secondary structures at low temperatures (Jiang et al., 1997; Kishor PB, 2019). Interestingly, no 

cold shock proteins from E. coli had significant amino acid sequence to any picocyanobacterial 
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reference strain. Perhaps a more closely related closer cyanobacteria would result in sequence 

homology specific enough to overcome the threshold.  

Transposases are also enriched in the CBW strains compared to open ocean 

Synechococcus. It appears that some freshwater picocyanobacteria with large genome size also 

contain high amount of transposase genes. In general, the number of transposase genes in CBW 

strains is close to that of those freshwater Synechococcus with large genomes. It is notable that 

coastal strain WH8102 contains 52 transposase genes, while oceanic strains contain one or no 

transposase genes. Transposons are often vehicles for horizontal gene transfer and can be 

responsible for a substantial portion of the genome. By some annotations, the transposases are 

poorly characterized and have generic names or are simply a hypothetical protein, despite that 

they are highly conserved at the amino acid level with high query coverage. Ability to gain 

genetic function via horizontal gene transfer could be important for picocyanobacteria living in 

the stressed environment, including the cold winter. These could be implicated in the transfer 

of other stress related genes, such as toxin antitoxin systems which are encoded on 

transposons (Lima-Mendez et al., 2020). The abundance and the association pattern of TA 

systems in CBW and other reference strains are analyzed in detail in chapter 4.  

Conclusion 

 CBW genomes have some of the largest genomes among the Synechococcus with 

relatively high GC content. While they represent four distinct phylogenetic clades, they still 

share many homologs with cryptic gene function. Their genomes contain stress related, 
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phosphorous metabolism, and even phage genes, but between 50-70% of their coding 

sequences still fall outside of a subsystem function.  

CBW estuarine strains generally tend to contain more cold induced and cold stress 

associated genes than freshwater, coastal, and open ocean Synechococcus. These genes were 

implicated using amino acid similarity and automatic annotation. Their genomes are equipped 

with desaturase genes and lipid A enzymes to maintain membrane fluidity, chaperone proteins 

for proper protein folding, and others for sensing a drop in temperature such as hik33.  

A group of highly conserved transposases with around duplications in CBW strains, but 

only few in WH8101 and SyneAce01 was also found. It is unclear what the potential function of 

homologs for transposases in the CB winter strains is, and why there are over 20 copies in each 

strain, while there are very few in most other Synechococcus. Their highly conserved nature 

among genes within each genome suggests that they are the result of paralogous duplications, 

with few exceptions. 
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Figures 
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Figure 3.1. RAST annotation subsystem coverage and breakdown for each Chesapeake Bay 

strain. CB0101 represents a summer strain while CBW1002, CBW1004, CBW1006, CBW1107, 

and CBW1108 represent Chesapeake Bay winter strains. Many annotated genes fall outside of 

functional subsystems indicating the cryptic function of many CB Synechococcus coding 

sequences.  
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Figure 3.2.  Homologs between selected picocyanobacteria genomes. Chesapeake Bay 

strains include 5 winter (CBW) and 1 summer (CB0101) strain. Model marine strain WH8102, 

and model freshwater strain Synechocystis PCC6803 were included as outgroups for 

comparison. Highly shared homologs are in color (top 50th percentile) while the fewest shared 
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homologs are in grey. Homologs were determined in silico using reciprocal best hits were using 

the blastp (e value < 1 x 10-10) of amino acid sequences from open reading frames.    
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Figure 3.3. IS5 family transposase duplications in each Synechococcus genome. Genomes 

lacking significant similarity to this particular IS5 transposase were omitted. Blastp was 

performed using the CBW1006GL001879 locus=Chromosome1:1864150:1865853:+ CDS with 

thresholds of e-value < 1e-5, percent identity > 35%, and query coverage > 50%.  
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Tables 

Table 3.1.  Complete genome information for Synechococcus strains isolated from the Inner 

Harbor, Chesapeake Bay during the winter months (December 2010 to February 2011).   

Synechococcus strain name Length (bp) GC % Content Gene Number % CDS ncRNA Accession Number 

CBW1002 3,854,122 65.15 3,994 87.54 61 CP060398 

CBW1004 3,672,318 67.35 3,668 87.41 83 CP060397 

CBW1006 3,860,130 65.08 4,047 87.65 62 CP060396 

CBW1107 3,202,093 66.86 3,446 88.90 54 CP064908 

CBW1108 3,226,220 64.35 3,744 88.50 48 CP060395 
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Table 3.2.  Numbers of blastp (threshold set to e-value of 1e-5) hits for genes implicated in 

cold stress response. Genes were derived from E. coli largely from lists in Barria et al., 2013 and 

Tang et al., 2019.  
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   Synechocystis Synechococcus 

   Freshwater 
Freshwater Small 

Genome 
Freshwater Large 

Genome Artic Summer Winter Coastal Open Ocean 

Gene Description Reference PCC6803 PCC6301 UTEX2973 PCC6312 PCC7502 SynAce01 CB0101 CB0205 CBW1002 CBW1004 CBW1006 CBW1107 CBW1108 WH8101 CC9311 WH8102 WH7803 RCC307 

deaD DEAD-like RNA helicase 
Tang et al. 

2019 4 1 1 1 2 5 4 4 5 4 5 7 5 4 3 2 3 2 

desA Fatty acid desaturase 
Tang et al. 

2019 2 0 0 0 2 2 2 1 1 1 1 1 2 0 0 1 2 1 

dnaA Replication initiation protein 
Tang et al. 

2019 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

dnaJ Molecular chaperone 
Tang et al. 

2019 7 7 7 7 7 6 5 6 8 6 8 8 5 4 4 6 5 6 

gyrA DNA gyrase subunit A 
Tang et al. 

2019 2 2 2 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 

hscA DnaK-like chaperone Lelivelt & 
Kawula 
(1995) 4 5 5 5 6 3 4 5 5 2 5 4 4 2 4 4 4 2 

hupB Nucleoid protein, DNA supercoiling Giangrossi 
et al. 

(2002) 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 

infA Translation initiation factor IF-1 
Tang et al. 

2019 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

infB Translation initiation factor IF-2 
Tang et al. 

2019 7 4 4 5 4 4 6 6 6 6 6 6 6 4 4 5 6 4 

infC Translation initiation factor IF-3 
Tang et al. 

2019 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

lpxP Lipid A synthesis; cold-inducible Vorachek-
Warren et 
al. (2002) 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

lpxA Lipid A synthesis; cold-inducible Opiyo et 
al.,2010 2 3 3 3 3 2 2 2 2 2 2 2 2 1 2 2 2 3 

lpxB Lipid A synthesis; cold-inducible Opiyo et 
al.,2011 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 

lpxC Lipid A synthesis; cold-inducible Opiyo et 
al.,2012 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

lpxD Lipid A synthesis; cold-inducible Opiyo et 
al.,2013 2 4 5 3 3 2 2 2 2 2 2 2 2 2 3 3 2 3 

nusA Transcription 
termination/antitermination/elongati

on L factor 
Bae et al. 

(2000) 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 

otsA Trehalose phosphate synthase; cold- 
and heat-induced, critical for viability 

at low temperatures 

Kandror et 
al. (2002) 

1 0 0 0 0 1 1 1 1 0 1 2 2 1 1 1 1 1 

https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.052209-0#r30
https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.052209-0#r30
https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.052209-0#r30
https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.052209-0#r45
https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.052209-0#r45
https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.052209-0#r45
https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.052209-0#r7
https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.052209-0#r7
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otsB Trehalose phosphate phosphatase; 
cold- and heat-induced, critical for 

viability at low temperatures 

Kandror et 
al. (2002) 

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

pnp 3′–5′ exoribonuclease; component of 
RNA degradosome; cold shock 

protein required for growth at low 
temperatures 

Yamanaka 
& Inouye 

(2001) 3 1 1 1 1 2 2 2 2 2 2 2 2 2 2 1 1 2 

rnr 3′−5′ exonucleases; increases 10-fold 
in cold shock 

Cairrão et 
al. (2003 ) 2 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

mtnA 
Translation initiation factor IF-2B 

subunit alpha 
Tang et al. 

2019 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

pdhA 
Pyruvate dehydrogenase E1 subunit 

alpha 
Tang et al. 

2019 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

pdhB 
Pyruvate dehydrogenase E1 subunit 

beta 
Tang et al. 

2019 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

rbfA Ribosome-binding factor A 
Tang et al. 

2019 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 

recA Recombination and DNA repair 
Tang et al. 

2019 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

tig Protein-folding chaperone 
Tang et al. 

2019 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

yfiA Protein Y, associated with 30S 
ribosomal subunit, inhibits 

translation 

Di Pietro 
et al. 

(2013) 0 0 0 0 1 1 0 1 1 0 1 0 0 0 0 0 0 0 

https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.052209-0#r47
https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.052209-0#r47
https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.052209-0#r47
https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.052209-0#r8
https://www.microbiologyresearch.org/content/journal/micro/10.1099/mic.0.052209-0#r8
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Table 3.3 Numbers of blastp (threshold set to e-value of 1e-5) hits for desaturase and 

chaperone genes with functions likely involved in the bacterial cold response. Query sequences 

originated in CBW strains and were queried to other reference picocyanobacterial strains.  
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  Synechocystis Synechococcus 

  Freshwater 
Freshwater Small 

Genome 
Freshwater Large 

Genome Artic Summer Winter Coastal Open Ocean 

Gene Description PCC6803 PCC6301 UTEX2973 PCC6312 PCC7502 SynAce01 CB0101 CB0205 CBW1002 CBW1004 CBW1006 CBW1107 CBW1108 WH8101 CC9311 WH8102 WH7803 RCC307 

ctrQ Pro-zeta-carotene_desaturase 5 3 3 2 2 4 3 3 4 3 5 4 4 4 4 4 4 2 

HopC Squalene/phytoene_desaturase 3 2 2 2 2 2 3 3 3 2 2 3 3 3 3 3 3 2 

desE Delta-9_fatty_acid_desaturase 1 1 1 2 3 3 3 2 3 3 3 4 3 2 2 1 2 2 

desE2 Delta-9_fatty_acid_desaturase 1 1 1 2 3 3 3 2 3 3 3 4 3 2 2 1 2 2 

fad Generic FA des 2 0 0 0 1 3 3 3 1 3 1 3 2 0 1 2 2 1 

Slr1293 
Neurosporene_C-
3',4'_desaturase 2 2 2 1 1 2 2 2 2 4 2 2 3 2 1 3 3 2 

PfaA 
omega-3 polyunsaturated fatty 

acid synthase subunit, PfaA 3 2 2 3 3 2 2 2 5 10 5 3 6 1 4 3 3 2 

ERG3 sterol desaturase family protein 1 1 1 1 1 1 0 1 0 0 0 1 1 1 0 0 0 0 

Htp 
Chaperone protein, has ATPase 

activity 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

hslO 

Redox regulated 
molecular chaperone. 

Protects both thermally 
unfolding and oxidatively 
damaged proteins from 
irreversible aggregation. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

GrpE 

hyperosmotic and heat 
shock by preventing the 
aggregation of stress-
denatured proteins, in 
association with DnaK 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 

ComM 

Induced during 
competence 

development. Not 
needed for DNA uptake. 2 2 2 2 1 2 2 2 2 3 2 2 2 2 3 2 2 2 

GroEL 

Prevents misfolding and 
promotes the refolding 
and proper assembly of 
unfolded polypeptides 
generated under stress 

conditions. 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

GroES 

Binds to Cpn60 in the 
presence of Mg-ATP and 
suppresses the ATPase 
activity of the latter. 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 

HtrA protease/chaperone protein 3 3 3 3 3 3 3 4 4 3 5 5 3 3 4 3 3 3 
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Table 3.3. Genes of interest to cold adaptation found in CBW strain annotation. Amino acid 

sequences found in CBW strains were queried against coding sequences of other Synechococcus 

strains with a stringency e-value of 1e-5.  
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  Synechococcus 
Synechocy

stis 

  Summer Winter Coastal Open Ocean 
Freshwater Small 

Genome 
Freshwater 

Small Genome Artic 
Freshwate

r 

Gene Description CB0101 
CB02

05 
CBW10

02 
CBW10

04 
CBW10

06 
CBW11

07 
CBW11

08 
WH81

01 
CC93

11 
WH81

02 
WH78

03 
RCC3

07 
PCC63

01 
UTEX29

73 
PCC63

12 
PCC75

02 
SynAce

01 PCC6803 

GroEL 

Prevents misfolding and 
refolds polypeptides 

under stress 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 

GroES 

Chaperone; Binds to 
Cpn60 in the presence of 

Mg-ATP 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 

HtrA 
protease/chaperone 

protein 3 4 4 3 5 5 3 3 4 3 3 3 3 3 3 3 3 3 

ctrQ 
Pro-zeta-

carotene_desaturase 3 3 4 3 5 4 4 0 0 4 4 0 0 0 0 0 0 5 

HopC 
Squalene/phytoene_desa

turase 3 3 3 2 2 3 3 0 0 3 3 0 0 0 0 0 0 3 

desE 
Delta-

9_fatty_acid_desaturase 3 2 3 3 3 4 3 0 0 1 2 0 0 0 0 0 0 1 

FA3 Generic FA des 3 3 1 3 1 3 2 0 0 2 2 0 0 0 0 0 0 2 
Slr12

93 
Neurosporene_C-
3',4'_desaturase 2 2 2 3 2 2 3 0 0 3 3 0 0 0 0 0 0 2 

PfaA 

omega-3 polyunsaturated 
fatty acid synthase 

subunit, PfaA 2 2 5 10 5 3 6 1 4 3 3 2 2 2 3 3 2 3 

ERG3 
sterol desaturase family 

protein 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 1 1 1 
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Table 3.4.  Annotation feature table keyword search for CBW Synechococcus and reference 

strains. Keywords were chosen based on relationship to cold adaptation.  
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 Synechocystis Synechococcus 

 Freshwater Freshwater Small Genome Freshwater Large Genome Arctic Summer Winter Coastal Open Ocean 

Gene PCC6803 PCC6301 UTEX2973 PCC6312 PCC7502 SynAce01 CB0101 CB0205 CBW1002 CBW1004 CBW1006 CBW1107 CBW1108 WH8101 CC9311 WH8102 WH7803 RCC307 

Desaturase 12 8 7 9 16 11 11 9 8 8 9 10 8 11 6 8 7 6 

Fatty Acid 
Desaturase 4 3 1 5 6 4 5 3 4 4 4 5 3 5 1 5 2 1 

 
Transposase 116 4 4 44 223 54 52 8 59 15 35 7 55 52 0 0 1 0 

Chaperone 15 12 11 10 9 12 11 12 19 17 21 17 16 11 12 11 9 11 
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Table 3.5. Reciprocal best hits (RBH) of genes implicated in the cyanobacterial cold 

response adapted from (Sinetova & Los, 2016). RBH threshold was set at the -value of 1e-20 

and queried against the coding sequence of Chesapeake Bay strains. Genes highlighted in blue 

are induced specifically by cold stress in Synechocystis sp. PCC 6803.  

CBW1002 CBW1004 CBW1006 CBW1108 CB0101 WH8102 ORF Gene Function Category 

     
syn:sll0790 

sll0790 hik31 Two-component sensor histidine 
kinase 

Signal perception and 
transduction 

syn:sll2014 syn:sll2014 syn:sll2014 syn:sll2014 syn:sll2014 syn:sll2014 
sll2014 sfsA Transcription factor: sugar 

fermentation stimulation protein 
Signal perception and 

transduction 

     
syn:sll2012 

sll2012 sigD Group2 RNA polymerase sigma 
factor SigD 

Transcription and RNA 
maintenance 

syn:sll1742 syn:sll1742 syn:sll1742 syn:sll1742 syn:sll1742 syn:sll1742 
sll1742 nusG Transcription antitermination protein 

NusG 
Transcription and RNA 

maintenance 

syn:sll0517 
 

syn:sll0517 syn:sll0517 syn:sll0517 syn:sll0517 
sll0517 rbpA1 RNA binding protein A1 Transcription and RNA 

maintenance 

syn:slr0083 syn:slr0083 syn:slr0083 syn:slr0083 syn:slr0083 syn:slr0083 
slr0083 crhR RNA helicase Transcription and RNA 

maintenance 

syn:sll1818 syn:sll1818 syn:sll1818 syn:sll1818 syn:sll1818 syn:sll1818 
sll1818 rpoA RNA polymerase alpha subunit Transcription and RNA 

maintenance 

syn:slr1639 syn:slr1639 syn:slr1639 syn:slr1639 syn:slr1639 syn:slr1639 slr1639c smpBc SsrA-binding protein Translation 

syn:sll0767 syn:sll0767 syn:sll0767 syn:sll0767 syn:sll0767 syn:sll0767 sll0767c rplTc 50S ribosomal protein L20 Translation 

syn:sll1743 syn:sll1743 syn:sll1743 syn:sll1743 syn:sll1743 syn:sll1743 sll1743 rplK 50S ribosomal protein L11 Translation 

syn:sll1096 syn:sll1096 syn:sll1096 syn:sll1096 syn:sll1096 syn:sll1096 sll1096 rpsL 30S ribosomal protein S12 Translation 

syn:slr0082 syn:slr0082 syn:slr0082 syn:slr0082 syn:slr0082 syn:slr0082 
slr0082 rimO Ribosomal protein S12 

methylthiotransferase 
Translation 

syn:slr1105 syn:slr1105 syn:slr1105 syn:slr1105 syn:slr1105 syn:slr1105 
slr1105 fus GTP-binding protein TypA/BipA 

homolog 
Translation 

     
syn:sll1865 sll1865c pfbBc Peptide chain release factor 2 Translation 

syn:sll0533 syn:sll0533 syn:sll0533 syn:sll0533 syn:sll0533 syn:sll0533 sll0533 tig Ribosome trigger factor Translation 

syn:slr0649 syn:slr0649 syn:slr0649 syn:slr0649 syn:slr0649 syn:slr0649 slr0649 metS Methionyl-tRNA synthetase Translation 

syn:slr0955 syn:slr0955 syn:slr0955 syn:slr0955 syn:slr0955 syn:slr0955 slr0955 slr0955 tRNA/rRNA methyltransferase Translation 

syn:slr0399 syn:slr0399 syn:slr0399 syn:slr0399 syn:slr0399 syn:slr0399 
slr0399 ycf39 Chaperon-like protein for quinone 

binding in photosystem II 
Photosynthesis and 

respiration 

     
syn:slr1291 

slr1291 ndhD2 NADH dehydrogenase subunit 4 Photosynthesis and 
respiration 
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syn:sll1441 syn:sll1441 syn:sll1441 

sll1441a desBa ω3 fatty acid desaturase Lipid and fatty acid 
metabolism 

 
syn:slr1992 

 
syn:slr1992 

 
syn:slr1992 

slr1992 gpx2 Hydroperoxy fatty acid reductase Lipid and fatty acid 
metabolism 

syn:slr0321 syn:slr0321 syn:slr0321 syn:slr0321 syn:slr0321 syn:slr0321 
slr0321c erac GTP-binding protein, ERA homolog 

