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Abstract.

This paper presents the following recent theoretical developments in the IMC
methodology:

e Multivariable controller design for the minimization of the Integral Squared

error (ISE) for every input direction in a set and their linear combinations.

e Treatment of open-loop unstable plants; use of the two-degree-of- freedom con-
troller.

¢ Minimization of the Structured Singular Value (SSV) for robust performance

over the IMC Filter parameters; unconstrained problem; analytic computation
of the gradients.

o Computation of the worst (over all possible plants) ISE for a particular setpoint
or disturbance input.

The paper deals with comtinuous systems. Extension to sampled-data systems
is straightforward but not included here for lack of space.

t This paper is based on the PhD research of the author. The work was carried
out at the California Institute of Technology with Prof. M. Morari as PhD advisor.
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1. Preliminaries
1.1. Internal Model Control
The Internal Model Control (IMC) structure, introduced by Garcia and Morari
(1982), has been widely recognized as very useful in clarifying the issues related to

the mismatch between the model used for controller design and the actual process.
The IMC structure (Fig.1a), is mathematically equivalent to the classical feedback
structure (Fig.1b). The IMC controller Q and the feedback C are related through

Q=cC(I+PC)? (1.1.1)

C =Q(I - pPQ)~* (1.1.2)

where P is the process model.

P=P.

In this case the overall transfer function connecting the set-points r and dis-
turbances d to the errors e = y — r, where y are the process outputs, is

i - SR
e=y~-r=I-PQ)d-r)YE (d-r) (1.1.3)

Hence the IMC stucture becomes effectively open-loop (Fig.2a) and the design
of Q is simplified. Note that the IMC controller is identical to the parameter of
the Q-parametrization (Zames, 1981). Also the addition of a diagonal filter F by
writing

Q=QF (1.1.4)

introduces parameters (the filter time constants) which can be used for adjusting
on-line the speed of response for each process output.
P # P.

The model-plant mismatch generates a feedback signal in the IMC stucture

which can cause performance deterioration or even instability. Since the relative
modeling error is larger at higher frequencies, the addition of the low-pass filter F
(Fig.2b) adds robustness characteristics into the control system. In this case the
closed-loop transfer function is

e=y—r=(I—-PQF)I-(P-P)QF) ' d-r)¥E (d-r) (1.1.5)

Hence the IMC structure gives rise rather naturally to a two step design pro-
cedure:



Step 1: Design Q, assuming P = P.

Step 2: Design F so that the closed-loop characteristics that Q produces in
Step 1, are preserved in the presence of model-plant mismatch (P # 13)

1.2. Internal Stability

A linear time invariant control system is internally stable if the transfer func-

tions between any two points of the control system are stable. A more detailed
discussion of the concept of internal stability can be found in the literature (e.g
Morari et al., 1987).

Examination of the feedback structure of Fig. 1b results in the requirement
that all elements in the matrix IS1 in (1.2.1) are stable.

IS1=(C(I+PC)"' PC(I+PC)"! CP(I+CP)"! (I+PC)"'P)
(1.2.1)
For the remainder of this section we shall assume that P = P. The additional

requirements to take care of modeling error are discussed in section 3.3. Use of
(1.1.1) or (1.1.2) in (1.2.1) yields

IS1=(Q PQ QP (I-PQ)P) (1.2.2)

Note that stability of each element in (1.2.2) implies internal stability when the
control system is implemented as the feedback structure in Fig. 1b, where C is
obtained from the Q used in (1.2.2) through (1.1.2).

In order for the control system to be stable when implemented in the IMC
stucture of Fig.la, internal stability arguments (Morari et al.,1987) lead to the
requirement that all elements of IS2 are stable.

I1S2=(Q PQ QP (I-PQ)P PQP P) (1.2.3)

Hence if the process P is open-loop unstable, IS2 will also be unstable and the
control system has to be imlemented in the feedback stucture of Fig.1b. Still, the
two step IMC design procedure can be used for the design of Q, as described in the
following sections. C can then be obtained from (1.1.2) and the structure in Fig.1b
implemented.

Note that when the process is open-loop stable, it follows from (1.2.2) that the
only requirement for internal stability is that Q is stable.

3. Step 1: Design of @
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Throughout this section the assumption is made that P = P.
2.1. Objective

The performance objective adopted in this paper is to minimize the Integral

Squared Error (ISE) for the error signal e given by (1.1.3). This is an Hy—type
objective. Other objectives like an Ho,—type can be used (Zafiriou and Morari,
1986) but they will not be discussed here.

For a specified external system input v (v = d for r = 0; v = —r for d = 0), the
ISE is given by the square of the Ly—norm of e:

detynz 1 [T upo s
B(u) ' |Jel} = 5- / o (iw)e(iw) dw (2.0.1)
—oo .
From (1.1.3) we get
®(v) = |lell3 = || Ev]l3 = |I(7 - PQ)v|I3 (2.1.2)

Hence one objective could be
min &(v) (2.1.3)
Q

for a particular input v = (v; v; ... v, )T, where Q satisfies the internal sta-
bility requirements of section 1.2.

Minimizing the ISE just for one vector v however is not very meaningful, be-
cause of the different directions in which the disturbances enter the process or the
setpoints are changed. What is desirable is to find a @, that minimizes ®(v) for
every single v in a set of external inputs v of interest for the particular process.
This set can be defined as

V = {v(s)|v(s) = diag(v1(s), ..., va(s))z, z€R"} (2.1.4)

where v1(8), ..., un(8), describe the frequency content of the external system inputs,
e.g. steps, ramps or other types of inputs.

