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In this thesis, the application of Cosserat mechanics to micro-scale structures is explored. 

Different structures considered include micro-scale gyroscopes, micro-cantilevers, and 

clamped–clamped micro-structures. Two-dimensional formulations with nonlinearities 

up to third order are derived and presented. Different parameterization schemes are used 

and the equivalence between the obtained results is discussed. Comparisons with prior 

results available in the literature are made in terms of inertia properties, stiffness 

properties, and natural frequencies.   The present work points to the importance of 

considering Cosserat mechanics for examining the motions of micro-scale structures that 

undergo large as well as coupled deformations. 
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CHAPTER 1: INTRODUCTION 
 

In this introductory chapter, the history and use of Cosserat mechanics is briefly reviewed, 

micro-scale and macro-scale applications where they can be used are discussed, the thesis 

objectives are stated, and the organization of this thesis is described.   

In developing a three-dimensional continuum theory, it is 

observed that a position vector describing the location of 

each material point, as function of time is necessary to 

define the motion of the chosen continuum. In pure 

mechanics, one uses the laws of conservation of mass and 

linear momentum to define the mass and the position, and 

in Cosserat mechanics, one uses continuum directors and 

imposes mass and linear momentum balance laws as restrictions on equations of 

continuum. 

The concept of a directed media was introduced by Duhem (1893), and the two French 

brothers E. Cosserat and F. Cosserat (1909) were the first to present a systematic 

development of theories for directed continua, and hence the name “Cosserat theory”. 

1.1 Literature Review 

1.1.1 Cosserat Elasticity 

The Cosserat theory of elasticity incorporates a local rotation of points as well as the 

translation assumed in classical elasticity; and a couple stress (torque per unit area) as 

 
Figure 1.1: E. Cosserat  

(1866-1931) [source: the 

complete biography; St. 

Andrews University]. 
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well as the force stress (force per unit area). The force stress is referred to simply as 

“stress” in classical elasticity in which there is no other kind of stress. The idea of a 

couple stress can be traced to Voigt (1887, 1894), who was active during the formative 

period of the theory of elasticity. In more recent years, theories incorporating couple 

stresses have been developed by using the full capabilities of modern continuum 

mechanics (Ericksen and Truesdell, 1958; Grioli, 1960; Aero and Kuvshinskii, 1960; 

Toupin, 1962; Mindlin and Tiersten, 1962; Mindlin, 1965; Eringen, 1868; Nowacki, 

1970). 

A survey of the interrelationship between generalized continuum analysis and material 

defects, dislocations and other in homogeneities was presented by Kunin (1982, 1983). 

Eringen (1968) incorporated micro-inertia and renamed Cosserat elasticity as “micro-

polar elasticity”. For an isotropic Cosserat solid, there are six associated elastic constants, 

in contrast to a classical elastic solid with which there are two associated elastic constants. 

1.1.2 Cosserat Theory: Shells, Rods, and Points 

Cosserat theory is meant to be a geometrically exact, dynamic, continuum theory for 

structures that undergo large deformations in space through flexure, torsion, extension, 

and shear. In three-dimensional modeling, the motion of the directed continuum is 

characterized by a position vector as well as the additional vector quantities called 

“directors” at each material point. Hence, for different flexural structures, one has to 

consider different formulations.  To fully understand and appreciate this, one has to 

consider the three main geometrical shapes, namely, shells, rods, and points. It is noted 
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that for each of them, as per Cosserat theory, the directors have direct physical 

interpretation since they are oriented along material fibers along specific directions. 

1.1.3 Cosserat Shells 

A shell is a three-dimensional structure (Figure 1.2) that is thin along one of its 

dimensions; this can be interpreted as a curved plane with a small thickness. 

A shell can be characterized by its major surfaces, namely, its bottom and top surfaces 

and lateral surfaces. Another way of looking at it is that a shell is a three-dimensional 

body with surface S and a finite thickness bounded by major surfaces. If the surface S is 

flat, then a shell becomes a plate. 

Green and Naghdi (1973) formulated a two-dimensional theory for the propagation of 

fairly long water waves, by using a three-dimensional Cosserat shell theory and mapping 

to two–dimensional computations for analyzing wave propagation.  Jog (2004) used the 

Cosserat shell theory, for carrying out topology optimization of shell structures, rather 

.  

Figure 1.2: A shell-like structure in its reference configuration. A set of unit vectors 

along with components of the position vector to one of the points in the shell. 
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than elements based on the degenerated solid approach, since the shell thickness appears 

explicitly in the formulation, thereby greatly simplifying the sensitivity analysis. One of 

the well-known shell elements based on the Cosserat shell theory is the four-node 

element presented by Simo and Fox (1989). Although one could use this element, the use 

of lower-order elements often results in instabilities (such as the “checkerboard” 

instability) in the resulting topologies.  Implementation details for six-node and seven-

node triangular, and nine-node quadrilateral shell elements have also been reported in the 

literature.  

Sansour and Bednarczyk (1999) relying on the concept of a Cosserat continuum, reduced 

the three-dimensional equations of a shell body to two-dimensions in a direct manner by 

considering the Cosserat continuum to be a two-dimensional surface. A non-linear shell 

theory, including transverse shear strains, with exact description of the kinematical fields 

is derived. The strain measures were taken to be the first and the second Cosserat 

deformation tensors allowing for an explicit use of a three parameter, rotation tensor.  

This allows for inclusion of in-plane rotations also called as drilling degrees of freedom 

in a natural way.  

Neff (2004) examined a consistent formal dimensional reduction of a previously 

introduced finite-strain three-dimensional Cosserat micro-polar elasticity model to the 

two-dimensional situation of thin plates and shells. Contrary to the direct modeling of a 

shell as a Cosserat surface with additional directors, the shell model from the Cosserat 

bulk model, which already includes a triad of rigid directors, is used.   The reduction is 

achieved by assumed kinematics, quadratic through the thickness. The three-dimensional 

transverse boundary conditions were evaluated analytically in terms of the assumed 
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kinematics and two unknown coefficients were determined. Further simplifications were 

obtained through subsequent analytical integration through the thickness. The reduced 

model includes size-effects, transverse shear resistance, drilling degrees of freedom, and 

this helps account implicitly for the thickness extension and asymmetric shift of the mid-

surface.  

The formal thin shell “membrane” limit without the classical h 
3
-bending term is non-

degenerate due to the additional Cosserat curvature stiffness and control of drill rotations. 

In the present formulation, the drill-rotations are strictly related to the size-effects of the 

bulk model and not introduced artificially for numerical convenience.  Upon linearization 

with the zero Cosserat couple modulus 0=cµ , one recovers the well known 

infinitesimal-displacement Reissner-Mindlin model without size-effects and without 

drill-rotations. It is shown that the dimensionally reduced Cosserat formulation is well-

posed for positive Cosserat couple modulus 0>cµ  by means of the direct methods of 

variations that follow the same line of argument used to show the purposefulness of the 

three-dimensional Cosserat bulk model. 

Circular cylindrical shells are commonly used in engineering structures, such as planes, 

missiles, silos, and tanks. During their service life, these structures are subjected to 

loadings of various types.   Ramsey (1989) investigated the stability of elastic isotropic 

cylindrical shells under axial compression, and examined elastic axis symmetric axial 

buckling of infinitely long shells by using the Cosserat surface theory. Elastic buckling 

analysis of glass-reinforced plastic cylindrical shells by using the finite element code 

NONL5 were reported by Lusher and Abu-Farsakh (1985). 
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Hansen (1994) investigated the effect of random imperfections on the elastic buckling of 

circular cylindrical shells. Liu and Li (1991) used a stress hybrid shallow shell element to 

examine the influences of initial ovality and lack of straightness on the elastic buckling 

stress of cylindrical shells. The imperfection sensitivity of elastic axial buckling was 

adopted to solve some other related problems. Krishnakumar and Foster (1990) 

experimentally studied the influence of imposed diamond local dimples on the buckling 

loads of isotropic epoxy shells.  

The buckling behavior of elasto-plastic circular cylindrical shells under axial 

compression was investigated analytically and experimentally by Lin and Yeh (1994). 

For analysis, a finite element code based on the updated Lagrangian formulation was 

established to analyze the axial buckling problem by considering nonlinear geometric and 

material properties. 

Rubin and Benveniste (2003) studied the modelling of interfaces in elastic media in 

general, and in composite materials, in particular. The aim was to replace a boundary 

value problem consisting of a three-phase configuration, say that of a fiber–interface–

matrix, by a simpler problem that involved only the fiber and matrix, plus certain 

matching conditions that simulated the interface.  They derived the Cosserat shell model 

of the interface, which successfully models the original interface in a unified manner, for 

the full range of its material parameters relative to those of the neighbouring media. The 

model is derived in the setting of three-dimensional linear elasticity with small 

deformations and displacements. Comparisons with an existing exact solution of a coated 

fiber in an infinite matrix show that the solution of the reduced model shows good 

correspondence even for moderately thick interfaces.  



  7 

It is challenging to obtain solutions of boundary value problems for shells with a general 

linear geometry, commonly encountered in problems of heat conduction. Rubin (1985) 

showed that the formulation of such problems can be simplified by using linear Cosserat 

theory of rigid heat conducting shells. In this theory, it is ensured that the Cosserat 

equations produce exact steady-state solutions for Fourier conduction with an arbitrary 

constant temperature gradient for all shell geometries including variable thickness. 

Constitutive equations, which satisfy these restrictions, are proposed and example 

problems of a plate and circular cylindrical and spherical shells are solved to examine the 

accuracy of Cosserat theory. The results of these examples show that Cosserat theory is 

accurate for moderately thick shells and moderately strong variation of the temperature 

field through the shell's thickness. In particular, the Cosserat solution converges smoothly 

to the exact solution as the shell becomes thin. In contrast, two other theories considered 

are shown to predict incorrect slopes at the thin shell limit.  

1.1.4 Cosserat Rod 

A rod is a three-dimensional body that is 

considered to be thin along two of its 

dimensions (Figure 1.3). In particular, the 

rod is characterized by its ends and its 

lateral surface. 

 

Figure 1.3: A simple Cosserat rod.  Two sets of unit vectors along with position vectors 

to the points on the cross-sections of the endpoints are shown. 



  8 

The analyses of large deformations and large rotations of rods is of continued interest, 

since  such structures can be used to model flexible robotic arms, helicopter blades, DNA 

strands, polymer chains,  and so on.  A rod-like structure is a three-dimensional body that 

is essentially a space curve with “small” cross-sectional areas. The non-linear elastic 

deformations of rods have been analyzed by using different approximations of the 

deformations of the cross-section and of axial extensibility. 

Green and Nagdhi (1979) developed equations which are based on the theory of a 

Cosserat curve. Specifically, this theory allows for the following six types of 

deformations: (a) bending, (b) torsion, (c) axial extension, (d) tangential (transverse) 

shear deformation, (e) normal cross-sectional extension, and (f) normal cross-sectional 

shear deformation. A hierarchy of constrained theories of rods that eliminates 

combinations of the deformations (c)–(f) has been discussed by Naghdi and Rubin 

(1986).  

In the classical studies of Kirchhoff and Euler (1744), a simple rod called an “elastica” is 

considered.  This structure has an inextensible reference curve with rigid cross-sections 

that remain normal to the deformed reference curve. Antman (1972) considered a more 

general rod theory that included extensibility of the reference curve and allowed for 

tangential shear deformation while retaining rigid cross-sections. References to a number 

of related works can be found in Antman (1972).  

