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We present an approximate method for the analysis of queueing delays in
highly dynamic networks with schedule-based stochastic arrivals and
time-varying service times. We also develop an intuitively appealing network
flow model representation of the problem and compare the performance of both
models to a much more detailed simulation on several sample networks. The
two approaches are applied to the problem of estimating queueing delays in the
airspace, which is modeled as a node-capacitated network with time-varying
capacity constraints and aircraft departure-time uncertainty. We demonstrate
the use of these models in airspace congestion prediction and airline schedule

evaluation.
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Chapter 1

Introduction

1.1 Motivation

The study of queueing networks is of interest to a wide class of researchers, due
to the widespread occurrence of such networks in practice, as well as the
challenges involved in studying and solving associated problems. In many
real-world systems such as airports, production facilities, highways, and data
networks, the costs of congestion and its propagation can be very high.
Although a vast literature exists on the analysis of queueing systems,
solutions exist only for a very small set of problems, as several assumptions are
required to make a network mathematically tractable to obtain exact solutions.
Also, most closed-form results for queueing networks are valid only under
steady-state conditions. Since many real-world systems are dynamic in nature,
the applicability of exact steady-state solutions is limited. This motivates the

need for other approaches to deal with complex queueing systems.



1.2 Objectives of Study

In this study we develop an approximate model to analyze the behavior of
highly dynamic queueing networks with schedule-based stochastic arrivals and
time-varying service times. This methodology is applied to the problem of

estimating queueing delays of aircraft in the National Airspace System (NAS).

1.2.1 The National Airspace System

In this section, we describe the network structure of the NAS and introduce
some terms in Air Traffic Management (ATM). The NAS, which is managed by
the Federal Aviation Administration (FAA) in cooperation with the airspace
users, consists of the overall environment for the safe operation of aircraft.
This includes the aircraft itself, the pilots, the facilities, the tower controllers,
the terminal area controllers, the enroute controllers, and the oceanic
controllers. It includes the airports, the maintenance personnel and the airline
dispatchers. All of this, together with computers, communications equipment,
satellite navigation aids, and radars, are a part of the NAS [10].

In this study, we do not model the control and decision variables in the
network; we develop the model as a purely predictive tool, which limits our
definition of the airspace. Henceforth, the term “airspace” includes only the
physical network and aircraft moving through them. Since the airspace
essentially consists of a number of interacting entities (aircraft) moving

through a system of constrained nodes (runways, waypoints') that force

LA predetermined geographical position used for route/instrument approach definition, or
progress reporting purposes, that is defined relative to a VORTAC station (navigation aid) or

in terms of latitude/longitude coordinates.



queueing, it lends itself to analysis as a queueing network. Queueing is caused
by capacity restrictions at nodes, driven by some minimum safety separation
requirements (spatial or temporal) between aircraft. In particular,
miles-in-trail restrictions (MIT)?, determine the node capacity. For example,
when an aircraft passes through a waypoint, the waypoint cannot admit any
more aircraft at the same altitude for a minimum duration to ensure safety.
This minimum duration is analogous to the “service time” of the waypoint. We
note that this definition makes the somewhat simplistic assumption that the
airspace is two-dimensional.

It is tempting to represent the NAS as a three-dimensional network of
points and connecting arcs in order to model flight movements from one
altitude to another. However, these altitude movements are control variables
and are not known a priori as part of the flight path. Since our model assumes
complete knowledge of the sequence of every server that each aircraft passes
through, it is not possible to incorporate non-deterministic flight paths in our
model. One possible way to deal with three-dimensional networks is to
estimate aggregate capacities for flow through a three-dimensional region in
space (a waypoint modeled as one server) based on traffic configurations and
horizontal and vertical safety requirements. This maximum rate of flow of
aircraft through a point in space translates to a service time at that point.
Similarly, runways at airports are constrained by a minimum separation

between aircraft at take-off and landing, which translates to a service time at

2 A specified interval between aircraft expressed in nautical miles. Miles-in-trail is sometimes
enforced as a time interval between successive aircraft, in which case it is known as a metering

constraint.



the runway. It is common for miles-in-trail to be imposed at a node in order to
control rates of flow into and out of a sector® to ensure that the number of
aircraft in a sector do not reach dangerously high levels. Thus, miles-in-trail

serves not only to ensure local safety, but global safety as well.

1.2.2 Uncertainty in the National Airspace System

The National Airspace System (NAS) is highly stochastic. Complete and
accurate information regarding future airport and en-route airspace capacities,
aircraft schedules, and aircraft flight plans are rarely available. Although
several factors contribute to uncertainty in the system, unpredictability of
weather is the dominant driver of randomness in the airspace. Weather
uncertainty translates to error in estimating airspace capacity, which in turn
leads to queueing delays and “preventive delays” as in the case of ground delay
programs (readers interested in Ground Delay Programs and associated
research are referred to [16]). Hence, there is considerable deviation from filed
departure times, arrival times, and flight plans that cannot be estimated in
advance. In this thesis, we are concerned primarily with two types of departure

uncertainty:

1. Uncertainty in departure time (drift). We define drift as the degree to
which the actual departure time of an aircraft deviates from its scheduled

departure time in the Official Airline Guide (OAG).

2. Uncertainty in cancellation of flights.

3 A part of airspace controlled by a team of controllers, defined, notably, by its geographical

co-ordinates and its assigned radio frequency.



Idris et. al. [18] develop a detailed state-dependent model for the estimation of
drift. Their research identifies runway configuration, terminal building/airline,
downstream restrictions, and queue size as being causal factors in determining
the taxi-out time. Although our model does not include state-dependent
parameters, their study is useful in gauging the magnitude of drift, and its
probability of occurrence. In our model, we could obtain drift from current
methodologies used by the FAA, such as an n-day moving average for a given
time of the day (not state dependent), which has been shown to have

reasonable success in estimating drift.

1.2.3 Air Traffic Management

Air traffic has exhibited steady growth in the last few decades and this trend is
expected to continue. However, airspace capacity has been unable to keep pace
with the growth of traffic, which has resulted in increasing congestion and
delays in the airspace. The directions that can be taken to avert the emerging
trend toward unacceptable levels of congestion fall into four basic categories

(Ball, Gosling, and Odoni [3]).
1. Capacity growth through additional airports and runways.

2. Better Air Traffic Flow Management (ATFM) at both the strategic and

tactical levels.
3. Demand management at busy airports.

4. Airline operational and business strategies aimed at reducing the impact

of congestion on airline schedules and costs.



Capacity growth cannot be accomplished in a short time horizon and is not an
immediate solution to the airspace congestion problem. Demand management
(controlling demand through pricing mechanisms) is not easily addressed
either, due to regulation, and a lack of agreement in the aviation community on
how best to implement such an approach. The second and fourth (tactical and
operational) approaches to congestion mitigation are the most easily
implemented in the near term, and require accurate and fast methods for
evaluating schedules and predicting congestion in the airspace in order to react
effectively through changes in schedules, routes, and miles-in-trail restrictions.
This motivates the need for developing computationally inexpensive models for
predicting queueing in large-scale dynamic networks under highly stochastic

conditions.

1.2.4 Monitor Alert

The FAA currently uses the Monitor Alert functionality of the Enhanced
Traffic Management System (ETMS) to predict congestion and alert controllers
and traffic flow managers when airspace capacity is predicted to be exceeded.
Monitor Alert analyzes traffic demand for all airports, sectors, and airborne
reporting fixes in the continental United States, then automatically displays an
alert when demand is predicted to exceed capacity in a particular area. A
screen-shot of Traffic Situation Display (T'SD), the user interface to Monitor
Alert, is shown in Figure 1.1.

FAA regulations recommend a look-ahead period of 1.5 to 2 hours, and
that action based on an alert be taken one hour prior to the alerted time

frame. Traffic management initiatives are usually initiated only if the number
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Figure 1.1: Traffic Situation Display with overlays and Monitor Alert function.

of aircraft in the sector equals or exceeds the Monitor Alert Parameter (MAP)
for a sustained period of time (usually five minutes). The MAP values are
listed in Table 1.1. For further operating guidelines see [11].

In order to predict the location of an aircraft over time, ETMS locates
the current position of the aircraft and projects its position based on the filed
speed and flight path. This prediction is adjusted to compensate for grid
winds. Thus, the position of each aircraft is generated independent of other
aircraft in the system. For aircraft not currently in the air, ETMS predicts
positions based on the filed departure time, speed and flight path.

Consequently, Monitor Alert suffers from three major drawbacks:

e It does not account for queueing effects in the NAS caused by capacity

restrictions.
e It does not account for stochastic departure times.

e [t does not account for changes in flight plans.