The objective can then be written as

mind(s) VoeV (2.1.5)

under the constraint that Q satisfies the internal stability requirements. It should be
noted however that a linear time invariant Q that solves (2.1.5) does not necessarily
exist. In section 2.3, it will be shown that this is the case for some V’s.
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2.2. Parametrization of all stabilizing Q's.

The process P can in general be open-loop unstable. The following assumption
simplifies the solution of the optimization problem:
Assumption A.1. If r is a pole of the model P in the open RHP, then:

a. Its order is equal to 1.

b. P has no zeros at .
c. The residual matrix corresponding to = is full rank.

Assumption A.l.a, is made to simplify the notation and it is the usual case. The
results can be extended to higher order poles. A.1.b is always true for SISO systems.
MIMO systems however can have zeros at the location of a pole (Kailath, 1980).
This requires an exact cancellation in det|P(s)] and therefore the assumption that
this does not happen is not restrictive because such a cancellation will usually not
happen anymore when a slight perturbation in the coefficients of P is introduced.
A.l.c is also always true for SISO systems, but it can be quite restrictive for MIMO
systems. Instead of A.l.c however, an additional assumption can be made on the
input for which the optimal controller is.designed. This is discussed in section 2.3.

Assumption A.1 is not made for poles at the origin because more than one such
poles may appear in an element of P, introduced by capacitances that are present in
the process. The following assumption true for all practical process control problems

is made:

Assumption A.2. Any poles of P or P on the imaginary axis are at s = 0. Also P

has no finite zeros on the imaginary axis.
Let 7,,...,7¢g be the poles of P in the open RHP. Define the allpass

q9

bo(s) =[] :‘fw’:‘ (2.2.1)
=1 i

where the superscript * denotes complex conjugate (and transpose when applied to
a matrix).

If A.1.c does not hold then define
bp(s) =1 (2.2.1")

The following Theorem holds:
Theorem 2.2.1.



Assume that Qo(s) satisfies the internal stability requirements of section 1.2,
i.e. it produces a matrix IS1 with stable elements. Then all Q’s that make IS1
stable are given by

Q(s) = Qo(s) + bp(s)’ Q1 (s) (2:22)

where Q, is any stable transfer matrix such that
i) If A.1.c holds, then PQ; P has no poles at s = 0.

ii) If A.1.c does not hold, then PQ; P has no poles in the closed RHP.
Proof: See Appendix A.1.
2.3. Solution to (2.1.3)

This is the first step towards obtaining a solution to (2.1.5), if such a solution

exists. In this section we only consider one particular input v. The plant P can be
factored into an allpass portion P4 and a minimum phase (MP) portion Pps such
that

P = P,Py (2.3.1)

Hence P, is stable and such that P} (iw)Pa(sw) = I. Also P;;' is stable. This inner-
outer coprime factorization can be accomplished through the spectral factorization
of P(—s)TP(s), where ‘T’ denotes transpose. Details on these problems can be
found in the literature (Anderson, 1967; Chu, 1985; Doyle et al., 1984).

Let vo(s) be the scalar allpass that includes the common RHP zeros of the

elements of v. Factor v as follows:
~ T def
v(s) = vo(8) (D1(8) ... Dn(8))” = vo(s)b(s) (2.3.2)
Without loss of generality make the following assumption for the input v for which

é is designed:
Assumption A.3.

a. The poles of each nonzero element of v (or ) in the open RHP (if any) are the
first ¢’ poles n; of the plant in the open RHP.
b. If A.l.c does not hold, then every nonzero element of v (or

#) includes all the open RHP poles of P each with degree 1.

To simplify the arguments in the paper, we shall assume that if A.3.b is satisfied,

then A.l.c is not. In this way the proper choices in the deflaitions and the proofs
will be made on the basis of A.1.c. If both A.l.c and A.3.b hold, then the results
that apply to the case where A.l.c does not hold but A.3.b does, are still correct.
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Define

’

bo(s) = H :’:ﬁf‘ (2.3.3)

If A.1.c does not hold define
by(s) =1 (2.3.3")

An different assumption is made for the poles of v at s = 0:
Assumption A.4. Let /; be the maximum number of poles at s = 0 that an element
of the i*® row of P has. Then v;(s) has at least I; poles at s = 0. Also v has no

other poles or any zeros on the imaginary axis.

The above assumptions are not restrictive in the case where v is a output
disturbance d, because in a practical situation we want to design for an output
disturbance produced by a disturbance that has passed through the process and
therefore includes the unstable process poles (e.g., an output disturbance produced
by a disturbance on the manipulated variables). Note that the control system will
still reject with no steady-state offset, other disturbances with fewer unstablé poles.
The assumption is different for poles at s = 0, because their number in each row of
P can be different, since capacitances may be associated with only certain process
outputs. Also the output disturbance may have more poles at s = 0 than the
process (e.g., a persistent disturbance in the manipulated variables).

The assumptions might be restrictive in the case of sétpointa though. However
for setpoint tracking the use of the Two-Degree-of-Freedom structure, which will be
discussed briefly in section 2.5, allows us to disregard the existence of any unstable
poles of P and therefore this assumption need not be made for setpoints.