(cell growth and elongation) 
Nucleotide binding 
and modification 

syn:slr0426 syn:slr0426 syn:slr0426 syn:slr0426 syn:slr0426 syn:slr0426 
slr0426 folE GTP cyclohydrolase I (riboflavin 

synthesis) 
Nucleotide binding 
and modification 

syn:sll1258 syn:sll1258 syn:sll1258 syn:sll1258 syn:sll1258 syn:sll1258 
sll1258c dcdc dCTP deaminase Nucleotide binding 

and modification 

syn:sll1854 syn:sll1854 syn:sll1854 syn:sll1854 syn:sll1854 syn:sll1854 
sll1854 xthA Exodeoxyribonuclease III Nucleotide binding 

and modification 

syn:slr1392 syn:slr1392 syn:slr1392 
 

syn:slr1392 
 

slr1392 feoB Ferrous iron transport protein Transport and binding 
proteins 

     
syn:slr0796 

slr0798 ziaA Zn exporter Transport and binding 
proteins 

syn:slr1512 syn:slr1512 syn:slr1512 
   

slr1512 sbtA Na-dependent bicarbonate 
transporter 

Transport and binding 
proteins 

     
syn:sll0385 

sll0385 cbiO ATP-binding protein of ABC 
transporter 

Transport and binding 
proteins 

syn:slr1238 syn:slr1238 syn:slr1238 syn:slr1238 syn:slr1238 syn:slr1238 slr1238c gshBc Glutathione synthetase Other functions 

syn:sll1541 syn:sll1541 syn:sll1541 syn:sll1541 syn:sll1541 syn:sll1541 sll1541 syc2 Carotene oxygenase Other functions 

syn:slr0239 syn:slr0239 syn:slr0239 syn:slr0239 syn:slr0239 syn:slr0239 
slr0239c cbiFc Precorrin-4 C11-methyltransferase 

(cobalamin biosynthesis) 
Other functions 

syn:slr0901 syn:slr0901 syn:slr0901 syn:slr0901 syn:slr0901 syn:slr0901 
slr0901 moaA Molybdopterin biosynthesis protein 

A 
Other functions 

syn:slr0323 syn:slr0323 syn:slr0323 syn:slr0323 syn:slr0323 syn:slr0323 slr0323c ams1c α-Mannosidase Other functions 

syn:slr0017 syn:slr0017 syn:slr0017 syn:slr0017 syn:slr0017 syn:slr0017 
slr0017c murAc UDP-N-acetylglucosamine 1-

carboxyvinyltransferase 
Other functions 

syn:slr1072 
 

syn:slr1072 syn:slr1072 
 

syn:slr1072 slr1072a yefAa GDP-D-mannose dehydratase Other functions 

syn:slr0550 syn:slr0550 syn:slr0550 syn:slr0550 syn:slr0550 syn:slr0550 
slr0550 dapA 4-Hydroxy-tetrahydrodipicolinate 

synthase 
Other functions 

syn:sll0322 syn:sll0322 syn:sll0322 syn:sll0322 syn:sll0322 
 

sll0322 hypF Putative hydrogenase 
expression/formation protein HypF 

Other functions 

     
syn:sll1029 

sll1029 ccmK1 Carbon dioxide concentrating 
mechanism protein CcmK 

Other functions 

syn:sll1383 syn:sll1383 syn:sll1383 syn:sll1383 syn:sll1383 syn:sll1383 
sll1383 suhB Probable myo-inositol-1(or 4)-

monophosphatase 
Other functions 

syn:slr0077 syn:slr0077 syn:slr0077 syn:slr0077 syn:slr0077 syn:slr0077 slr0077 nifS Cysteine desulfurase Other functions 

syn:slr0427 syn:slr0427 syn:slr0427 syn:slr0427 syn:slr0427 syn:slr0427 
slr0427 slr0427 Putative competence-damage 

protein 
Other functions 
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syn:slr0549 

slr0549 asd Aspartate beta-semialdehyde 
dehydrogenese 

Other functions 

syn:ssl3044 syn:ssl3044 syn:ssl3044 syn:ssl3044 syn:ssl3044 syn:ssl3044 
ssl3044 ssl3044 Probable ferredoxin, hydrogenase 

component 
Other functions 

syn:sll0157 syn:sll0157 syn:sll0157 
 

syn:sll0157 syn:sll0157 ssl3335 secE Preprotein translocase SecE subunit Other functions 

syn:sll0355 syn:sll0355 syn:sll0355 syn:sll0355 syn:sll0355 syn:sll0355 
sll0355c 

  
Proteins of unknown 

function 

     
syn:sll0462 

sll0462c 
  

Proteins of unknown 
function 

syn:sll0556 syn:sll0556 syn:sll0556 
  

syn:sll0556 
sll0556 

  

Proteins of unknown 
function 

syn:sll1411 
 

syn:sll1411 syn:sll1411 
  

sll1411c 

  

Proteins of unknown 
function 

   
syn:sll2013 

  

sll2013 

  

Proteins of unknown 
function 

syn:slr0320 syn:slr0320 syn:slr0320 syn:slr0320 syn:slr0320 syn:slr0320 
slr0320 

  

Proteins of unknown 
function 

syn:slr0400 syn:slr0400 syn:slr0400 syn:slr0400 syn:slr0400 syn:slr0400 
slr0400 

  

Proteins of unknown 
function 

syn:slr0551 syn:slr0551 syn:slr0551 syn:slr0551 syn:slr0551 syn:slr0551 
slr0551 

  

Proteins of unknown 
function 

syn:slr0553 syn:slr0553 syn:slr0553 syn:slr0553 syn:slr0553 syn:slr0553 
slr0553c 

  

Proteins of unknown 
function 

     
syn:slr0612 

slr0612 

  

Proteins of unknown 
function 

syn:slr0755 
 

syn:slr0755 
 

syn:slr0755 
 

slr0755c 

  

Proteins of unknown 
function 

syn:slr0959 syn:slr0959 syn:slr0959 syn:slr0959 syn:slr0959 syn:slr0959 
slr0959 

  

Proteins of unknown 
function 

syn:slr1077 syn:slr1077 syn:slr1077 
   

slr1077b 

  

Proteins of unknown 
function 

syn:slr1599 syn:slr1599 syn:slr1599 syn:slr1599 syn:slr1599 syn:slr1599 
slr1599c 

  

Proteins of unknown 
function 

syn:slr1974 syn:slr1974 syn:slr1974 syn:slr1974 syn:slr1974 syn:slr1974 
slr1974c 

  

Proteins of unknown 
function 

     
syn:slr2123 

slr2123c 

  

Proteins of unknown 
function 

47 44 47 44 43 54 111 Total   
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Table 3.6.  Homologs shared between CBW and reference strains. Homologs were 

determined using a reciprocal best hit blastp strategy (RBH) with a threshold e-value of 1e-10. 

  

 CB0101 CBW1002 CBW1004 CBW1006 CBW1108 WH8102 Synechocystis_PCC6803 CBW1107 

CB0101 - 2083 2100 2102 2013 1793 1470 2018 

CBW1002 - - 2301 3023 2097 1779 1529 2253 

CBW1004 - - - 2283 2166 1785 1536 2202 

CBW1006 - - - - 2112 1815 1545 2260 

CBW1108 - - - - - 1738 1433 2078 

WH8102 - - - - - - 1356 1783 

Synechocystis_PCC6803 - - - - - - - 1526 

CBW1107 - - - - - - - - 
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Chapter IV: Abundance and complexity of toxin-antitoxin systems in Synechococcus from various 
aquatic environments 

  



104 
 

Abstract 

Synechococcus spp. are abundant and important to aquatic ecosystems. They contribute 

significantly to the world’s oceans primary productivity and are endemic to coastal, freshwater, 

pelagic, and estuarine environments. This distribution includes the Chesapeake Bay, Maryland 

during winter months where they can be counted and isolated even in near freezing brackish 

water. These Synechococcus strains contain several genetic elements that may help them 

survive in such a variable environment, they also contain genes not traditionally involved in the 

cold shock response. Toxin-antitoxin systems are small genetic elements that are activated by 

the bacterial stringent response and can result in a persister state. Chesapeake Bay winter 

(CBW) strains contain a particularly high abundance of these TA pairs with complex association 

networks. They feature promiscuous toxins which support the mix and match hypothesis as 

well as some more monogamous toxins which tend to pair with their traditionally named 

antitoxin. Activity of select TA systems in a foreign host is consistent with transcriptomic data in 

CB0101. Further investigation is necessary to understand why CBW strains have such ample TA 

suites, and what proportion of these TA pairs are in fact functional.   
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Introduction 

Small unicellular picocyanobacteria are widespread, abundant, and contribute 

significantly to primary production in the world’s oceans (Garcia-Pichel et al., 2009; P. W. 

Johnson & Sieburth, 1979; Li & Url, 1994; Waterbury et al., 1979). Picocyanobacteria, mainly 

Synechococcus and Prochlorococcus have differential genomic, physiological, and morphological 

characteristics, which equip them for differential ecological conditions (Dufresne et al., 2008; D 

J Scanlan et al., 2009; David J. Scanlan, 2012). Synechococcus, in relative comparison to 

Prochlorococcus, have larger genomes (Dufresne et al., 2008; D J Scanlan et al., 2009) and a 

ubiquitous distribution (Olson, Chisholm, & Zettler, 1990; Frédéric Partensky et al., 1999). 

Prochlorococcus by contrast is tailored to an oligotrophic environment (Dufresne et al., 2003) 

and constrained to a limited latitudinal distribution between 40 ⁰N and 40 ⁰S (Z. I. Johnson, 

Zinser, Coe, McNulty, et al., 2006; Olson, Chisholm, Zettler, et al., 1990; Frédéric Partensky et 

al., 1999; Shalapyonok et al., 2001). 

In ecological theory, the concepts of generalists and specialists have been used to 

categorize organisms based on their ecological strategies: Generalists have broad 

environmental tolerances, while specialists have specific and narrow habitat tolerances (Pandit 

et al., 2009). This ecological theory is also true in bacterial communities (Fierer et al., 2007; 

Lindstrom & Langenheder, 2012), including those in coastal oceans (Mou et al., 2008). On a 

broad scale for picocyanobacterial species, generalists and specialists are best exemplified by 

the genera Synechococcus and Prochlorococcus, respectively. This is apparent when comparing 

their distribution, mentioned above, and their genetic components. Synechococcus has clearly 
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defined phyletic subgroups categorized as coastal/opportunists (Dufresne et al., 2008) and are 

capable of surviving nearly all aquatic environments. Prochlorococcus is confined to the world’s 

oligotrophic oceans and their genomes have undergone significant specialization and reduction, 

save for the low light clade IV (Dufresne et al., 2005; Kettler et al., 2007). When comparing 

Synechococcus and Prochlorococcus in a broad sense, the former tends to be generalists while 

the latter are specialists. On a granular level, this dichotomy of generalists and specialists can 

also exist more subtly at the genus-specific level among Synechococcus. Coastal and estuarine 

Synechococcus are considered as generalists, while open ocean Synechococcus is believed to 

have a specialist lifestyle (Dufresne et al., 2008; Brian Palenik et al., 2006). Generalists tend to 

have an expanded genetic capacity and therefore, a greater ability to sense and respond to 

environmental stimuli, or stressors. This advantage is reflected in genetic systems that have 

allowed organisms to adapt to a range of environmental conditions. 

Toxin-Antitoxin (TA) systems are small intracellular elements that can regulate bacterial 

and archaeal cell growth (Unterholzner et al., 2013). They are comprised of a protein toxin and 

a cognate antitoxin, which can be either protein, or non-coding RNA (ncRNA). Depending on the 

genetic material of the antitoxin and method of action of the toxin, TA systems are classified 

into 5 (Unterholzner et al., 2014b) sometimes, 4 main families (Harms et al., 2018a). By far, the 

most well studied category of TA systems is Type II, in which both the toxin and antitoxin 

components of Type II TA systems are proteins. Functions of type II toxins like relE and yoeB 

often exhibit RNA degradation and a similar structure to RNases (Kamada & Hanaoka, 2005). 

Their method of action can alter gene expression and ultimately induce a persister state in cells. 

Among  cyanobacteria, 81% of type II toxin-antitoxin systems in Synechocystis 6803 displayed 
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RNase activity during fluorescence assays (Kopfmann et al., 2016). Picocyanobacteria like 

Synechococcus may regulate gene expression via RNase activity of their toxin-antitoxin systems.   

To date, more than three hundred of picocyanobacterial genomes (including draft and 

complete) have been sequenced. Comparative genomics often consider genome size, GC 

content, core and variable genomes, interesting functional genes, etc. in picocyanobacteria. 

However, TA genes have previously been overlooked during traditional genomic analysis, thus 

the knowledge about TA systems in picocyanobacteria is very limited. TA systems have been 

predicted in WH1802 and freshwater cyanobacteria including Microcystis aeruginosa 

(Makarova et al., 2009), Synechocystis PCC6803 (Kaneko et al., 2003), and on the pANL plasmid 

in Synechococcus PCC7942 (Y. Chen et al., 2011).  

The first chromosomal TA systems in estuarine Synechococcus were described in the 

Synechococcus strain CB0101 endemic to the Chesapeake Bay (D. Marsan et al., 2017). In vivo 

transcriptomics of CB0101 reveals a tight coupling between the upregulation of particular toxin 

genes, such as relE1, with simulated oxidative stress conditions (i.e. high zinc or high light 

exposure). In CB0101, growth arrest co-occurred with a four-fold increase in relE1 expression. 

When the stressor was removed, growth rate returned to normal. This recoverable growth 

arrest coincides with the upregulation of relE1 and downregulation of the corresponding 

antitoxin gene relB2 in CB0101. These phenomena were also observed in nitrogen starvation 

and zinc toxicity experiments in the same study.  

CB0101 has been used as the representative strain for the Chesapeake Bay since 

isolation in 2004 and was isolated in the summer (F. Chen et al., 2004).  Synechococcus cell 
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abundance increases with temperature, and Synechococcus cells are still counted in frigid 

waters in the Chesapeake Bay (K. Wang et al., 2011). In other frigid waters such as the 

Bornholm Sea and subalpine waters (Ernst et al., 2003a) Synechococcus is still detected.  More 

recently, interesting and unique Chesapeake Bay Synechococcus strains have been isolated 

during winter months (Xu et al., 2015). These strains display an incredible ability to grow at very 

low temperatures (4⁰C) and recover normal growth at 23⁰C after exposure to such cold shock.  

Unfortunately, little is known about their genetic capacity which result in such incredible 

physiological capabilities.   

Recent work has revealed an interesting correlation (r2= 0.6235, p<0.0001) between 

genome size and the occurrence of TA systems in Synechococcus (Fucich & Chen, 2020), but 

such a pattern is not exhibited in other bacteria or archaea (Leplae et al., 2011).  More TA 

systems were predicted in Synechococcus strains with larger genomes, but tighter linear 

correlations were observed (r2=0.9152, p<0.00001 and r2=0.8296, p<0.005) when strains were 

grouped into unique habitat types, specifically coastal and freshwater respectively (Fucich & 

Chen, 2020). This suggests that habitat may be a principal contributing factor in the retention of 

TA pairs in Synechococcus, rather than genome size.  In the broader picocyanobacteria, TA 

prevalence appears to follow the same distribution pattern.  TA systems are abundant in 

Synechococcus endemic to nutrient rich, dynamic habitats, but rare or completely absent in 

strains (Synechococcus and Prochlorococcus) that are specialized to the pelagic.  

Our recent study suggests that TA systems could be an important mechanism for stress 

response and niche partitioning for picocyanobacteria. Despite the fact that a high number of 

TA genes are present in certain Synechococcus spp., little is known about their diversity, 
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association, and activity. Toxin-antitoxin diversity and evolutionary history is difficult to study 

given their lack of amino acid conservation and frequent horizontal gene transfer (Chandra et 

al., 2016; Van Melderen, 2010).  

In this study, fourteen Synechococcus strains were chosen to represent a variety of 

habitats, including estuarine (n=6), coastal (n=1), open ocean (n=4), and freshwater (n=2) 

bodies. A dinoflagellate ectosymbiont (n=1) was also included in the study. The aim of this 

study is threefold: (1) predict TA systems in Synechococcus strains endemic to the Chesapeake 

Bay during winter and compare them to strains from freshwater, coastal, and marine habitats; 

(2) assess the diversity of predicted TA genes and note patterns of complexity in association 

networks; and finally (3) verify toxin-antitoxin functionality and growth regulation of at least 

two pairs (relB2/relE1 and vapB1/vapC1) found in Synechococcus strain CB0101.    

Results 

Synechococcus ecotypes from diverse habitats 

Genomes from 14 Synechococcus strains isolated from open ocean, coastal, freshwater, 

ectosymbiont, and estuarine environments were selected as representatives (Table 4.1). Their 

genome sizes range from 1.8 to 3.8Mb. The genome size of 3.8 Mb is among the largest known 

Synechococcus genomes. The smallest genome (1.8 Mb) belongs to Synechococcus OmCyn01, 

the ectosymbiont of Ornithocercus magnificus. This is not a surprise as a symbiont, genome 

reduction, loss of unnecessary coding sequences, and lack of TA pairs are expected. Chesapeake 

Bay winter strains CBW1002 and CBW1006 have some of the largest genomes among 

Synechococcus with 3.85 Mb and 3.86 Mb, respectively. Freshwater strains, such as PCC6312 
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and PCC7502 have similarly large genomes at 3.7 Mb and 3.6 Mb respectively (Table 1.1) . Large 

genomes are seemingly more common among freshwater, coastal, and estuarine 

Synechococcus rather than open ocean strains.   

Chesapeake Bay Synechococcus strains have ample TA suites 

Synechococcus strains isolated from the Chesapeake Bay (CB) tend to have more TA 

pairs (TA pairs x̄=46) compared to strains from freshwater (x̄=26), open ocean (x̄=6.6), and 

coastal environments (n=3). Freshwater strain PCC6307 was comparable to CB strains with 42 

putative TA pairs, but PCC6301 had far fewer with only 10 putative TA pairs.   

relE/parE toxins are common in Chesapeake Bay strains  

The toxin gene vapC was the most abundant toxin in all Synechococcus. A notable 

difference between the Chesapeake Bay TA association network maps compared to the marine 

and freshwater strains is the discrepancy in abundance between relE and NT_KNT between 

estuarine and freshwater/marine strains. In Chesapeake Bay strains, the relE/parE family is 

often the second most abundant toxin. In marine and freshwater Synechococcus, conserved 

nucleotidyltransferase domains from the superfamily cl11966 (NT_KNT) were the second most 

predicted toxin. Superfamily cl11966 contains nucleotidyltransferase conserved domains which 

are also found in DNA polymerase and kanamycin resistance genes. It appears that 

Synechococcus in different habitats may acquire different toxin families. 

