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Introduction. The structured singular value (), introduced by Doyle [1] allows to
analyze robust stability and performance of linear systems affected by parametric as well
as dynamic uncertainty. While exact computation of y can be prohibitively complex,
an efficiently computable upper bound was obtained in [2], yielding a practical sufficient
condition for robust stability and performance.

In this note, the results of [2] are used to study the case of state space models of the

form

&= (Ao + Y bidi)x (1)

i=1
where the A;’s are n X n real matrices and the §;’s are uncertain real parameters. The
case where the A;’s have low rank is given special attention. When the A;’s all have rank
one, (1) is equivalent to the model used by Qiu and Davison {3], which itself generalizes
that used by Yedavalli [4]. By means of two examples, we compare our bound to those

proposed in [3] and [4].

Preliminaries. Throughout the note, given any square complex matrix M, we denote

by (M) its largest singular value and by M its complex conjugate transpose. Given
any Hermitian matrix A, we denote by A(A) its largest eigenvalue. Given any integer k,
I;, denotes the k X k identity matrix and Oy the k x k zero matrix. Finally, ; will denote
v—1.

Given a p X p complex matrix M and positive integers ki, ..., kn,, with i ke = p,
consider the family of block diagonal px p matrices (In this note we consider only (;alrametric

perturbations)

X = {block diag (611k,,...,6mIk,,): 64 € R} .
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Definition 1. [1] The structured singular value px(M) of a complex p X p matrix M with
respect to X' is 0 if there is no A in A’ such that det(I — AM) = 0, and

px(M) = (geig{ﬁ(A) sdet(I — AM) = 0}) i

otherwise. []
Exact computation of the structured singular value is generally intractable. In [2], the

following computable upper bound was obtained.

Fact 1. [2] For any matrix M and X,
pa(M) < px(M):= inf vx(DMD™!)
DeDy

where

Dy = {block diag(D1,...,Dm): 0 < D, = DH ¢ quxkq}

and where, for any matrix A and X, vx(A) is defined by

vy(A) = \/max {0, Giengx AAHA +5(GA - AHG)]}

with
Gy = {block diag(Gy,...,Gm): G, =GP € @kquq} .
O

An efficient algorithm for computing 2x(M) is described in [5,6].

Main result. Following (7], one can easily show that system (1) is asymptotically stable

for all |6;| < é if, and only if,
-1
o < (sup ux(Hilsn))
w>0

where Hy(s) is the transfer matrix defined by

I

I -1

Hi(s) = | .| (s = Ao)7 [A1]4s] - |Am]



and where

X = {block diag (8;In,...,6mI,) : 6, € R} .

However, whenever some A;’s are not of full rank, one can obtain a necessary and sufficient
condition for robust stability involving a transfer matrix of lower size than H,. To see this,

decompose each A; as

A; = bicl

where b;,c; € R™™"™ with r; the rank of A;, and define
B =[bi]-|bm]

and
ef
C =

Ch

The following is then easily proven using (7).

Proposition 1. The system in (1) is asymptotically stable if, and only if,

-1
5 < (sup we(aio))
w>0
where H3(s) is the transfer matrix defined by
Hy(s)=C(sI - A)™'B

and where

X = {block diag (611,,...,0mI,,,): 6, € R} .

O

Substituting for uy its upper bound jiy gives the following sufficient condition

Corollary 1. The system in (1) is asymptotically stable if

o< (sghetmtion)

where Hz(s) and X are defined as in Proposition 1. []
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Models of the type (1) for which the A;’s have low rank are of practical importance.

The case where all A;’s have rank one corresponds to the model used by Qiu and Davison,
¢t =(A+ BAC)z (2)
where A is uncertain. Yedavalli considered the model
t=(A+A)z,
with A uncertain, which is clearly a special case of (2).

Numerical examples. We conclude this note by comparing on two examples the results

obtained using Corollary 1 above to those obtained using the techniques of [3] and [4]. The
examples are borrowed from [3,4,8].

Example 1. The following matrices were considered in [3,4].

_[-3 -2 1 1][& 0][1 0] [-3+6& -2+4
avsac= 3 ool 5 allo A7 O]

cemo [ s Y5 21 23 ).

1 0 1/[0 &1 0 146, 0
-3 -2 0 1][& 01 0] [ =3 —2+6
A+BAC‘[1 o]+[1 0_[0 5;;“0 1]‘[1+51 0 ]
(6, 0 0][1 0 5
A+BAC=[_13 _02]+[(1) (1) (1)} 0 & 0|1 0 =[“13++6‘5‘ ““3‘53}.
0 0 &) [0 1 2

Bounds of § given in [4] which guarantees robust stability were 1.0, 0.48, 0.5 and 0.317,
respectively. Bounds given in [3] were 1.5201, 0.9150, 0.8108 and 0.6848, respectively. Our
bounds are 2,1,1 and 1, respectively. In these cases, our bounds are also exact.

Example 2. Consider the following system [3,8].

._—10$+'7 81, =17 -8],
Zlo -2 (12 14| YT |6 7

with output feedback control

ye |~k 0
Lo kY



The controller gains are subject to uncertainty such that |Ak;| < 6/2 and |Akq| < 8. The
nominal value of controller gains are k; = k; = 1. Corollary 1 implies that the closed loop

system 1is stable if
-1
§<bi= (sup (G (3)

where H(s) = C(sI — A)~1 B, with
-1 0 7 81[-1 0)[7 -8] [-2 o
Az[o —2]+[12 14“0 —1H—6 7]:[0 -4]

35 8 7 -8
B:[6 14] andC':[__6 7].

Solution of the optimization problem in (3) yields § = 0.0816. This result agrees with that

in {3]. It turns out to be an exact bound.
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