The following theorem holds:

Theorem 2.3.1.
The set of controllers Q that solve (2.1.3) satisfy

Qb = byb; Pt {b; by P 0} (2.3.4)

where the operator {.}. denotes that after a partial fraction expancion of the
operand all terms involving the poles of P;l are omitted. Furthermore, for n > 2
the number of stabilizing controllers that satisfy (2.3.4) is infinite. Guidelines for
the construction of such a controller are given in the proof. \
Proof: See Appendix A.2



2.4. Solution to (2.1.5)
Write

-V (s) def diag(vy(s), .., vn(s)) (2.4.1)
V(s) % diag(1(s), .., 9n(s)) (2.4.2)

The following Theorem holds:
Theorem 2.4.1.

i) If all the RHP zeros of V appear in every element of V' with the same degree,
then the controller Q that solves (2.1.5) is given by

Q = bpby Py {6, 10, P VYV Y (2.4.3)

ii) If an element of V has a RHP zero that does not appear in all the other
elements with the same degree, then there exists no stabilizing é that solves (2.1.5),
unless P is stable and minimum phase in which case é = P-1,

Proof: See Appendix A.3. _

The case descibed by Thm.2.4.1.ii, where no optimal solution exists, is not
necessarily rare. Since v can be an output disturbence d, the designer might want
to specify it as some common input, e.g. a step, going through some transfer matrix.
For such a v, its elements may very well include different RHP zeros. When this
happens, a solution to an alternative problem exists. Factor each element v; of V

into a stable allpass part v4; and a minimum phase vjy;:

vi(8) = vai(8)vai(s) (2.4.4)
The following theorem holds.
Theorem 2.4.2.
The controller
Q = bpby 1 P {5, 0 P Vg } o Vig (2.4.5)

minimizes ®(v) for the following n directions z:

1 0 0
0 1 0

z=]. , . , . (2.4.6)
0 0 1

and their multiples, as well as for the linear combinations of those directions that
correspond to elements of V with the same RHP zeros in the same degree.
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Proof: See Appendix A.4.

2.5. Two-Degree-of-Freedom Structure

From the discussion of the Internal Stability requirements in section 1.2, it
follows that RHP poles in the plant limit the possible choices of Q@ and thus the
achievable performance. This however need not be so for setpoint tracking. Con-
sider the general feedback structure of Fig.5. For the disturbance behavior it is
irrelevant if the controller is implemented as one block C as in Fig. 1b, or as two
blocks as in Fig. 5. Hence the achievable disturbance rejection is restricted both by
the RHP zeros and poles of P as the quantitative results of the previous sections

indicate.

Let us now proceed from the point where a stabilizing é and the corresponding
C have been found through the results of the previous sections, which produce a
satisfactory disturbance response. We can then split C into two blocks C; and C3
such that C; is minimum phase and C; is stable. Then one can easily see that
the only RHP zeros of the stabilized system PC,(I + PC1C3)~! are those of the
process P. Thus C3 can be designed without regard for the RHP poles of P and
the achievable setpoint tracking is restricted by the RHP zeros of P only.

In summary, the achievable disturbance response of a system is restricted by the
presence of the plant RHP zeros and poles regardless of how complicated a controller
is used. If the Two-Degree-of-Freedom controller shown in Fig.5 is employed, the
achievable setpoint response is restricted by the RHP zeros only. A more rigorous
discussion can be found in Vidyasagar (1985).

3. Model Uncertainty

3.1. Structured Singular Value

Potential modeling errors, described as uncertainty associated with the process
model, can appear in different forms and places in a multivariable model. This
fact makes the derivation of non-conservative conditions that guarantee robustness
with respect to model-plant mismatch difficult. The Structured Singular Value
(SSV), introduced by Doyle (1982), takes into account the structure of the model
uncertainty and it allows the non-conservative quantification of the concept of robust

performance.

For a constant complex matrix M the definition of the SSV pua (M) depends
also on a certain set A. Each element A of A is a block diagonal complex matrix
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with a specified dimension for each block, i.e.

A = {diag(A1,43,...,Ap)|A; € C™IX™mi } (3.1.1)
Then
1 . -
-'“—A—(m = ﬁ{a(A)ldet(I— MA) = 0} (3.1.2)

and pa(M) =0 if det(I - MA) #0 VA € A. Note that & is the maximum
singular value of the corresponding matrix.

Details on how the SSV can be used for studying the robustness of a control
system can be found in Doyle (1985), where a discussion of the computational
problems is also given. For three or fewer blocks in each element of A, the SSV can
be computed from

— 3 -1
pa(M) = Duexil')a(DMD ) (3.1.3)
where .
D = {diag(d1Im,,d2Imy sy dnIm. )|d; € R} } (3.1.4)

and I,,, is the identity matrix of dimension m; X m;. For more than three blocks,
(3.1.3) still gives an upper bound for the SSV.
3.2, Block Structure

In order to effectively use the SSV for designing F, some rearrangement of the

block structure is necessary. The IMC structure of Fig.1a can be written as that of

Fig.3a, wherev=d—r,e=y —r and
0o 0 @Q
G=|1 I PQ (3.2.1)
-I —-I O

where the blocks 0 and I have appropriate dimensions.

The structure in Fig.3a can always be transformed into that in Fig.3b, where

A is a block diagonal matrix with the additional property that
2(A) <1 Vw (3.2.2)

The superscript u in G* denotes the dependance of G* not only on G but also
on the specific uncertainty description available for the model P. Only some of

the more common types will be covered here to demonstrate how this is done,
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but it is straightforward to apply the same concepts to other types of uncertainty

descriptions, like parametric uncertainty.

i) Multivariable Additive Uncertainty.

The information on the model uncertainty is of the form

2(P — P) < la(w)

(3.2.3)

where [, is a known function of frequency. In this case we can easily write P — P=

laA where 3(A) < 1 and s0 obtain

. 00
G'=G*=| 0 I 0]}]G
0 0 I

ii) Multivariable Input Multiplicative Uncertainty.