Unique Chesapeake Bay Synechococcus 

https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?hslf=1&uid=143393&#seqhrch
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CBW1108 contained the most putative TA pairs (n=80) and connections (c=34), which 

included the most traditionally named TA families and many additional conserved domains that 

do not fall into known TA families. Having many TA families, or nodes, resulted in the 

association map with the most edges, or connections, and therefore the most complex network 

organization. CBW1108 contained as many as 6 predicted toxins are connected to the main 

network (Figure 4.1). This pattern displays that multiple diverse putative toxin families can 

associate with antitoxins that have similar conserved amino acid sequences. This is exhibited in 

CBW1108, CBW1006, CB1004, and CB0101 where phd/yefM acts as the antidote to vapC and 

relE/parE.  

CBW1108 contains both of the putative antitoxins (n=2) that could not be assigned a 

conserved domain, traditional AT family, or even gene fragment name (Figure 4.1). Although 

these blastp results showed that these families are found in other cyanobacteria (data not 

shown), they are not adequately annotated. These cryptic genes could be functioning to negate 

the effect of a toxin. CBW1004 contained a hypothetical AT 1 that is associated with a predicted 

toxin with a NT_KNT conserved domain. The only non-Chesapeake Bay Synechococcus to 

contain a hypothetical antitoxin was the marine strain WH8102.  

Association complexity of TA systems in Synechococcus 

Network association maps of toxin-antitoxin systems in Chesapeake Bay Synechococcus 

show an increase in complexity with an increase in putative TA system abundance. CBW1108 

had the most complex association network with 34 connections, or edges, between 80 putative 

TA pairs, while CB0101 had the least complex network with only 12 connections between 22 TA 
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pairs (Figure 4.1 and Table 4.1). Expanding this to other habitats, this pattern continues until 

the logical conclusion, bottoming out at the open ocean strain WH7803 which has only one 

connection shared between its only putative TA pair PIN_vapC/phdyefM.   

The TA association network maps are organized relative to complexity. The simplest 

association networks are in the upper left (WH7803, open ocean), and the most complex 

networks are in the bottom right (CBW1108 Estuary). The trend of complex association network 

maps roughly follows genome size increase (Table 4.1), with a few notable exceptions. 

CBW1108 has the most putative TA pairs, but only has the 3rd largest genome (3.2 Mb). This 

results in a dense proportion of toxin antitoxins as a function of coding sequences at 4.27%, the 

highest among any genome surveyed. 

The discrepancy of predicted TA pairs between CBW1002 and CBW1006 is notable. 

These strains have the largest genomes, both around 3.8 Mb, but CBW1006 has 54 putative TA 

pairs while CBW1002 has only 29 predicted pairs. Why CBW1002 contains nearly half as many 

TA systems as CBW1006 is still unknown, especially when considering that they are both belong 

to the Bornholm Sea Cluster (Figure 1.3) and they share the most in silico homologs of any CBW 

strain pair (Figure 3.2). Habitat trends tend to explain the trends in association network 

complexity more so than genome size. While CBW strains can have some of the largest 

genomes of the Synechococcus surveyed, their putative TA pairs are atypically high, especially 

CBW1108, CBW1006, and CBW1004. These 3 strains have the most TA system dense genomes 

as a function of coding sequences. CB strains (besides CB0205) all have the highest TA % of 

coding sequences. This trend is interrupted by PCC6307, which was selected to represent a 
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freshwater genome with particularly abundant TA systems. Habitat, particularly the turbulent 

estuary is the best indicator of an abundant TA suite with rich association networks (Figure 4.1).  

Some toxin and antitoxin families were abundant, and often promiscuously paired with 

many different toxin or antitoxin families. PIN_vapC was the most abundant toxin family and 

was the association network “hub” for all Chesapeake Bay Synechococcus strains (Figure 4.1). 

This was also true of marine, coastal, and freshwater Synechococcus strains. PIN_vapC was the 

center of as many as ten connections to antitoxins in Chesapeake Bay strains CBW1004 and 

CBW1108 and was never connected to fewer than four antitoxin (AT) families in CB0101 and 

CBW1108.   

The next most promiscuous toxin family is the relE/parE family. relE/parE connects to 

five different antitoxin families in CBW1004 and CBW1006. In cases where the relE/parE toxin is 

predicted, it is often paired with the antitoxin family phd/yefM. For many of the amino acid 

sequences, especially abundant and promiscuous toxins like vapC, multiple sequence alignment 

resulted in poor alignments with very few conserved residues (Figure 4.2). 

Other toxin-antitoxin families are much more exclusive in their pairing. The brnT/brnA 

family only associate with their cognate protein and are never paired with any other known 

toxin or antitoxin family. The brnT/brnA TA family is predicted to be in Synechococcus strains 

CBW1004, CBW1006, CBW1108, CB0101, and freshwater strain PCC6307. In CBW1006, one 

brnA AT is predicted normally with the brnT toxin. The only exception to this monogamous link 

between brnT/brnA is in CBW1006 where one brnA antitoxin is paired with a putative toxin 
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which contains the gene fragment DUF4258, which is likely associated with the brnT toxin 

according to entries in Pfam (El-Gebali et al., 2019).   

The hicA/hicB family is predicted in freshwater strains PCC6301 and PCC6307 and in 

Chesapeake Bay strains CBW1004, CBW1006, and CBW1108. Interestingly, the hicA/hicB family 

displays monogamous pairing in some strains and promiscuous pairing in others. In CBW1004 

and PCC6307, the hicA/hicB are only predicted together in a monogamous fashion. In other 

strains, there can be more than one occurrence of this TA family, pairing with different antidote 

proteins. In CBW1006, hicA pairs with hicB, copG, and a 2-oxo acid dehydrogenase complex 

(OADH). hicA in CBW1108 is paired with hicB and a similar OADH. This hypothetical antitoxin 

labeled OADH was identified through protein BLAST. While in these Chesapeake Bay strains, the 

toxin hicA showed selective promiscuity, in the freshwater PCC6301, antitoxin hicB was paired 

as an antidote to hicA, and PIN_vapC.   

The hipA toxin is paired with a Helix-Turn-Helix (HTH) motif as a predicted antitoxin. The 

hipA/HTH pairing are exclusive to each other in CBW1002 and CBW1006, but pairing is not 

exclusive in CBW1004 and CBW1108. In both of these winter CB strains, hipA pairs with an XRE 

domain (cl22854) which includes a HTH motif as well.  

Hypothetical Toxins and Antitoxins in Chesapeake Bay Synechococcus 

Some putative toxins and antitoxins predicted in Chesapeake Bay Synechococcus strains 

are not well annotated. Putative toxins may exhibit a conserved domain but are not able to be 

categorized into a traditional toxin family. These include, but are not limited to, the kanamycin 

nucleotidyltransferase (NT_KNT) from the superfamily cl11966, the N-Acyltransferase (NAT_SF) 

https://www.ncbi.nlm.nih.gov/Structure/cdd/cl22854
https://www.ncbi.nlm.nih.gov/Structure/cdd/cddsrv.cgi?uid=cl11966&spf=1
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from the superfamily cl17182, and the aptly named RES domain which include the conserved 

residues arginine, glutamine, and serine throughout the cl02411 superfamily.    

In comparison to toxins, fewer antitoxins contain a conserved domain associated with a 

known antitoxin family. Many putative antitoxins in Chesapeake Bay Synechococcus strains 

contain a domain of unknown function (DUF) such as: DUF86 (superfamily cl01031), DUF2191 

(superfamily unknown), DUF433 (superfamily cl01030), and DUF1778 (superfamily unknown). 

DUF1778 has suspected helix structure and sequence similarity with the hicB antitoxin, 

however these DUF are often cryptic in function.   

Another predicted antitoxin without a traditional family name includes the nucleotide 

binding domain HEPN from the superfamily cl00824 which, in bacteria, is accompanied by a 

nucleotidyltransferase (Grynberg et al., 2003). Another nucleotidyltransferase (EC 2.7.7) 

(NTase_sub_bind) is part of a superfamily cl23885 with roles in polynucleotide modification 

(Lehmann et al., 2003). 

Growth arrest of E. coli by Synechococcus CB0101 TA pairs 

The growth of transformed strain K12:relE1 (the toxin gene) was significantly inhibited 

with addition of IPTG. The transformed E. coli cells with both genes relB2/relE1 (toxin and 

antitoxin) grew similarly as non-transformed strain K12 when induced with IPTG. The growth of 

K12:relE1 in the cultures with added IPTG decreased significantly compared to the control strain 

K12 containing the empty vector, both with and without added IPTG (p-value=0.02) (Figure 

4.4A). There was some growth inhibition on K12:relE1 without IPTG compared to the control 

https://www.ncbi.nlm.nih.gov/Structure/cdd/cl17182
https://www.ncbi.nlm.nih.gov/Structure/cdd/cl02411
https://www.ncbi.nlm.nih.gov/Structure/cdd/cl01031
https://www.ncbi.nlm.nih.gov/gene/32514822
https://www.ncbi.nlm.nih.gov/Structure/cdd/cl01030
https://pfam.xfam.org/family/DUF1778
https://www.ncbi.nlm.nih.gov/Structure/cdd/cl00824
https://www.ncbi.nlm.nih.gov/Structure/cdd/cl23885
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(K12 without relE1), but growth arrest was not significant compared to the control. The K12 

culture grew similarly with or without IPTG inducer (Figure 4.4A). 

All of the strains containing genes from the vapB1/vapC1 TA system showed statistically 

similar growth. The growth curves for K12:vapC1, K12:vapB1 and K12:vapB1/vapC1 in cultures 

with and without added IPTG are all comparable to the non-induced and induced cultures of 

the control strain K12 containing the empty plasmid (Figure 4.5A, 4.5B, 4.5C). When the vapC1 

toxin was expressed in the K12:vapC1 strain there was no significant change in the measured 

optical density. 

Discussion 

Winter Chesapeake Bay Synechococcus strains contain abundant TA pairs 

Winter Synechococcus strains contain more putative TA pairs than summer strains. 

While the sample size is quite small, the draft genome of CB0205 contained one putative TA 

system: vapC/phd, while the complete CB0101 genome contained 22 putative TA pairs. The 

four winter strains ranged from as many as 80 putative TA pairs in CBW1108 to as few as 29 

putative TA pairs in CBW1002. The high abundance of TA systems in Chesapeake Bay winter 

strains (CBW strains) is striking due to their physiological resilience to low temperatures. In 

laboratory tests, CBW strains are able to resume growth at low temperatures, and in all cases 

resume growth after exposed to near-freezing (4⁰C) water temperatures (Xu et al., 2015). TA 

system upregulation in CB0101 has been linked to simulated oxidative stress conditions via Zn 

toxicity, high light conditions, and nutrient starvation (D. Marsan et al., 2017). The increased 

abundance of TA systems in Chesapeake Bay winter strains may be a cellular regulatory 
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mechanism activated by the general stress response. This may allow cold adapted Chesapeake 

Bay strains to survive freeze and thaw cycles in the temperate bay. This hypothesis remains to 

be tested.   

Further, Chesapeake Bay strains tend to have more putative TA pairs than coastal and 

open ocean marine strains. This finding has been seen with a larger sample size of all available 

complete Synechococcus genomes and appears to be linked to endemic habitat and a 

statistically significant correlation between genome size and putative TA pairs (Fucich & Chen, 

2020).   

Some Synechococcus strains (CB0205, WH7805, and OmCyn01) did not contain any 

putative TA systems. This may be the result of their status as draft sequences as any putative 

toxin antitoxin systems could have been missed in sequencing. However, this is highly unlikely, 

as they both have large sequences >2.4 Mb, a genome size in which Synechococcal toxin 

antitoxin systems have been predicted previously (Fucich & Chen, 2020). Environmentally, 

CB0205 and WH7805 could be Synechococcus strains that are less adapted to estuarine 

environments and more so for open ocean environments. Though not expected in CB0205, as it 

was originally isolated from the Chesapeake Bay, this strain could be better adapted for pelagic 

environments. WH7805 was isolated from open ocean. It is common for TA systems to be 

absent from open ocean marine Synechococcus strain genomes.   

Synechococcus strains support the ‘mix and match’ hypothesis 

TA systems are frequently found in non-traditional pairing arrangements, known as ‘Mix 

and Match’ pairing (Arbing et al., 2010; Fasani & Savageau, 2015; Guglielmini & Van Melderen, 
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2011). This results in most toxins and antitoxins having poor sequence alignment. Even in the 

most conserved toxin PIN domain, with the exception of 3 conserved residues distributed along 

the sequence, there is poor sequence alignment across the family (Arcus et al., 2011). The 

three-dimensional structure places these particular residues at the putative active site (Arcus et 

al., 2004; Bunker et al., 2008).  

A putative toxin or antitoxin, one without a match to the NCBI CDD for a traditional 

toxin or antitoxin family, could be considered cognate “guilt by association” protein (Leplae et 

al., 2011). In our survey, this type of prediction most often occurred with a known toxin and 

non-traditional antitoxin. Most of these ‘hypothetical proteins’ (93%) that needed to be 

identified with blastp were antitoxins rather than toxins. The non-conserved nature of 

antitoxins in Synechococcus strains is consistent with toxin antitoxin systems in other bacteria 

(Mittenhuber, 1999). The promiscuous nature of toxins matching with many different antitoxins 

results in different families of toxins and antitoxins acting as an antidote for another family. 

Such non-traditional toxin-antitoxin pairing is referred to as the “mix and match hypothesis” 

(Arbing et al., 2010; Guglielmini & Van Melderen, 2011). The nontraditional pairing of different 

toxin and antitoxin families in Synechococcus, like PIN_vapC and relE/parE with various 

antitoxins, is evidence of this idea. These instances are most easily illustrated by the central 

‘hubs’ in the association network maps (Figure 4.1). 

Although toxins and antitoxins contained ‘conserved’ domains, these domains are not 

sufficient to be treated as genetic markers. Among some of the most frequently predicted 

toxins, PIN_vapC, the alignment of eight versions was poor with only three conserved residues 

(Figure 4.2A). In the case of the least promiscuous toxin, brnT, amino acid alignments were also 
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poor (Figure 4.2B). The alignment consisted five sequences from three strains, and only two 

conserved residues. For these reasons, toxin-antitoxin systems are poor genetic markers.   

Cryptic TA genes in Synechococcus suggest regulatory functions 

Functions of toxin and antitoxin genes with no known family often have a cryptic 

function or unknown function. Many amino acid sequences resulted in domains of unknown 

functions (DUF) or clusters of orthologous groups (COGs). Further investigation of these amino 

acid sequences often results in the prediction of structures related to nucleotide binding, 

nucleotide modification, and regulatory mechanisms. These various RNase, 

nucleotidyltransferase, helix-turn-helix motifs, etc. have predicted functions that are very 

similar to the known methods of action in type II TA systems (Makarova et al., 2009; Robson et 

al., 2009; Winther & Gerdes, 2011).   

Hypothetical proteins with no immediate connection to a conserved domain were 

clarified by blastp. It was possible to glean some indication of functionality from these blastp 

results. Many of the hypothetical antitoxins associated with brnT had sequence similarity to 

brnA. This clarified the largely monogamous nature of the brnT/brnA family. Further analysis of 

many DUF and clusters of orthologous groups (COG) domains were linked to known toxin or 

antitoxin sequences. For example, DUF2191, which was predicted by blastp several times on 

hypothetical proteins, is often found in vapB domains in Mycobacterium tuberculosis (Ramage 

et al., 2009). In all CBW strains, the HipA toxin is paired with an HTH or XRE domain as a 

predicted antitoxin. Both of these domains incorporate an HTH, suggesting that such a 

structure could act to negate the activity of HipA. HTH domains are capable of binding to DNA 
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and are involved with many proteins that regulate gene expression (Brennan & Matthews, 

1989).   

Putative toxins and antitoxins that do not belong to a known family often include a 

conserved nucleotide binding domain that may be accompanied by a nucleotidyltransferase. 

This is plausible given that one of the functions of type II TA pairs is translation arrest by RNA 

degradation. These nucleotide binding domains may be responsible for recognizing RNA 

transcripts to disrupt translation.   

Scattered toxin-antitoxin loci  

Toxin-antitoxin systems in Synechococcus display differential distributions along 

genomes. In many cases, TA systems appear concentrated at certain locations along the 

genome, as seen in CBW1006, or CB0101 (Figure 4.3). Other genomes have a more even 

distribution, like CBW1004.  In either case, it is still being determined if the TA systems are 

located on genome islands. This, along with the poor conservation of TA system amino acid 

sequence suggests they are transferred horizontally, as is a known transmission vector for TA 

systems in other bacteria (Guglielmini & Van Melderen, 2011; Leplae et al., 2011).    

Confirmation of relE1 activity from Synechococcus CB0101  

It is important to note that only two putative toxin antitoxin systems from CB0101 were 

tested in this study. The apparent activity of the relE toxin in E. coli suggests that the expression 

of relE1 can strongly inhibit the growth of E. coli and the relE1 toxin most likely plays an active 

role on arresting the growth of CB0101 under stressful conditions. The slight variation in the 
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growth of K12:relE1 in relation to the control, even when the toxin gene was not being 

expressed could be due to the added metabolic load brought on by the chloramphenicol 

antibiotic solution by utilizing the resistance component of the pCA24N plasmid. 

The growth inhibition in the transformed strain K12:relE1 and no growth inhibition in 

cells with relB2/relE1 upon IPTG induction suggest that this TA gene pair regulates cell growth as 

a typical type II TA system. This behavior is consistent with the transcriptional data from 

Marsan et al. 2017 and the growth regulation under stress hypothesis has been confirmed in 

similar type II TA systems found in other picocyanobacteria like Synechocystis sp. PCC 6803 

(Kopfmann et al., 2016).   

The apparent non-activity of vapC in E. coli is consistent with the previously described 

transcriptional data, where there was no significant upregulation in the vapC toxin when 

Synechococcus CB0101 was exposed to a variety of stressors. This could be due to type I error 

of the TA prediction software of the gene sequence. More likely, this operon of vapB1/vapC1 

could be non-functional. Considering that there are more than two versions of the vapC toxin 

gene at different loci in CB0101, it is likely this pair of TA genes is silent or has unknown 

function. 

By cloning cyanobacterial TA genes into E. coli, we demonstrate that the TA genes 

relB2/relE1 from Synechococcus CB0101 are functional and are able to inhibit or arrest the cell 

growth. We conclude that the relE1gene acts as a type II bacterial toxin and because the growth 

inhibition can be released with the expression of its cognate antitoxin relB2. The functionality 

test performed in this study further confirms the integral role of relB2/relE1 in the stress 
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response of Synechococcus CB0101 (D. Marsan et al., 2017). The TA gene pair vapB1/ vapC1 did 

not exhibit the characteristic cell growth regulation as relB2/relE1. 