Table 1.1: Monitor Alert Parameter (MAP)

Avg. sector flight time (min.)

MAP value (no. of aircraft)

3
4

10

>11

5
7
8
10
12
13
15
17
18

These drawbacks can cause significant error in the prediction. The model we
propose accounts for stochastic departures and queueing effects, and is thus
conceptually an improvement over the current system. We do not address the
issue of changes in flight plans, as this is usually a control variable and must be
considered in the context of a decision model. This thesis deals with a purely

predictive model, and could later be integrated with a decision model. The

proposed model serves three broad functionalities.

1. Traffic Flow Management — The model could be used to predict expected
traffic flows in the network over time, based on the current schedule and
current, flight status. This information would then be used to set capacity

restrictions on the network and to help airspace users (e.g. airlines)

adjust their schedules and routes appropriately.




2. Airline schedule evaluation — The model could also enable airlines to
evaluate their schedules and associated expected delays. Specifically, the
model could be used to generate probability distributions for the amount
of delay associated with any given aircraft in the network. Based on these
delays, an airline would be able to determine the feasibility of its

schedule, and make appropriate schedule/route changes.

3. Airspace capacity estimation — Utilization of the server helps measure the

expected slack in the system at any given time.

1.3 Organization and Outline

The organization of this thesis is as follows.

In Chapter 2, we formally define the problem and introduce terminology
that will be used. We then review results from the literature for exact and
approximate methods for the analysis of queueing networks, and briefly discuss
the applicability of these approaches to the defined problem. We also review
existing approaches to modeling and analyzing the airspace.

In Chapter 3, we describe the modeling philosophy and components of
the model. We introduce a network flow representation of the problem and
then present a robust approximate model for analyzing queueing delays in
highly complex network systems.

In Chapter 4, we analyze a critical component of our model (i.e.,
generating occupancy probability distributions of a server), and then present
an approximation technique to obtain these distributions.

In Chapter 5, we describe some of the issues associated with validating a



model of the airspace and describe a continuous-time simulation model that is
used to validate the approximate model. We then describe our computational
experiments and present results comparing our approximate model and the
flow model to the simulation.

In Chapter 6, we review the results of our analysis, and discuss the
applicability of our approach to networks other than the airspace and some of
the modeling aspects involved. Finally, we draw some general conclusions and

discuss the scope for possible future research.
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Chapter 2

Problem Definition and Literature

2.1 Overview

In this chapter, we formally define the problem and introduce basic
terminology that will be used. We review some results from queueing theory
for single-server systems and networks of queues. We also review some
approximate methods used to analyze queueing networks and models developed

specifically in the context of Air Traffic Management.

2.2 Problem Definition

We assume we are given

e An open! network of known topology, consisting of a finite number of
servers, and a finite number of source and sink nodes. In ATM, the
network would be the NAS. Airports would be the source and sink nodes.

Waypoints and runways would be the servers.

LA system where entities are allowed to enter and leave the system.

11



e A birth schedule of a finite number of discrete entities for each source
node in the system. We use the term “birth” to describe the event of
creation of an entity at a source node, which denotes the entry of an
entity into the queueing system. The event of an entity leaving the
system (through a sink node) is referred to as the “death” of the entity.
We prefer using this terminology to the terms “arrival” and “departure”
as these terms are interpreted differently in standard queueing theory
literature and Air Traffic Management. In ATM, this birth schedule is
obtained from the Official Airline Guide (OAG). Each entity is a single

aircraft.

e N(i,0) — The probability density function for the departure time of each
entity (the probability that an entity ¢ is born at time #). The deviation
from the scheduled birth time can be either positive or negative. No
restriction is placed on the shape of this function. In this thesis, we
assume that the deviation from the scheduled birth time is strictly

positive?.

e A known (deterministic) sequence of servers that each entity in the
system has to pass through before exiting the network from some sink
node. This corresponds to the flight plan of each aircraft, and differs

from aircraft to aircraft.

e A set of arcs between servers, with a deterministic travel time on each arc.

2This assumption is not restrictive; given a scheduled birth time with a known drift dis-
tribution (positive or negative drift), it is possible to obtain an equivalent scheduled “earliest

birth time” with an associated drift distribution, where the drift is strictly positive.

12



e Service times at every server, which are time-varying but deterministic.
A service time corresponds to the minimum temporal separation between
successive aircraft using a waypoint/runway, that is enforced to ensure

safety.
e That all servers can serve at most one entity at any given time.
e That there is no restriction on the queue length at any server.
e That entities cannot leave a queue once in the queue.
e That all queues are strictly first-in-first-out (FIFO).

The required output of the model can be phrased in many ways depending on

the application.

e When the application of the model is congestion prediction: determine
the expected number of entities in a given queue and/or the number of

entities in transit between any two queues at any given time.

e When the application of the model is schedule evaluation: given an
entity, determine the probability of death of this entity as a function of
time. In air traffic, this would be the probability over time of an aircraft

having arrived at its destination.

e When the application is determination of system efficiency: determine the

expected slack (unused capacity) in any given server at any given time.

Answering all of these questions essentially amounts to determining the
following: given an arrival profile at a server (a certain number of arrivals, each

with a given arrival probability over time), compute the departure profile at

13



that server (probability of each entity exiting the server in each time period)
for all entities at all servers. Note that the arrival profile is known from the
schedule only for the first server in each sequence. The arrival profiles at all

other servers are determined by the departure profiles of upstream servers.

2.3 Analysis of Queueing Systems

2.3.1 Approximate Solutions for Single Server Systems

Literature on the analysis of single server queueing systems is extensive. A
fundamental assumption of most of these approaches is that the network is in
steady-state, or that basic problem parameters are time-invariant. To analyze
queueing at a single server under time-varying conditions, a fluid
approximation model usually provides a good start (Kleinrock [21]). However,
this approximation holds only when the arrival rate exceeds the service rate,
and usually underestimates queueing. Diffusion approximations (Kleinrock [21]
and Newell [27]) attempt to analyze queueing systems by focusing on
“probability fields,” rather than tangible flows of discrete entities through the
system. Diffusion approximations are superior to fluid approximations since
they can account for the variance in the parameters of the system. However,
these approximations are also valid only under high utilization (service rate
approximately equal to the arrival rate). Also, applying steady-state results to
even mildly time-varying queueing systems can lead to significant error (Green,

Kolesar, and Svoronos [15]).

14



2.3.2 Networks of Queues
Exact Results

The simplest network of queues for which closed-form solutions exist are known
as Jackson networks (Jackson [19]). These systems consist of N service stations
with unbounded FIFO queues, and can be either open or closed. The entities
in the system are indistinguishable from each other, the input process is
Poisson, and the service process is exponential with (possibly) state-dependent
parameters. Jackson networks can be generalized by the so-called BCMP
networks (Baskett et. al. [5]), where it is possible to have R > 1 classes of
customers and service disciplines other than FIFO. The analysis of such
networks is discussed in greater detail in the volume by Gelenbe and Pujolle
[14].

Unlike the single-server case, there are almost no exact results for
non-stationary queueing networks. Massey and Whitt [26] derive a
time-dependent product form solution for an M (t)/G /oo system (a network
consisting of an infinite number of queues). This infinite-server approximation
is not valid in the airspace, where there are a relatively small number of

constrained servers, which are sources of significant queueing.

Approximate Results

In general, the only FIFO networks with more than three queues for which the

solution is known have the following characteristics (Gelenbe and Pujolle [14]).
e The network is open.

e The service time distributions are negative exponential.
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e The external arrivals are Poisson.

e There is only one class of customer, or, if there is more than one class of

customer, the service times are independent of customer class.
e All queues have unlimited capacity.

The number of problems that conform to this structure is extremely small.
Hence, researchers resort to the following approximate methods to study

complex queueing systems.

1. Decomposition method — This method consists of studying each
network in the system by decomposing the system into a number of
queues and studying each queue independently. The fundamental
assumption is that the departure process from a server is a renewal
process: the time interval between two departures does not depend on
the preceding arrivals. This is exact in the case of Poisson arrivals and
exponential service times, or when the server is saturated. Peterson,
Bertsimas, and Odoni [30] apply this method to analyze queueing in the

airspace.

2. Mean value method — The principle behind the mean value approach
is that the mean response time (defined as the time between entering the

queue and exiting the server) is given by the following equation.
E[T;) = E[S;] + E[S;]E[N/] (2.1)

Where E[T;], E[S;] and E[N}] are the mean response time, mean service

time, and the mean number of customers in the queue respectively at the
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instant of arrival. The main difficulty is to find an expression for E[N/].

This solution approach assumes that the system is in a stationary state.