Recently, Rubin (2000) developed a numerical formulation to find the solution of the 

dynamical motion of non-linear elastic rods. In this formulation, a Cosserat rod element 

is used. This element takes into account all of the deformations included in the general  
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Figure 1.4:  Sketch of the Ith element with deformed values of the director vectors   

characterizing the cross-sections I and I + 1, as shown in Rubin (2000). 

rod theory of Green and Nagdhi (1979).  Specifically, this rod element has 18 degrees of 

freedom which are determined by two sets of three director vectors Id*i and I+1d*i (i = 1, 

2, 3) that characterize the cross-sections of the element (Figure 1.4). The typical I
 Th

 

cross-section is characterized by the location of its centroid I d*0 and by the two vectors {I 

d*1, I d*2}, which represent material line elements in this cross-section. Since {I d*1, I 

d*2} are general vectors, the theory admits tangential shear deformation (i.e., the angle 

between the normal to the cross-section and the vector I+1d*0 – Id*0 can change), the 

cross-section admits normal extension (i.e., the lengths of I d*1 and I d*2 can change) and 

normal cross-sectional shear deformation (i.e., the angle between Id*1 and Id*2 can 

change). 

Simo and Vu-Quoc (1986) developed a numerical formulation of a finite deformation rod 

theory proposed by Simo (1985), which is similar to that of Antman (1972) in that the 

cross-sections remain rigid. In this formulation, the orientations of the cross-sections are 
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specified by rotation tensors using Rodrigues’ formula, and these authors have used 

special higher order shape functions to develop a Cosserat rod element based on a non-

linear form of the theory of a Cosserat curve with rigid cross-sections and no shear 

deformation. 

Cosseart rod theory has also been used by Pai (2002), who introduces Cosserat elasticity 

as a useful, accurate, physical model for simulating thin deformable objects. In the same 

work, he shows how the physical models can be discretized and solved efficiently for 

many applications in computer graphics. Later this combination of physical model and 

numerical solution (which is called as “STRAND”) is shown to be a useful modelling 

tool for a wide variety of thin deformable objects in primitive computer graphics. Pai also 

briefly describes a specific application for simulating surgical sutures (Figure 1.5). 

Similar simulations are now used for DNA modelling. 

 

 

 

 

 

Figure 1.5: A simulated strand of surgical suture that can twist and curl during 

manipulation of the needle during laparoscopic surgery, as discussed by Pai (2002). 

 

Strand 
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For a model of a power-generating tethered device of interest to the space industries, a 

detailed, geometrically exact bifurcation analysis was carried out by Valverde, Escalona, 

Dom´ınguez, and Champneys (2006). The considered structure is a short electro-dynamic 

tether, which is comprised of a thin, long rod that is spun in a horizontal configuration 

from a satellite in low Earth orbit and has a massive electrically conducting disk at its 

free end. This system, which is located in a moving reference frame, is modelled by using 

a Cosserat formulation, with incorporation of effects including internal damping, intrinsic 

curvature due to the deployment method, and novel force and moment boundary 

conditions at the contactor. The problem of determining steady rotating solutions was 

formulated as a two-point boundary value problem.   By using numerical continuation 

methods, a bifurcation analysis was carried out for different rotation speeds up to many 

times the critical resonance speed. Spatial finite differences were used to formulate the 

stability problem for each steady state.  

 

Figure 1.6: Orbit plane and orientation of a space tether, as discussed by Valverde et al. 

(2006). 
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In the present thesis work, the Cosserat rod element approach has been studied and used 

with constraints applied both to the system and to each rod element; the resulting rod 

element has the same 12 degrees of freedom as the element of Simo and Vu-Quoc 

(1986). However, these developments make use of standard techniques in finite elements 

and express the stiffness in terms of integrals over the element region of the position 

vector and the rotation tensor. For the purpose of this thesis, the author has used the often 

tried methods, and in addition, the constitutive equations developed by the direct 

approach are used and the quantities derived in the form of algebraic functions from a 

strain energy function are used; this requires no integration over the element region.  

The governing equations of motion of rods are nonlinear partial differential equations, 

which are functions of one spatial variable and time. For static problems, the equations 

become ordinary differential equations, which can be solved by using standard 

techniques like the shooting method to satisfy the boundary conditions. By contrast, for 

dynamic problems, it is necessary to discretize the equations and use numerical 

procedures. 

1.1.5 Cosserat Point 

In rod theory, the constitutive equations necessarily require coupling of the geometry of 

the rod like structure and the material properties of the three-dimensional material from 

which the structure is made. For example, the typical coefficient E*I of the bending 

moment in a simple beam theory depends on the product of a material constant (young’s 

modulus, E) and a geometric constant (the second moment of area of the cross section, I). 

In this regard, from a constitutive point of view the more general Cosserat theory with 



  13 

two deformable directors becomes simpler than the theories in which the cross-section is 

rigid, since it is possible to develop restrictions on the constitutive equations for 

nonlinear elastic rods that use the three-dimensional strain energy function and ensure 

consistency between the solutions of the rod theory and those of the three-dimensional 

theory for all homogeneous deformations.  Rubin(1995) and  Simo, Rifai, and Fox (1990) 

also noted that the three-dimensional constitutive equations can be used in their 

numerical formulation of the Cosserat type shell theory when the director is deformable. 

Simo (1985) has discussed a convenient parameterization of the rod model developed by 

Antman (1972), and Simo and Vu-Quoc (1986) have considered the associated finite 

element formulation. 

According to Rubin (1995), the theory of Cosserat point is a special continuum theory 

that models the deformation of a small structure that is essentially a point surrounded by 

some small but finite region. This theory has been used to determine numerical solutions 

of problems in continuum mechanics by Rubin (1995, 2004), and also by Green and 

Naghdi (1979) to model composite materials.  Also, a unified treatment of constraints in 

the theory of Cosserat point has been considered by O’Reilly and Vardi (1998). This 

work generalized the notion of a Cosserat point to a collection of Cosserat points, which 

are connected by generalized constraints that can be explicit functions of time. 

Alternative theories of analyzing homogeneous deformations of zero dimensional bodies 

have been developed by Slawianowski (1982) and for pseudo–rigid bodies by Cohen and 

Muncaster (1984). 
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Rubin (2001) used a Cosserat point to model deformations of a Cosserat rod element that 

can experience both homogeneous and non-homogeneous deformations associated with 

bending and torsion, along with the initial rod curvature. 

1.2  Microelectromechanical systems (MEMS) and applications 

Microelectromechanical systems (MEMS) as the name suggests are electromechanical 

systems of the sizes ranging from few microns to a few millimeters. Any such system can 

comprise of one or more of the following: (a) a sensor that inputs information to the 

system, (b) an electronic circuit that conditions the sensor signal, and (c) an actuator that 

responds to the electrical signals generated within the circuit.  A sensor or an actuator 

could be a MEMS device in its own right. A micro-system incorporating transducers and 

logic circuitry can be capable of sensing, signal processing, and actuation. Initial 

developments were driven by automotive and medical applications. However, since the 

mid-nineties there has been a growing interest in the use of MEMS for aeronautical 

applications. MEMS devices are widely used as actuators, gyroscopes, pressure sensors, 

filters, micro-mirrors, optical cross connects, and so on. 

 

 

 

 

Figure 1.7:  A sophisticated MEMS Thermal Actuator, as discussed by Li (2006). 
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The fabrication of MEMS devices can leverage the advances made in integrated circuit 

technology and enable integrated multiple functions, improved performance, batch 

fabrication, and reduced manufacturing cost and time.  MEMS devices can be realized on 

a Si chip at a relatively low cost.   However, to understand the device behavior, models 

that accurately capture the electromechanical behavior of these systems are needed.  In 

this thesis, it is sought to use Cosserat mechanics for developing better mechanical 

models of MEMS structures. 

1.2.1 Microresonators and Applications 

As the demand for wireless communications technology continues to increase, so does 

the demand for effective and efficient band-pass filters, as these devices, which pass 

signals with frequency components inside a specific bandwidth while attenuating those 

outside of it, are often integral components of such technology. MEMS based mechanical 

resonators and filters are more desirable compared to their conventional counterparts, due 

to their promising characteristics (including high quality factor (Q) values) and good 

stability primarily due to their size, low power consumption, and ease of integration with 

electrical systems. MEMS filters have been shown to exhibit quality (Q) factors as high 

as 80,000.  

Discrete filter components such as quartz and surface acoustic wave (SAW) resonators, 

filter components made from quartz and ceramic material currently make up the bulk of 

the volume and weight in receivers.  Quartz resonators have the desirable characteristics 

of extreme frequency stability, temperature stability, and high quality factor values 

required for many clock operations. The typical frequency range covered by quartz 
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resonators is 1 kHz to 200 kHz.  The typical range for ceramic SAW resonators is 50 

MHz to 2 GHz. Ceramic resonators tend to have inferior Q values but they are cheaper 

and smaller, and they have replaced quartz resonators in many filter applications where 

frequency stability and high Q specifications have been relaxed.  The fact that ceramic 

resonators are on the millimeter scale to the present day accentuates the need for new 

microelectromechanical systems radio frequency resonator technology. Micromachining 

and MEMS fabrication are technologies well suited for improving the performance, size, 

and cost of resonator systems.  

The first demonstration of micromechanical polysilicon resonators was presented by 

Howe and Muller (1984). Since then, significant progress has been reported for 

resonators that utilize electrostatic transduction. For example, Nguyen, Wong, and Wang 

(2003) worked on micro-machined electromechanical filters.  Roessig, Howe, and Pisano 

(1997) worked on MEMS accelerometers, Nguyen and Howe (1999) worked on micro-

oscillators, and Lin, Howe and Pisano (1998), as well as Wang, Nguyen and Lee (2003, 

2004) worked on coupled resonator filters.  

There are also many other studies and applications, where the dynamics of a micro-

machined structure is used to realize a mechanical transfer function between the drive 

and sense signals in the electrical domain. These devices have not replaced quartz and 

ceramic devices primarily because of the following issues: (i) the frequency range is not 

high enough; (ii) the need for vacuum conditions to attain a high Q; and (iii) impedance 

values higher than those normally exhibited by macroscopic high-Q resonators as 

observed by Wang, Ren, and Nguyen (2003).  
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Figure 1.8: Scanning Electron Micrograph (SEM) of a 71.49-MHz free–free beam 

micromechanical resonator, as shown in the work of Wang et al. (2000). 

By using concepts similar to those of the macro-scale resonant sensor patented by 

Weisbord (1969), Mullem, Blom, Fluitman, and Elwenspoek (1991), Fabula, Wagner, 

and Schmidt (1994), and Funk, Fabula, Flik and Larmer (1995) have reported work on 

bulk micro-machined piezoelectric resonators, where a clamped-clamped beam-like 

structure on the silicon substrate is electro-statically driven in its first resonance mode 

and sensed capacitively. Prak, Elwenspoek, and Fluitman (1992) developed a method to 

design the input/output electrodes for selectivity exciting or sensing modes.   Abdalla, 

Reddy, Faris and Gürdal (2005) worked on the optimal design of the thickness and width 

for beams with different boundary conditions for maximum pull-in voltage. Turner, 

Miller, Hartwell, Macdonald, Strogartz, Adams and Zhang (1998, 2001) have 

investigated a parametrically driven torsion oscillator. Raskin, Brown, Khuri-Yakub and 

Rebeiz (2000) worked on parametric amplifier. DeVoe (1997) proposed a device that was 

an order of magnitude smaller than what was previously reported for bulk-micro-

machined devices by using surface micro-machined piezoelectric filters in a process 
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compatible with backend CMOS processing. In this work, the center frequencies of the 

resonator reached up to 1.18 MHz.  