Putative TA presence does not equal activity 

Abundance of TA genes may not be related to toxin activity; in fact, the opposite may be 

true.  If there are several copies of a toxin, many may not be active or functional in times of 

stress or normalcy. The toxin relE showed growth suppression in a foreign host and the greatest 

transcriptomic response to an environmental stressor (D. Marsan et al., 2017), despite having 

few copies predicted in its genome. Conversely, vapC is the most frequently predicted toxin in 

Synechococcus, but the loci tested vapC1 fails to show any significant transcriptomic response 

or response in a foreign host. In these two cases, transcriptomic data matches growth in a 

foreign host. To decide which TA genes are most likely to be functional, cloning and expression 

of these TA genes in a foreign host is ultimately necessary. However, the process is time and 

resource consuming. To determine TA pairs that are most likely functional in the natural host, 

gene expression via transcriptomics may first be used to generate a short list of likely functional 

candidates.   

 The activity of toxin antitoxin systems has been investigated. Among others, MqsR, a 

type II toxin can be inactivated by a mutation in the toxin promotor or by a chromosomal 

mutation in mhpR (Fernandez-Garcia et al., 2019). While this type II toxin is not predicted in any 

of the CBW strains, and confirmed with no significant similarity by blastp, a similar method of 

inactivation may be possible by adjacent or distant genes. 
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relE was not predicted as frequently as vapC, but it showed much greater growth 

retardation in the foreign E. coli host. This difference in confirmed activities, in transcriptomic 

response and activity in a foreign host, suggests that many of these putative TA pairs may not 

be active in the stringent response. The type II toxin antitoxin systems predicted may not have 

any regulatory effect in some, or all stressful situations. Future work is necessary to test the in 

vivo activity in a foreign host before determining the functionality of toxin antitoxin systems in 

Synechococcus and to investigate their potential role in environmental tolerance.   

Methods 

Genome Sequence Acquisition 

Genome sequences were obtained from multiple sources. CB0101, PCC6307, PCC6301, 

KORDI-49, and WH8102, PCC7803, PCC7805, WH8102, and CC9311 were downloaded from 

NCBI, as they are publicly available (accession numbers found in Table 4.1). CB0205 is a draft 

genome and was obtained from Illumina reads. CB0205 is a draft genome and consists of 78 

contigs, is 2,427,308 bp in length, with an N50 of 63,410.  CBW strains, (CBW1002, CBW1004, 

CBW1006, and CBW1108) are complete sequences which were completed by the Beijing 

Genome Institute (BGI).  These sequences have been deposited into NCBI under the bioproject: 

PRJNA657291.   

Toxin Antitoxin Prediction 

Genomes were annotated using the RAST server using standard bacterial settings 

(Overbeek et al., 2014).  TA systems were predicted using the TAfinder tool (Xie et al., 2018) 
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which uses experimentally validated and in silico predicted TA systems in the Toxin Antitoxin 

Database (TADB) (Shao et al., 2011).  In order to predict putative TA pairs, the original FASTA 

sequence file and the exported GenBank annotation file from the RAST server was uploaded to 

the TAfinder software.   

Conserved Domain Prediction 

Putative toxin and antitoxin amino acid sequences were queried against the NCBI 

conserved domain database (CDD) (Marchler-Bauer et al., 2017) for the presence of a known 

toxin or antitoxin family (Figure 4.6).  Annotations were manually verified and categorized in to 

uniform TA families to correct discrepancies in annotation in the CDD (i.e. “PIN_vapC-like” and 

“PIN_vapC4-5_FitB-like” are condensed into the same superfamily: cl28905).  If no conserved 

domain was found for a query sequence, the amino acid sequence was queried with protein 

BLAST (blastp) using default settings (Agarwala et al., 2017b).  In the case of these hypothetical 

toxins or antitoxins, the result with the highest bit score and lowest e-value was selected; given 

the result had a known toxin or antitoxin name, other gene, or gene element name.  In only 

three cases was a “hypothetical protein” name assigned.  Hypothetical AT 1 was assigned for 

CBW1004_38_AT and CBW1108_14_AT.  Hypothetical AT 2 was assigned to CBW1108_24_AT.  

These names were only assigned after there were no matches to NCBI’s CDD and blastp results 

contained all hypothetical proteins.  To check for amino acid conservation, Clustal Omega 

(McWilliam et al., 2013) was used for multiple sequence alignment of like-conserved domains. 

Association figures were subsequently derived from the putative TA systems and their 

conserved domains or for a subsection of putative sequences, blastp results. Networks were 
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based on the putative toxins or antitoxins, assigned as elements, and their frequency of 

connection, depicted by line thickness in Kumu (https://kumu.io/). 

Confirmation of Toxin Antitoxin Activity 

Preparation of CB0101 culture and DNA extraction 

Synechococcus CB0101 culture (30 ml) was grown in liquid SN medium with a 15 percent 

salinity (Waterbury, 1986) in a 25 cm2 culture flask (Corning Inc.).  Cultures were shaken once 

daily for 30 seconds. DNA was extracted from 2 ml of centrifuged culture using the MOBIO 

UltraClean Microbial DNA Isolation Kit (MOBIO).  Extracted DNA was recovered in 30 µl of the 

included elution buffer. 

PCR amplification of TA genes 

The primers for each TA genes were shown in Table 4.3. The primers were designed for 

blunt-end cloning by digesting pCA24N with the restriction enzyme StuI (Thermo Fisher 

Scientific). Genes in Table 4.1 were amplified with high fidelity PrimeStar GXL DNA polymerase 

in 30 cycles with an annealing temperature of 58ºC and an elongation temperature of 72ºC. 

After separating the PCR products through gel electrophoresis, the fragments of expected size 

were extracted with the GeneJET Gel Extraction and PCR Purification Kits (Thermo Fisher 

Scientific).  

Cloning the TA genes 

https://kumu.io/
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To confirm the functionality of relB2/relE1 and vapB1/vapC1 in Synechococcus CB0101, 

these genes were cloned into vector pCA24N. The vector pCA24N (constructed by (Kitagawa et 

al., 2005), GenBank accession number AB052891) has Chloramphenicol resistance and a high 

copy number and its expression is induced with Isopropyl β-D-1-thiogalactopyranoside (IPTG). 

Six separate expression vectors were designed and used for transformation resulting in the 

strains in Table 4.3. The toxin and antitoxin genes were cloned individually into the pCA24N 

plasmid for expression resulting in plasmids relE1:pCA24N, relB2:pCA24N, vapB1:pCA24N and 

vapC1:pCA24N. The TA genes were also cloned together as a construct to form 

relB2:relE1:pCA24N and vapB1:vapC1:pCA24N. The plasmids were transformed by 42ºC heat 

shock into E. coli K12 ER2738 obtained from a frozen stock kindly provided by Dr. Xiaoxue Wang 

at the South China Institute of Oceanology. The cells were made chemically competent through 

a MgCl2 and CaCl2 wash protocol. Positive clones were confirmed by Illumina sequencing and 

gel electrophoresis (Figure 4.7). 

The growth of transformed clones 

All six transformed strains were streaked separately in LB agar plates with 

chloramphenicol at a 25 µg/ml concentration and grown overnight at 37ºC, as well as the 

control strain containing the empty plasmid (denominated K12 for this study). Single colonies 

were transferred into 1 ml of LB media and grown overnight at 37ºC with shaking. The cultures 

were diluted at a hundred-fold in 40 ml of LB media with chloramphenicol in 6 different flasks 

per each one of the seven strains. Flasks were kept at 37ºC in a shaking incubator and the 

optical density (OD600) was measured to assess growth every 30 minutes for a total of 10 
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hours. IPTG in a final concentration of 0.5 mM to induce gene expression was added to three of 

the six flasks per strain when the OD600 was measured at approximately at 0.15.  
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Figures 

 

Figure 4.1.  Association network maps showing predicted TA systems in Synechococcus 

strains isolated from the Chesapeake Bay estuary (E), coastal water (C), freshwater (FW), and 

open ocean (O). Putative toxins (red) and antitoxins (green) are represented by nodes with their 

frequency of association denoted by the stroke of connection.   
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Figure 4.2.  Amino acid alignments of select toxin-antitoxin systems in Chesapeake Bay 
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Synechococcus strains.  A) Eight vapC toxin amino acid alignments sourced from CB0101 

resulting in three conserved residues (E, L, and A denoted by *).  B) Five BrnT toxin amino acid 

alignments from CB0101, CBW1108, CBW1006, and CBW1004 resulting in only two conserved 

residues (R and H denoted by *).   
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Figure 4.3.  Circular genome maps of Chesapeake Bay Synechococcus strains and reference 

strains with toxin antitoxin systems highlighted.   
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Figure 4.4.  Growth of E. coli K12 which contained toxin relE1, antitoxin relB2, toxin-antitoxin 

(relE1/relB2) or control vector pCA24N (no gene inserted) with IPTG (dash line) or without IPTG 

(solid line). (A) Induced toxin strain represented by K12:relE1I, (B) induced antitoxin strain 

represented by K12:relB2I. (C) Induced strain expressing toxin-antitoxin complex represented 

by K12:relB2/relE1I. K12 strains represent the control strain E coli K12 ER2738 containing the 

empty vector pCA24N, induced control strain represented by K12I. 
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Figure 4.5.  Growth of E. coli K12 which contained toxin vapC1, antitoxin vapB1, toxin-

antitoxin (vapB1/vapC1) or control vector pCA24N (no gene inserted) with IPTG (dash line) or 

without IPTG (solid line). (A) Induced toxin strain represented by K12:vapC1, (B) induced 

antitoxin strain represented by K12:vapB1. (C) Induced strain expressing toxin-antitoxin 

complex represented by K12:vapB1/vapC1. K12 strains represent the control strain E coli K12 

ER2738 containing the empty vector pCA24N, induced control strain represented by K12I. 
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Figure 4.6.  Decision algorithm to determine identity of putative toxin antitoxin systems in 

Synechococcus. Type 2 toxin-antitoxins were predicted using TAfinder software. To determine 

their identity these predicted amino acid sequences were queried against NCBI’s Conserved 

Domain Database (CDD). If a known toxin or antitoxin family was predicted, such as vapC/vapB, 

relE/relB, or doc/phd, that traditional name was used. If a less specific, Domain of Unknown 

Function (DUF) or generic name was found, it was used for categorization. 97% of TA pairs 

predicted were able to be categorized this way. However, for the few hypothetical genes, a 

blastp search was used to determine the best category for the putative protein.  
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Figure 4.7.  Various toxin-antitoxin genes amplified from corresponding transformed E. coli 

strains to confirm positive cloning. 
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Tables 

Table 4.1.   Genomic statistics for Chesapeake Bay estuary, coastal, freshwater, and 

open ocean Synechococcus. 
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Synechococcus 
strain name Status Isolation Location Habitat Reference Contigs 

Length 
(bp) 

GC % 
Content 

Gene 
Number ncRNA Accession Number 

Putative 
TA Pairs 

TA % 
of 

CDS 

Network Map 
Association 
Connections 

CB0101 Complete 
Chesapeake Bay, 

Maryland Estuary 

Marsan et al. 
2017; Fucich et 

al. 2019 1 2,789,657 64.1 3,128 76 CP039373 22 1.41 12 

CB0205 Draft 
Chesapeake Bay, 

Maryland Estuary 
Marsan et al. 

2017 78 2,427,308 63 2,788 47 GCA_000179255.1 1 0.07 1 

CBW1002 Complete 
Chesapeake Bay, 

Maryland Estuary This study 1 3,854,122 65.15 3,994 61 CP060398 29 1.45 17 

CBW1004 Complete 
Chesapeake Bay, 

Maryland Estuary This study 1 3,672,318 67.35 3,668 83 CP060397 45 2.45 26 

CBW1006 Complete 
Chesapeake Bay, 

Maryland Estuary This study 1 3,860,130 65.08 4,047 62 CP060396 54 2.67 27 

CBW1107 Complete 
Chesapeake Bay, 

Maryland Estuary This study 1 3,202,093 66.3 3,456 50 CP064908 29 1.68 13 

CBW1108 Complete 
Chesapeake Bay, 

Maryland Estuary This study 1 3,226,220 64.35 3,744 48 CP060395 80 4.27 34 

CC9311 Complete 

Edge of California 
Current, Coast, Pacific 
Ocean USA Coastal 

Palenik et al., 
2006 1 2,606,748 52.5 3,065 46 ASM1458 3 0.20 3 

KORDI-49 Complete 
Marine, South China 

Sea Open Ocean Choi et al. 2009 1 2,585,813 57.6 2,528 54 ASM73757 4 0.32 4 

OmCyn01 Complete 

Ectosymbiont, 
Ornithocercus 

magnificus 
Open Ocean 

Symbiote 
Nakayama et al. 

2019 16 1,878,918 48.5 2,099 44 GCA_007996965.1 0 0.00 0 

PCC6301 Complete 
Freshwater Texas, USA 

1952 Freshwater Sugita et al. 2007 1 2,696,255 55.5 2,525 47 ASM1006 10 0.79 9 

PCC6307 Complete 
Freshwater lake 
Wisconsin, USA 1949 Freshwater 

Havercamp et al. 
2009 1 3,342,364 68.71 3,439 42 PRJNA158695 42 2.44 24 

WH7803 Complete Marine, Sargasso Sea Open Ocean Six et al., 2007 1 2,366,980 60.1 2,533 54 ASM6350 1 0.08 1 

WH7805 
Permanent 

Draft Marine, Sargasso Sea Open Ocean Six et al. 2007 13 2,627,046 57.6 2,937 47 AAOK01000000 0 0.00 0 

WH8102 Complete Marine, Sargasso Sea Open Ocean Rocap et al. 2002 1 2,434,428 59.4 2,513 55 ASM19597 15 1.19 9 
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Table 4.2. Significant upregulation (red) or down-regulation (blue) of toxin-antitoxin systems of 

CB0101 under various stress conditions. Transcriptomic data were obtained from Marsan et al. 2017. 

Toxins are represented by italics; antitoxins are represented in bold. Significance is based on the 

threshold of p<0.01 and a minimum foldchange of two. 
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 locus TA family Toxin Activity 

Nitrogen 
Deplete RNA-

Seq 

Phosphate 
Deplete RNA-

Seq 
Zinc Toxicity 

RNA-Seq Original Publication 

T gsyne_1326 relEparEyoeB Cleavage of 
ribosome-bound 

mRNA 

2.2 1.5 2.1 Marsan et al., 2017 

AT gsyne_1325 phdyefM -1.6 -1.4 -1.3 Marsan et al., 2017 

T gsyne_1792 PIN_vapC 

Cleavage of tRNA 

1.8 1.2 2.7 Marsan et al., 2017 

AT gsyne_1794 phdyefM 2.5 1.3 -1.2 Marsan et al., 2017 

T gsyne_1883 relEparEyoeB Cleavage of 
ribosome-bound 

mRNA 

2.3 3.1 10.6 Marsan et al., 2017 

AT gsyne_1882 relB -2.5 1.2 1.1 Marsan et al., 2017 

T gsyne_2550 PIN_vapC 

Cleavage of tRNA 

3.2 2.3 2.0 This study 

AT gsyne_2551 DUF433 3.3 2.0 -2.7 This study 
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Table 4.3:  Primer pairs designed for the amplification and cloning of the toxin and antitoxin genes. 

Strain name was determined for each one of the plasmids after transformation into E. coli K12 ER2738. 
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Genes Forward primer Reverse primer Type Strain name 

relB2 GCCGCTCAGGTGACGGCCCGACT CCATCCGCAGCGAGCAGCACA Antitoxin K12:relB2 

relE1 GCCTGCTGCTCGCTGCGGATTAA CCGCGATACACCTCCTTGCGAT Toxin K12:relE1 

relB2/ relE1 GCCGCTCAGGTGACGGCCCGACT CCGCGATACACCTCCTTGCGAT Antitoxin-

toxin 

complex 

K12:relB2/relE1 

vapB1 GCCACAGCGTCATTGCCTAGCCG CCCAACCCCTCACGGGTCTGGA Antitoxin K12:vapB1 

vapC1 GCCATCTATCTGCTCGACACCAA CCTGGTTGCTGCACCCAATCCA Toxin K12:vapC1 

vapB1/vapC1 GCCACAGCGTCATTGCCTAGCCG CCTGGTTGCTGCACCCAATCCA Antitoxin-

toxin 

complex 

K12:vapB1/vapC1 
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Chapter V: Conclusions and Future Directions 
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Conclusions 

Synechococcus spp. are a vital component in nearly all aquatic environments. Because of 

their abundance and ubiquity, they contribute significantly to global carbon sequestration and 

are vital for primary productivity in aquatic ecosystems (Dvořák et al., 2014b; Li & Url, 1994). 

Their presence in open oceans is well studied because of their cohabitation with their related 

genus, the Prochlorococcus. The vast nature of the open ocean pelagic makes its global 

ecological significance clear (Flombaum et al., 2013). Therefore, the majority of 

picocyanobacterial research was focused on oceanic strains. The open ocean, although vast, is 

only one of the seemingly countless habitats of the Synechococcus.  

Unlike Prochlorococcus, Synechococcus has a ubiquitous distribution, they can be found 

in the open ocean, on the coast, in freshwater and estuarine systems, frigid polar waters, and 

even in hot springs. Synechococcus thrives in the hot and the cold; the saline and the fresh; and 

every condition in between. Synechococcus has the apparent capability to adapt and tolerate 

nearly any environmental condition. This ability to conform to the conditions of almost any 

aquatic environment may be possible through vast genome plasticity (Callieri, 2017), a 

character that is not present in the Prochlorococcus (Dufresne et al., 2005).  

Genetic elements for plasticity are often mobile genome islands, transposons, plasmids, 

etc. Other frequent members of the mobilome are toxin-antitoxin (TA) systems which are often 

exchanged through horizontal gene transfer (Guglielmini & Van Melderen, 2011; Van Melderen, 

2010). These elements are observed in Synechococcus, but never in Prochlorococcus. This is of 

particular interest given the vastly different global distributions of the genera. The striking 
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difference of type II TA system presence and absence among the picocyanobacteria was the 

first concept introduced in Chapter 2.  

TA systems may be helpful for environmental tolerance in Synechococcus. First, TA 

systems have a strong link to the general bacterial stringent response (Habib et al., 2018; 

Maisonneuve & Gerdes, 2014). Second, several TA systems have been shown to be upregulated 

during experimental high light exposure and simulated oxidative stress in situ in Synechococcus 

CB0101 (D. Marsan et al., 2017; D. W. Marsan, 2016). Lastly, putative TA systems are more 

common in strains that are endemic to more volatile coastal and estuarine environments 

(Fucich & Chen, 2020, Chapter 2). For these reasons, the abundance of TA systems in 

Synechococcus and conversely the absence from Prochlorococcus genomes is almost intuitive. 