. Aggregation method — The principle of this approach is to cluster

servers into groups such that

(a) interactions of variables within a group can be studied as if

interactions with the exterior do not exist.

(b) interactions of groups can be studied without the need to consider

interactions between variables in each group.

This approach involves studying each sub-system in the steady state and
solving the problem with the aggregated servers using results from the
steady state analysis to set effective service rates for each group. This
approach would be applicable when the network naturally lends itself to
decomposition. Due to the tight connectivity and strong interactions in
the airspace, the two basic requirements of the decomposition approach

(listed above) are usually only weakly satisfied.

. Isolation method — The isolation method consists of subdividing the
global system into L sub-systems and studying them separately. Ideally,
the de-coupling is done in such a way that each sub-system has a known

solution.

All of the above approaches require an assumption that the system is in

steady state. The literature on studying approximate behavior of dynamic

queueing systems is sparse due to the difficulty of the problem, as well as the

fact that each approximation is usually valid only in the domain in which it

was originally developed.
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2.4 Models in Air Traffic Management

2.4.1 Monitor Alert

Monitor Alert is the system currently used by the FAA to predict congestion in

the NAS, and is described in detail in Section 1.2.4.

2.4.2 The Approximate Network Delays Model (AND)

Malone and Odoni [25] describe an approximate model to study large-scale,
weakly-connected queueing networks with stochastic and time-dependent
demand and capacity and apply this model to the problem of estimating delays
in the NAS. The model tries to study the queueing effects at airports and delay
propagation throughout the network due to hub-and-spoke operations of
airlines. Note that this problem is fundamentally different from the question
we try to answer in this study; we are concerned primarily with en-route
queueing and do not consider propagation of delays caused by connectivity

constraints in the network.

2.4.3 The Detailed Policy Assessment Tool (DPAT)

DPAT is an air traffic simulation model developed by the MITRE
Corporation’s Center for Advanced Aviation System Development (CAASD).
DPAT is essentially a deterministic simulation (assuming exact departure times
and advance knowledge of capacities). The contribution of DPAT is not in the
modeling of queueing delays, but in the modeling of trade-offs between
departures and arrivals, which is critical in analyzing the propagation of delays

when airport capacity is reduced. An example of such a trade-off curve is in
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Figure 2.1: Airport arrival and departure capacity tradeoff curve.

Figure 2.1. As in the AND model, DPAT is not concerned with en-route
queueing, but with airport queueing and resulting propagation effects. The

reader is referred to Schaefer and Millner [33] for more details.

2.4.4 Other Models in Air Traffic Management

There are several other airspace models, including some that predict demand.
Escobar [12] describes exact and approximate solutions to
M(t)/G(t)/n(t)/n(t) + g queueing systems and applies this to the problem Air
Traffic Management, where a sector is modeled as a server with Erlangian
service times. Ball, Vossen, and Hoffman [4] develop a non-stationary queueing
model for the stochastic ground holding problem to determine optimal airport
acceptance rates (of aircraft). Kostiuk, Lee, and Long [22] describe a
forecasting model to predict long-term evolution of airline schedules in
response to delays incurred. Some exact methods for the so-called

aircraft-landing problem were investigated by Bell [7], Galliher and Wheeler
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[13], and Pearcy [29], where the runway is modeled as a single server system
with some birth process. These and other single-server models are discussed in

mode detail in the volume by Saaty [32].
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Chapter 3

Model Description

3.1 Overview

In this chapter, we present a robust approximate queueing model to estimate
delays in non-stationary networks with stochastic schedule based arrivals. We
first introduce the modeling philosophy and the procedure used to model
stochastic schedule-based birth processes. We then introduce notation and
present a fluid approximation to the problem and discuss some of its
drawbacks. We then develop the approximate queueing model, and describe
the algorithms in detail. The approximate queueing model is henceforth simply

referred to as the model.

3.2 Modeling Philosophy

The basis of the model is to convert a problem in continuous time to one in
discrete time by imposing convenient time buckets over the horizon of the
required prediction. The duration of a “convenient” time interval (7) depends

on the application and is dealt with in more detail in Chapter 4. It is tempting
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to think of the model as a discrete time queueing system; however, this would
be misleading. We note that the inputs to the model are in continuous time
(departure time distributions, travel times in the network, and miles-in-trail
expressed as a time interval) while only the outputs are in discrete time.

Another important concept is that of “splitting” of aircraft into discrete
quanta henceforth referred to as packets. It is useful to think of packets as
realizations of the probability of an aircraft existing at a particular point in
time. The interpretation of a packet is discussed in more detail in Section 3.8.
This splitting of aircraft into packets enables us to study interactions between
aircraft accounting for the probabilistic nature of the occurrence of these
interactions. Throughout this study, we strongly encourage the reader to think
in terms of “probability flows” rather than flows of discrete hard aircraft

through the network.

3.3 Stochastic Birth Schedule

As discussed in Chapter 1, there is uncertainty regarding the time of departure
of an aircraft. In order to model stochastic birth schedules, we convert the
probabilities of birth at a given time to probabilities of birth during the
corresponding time interval. This is simply the expected value of the function
h(i,0) (defined in the previous chapter), over the duration of the corresponding
time period times the period length and is denoted by H(i,t), which is the
probability of birth of aircraft ¢ during tzme period t. This is illustrated in
Figure 3.1. This procedure is applied to all aircraft at all nodes. This

procedure converts a departure probability distribution into a number of
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Figure 3.1: Modeling a stochastic schedule-based birth process.

departure “packets” (one in each period over the domain of the function) that
are propagated through the network. This distribution can be of arbitrary

shape and is usually a function of the airport and the level of queueing [18].

3.4 Assumptions

The model makes the following assumptions.
e The queue discipline is strictly FIFO.
e There are no limits on queue size / waiting time.

e The probability of birth of an aircraft during a time interval is uniform

over the duration of the time interval. This is an approximation used to
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convert a continuous function into a piecewise uniform function. The
necessity for and implications of this assumption are discussed in Chapter

4.

3.5 Notation

The notation is developed for only a simple system of two successive queues.
All the algorithms described in following sections assume that all aircraft first
arrive at queue (). Once they pass through @, all aircraft head to queue @'.
This assumption is not restrictive as the same principles can be extended to a
network of queues. Referring to Figure 3.2, an aircraft in () is assumed to
“belong” to Sector 1; once it passes through the queue, it leaves Sector 1 and
then belongs to Sector 2. It is also assumed that travel time between the two
queues is an integral multiple of the period length. We will demonstrate later
that this assumption can be relaxed.

We now define certain important parameters and notation used.

T Length of a time period.

(1) Miles-in-trail (measured as a time interval) in the same units as
the period length, as a function of the time period.

Q(t) Set of all discrete aircraft quanta (packets) in the queue that arrived
at the waypoint during time period ¢.

Qo(t)  Initial state of the queue (including scheduled arrivals in future
time periods).

f(#) Occupancy of the waypoint in time period .

fo(?) Initial occupancy of the waypoint.
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min

Occupancy of a set of packets P that are allowed to pass through
the waypoint.

Capacity of the waypoint in time period ¢.

Mass of packet p.

An operator that acts on an entire set of packets to generate new
set of packets. w @ Q(t) gives a new set of packets that have the
same characteristics as the elements of set Q(t), except that the
masses of the packets in the new set are corresponding masses in
the set Q(¢) multiplied by a factor w. For example, let a packet be
represented as a vector (o,d, m), where o, d, and m are the origin,

destination, and mass of the packet respectively. Then,

0.5 {(a,b,0.4), (z,y,0.6)} = {(a,b,0.2), (z,y,0.3)}

The arrival time period of the packet that has the greatest waiting
time (earliest birth time) in the queue Q).

Travel time between queue () and the succeeding queue @'.
Expected number of aircraft in Sector ¢ during time period t.
Union of time periods in the time window being observed.

The probability of birth of aircraft ¢ at time 6.

The probability of birth of aircraft ¢ during time period ¢.

The set of all aircraft in the NAS.
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Server
Waypoint)

Figure 3.2: A simple queueing system.