2(F~1(P - F)) < li(w)

where [; is known. Then

iii) Multivariable Output Multiplicative Uncertainty.'

2((P — P)P1) < o(w)

I,P
G“=G°=(0 )c
0

iv) Element by Element Additive Uncertainty.
|pij — Pij| S lij(w)y, =1,.,n; j=1,.,n

o ~ O
-~ O O

For each element p;; of P we have

Then
P—P=JALJ,

where

L= d‘.ag(lll,llh '")lln’lﬁh '"’lnn)

11
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(3.2.7)

(3.2.8)

(3.2.9)

(3.2.10)

(3.2.11)



it
-
o
o
o
o

0 ... 01 ...1.....0...0
o= (3.2.12)
0 0 0 0 1 1
I,
In
Ja=1"] (3.2.13)
I,

From (3.2.10) it follows that

LJ; 0 0 J1 0
G'=G*=| 0 I o0}jG|o0 I (3.2.14)
0 0 I 0 o

Note that all the above relations yield a G* already partitioned as

~ O O

Gl G2 Gfis
Gu - Ggl G‘z‘n G‘z‘a (3.2.15)
G3, G3 Ggs
Then Fig.3b can be written as Fig.4 with
u u u
or = (G )+ () u-re)r(en on)
21 22 23
df (G, GI;
= ( ot cF (3.2.16)
3.3. Robust Stability
We now require that the matrix IS1 as given by (1.2.1) is stable for all possible

plants P. The design of é according to section 2 resulted in a stable IS1 for P = P.
In order for IS1 to remain stable we need to satisfy the requirements that as we
move in a “continuous” way from the model P to the plant P, no closed-loop RHP
poles cross the imaginary axis and no such poles suddenly appear in the RHP. The
latter requirement is satisfied if we assume that the model and the plant have the
same number of RHP poles. The SSV can be used to determine if any crossings of
the imaginary axis occur. Then we can say that the system is stable for any of the
plants in the set defined from the bounds on the model uncertainty and which have
the same number of RHP poles as the model, if and only if (Doyle, 1985)

pa(Gl) <1 Ww (3.3.1)
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3.4. Robust Performance

In the first step of the IMC design procedure a controller Q is obtained, which
produces satisfactory disturbance rejection and/or setpoint tracking. This response
is described by the “sensitivity” function E given by (1.1.3). Since E connects the
external inputs to the error e, a well-designed control system produces a relatively
“small” E. A measure of the magnitude of the known E is its maximum singular

value. Let b(w) be a frequency function such that
?(E(iw)) <blw) Vw (3.4.1)

When P # P, the sensitivity function E is described by (1.1.5). Note that E = E
when P = P. In order for the performance of the control system to remain robust
with respect to model-plant mismatch we have to keep E small in spite of the

modeling error. Hence we require that
supd(b(w) 'E(lw)) <1 VAe€eA (3.4.2)
w

We can now use the properties of the SSV (Doyle,1985) to obtain

supd(b(w) 'E(iw)) <1 VAEA <= supuac(G®) <1 (3.4.3)
w w
where
I o0
Gt = ( 0 b_,) GF (3.4.4)
A° = {diag(A,A%]A € A, A% € ™"} (3.4.5)

The worst possible ISE that any plant within the uncertainty bounds can pro-
duce for a particular input v is given by the following theorem.
Theorem 3.4.1:

For a specified v define

G*"é'({) :) GF (g 2) (3.4.6)

where z is a scalar function of w and the blocks 0 have the appropriate dimensions
(in general non-square). Augment G*, which is in general a “tall” matrix, to obtain
a square matrix:

Gl =(G* 0) (3.4.7)
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Then
Bao(Giu(iw)) =1 <= z(w) =zo(w) Vw (3.4.8)

defines a function zg of frequency and
sup [|Ev||s = |jz5]l2 (3.4.9)
A€a

Proof: See Appendix B.1.

Note that as it turned out z5 ' = sup,ca @(Ev), but the only way to compute
it is through (3.4.8). Also without loss of generality z can be assumed to be positive
since the value of pa0(G7,;;) depends only on |z]. The following theorem simplifies
the problem of computing zo.

Theorem 3.4.2:

Let

:_ [ M M
M _<3Mn zM,,) (3.4.10)

where z a positive scalar.
Then infpep 3(DM*D™!) is a non;decrensing function of z, where D =
{diag(D,, D3)}.
Proof: See Appendix B.2.
Note that G5, is a special case of M in the Theorem and so Theorem 3.4.2
applies to (3.4.11).
4. Step 2: Design of F

4.1. Filter Structure

The filter parameters can now be computed so that the robustness conditions
that were discussed in section 3 are satisfied. To do so, some structure will have
to be assumed for F, which can be of any general type that the designer wishes.
However in order to keep the number of variables in the optimization problem small,
a rather simple structure like a diagonal F' with first or second order terms would
be recommended. In most cases this is not restrictive because the potentially higher
orders of the model P have been included in the controller Q that was designed in
the first step of the IMC procedure and which is in general a full matrix. Some
additional restrictions on the filter exist in the case of an open-loop unstable plant.
Also the use of more complex filter atructure may be necessary in cases of highly
ill-conditioned systems (2(P)/g(P) very large).