 

 

 

Figure 1.9: (a) SEM of a 50 µm PZT micro-resonator, as shown in the work of Husain,  

Hone, Postma, Huang, Drake, Barbic, Scherer, and Roukes (2003) and  (b) a schematic 

showing the details of the device structure , as shown in the work of  Kumar, Li, Calhoun, 

Boudreaux, and DeVoe (2004), and DeVoe (2001). 
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Microresonators exhibit nonlinear behavior including jumps, buckling, and nonlinear 

resonance driven oscillations, as discussed in the work of Li and Balachandran (2003) 

and in the dissertation work of Li (2006).  To understand this nonlinear behavior, it is 

important to consider models that will accurately capture the system behavior when it 

undergoes large deformations.  In the present thesis work, Cosserat mechanics is used to 

address this point.  Specifically, it is shown here, as to how one can better capture the 

stiffness characteristics of a system. 

1.2.2 MEMS Gyroscopes and Applications 

The simplest gyroscopes use a high speed, rotating inertial disk that is loosely coupled to 

the frame holding it. A rotation in the frame imparts a torque (rotation) to the spinning 

disk, which precesses (rotates) as a result (conservation of angular momentum). Practical 

uses usually limit the movement to measure rotation along only one axis (say, roll, pitch, 

or yaw axis). The induced torque is monitored by a meter that counteracts the torque with 

springs or a similar restoring mechanism. 

 

Figure 1.12:  Classical gyroscope and Coriolis effect, as shown in the work of Goldstein 

(1952). 
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Microelectromechanical system (MEMS) gyroscopes are miniaturized versions of 

gyroscopes. A multitude of applications already have been developed for consumer and 

automotive markets for MEMS Gyroscopes. Examples of applications include vehicle 

stability control, rollover detection, navigation, load levelling/suspension control, event 

recording, collision avoidance; consumers, computer input devices, handheld computing 

devices, game controllers, virtual reality gear, sports equipment, camcorders, industrial 

robots, navigation of autonomous (robotic) guided vehicles, motion control of hydraulic 

equipment or robots, platform stabilization of heavy machinery, human transporters, yaw  

rate control of wind-power plants; aerospace/military; platform stabilization of avionics, 

stabilization of pointing systems for antennas, unmanned air vehicles, or land vehicles, 

inertial measurement units for inertial navigation, and many more. 

 

Figure 1.13: Polysilicon surface–micro machined vibrating wheel gyroscope designed 

at the Berkeley Sensors and Actuators Center, as discussed by Saratoga in “A Critical 

Review of MEMS Gyroscopes Technology and Commercialization Status”. 
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Almost all reported micro-machined gyroscopes use vibrating mechanical elements 

(proof-mass) to sense rotation. They have no rotating parts that require bearings, and 

hence they can be easily miniaturized and batch fabricated by using micro-machining 

techniques. All vibratory gyroscopes are based on the transfer of energy between two 

vibration modes of a structure caused by Coriolis acceleration. Coriolis acceleration, 

named after the French scientist and engineer G. G. de Coriolis (1792–1843), is an 

apparent acceleration that arises in a rotating reference frame and it is proportional to the 

rate of rotation. 

1.3 Objectives of Thesis work 

The overall objective is to explore the use of Cosserat mechanics to study micro-scale 

structures. Specific objectives include the following:  

(a) study the mechanics of Cosserat theory and its various formulations; their 

applicability to various systems 

 (b) compare the results obtained by using a linear Cosserat model to those obtained by 

using a classical Euler–Bernoulli beam model for a cantilever structure 

 (c) study different parameterization schemes of Cosserat theory for a generic 

microresonator model and verify the results obtained by Wang, Liu, and Cao (2004) 

(d) study the nonlinear stiffness characteristics of a gyroscope inclusive of the third order 

nonlinearities, explore two different parameterization schemes, and compare the results 

with those obtained by O’Reilly, Pisano, and Davis (2004)  
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1.4 Organization of Thesis 

The thesis is organized as follows. The first chapter has been used to provide an 

introduction to Cosserat theory, a brief introduction to micro-systems, and outline the 

connection between the thesis work and micro-scale applications.  In the second chapter, 

the author presents in detail, the various formulations of Cosserat theory. In Chapter 3, 

results obtained in the planar case with Cosserat analysis are compared with other results 

for two different micro-scale systems. In Chapter four, the work carried out with 

gyroscope tethers is reported, and subsequently, in Chapter five, results obtained on the 

dynamics of microresonators are discussed.  Conclusions that can be drawn from this 

work are presented together with suggestions for future work in Chapter six.  
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CHAPTER 2:   COSSERAT MECHANICS OF ROD  

 

In this chapter, Cosserat continuum theory for rods, which forms the basis for this thesis 

research, is presented. The importance of rotation parameterization is examined, and the 

microresonator model developed using the Cosserat mechanics by Wang, Liu, and Cao 

(2004) is reviewed to illustrate the Cosserat rod mechanics based formulation. This 

formulation is used to study,  linear model of a micro-scale structural system in Chapter 3. 

2.1 Cosserat description of a curve in space 

2.1.1 Convention and *omenclature 

 

The following conventions are used throughout this thesis. Vectors which are elements of 

Euclidean 3-space R
3
, are denoted by lowercase, italicized symbols, for example, ,u v and 

vector valued functions are denoted by lowercase, arrow above italicized symbols, for 

example, ,u v
� �

; Tensors and matrices are denoted by upper-case, uppercase, italic 

symbols, for example, I, J; The three unit vectors { }1 2 3, ,e e e are assumed to form a fixed 

right-handed orthogonal basis. The summation convention for repeated indices is used. 

The symbols t∂   and ξ∂ denote differentiation with respect to time t and arc length 

parameter ξ, respectively. The symbols (˙) and (‘) also denote differentiation with respect 

to time, “t” and length “ξ”, respectively. 
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2.1.2 Description 

 

The Cosserat rod theory discussed here assumes that rods behave as shearable, extensible 

bodies. The motion of the rod is considered to be along the centroidal line along the rod, 

and this centroidal line is referred to as a “curve”.  

 

There two ways, in which Cosserat mechanics is often formulated. Typically, for static 

applications, the formulation is based on displacement fields, and for dynamic 

applications, one goes beyond displacement fields and uses time dependent generalized 

coordinates in the formulation. For both formulations, the initial set up of the system’s 

(rod) configuration (Figure 2.1); that is, the parameterization of a curve in space, plays an 

essential role in the development of the governing equations.  This parameterization 

remains the same for both static and dynamic applications. 

 

 

Figure 2.1: Illustration of Cosserat rod. 
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It is assumed that one has a regular curve in R
3
 (with no singular points), a parameterized 

curve C, which is a map of “a” of an interval P = [ξ0, ξ1] € R into R
3
; each point on Curve 

C is a convected coordinate. According to the Euler-Bernoulli hypothesis, the plane cross-

sections undergo only rigid rotations during a deformation and remain in the plane after the 

deformation and preserve their shape and area; in keeping with this, the area of cross- 

section ‘A’(not a matrix)  is assumed to be a constant.   

 

In the configuration shown in Figure 2.1, the Cosserat rod is defined by 

(a)  A position vector,    ( , ), (1,2,3)i ir r t iξ= =
� �

 of the material points of C 

(b) A local, orthonormal triad, ( , ), (1, 2,3)i id d t iξ= =
� �

 moving along the cross-section 

of C 

(c) A reference configuration, ( ), (1,2,3)i iD D iξ= =
� �

 

 

The reference configuration gives the flexibility of simulating the dynamic nature of 

system (rod), by simple parameterization either in terms of rotation matrices or in terms 

of linear or nonlinear extensions; in many ways, it can be said that this configuration 

helps defines the system. Placing restrictions on the reference configuration, and hence, 

the whole system allows for a simpler theory can be developed, called the “constrained 

Cosserat theory.”   
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2.2 Governing Equations of Motion 

 

By using a free-body diagram of the system, assuming small strains and small 

displacements and linearizing, and carrying out a force balance and a moment balance, 

one obtains equations (2.1) and (2.2) to describe a Cosserat rod.  In cases where the 

forces and moments acting at particular point are not straightforward and the direction of 

application is not known, the extended Hamilton’s principle (Meirovitch, 2001) can be 

employed to arrive at the same. 

 

 ( ) ( ) ( , ) ( , )ttA r n t f tξρ ξ ξ ξ ξ∂ = ∂ +  (2.1) 

 

 ( , ) ( , ) ( , ) ( , ) ( , )th t m t v t n t l tξξ ξ ξ ξ ξ∂ = ∂ + × +  (2.2) 

 

In equations (2.1) and (2.2), ( , ) ( , ) ( , )i in t n t d tξ = ξ ξ  and ( , ) ( , ) ( , )i im t m t d tξ = ξ ξ  are 

respectively contact force and torque densities, while ( , ) ( , ) ( , )i ih t h t d tξ = ξ ξ denotes the 

angular momentum densities.  The quantities ( , )f tξ and ( , )l tξ  denote the prescribed 

external force and torque densities, respectively. The axial stiffness, bending stiffness, 

and torsion stiffness are represented by the tensors K, J and I, respectively.  Following 

the definition given by Antman (1972), one has 

 

 
2

33 3 3

, 1

2

33 3 3

, 1

( , ) ( , )( ( , ) ( , )),
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The corresponding components are given by 
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∫  (2.4) 

where E and G are the Young’s modulus and shear modulus, respectively; ρ is material 

density; A is the area of cross-section; and ' 'ζ and ' 'η are variables used to define 

positions along the e1 and e2  directions, respectively.  It is noted that in this formulation 

the strains are expressed in terms of displacements in the force and moment balance 

equations. 

2.3 The Rotation Matrix – Parameterization 

 

There are many ways to parameterize rotations. The choice of a particular 

parameterization (or any parameterization at all) depends on the application of interest.  
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The primary applications of rotations in mechanics are to encode orientations and 

describe and control the motion of rigid bodies and articulations in the transformation; 

the backbone of most mechanical systems, require not only free rotations, but also 

constrained one, two, and three degree-of-freedom (DOF) rotations whose angular range 

of motion is limited to more faithfully model the motions of examples such as ball and 

socket joints. 

 

Parameterizing rotations for few applications is problematic mainly because rotations are 

non-Euclidean in nature (traveling infinitely far in any direction will bring one back to 

the starting point an infinite number of times). Any attempt to parameterize the entire set 

of three DOF rotations by an open subset of Euclidean space (as do Euler angles) will 

suffer from gimbal lock, the loss of rotational degrees of freedom, due to singularities in 

the parameter space.  Intuitively, a singularity is a continuous subspace of the parameter 

space, all of whose elements correspond to the same rotation, thus movement within the 

subspace produces no change in rotation. Parameterizations that are themselves defined 

over non-Euclidean spaces (such as the set of unit quaternions embedded in R
4
) may 

remain singularity-free, and thus avoid gimbal lock. Employing such parameterizations is 

complicated.  It is mentioned that most numerical tools often assume Euclidean 

parameterizations. 

 

A number of geometrical approaches have been developed to deal with rotational motion. 

Approaches based on the exponential map of rotation, the Gibbs-Rodrigues parameters, 

the Wiener-Milenkovic parameters (conformal rotation vector), and Eulerian angles and 

Euler-Rodrigues parameters (unit quaternions) and others have been used for 
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parameterization. To get a better understanding of this subject, next a presentation of 

rotation and rigid body motion parameterization is made.  

 

2.4 Generic Parameterization (methods) preferred for Cosserat formulation 

2.4.1 Direction Cosine Matrix (DCM): (Greenwood, 1988) 

 

Figure 2.2: Two Cartesian coordinate systems with a common origin and an arbitrary 

orientation relative to each other. 