3.6 Fluid Approximation

A first-order approach to the problem is to model the problem as a network
flow model with aggregate demands and capacities (illustrated in Figure 3.3).
This representation is a classic network flow model, where flow is conserved at
each node. For example, the flow arrow in gray is the aggregate flow of packets
that exited server ¢ during time period ¢ — 2, advanced to served j, and exited
server 7 during time period ¢ — 1. The delay due to queueing at server j is
implicit in the time periods spanned by the flow arrow. Flow conservation at
each node is applied by equating the inflow to the server at any time ¢ to the
outflow at time ¢. In the figure, this is illustrated for queue j at time ¢ by the
dark flow arrows. The network is node-capacitated, not arc-capacitated, where
the node capacity is given by C(t). The algorithm does not try to minimize any

global objective function, nor does it have global constraints. Instead, it simply
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Figure 3.3: Network flow representation of the problem.

tries to maximize the utilization of each server locally, the only constraint
being that flow is conserved at each server. This can be implemented using a
simple algorithm that pushes a maximum amount of flow through each server
(considering each server independent of all others). Thus, the algorithm simply
steps through time, ensuring that the aggregate flow passing through a node

during a time interval does not exceed the capacity of that node, and the
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maximum possible flow is pushed through the node. In the figure,
Inflow(t) = Outflow(t) < C(t)

The problem thus reduces to finding a set of delay minimizing flows through
the network that are capacity-feasible.

As mentioned in Chapter 2, the fluid approximation tends to significantly
underestimate queueing in non-stationary queueing systems operating at less
than capacity. However, this approach gives a basic understanding of the
processes involved in the queueing system and some insights into modeling and
implementing an aggregate queueing model, and is hence of interest. The fluid

approximation algorithm is described in Algorithm 1.

Theorem 3.6.1 When the network is unconstrained (u(t) =0 Vt), the
sector count from the fluid approximation is exactly equal to the expected sector

count of the system as the length of the time period tends to zero.

The proof follows from the linearity of the expectation and integration

operators.

Proof Let h;(0) be the probability of departure of aircraft ¢ at time 6. Since
there is no queueing (interaction with other aircraft in the network), Q7(#), the
probability that aircraft 7 is in sector s at time 6 is given by

giljis,min
0= [
i,maz

hi(z)dx (3.1)

where v/, and v}, ;. are the travel times for aircraft i from the farthest point

in the sector s to the departure point and the nearest point in the sector s to

the departure point, respectively. This is illustrated in Figure 3.4. In words,
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Figure 3.4: Two aircraft in an unconstrained network.

this equation states that the probability that an aircraft is in a sector at time 6

is the probability that it departed in the interval [# —
The expected number of aircraft in the sector at any given time equals

0 — v’

s
Vi,ma:v’

the sum of the probabilities for each individual aircraft.

E(n,0) = > Q;(0)

el
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gil/ismin
En,0) =Y /M ™ h(x)d

el i,maz

In the fluid model, each departure “packet” with mass m is allowed to

(3.3)

propagate deterministically through the network with an incremental change in

position with each time period. Assuming that the minimum and maximum

travel times to the sector are integral multiples of the period length 7, this can

be stated as

t—Ts .
i,min
! !
E'nt)y=> >  H()
i€l t=t="s .
where
S
s _ Yi,maz
Tz',moaac_ T
and
s
s _ Yiman
Tz',mz'n T

As defined earlier,

Taking limits on Equation 3.4,

t_Tz‘?,min
: ' 1 (4!
71_1_I)I(1) E'(n,t) = ll_r}r(l) ; t/j; H;(t")
Or, )
Vf,min
lim E'(n,0) = Jim > Y hi(x)dx
i€l x=0—v$

Which is exactly the same as Equation 3.3. |}
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Algorithm 1: Fluid Approximation

Data : Refer to Section 3.5
Result : Expected number of aircraft in a sector over time

Variable(s): M — cumulative mass of a set of aircraft;

Initialize: f(t) := fo(t),Vt € T; Q(t) := Qo(t)Vt € {—00, .., +o0};t :=0;
while t € T' do

while (t2, <t) & (C(t) > f(t)) do

M = ¥peqtun) MP);

if M < (C(t)— f(t)) then

| w:=1;
else

. Ct)=f(t).
Lw__ ()M(),

f(&) == f(t) +w x M;

Sy(t) = Sy () — w x M;

Sy(t) = Sa(t) +w x M;

if w =1 then

Q'(t+s) :=Q'(t+5) + Qtmin);
Q(tmin) = ¢;

else
Q'(t+s) :=Q'(t+ )+ wQ Qtmin);
L Q(tmm) = (1 - ’LU) ®Q(tmzn),

|t i=t4+1;
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3.6.1 Drawbacks of the Fluid Approximation

Experimental results obtained using the fluid approximation are presented in
Chapter 5. It is observed that the fluid approximation (as expected)
underestimates queueing. This is because the fluid approximation
underestimates the domain of the time of occupancy of the waypoint by a set

of aircraft. For example, consider the two following scenarios.

1. One entity, with a probability of birth equal to 1 in the interval [0,100]
(uniformly distributed over that time interval), and a service time of 100.
This generates the occupancy probability curve shown in Figure 3.5. The

domain of occupancy of the server is [0,200].

2. Two entities, with probabilities of birth of 0.5 each in the interval [0,100],
and a service time of 100. The probability that the server is occupied by
these two entities is shown in Figure 3.6. The domain of occupancy of the

server is [0,300].

The fluid approximation treats these two scenarios as being equivalent since it
is concerned only with the total probability of arrival in the period (equal to
1), and not in the variance. As a result, the fluid approximation consistently
underestimates the domain of occupancy of the server, and consequently
underestimates queueing. This motivates the need for looking at the problem
from a perspective that considers the occupancies of waypoints, and not just

the flows through them.
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Figure 3.5: Probability of occupancy of the server by one aircraft.

3.7 Fundamental Principles

Based on our understanding of the system in the previous section, we can make
some general observations regarding the mechanics of the system.

Observation 1. An entity (aircraft) passing through a server (waypoint)
generates an occupancy distribution of the waypoint over time. This
occupancy distribution is the probability that the waypoint is occupied by the
aircraft (or set of aircraft) as a function of time.

Observation 2. An aircraft with an arrival probability density function
of domain Ty which has to pass through a waypoint with an occupancy
probability density distribution of domain 7 has a positive value of expected
delay if T4 To # ¢. This implies simply that an aircraft has to interact with

the occupancy distribution of a waypoint to generate delays.
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Figure 3.6: Probability of occupancy of the server by two aircraft.

If we were solving the exact case, we would require each arrival to take
into account the existing probability in order to generate the correct amount of
delay. In our model, since we have the possibility of an aircraft delaying itself
through this procedure (two packets belonging to the same aircraft delay each
other), we need another approach to estimating delays, taking the occupancy
of the waypoint into account. One approach is to force delay whenever there is
an overlap between the arrival and occupancy distributions, which would
significantly overestimate queueing due to same-aircraft interactions. We term
such interactions as strong interactions. A second approach is to recognize the
presence of an occupancy probability by artificially increasing the service time
at the server for the new arrivals, without explicitly causing the arrival
distribution to interact with the occupancy distribution. We term this as a
weak interaction. The fluid approximation is a type of a weak interaction, and

underestimates queueing. In our model, given an arrival profile and an
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occupancy distribution, we impose either a strong or a weak interaction

depending on some conditions, which are dealt with in Section 3.7.5.

3.7.1 Strong interactions

When an aircraft arrives at a waypoint that has some positive probability of
occupancy, it has a probability of being delayed. Let p(t) be the probability
that a waypoint is occupied at time ¢. The probability that the aircraft is
delayed, given that it arrives at time ¢ is given by p(¢). This is only the
probability that it is delayed. Further analysis is required to characterize the
length of the delay. We use the term “strong interaction” when the occupancy
distribution of a waypoint interacts explicitly with the birth probability
distribution to generate delays. In other words, when an aircraft arrives at a
waypoint that has some probability of being occupied by another aircraft, it
experiences some delay that is a direct consequence of the probability of

occupancy.

3.7.2 Weak interactions

Consider two non-empty sets of aircraft (packets) arriving at a waypoint (not
necessarily during the same time period). Each set of aircraft (packets) could
be considered independent of each other to generate an occupancy distribution
for each set. Let the occupancy probability functions of the waypoint due to
each of these sets S1 and S2, considered independently, be g°1(¢) and ¢°%(¢). If
these two sets of aircraft (packets) are part of a feasible flow (i.e., feasible to

the queueing system), the sum these functions can never exceed 1 (since this is
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a probability). If this were a feasible flow,
g () + g% (1) < 1 vt

If, however the sum of these distributions were greater than 1, we would have
to delay one of the sets of aircraft by some value, until the sum of occupancies

of the delayed sets is not greater than 1. For example, if
g (1) + g%(t) > 1

we would have to delay the set S1 by some value such that a subset of S1, say

S3, passes through the waypoint such that
g7 () +g%(t) <1 Vi

implying that S1\ S3 is delayed. Obviously, the procedure for imposing delays
to ensure feasible flows should incorporate some concept of equity between

13

flows to ensure a first-in-first-out discipline. We use the term “weak
interaction” when sets of aircraft interact with each other through their
occupancy distributions to generate delays. We observe further that a fluid

approximation is a form of weak interaction.