The theme of generalists vs. specialists has been explored among the coastal and pelagic 

Synechococcus (Stuart et al., 2009), and on a more broad scale of the picocyanobacteria, 

exemplified by Synechococcus and Prochlorococcus (Dufresne et al., 2008). Generalists like 

Synechococcus are even capable of growing in frigid waters of the Chesapeake Bay and the 

Bornholm Sea. Several strains have been isolated from the Baltimore Inner Harbor in the 

Chesapeake Bay during winter months which cluster together with Cyanobium spp. (Xu et al., 

2015).  

Chesapeake Bay winter (CBW) Synechococcus strains represent several unique clades 

including the Bornholm Sea cluster, subalpine cluster II, CB7 (winter II) clade, and the novel 

CBW1004 clade. These representative strains share many genomic features described in 

Chapter 3. Among them are homologs including desaturases, chaperones, and transposases 

implicated in cold adaptation and general stress response. The Bornholm Sea cluster strains 
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CBW1002 and CBW1006 contain some of the largest genomes among Synechococcus (~3.8 Mb), 

and they share most homologs between them. Overall, CBW strains share more homologs 

among themselves than with subcluster 5.2 representative CB0101 and WH8102 from 

subcluster 5.1. Comparative genomics of CBW strains with other reference strains was 

presented in Chapter 3. CBW strains contain high number of fatty acid desaturase, transposase, 

and chaperone genes as examples, and these genomic features may allow them to survive cold 

or other stress conditions. Homologs shared between all Chesapeake Bay strains (CBW1002, 

CBW1004, CBW1006, CBW1107, CBW1108, and CB0101), but not pelagic strains from 

subcluster 5.1 could indicate genes implicated in survival in turbulent estuaries like the 

Chesapeake Bay.  

To better understand cold adaptation by CBW strains, multiple methods were used to 

differentiate them from freshwater, coastal, and open ocean strains in Chapter 3. Cold stress 

response genes were queried using amino acid similarity and automatic annotation from the 

RAST and PATRIC servers (Aziz et al., 2008; Brettin et al., 2015; Davis et al., 2020; Overbeek et 

al., 2014). Amino acid sequences of interest were sourced from genes induced by cold shock in 

Synechocystis PCC6803 (Sinetova & Los, 2016) and canonical bacterial cold response genes in E. 

coli (Barria et al., 2013). In some cases, methods were repeated from work searching for cold 

response genes in the Antarctic Synechococcus strain SynAce01 (CS-601) (Tang et al., 2019). 

CBW strains tend to have high amount or cold implicated genes similar to freshwater strains, 

these include desaturases, chaperones, and transposases. In general, coastal and open ocean 

Synechococcus tend to have fewer these cold or stress response genes. In many cases, CBW 

strains contained duplicates of these genes. In Chapter 3, a highly conserved transposase of 
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interest (IS5 Family transposase) has nearly 20 duplications according to amino acid sequence 

homology (Figure 3.3) in CBW strains, but only 1 and 2 copies in WH8101 and SynAce01, 

respectively.  

The high abundance of TA systems predicted in CBW strains is described in Chapter 4. 

CBW strains contain an unusually high amount of TA pairs compared to other Synechococcus 

strains. In the case of CBW1108, it contains nearly twice as many (n=80) putative TA pairs found 

in the next highest Synechococcus, freshwater strains PCC6307 and PCC6312 (n=42). CBW TA 

systems increase complexity with abundance. Strains with the most putative TA pairs, namely 

CBW1108 and CBW1006, have the most intricate association networks with several ‘hub’ toxins 

connecting to several different antitoxins. Strains with fewer TA pairs have more simple 

association network diagrams with fewer connections. Toxins often contain a conserved 

domain, and pair in a promiscuous manner with multiple antitoxins containing different 

conserved domains. These promiscuous toxins act as ‘hubs’ and in nearly all association maps 

are VapC and RelE, in few cases the nucleotidyl transferase NT_KNT. The nature of different 

antitoxins acting as the antidote to these promiscuous toxins supports the mix and match 

hypothesis (Fasani & Savageau, 2015; Guglielmini & Van Melderen, 2011).  

In summary, the discovery of TA systems in Synechococcus is still relatively new (~10 

years); no systematic approach was applied to their study in picocyanobacteria until this work.  

The stark contrast of the near ubiquity of TA systems in Synechococcus and the complete 

absence in Prochlorococcus is of note due to their differential roles in ecological theory. The 

complete genome sequences of five Chesapeake Bay winter Synechococcus show that estuarine 

Synechococcus contain rich cold and stress response genes. The large genome size and high 
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number of transposase genes enable more genomic plasticity for the Chesapeake Bay winter 

Synechococcus. The incorporation and retention of TA systems and transposases may be a 

contributing genetic factor that allows Synechococcus to fill the role of a generalist. 

Prochlorococcus, as a specialist that is dominant in stable, pelagic environments, has no use for 

persister cell formation. Further, the tight coupling of abundant and diverse TA pairs in strains 

inhibiting highly variable environments suggests the importance of TA systems to expanded 

environmental tolerance.    
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Future Directions 

 Current data suggests that some TA systems in Synechococcus are active when exposed 

to stressful conditions. In CB0101, significant upregulation of relE occurred during experimental 

high light exposure (D. Marsan et al., 2017). Similarly, VapC and other toxins were upregulated 

during simulated oxidative stress. These results suggest these toxins are active and may play a 

role in growth retardation and the formation of a subsequent persister state in Synechococcus 

CB0101. Confirmation of TA systems in foreign hosts is a common method to verify 

functionality. Few TA pairs from CB0101 have been tested and verified in an E. coli host, and it 

is necessary to confirm what proportion of these putative TA systems are functional. 

Quantitative PCR of putative TA systems under simulated stress conditions could be used to 

find likely candidates. Once identified, these select TA pairs could be transformed into a foreign 

E. coli host to verify activity, as demonstrated in supplemental material of Chapter 4.   

 Upon prediction and careful examination, several peculiar toxin antitoxin systems with 

unique organizations were found in CB0101 and other Chesapeake Bay Synechococcus strains.  

Interesting TA loci were organized in non-traditional fashion, like the gsyne_618, gsyne_619, 

gsyne_620 cassette in CB0101. This apparently contains a putative antitoxin flanked by two 

toxin genes. This is atypical for the traditional two gene toxin-antitoxin. Gene activity could be 

confirmed in several ways, including transformation to a foreign host as described above.  

Confirmation of activity could elucidate, listed in order of likelihood, if A) one toxin is active and 

the other is vestigial, B) both toxins are inactive and the TA system is not functional, or C) this is 

a truly unique TA pair with two toxins negated by one antitoxin.   
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 A more in-depth genome wide comparisons of Chesapeake Bay strains would give 

insight into estuarine Synechococcus genomic adaptation. By identifying and assessing the pan 

genome, or the collection of genes shared by all strains of a defined group, the most important 

genes needed to survive in estuarine systems could be described. Given the size and unique 

seasonal conditions of the Chesapeake Bay, this would be an excellent opportunity to see what 

genes are important for survival in estuaries and in cold water temperatures. Further analysis 

and identification of cold or stress response genes are still needed to fully understand the 

diversity and phylogenetic relationship of these genes between CBW strains and other 

cyanobacteria. Whole genome comparison can give insight to the genetic evolution, potential 

horizontal gene transfer and synteny of Chesapeake Bay genomes.   

In a similar way that a short list of potentially active TA systems can be made by 

inducing oxidative stress and measuring gene expression, qPCR can be used to measure the 

activity of cold response genes. The list of ~30 cold induced genes in CBW and their frequency 

in each genome (Table 3.2, 3.3, and 3.4) can be used to identify transcripts of interest. For 

example, it will be interesting to learn more about the role and interaction of fatty acid 

desaturase, chaperone, and transposase genes in cold adaptation of Chesapeake Bay winter 

picocyanobacteria. CBW strains can be exposed to cold temperatures (~4⁰C) for temporary and 

extended periods of time and RNA expression of the cold induced genes of interest can be used 

to infer activity. Once potentially active genes are identified, antibodies for the few candidate 

strains can be produced to confirm protein production.  
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Appendix I 
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### Supplementary Code 

##TAfinderCommandRecord 

scp -r PredictedSynTASystems dfucich@130.85.169.195:/data1/dfucich/ 

 

ssh dfucich@130.85.169.195 

 

#I am getting a permission denied error in the server 

 

I retried the copy on a Linux machine, and I have no issues with 
permissions 

scp -r PredictedSynTAPairs dfucich@130.85.169.195:/data1/dfucich/ 

 

cat *all_TA_proteins.fas > AllPredictedSynTAPairs.fas 

 

nice -n 14 nohup blastp -query 
PredictedSynTAPairs/AllPredictedSynTAPairs.fas -subject 
PredictedSynTAPairs/AllPredictedSynTAPairs.fas -out 
PredictedSynTAPairs/Results -outfmt "6" & 

 

 

 

____________________________________________ 

 

cat *all_TA_proteins.fas > AllPredictedSynTAPairs.fas 

blastp -query PredictedSynTAPairs/AllPredictedSynTAPairs.fas -subject 
ncnr -out PredictedSynTAPairs/Results -outfmt "6" 

blastp -db <nr> -query 
<PredictedSynTAPairs/AllPredictedSynTAPairs.fas> -out <outfile> -
outfmt "6 qseqid sseqid"   

 

 

blastn -query transcripts.fa -out transcripts.blast.txt -task 
megablast -db refseq_rna -num_threads 12 -evalue 1e-10 -
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best_hit_score_edge 0.05 -best_hit_overhang 0.25 -outfmt 7 -
perc_identity 50 -max_target_seqs 1 & 

 

____________________________________________________ 

 

scp dfucich@130.85.169.195:/data1/dfucich/PredictedSynTAPairs/Results 
~/ 

 

grep TA_1_T_* PredictedSynTAPairs/AllPredictedSynTAPairs.fas 

 

Remove Redundant results 

awk '$1!=$2' Results > ResultsNonRedundant 

 

or if you want to just print Redundant results 

awk '$1==$2' Results > ResultsRedundant 

 

 

scp dfucich@130.85.169.195:/data1/dfucich/PredictedSynTAPairs/Result* 
~/ 

 

Uploaded CB0101 to Island viewer 

 

 

To Do To make sense of my data 

plot evalues as a histogram to find a reasonable cutoff 

plot all evalues against themselves 

 

Future, to get better data 

1. Separate all T and all ATs 

2. Blast these against each other 
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Ernest plan 

3. pick a few indicative ones or interesting TAs and blast them 
against your SynTADB, find what is interesting, plot evalue pident and 
learn what you could begin to consider ‘families’ 

 

CB0101 relE and relB 

but also, the HipA in all of the CBW strains 

 

 

upload all of the TAs of interest from the local machine to the  

scp -r TADB dfucich@130.85.169.195:/data1/dfucich/ 

 

so, let's get a look at our e values and particularly when our evalues 
fall off when we look at just a few of our "TA's of interest", with 
regard to the TADB.   

I will also need to separate the "TADB" into really a toxin database: 
"TDB" and an antitoxin database "ATDB" 

 

grep -A1 "_T_" AllPredictedSynTAPairsNoBreaks.fas > TDB 

to remove line breaks 

#this worked well except I have to remove the "enter" from the fasta 
file, as it only writes 1 line 

 

#this works removes the break 

awk '!/^>/ { printf "%s", $0; n = "\n" } /^>/ { print n $0; n = "" } 
END { printf "%s", n }' input.fasta > Output.fasta 

 

#this also  

awk '/^>/{print s? s"\n"$0:$0;s="";next}{s=s 
sprintf("%s",$0)}END{if(s)print s}' file > out 

 

 

#now....SEE UPDATE BELOW!!!!! 
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grep -A1 "_T_" AllPredictedSynTAPairsNoBreaks.fas > TDB 

#ugh this prints a -- between some of the lines SEE UPDATE BELOW!!!!! 

 

#sweet so this is an undocumented case where you can modify grep to 
not print out a group separator 

grep -A1 --no-group-separator "_T_" AllPredictedSynTAPairsNoBreaks.fas 
> TDB 

 

#now for ATDB 

grep -A1 --no-group-separator "_AT_" 
AllPredictedSynTAPairsNoBreaks.fas > ATDB 

 

#now let’s go ahead and blastp each of the "interesting' TA systems 
against out TDB and ATDB 

 

#I would like: -outfmt "6 qseqid sseqid pident length evalue bitscore 
sseq" 

 

blastp -query TAsOfInterest/TOXINS/TA_14_T_-CB0101_relE.txt -subject 
PredictedSynTAPairs/TDB -out TAsOfInterest/TOXINS/CB0101relEInTDB -
outfmt "6" 

 

blastp -query TAsOfInterest/Antitoxins/TA_12_AT_-
CBW1002_Cognate_hipA.fsa -subject PredictedSynTAPairs/ATDB -out 
TAsOfInterest/Antitoxins/CBW1002_TA_12_AT_-CBW1002_Cognate_hipAInTDB -
outfmt "6 qseqid sseqid pident length evalue bitscore sseq" 

blastp -query TAsOfInterest/Antitoxins/TA_12_AT_-
CBW1002_Cognate_hipA.fsa -subject PredictedSynTAPairs/ATDB -out 
TAsOfInterest/Antitoxins/CBW1002_TA_12_AT_-CBW1002_Cognate_hipAInTDB -
outfmt "6 qseqid sseqid pident length evalue bitscore sseq" 

 

#I went through and manually blastp all of CB0101 putative TA pairs 
and annotated them in the .fas file to aid in my blastp against the 
TDB and ATDB 

 

#can I use a multifasta file to blastp and get a reasonable output? 
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blastp -query PredictedSynTAPairs/ -subject PredictedSynTAPairs/TDB -
out TAsOfInterest/TOXINS/CB0101relEInTDB -outfmt "6" 

 

#copied "annotated' fasta to server to replace old fasta 

scp IMETServerFiles/Synechococcus\ sp.\ CB0101_all_TA_proteins.fas 
dfucich@130.85.169.195:/data1/dfucich/PredictedSynTAPairs 

 

#linearize 

awk '!/^>/ { printf "%s", $0; n = "\n" } /^>/ { print n $0; n = "" } 
END { printf "%s", n }' PredictedSynTAPairs/Synechococcus\ sp.\ 
CB0101_all_TA_proteins.fas > PredictedSynTAPairs/Synechococcus\ sp.\ 
CB0101_all_TA_proteinsNoBreaks.fas 

 

#separate CB0101 toxins 

grep -A1 --no-group-separator "_T_" PredictedSynTAPairs/Synechococcus\ 
sp.\ CB0101_all_TA_proteinsNoBreaks.fas > 
TAsOfInterest/TOXINS/SynCB0101Toxins 

 

#multifasta to check all  

blastp -query TAsOfInterest/TOXINS/SynCB0101Toxins -subject 
PredictedSynTAPairs/TDB -out 
TAsOfInterest/TOXINS/CB0101LikeToxinsSynTDB -outfmt "6 qseqid sseqid 
pident length evalue bitscore sseq" 

 

#now let’s do the same for ATs 

grep -A1 --no-group-separator "_AT_" 
PredictedSynTAPairs/Synechococcus\ sp.\ 
CB0101_all_TA_proteinsNoBreaks.fas > 
TAsOfInterest/Antitoxins/SynCB0101Antitoxins 

 

blastp -query TAsOfInterest/Antitoxins/SynCB0101Antitoxins -subject 
PredictedSynTAPairs/ATDB -out 
TAsOfInterest/Antitoxins/CB0101LikeAntitoxinsSynATDB -outfmt "6 qseqid 
sseqid pident length evalue bitscore sseq" 
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#let’s download these 

scp 
dfucich@130.85.169.195:/data1/dfucich/TAsOfInterest/TOXINS/CB0101LikeT
oxinsSynTDB ~/IMETServerFiles 

 

scp 
dfucich@130.85.169.195:/data1/dfucich/TAsOfInterest/Antitoxins/CB0101L
ikeAntitoxinsSynATDB ~/IMETServerFiles 

 

#i used R to plot the e values for these and now I want to just 
extract ones with an acceptable e value  

#now let's set that evalue to something highly specific let’s go .0001 

blastp -query TAsOfInterest/TOXINS/SynCB0101Toxins -subject 
PredictedSynTAPairs/TDB -out 
TAsOfInterest/TOXINS/CB0101LikeToxinsSynTDBStringent -outfmt "6 qseqid 
sseqid pident length evalue bitscore sseq" -evalue .0001 

 

blastp -query TAsOfInterest/Antitoxins/SynCB0101Antitoxins -subject 
PredictedSynTAPairs/ATDB -out 
TAsOfInterest/Antitoxins/CB0101LikeAntitoxinsSynATDBStringent -outfmt 
"6 qseqid sseqid pident length evalue bitscore sseq" -evalue .0001 

 

#let's find how many of each we have 

awk '{A[$1]++}END{for(i in A)print i,A[i]}' 
TAsOfInterest/TOXINS/CB0101LikeToxinsSynTDBStringent 

 

#obviously the nucleotidyltransferase is most popular, VapC being a 
close second 

awk '{A[$1]++}END{for(i in A)print i,A[i]}' 
TAsOfInterest/TOXINS/CB0101LikeToxinsSynTDBStringent | sort -rn -k 2 > 
TAsOfInterest/TOXINS/CB0101LikeToxinsSynTDBStringentCount 

 

awk '{A[$1]++}END{for(i in A)print i,A[i]}' 
TAsOfInterest/Antitoxins/CB0101LikeAntitoxinsSynATDBStringent | sort -
rn -k 2 > 
TAsOfInterest/Antitoxins/CB0101LikeAntitoxinsSynATDBStringentCount 
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#convert a blastp output to a fasta using awk, take column 2 and 7 and 
make a fasta from this 

awk '{print ">"$2"\n"$7}' 
TAsOfInterest/TOXINS/CB0101LikeToxinsSynTDBStringent  > 
tabtofastaseqs.fa 

 

#but let's be specific about which we want, so let's pipe it up to 
specify 

grep "TA_13_T_-CB0101_VapC" 
TAsOfInterest/TOXINS/CB0101LikeToxinsSynTDBStringent | awk '{print 
">"$2"\n"$7}'  > 
TAsOfInterest/TOXINS/TA_13_T_CB0101_VapCtabtofastaseqs.fa 

#so, with this fasta file I can do an alignment, find conserved areas, 
and make a phylogenetic tree 

 

grep "TA_17_AT_-CB0101_PhD/YefM" 
TAsOfInterest/Antitoxins/CB0101LikeAntitoxinsSynATDBStringent | awk 
'{print ">"$2"\n"$7}'  > 
TAsOfInterest/Antitoxins/TA_17_AT_CB0101_PhDYefMtabtofastaseqs.fa 

 

#so, I need to be much more stringent because I feel i am getting many 
many false positives.  I have a plan to reduce these by maximizing 
stringency with e values, and by making the minimum sequence length be 
65 amino acids as per (Brown, 2003 A Novel Family of Escherichia coli 
Toxin-Antitoxin Gene Pairs 

) 

#when I was aligning these using phylogeny.fr and mega7, I had some 
poor alignments and therefore trees. 