Any two systems with the same origin but different orientation can be represented in a 

way that one system components are given by the cosines of the angles between the axes 

of the first and second systems. 
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x x x y x z

y x y y y z

z x z y z z

x C C C x

y C C C y

z C C C z

′ ′ ′

′ ′ ′

′ ′ ′

′     
    ′ =     
 ′       

 

In the transformation taking one from the reference axes to the rotated axes, the 

coefficients C’s represent the direction cosines. The ease with which vectors can be 

rotated by using a DCM, as well as the ease of combining successive rotations, make the 

DCM a very useful and popular way to represent rotations, even though it is less concise 

than other representations. 

 

2.4.2 Euler parameters -Baruh(1999) 

 

The mathematics of Euler parameters was first introduced by Hamilton, in 1843. In order that the 

solutions be free from nonlinearities and avoid singularities, a preferable set of parameters used 

usually are the Euler Parameters. These parameters increase the number of variables one deals 

with from three to four, but they eliminate the nonlinearities and many of the numerical problems. 

Due to the increase in the number of variables, there will be redundancy with the use of Euler 

parameters. These parameters have been inspired from the Euler’s theorem, which states that any 

rotation of the rigid body about a point can be accomplished by a single rotation by an angleφ , 

called the principal angle and direction cosines of the principal line. 
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Figure 2.3: Illustration of principal line. 

 

 

The direction cosines of the principal line are given by 

1 1 2 2 3 3cos , cos , cosc c cθ θ θ= = = , 

and the Euler parameters are defined as 
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2.4.3 Quaternion (as discussed by Hoffmann,  2002) 

William Rowan Hamilton (1805-1865) had invented the quaternions. Quaternions are 

quadruples of real numbers, for which a special multiplication is defined. 

1 2 3 4[ , , , ]TQ q q q q=
 

The rules for multiplication can be understood if one represents the quarternions by three 

complex base vectors i , j, k. 

1 2 3 4Q q i q j q k q= + + +  

 

The first three components can be written as a vector or a column matrix “q”. 

4Q q q= +  

This scheme is valid for the multiplication, for example,  j.k = i 

 

 i j k 

i -1 k -j 

j -k -1 i 

k j -i -1 

 

A multiplication among two quarternions say Q and S, can now be executed as follows 
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4 3 2 1 1

3 4 1 2 2

1 2 3 4 1 2 3 4

2 1 4 3 3

1 2 3 4 4

. ( ) ( )

( )

q q q q s

q q q q s
Q S q i q j q k q s i s j s k s

q q q q s

q q q q s

R Q S

−   
   
   = + + + + + + =
   
   
− − −   

=

i

 

Thus the result of multiplication is product of a quaternion matrix R(Q), which is 

assigned to Q and the quaternion S, as column matrix. The norm of quaternion is one or 

is made to be one. For each quaternion Q, the components 1 2 3 4, , ,q q q q depend on the type 

and sequence of rotation angles which are called the Euler angles. The vector formulation 

of Euler parameters, which is used for quaternions was developed by Heaviside, O. 

Quaternions are often used for rotational transformations and angular velocity 

transformations.  

 

Quaternions have been used to parameterize the rotation of DNA strings by Pai (2004) to 

reduce the Hamiltonian into a canonical Hamiltonian form and thus simplify the nature of 

the nonlinear equations. 

 

2.4.4 Other Methods  

Exponential parameterization (Kreizig, 2005) 

Every non-zero vector in R
3
 has a direction and magnitude. One can associate a rotation 

with each vector by specifying the direction as an axis of rotation and the magnitude as 

the amount by which to rotate around the axis. If one augments this relationship by 

associating the zero vector with the identity rotation, the relationship is continuous, and 
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this is known as the exponential map. In short, the exponential map maps a vector in R
3
 

describing the axis and magnitude of a three DOF rotation to the corresponding rotation. 

Unlike the quaternion parameterization, this parameterization is Euclidean, and so, it 

does contain singularities. There are many different formulations of the exponential map. 

 

Rodrigues parameters (Baruh, 1999) 

Rodrigues parameters are defined in terms of principal axis (Euler parameters) as  

0

; ( 1, 2,3)i
i

e
i

e
ρ = =    

and the Rodrigues vector is defined as  

tan( / 2)nρ φ=  

where n is the unit vector associated with principal line. 

 

Cayley-Klein Parameters 

 

The parameters α, β, γ and δ, like the three Euler angles, provide a way to uniquely 

characterize the orientation of a solid body. These parameters satisfy the identities 
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2.5 Example: Rotation parameterization for a flexible beam (Rod)  

 

In the work of Wang, Liu, and Cao (2004), the parameterization of rotation and its 

subsequent generalization to the case of general rigid motion, involving coupled 

translation and rotation are addressed.  An ortho-normal basis di(s,t);(i=1,2,3) is defined, 

at any chosen cross-section located at s, and these vectors are referred to as “basis or  

local directors”.  These directors are such that such that d1 and d2 lie in the plane of the 

rotated cross-section and d3 is normal to the rotated cross-section.  

 

At any given time, r
�

, the position vector from the origin of the inertial frame  to  the point 

on the Cosserat curve describes the axis of the rod whose cross-section orientations are 

determined by di ; (i = 1,2,3) such that
3

0
s
r d∂ >
�
i  This condition implies the following: (a) 

the local ratio of  the deformed length to reference length of the axis cannot be reduced to 

zero since 
s r∂
�

 > 0 and (b) a typical cross-section (s = s0) cannot undergo a total shear in 

which the plane determined by d1 and d2 is tangent to the curve r(s; t) at r(s0; t). 

 

Thus, the position vector can be written in terms of the unit vectors fixed in the inertial 

frame as  

 1 2 3( , ) ( , ) ( , ) ( , ) ( , )i ir s t r s t e x s t e y s t e z s t e= = + +
�

 (2.5) 

 

The motion involves both the velocity of the curve, ( ; )t r s t∂  and angular velocity of the 

cross-sections w(s; t); that is, 
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 ( , ) ( , ) ( , )
t i i
d s t w s t d s t∂ = ×  (2.6) 

 

In a similar manner, the strains of the Cosserat rod are classified as follows: 

 

“Linear strain” vector ( , )v s t  

 

 ( , ) ( , )sv s t r s t= ∂  (2.7) 

  and                                      

 “Angular strain” vector ( , )u s t  

 ( , ) ( , ) ( , )s i id s t u s t d s t∂ = ×  (2.8) 

 

Since the basis {d1; d2; d3} is convenient for the intrinsic description of deformation, the  

relevant vector valued functions are decomposed with respect to it as 

 

 

( , ) ( , )

( , ) ( , )

( , ) ( , )

i i

i i

i i

v s t v d s t

u s t u d s t

w s t w d s t

=

=

=

 (2.9) 

In order to parameterize, here, it is chosen to employ the rotational vector that is free both 

of singularities and constraints. Because of the orthogonality of the chosen unit vectors, 

the rotation matrix is a proper orthogonal matrix, its nine components can be expressed in 

terms of three independent parameters. Let S represent the spin matrix of a vector 

i ia a e= .  This is given by  
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3 2

3 1

2 1

0

( ) 0

0

a a

S a a a

a a

− 
 = − 
 − 

 (2.10) 

 

Then, the rotation matrix R is determined by the expression  

 

 2

2

sin 1 cos
( ) ( ) ( ) ( ) ( )R I S S

φ φ
φ φ φ

φ φ
−

= + +  (2.11) 

 

where i ieφ φ=  is the rotational vector, ( )S φ  is the spin matrix of φ  defined by equation 

(2.10),  and ( )
1

2 2 2 2
1 2 3φ φ φ φ= + + is the rotational norm or the length of the rotational 

vector. An expansion of trigonometric functions in equation (2.11) by using Taylor series 

yields 

 

 2 31 1 1
... ... exp( )

2! 3! !

nR I S S S S S
n

= + + + + + + =  (2.12) 

 

Thus, the rotation matrix may alternatively be expressed by an exponential map, the 

exponentiation of the spin matrix associated with the rotational vector. Conversely, 

taking a given orthogonal matrix R as a rotation matrix, the associated rotation vectorφ  

can be derived from equations (2.10) and (2.11). The rotational norm φ can be calculated 

from 

 1 ( ) 1
cos ( )

2

Tr R
φ − −

=  (2.13) 
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By taking the matrix logarithm of R, one can obtain the skew-symmetric matrix S as 

follows. 

 log( ) ( )
2sin

TS R R R
φ

φ
= = −  (2.14) 

 

Therefore, i ieφ φ=  with 1 23Sφ = − , 2 13Sφ =  and 3 12Sφ = − . 

 

For a typical beam component in used in a MEMS structure, the effect of shearing 

deformation can be negligible, and  the cross-section of the rod can be assumed to be 

perpendicular to the tangent to the Cosserat curve; that is, 

 

 3( , ) ( , ) | ( , ) | ( , )s sv s t r s t r s t d s t= ∂ = ∂  (2.15) 

 

where, 
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 (2.16) 

 

It is assumed that the local directors{ }1 2 3, ,d d d , can be obtained by going through the 

following steps: 
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Step 1: Rotate { }1 2 3, ,e e e , about
3e , with an angle ϕ , and label the new directors as 

{ }1 2 3, ,d d eɶ ɶ . The rotation matrix,
aR  associated with the rotation vector

a e3ϕ = ϕ  is given 

by 

 

cos sin 0

sin cos 0

0 0 1

aR

ϕ ϕ
ϕ ϕ

− 
 =  
 
 

 (2.17) 

 

Step 2: Rotate { }1 2 3, ,d d eɶ ɶ  to { }1 2 3, ,d d d  , assuming 
3 3d e≠ , The rotation vector and the    

rotation matrix are given by 

 

 

� �
1 2 2 1 2 2

1 2 1 2

2 1 1 2
2 2 2 2

1 2 1 2

2 2

1 3 2 1 2 3
1

2 2 2 2

1 2 1 2

2 2

1 2 3 2 3 1
2

2 2 2 2

1 2 1 2

1 2 3

sin sin

( 1)

( 1)

b

b

v v v v
v d v d

v v v v

v v v v v v
v

v v v v

v v v v v v
R v

v v v v

v v v

ϕ
− −− + − +

= +
+ +

 + −
 

+ + 
 − + =
 + +
 

− 
 
 

 (2.18) 

 

 

From the above, the local moving directors{ }1 2 3, ,d d d , can be derived to be 

 

( )

2 2

1 3 2 1 2 3
1 12 2 2 2

1 2 1 2

2 2

2 3 1 1 2 3
12 2 2 2

1 2 1 2

1 2 3

( 1)
cos sin

( 1)
sin cos

cos sin

v v v v v v
d e

v v v v

v v v v v v
e

v v v v

v v e

ϕ ϕ

ϕ ϕ

ϕ ϕ

 + −
= + + + 

 + −
+ + + + 
− +

 (2.19) 
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( )

2 2

1 3 2 1 2 3
2 12 2 2 2

1 2 1 2

2 2

2 3 1 1 2 3
12 2 2 2

1 2 1 2

1 2 3

( 1)
sin cos

( 1)
cos sin

cos sin

v v v v v v
d e

v v v v

v v v v v v
e

v v v v

v v e

ϕ ϕ

ϕ ϕ

ϕ ϕ

 + −
= − + + + 

 + −
+ − + + 
− −

 (2.20) 

 

 3 1 1 2 2 3 3d v e v e v e= + +  (2.21) 

 

 

Expanding the directors in terms of polynomials in ϕ  and retaining the terms up to third 

order, one arrives at 

  