i) Open-loop unstable plants.
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The IMC filter F(s) is chosen to be a diagonal rational function that satisfies
the following requirements.
a. Pole-zero excess. The controller Q = éF must be proper. Assume that the
designer has specified a pole-zero excess of m for the filter F(s).
b. Internal stability. IS1 in (1.2.2) must be stable.
c. Asymptotic tracking of disturbances. (I — f’éF)v must be stable.
Write
F(s) = diag(f1(8),.-» Jn(8)) (4.1.1)

Under assumptions A.1,2,3,4, (b),(c) are equivalent to the following conditions. Let
xi (i = 1,9) be an open RHP pole of P (with order 1 according to A.l.a) and
7o = 0 and l,x the multiplicity of such a pole in the kt* element of V. Then the
kth element , fi of the filter F must satisfy:

f(m) =1, i=0,1,..,q (4.1.2)

LI mre =0 = 1,hu— 1 (4.1.3)

(4.1.2) clearly shows the limitation that RHP poles place on the robustness
properties of a control system designed for an open-loop unstable plant. Since
because of (4.1.2) one cannot reduce the nominal (P = P) closed-loop bandwidth
of the system at frequencies corresponding to the RHP poles of the plant, one can
only tolerate a relatively small model error at those frequencies.

One can write for a filter element fi(s):

_ any—1k8™ 1+t a1 kst aon
fi(s) = Do T I)mrm-] (4.1.4)
where

and then compute the numerator coefficients for a specific tuning parameter A from
(4.1.2), (4.1.3).
In the simple case where l,x = 1, one can develop an explicit formula for a
filter element f(s):
1
f(") - (As + 1)m+q £

q q )
(A + 1)~ I : _";' (4.1.6)
=0 §=0,55%5 7 '
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Example 4.1.1. Assume that we have a pole-zero excess of m and there is only

one pole x. Then from (4.1.6)

(Axr +1)™

0= Garm

(4.1.7)

If # = 0, (4.1.7) reduces to the standard filter for stable systems f(s) = (As+1)~™.
Example 4.1.2. Assume that m = 2 and the only pole is a double pole at s = 0.
Then from (4.1.2), (4.1.3) for ¢ =0

(4.1.8)

ii) Ill-conditioned plants.

The problems arise because the optimal controller é designed for P tends to
be an approximate inverse of P and as a result é is ill-conditioned as well, which
means that a lot of detuning action will be required in a diagonal F to guarantee
robust stability. The result is that although stability is maintained, the response
is very sluggish and therefore the robust performance condition is very difficult to
satisfy. A way to address this problem is to try to use a filter that acts directly
on the singular values of Q~, at the frequency where the condition number of Q is
highest, say w*. Let

Q(iw*) = UqZqVy (4.1.9)
be the SVD of é at w* and let R,, R,, be real matrices that solve the pseudo-

diagonalization problems:
UgRu~ 1T (4.1.10)
VR, s T (4.1.11)

Then for the IMC controller Q that includes the filter, use the expression

Q(s) = RuF1(8)R7'Q(s) Fa(s) (4.1.12)

Q(s) = Q(s) Ry F1(s) R F3(s) (4.1.13)

where Fy(s), F3(s) are diagonal filters, such that F;(0) = F;(0) = I. Nota that
when P has poles at s = 0, every element of Fy (s) must satisfy (4.1.3) for j =
1,...,1y, where

l” = kg:f'qluk (4.1014)
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It should be pointed out that the success of this approach depends on how
good any of the pseudo-diagonalizations (4.1.10) or (4.1.11) is. The diagonalization
will be perfect if Ug or Vg is real. This will happen if w* = 0, which is the case
when the problems arise because the plant is ill-conditioned at steady-state, as for
example high purity distillation columns are.

One can put this control structure in the form of Fig.3, as follows. Define

F(s) = diag(Fi(s), Fa(s)) (4.1.15)
Qals)=R, or Q(s)R, (4.1.16)
A(s)=R;*'Q(s) or R} (4.1.17)

depending on whether (4.1.12) or (4.1.13) is used. Obtain G* by substituting Q
with Q4 in (3.2.1). Then in Fig.3 use instead of G*, G**!  where

G}y Giz Giz O
wit _ | G G333 Gjs 0O
Guitt= | Pl Ta Tk (4.1.18)
Gy G3; Giz 0
4.2. Objective
We can write
F Y F(s;A) (4.2.1)

where A is an array with the filter parameters.

The problem can now be formulated as a minimization problem over the ele-
ments of the array A. A constraint is that the part of A corresponding to denomi-
nator time constants should be such that F is a stable transfer function. However
the problem can be turned into an unconstrained one by writing the denominator
of each element of F as a product of polynomials of degree 2 and one of degree 1 if
the order is odd, with the constant terms of the polynomials equal to 1. Then the
stability requirement translates into the requirement that the coefficients (elements
of A) are positive, which is a constraint that can be eliminated by writing A2 or |A|
instead of Ax for the corresponding filter parameters.

Our goal is to satisfy (3.4.3). The filter parameters can be obtained by solving

mAinst:’p pac(G®) (4.2.2)

17



It may be however that the optimum values for (4.2.2), still do not manage to satisfy
(3.4.3). The reason may be that an F with more parameters is required, but more
often that the performance requirements set by the selection of b(w) in (3.4.1) are
too tight to satisfy in the presence of model-plant mismatch. In this case one should
choose a less tight bound b and resolve (4.2.2). Note that satisfaction of the Robust
Performance condition (3.4.3) implies satisfaction of the Robust Stability condition
(3.3.1) as well.