3.7.3 Sample Problem

Consider a simple system of two aircraft. Aircraft 1 has an arrival probability
of 1, uniformly distributed in [0, 1000]. Aircraft 2 has an arrival probability of
1, uniformly distributed in [1000,2000]. The miles-in-trail is 1000 units. When
the two aircraft interact weakly, we simply generate the occupancies of the

server independent of each other, and sum the two occupancies, ensuring that

the sum is never greater than 1. This is shown in Figure 3.7. We observe that
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Figure 3.7: Probability of occupancy of the server by two aircraft interacting weakly.

since the sum of the two occupancies (the upper envelope in Figure 3.7) is not

greater than 1, a weak interaction for this system implies that there is no

delay.

If the two aircraft were to interact strongly (aircraft 1 explicitly delays

aircraft 2), this would force some delay on aircraft 2. This is shown in Figure

3.8.

3.7.4 Conditions under which Strong and Weak

Interactions are Exact

Weak Interactions

The occupancy of a server caused by a single aircraft (two packets) arriving in

time [0, 27] (one packet in [0, 7] and one in [r, 27]) with probability f(¢), and a

37



Occupancy distribution generated by
interactions

Occupancy of aircrpft

. Occupancy of aircrpft2
0.4 // \\ \\ — Joint occupancy

.2

0

Probability
occupancy

1 501 1001 1501 2001 2501

Time

Figure 3.8: Probability of occupancy of the server by two aircraft interacting strongly.

service time of y is given by:
t
o) = [ f(oyr (3.7)

Specifically, in 7 < t < 7+ p (where the occupancies of the two packets

overlap),

T

o) = [ foydr+ [ F(oya (38)
t—p T
The occupancy caused by a single aircraft arrival whose domain of arrival
spans two periods is given by the above expression. We also observe that each
of the two terms in the RHS of Equation 3.8 are nothing but the individual
terms obtained for the occupancy of the server if each packet was considered in
its “own” time period, i.e, [0, 7] and [, 27|, independent of the other packet.
Thus, the occupancy distribution generated by a set of packets belonging
to the same aircraft (in different or in the same time period) is the sum of the
individual probabilities of occupancy generated by each packet considered

independently. Thus, the weak interaction is exact when all the weakly
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interacting packets belong to the same aircraft.

Strong Interactions

We implement strong interactions in the model in the following manner: if an
aircraft has a probability of arrival of p during some time interval, and the
server has an expected occupancy of ¢ over the time interval, the model forces
a delay of at least 1 period with a probability of ¢. Thus, the packet of mass p
splits into two packets: one of mass (1 — ¢) x p which passes through the server
with no delay, and one of mass ¢ X p which is delayed at least one period. This

procedure of assigning delay is exact if two conditions hold.

1. The length of the time period is infinitesimally small, or, all packet
arrivals are at the beginning of the period (as opposed to arriving
uniformly over the period duration). In our implementation, since the
time period is of the order of 100 times smaller than the domain of the
occupancy distribution generated by an average set of packets, this

assumption holds.

2. The two interacting entities do not belong to the same packet.

3.7.5 Issues with interactions

Due to the “splitting” of an aircraft into multiple packets, it is possible to have
two packets of the same aircraft interact with each other. Strong interactions
would force two packets of the same aircraft to delay each other, thus
overestimating queueing delays at a network. It is not possible to discount

these interactions, as keeping track of occupancies for every combination of sets
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of aircraft is combinatorially difficult. Weak interactions are not affected by the
splitting of aircraft, as the definition of a weak interaction is such that the
occupancy of a set of packets belonging to an aircraft arriving over a domain of
periods is the sum of the occupancies of each aircraft in each period. Hence,
using only strong interactions to estimate queueing would over-estimate
queueing delays (an aircraft delays itself), while using only weak interactions
would underestimate queueing (packets belonging to two distinct aircraft would
not delay each other sufficiently).

To estimate queueing delays accurately, any algorithm based on these
interactions would have to use a hybrid of strong and weak interactions. In our
implementation of the algorithm, we make use of the fact that while strong
interactions overestimate queueing, a fluid (weak) approximation
underestimates queueing. Hence, the desired queueing effect may be produced
by appropriately combining strong interactions with fluid interactions. From
Theorem 3.6.1, we know that the fluid approximation is exact when there are
no interactions between entities in the system. Hence, the fluid approximation
is valid when the interactions are negligible, which occurs in three possible

ways.
e The service time (miles-in-trail) is negligible.

e The total packet mass is negligible (the probability of interaction

occurring is low).

e The server is overloaded (capacity is significantly exceeded), in which

case entities are not given an opportunity to interact at the server.

Hence, when the above three conditions are present, we resort to a fluid
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approximation, and to strong interactions in all other cases. We note that a
strong interaction is also exact in the case where the system is unconstrained
(miles-in-trail is negligible). This is because the occupancy generated when the
miles-in-trail is negligible is also negligible, which implies that, for a strong
interaction, the probability of delay is negligibly small. We prefer using the
weak interaction over the strong interaction wherever possible as the weak
interaction does not necessarily split a packet, while the strong interaction
necessarily splits a packet to generate a new packet when the delay probability
is non-zero, however small. From a computational standpoint, we would like to
keep the number of packets to a minimum. As noted above, the strong
interaction overestimates queueing due to same aircraft interactions. When the
service times are large, the domain of the occupancy distribution of a packet is
large, which increases the probability that a future packet belonging to the
same aircraft interacts with itself. Specifically, when the service times are large
(or when the server is overloaded), a strong interaction significantly
overestimates queueing.

This leads to the issue of how to determine the threshold between strong
and weak interactions. We make the following observations regarding the

number of periods for which strong interactions must occur.

e [f the miles-in-trail is negligible, the domain of the occupancy
distribution generated by the set of packets is also negligible. Hence, as
the interactions tend to zero, the domain tends to zero, and this can be

approximated by a fluid flow.

e [f the total quantity of packets that arrive at a server tends to zero, the

interactions tend to zero. Hence, if the amount of packets remaining from
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a set of arrivals is negligible, their interactions are negligible, and can be

approximated by a fluid flow.

e If the number of periods that the packet has been in the queue is large, it
implies that the server is overloaded. Such a situation can be

approximated by a fluid flow.

From the three observations above, it is intuitive that the number of periods for
which the strong fluid interactions apply must tend to zero if either the domain

or the packet mass tend to zero. Hence the following relation might hold,
p = v x domain X avg.mass (3.9)

where p is the number of strongly interacting periods and + is some positive
constant. We also observe that this expression has the added property that the
number of strongly interacting periods is finite. Hence, when the number of
periods of delay is large, the algorithm automatically reverts to a fluid
approximation. Although our experiments indicate that the value for v appears
to be sensitive to the problem parameters, a value that seems to work over a
large domain of problem parameters is v = 1.5, and this is the value that is
used in all experiments. We would like to avoid calibrating the model according
to the actual scenario as the model would then lose the advantage of simplicity.

p=15xpt)x > mp) (3.10)
PeQ(?)

3.8 What is a Packet?

So far we have used the term “packet” to represent some part of an aircraft

that is associated with the probability of existence of the aircraft. In
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particular, since the models conserve packet flows throughout, the sum of all
packet masses belonging to the same aircraft equals the probability of existence
of the aircraft in the system. For example, if an aircraft has a cancellation
probability of 0.1, the sum of all packets belonging to the aircraft at any point
in time should necessarily sum to 0.9.

The interpretation of the concept of a packet is fairly straightforward in
the case of splitting the departure profile into discrete pieces of aircraft. A
packet of mass m that is obtained from a continuous departure time
distribution during some period is the probability that the aircraft is born (is
added to the departure queue) during that period. Thus the packet is a
realization of the probability of departure.

At each stage in the algorithm (each time period) it is possible to obtain

the number of packets and the mass corresponding to each packet for
e Packets in transit between two queues.
e Packets in a queue.

Thus, when the algorithm has finished running, it is possible to obtain, for
every arc and node in the network, a histogram (over time) of the packets
belonging to the particular arc or node. This histogram is interpreted as
follows: for an arc between two servers, a packet of mass m in time period t,
which is a part of aircraft 7, implies that there is a probability of m that
aircraft ¢ exists on the arc during time period ¢. Similarly, for a node (queue),
a packet of mass m in time period ¢, which is a part of aircraft 7, implies that
there is a probability of m of aircraft ¢ being in the queue during time period ¢.