 

2 2

1 1 1 2 1

2 3

1 2 2

2

1 2 1 3

1 1 1
( , ) 1 ( , ) ( , ) ( , ) ( , ) ( , )

2 2 2

1 1 1
( , ) ( , ) ( , ) ( , ) ( , )

2 2 6

1
( , ) ( , ) ( , ) ( , ) ( , )

2

d s t s t v s t v s t v s t s t e

s t v s t v s t s t s t e

v s t v s t s t v s t s t e

ϕ ϕ

ϕ ϕ ϕ

ϕ ϕ

 ≈ − − − 
 

 + − − − 
 

 + − − + 
 

 (2.22) 

 

2 3

2 1 2 1 1

2 2

2 1 2 2

2

2 1 2 3

1 1 1
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

2 2 6

1 1 1
1 ( , ) ( , ) ( , ) ( , ) ( , )

2 2 2

1
( , ) ( , ) ( , ) ( , ) ( , )

2

d s t s t v s t v s t v s t s t s t e

s t v s t v s t v s t s t e

v s t v s t s t v s t s t e

ϕ ϕ ϕ

ϕ ϕ

ϕ ϕ

 ≈ − − + + 
 

 + − − − 
 

 + − + + 
 

 (2.23) 

 2 2

3 1 1 2 2 1 2 3

1 1
( , ) ( , ) ( , ) 1 ( , ) ( , )

2 2
d s t v s t e v s t e v s t v s t e

 ≈ + + − − 
 

 (2.24) 

 

The rotational vectorφ   in the Inertial basis is given by  
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 ( , ) ( , ) ( , )x y zs t s t s tφ φ φ φ= + +  (2.25) 

                                                   

 

Now using the already defined rotational matrices, Ra and Rb the spin matrix associated 

with respect to the rotational vector φ  can be derived from 

 

 1 ( ) 1
cos

2

a bTr R R
φ − − =  

 
 (2.26) 

 

and 

 log( ) ( )
2sin

T T

a b a b a bS R R R R R R
φ

φ
= = −  (2.27) 

                                   

2.6 Energy Expressions and the Extended Hamilton Principle 

 

As a representative example, it is mentioned that the displacement fields can be expanded 

as series expansions of the form  

 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 3

1 2 3

2 3

1 2 3

2 3

1 2 3

2 3

1 2 3

, ( ) ( ) ( ) ( ) ( ) ( )

, ( ) ( ) ( ) ( ) ( ) ( )

, ( ) ( ) ( ) ( ) ( ) ( )

, ( ) ( ) ( ) ( ) ( ) ( )

x t x t x t x t

y t y t y t y t

z t z t z t z t

t t t t

ξ ξ φ ξ φ ξ φ

ξ ξ φ ξ φ ξ φ

ξ ξ φ ξ φ ξ φ

θ ξ θ ξ φ θ ξ φ θ ξ φ

= + +

= + +

= + +

= + +

i i i

i i i

i i i

i i i

 (2.28) 

 

This is further discussed in Chapter 4, where other parameterizations are also presented. 



  42 

In order to determine the system equations, the extended Hamilton’s principle is used.  

This reads as  

 

 

2 2

1 1

( ) 0

t t

t t

T V dt Wdtδ δ− + =∫ ∫  (2.29) 

 

where T is the total kinetic energy and  V is the potential energy of the system, Wδ is the 

virtual work done and δ represents the variation.  Here, 

 ( )1
. ( , )

2
t tT A r r I w wρ= ∂ ∂ +  (2.30) 

 ( )2

33 3

1
( , ) ( 1)

2
V J u u K v= + −  (2.31) 

 

where 

u is the angular strain defined by  
1

2
i s iu d d= ×∂  

3v  is the linear stain per unit length, 
3v rξ= ∂  

and w  is the angular velocity, 
1

2
i t iw d d= ×∂ . 
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CHAPTER 3: LINEAR ANALYSIS OF MICRO-SCALE 

STRUCTURES 
 

 

In this chapter, Cosserat analysis of a micro-cantilever and a system consisting of four 

micro-scale beams attached to a mass in the middle are considered.  Specifically, the 

linear equations of motion of these two systems are developed and predictions of the 

natural frequencies are made. 

 

3.1 Motivation 

 

Cosserat continuum theory is claimed to be a complete as compared to classical Euler-

Bernoulli beam theory. Building on the material presented in Chapter 2, this is explored 

here in the context of the structures treated in the work of Wang, Liu, and Cao (2004).  

Also, the linear version of the constrained Cosserat mechanics used by Wang et al. (2004) 

is used in the treatment of this chapter.  

 

3.2 Micro-scale structures of interest 

 

In Figure 3.1, the micro-scale structure studied by Wang et al. (2004) is illustrated.  This 

structure consists of four beam-like structures that are clamped at one end and attached to 

a common mass at the other end.  This mass is treated as a rigid body.  In Figure 3.2, the 

other micro-scale structure of interest is shown.   This structure is a cantilever beam, 

which can undergo bending motions, as shown in Figure 3.3.  In addition, this beam is 

also allowed to undergo twisting motions, as shown in Figure 3.4.  
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Figure 3.1:  Schematic of micro-scale system studied by Wang et al. (2004). 

 

 

Figure 3.2: Illustration of a cantilever structure. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.3:  Cantilever beam bending. Figure 3.4: Cantilever beam undergoing  

              twisting motions. 
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The inertia matrix for the central mass of Figure 3.1 is given by 

 

 

0 0

0 0

0 0

R

zz

mL

M mL

I

 
 =  
 
 

; 

 

 

where m LwDρ= , 2 2( )
12

zz

E
I L D LWD

ρ
= + , ρ  is the mass density, L is the length of 

this body, E is the Young’s modulus, W is the  width of this body, and D is the thickness 

of this body.  The four tethers shown in Figure 3.1 are treated as Cosserat rods.  

Following Wang et al. (2004), for illustrative purposes, the system parameters given next 

are chosen. 

 
System parameters 

 

Density of the central mass as well as the four tethers, 32.33 /g cmρ =  

Length of beam, 58.32bL mµ=  

Width of beam, 2bw mµ=  

Thickness of beam, 3bt mµ=  

Young’s modulus, E = 150 GPa 

Poisson’s parameter, 0.29γ =  

Length of central mass, 15.4L mµ=  

Width of central mass, 6W mµ=  

Thickness of central mass, 3D mµ=  
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3.3 Cosserat Cantilever Analysis 

 

Following the development of Chapter 2, first, a position vector is defined as 

 (a)  ( , )i ir r tξ=
� �

 where i = (x,y) is a material point of the Cosserat curve C 

Then, a local orthonormal triad is introduced according to  

(b) ( , ), (1,2,3)i id d t iξ= =
� �

 

to move along the cross-section of C. Then, a reference configuration is defined as 

(c) ( ), (1,2,3)i iD D iξ= =
� �

 

The reference configuration gives the flexibility of simulating the dynamic nature of 

system, as explained in Chapter 2.  For the static case, the force and moment balance 

laws lead to    

( , )
0

n tξ
ξ

∂
=

∂  

( , )
( ) ( ) 0

m t
v n

ξ
ξ ξ

ξ
∂

+ × =
∂  

The equations for the dynamic case, inclusive of the inertia terms, are given in Chapter 2 

in the form of equations (2.1) and (2.2).  Here,  

 
( , ) ( , ) ( , )i in t n t d tξ = ξ ξ

  

and 

( , ) ( , ) ( , )i im t m t d tξ = ξ ξ
  

are the contact force and torque densities, respectively. In expanded form, they are given 

as follows: 

1 11 1 2 22 2,n K v n K v= =  
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1 11 1 2 22 2,m j u m j u= =  

The motion of the cantilever beam involves both the velocity of the curve ( , )tr s t∂  and 

the angular velocity of the cross-sections, w(s; t); that is 

( , ) ( , ) ( , )t i id s t w s t d s t∂ = ×
                                                   

In a similar manner, as in Chapter 2, the strains of the Cosserat rod are classified as 

“Linear strain” vector 

( , ) ( , )sv s t r s t= ∂
                                                           

and the 

“Angular strain” vector  

( , ) ( , ) ( , )s i id s t u s t d s t∂ = ×
                   

Since the basis {d1, d2, d3} is convenient for the intrinsic description of deformation, the 

relevant vector valued functions are decomposed with respect to it.  This results in 

( , ) ( , )

( , ) ( , )

( , ) ( , )

i i

i i

i i

v s t v d s t

u s t u d s t

w s t u d s t

=

=

=

                                            

The parameterization of the rotation matrix follows the same scheme as that used by 

Wang et al. (2004), which is discussed in Chapter 2. 

  

3.3.1 Shape functions 

Following the treatment given by Wang et al. (2004), shape functions or interpolation 

functions are obtained so that each Cosserat element can be described by a reduced 

amount of information, which in this case, is six generalized coordinates. These 

coordinates correspond to the translational displacement amplitudes along the x and y 
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directions and the rotation amplitude about the z direction.   Specifically, the generalized 

coordinates at the ends of a Cosserat element are represented as  

 

( )

( )

a

b

q t
q

q t

 
=  
 

, 3 generalized coordinates at each end. 

 

( ) 0

( ) 0

0( )

a

a a

a

X t

q Y t

tθ

   
   = =   

  
  

 at s = 0   

 

( )

( )

( )

b

b b

b

X t

q Y t

tθ

 
 =  
 
 

 at s = L                

In addition, the nonlinear forms of the displacement fields are expanded in the following 

form 

( ) ( )

( ) ( )

( ) ( )

2 3 4

11 12 13

2 3 4

21 22 23

2 3 4

31 32 33

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( ),

( , ) ( ) ( ) ( ) ( ) ( ) ( ) ( )z

x t x t x t x t O

y t y t y t y t O

t t t t O

ξ ξ φ ξ φ ξ φ φ

ξ ξ φ ξ φ ξ φ φ

θ ξ θ ξ φ θ ξ φ θ ξ φ φ

= + + +

= + + +

= + + +

 

 

where ( )tφ  is the rotation angle discussed in Chapter 2. Only two of the translational 

displacement fields and one rotational displacement field have been chosen, because of 

the planar case considered here.   Making use of the boundary conditions, one can solve 

for the shape functions given above.  Due to the algebra involved, they are not shown 

here. 