A different objective can be set in the case where the ISE for a particular
external input direction v is of special interest to the designer. The objective is
then to minimize (3.4.9) for a specified v (set-point or disturbance). Hence the

filter parameters are obtained by solving
min |25 (4.2.3)

It should be pointed that contrary to the problems addressed in section 2, where a
minimization for a set of v’s could be carried out, (4.2.3) cannot be solved for a set
of v’s. The reason is the presence of modeling error in the problem definition.
4.3. Computational Issues

i) Solution of (4.2.2).

The computation of u in (4.2.2) is made through (3.1.3); details can be found
in Doyle (1982). As it was pointed out in Doyle (1985), the minimization of the

Frobenious norm instead of the maximum singular value yields D’s which are very

close to the optimal ones for (3.1.3). Note that the minimization of the Frobenious
norm is a very simple task. In the computation of the supremum in (4.2.2) only a
finite number of frequencies is considered. Hence (4.2.2) is transformed into

minmax inf 8(DG®’D™!) (4.3.1)
A wefl DeD°

where [} is a set containing a finite number of frequencies and D? is the set corre-

sponding to A° according to (3.1.1) and (3.1.4). Define

Doo{A) max inf a(DG*D™!) (4.3.2)

The analytic computation of the gradient of &, with respect to A is in general pos-
sible. This is not the case when the two or more largest singular values of DG®D~}
are equal. However this is quite uncommon and although the computation of a
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generalized gradient is possible, experience has shown the use of a mean direction
to be satisfactory. A similar problem appears when the max,cq is attained at more
than one frequencies, but -again the use of a mean direction seems to be sufficient.
We shall now proceed to obtain the expression for the gradient of ®oo(A) in the
general case.

Assume that for the value of A where the gradient of ®,(A) is computed, the
max,eq is attained at w = wp and that the infpepo #(DG®(3wo)D!) is obtained
at D = Dy, where only one singular value 0, is equal to 8. Let the singular value
decomposition (SVD) be

DoG*(iwo) D5 = (v, U)(0 g) (“jl) (4.3.3)

Then for the element of the gradient vector corresponding to the filter parameter

Ax we have under the above assumptions:

0 Jd
e 2=

because Vp (01) = O since we are at an optimum with respect to the D’s. To

o) (Don(iwo)Dgl) ‘ (434)

simplify the notation use
A = DyGb(iwg) Dy ! = UsZ AV, (4.3.5)
By using the properties of the SVD we obtain from (4.3.3)

d
AA® = UAE?‘U; => u;-é_A—(AA‘) = uiUs—— ° (Ei)Uitu

Ok
L a L g [ ] a L]
=>u1(5A—k-(A)A +A——-(A )) ulUA(zzAaA (BA))UAul

» a » a *
=>ula—’\k-(A)vlal +0101'aTk(A ) = 201———(01)
o . 0 . -
=>-a—i:(01) = Re [ula;(Don(two)Do l)vl] (4.3.6)
Use of (4.3.4), (3.2.16), (3.4.4), (4.3.8), and of the property
d -1y _ _ Y. -1
2 (M(e)™) = -M() 7 2 (M()M () (437
where M(z) is a matrix, yields after some algebra
(/] . GY “ \—
’E\':Qm = Re[ulDO (b"u:sG‘z‘s) (I - FG3,) 1 (F(WO))
(I-FGY)™ (G} GY) Db"”l] (435)
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where F, G:-‘j, b,w are computed at w = wp. The derivatives of F with respect to its
parameters (elements of A) depend on the particular form that the designer selected
and they can be easily computed.

ii) Solution of (4.2.3).

e The first issue in this case is the computation of zo. Note that this compu-

tation has to be made at every frequency w. In practice only a set {} with a finite
number of frequencies is used, from which ||z5 ||z can be computed approximately.
Theorem 2 indicates that any basic descent method should be sufficient. The fact
that it is possible to obtain an analytic expression for the gradient of y a0 (G, (iw))
with respect to z, simplifies the problem even further. This is possible when (1.2.3)
is used for the computation of u and the two largest singular values of DG}M,D"1
for the optimal D’s at the value of x where the gradient is computed, are not equal
to each other. If this not the case a mean direction can be used as mentioned in
the H, case above.

Let the infpepo 3(DG%,,;(#w)D~?) be attained for Do = Do(w;z) and let oy
be the maximum singular value and u,,v; the corresponding singular vectors. Then
the same steps for obtaining (4.3.6) are valid. Hence by using (3.4.6) and (3.4.7)
we get after some algebra

2 z (e M 0 ° 0
p (kao(GFuu(iw))) = Re ["lpo (chl WGHv 0)

D;lvl] (4.3.9)

e The second computational issue is the solution of (4.2.3). To obtain the
gradient of ||z5 ||z with respect to the filter parameters, we need to compute the
gradient of zo(w) with respect to these parameters for every frequency w € 1. From
the definition of zg in (3.4.8) we see that as some filter parameter \x changes, zo(w)
will also change 8o that s1a0(G,y(iw)) remains constantly equal to 1. Hence we

can write

_ drg  Op ,0u
z0 Dx 0T o onlze
where u is computed through (3.1.3). The denominator in the right hand side of

(4.3.10)

(4.3.10) is given from (4.3.9). As for the numerator, it can be computed in the same
way as (4.3.6) and (4.3.8) but with G, instead of G*:

oo (4ae(Guulie)) = ReluiDo ( i, ) (1 - Fogs)
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S (Pl - FG3)™ (68 G 0)D5'n] (43.11)

Hence dz0/0Ax can be computed from (4.3.9), (4.3.10), (4.3.11).
Appendix A

A.l. Proof of Thm. 2.2.1.
i) We shall show that any Q given by (2.2.2) makes IS1 stable. From
substitution of (2.2.2) into (1.2.2) it follows that all that is required is that