The interpretation of a packet in the queueing process is not as obvious.
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The queueing process could be viewed as a procedure that takes as inputs a set
of packets, and outputs a set of packets over time with the interpretation
described in the previous paragraph.

We also observe that the interpretation of a packet is strictly local. For
example, we could observe the same aircraft at two nodes during the same time
period (as two packets). This does not imply a finite joint probability that the
aircraft is in both queues at the same time. Thus the interpretation of a packet

is limited to the node/arc in which is manifests itself.

3.9 Queueing Model

3.9.1 High-level description

The intuition behind the algorithm is based on having a combination of strong
and weak (fluid) interactions in the queueing systems to produce the desired
queueing effect. As the algorithm steps through time, the basic idea is to
generate, for each set of arrivals, the number of periods of strong interactions
(from Equation 3.9). The set of arrivals strongly interacts with the occupancy
distribution for the required number of periods and as a fluid for the remaining
periods. The algorithm is described at a high level in Algorithm 2 and in much

more detail in Algorithm 3.

3.9.2 Detailed Algorithm Description

Since it is not directly possible to generate the weight w in Algorithm 3 from
the unused capacity, we use an iterative technique similar to the bisection

method that converges on a weight that exactly fits the unused capacity. This
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Algorithm 2: High-level algorithm description

Data : Refer Section 3.5
Result : Expected number of aircraft in a sector over time

Initialize: Queue state, Occupancy, Period = start time ;

while Period is in time horizon do

while Queue is not empty and occupancy is less than capacity do
Identify set of packets with earliest arrival time ;

Determine number of non-fluid periods from domain and total
mass of packets;

if earliest arrival time is less than (period — non-fluid Periods)
then

Send as many of these packets as possible through the waypoint
(not violating capacity in any period), accounting for current

occupancy of the waypoint. This is a fluid approximation ;

| Update occupancies and sector counts ;

else if earliest arrival time is less than period then

Send as many of these packets as possible through the waypoint
(not violating capacity in any period), accounting for variance
in arrival time and arrival probabilities within a period and
current occupancy of the waypoint. This procedure accounts
for “granularity” in the arrivals, and is hence NOT a fluid

approximation ;

Update occupancies and sector counts ;
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Algorithm 3: Detailed algorithm description

Data : Refer to Section 3.5
Result : Expected number of aircraft in a sector over time

Initialize: f(t) := fo(t)|Vt € T, Q(t) := Qo(t)|Vt € {—00, +00},t:= 0 ;
while ¢t € T do

while Q(t) # ¢ & t?mn <t &C(t)> f(t) do

p=0.053 x L 5 |Q(t2;,)] X Ypeque, ) D) ;

=

if ¢2,, <t— p then

|_ Wmaz = 1 ;
else
L Wmaez = X

Generate maximum w € [0, Wyq,| such that
g @) + f(t) <OV €T

(w, g* @R (¢) are obtained from Procedure Generate Weight

if w =1 then

LQ%+$:Qﬁ+$+mmM'
Qtiin) = &3

else
LQ%+$:Qﬁ+$+w®mmM'
Q( mm) : (1 - ’LU) ®Q( mzn).
F(#) = f(t') + g» @O (1)t € T;
Si(t) = Si(t) Zp@,@Q(tgm) m(p);

| Su(t) = Sa() Syen @ e, )
| ti=t+1;
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is described in Procedure Generate Weight. This procedure converges as long
as the function is strictly non-decreasing. Since the occupancy during any time
period is strictly non-decreasing with weight (increase in probability of arrival
cannot cause a decrease in probability of occupancy), the procedure always
converges.

Note that we use a Monte Carlo simulation in order to generate expected
probabilities of occupancy as a function of time in Procedure Generate
Occupancy. This procedure is time consuming, especially since it is performed
iteratively in the Procedure Generate Weight. In Chapter 4, we present an
approximation to the occupancy distribution, which makes it possible to obtain

occupancy distributions with significantly less computation.
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Procedure Generate Weight

Data : Current period r, Set of packets Q(t), Occupancy f(¢)Vt' € T
Result : Maximum weight w and expected occupancy gv® @) (Vi €

T

Initialize: w := 0, w := é((;)) ;

while (W —w) > ¢ & wW > 0 do

Estimate expected probabilities of occupancy e(t'), e(#)|Vt' € T

corresponding to w & w respectively using Procedure Generate

Occupancy;

()| €T ;

f
fA)vt' e T ;

w = (WA + wA)/(A + A);

Estimate probability of occupancy e(t')|Vt' € T for weight w using
Procedure Generate Occupancy;

gDt == e(t') x C(t"|Vt' € T ;

§(t') = g?W(t") = C(¢') + f(¢) V' € T ;

A = min(0, maz(§(t')));

if A <0 then

wi=w;
L A=A
else

W = w;
A=A
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Procedure Generate Occupancy

Data : Current period r, Set of packets @Q(t), Weight w, Occupancy

f(t"vt' € T, Capacity C(r)
Result : Probability of occupancy e(t)Vt' € T
Initialize: replications =0, e(t') = OVt' € T;
p = 0053 x H 5 |Q(1)| X Cpequ m(p) ;

if t <r—pthen

e(r)=(1- é((:))) pew® Q) MP) ;

e(r+1) = LY cu@aom M) ;
else
while replications < N do
Randomly sample a set of arrivals from w @ Q(¢) based on prob-
abilities of arrival;
Assign arrival times for these arrivals in the interval r based on
probability of occupancy %;
Simulate system based on known (deterministic) arrival and ser-

vice times;

Update occupancy probabilities in each period ;

| replications = replications + 1 ;

e(t') = average probability of occupancy over all N runs of the simu-

| lation V' € T;
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Chapter 4

Generating Occupancy Distributions

4.1 Overview

This section describes the procedure to generate occupancy distributions for a
server given a set of aircraft with probabilities of arrival during some time
period. We first develop an exact solution for a simple case of two aircraft. We
then extend this to an arbitrary number of aircraft for a special case. Finally,
we introduce the approximation technique and describe a genetic-algorithm and

regression based procedure used to estimate the parameters of this distribution.

4.2 The Occupancy Distribution

4.2.1 Motivation

The previous chapter introduced an approximate algorithm for estimating
delays in complex queueing systems. The procedure hinges on being able to
calculate occupancy distributions generated by a set of arrivals (packets)

during a time interval. A simple approach to this is to obtain these by a Monte
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Carlo simulation of the system, by sampling the arrivals from a uniform
distribution defined by the packet mass, as described in Procedure
GenerateOccupancy. However, this procedure is computationally expensive,
and we would like to develop computationally less burdensome methods to

estimate the occupancy distribution associated with a set of packets.

4.2.2 Queue Characteristics

The queue has the following parameters.

e Number of arrivals is finite.

Mass of each arrival represents the probability that the aircraft arrives in

a finite time interval and is uniformly distributed over the interval.

Queue discipline is first-in-first-out (FIFO).

Service time is deterministic but time-varying.

Server can serve a maximum of one customer at any given time

No limit on queue size/waiting time.

4.2.3 Notation

T Length of time period over which arrivals can occur.
P Set of all aircraft P =1,2,...,n,0 <n < o0

w(t) Service time of an aircraft at time t.

g(t) Probability of occupancy of the server at time ¢.

pi(t,t")  Probability that at most i customers arrive in the period (¢,#].

51



4.2.4 Problem Definition

Given a set of arrivals uniformly distributed in [0, 7], estimate the probability
of occupancy of the server as a function of ¢ € [0,00). Note that we are trying
to get the distribution of the expected occupancy over time, not the
distribution of the occupancy at a given point in time. We would initially like
to estimate the expected occupancy distribution (henceforth referred to simply
as the occupancy distribution) in continuous time, before we impose discrete
time slices and average over these time slices. The following basic properties of

the expected occupancy distribution are known.

1. g(0) = 0. The server cannot be occupied before any arrivals occur.

2. g(7 +nu) = 0. The latest time that the server can be occupied is when
all n aircraft arrive at time ¢t = 7. Thus the server cannot be occupied
beyond 7 4+ nu. In the case of time-varying drift, since the order of
arrivals during a time period is immaterial, the domain of the occupancy
distribution is given by 7 4 nfi, where [i is the expected miles-in-trail.
The domain is calculated in practice by deterministically ordering all n
aircraft, separating each by the miles-in-trail defined by the time of entry
of the previous arrival, and obtaining the domain as the time of exit of

the last aircraft.

3. g(t) is strictly non-decreasing in [0, 7] and strictly non-increasing in

[T,00).