 

 

 



  49 

3.3.2 System Energy 

 

After determining the shape functions, the system energy expressions are determined for 

use in the Extended Hamilton’s principle; that is,  

 

 

where the different terms are as explained in Chapter 2.   Here,  

{ }1
. ( , )

2
t tT A r r I w wρ= ∂ ∂ +

  

{ }2

33 3

1
( , ) ( 1)

2
V J u u K v= + −

      

Where,  

K, J, and I are second-order tensors whose elements are defined as  

 

ii i

2

ij i j 33 3 3

i,j=1

2

ij i j 33 3 3

i,j=1

K(s,t) = K (s,t)(d (s,t) (s,t)),

J(s,t) = J (s,t)(d (s,t) d (s,t)) + J (s,t)( ( , ) ( , ))

( , ) I (s,t)(d (s,t) d (s,t)) + I (s,t)( ( , ) ( , ))

id

d s t d s t

I s t d s t d s t

⊗

⊗ ⊗

= ⊗ ⊗

∑

∑

  

 

The tensor K represents a strain matrix. It takes the form 

 

11 x

22 y

33 z

k =shear strain

K k =shear strain

k =axial strain

 
 =  
 
 

 

 

2 2

1 1

( ) 0

t t

t t

T V dt Wdtδ δ− + =∫ ∫
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The inertia tensor J takes the form 

nd

11

nd

22

33

j = 2 area

      moment Inertia

j = 2 area
J =

      moment Inertia

j = Polar moment

       of Inertia

 
 
 
 
 
 
 
 
 
 

 

 

where j11 and  j22 resist volume bending, while j33 resists torsion.  The remaining elements 

are zero because of the assumption that area is constant. Also in the present context, k33, 

and j33 are inconsequential. The inertia matrix takes the form 

 

11

22

33

I = mass moment

      of inertia

I = mass moment
I =

       ofinertia

I = mass moment

       of inertia

 
 
 
 
 
 
 
  
 

 

In present case, only 33I  comes into play. 
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Whose coefficients Kii, Jii, Iii are given by: 

11 22

33

2

11

A(s)

2

22

A(s)

2 2

33

A(s)

12 21

A(s)

2

11

( )

2

22

( )

2 2

33

( )

12 21

( )

K  = K  = GA(s)

K = EA(s)

J = E

E

E( )

E

( )

( )

( )( )

( )

A s

A s

A s

A s

dA

J dA

J dA

J J dA

I s dA

I s dA

I s dA

I I s dA

η

ξ

η ξ

ξη

ρ η

ρ ξ

ρ η ξ

ρ ξη

=

= +

= − =

=

=

= +

= − =

∫

∫

∫

∫

∫

∫

∫

∫
 

                                                       

and 

u is the angular strain defined by  
1

2
i s iu d d= ×∂  

3v  is the linear stain per unit length, 
3v rξ= ∂  

and w  is the angular velocity, 
1

2
i t iw d d= ×∂ . 
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3.3.4 Cosserat beam solution 

 

For the system parameter values given previously, the first natural frequencies of a 

cantilevered tether is determined along the x and y directions.  The corresponding mass 

and stiffness matrices (which have been normalized) read as 

 

17

17

0.4154 10 0
,

0 0.4154 10
cMassmatrix M

−

−

 ×
=  

× 
 Kg; 

2

3

0.15 10 0
,

0 0.65187 10
cStiffnessMatrix K

−

−

 ×
=  

× 
 N/m 

 

from which one can determine the natural frequencies as 

 

 

ω1 =1.8790e+007 rad/s 

 

 ω2 =1.2527e+007 rad/s 

Considering the system of Figure 3.1, as a whole, the reduced set of linear equations of 

motion take the form   

2

2

2

0

0

0

xo

yo

zo

x x

y y

φ

ω

ω

θ ω θ

+ =

+ =

+ =

ɺɺ

ɺɺ

ɺɺ

 

The mass matrix of the central mass in this given by   

-3

3

-2

0.4907 10 0 0

, 0 0.4907 10 0

0 0 2.0931 10

mMassofmembrane M −

 ×
 

= × 
 × 

Kg 
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The mass matrix for the whole system is given by 4 c mM M× + , and the stiffness matrix 

for the whole system is given by 4 cK× .  Then, the system’s natural frequencies are given 

by 

1.3340

0.8893

0.2767

xo

yo

zoφ

ω

ω

ω

=

=

=

  rad/s 

The ratio of the first two frequencies is in agreement with those presented by Wang et al. 

(2004).  However, the same is not true for the other ratios. 

 

 

3.4 Comparisons with Euler Bernoulli Theory and Remarks 

 

 

Treating the tether as a Euler-Bernoulli beam since the length to thickness ratio is more 

than ten, the following expression (Meirovitch, 2001) is used to determine the first 

natural frequency of bending along the x and y directions: 

 

2

3.5160
2

EI
f

L m
ω π  = =  

 
 

 

The use of this relation leads to the following results: 

ω1= 1.8097e+007  rad/s 

ω2= 2.7146e+007  rad/s 

 

 

While there is good agreement between the first natural frequency between the Cosserat 

analysis and the Euler-Bernoulli analysis along the x direction, the same is not true along 

the y direction.  The first natural frequency determined along the y direction is 
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determined to be lower in the case of Cosserat analysis.  This may be reasonable, as the 

Cosserat analysis imposes lesser kinematic constraints than the Euler-Bernoulli beam 

analysis.  

 

If each of the tethers of the system shown in Figure 3.1 is modeled as an Euler-Bernoulli 

beam, then the obtained system natural frequencies are given by  

 

1.4

1

0.4

xo

yo

zoφ

ω

ω

ω

=

=

=

rad/s 

 

These frequencies are not far from those determined previously by using the Cosserat 

analysis.  Although the stiffnesses of the individual tethers are influenced when one uses 

Cosserat analysis as opposed to the Euler-Bernoulli beam analysis, not much difference 

is seen in the system natural frequencies because of the large central mass.  

 

A comparison of Cosserat Beam frequencies to those of Euler-Bernoulli Beam 

frequencies at different Aspect Ratios is shown in the following table. 
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Aspect Ratio 

(L/W) 

Cosserat 

Frequencies (rad/s) 

Euler-Bernoulli 

Frequencies (rad/s) 

20 7

x

7

y

 =1.8790 10

 =1.2527 10

ω

ω

×

×
 

7

x

7

y

 =1.8090 10

 =2.7146 10

ω

ω

×

×
 

25 6

x

6

y

 =6.760 10

 =4.5146 10

ω

ω

×

×
 

6

x

6

y

 =6.5150 10

 =9.7725 10

ω

ω

×

×
 

50 6

x

6

y

 =1.6911 10

 =1.1274 10

ω

ω

×

×
 

6

x

6

y

 =1.6288 10

 =2.4431 10

ω

ω

×

×
 

 

Table 3.1:  Cosserat & Euler-Bernoulli frequencies at various aspect ratios 

 

Frequency variation with Aspect Ratio
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Fig 3.5:   frequency variation with increase in aspect ratio of the beam 
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Frequency difference variation with Aspect Ratio
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Fig 3.6: Cosserat and Euler frequency difference plotted against aspect ratio 

 

The results of this section point out that one needs to be careful in using Euler-Bernoulli 

beam analysis and that Cosserat analysis may be more relevant in some instances.  In 

general, as the displacements get larger, Cosserat analysis with nonlinear shape functions 

would be appropriate.  Although there is no coupling in the linear case, there is coupling 

in the nonlinear case.  It is recalled that Cosserat theory is a continuum based theory that 

accounts for strains in all the directions at each of the material points along the curve of 

consideration as explained earlier in this chapter. Cosserat analysis may also be more 

relevant for systems with nonlinear boundary conditions (e.g., Tucker and Wang, 2003).  

Although micro-scale structures are considered here, this type of analysis is applicable to 

other flexible structures at other scales such as drill strings used for oil well exploration 

applications.   
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CHAPTER 4:   

TETHER SUSPENDED MICROMACHINED GYROSCOPE  
 

 

In this chapter, Cosserat modeling of tethers used in a micro-scale gyroscope are studied.  

The treatment follows the development presented in Chapter 2.  Two different 

parameterizations are determining the displacement fields and the results obtained by 

using both of these parameterizations are compared with those published in the literature. 

4.1 Motivation 

Micromachining technology has made it possible to fabricate microelectromechanical 

systems (MEMS) in high volumes at low individual cost. A key component of inertial 

measurement systems based on MEMS is the angular rate sensor, or a gyroscope (see 

Chapter 1). Several designs for micromachined gyroscopes have been reported in recent 

times, and one class of micromachined gyroscopes is based on the vibrations of a proof-

mass which is suspended above a substrate by elastic beams or tethers. These gyroscopes 

often exhibit a host of undesirable characteristics, including mechanical nonlinearity, 

quadrature error, and cross-axis sensitivity, which are commonly assumed to depend on 

manufacturing defects. As discussed by Pratt, Jonson, Howe (1991), Gui, Legtaben,  

Tilman, and Fluitman (1998), Fujita, Hatsano, Maenaka, Mizuno, Matsuoko, Kojima, 

Oshima, and Maeda (1999) very little analysis has been done in order to predict the 

behavior both prior to and after fabrication.  

 

In this chapter, Cosserat nonlinear theory of rods is brought to bear upon tether modeling 

and determination of the nonlinear stiffness characteristics of the tether.  The results 

obtained here are compared to those published by O’Reilly et al. (2004).  
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4.2 Gyroscope Model 

 

In Figures 4.1 and 4.2, illustration of a micromachined gyroscope is shown along with 

models of its tether supports. 

 

 

Figure 4.1: Scanning electron micrograph of a rotation-based micromachined 

gyroscope . 

 

(a)      (b) 

 

 

 

 

 

 

 

Figure 4.2: Two geometries of tether suspensions of interest: (a) inside suspended ring 

and  (b) outside suspended ring. 
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4.2.1 *onlinear Tether modeling 

 

As explained in Chapter 2, Cosserat continuum theory can be described as follows. To 

every material point of a Cosserat curve, a set of deformable vectors, known as directors, 

is attached. It is assumed that the two directors d1 and d2, which are oriented along the 

local axes, exist.  The directors and the position vector r
�

 to points on the material curve 

are vector-valued functions of ξ and t, where ξ is a convected coordinate locating material 

points along the curve, and t is time.  The vectors in a fixed reference configuration B are 

denoted by D1(ξ), D2(ξ), and R(ξ) respectively. The mechanics of the beam can be 

described by the mapping of D1(ξ), D2(ξ), and R(ξ) from the reference configuration B to 

the vectors  d1(ξ, t), d2(ξ,t), and r(ξ,t) on the Cosserat curve (the  configuration, B*), as 

illustrated in Figure 4.3.  

 

Figure 4.3: Reference configuration (B) and present configuration ( B*) of a Cosserat 

curve. 
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For simplicity, a single suspension tether is analyzed, and the same analysis can be 

applied to any number of tethers connected to the rigid mass shown in Figure 4.1.  Again, 

in terms of notation, let ( , )r r tξ=
� �

 be the position vector, the two director fields be 

1 1( , )d d tξ=
� �

 and 
2 2 ( , )d d tξ=
� �

.  As stated before, the reference configuration is defined 

by ( )R R ξ= , 1 1( )D D ξ=  and 2 2 ( , )D D tξ= .  Here, attention is restricted to a constrained 

Cosserat rod theory for the purpose of modeling the tether, which is subjected to the 

constraints  3d r′=
� �

 and 3D R′= . 

 

Let {e1, e2, e3} to be a right-handed Cartesian basis for the Euclidean three space. For 

present purposes, the directors are subject to the constraints 

 

 

 

Figure 4.4: The tether geometry and the reference configuration for the Cosserat rod. 

The axial centerline of the rod coincides with the reference configuration of the material 

curve C of the Cossserat rod and D3 = e3. 
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3R eξ= , 

1 1D e= , 

2 2D e= , and 

2 2d D=  

Assuming there is no shear deformation, one has 

1 1

2 2

1 2

1,

1

0

d d

d d

d d

=

=

=

i

i

i

 

 

Next, in the analysis, rotation parameterization and the balance equations are considered.  

The position vector describing the motion of the body in terms of the displacements u1 

and u3 is given by 

1 1 3 3( )r u D u Dξ= + +
�

 

Parameterizing the basis vector d1 using the angle of rotationθ , one can write 

1 1 3cos( ) sin( )d D Dθ θ= −  

 

Assuming there is no external force acting on the tether, the force (per unit length,ξ ) 

balance equation reads as 

0
n

ξ
∂

=
∂

, 

where n is the contact force.   The moment balance (per unit length,ξ ) equation takes the 

form 

3 0
M

d n
ξ

∂
+ × =

∂
,  
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where M is the moment. 