(P52Q1 b3Q1P Pb2Q,P) be stable, which is true because of Assumptions A.1,
A.2 and the properties of Q;.

ii) Assume that Q makes IS1 stable. Then the difference matrix

I51(Q) — IS1(Q0) = ((@ - Qo) P(R—Q0) (R—Q0)P P(Q - Qo)P)
(A.1.1)
is stable. The fact that P has no zeros at the location of the unstable poles makes the
stability of the matrix in (A.1.1) equivalent to the stability of (Q—Qo), P(Q—Qo)P.
Then, when assumption A.l.c holds, we have P = bpﬁ, where P has no zeros at
the open RHP poles of P and its only only unstable poles are at s = 0, from which
it follows that (Q — Qo) = b:Ql with Q, stable and such that PQ, P has no poles

at s = 0. If A.1.c does not hold, @, should also have the property that it makes
PQ, P stable.

A.2. Proof of Thm. 2.3.1.

We shall assume that a Qg exists, which in addition to the properties mentioned
in Thm. 2.1.1, it also produces a matrix (I — PQo)V® with no poles at s = 0, where
V0 is a diagonal matrix with [, poles at 8 = 0 in every element with /,, the maximum
number of such poles in any element of v. If assumption A.l.c does not hold, then
each column of VO also satisfies A.3.b and Qo makes (I — PQo)V° stable. Its
existence will be proven by finding an optimal solution that has such properties.

Substitution of (2.2.2) into (2.1.2) and use of the fact that pre- or postmultiplication
of a function with an allpass does not change its L;—norm, yields:

O(v) = |[b; 10y P (I — PQo)d — bpby Pr Q163
111 = £2Qu0)12 (4.2.1)

L3, the space of functions square integrable on the imaginary axis, can be decom-
posed into two subspaces, H; the subspace of functions analytic in the RHP (stable
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functions) and its orthogonal complement Hj that includes any strictly unstable

functions. Then f; can be uniquely decomposed into two orthogonal functions
{fl}—. € Hz and {f1}+ € Hgl:

h={Nh}-+{N}+ (A.2.2)

From (A.2.1) one can see that if improper Q’s are allowed, then f; may not
be an L; function. However, in order for ®(v) to be finite, the optimal Q, has
to make f; — f2Q;9 strictly proper. The assumption will be made that is the
case and it will be verified at the solution has this property. Hence to proceed we
shall use the convention that when a decomposition as in (A.2.2) of a function is
obtained through a partial fraction expansion, all improper and the constant terms
are included in {.}-.

When A.l.c holds, inspection of (A.2.1) shows that f,Q;9 can have no poles
in the closed RHP except possibly for some poles at s = 0 introduced by ¢. f;
however has no poles at 3 = 0 because (I — PQp)V° has no such poles. Hence for
®(v) to be finite, f2Q;9 should have no polés at 8 = 0. Hence the optimal @, has
to be such that these poles are cancelled. When A.l.c does not hold, then the fact
that (I - PQo)V 0 is stable impies that an acceptable Q; (and therefore the optimal
" @ as well) makes PQ,v stable and therefore the optimal Q, is such that f2Q,v is
stable. We shall assume that Q, has this property. It shoﬁld be verified at the end

however that the solution indeed has the property. We can then write

&(v) = |{A}+113 + I{/1}- = f2Q:19]]3 (A4.2.3)

The first term in the right hand side of (A.2.3) does not depend on Q;. Hence for

solving (2.1.3) we only have to look at the second term. The obvious solution is
Q16 = f7 () (A.2.4)

Clearly such a Q; produces a stable f3Q;9 as it was assumed. Also f; —
J2@19 = {f1}+, which has no improper or constant terms.

It should now be proved that Q;’s that satisfy the internal stability require-
ments exist among those described by (A.2.4) so that the obvious solution is a true

solution. For n = 1, (A.2.4) yields a unique Q;, which can be shown to satisfy the
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requirements by following the arguments in the Proof of Thm 2.4.1 in Appendix
A.3. For n > 2 write

QY (@1 ¢2) (A.2.5)

Va2 (02 ... )T (A.2.6)

where ¢; is n X 1 and g3 is n X (n — 1), Then from (A.2.4) it follows that

Q= (7' (7 {N}- - aaPs) @) (A.2.7)

We now need to show that a stable g3 exists such that Q, is stable and produces

a PQ, P with no poles at s = 0 (or in the closed RHP when A.1.c does not hold).

Write
q

gz = 8% H(8 - 7:)%d (A.2.8)

i=1

where §j is stable. Then from (A.2.7) it follows that in order for PQ; P not to have
any poles at s = 0 it is sufficient that P97 ! 71 {f1}—{P}1strow have no such poles.
This holds because the poles in the P on the left cancel with the P;,' in f; ! and v,
has by assumption A.4 at least as many poles at 8 = 0 as the 1st row of P. When
A.l.c does not hold, then the same type of argument and the fact that A.3.b holds,
imply that PQ, P has no poles in the open RHP either. Let us now examine the
stability of Q;. The only poles in the open RHP may come from ﬁi'l. Let a be
such a pole (zero of v;). Then for stability we need to find g3 such that

q ‘,
da2(a)Va(e) = a= % [[(a - %) 27 (@) {f1}-(e) (A.2.9)

=1

The above equation always has a solution because the vector Va (a) i8 not identically
zero since any common RHP zeros in v were factored out in vq.