4. g(t) <1, Vt € (0,7) (When these are converted to expected probabilities
in discrete time slices, this property would imply that the probability of

occupancy in the first time period is always strictly less than one).
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5. Probability of occupancy at any arbitrary time t € [0, 00) is given by
L]
g(t) =1 =TI = pilt —ip— p,t —ip)]
i=0

Notice that all the properties listed above follow from this property.

6. g(t) can never equal 1 if all the arrivals have a mass of less than 1, since

there is a finite probability that no aircraft arrive.

4.2.5 Two Aircraft

Consider the simple case of two potential arrivals at the server in the period
[0, 7]. The probability (mass) that customer i arrives in the period [0, 7] is
m(i). We assume that p < 7. It is fairly straightforward to derive the equations

for the case when p > 7 using analysis similar to that presented below.

Case 1. 0 <t <y

Probability of occupancy at time ¢ is the probability that at least one (either)

of the customers arrive in [0, t].

).(1—m(2).5)] (4.1)

T

2~

g(t) =1 = (1 =m(1).

Case 2. u<t<r

Probability of occupancy is the probability that at least one aircraft arrives in

[t — p,t] or the probability that both aircraft arrive in [max(0,t — 2u),t — ul.

1

T

11— m(@) 01— m(1)m(@) (T g g)

T T

g(t) =1—[1—m(1)

Note that in the general case, finding this area is extremely hard due to the

combinatorial complexity of the problem.
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Case 3. 7<t<717+pu

Probability of occupancy is the probability that at least one aircraft arrives in

[t — p, 7] or both aircraft arrive in [t — 2u,t — pl.

THp—1 THp—1 min(t — i, 1)
g(t) = 1= [1=m(1) =2 —m(2) = = 1)) ()
(4.3)
Case 4. 7+ pu<t<7+2u
Probability of occupancy is the probability that both aircraft arrive in
[t - 2“7 T]'
T4+ 2u—t
g(t) = m(1)m(2)(————)* (4.4)

T

The occupancy distribution generated by such a system is shown in Figure 3.6.

4.2.6 Server Occupancy Distribution for n arrivals

It is possible to extend the results for two arrivals to n arrivals. However, it is
almost impossible to enumerate all possible combinations for the general case.
We will assume in developing the theory that the variance in the masses of

arrivals is not significant. We assume that m(1) & m(2) =~ m(3)... & m(n) =~ m.

Case 1. 0<t<pu

Probability of occupancy is the probability that at least one aircraft arrives in
the interval [0, u]. In other words, it is (1— (probability that no customer
arrives in [0, p])).

o(t) =1~ (L= mo)" (45)

where n is the number of arrivals with positive mass.
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It can be seen that the area of this curve is easy to calculate.

A, = [Motw.ar= ["1- - mé)”.dt

where A is the area of the occupancy distribution in [0, x]. The arithmetic
yields

7 (11— m%)”Jrl

A, p) = pt [ — 1 (4.6)

Given an area under the occupancy curve of A(t, %), the average occupancy in
that period is calculated by averaging the area over the length of the period
over which A is calculated. We obtain the occupancy in this period by

multiplying this occupancy figure by the capacity.

Pt 1) = %2 (4.7)

where g¥(t,,t;) is the occupancy of the server in the time interval [t;, t5]
caused the set of arrivals P in [0, 7]. It is hence possible to determine the

occupancy of the server in the interval [0, ).

Case 2. 7+ (n—Nu<t<71+nu

This is the probability that all n aircraft arrive in the time period (7 — ¢, 7].

g(t) = Ty (48)

Obtaining these occupancy distributions even for the case when the variance is
negligible is combinatorially complex. This motivates the need for developing

approximate methods to estimate occupancy distributions
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Figure 4.1: Sample expected occupancy distribution of a waypoint.

4.3 Approximating Occupancy Distributions

The success of the entire algorithm in Chapter 3 rests heavily on generating
occupancy distributions quickly and accurately. As discussed in the previous
section, generating exact values of the expected occupancy distribution is
extremely hard due to the combinatorial nature of the computations. A look at
a sample expected occupancy distribution, generated by 5 aircraft randomly
arriving in [0,100] with a miles-in-trail of 200 (Figure 4.1) shows that these
distributions are not very well structured. The distribution in the figure was
generated based on 5 aircraft packets, which represent the arrival probabilities
of the aircraft set. Using these, we first determine whether the aircraft arrives
or not. Given that the aircraft arrives, the arrival time is distributed uniformly
in [0,100]. This is done for all 5 aircraft and an occupancy distribution
obtained for this one sample path. The entire procedure is run a number of

times, and the occupancy distribution is averaged over all runs of the
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replication (for each point in time) to obtain the occupancy distribution shown
in Figure 4.1. The number of replications required to obtain a standard error
of the mean of the order of 1% varies greatly on the number of packets being
considered, and is approximately 150 replications for 50 packets. Hence,
attempting to fit a smooth curve to this would only be very approximate.
However, we see that due to time being discrete, we are really only interested
in obtaining areas of the curve in different time intervals, and not the exact
value of the distributions over continuous time. Hence, we would like to fit a
curve to the distribution assuming that the errors are averaged out when

computing areas under the curve in a time interval.

4.3.1 The Beta Distribution

This section describes the Beta Distribution, which is used to approximate
server occupancy distributions. The beta distribution is a two-parameter
continuous distribution related to the Gamma distribution and has two free
parameters o and /3. The domain of this function is [0, 1], and the probability

function P(z) is given by

PO = 5o (4.9)
Or,
P(z) = %(1 )i (4.10)

where B(a, () is the Beta function, and I'(«) is the Gamma function. The beta

distribution has the additional property that

/01 Pla)dr = 1 (4.11)
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The Gamma function is a generalization of the factorial function and can be

applied to any real/complex number.
I(z) = / et (4.12)
0

Note that

L(z+1)=aT(x)

For further information on the Beta distribution and Gamma function, the
reader is referred to the works of Abramowitz and Stegun [1], Beyer [8],
Jambunathan [20], Krysicki [23], and Zehna [35].

We choose the Beta function to approximate occupancy distributions for

the following reasons.

1. The distribution is finite with domain [0, 1]. Since the domain of the
occupancy distribution is known, it is possible to “stretch” the Beta

distribution to conform to the required domain.

2. The distribution has known area (equal to 1). Given a set of packets, we

know that the area of the occupancy distribution is given by
A=Y m(i) x E(n)
icP

where P is the set of packets, m(7) is the mass of packet i, and F(u) is
the average miles-in-trail over the domain. Thus, given the area, it is
possible to multiply the area of the beta distribution by the area of the
occupancy distribution to obtain a good approximation to the occupancy

distribution.

3. The distribution has only two parameters and has exactly one maxima.

In our implementation, we introduce a third degree of freedom, A, which
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determines the domain of the occupancy distribution.
D'=AxD

where D’ is the domain of the beta distribution, while D is the domain of

the occupancy distribution, given by

D=1+nxp

4. Generating a very good approximation to the Beta distribution is

computationally inexpensive.

Parameter Estimation

We use a genetic algorithm and regression based approach to estimating
parameters for the Beta distribution. Given an occupancy distribution, it is
difficult to use standard parameter estimation techniques to fit a beta curve to

it for the following reasons.

e The beta distribution does not have structure that lends itself to a
regression analysis. The derivative does not have a mathematically
tractable form. Software packages that try to fit distributions to the beta
distributions also rely on numerical techniques (such as regular falsi),
rather than standard techniques [31]. Specifically, it is not possible to use
a maximum likelihood approach since the inverse map of the cumulative

distribution does not have a closed form.

e We use a three-parameter beta distribution. Such a curve has not been
studied in the literature, although some methods to estimate the

two-parameter distribution are known.
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Table 4.2: Bounds placed on parameters in the genetic algorithm.

Parameter | Lower Bound | Upper Bound

a 1E-10 7
8 1 40
A 1E-10 1

e The objective is to generate a curve such that the areas formed by this
curve after imposing discrete time slices on the distribution are closest to
the areas formed by the occupancy distribution in discrete time. Hence,
although we try to initially fit a continuous curve to the continuous
occupancy distribution, the objective of the fit is to find a curve that
minimizes the deviation of the discrete beta distribution from the discrete

occupancy distribution.

4.3.2 The Genetic Algorithm

This section describes the process of estimating the parameters of a Beta
distribution corresponding to a specific occupancy curve i.e. given an
occupancy distribution, it obtains the “best fit” Beta distribution for that
curve. The notion of a “best fit” is discussed later in this section. A genetic
algorithm is used to estimate these parameters, and is fairly simplistic. The
GA has the following characteristics.