 

Calculating the strains, following the convention used by Antman (1972), the nontrivial 

strains are as determined as  

 

13 1 3 1 3 1 3cos( ) (1 )sin( ),d d D D u uγ θ θ′ ′= − = − +i i
 

2 2

33 3 3 3 3 1 3 3
( ) 2 ( ) ,d d D D u u uγ ′ ′ ′= − = + +i i  

 

13 1 3 1 3 1 3
( sin( ) (1 )cos( ))k d d D D u uθ θ θ′ ′ ′ ′′= − = − + +i i  

O’ Reilly et al. (2004) pointed that, if one were to linearize the strains given above under 

the assumptions of small strains and displacements, then the resulting forms closely 

resemble the expressions for shear strain, extension, and curvature obtained respectively 

from linear rod theory; that is, 

13 1

33 3

13

,

2 ,

u

u

k

γ θ

γ

θ

′≈ −

′≈

′≈ −

 

Incorporating the strains in the balance equations, leads to 

13 1 33 3 2 13 1

2 13 1 3

,
2

EA
n GAk d d EI k d

M EI k d d

γ γ ′= + +

= ×
 

where G is the shear modulus, A is the area of cross-section, and 2I  is the area moment of 

inertia, and k is the shear coefficient.  
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4.3 Perturbation analysis using the rotation angle as a gauge parameter 

 

In this section, as in the work of O’Reilly et al. (2004), the angle of the spin of the 

gyroscopeφ , which is shown in Figure 4.4, is used as a gauge parameter in expanding the 

displacement fields.  After using the boundary conditions, the different terms in the 

expansion are determined, and finally, the coefficients in the nonlinear torsion stiffness 

relationship are determined.  In Section 4.5, it is shown that one can carry out the same 

analysis by using an arbitrary book-keeping parameter as the gauge function and obtain 

the same results (Appendix II).  

 

 

 
 

 

Figure 4.5: Schematic of a proof mass (rotor) suspended by four identical tethers of 

length L. 
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The displacement fields are expanded as  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 3 4

1 11 12 13

2 3 4

2 21 22 23

2 3 4

3 31 32 33

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( )

u u u u O

u u u u O

u u u u O

ξ ξ φ ξ φ ξ φ φ

ξ ξ φ ξ φ ξ φ φ

ξ ξ φ ξ φ ξ φ φ

= + + +

= + + +

= + + +

 

 

After substituting the series expansions into the balance laws and retaining terms upto 

third order, the following boundary-value problems are constructed at the different levels 

of hierarchy. 

  

First order equations, ( )O φ : 

 

11 1
( ) 0GAk u θ′′ ′− =  

2 1 11 1
( ) 0EI GAk uθ θ′′ ′+ − =  

31 0EAu′′ =  

 

Second order equations, 2( )O φ : 

 

12 2( ) 0GAk u θ′′ ′− =  

2 2 12 2( ) 0EI GAk uθ θ′′ ′+ − =  

32 2 1 11 113 0EAu EI EAu uθ θ′′ ′′ ′ ′ ′′+ + =  

 

Third order equations, 3( )O φ : 

3 2

13 3 2 1 1 1 1 11 1 11 32

1 1 11 1 32

3
( ) (( ) 3 ) ( ) ( )

2

( ( ) )

GAk u EI EA u u EA u u

GAK u u

θ θ θ θ θ

θ θ θ

′′ ′ ′ ′ ′′ ′ ′′ ′ ′ ′− = − + − −

′ ′ ′ ′+ +

3 2

2 3 13 3 1 2 1 11 11 32 32 1

2 2 2

11 2 1 1 2 1 11 1 2 1 1 1 11 32 2 1 32

2
( ) ( ) ( ) 2 2

3

(2 ) 2 ( ) ( ) (( ) 2 ) 2

EI GAk u GAk EI u GAk u u EI u

GAku EI EI u EI GAk u u EI u

θ θ θ θ θ

θ θ θ θ θ θ θ θ

′′ ′ ′ ′ ′ ′ ′ ′′+ − = − − − −

′ ′′ ′ ′ ′ ′ ′ ′ ′ ′′+ + − + − − −

33 0EAu′′ =  
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The boundary conditions are given by 

1

2

3

(0) 0,

(0) 0,

(0) 0,

(0) 0.

u

u

u

θ

=

=

=

=

  at  ξ = 0 

where 

11 1 31(0) (0) (0) 0u uθ= = = , 

12 2 32(0) (0) (0) 0u uθ= = = , 

13 33 3(0) (0) (0) 0u u θ= = =  

and 

1

2

3

( ) sin( )

( ) 0

( ) (cos( ) 1)

( )

u l R

u l

u l R

l

φ

φ

θ φ

=

=

= −

=

  at ξ = l  

where 

31

1

11

( ) 0

( ) 1

( )

u l

l

u l R

θ

=

=

=

, 

12

2

32

( ) 0

( ) 0

( )
2

u l

l

R
u l

θ
=

=

= −

, 

and 

33

3

13

( ) 0

( ) 0

( )
6

u l

l

R
u l

θ

=

=

= −
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In this thesis work, the boundary value problems are solved by using Maple 

programs(Appendix I)  to determine the shape functions for  displacement fields u1, u3 

and θ , up to third order.  

4.4 Free Body Diagrams and Torque 

As shown in Figures 4.2(a) and 4.2(b), there is a proof mass rotor suspended by four, 

identical, symmetrically aligned tethers of length L. The proof mass is rigidly rotated 

through the angleφ , and through that a torque is generated.  Next, different scenarios are 

considered. 

Case 1: 

Consider the free-body diagram of an inside suspended ring, as shown in Figure  4.5; 

The torque acting on the rigid body from each of the tether is derived as 

 

3 1 1 1 3 3 2 2( cos( ) sin( ) ) ( )R e R e n e n e M eτ φ φ= − + × + +
�

 

where 

2 3 1e e e× = −  

and the magnitude of the torque is 

3 1 2( )sin( ) ( )cos( ) ( )Rn L Rn L M Lτ ϕ φ= − −  

 for a beam of length L.   Hence, the total torque on the proof mass due to the four tethers 

is given by 

3 1 24 ( ( )sin( ) ( )cos( ) ( ))Rn L Rn L M Lτ ϕ φ= × − −  
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Figure 4.6: Free-body diagram of an inside suspended ring. 

 

 

Figure 4.7: Free-body diagram of an outside suspended ring. 
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Case 2: 

Now consider the free-body diagram of an outside suspended ring as shown in Figure 4.6, 

The torque in this case is derived to be 

3 1 1 1 3 3 2 2( cos( ) sin( ) ) ( )R e R e n e n e M eτ φ φ= − × + −  

   = 2( )sin( ) cos( )( ) ( )R L R L M Lφ φ− − , for beam of length L. 

and hence, the total torque is given by 

24 ( ( )sin( ) cos( )( ) ( ))R L R L M Lτ φ φ= × − −  

 

In both of the cases mentioned above, 

1 1 1 3

2 2 2

1 3 3 1 2 1 3

( cos( ) (1 )sin( ))cos( )

(( ) 2 ( ) ) ( ) ( sin( ) (1 )cos( ))sin( )
2

n n D GAk u u

EA
u u u u EI u u

θ θ θ

θ θ θ θ

′ ′= = − +

′ ′ ′ ′ ′ ′ ′+ + + + + +

i

 

2 2 1 3

2 2 2

1 3 3 3 2 1 3

( cos( ) (1 )sin( ))sin( )

(( ) 2 ( ) )(1 ) ( ) ( sin( ) (1 )cos( ))cos( )
2

n n D GAk u u

EA
u u u u EI u u

θ θ θ

θ θ θ θ

′ ′= = − +

′ ′ ′ ′ ′ ′ ′+ + + + + + +

i

 

2

2 2 2 1 3( )( sin( ) (1 )cos( ))M M D EI u uθ θ θ′ ′ ′= = + +i  

 

Here, 1 2 3, , ,u u u θ  are nonlinear functions determined by solving the boundary-value 

problem using Maple codes written by the author of this thesis.  

  

The restoring torque can also be viewed as having a nonlinear relationship with the 

rotation angle; that is,  

 

2 3 4

1 2 3 ( )K K K Oτ φ φ φ φ= − − − + . 
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Then, for Case 1, the stiffness coefficients turn out to be 

 

2 2

2 2
1 3

2

2

3 3 4

2

16 ( ( 3 3 ) 3 )

12

0

1575 ( 12 )

EI GAk L LR R EI
K

GAkL EI L

K

L
K

EA GAkL EI

β

− + +
=

+

=

=
+

 

 

For Case 2, the nonlinear stiffness coefficients turn out to be  

 

2 2

2 2
1 3

2

2

3 3 4

2

16 ( ( 3 3 ) 3 )

12

0

1575 ( 12 )

EI GAk L LR R EI
K

GAkL EI L

K

L
K

EA GAkL EI

α

+ + +
=

+

=

=
+

 

 

where the details of α and β can be found in the appendix .  These results agree with 

those provided by O’Reilly et al. (2004).  

 

 

4.5 Perturbation analysis using an arbitrary book keeping parameter as a gauge 

parameter 

 

 

This section’s development complements that given in Section 4.3.  Here, a bookkeeping 

parameter ε  is used to order the different terms in the expansion of the displacement 

fields as opposed to the rotation angle φ  used previously; that is, the displacement fields 

are expanded as 
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( )
( )
( )

2 3 4

1 11 12 13

2 3 4

2 21 22 23

2 3 4

3 31 32 33

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( )

u u u u O

u u u u O

u u u u O

ξ ξ ε ξ ε ξ ε ε

ξ ξ ε ξ ε ξ ε ε

ξ ξ ε ξ ε ξ ε ε

= + + +

= + + +

= + + +

 

 

The above equations are substituted into the balance laws and the boundary-value 

problems are solved at different levels of hierarchy, and the linear and nonlinear stiffness 

coefficients are determined.  The results are shown below for the two cases discussed in 

Section 4.4. 

 

For Case 1: 

2 2

2 2
1 3

2

2

3 3 4

2

16 ( ( 3 3 ) 3 )

12

0

1575 ( 12 )

EI GAk L LR R EI
K

GAkL EI L

K

L
K

EA GAkL EI

β

− + +
=

+

=

=
+

 

 

For Case 2:  

2 2

2 2
1 3

2

2

3 3 4

2

16 ( ( 3 3 ) 3 )

12

0

1575 ( 12 )

EI GAk L LR R EI
K

GAkL EI L

K

L
K

EA GAkL EI

α

+ + +
=

+

=

=
+

 

 

As expected, the results are the same as that obtained in Section 4.3.  This shows that in 

other applications, when a physical quantity is not readily available for use as a gauge 

function, one can use an arbitrary bookkeeping parameter to carry out the ordering. 
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CHAPTER 5:  MICRORESONATOR  

In this chapter a representative microresonator which was examined in Chapter 3 is again 

studied. Here a nonlinear analysis is carried out to build on the development of chapter 3. 

 

5.1 Motivation 

 

As explained in chapter 1, microresonators are currently being developed as key 

components in various resonator-based micro-systems, such as resonant accelerometers 

and microvibromotors. Yet many of the present computations and systems analyses do 

not incorporate the geometrical complexity and physical conditions of the system, 

although the ability to effectively simulate and predict the linear and nonlinear behavior 

of these systems is critical in estimating system performance. 

 

 5.2 Model of a Typical Micro Resonator  

 

 
Figure 5.1:  Model of a representative microresonator 
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In Figures 5.1, an illustration of a micro-resonator studied by Wang et al. (2004) is 

shown. This structure consists of four beam-like structures that are clamped at one end 

and attached to a common mass membrane at the other end.  This membrane in the centre 

is treated as a rigid body. The micro resonator in consideration, is discussed for a linear 

case simulation in Chapter 3, and in the present chapter, the author discusses the 

nonlinear analysis.  