If i am stringent in prediction, I can be less stringent when 
comparing the predicted Toxins and Antitoxins in Synechococcus 

awk '{print $7}' 
TAsOfInterest/Antitoxins/CB0101LikeAntitoxinsSynATDBStringent | wc -m  

 

awk '{print $7}' 
TAsOfInterest/Antitoxins/CB0101LikeAntitoxinsSynATDBStringent | awk 
'{print length}' | sort -rn 
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#11.25.2019 

#compiled the definitive list of NCBI available Syn genomes with TA 
putative pairs.  allSyn33 is the folder 

cat *all_TA_proteins.fas > AllPredictedSynTAPairsNCBI.fas 

 

#separate  toxins 

grep -A1 --no-group-separator "_T_"  AllPredictedSynTAPairsNCBI.fas > 
AllSynToxins.fas 

 

#now let’s do the same for ATs 

grep -A1 --no-group-separator "_AT_" AllPredictedSynTAPairsNCBI.fas > 
AllSynAntiToxins.fas 

 

#error, pAQ6 did not have _T_ or _AT_ it only had _T and _AT so this 
modification makes it correct see below 

 

dfucich@bioinfo:~/all33Syn/AllPredictedSynTAPairs$ grep -A1 --no-
group-separator "_T"  AllPredictedSynTAPairsNCBI.fas > 
AllSynToxins.fas 

dfucich@bioinfo:~/all33Syn/AllPredictedSynTAPairs$ grep -A1 --no-
group-separator "_AT" AllPredictedSynTAPairsNCBI.fas > 
AllSynAntiToxins.fas 

 

#I am onto comparing several of the CBW, CB0101 and CB0205 to other 
strains more closely.  Namely, Marine Syn WH8102 and KORDI-49 and 
Freshwater strains PCC6307 and PCC6301.  I digress. I am going to redo 
these "other" Synechococcus strains so that I have the most up to date 
NCBI CDD.   

#So, I will once again be parse out the toxins from the antitoxins and 
make a "otherTDB.fas" and "otherATDB.fas" so to speak.   

 

grep -A1 --no-group-separator "_T_"  
OtherSynTAsystemsMarineWH8102_KORDI49_FW_PCC6307_PCC6301.fas > 
otherTDB.fas 
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grep -A1 --no-group-separator "_AT_"  
OtherSynTAsystemsMarineWH8102_KORDI49_FW_PCC6307_PCC6301.fas > 
otherATDB.fas 
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##CB0101andCBWOrthologCommandRecord 

#File of results compiled in RBHSynechocystisPCC6803CIDinSynechococcus 

 

#quick look at general orthologs between CB0101 and CBW  

#blastp proteomes using reciprocal blast hits 

 

#1108 

blastp -query FilesForDucTape/CB0101_6666666.413450.faa -subject 
FilesForDucTape/CBW1108.Gene.pep.fasta -soft_masking "false" -out 
CB0101-CBW1108 -evalue 1e-10 -outfmt "6" 

 

blastp -query FilesForDucTape/CBW1108.Gene.pep.fasta -subject 
FilesForDucTape/CB0101_6666666.413450.faa  -soft_masking "false" -out 
CBW1108-CB0101 -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py CB0101-CBW1108 CBW1108-CB0101 RBHCB0101-
CBW1108.csv 

 

 

wc -l RBHCB0101-CBW1108.csv 

 

 

#1002 

blastp -query FilesForDucTape/CB0101_6666666.413450.faa -subject 
FilesForDucTape/CBW1002.Gene.pep.fasta -soft_masking "false" -out 
CB0101-CBW1002 -evalue 1e-10 -outfmt "6" 

 

blastp -query FilesForDucTape/CBW1002.Gene.pep.fasta -subject 
FilesForDucTape/CB0101_6666666.413450.faa  -soft_masking "false" -out 
CBW1002-CB0101 -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py CB0101-CBW1002 CBW1002-CB0101 RBHCB0101-
CBW1002.csv 
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wc -l RBHCB0101-CBW1002.csv 

 

 

 

#1004 

blastp -query FilesForDucTape/CB0101_6666666.413450.faa -subject 
FilesForDucTape/CBW1004.Gene.pep.fasta -soft_masking "false" -out 
CB0101-CBW1004 -evalue 1e-10 -outfmt "6" 

 

blastp -query FilesForDucTape/CBW1004.Gene.pep.fasta -subject 
FilesForDucTape/CB0101_6666666.413450.faa  -soft_masking "false" -out 
CBW1004-CB0101 -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py CB0101-CBW1004 CBW1004-CB0101 RBHCB0101-
CBW1004.csv 

 

 

wc -l RBHCB0101-CBW1004.csv 

 

#1006 

blastp -query FilesForDucTape/CB0101_6666666.413450.faa -subject 
FilesForDucTape/CBW1006.Gene.pep.fasta -soft_masking "false" -out 
CB0101-CBW1006 -evalue 1e-10 -outfmt "6" 

 

blastp -query FilesForDucTape/CBW1006.Gene.pep.fasta -subject 
FilesForDucTape/CB0101_6666666.413450.faa  -soft_masking "false" -out 
CBW1006-CB0101 -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py CB0101-CBW1006 CBW1006-CB0101 RBHCB0101-
CBW1006.csv 

 

 

wc -l RBHCB0101-CBW1006.csv 
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#how about cb0101 to cb0101 

#CB0101 

blastp -query FilesForDucTape/CB0101_6666666.413450.faa -subject 
FilesForDucTape/CB0101_6666666.413450.faa -soft_masking "false" -out 
CB0101-CB0101 -evalue 1e-10 -outfmt "6" 

 

blastp -query FilesForDucTape/CB0101_6666666.413450.faa -subject 
FilesForDucTape/CB0101_6666666.413450.faa  -soft_masking "false" -out 
CB0101-CB0101 -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py CB0101-CB0101 CB0101-CB0101 RBHCB0101-CB0101.csv 

 

 

wc -l RBHCB0101-CB0101.csv 

 

#how about WH8102 to cb0101 

#WH8102 

blastp -query FilesForDucTape/CB0101_6666666.413450.faa -subject 
WH8102/8102ProteinsGCF_000195975.1_ASM19597v1_protein.faa  -
soft_masking "false" -out CB0101-WH8102 -evalue 1e-10 -outfmt "6" 

 

blastp -query 
WH8102/8102ProteinsGCF_000195975.1_ASM19597v1_protein.faa -subject 
FilesForDucTape/CB0101_6666666.413450.faa  -soft_masking "false" -out 
WH8102-CB0101 -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py CB0101-WH8102 WH8102-CB0101 RBHWH8102-CB0101.csv 

 

wc -l RBHWH8102-CB0101.csv 
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#cystisPCC6803 

blastp -query FilesForDucTape/CB0101_6666666.413450.faa -subject 
cystis6803GCF_000009725.1_ASM972v1_protein.faa  -soft_masking "false" 
-out CBProteomeRBH/CB0101-cystis -evalue 1e-10 -outfmt "6" 

 

blastp -query cystis6803GCF_000009725.1_ASM972v1_protein.faa -subject 
FilesForDucTape/CB0101_6666666.413450.faa   -soft_masking "false" -out 
CBProteomeRBH/cystis-CB0101 -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py CBProteomeRBH/CB0101-cystis CBProteomeRBH/cystis-
CB0101 CBProteomeRBH/RBHcystis-CB0101.csv 

 

wc -l RBHcystis-CB0101.csv 

 

#After doing some organization, I put all of the Gene.pep.fasta's in 
"Proteomes" and all of the Ortholog files will go into "OrthologsRBH" 

# so, as a result the above command is a bit clunky but hopefully that 
gets better below 

 

#let’s get started with cystisPCC6803 

#cystisPCC6803-WH8102 

 

blastp -query Proteomes/WH8102.Gene.pep.fasta -subject 
Proteomes/cystisPCC6803.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/WH8102-cystisPCC6803.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/cystisPCC6803.Gene.pep.fasta -subject 
Proteomes/WH8102.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/cystisPCC6803-WH8102.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/cystisPCC6803-WH8102.txt 
OrthologsRBH/WH8102-cystisPCC6803.txt OrthologsRBH/RBHWH8102-
cystisPCC6803.csv 

 

wc -l OrthologsRBH/RBHWH8102-cystisPCC6803.csv 
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#cystisPCC6803-CBW1108 

 

blastp -query Proteomes/CBW1108.Gene.pep.fasta -subject 
Proteomes/cystisPCC6803.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1108-cystisPCC6803.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/cystisPCC6803.Gene.pep.fasta -subject 
Proteomes/CBW1108.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/cystisPCC6803-CBW1108.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/cystisPCC6803-CBW1108.txt 
OrthologsRBH/CBW1108-cystisPCC6803.txt OrthologsRBH/RBHCBW1108-
cystisPCC6803.csv 

 

wc -l OrthologsRBH/RBHCBW1108-cystisPCC6803.csv 

 

#cystisPCC6803-CBW1002 

 

blastp -query Proteomes/CBW1002.Gene.pep.fasta -subject 
Proteomes/cystisPCC6803.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1002-cystisPCC6803.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/cystisPCC6803.Gene.pep.fasta -subject 
Proteomes/CBW1002.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/cystisPCC6803-CBW1002.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/cystisPCC6803-CBW1002.txt 
OrthologsRBH/CBW1002-cystisPCC6803.txt OrthologsRBH/RBHCBW1002-
cystisPCC6803.csv 

 

wc -l OrthologsRBH/RBHCBW1002-cystisPCC6803.csv 

 

#cystisPCC6803-CBW1004 
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blastp -query Proteomes/CBW1004.Gene.pep.fasta -subject 
Proteomes/cystisPCC6803.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1004-cystisPCC6803.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/cystisPCC6803.Gene.pep.fasta -subject 
Proteomes/CBW1004.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/cystisPCC6803-CBW1004.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/cystisPCC6803-CBW1004.txt 
OrthologsRBH/CBW1004-cystisPCC6803.txt OrthologsRBH/RBHCBW1004-
cystisPCC6803.csv 

 

wc -l OrthologsRBH/RBHCBW1004-cystisPCC6803.csv 

 

#cystisPCC6803-CBW1006 

 

blastp -query Proteomes/CBW1006.Gene.pep.fasta -subject 
Proteomes/cystisPCC6803.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1006-cystisPCC6803.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/cystisPCC6803.Gene.pep.fasta -subject 
Proteomes/CBW1006.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/cystisPCC6803-CBW1006.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/cystisPCC6803-CBW1006.txt 
OrthologsRBH/CBW1006-cystisPCC6803.txt OrthologsRBH/RBHCBW1006-
cystisPCC6803.csv 

 

wc -l OrthologsRBH/RBHCBW1006-cystisPCC6803.csv 

 

#cystisPCC6803-cystisPCC6803 

 

blastp -query Proteomes/cystisPCC6803.Gene.pep.fasta -subject 
Proteomes/cystisPCC6803.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/cystisPCC6803-cystisPCC6803.txt -evalue 1e-10 -outfmt "6" 
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blastp -query Proteomes/cystisPCC6803.Gene.pep.fasta -subject 
Proteomes/cystisPCC6803.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/cystisPCC6803-cystisPCC6803.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/cystisPCC6803-cystisPCC6803.txt 
OrthologsRBH/cystisPCC6803-cystisPCC6803.txt 
OrthologsRBH/RBHcystisPCC6803-cystisPCC6803.csv 

 

wc -l OrthologsRBH/RBHcystisPCC6803-cystisPCC6803.csv 

 

#now 1002 

#CBW1002-CBW1004 

 

blastp -query Proteomes/CBW1002.Gene.pep.fasta -subject 
Proteomes/CBW1004.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1002-CBW1004.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/CBW1004.Gene.pep.fasta -subject 
Proteomes/CBW1002.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1004-CBW1002.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CBW1002-CBW1004.txt 
OrthologsRBH/CBW1004-CBW1002.txt OrthologsRBH/RBHCBW1002-CBW1004.csv 

 

wc -l OrthologsRBH/RBHCBW1002-CBW1004.csv 

 

#CBW1002-CBW1006 

 

blastp -query Proteomes/CBW1002.Gene.pep.fasta -subject 
Proteomes/CBW1006.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1002-CBW1006.txt -evalue 1e-10 -outfmt "6" 
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blastp -query Proteomes/CBW1006.Gene.pep.fasta -subject 
Proteomes/CBW1002.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1006-CBW1002.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CBW1002-CBW1006.txt 
OrthologsRBH/CBW1006-CBW1002.txt OrthologsRBH/RBHCBW1002-CBW1006.csv 

 

wc -l OrthologsRBH/RBHCBW1002-CBW1006.csv 

 

 

#CBW1002-CBW1108 

 

blastp -query Proteomes/CBW1002.Gene.pep.fasta -subject 
Proteomes/CBW1108.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1002-CBW1108.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/CBW1108.Gene.pep.fasta -subject 
Proteomes/CBW1002.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1108-CBW1002.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CBW1002-CBW1108.txt 
OrthologsRBH/CBW1108-CBW1002.txt OrthologsRBH/RBHCBW1002-CBW1108.csv 

 

wc -l OrthologsRBH/RBHCBW1002-CBW1108.csv 

 

##CBW1002-WH8102 

 

blastp -query Proteomes/CBW1002.Gene.pep.fasta -subject 
Proteomes/WH8102.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1002-WH8102.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/WH8102.Gene.pep.fasta -subject 
Proteomes/CBW1002.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/WH8102-CBW1002.txt -evalue 1e-10 -outfmt "6" 
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python3.7 RBH-v1.py OrthologsRBH/CBW1002-WH8102.txt 
OrthologsRBH/WH8102-CBW1002.txt OrthologsRBH/RBHCBW1002-WH8102.csv 

 

wc -l OrthologsRBH/RBHCBW1002-WH8102.csv 

 

##CBW1002-CBW1002 

blastp -query Proteomes/CBW1002.Gene.pep.fasta -subject 
Proteomes/CBW1002.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1002-CBW1002.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/CBW1002.Gene.pep.fasta -subject 
Proteomes/CBW1002.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1002-CBW1002.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CBW1002-CBW1002.txt 
OrthologsRBH/CBW1002-CBW1002.txt OrthologsRBH/RBHCBW1002-CBW1002.csv 

 

wc -l OrthologsRBH/RBHCBW1002-CBW1002.csv 

 

 

#now 1006 with others that are missing 

 

#CBW1004-CBW1006 

 

blastp -query Proteomes/CBW1004.Gene.pep.fasta -subject 
Proteomes/CBW1006.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1004-CBW1006.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/CBW1006.Gene.pep.fasta -subject 
Proteomes/CBW1004.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1006-CBW1004.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CBW1004-CBW1006.txt 
OrthologsRBH/CBW1006-CBW1004.txt OrthologsRBH/RBHCBW1004-CBW1006.csv 
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wc -l OrthologsRBH/RBHCBW1004-CBW1006.csv 

 

 

#CBW1004-CBW1108 

 

blastp -query Proteomes/CBW1004.Gene.pep.fasta -subject 
Proteomes/CBW1108.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1004-CBW1108.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/CBW1108.Gene.pep.fasta -subject 
Proteomes/CBW1004.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1108-CBW1004.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CBW1004-CBW1108.txt 
OrthologsRBH/CBW1108-CBW1004.txt OrthologsRBH/RBHCBW1004-CBW1108.csv 

 

wc -l OrthologsRBH/RBHCBW1004-CBW1108.csv 

 

##CBW1004-WH8102 

 

blastp -query Proteomes/CBW1004.Gene.pep.fasta -subject 
Proteomes/WH8102.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1004-WH8102.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/WH8102.Gene.pep.fasta -subject 
Proteomes/CBW1004.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/WH8102-CBW1004.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CBW1004-WH8102.txt 
OrthologsRBH/WH8102-CBW1004.txt OrthologsRBH/RBHCBW1004-WH8102.csv 

 

wc -l OrthologsRBH/RBHCBW1004-WH8102.csv 
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##CBW1004-CBW1004 

blastp -query Proteomes/CBW1004.Gene.pep.fasta -subject 
Proteomes/CBW1004.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1004-CBW1004.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/CBW1004.Gene.pep.fasta -subject 
Proteomes/CBW1004.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1004-CBW1004.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CBW1004-CBW1004.txt 
OrthologsRBH/CBW1004-CBW1004.txt OrthologsRBH/RBHCBW1004-CBW1004.csv 

 

wc -l OrthologsRBH/RBHCBW1004-CBW1004.csv 

 

#now the rest of to 1006 

 

#CBW1006-CBW1108 

 

blastp -query Proteomes/CBW1006.Gene.pep.fasta -subject 
Proteomes/CBW1108.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1006-CBW1108.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/CBW1108.Gene.pep.fasta -subject 
Proteomes/CBW1006.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1108-CBW1006.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CBW1006-CBW1108.txt 
OrthologsRBH/CBW1108-CBW1006.txt OrthologsRBH/RBHCBW1006-CBW1108.csv 

 

wc -l OrthologsRBH/RBHCBW1006-CBW1108.csv 

 

##CBW1006-WH8102 
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blastp -query Proteomes/CBW1006.Gene.pep.fasta -subject 
Proteomes/WH8102.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1006-WH8102.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/WH8102.Gene.pep.fasta -subject 
Proteomes/CBW1006.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/WH8102-CBW1006.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CBW1006-WH8102.txt 
OrthologsRBH/WH8102-CBW1006.txt OrthologsRBH/RBHCBW1006-WH8102.csv 

 

wc -l OrthologsRBH/RBHCBW1006-WH8102.csv 

 

##CBW1006-CBW1006 

blastp -query Proteomes/CBW1006.Gene.pep.fasta -subject 
Proteomes/CBW1006.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1006-CBW1006.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/CBW1006.Gene.pep.fasta -subject 
Proteomes/CBW1006.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1006-CBW1006.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CBW1006-CBW1006.txt 
OrthologsRBH/CBW1006-CBW1006.txt OrthologsRBH/RBHCBW1006-CBW1006.csv 

 

wc -l OrthologsRBH/RBHCBW1006-CBW1006.csv 

 

#1108 and WH8102, that’s it then also WH102-WH8102 

 

##CBW1108-WH8102 

 

blastp -query Proteomes/CBW1108.Gene.pep.fasta -subject 
Proteomes/WH8102.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1108-WH8102.txt -evalue 1e-10 -outfmt "6" 
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blastp -query Proteomes/WH8102.Gene.pep.fasta -subject 
Proteomes/CBW1108.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/WH8102-CBW1108.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CBW1108-WH8102.txt 
OrthologsRBH/WH8102-CBW1108.txt OrthologsRBH/RBHCBW1108-WH8102.csv 

 

wc -l OrthologsRBH/RBHCBW1108-WH8102.csv 

 

##CBW1108-CBW1108 

blastp -query Proteomes/CBW1108.Gene.pep.fasta -subject 
Proteomes/CBW1108.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1108-CBW1108.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/CBW1108.Gene.pep.fasta -subject 
Proteomes/CBW1108.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1108-CBW1108.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CBW1108-CBW1108.txt 
OrthologsRBH/CBW1108-CBW1108.txt OrthologsRBH/RBHCBW1108-CBW1108.csv 

 

wc -l OrthologsRBH/RBHCBW1108-CBW1108.csv 

 

#and now WH8102-WH8102 

 

##WH8102-WH8102 

blastp -query Proteomes/WH8102.Gene.pep.fasta -subject 
Proteomes/WH8102.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/WH8102-WH8102.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/WH8102.Gene.pep.fasta -subject 
Proteomes/WH8102.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/WH8102-WH8102.txt -evalue 1e-10 -outfmt "6" 
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python3.7 RBH-v1.py OrthologsRBH/WH8102-WH8102.txt 
OrthologsRBH/WH8102-WH8102.txt OrthologsRBH/RBHWH8102-WH8102.csv 

 

wc -l OrthologsRBH/RBHWH8102-WH8102.csv 

 

 

 

#2020, we are back in the command line doing data analysis.  