We shall now proceed to obtain an expression for Q9. (2.2.2) and (A.2.7) yield

QD = bpby ! Pps b0, Py PQod — {b, by Py PQo0}— + {b; b, P 9}-]
= bpb, Py, [{b; 160 P PQod}os + {b; b, P 10} ] (A.2.10)
where {.}o4 indicates that in the partial fraction expansion all poles in the closed

RHP are retained. For (A.2.10), these poles are the poles of by 1»,% in the closed
RHP; P;'PQQ = PpQo is strictly stable because Qo is a stabilizing controller.
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When A.l.c holds, the stability of (I — PQo)P and the fact that the residues of P
at the open RHP poles are full rank imply that at these poles I — PQo = 0. Also
the fact that (I — PQo)V? has no poles at s = 0 imply that (I — PQ) and its
derivatives up to the (I, — 1)!? are also equal to zero at s = 0. When A.l.c does
not hold, the fact that (I — PQo)V? is stable and that the columns of the diagonal
VO satisfy A.3.b, imply that (I — PQo) = O at 7y,...,7q. Thus (A.2.10) simplifies
to (2.34).

We simply need to establish that a stabilizing controller Q¢ with the property
that (I — PQo)V° has no unstable poles exists. The selection of a V° with the
properties mentioned in the beginning of this section and no RHP zeros and its use
instead of V' in (2.4.3) yields such a controller as it follows from the proof of Thm.
2.4.1 in Appendix A.3.

A.3. Proof of Thm. 2.4.1.

A stabilizing controller that solves (2.1.5) has to solve (2.1.3) for all z € R".
Hence it has to satisfy (2.3.4) for all v =V'z, z € R"™. For each of the n linearly
independent directions (2,1,...,1), (1,2,...,1), (1,1,...,2), the factor vo(s) contain-
ing the common RHP zeros of its elements is the same as the one for the direction
(1,1,...,1). Therefore for each of them we can substitute in (2.3.4) & = Vz, where
V is defined through (2.2.1),(2.3.2),(2.4.2). Then from Linear Algebra it follows
that there is only one Q with this property:

Q = byb; P {6, b PV} V! (2.4.1)

This solution however is not necessary stabilizing because not every Q that satisfies
(2.3.4) for some z, is. To start with, Q is not stable if V has RHP zeros (unless
of course P is stable and minimum phase). This will be the case when there RHP
zeros in V' that are not present in every element of V. In this case, there exists no
solution to (2.1.5), which is part (ii) of the Theorem. When V —! is stable, we still
have to establish that the internal stability matrix IS1 is stable. Careful inspection
shows that both Q and PQ are stable. We also have

(I - PQ)P = byb; ' Pa{b; b, P 'V}4V 1P (A.3.1)

where {.} 4 indicates that after a partial fraction expansion, ony the terms corre-
sponding to poles of P! are retained. These poles are cancelled in (A.3.1) by Pa.
Then from assumptions A.3, A.4, it follows that (I — PQ)P is stable.
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A final, but very important point is to show that the above Q minimizes the
ISE for any z € R", when of course all the RHP zeros of V appear in every element
with the same degree. But then vo(s) is the same for any direction z € R™ and

therefore for any z it suffices that (2.3.4) is satisfied, a property which the above
controller has.

A.4. Proof of Thm. 2.4.2.

The proof follows that of Thm. 2.4.1 in A.3, with Vs used instead of V. Vi
appears because the directions in (2.4.6) are used and as a result for each direction
the corresponding vg includes all the RHP zeros of the corresponding element v; of
V.

Appendix B

B.1. Proof of Theorem 3.4.1.

For a matrix K partitioned as

Kn Ky
K= B.1l1
(Kn Kn) ( )
define
R(K,A) % Koy + K3 A1 — K11 A) " Ky (B.1.2)

Then the transfer function relating v to e in Fig.4 is R(GF, A) and since Fig.1a and
Fig.4 are equivalent, we get by using (1.1.5)

E = R(GF,A) (B.1.3)
The properties of the SSV and (3.4.8) imply (Doyle,1985) that
sup 3(R(G7y,,4)) =1 (B.1.4)
Aea
From (3.4.8), (3.4.7), (B.1.2), (B.1.3), it follows after some algebra that
R(GFuy» ) = (zoEv 0) (B.1.5)

Then from (B.1.4),(B.1.5) and the definition of the singular values, it follows, since
zoEv is a vector:

sup (z3v*E*Ev) =1 Vw
Aea

400 +oco
= supj v*E*Ev dw =/ 52 dw
A€EA J-oo —00

<> (3.4.9) QED
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B.2. Proof of theorem 3.4.2.
Let 0 < z3 < z;. Then we can write z3 = z;8, where 0 < 8 < 1. From (3.4.10)

we have
2ap-1_ (D1 O I 0 21 -1
DM* D™ = ( 0 Dz) (0 ﬁI)M 1D
I 0 -
- ( ! m) DM# D! (B.2.1)
Then the properties of the singular values yield
(B.2.1) => 3(DM**D ') <& ((I) ﬂ01> a(DM*D™1)
=> 3(DM*D~!) <a(DM*D"') VDeD :
=> inf 3(DM*D™!) < inf a(DM* D7) QED
DeD DeED
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Figure 1.
(2) Internal Model Control structure.

(b) Feedback Control structure.




(2)

(b)

Figure 2. IMC structure with the filter F.
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Figure3. Model uncertainty block diagrams.
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Figure4. SSV block diagram.



Figure5. Two-degree-of-freedom feedback structure.