 

Each of the four beams is considered to be a Cosserat rod for the purpose of analysis. 

One end is fixed to a rigid contact, so is considered a cantilever beam. A similar approach 

as discussed in Chapter 4, is followed in order to derive the nonlinear shape functions for 

each cantilever beam, But with a changed boundary problem. 

The inertia matrix for the central mass of Figure 5.1 is given by 

 

 

0 0

0 0

0 0

R

zz

mL

M mL

I

 
 =  
 
 

; 

 

 

where m LwDρ= , 2 2( )
12

zz

E
I L D LWD

ρ
= + , ρ  is the mass density, L is the length of 

this body, E is the Young’s modulus, W is the  width of this body, and D is the thickness 

of this body.  For illustrative purposes, the system parameters given next are chosen. 

 

 
System parameters 

 

Density of the central mass as well as the four tethers, 32.33 /g cmρ =  

Length of beam, 58.32bL mµ=  
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Width of beam, 2bw mµ=  

Thickness of beam, 3bt mµ=  

Young’s modulus, E = 150 GPa 

Poisson’s parameter, 0.29γ =  

Length of central mass, 15.4L mµ=  

Width of central mass, 6W mµ=  

Thickness of central mass, 3D mµ=  

 

5.2.1 *onlinear Beam modeling 

 

As shown in Figure 5.2, let ( , )r r tξ=
� �

 be the position vector, and {e1, e2, e3} be a right-

handed Cartesian basis for the Euclidean three space. The local two director fields are 

1 1( , )d d tξ=
� �

 and
2 2 ( , )d d tξ=
� �

.The reference configuration is defined by ( )R R ξ= , 

1 1( )D D ξ=  and 2 2 ( )D D ξ= .  As in Chapter 4, similar constraints are placed for the 

purpose of modeling beam; that is,  

3d r′=
� �

 and 3D R′= ; 

3R eξ= , 

1 1D e= , 

2 2D e= , and 

2 2d D=  
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Figure 5.2:  Position vector along the cosserat curve C of the beam. 

 

and assuming no shear, 

 

1 1

2 2

1 2

1,

1

0

d d

d d

d d

=

=

=

i

i

i

 

The position vector in terms of displacements and reference configuration as a base is, 

1 1 3 3( )r u D u Dξ= + +
�

 

Parameterizing the local directors with of the reference frame as a base 

1 1 3cos( ) sin( )d D Dθ θ= −  

In zero external force condition, the balance laws which govern the beam are 

0
n

ξ
∂

=
∂

, 

3 0
M

d n
ξ

∂
+ × =

∂
;  
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In the above equations, n is the contact force and M, the moment. 

Calculating the strains, following the convention used by Antman (1972), the nontrivial 

strains are as determined as  

13 1 3 1 3 1 3cos( ) (1 )sin( ),d d D D u uγ θ θ′ ′= − = − +i i
 

2 2

33 3 3 3 3 1 3 3
( ) 2 ( ) ,d d D D u u uγ ′ ′ ′= − = + +i i  

 

13 1 3 1 3 1 3( sin( ) (1 )cos( ))k d d D D u uθ θ θ′ ′ ′ ′′= − = − + +i i  

 

Substituting the strains in the balance equations 

13 1 33 3 2 13 1

2 13 1 3

,
2

EA
n GAk d d EI k d

M EI k d d

γ γ ′= + +

= ×
 

where G is the shear modulus, A is the area of cross-section, and 2I  is the area moment of 

inertia, and k is the shear coefficient.  

 

For the case of nonlinear analysis, displacement fields are expanded as  

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2 3 4

1 11 12 13

2 3 4

2 21 22 23

2 3 4

3 31 32 33

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( ),

( ) ( ) ( ) ( )

u u u u O

u u u u O

u u u u O

ξ ξ φ ξ φ ξ φ φ

ξ ξ φ ξ φ ξ φ φ

ξ ξ φ ξ φ ξ φ φ

= + + +

= + + +

= + + +

 

 

After substituting the series expansions into the balance laws and retaining terms up to 

third order, the following boundary-value problems are constructed at the different levels 

of hierarchy. 
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The first order equations, ( )O φ : 

11 1
( ) 0GAk u θ′′ ′− =  

2 1 11 1
( ) 0EI GAk uθ θ′′ ′+ − =  

31 0EAu′′ =  

 

 

The second order equations, 2( )O φ : 

 

12 2( ) 0GAk u θ′′ ′− =  

2 2 12 2( ) 0EI GAk uθ θ′′ ′+ − =  

32 2 1 11 113 0EAu EI EAu uθ θ′′ ′′ ′ ′ ′′+ + =  

 

The third order equations, 3( )O φ : 

3 2

13 3 2 1 1 1 1 11 1 11 32

1 1 11 1 32

3
( ) (( ) 3 ) ( ) ( )

2

( ( ) )

GAk u EI EA u u EA u u

GAK u u

θ θ θ θ θ

θ θ θ

′′ ′ ′ ′ ′′ ′ ′′ ′ ′ ′− = − + − −

′ ′ ′ ′+ +

3 2

2 3 13 3 1 2 1 11 11 32 32 1

2 2 2

11 2 1 1 2 1 11 1 2 1 1 1 11 32 2 1 32

2
( ) ( ) ( ) 2 2

3

(2 ) 2 ( ) ( ) (( ) 2 ) 2

EI GAk u GAk EI u GAk u u EI u

GAku EI EI u EI GAk u u EI u

θ θ θ θ θ

θ θ θ θ θ θ θ θ

′′ ′ ′ ′ ′ ′ ′ ′′+ − = − − − −

′ ′′ ′ ′ ′ ′ ′ ′ ′ ′′+ + − + − − −

33 0EAu′′ =  

and the boundary conditions are 

1

2

3

(0) 0,

(0) 0,

(0) 0,

(0) 0.

u

u

u

θ

=

=

=

=

  at L=0; 

where, 

11 1 31(0) (0) (0) 0u uθ= = = , 

12 2 32(0) (0) (0) 0u uθ= = = , 

13 33 3(0) (0) (0) 0u u θ= = =  

and 
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1

2

3

( )

( )

( )

( )

o b

o b

o b

o y

u L X

u L Y

u L Z

Lθ θ

=

=

=

=

 

where, 

11 0

31 0

1 0

( )

( )

( )

b

b

y

u L X

u L Z

Lθ θ

=

=

=

 

Here, , ,b b bX Z θ  are all generalized coordinates at the free end of the beam and all the 

higher order boundary terms are zero. 

The boundary-value problems can be solved using a Maple program for shape functions 

up to the third order, associated with the displacement fields 
1u  ,

3u  and
yθ .  

 

5.2.2 System Energy 

 

After determining the shape functions, the system energy expressions are determined for 

use in the Extended Hamilton’s principle; that is,  

 

 

 

where the different terms are as explained in Chapter 2.   Here,  

 

{ }1
. ( , )

2
t tT A r r I w wρ= ∂ ∂ +

  

2 2

1 1

( ) 0

t t

t t

T V dt Wdtδ δ− + =∫ ∫
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{ }2

33 3

1
( , ) ( 1)

2
V J u u K v= + −

                                                            

and 

u is the angular strain defined by  
1

2
i s iu d d= ×∂  

3v  is the linear stain per unit length, 
3v rξ= ∂  

and w  is the angular velocity, 
1

2
i t iw d d= ×∂ . 

 

5.2.3 Cosserat beam solution 

 

.  The corresponding mass and stiffness matrices of the beam, taking in to consideration 

until the second order nonlinearities,  (which have been normalized) read as  

 

2

2

2

33

2

47.5
0 0

119.74 ( )
, 0 0

( 19 )

9
0 0

( 0.5 )

L EI

EA

L EI
Massmatrix M

EI
EA L

L

I

GAk L L

 
 
 
 
 

=  
 +
 
 
  + 

i i

i i

i

 Kg; 

3

6

22 0 0

33
, 0 0 ;

96

0 0 33

EA L j

k
StiffnessMatrix K

L

j

β

β

 
 
 = =
 
 
 

i i

i

i

constant;  N/m 

 



  79 

CHAPTER 6:  

SUMMARY AND SUGGESTIONS FOR FUTURE WORK 
 

 

 

In this chapter, a brief summary of the thesis work is provided along with conclusions 

that one can draw from this work.  In addition, suggestions for future work are also 

provided.  

 

6.1 Thesis Summary 

 

In this thesis, the author has presented constrained Cosserat continuum theory with the 

viewpoint of applying to the study of micro-scale structural systems. A background to 

Cosserat theory is provided along with brief discussions of formulations that can be used 

for shells, rods, and points. In this context, material issues and parameterization 

constraints are also examined. The mechanics of the Cosserat rod theory is studied and 

applied to different micro-scale structural systems.  Comparisons between results 

obtained on the basis of Euler-Bernoulli beam mechanics and Cosserat rod mechanics are 

made and discussed.  Also, it is shown as to how Cosserat mechanics can be used to 

determine nonlinear stiffness properties of tether structures in micro-scale devices, in 

particular, micro-scale gyroscopes.  In this context, it is also shown that an arbitrary 

bookkeeping parameter can be used to carry out the straightforward perturbation analysis 

when a physical parameter may not be readily available as a bookkeeping parameter. 

Modeling and results in the context of PZT microresonators are also presented and 

discussed.  
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6.2 Conclusions 

 

• Cosserat mechanics is much more comprehensive as compared to classical 

mechanics such as Euler-Bernoulli beam mechanics, because of the way the  

kinematics and strain fields are defined and it is important to consider this 

mechanics for structures that undergo large deformations as shown in this thesis. 

• Constrained rod theory can be a convenient formulation to use to model different 

micro-scale structures including micro-cantilevers, micro-scale gyroscope tethers. 

and clamped-clamped microresonators.  

• Determination of nonlinear stiffness and inertia characteristics of micro-scale 

structures can benefit from Cosserat analysis, as shown in this thesis.  

 

6.3 Recommendation for future work 

 

It is recommended that other more comprehensive formulations of Cosserat mechanics be 

applied for systems with more complex boundary conditions that may not necessarily 

arise in the context of micro-scale systems. Also, the question of how to take the internal 

damping into account needs some consideration.  Last, but not least, the algebraic 

computations involved in solving for the shape functions needs some attention so as to 

enable efficient computations.  
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APPE*DIX – I 

 

Defining Displacements 

 

 

 

 

Expanding θ  

 

 

 

Defining Axises and Position Vector 
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Strains 

 

 

 

 

Balance Equations 
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φ  As book keeping parameter for expanding series 

 

 

 

Boundary Value Problem 
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Complete expressions and Boundary value Problem Solving have not been included in 

the code above and can be provided upon request. 
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APPE*DIX – II 

 
 

Defining Displacements 

 

 

 

Defining Axises and Position Vector 
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Strains 

 

 

 

 

 

 

Balance Equations 
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ε  As book keeping parameter for expanding series 

 

 

 

Boundary Value Problem 

 

 
 



  90 

 

 



  91 

 



  92 

 

 

Complete expressions and Boundary value Problem Solving have not been included in 

the code above and can be provided upon request. 
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Defining Displacements 

 

 

 

 

Expanding θ  

 

 

 

Defining Axises and Position Vector 

 

 

 



  94 

 

Strains 

 

 

 

 

Balance Equations 
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φ  As book keeping parameter for expanding series 

 

 

 

Boundary Value Problem 
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Complete expressions and Boundary value Problem Solving have not been included in 

the code above and can be provided upon request. 
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