 

#add CBW1107 

#itself 

blastp -query Proteomes/CBW1107.Gene.pep.fasta -subject 
Proteomes/CBW1107.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1107-CBW1107.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/CBW1107.Gene.pep.fasta -subject 
Proteomes/CBW1107.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1107-CBW1107.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CBW1107-CBW1107.txt 
OrthologsRBH/CBW1107-CBW1107.txt OrthologsRBH/RBHCBW1107-CBW1107.csv 

 

wc -l OrthologsRBH/RBHCBW1107-CBW1107.csv 

 

#1107-1002 

 

blastp -query Proteomes/CBW1002.Gene.pep.fasta -subject 
Proteomes/CBW1107.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1002-CBW1107.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/CBW1107.Gene.pep.fasta -subject 
Proteomes/CBW1002.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1107-CBW1002.txt -evalue 1e-10 -outfmt "6" 
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python3.7 RBH-v1.py OrthologsRBH/CBW1002-CBW1107.txt 
OrthologsRBH/CBW1107-CBW1002.txt OrthologsRBH/RBHCBW1107-CBW1002.csv 

 

wc -l OrthologsRBH/RBHCBW1107-CBW1002.csv 

 

#1107-1004 

 

blastp -query Proteomes/CBW1004.Gene.pep.fasta -subject 
Proteomes/CBW1107.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1004-CBW1107.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/CBW1107.Gene.pep.fasta -subject 
Proteomes/CBW1004.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1107-CBW1004.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CBW1004-CBW1107.txt 
OrthologsRBH/CBW1107-CBW1004.txt OrthologsRBH/RBHCBW1107-CBW1004.csv 

 

wc -l OrthologsRBH/RBHCBW1107-CBW1004.csv 

 

#1107-1006 

 

blastp -query Proteomes/CBW1006.Gene.pep.fasta -subject 
Proteomes/CBW1107.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1006-CBW1107.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/CBW1107.Gene.pep.fasta -subject 
Proteomes/CBW1006.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1107-CBW1006.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CBW1006-CBW1107.txt 
OrthologsRBH/CBW1107-CBW1006.txt OrthologsRBH/RBHCBW1107-CBW1006.csv 

 

wc -l OrthologsRBH/RBHCBW1107-CBW1006.csv 
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#1107-1108 

 

blastp -query Proteomes/CBW1108.Gene.pep.fasta -subject 
Proteomes/CBW1107.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1108-CBW1107.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/CBW1107.Gene.pep.fasta -subject 
Proteomes/CBW1108.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1107-CBW1108.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CBW1108-CBW1107.txt 
OrthologsRBH/CBW1107-CBW1108.txt OrthologsRBH/RBHCBW1107-CBW1108.csv 

 

wc -l OrthologsRBH/RBHCBW1107-CBW1108.csv 

 

CB0101_6666666.413450.faa 

#1107-0101 

 

blastp -query Proteomes/CB0101.Gene.pep.fasta -subject 
Proteomes/CBW1107.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CB0101-CBW1107.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/CBW1107.Gene.pep.fasta -subject 
Proteomes/CB0101.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1107-CB0101.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/CB0101-CBW1107.txt 
OrthologsRBH/CBW1107-CB0101.txt OrthologsRBH/RBHCBW1107-CB0101.csv 

 

wc -l OrthologsRBH/RBHCBW1107-CB0101.csv 

 

#1107-cystisPCC6803.Gene.pep.fasta 
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blastp -query Proteomes/cystisPCC6803.Gene.pep.fasta -subject 
Proteomes/CBW1107.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/cystisPCC6803-CBW1107.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/CBW1107.Gene.pep.fasta -subject 
Proteomes/cystisPCC6803.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1107-cystisPCC6803.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/cystisPCC6803-CBW1107.txt 
OrthologsRBH/CBW1107-cystisPCC6803.txt OrthologsRBH/RBHCBW1107-
cystisPCC6803.csv 

 

wc -l OrthologsRBH/RBHCBW1107-wh8102.csv 

 

#okay and lastly 1107-WH8102.Gene.pep.fasta 

 

blastp -query Proteomes/WH8102.Gene.pep.fasta -subject 
Proteomes/CBW1107.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/WH8102-CBW1107.txt -evalue 1e-10 -outfmt "6" 

 

blastp -query Proteomes/CBW1107.Gene.pep.fasta -subject 
Proteomes/WH8102.Gene.pep.fasta -soft_masking "false" -out 
OrthologsRBH/CBW1107-WH8102.txt -evalue 1e-10 -outfmt "6" 

 

python3.7 RBH-v1.py OrthologsRBH/WH8102-CBW1107.txt 
OrthologsRBH/CBW1107-WH8102.txt OrthologsRBH/RBHCBW1107-WH8102.csv 

 

wc -l OrthologsRBH/RBHCBW1107-WH8102.csv 
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##ColdStressResponseCommandRecord 

#02182020 

tblastn -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject CBWStrains/CBW1002.Chromosome.fasta 

 

 

#for presence or absence....output to a tab delimited format 

tblastn -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject CBWStrains/CBW1002.Chromosome.fasta -out 
CBWStrains/CBW1002ColdInducedGenes  -evalue 0.00001 -outfmt "6 qseqid 
sseqid pident evalue length qlen" 

 

tblastn -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject CBWStrains/CBW1004.Chromosome.fasta -out 
CBWStrains/CBW1004ColdInducedGenes  -evalue 0.00001 -outfmt "6 qseqid 
sseqid pident evalue length qlen" 

 

tblastn -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject CBWStrains/CBW1006.Chromosome.fasta -out 
CBWStrains/CBW1006ColdInducedGenes  -evalue 0.00001 -outfmt "6 qseqid 
sseqid pident evalue length qlen" 

 

tblastn -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject CBWStrains/CBW1108.Chromosome.fasta -out 
CBWStrains/CBW1108ColdInducedGenes  -evalue 0.00001 -outfmt "6 qseqid 
sseqid pident evalue length qlen" 

 

#02192020 

#so, I think an issue I could have is false positives with this 
method.  I want to ensure there is an ORF upstream of the similar 
sequences to limit false positives. So, if I blast the genes of 
interest against the putative proteome, I should be able to make sure 
the similarity is in the orfs 

#these files are conveniently located in /FilesForDuctApe how 
convenient 

#they are also peptides, so I will be changing to blastp 
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#also, I am pretty sure I had duplicated the Unknown genes in the All 
file so I must change that 

 

 blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1002.faa  -out 
CBWStrains/ColdInducedGenesInCBW/CBW1002ColdInducedGenes.csv  -evalue 
0.00001 -outfmt "6 qseqid sseqid pident evalue length qlen" 

 

#probably good to check the line count 

wc -l CBWStrains/ColdInducedGenesInCBW/CBW1002ColdInducedGenes.csv 

#actually, quite similar to previous results wc - = 247 so I suppose I 
reduced 6 potential false positives 

 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1004.faa  -out 
CBWStrains/ColdInducedGenesInCBW/CBW1004ColdInducedGenes.csv  -evalue 
0.00001 -outfmt "6 qseqid sseqid pident evalue length qlen" 

  

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1006.faa  -out 
CBWStrains/ColdInducedGenesInCBW/CBW1006ColdInducedGenes.csv  -evalue 
0.00001 -outfmt "6 qseqid sseqid pident evalue length qlen" 

   

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1108.faa  -out 
CBWStrains/ColdInducedGenesInCBW/CBW1108ColdInducedGenes.csv  -evalue 
0.00001 -outfmt "6 qseqid sseqid pident evalue length qlen" 

    

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CB0101.faa  -out 
CBWStrains/ColdInducedGenesInCBW/CB0101ColdInducedGenes.csv  -evalue 
0.00001 -outfmt "6 qseqid sseqid pident evalue length qlen" 

  

 #what about with an open ocean strain? 

 tblastn -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject WH8102/81 -out WH8102/8102ColdInducedGenes  
-evalue 0.00001 -outfmt "6 qseqid sseqid pident evalue length qlen" 
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 blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject WH8102/81  -out 
WH8102/8102ColdInducedGenes.csv  -evalue 0.00001 -outfmt "6 qseqid 
sseqid pident evalue length qlen" 

  

  

 #there is not much difference between CBW, CB, and even WH8102 
strains.  This is very surprising to me, I expected CBW strains to 
show the most 

  

#After talking with Ernest and Tsetso, I've learned a few things, and 
need to do a lot more to narrow down these orthologs.   

#my e value is much too low, should be 10^-50 much better.... 

#also, I should try to do reciprocal blasts to verify that they are 
the best hits to each genome.  Additionally I can turn off soft 
masking to not eliminate blastp from not aligning "Low-complexity 
regions and interspersed repeats typically match many sequences" these 
are not normally biologically important, but for my purposes of trying 
to find an identical gene this is very important 

#also, it is advantageous to print both the query and subject 
alignments so that I can work with them later, good to print out 
regularly 

#I am still not sure about the possibility of using soft masking when 
using a -subject.  That is to say when not using a database.  
Currently the protein fasta files are not in db format.  

 

 

 

 

 

TO BE COMPLETED...... 
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blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject WH8102/81 -out WH8102/test  -evalue 1e-50 -
outfmt "6 qseqid sseqid pident evalue length qlen qseq sseq" 

  

ColdStressResponse/Stringentevalue 

  

#this will complete the blastp with high stringency and then 
immediately do a word count line to quickly tell you how many seqs 
have aligned. I removed the printing of the seqs, that can be done 
later quickly.   

 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1002.Gene.pep.fasta -out 
ColdStressResponse/StringentEvalue/CBW1002cold.csv  -evalue 1e-50 -
outfmt "6 qseqid sseqid pident evalue length qlen" | wc -l 
ColdStressResponse/StringentEvalue/CBW1002cold.csv 

 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1004.Gene.pep.fasta -out 
ColdStressResponse/StringentEvalue/CBW1004cold.csv  -evalue 1e-50 -
outfmt "6 qseqid sseqid pident evalue length qlen" | wc -l 
ColdStressResponse/StringentEvalue/CBW1004cold.csv 

 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1006.Gene.pep.fasta -out 
ColdStressResponse/StringentEvalue/CBW1006cold.csv  -evalue 1e-50 -
outfmt "6 qseqid sseqid pident evalue length qlen"  

 

wc -l ColdStressResponse/StringentEvalue/CBW1006cold.csv 

  

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1108.Gene.pep.fasta -out 
ColdStressResponse/StringentEvalue/CBW1108cold.csv  -evalue 1e-50 -
outfmt "6 qseqid sseqid pident evalue length qlen"  

 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1108.Gene.pep.fasta -
soft_masking "true" -out 
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ColdStressResponse/StringentEvalue/CBW1108cold.csv  -evalue 1e-50 -
outfmt "6 qseqid sseqid pident evalue length qlen"  

  

#soft masking off....I believe it is false by default.   

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1108.Gene.pep.fasta -
soft_masking "false" -out 
ColdStressResponse/StringentEvalue/CBW1108cold.csv  -evalue 1e-50 -
outfmt "6 qseqid sseqid pident evalue length qlen" 

 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CB0101.faa -soft_masking 
"false" -out ColdStressResponse/StringentEvalue/CB0101cold.csv  -
evalue 1e-50 -outfmt "6 qseqid sseqid pident evalue length qlen" 

 

#so simply doing the blastp is not good enough.  I must employ a 
reciprocal blast hit strategy RBH to have a greater confidence in the 
orthologs 

 

#I found a script to parse through them 

#this is an example with Bacillus anthracis and Bacillus subtilis168 

 

#the inputs are blast outfmt 6, so you may determine your evalue.   

#the output is simply a list of the RBH 

#this protocol could be repeated for all of the CBW strains 

 

python3.7 RBH-v1.py B.anthracis.Ames-B.subtilis168.FF.txt 
B.subtilis168-B.anthracis.Ames.FF.txt outRBH.txt 

 

 

#CBW1002 

 

#first you need to make the blast table to show org1->org2 
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blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1002.Gene.pep.fasta -
soft_masking "false" -out RBH/Simple-reciprocal-best-blast-hit-pairs-
master/6803CID-CBW1002.txt -evalue 1e-50 -outfmt "6" 

 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1002.Gene.pep.fasta -
soft_masking "false" -out RBH\6803CID-CBW1002.txt -evalue 1e-20 -
outfmt "6" 

 

#then the same thing with org2->org1 

blastp -query FilesForDucTape/CBW1002.Gene.pep.fasta -subject 
ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ Genes\ ALL.fasta  
-soft_masking "false" -out RBH\Simple-reciprocal-best-blast-hit-pairs-
master/CBW1002-6803CID.txt -evalue 1e-20 -outfmt "6" 

 

 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1002.Gene.pep.fasta -
soft_masking "false" -out RBH\6803CID-CBW1002.txt -evalue 1e-20 -
outfmt "6" 

 

#now run the python script to show potential orthologs 

 

 

#usage of the python code 

python3.7 RBH-v1.py BLASTOUTPUT1 BLASTOUTPUT2 RBH-list-outfile 

python3.7 RBH-v1.py 6803CID-CBW1002.txt CBW1002-6803CID.txt 
outCBW1002CID.csv 

 

#CBW1004 

 

#then the same thing with org2->org1 

blastp -query FilesForDucTape/CBW1004.Gene.pep.fasta -subject 
ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ Genes\ ALL.fasta  
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-soft_masking "false" -out RBH/Simple-reciprocal-best-blast-hit-pairs-
master/CBW1004-6803CID.txt -evalue 1e-20 -outfmt "6" 

 

#now run the python script to show potential orthologs 

 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1004.Gene.pep.fasta -
soft_masking "false" -out RBH/Simple-reciprocal-best-blast-hit-pairs-
master/6803CID-CBW1004.txt -evalue 1e-20 -outfmt "6" 

 

#move the directory 

cd RBH/Simple-reciprocal-best-blast-hit-pairs-master 

 

#usage of the python code 

python3.7 RBH-v1.py BLASTOUTPUT1 BLASTOUTPUT2 RBH-list-outfile 

python3.7 RBH-v1.py 6803CID-CBW1004.txt CBW1004-6803CID.txt 
outCBW1004CID.csv 

 

 #CBW1006 

#then the same thing with org2->org1 

blastp -query FilesForDucTape/CBW1006.Gene.pep.fasta -subject 
ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ Genes\ ALL.fasta  
-soft_masking "false" -out RBH/Simple-reciprocal-best-blast-hit-pairs-
master/CBW1006-6803CID.txt -evalue 1e-20 -outfmt "6" 

 

#now run the python script to show potential orthologs 

 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1006.Gene.pep.fasta -
soft_masking "false" -out RBH/Simple-reciprocal-best-blast-hit-pairs-
master/6803CID-CBW1006.txt -evalue 1e-20 -outfmt "6" 

 

#move the directory 

cd RBH/Simple-reciprocal-best-blast-hit-pairs-master 
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#usage of the python code 

python3.7 RBH-v1.py BLASTOUTPUT1 BLASTOUTPUT2 RBH-list-outfile 

python3.7 RBH-v1.py 6803CID-CBW1006.txt CBW1006-6803CID.txt 
outCBW1006CID.csv 

  

  

  #CBW1108 

#then the same thing with org2->org1 

blastp -query FilesForDucTape/CBW1108.Gene.pep.fasta -subject 
ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ Genes\ ALL.fasta  
-soft_masking "false" -out RBH/Simple-reciprocal-best-blast-hit-pairs-
master/CBW1108-6803CID.txt -evalue 1e-20 -outfmt "6" 

 

#now run the python script to show potential orthologs 

 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1108.Gene.pep.fasta -
soft_masking "false" -out RBH/Simple-reciprocal-best-blast-hit-pairs-
master/6803CID-CBW1108.txt -evalue 1e-20 -outfmt "6" 

 

#move the directory 

cd RBH/Simple-reciprocal-best-blast-hit-pairs-master 

 

#usage of the python code 

python3.7 RBH-v1.py BLASTOUTPUT1 BLASTOUTPUT2 RBH-list-outfile 

python3.7 RBH-v1.py 6803CID-CBW1108.txt CBW1108-6803CID.txt 
outCBW1108CID.csv 

 

 

 

  #CBW1108 

#then the same thing with org2->org1 
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blastp -query FilesForDucTape/CBW1108.Gene.pep.fasta -subject 
ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ Genes\ ALL.fasta  
-soft_masking "false" -out RBH/Simple-reciprocal-best-blast-hit-pairs-
master/CBW1108-6803CID.txt -evalue 1e-20 -outfmt "6" 

 

#now run the python script to show potential orthologs 

 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1108.Gene.pep.fasta -
soft_masking "false" -out RBH/Simple-reciprocal-best-blast-hit-pairs-
master/6803CID-CBW1108.txt -evalue 1e-20 -outfmt "6" 

 

#move the directory 

cd RBH/Simple-reciprocal-best-blast-hit-pairs-master 

 

#usage of the python code 

python3.7 RBH-v1.py BLASTOUTPUT1 BLASTOUTPUT2 RBH-list-outfile 

python3.7 RBH-v1.py 6803CID-CBW1108.txt CBW1108-6803CID.txt 
outCBW1108CID.csv 

 

 

#WH8102 

blastp -query 
WH8102/8102ProteinsGCF_000195975.1_ASM19597v1_protein.faa -subject 
ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ Genes\ ALL.fasta  
-soft_masking "false" -out RBH/Simple-reciprocal-best-blast-hit-pairs-
master/WH8102-6803CID.txt -evalue 1e-20 -outfmt "6" 

#then the same thing with org2->org1 

 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject 
WH8102/8102ProteinsGCF_000195975.1_ASM19597v1_protein.faa -
soft_masking "false" -out RBH/Simple-reciprocal-best-blast-hit-pairs-
master/6803CID-WH8102.txt -evalue 1e-20 -outfmt "6" 

#now run the python script to show potential orthologs 
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#move the directory 

cd RBH/Simple-reciprocal-best-blast-hit-pairs-master 

 

#usage of the python code 

python3.7 RBH-v1.py BLASTOUTPUT1 BLASTOUTPUT2 RBH-list-outfile 

python3.7 RBH-v1.py 6803CID-WH8102.txt WH8102-6803CID.txt 
outWH8102CID.csv 

 

#CB0101 

 

#then the same thing with org2->org1 

blastp -query FilesForDucTape/CB0101_6666666.413450.faa -subject 
ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ Genes\ ALL.fasta  
-soft_masking "false" -out RBH/Simple-reciprocal-best-blast-hit-pairs-
master/CB0101-6803CID.txt -evalue 1e-20 -outfmt "6" 

 

#now run the python script to show potential orthologs 

 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CB0101_6666666.413450.faa -
soft_masking "false" -out RBH/Simple-reciprocal-best-blast-hit-pairs-
master/6803CID-CB0101.txt -evalue 1e-20 -outfmt "6" 

 

#move the directory 

cd RBH/Simple-reciprocal-best-blast-hit-pairs-master | python3.7 RBH-
v1.py 6803CID-CB0101.txt CB0101-6803CID.txt outCB0101CID.csv 

 

#usage of the python code 

python3.7 RBH-v1.py BLASTOUTPUT1 BLASTOUTPUT2 RBH-list-outfile 

python3.7 RBH-v1.py 6803CID-CB0101.txt CB0101-6803CID.txt 
outCB0101CID.csv 

  

#My new worry is that the CID genes are too small of a database to 
weed out false negatives.  The whole 6803 proteome may be necessary to 
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eliminate potential false positives that could be highly similar to 
other genes in the 6803 genome. 

#so, what I need to do is add the CID to the proteome with the same 
fasta call entry so that it will show as a rbh for the python program 

 

############################################################### 

 

 

 

#CBW1002 RBH with full Synechococystis PCC6803 

 

#first you need to make the blast table to show org1->org2 

 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1002.Gene.pep.fasta -
soft_masking "false" -out RBH\Simple-reciprocal-best-blast-hit-pairs-
master\6803CID-CBW1002.txt -evalue 1e-20 -outfmt "6" 

 

#then the same thing with org2->org1 

blastp -query FilesForDucTape/CBW1002.Gene.pep.fasta -subject 
ColdStressResponse/Synechocystis\ PCC\ 6803\ Peptides\ 
CIDReplaced.fasta  -soft_masking "false" -out RBH/Simple-reciprocal-
best-blast-hit-pairs-master/AgainstFUll6803Proteome/CBW1002-
6803CID.txt -evalue 1e-20 -outfmt "6" 

#this step will take a bit longer 

 

#now run the python script to show potential orthologs 

 

 

#usage of the python code 

python3.7 RBH-v1.py BLASTOUTPUT1 BLASTOUTPUT2 RBH-list-outfile 

python3.7 RBH-v1.py RBH/Simple-reciprocal-best-blast-hit-pairs-
master/oldsmallCID/6803CID-CBW1002.txt RBH/Simple-reciprocal-best-
blast-hit-pairs-master/AgainstFUll6803Proteome/CBW1002-6803CID.txt 
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RBH/Simple-reciprocal-best-blast-hit-pairs-
master/AgainstFUll6803Proteome/outCBW1002CID.csv 

 

 

#CBW1004 RBH with full Synechococystis PCC6803 

 

#first you need to make the blast table to show org1->org2 

#these have been done previously, so they are copied for reference 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1004.Gene.pep.fasta -
soft_masking "false" -out RBH\Simple-reciprocal-best-blast-hit-pairs-
master\6803CID-CBW1004.txt -evalue 1e-20 -outfmt "6" 

 

#then the same thing with org2->org1 

blastp -query FilesForDucTape/CBW1004.Gene.pep.fasta -subject 
ColdStressResponse/Synechocystis\ PCC\ 6803\ Peptides\ 
CIDReplaced.fasta  -soft_masking "false" -out RBH/Simple-reciprocal-
best-blast-hit-pairs-master/AgainstFUll6803Proteome/CBW1004-
6803CID.txt -evalue 1e-20 -outfmt "6" 

#this step will take a bit longer 

 

#now run the python script to show potential orthologs 

 

 

#usage of the python code 

python3.7 RBH-v1.py BLASTOUTPUT1 BLASTOUTPUT2 RBH-list-outfile 

python3.7 RBH-v1.py RBH/Simple-reciprocal-best-blast-hit-pairs-
master/oldsmallCID/6803CID-CBW1004.txt RBH/Simple-reciprocal-best-
blast-hit-pairs-master/AgainstFUll6803Proteome/CBW1004-6803CID.txt 
RBH/Simple-reciprocal-best-blast-hit-pairs-
master/AgainstFUll6803Proteome/outCBW1004CID.csv 

 

 

 

#CBW1006 RBH with full Synechococystis PCC6803 



192 
 

 

#first you need to make the blast table to show org1->org2 

#these have been done previously, so they are copied for reference 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1006.Gene.pep.fasta -
soft_masking "false" -out RBH\Simple-reciprocal-best-blast-hit-pairs-
master\6803CID-CBW1006.txt -evalue 1e-20 -outfmt "6" 

 

#then the same thing with org2->org1 

blastp -query FilesForDucTape/CBW1006.Gene.pep.fasta -subject 
ColdStressResponse/Synechocystis\ PCC\ 6803\ Peptides\ 
CIDReplaced.fasta  -soft_masking "false" -out RBH/Simple-reciprocal-
best-blast-hit-pairs-master/AgainstFUll6803Proteome/CBW1006-
6803CID.txt -evalue 1e-20 -outfmt "6" 

#this step will take a bit longer 

 

#now run the python script to show potential orthologs 

 

 

#usage of the python code 

python3.7 RBH-v1.py BLASTOUTPUT1 BLASTOUTPUT2 RBH-list-outfile 

python3.7 RBH-v1.py RBH/Simple-reciprocal-best-blast-hit-pairs-
master/oldsmallCID/6803CID-CBW1006.txt RBH/Simple-reciprocal-best-
blast-hit-pairs-master/AgainstFUll6803Proteome/CBW1006-6803CID.txt 
RBH/Simple-reciprocal-best-blast-hit-pairs-
master/AgainstFUll6803Proteome/outCBW1006CID.csv 

 

wc -l RBH/Simple-reciprocal-best-blast-hit-pairs-
master/AgainstFUll6803Proteome/outCBW1006CID.csv 

 

 

 

#CBW1108 RBH with full Synechococystis PCC6803 

 

#first you need to make the blast table to show org1->org2 
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#these have been done previously, so they are copied for reference 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CBW1108.Gene.pep.fasta -
soft_masking "false" -out RBH\Simple-reciprocal-best-blast-hit-pairs-
master\6803CID-CBW1108.txt -evalue 1e-20 -outfmt "6" 

 

#then the same thing with org2->org1 

blastp -query FilesForDucTape/CBW1108.Gene.pep.fasta -subject 
ColdStressResponse/Synechocystis\ PCC\ 6803\ 
Peptides\CIDReplaced.fasta  -soft_masking "false" -out RBH/Simple-
reciprocal-best-blast-hit-pairs-
master/AgainstFUll6803Proteome/CBW1108-6803CID.txt -evalue 1e-20 -
outfmt "6" 

#this step will take a bit longer 

 

#now run the python script to show potential orthologs 

 

 

#usage of the python code 

python3.7 RBH-v1.py BLASTOUTPUT1 BLASTOUTPUT2 RBH-list-outfile 

python3.7 RBH-v1.py RBH/Simple-reciprocal-best-blast-hit-pairs-
master/oldsmallCID/6803CID-CBW1108.txt RBH/Simple-reciprocal-best-
blast-hit-pairs-master/AgainstFUll6803Proteome/CBW1108-6803CID.txt 
RBH/Simple-reciprocal-best-blast-hit-pairs-
master/AgainstFUll6803Proteome/outCBW1108CID.csv 

 

wc -l RBH/Simple-reciprocal-best-blast-hit-pairs-
master/AgainstFUll6803Proteome/outCBW1108CID.csv 

 

#WH8102 

 

 

#then the same thing with org2->org1 
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blastp -query 
WH8102/8102ProteinsGCF_000195975.1_ASM19597v1_protein.faa -subject 
ColdStressResponse/Synechocystis\ PCC\ 6803\ Peptides\ 
CIDReplaced.fasta  -soft_masking "false" -out RBH/Simple-reciprocal-
best-blast-hit-pairs-master/AgainstFUll6803Proteome/WH8102-6803CID.txt 
-evalue 1e-20 -outfmt "6" 

 

 

#now run the python script to show potential orthologs 

 

#move the directory 

 

#usage of the python code 

python3.7 RBH-v1.py BLASTOUTPUT1 BLASTOUTPUT2 RBH-list-outfile 

python3.7 RBH-v1.py RBH/Simple-reciprocal-best-blast-hit-pairs-
master/oldsmallCID/6803CID-WH8102.txt RBH/Simple-reciprocal-best-
blast-hit-pairs-master/oldsmallCID/WH8102-6803CID.txt RBH/Simple-
reciprocal-best-blast-hit-pairs-
master/AgainstFUll6803Proteome/outWH8102CID.csv 

 

wc -l RBH/Simple-reciprocal-best-blast-hit-pairs-
master/AgainstFUll6803Proteome/outWH8102CID.csv 

 

 

#CB0101 

 

#org1->org2 

 

blastp -query ColdStressResponse/Synechocystis\ PCC\ Cold\ Induced\ 
Genes\ ALL.fasta -subject FilesForDucTape/CB0101_6666666.413450.faa   
-soft_masking "false" -out RBH/Simple-reciprocal-best-blast-hit-pairs-
master/oldsmallCID/6803CID-CB0101.txt -evalue 1e-20 -outfmt "6" 

 

#then the same thing with org2->org1 



195 
 

blastp -query FilesForDucTape/CB0101_6666666.413450.faa -subject 
ColdStressResponse/Synechocystis\ PCC\ 6803\ Peptides\ 
CIDReplaced.fasta    -soft_masking "false" -out RBH/Simple-reciprocal-
best-blast-hit-pairs-master/AgainstFUll6803Proteome/CB0101-6803CID.txt 
-evalue 1e-20 -outfmt "6" 

 

#now run the python script to show potential orthologs 

 

#move the directory 

cd RBH/Simple-reciprocal-best-blast-hit-pairs-master | python3.7 RBH-
v1.py 6803CID-CB0101.txt CB0101-6803CID.txt outCB0101CID.csv 

 

#usage of the python code 

python3.7 RBH-v1.py BLASTOUTPUT1 BLASTOUTPUT2 RBH-list-outfile 

python3.7 RBH-v1.py RBH/Simple-reciprocal-best-blast-hit-pairs-
master/oldsmallCID/6803CID-CB0101.txt RBH/Simple-reciprocal-best-
blast-hit-pairs-master/AgainstFUll6803Proteome/CB0101-6803CID.txt 
RBH/Simple-reciprocal-best-blast-hit-pairs-
master/AgainstFUll6803Proteome/outCB0101CID.csv 

 

wc -l RBH/Simple-reciprocal-best-blast-hit-pairs-
master/AgainstFUll6803Proteome/outCB0101CID.csv 

 

#######################useful option for blastp   

blastp -max_target_seqs 1 

#this only prints the top hit for each query, that is helpful if you 
are only looking for the top hit and not interested in the partial 
sequence alignments. 

 

 

 

#09/01/2020 

#Working on my chapter 3, which is cold inducted genes.   I have 
compiled a new list of cold induced genes from Barria 2013. I will be 
doing something similar with the 111 genes from Synechococystis. this 
method is simpler, just a blastp against the proteome See Tang, 2019.  
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They simply tallied up how many hits against these genes.  I have 
contacted the author to find out more details, but they are waiting on 
who conducted the research. I think they had an evalue of 1e-05 based 
on their paper. I am looking at 34 genes in 17 genomes, so a bit 
broader with genomes, more focused with genes.  

 

#master blastp, will be replacing the proteome component 

blastp -query ColdStressResponse/CIDfromBarria.fasta -subject 
Proteomes\ -soft_masking "false" -out 
ColdStressResponse/CIDfromBarria/ -evalue 1e-5 -outfmt "6" 

 

#so not so great....none of them hit at all. even with default 
parameters....so I can't even replicate the Tang, 2019 paper......bad 
stuff. SEE UPDATE BELOW 

blastp -query ColdStressResponse/CIDfromBarria.fasta -subject 
Proteomes/SynAce01_GCF_001885215.1_ASM188521v1_cds_from_genomic.fna -
soft_masking "false" -out ColdStressResponse/Barria/Barria-SynAce01 

 

#oops, the cds files from NCBI, are not amino acid seqs. Kind of hard 
to use blastp with AA vs ntds... 

#all that means is that I will be using blastp for some tblastn for 
others. I am worried about comparing tblastn to blastp because tblastn 
suggests frame shifts, while blastp does not. IT ENDS UP BEING OKAY. 

#blastp is CBW1* and CB0101. [AND CBW1107]  Also CB0205 and WH7803 
these are all from RAST others will be tblastn 

 

blastp -query ColdStressResponse/CIDfromBarria.fasta -subject 
Proteomes/CBW1 -soft_masking "false" -out 
ColdStressResponse/Barria/Barria-CBW1 -evalue 1e-5 -outfmt "6" 

 

 

 

#tblastn 

 

tblastn -query ColdStressResponse/CIDfromBarria.fasta -subject 
Proteomes/SynAce01_GCF_001885215.1_ASM188521v1_cds_from_genomic.fna -
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soft_masking "false" -out ColdStressResponse/Barria/Barria-SynAce01 -
evalue 1e-5 -outfmt "6" 

 

tblastn -query ColdStressResponse/CIDfromBarria.fasta -subject 
Proteomes/SynAce01_GCF_001885215.1_ASM188521v1_cds_from_genomic.fna -
soft_masking "false" -out ColdStressResponse/Barria/Barria-SynAce01 -
evalue 1e-5 -outfmt "6" 

 

We've added CBW1107 to the genome list and several (13) other genes 
from CBW annotation to the list. So now our matrix is 18*46=828 
fantastic! 

 

#All of the query genes should be in AA fasta format. CBW1107 is a 
gene.pep.fasta file Feng handed me that file. so, I will be using 
blastp. Let's go. #see edits 

 

#I am going to overwrite the original files and then keep the db file 
from excel. I too like to live on the edge.  

 

 

blastp -query ColdStressResponse/CIDfromBarria.fasta -subject 
Proteomes/CBW1* -soft_masking "false" -out 
ColdStressResponse/Barria/Barria-CBW1* -evalue 1e-5 -outfmt "6" 

 

tblastn -query ColdStressResponse/CIDfromBarria.fasta -subject 
Proteomes/SynAce01_GCF_001885215.1_ASM188521v1_cds_from_genomic.fna -
soft_masking "false" -out ColdStressResponse/Barria/Barria-SynAce01 -
evalue 1e-5 -outfmt "6" 

 

 

#WH8102!!!!!!!!!!!!!! also must use blastp, not tblastn 

#cystisPCC6803 too? yes that is correct.  

#see the spreadsheet with checkboxes "Cold Induced Genes for Blastp in 
CBW and other strains" sheet genome list 
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#Okay so this could turn into a never-ending search. I have added all 
of the CBW strain desaturases to the search. FA4 could be novel and in 
a novel pathway of hydrocarbon processing. So, I am including them all 
in the blast, so that I can gather all of the data and take a bird's 
eye view.  

  

#So, I have an updated Barria2 and CIDfromBarria2 so we cannot 
overwrite data and keep things organized.  

 

 

#also changing the output to -outfmt "6 qseqid sseqid pident length 
mismatch gapopen qstart qend sstart send evalue bitscore qseq sseq" 

 

########templates: 

 

 

#template: blastp -query ColdStressResponse/CIDfromBarria2.fasta -
subject Proteomes/CBW1* -soft_masking "false" -out 
ColdStressResponse/Barria2/Barria-CBW1* -evalue 1e-5 -outfmt "6 qseqid 
sseqid pident length mismatch gapopen qstart qend sstart send evalue 
bitscore qseq sseq" 

#actual  

 

blastp -query ColdStressResponse/CIDfromBarria2.fasta -subject 
Proteomes/CB0101.Gene.pep.fasta -soft_masking "false" -out 
ColdStressResponse/Barria2/Barria-CB0101 -evalue 1e-5 -outfmt "6 
qseqid sseqid pident length mismatch gapopen qstart qend sstart send 
evalue bitscore qseq sseq" 

 

 

tblastn -query ColdStressResponse/CIDfromBarria.fasta -subject 
Proteomes/SynAce01_GCF_001885215.1_ASM188521v1_cds_from_genomic.fna -
soft_masking "false" -out ColdStressResponse/Barria2/Barria-SynAce01 -
evalue 1e-5 -outfmt "6 qseqid sseqid pident length mismatch gapopen 
qstart qend sstart send evalue bitscore qseq sseq" 

 

#####Note 1107 is in the Proteome subfolder!!!!!!!!!!! CBWFromBGI 
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###10/8/2020 I am adding four lpx genes lpxA-D to the Barria file, 
same as above go to templates  

 

blastp -query ColdStressResponse/CIDfromBarria2.fasta -subject 
Proteomes/CB0101.Gene.pep.fasta -soft_masking "false" -out 
ColdStressResponse/Barria3/Barria-CB0101 -evalue 1e-5 -outfmt "6 
qseqid sseqid pident length mismatch gapopen qstart qend sstart send 
evalue bitscore qseq sseq" 

 

tblastn -query ColdStressResponse/CIDfromBarria2.fasta -subject 
Proteomes/SynAce01_GCF_001885215.1_ASM188521v1_cds_from_genomic.fna -
soft_masking "false" -out ColdStressResponse/Barria3/Barria-SynAce01 -
evalue 1e-5 -outfmt "6 qseqid sseqid pident length mismatch gapopen 
qstart qend sstart send evalue bitscore qseq sseq" 
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