Representation — The chromosome is a vector of three parameters - «,
B, and A. Bounds are placed on the values of these values to focus the search.

These bounds are listed in Table 4.2.
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Operators — The following operations are performed on the

chromosomes.

e Partial mutation — A single parent chromosome is perturbed within the

bounds to generate a new chromosome in the neighborhood of the parent.

e Full mutation — A chromosome is generated randomly within the bounds.

This ensures diversity in the population.

e Crossover — The arithmetic mean of the two best chromosomes vectors is
obtained to form the child chromosome. Care should be taken to see that
the two parents being combined are not essentially the same, as this
would produce a child that is the same as the two parents. In order to
control for this, we allow a crossover only when the Euclidean distance
between two parents is greater than some minimum threshold. If the
distance between the two best chromosomes is less that the threshold, the
first and third chromosomes are considered for the crossover and so on. If
the distance from the best parent to all the other chromosomes is less
than the threshold, the farthest chromosome in the population from the

best chromosome is chosen for the crossover.

Fitness Function — As mentioned earlier, we are trying to fit a curve to
the continuous occupancy distribution, although our real objective is to fit a
discrete curve to the discrete occupancy distribution. Hence, our fitness
function is to minimize some linear combination of the squared deviation
between the continuous curves and the squared deviation between the discrete
curves. We retain the continuous curve in the objective as it is sometimes

possible to get an exact fit on the discrete curve, while having large deviation
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Table 4.3: Algorithm parameters of the genetic algorithm.

Parameter Value
Crossover probability 0.6
Partial mutation probability 0.15
Population Size 10
Number of generations |v/100 X n X p |
Weight for discrete fit in fitness fn. 0.7
Weight for continuous fit in fitness fn. 0.3
Number of replications in the simulation 10000

in the continuous curve. This could lead to significant instability in the
parameter estimation of two similar curves (a small change in the problem
parameters should not give rise to a large change in the parameters of the beta
distribution).

All the parameters of the GA are listed in Table 4.3. Since the search
space is small in the GA used, diversity in the initial population ensures that
at least some members of the population lie close to the required solution.
Hence, the value added by the mutations is marginal, and we would like the
crossover to dominate the GA (giving it a probability of occurrence of 0.6). In
order to search through sufficient solutions, we could either increase the
number of generations or the size of the initial population arbitrarily. A large
number of generations forces the population to converge to a single parameter,
while increasing the population size causes greater initial diversity in the

population. In our implementation, we choose an initial population size of 10,
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Figure 4.2: Beta distribution fit to the occupancy distribution.

since we have only three parameters, which ensures sufficient diversity in the
initial population. The initial population is sampled randomly between the
bounds in Table 4.2. We observe from computation that the greater the
domain of the curve of the distribution(nu, the greater is the number of
generations required for convergence. Again, from preliminary computation, we
observe that the number of required generations should be a concave function
of the domain. The number of replications of the simulation used to generate
the occupancy curve is much larger than would be necessary to obtain a
reasonable standard error. However, we run an arbitrarily high number of
replications so that the distribution obtained is very nearly exact.

Sample curves for a beta distribution fit to an occupancy curve are shown
in Figures 4.2 and 4.3 (the parameters for the distribution are oo = 3.27292,

f = 33.5801, and A = 0.886337).
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Figure 4.3: Discrete occupancy distribution and fit beta distribution corresponding

to Figure 4.2.

4.3.3 Regression

The genetic algorithm is applied to 1000 instances of the problem varying
number of packets, miles-in-trail, packet mean, and packet standard deviation,
and the parameters obtained for each of the 1000 cases. We then run a stepwise
regression each for «, 4, and A against the problem parameters to obtain the
final estimated parameters. Stepwise regression is a regression technique where
the “best” regression equation is obtained by selecting a subset of the possible
explanatory variables. The choice of whether or not an explanatory variable is
used in the regression equation depends on the p-value associated with the
variable. The question the stepwise regression attempts to answer is : what is
the added value in predictive power obtained by each variable in the presence
of other variables. Thus, if two explanatory variables were highly correlated,

and the independent variable could be predicted using only one of the
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variables, the stepwise regression would used only one of the variables (the one
with the higher p-value). In this thesis, we run three stepwise regressions (one
each for a, 3, and § as the independent variables). The explanatory variables
used were: the number of packets (n), the mean packet mass (7), the standard
deviation in the packet mass (o), the coefficient of variance Z), total mass

(m x n), the miles-in-trail as a fraction of the period length (£), and the range
in units of the period length (“#). These explanatory variables capture all the
factors that intuitively affect each of the three parameters.

We run two sets of regressions: one set where the arrivals are in the
current period (uniformly distributed over the period length), and one set
where the arrivals were in past periods, and hence arrival times are all at the
beginning of the period. There were thus 6 regressions in all (two sets, three
parameters each). The p-value threshold for the entering variable was set to
0.05, and the threshold for the leaving variable in the stepwise regression was

set to 0.1.

Regression Results

Arrivals in Current Period.

The results for the regressions and the corresponding coefficients for «a, [,
and ~y are shown in Tables 4.4 through 4.6.
Arrivals in Past Periods.

The results for the regressions and the corresponding coefficients for «a, [,
and ~y are shown in Tables 4.7 through 4.9.

The following equations were obtained using the linear stepwise

regression. We need two sets of regressions: one set where the arrivals are in
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Table 4.4: Regression results for parameter «, where arrivals are uniform over the

period length.

Summary measures

Multiple R 0.5653
R-Square 0.3196
Adj R-Square 0.3104
StErr of Est 0.4194

Regression coefficients

Variable Coefficient | Std Error | p-value
Constant 2.2160823345 0.0930 | 0.0000
nm -0.1331977546 0.0303 | 0.0000
nu/T -0.0029349441 0.0008 | 0.0003
m -2.8703272343 1.2905 | 0.0271

the current period (to account for variance in the arrival period), and one set
where the arrivals are in past periods (all arrivals are present at the beginning
of the period).

Interestingly, the standard deviation in the masses of the arriving packets
was not significant in any of our tests. This is because the standard deviation
makes a difference only when the number of packets is extremely small. Given
typical airspace traffic operating around capacity with drift uncertainty of the
order of tens of minutes, the traffic is such that there is of the order of 50-100
packets in each arrival set. Hence, the standard deviation does not help

significantly in predicting the occupancy distribution. It should be noted that
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Table 4.5: Regression results for parameter 3, where arrivals are uniform over the

period length.

Summary measures

Multiple R 0.6234
R-Square 0.3886
Adj R-Square 0.3831
StErr of Est 7.9278

Regression coefficients

Variable Coefficient | Std Error | p-value
Constant 28.1885032654 1.4607 | 0.0000
m -213.0214691162 20.5559 | 0.0000
nm 3.0105283260 0.4185 | 0.0271

the regression equations will change based on the application, and hence the
model should be re-calibrated according to the situation. Although it may
appear that the second set of equations does not take into account the
miles-in-trail (none of the parameters are functions of the miles-in-trail), the
miles-in-trail is implicitly considered in the domain of the distribution.

Thus, given a set of arrivals in the current period or past it is possible to
generate the corresponding occupancy distribution extremely quickly and

accurately.
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Table 4.6: Regression results for parameter d, where arrivals are uniform over the

period length.

Summary measures

Multiple R 0.2887

R-Square 0.0834

Adj R-Square 0.0793

StErr of Est 0.2183

Regression coefficients

Variable Coefficient | Std Error | p-value
Constant 0.6086220741 0.0369 | 0.0000
m 2.5317628384 0.5609 | 0.0000

Table 4.7: Regression results for parameter «, where arrivals are in past periods.

Summary measures

Multiple R 0.5382

R-Square 0.2897

Adj R-Square 0.2863

StErr of Est 0.4132

Regression coefficients

Variable Coefficient | Std Error | p-value
Constant 1.9834302664 0.0476 | 0.0000
nm -0.1926418394 0.0210 | 0.0000
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Table 4.8:

Table 4.9:

Regression results for parameter 3, where arrivals are in past periods.

Summary measures

Multiple R 0.6699

R-Square 0.4488

Adj R-Square 0.4435

StErr of Est 8.0627

Regression coefficients

Variable Coefficient | Std Error | p-value
Constant 21.8554306030 1.7470 | 0.0000
n 0.1729187816 0.0227 | 0.0000
m -118.5249710083 18.6612 | 0.0000

Regression results for parameter J, where arrivals are in past periods.

Summary measures

Multiple R 0.3969

R-Square 0.1575

Adj R-Square 0.1494

StErr of Est 0.2168

Regression coefficients

Variable Coefficient | Std Error | p-value
Constant 0.8020090461 0.0260 | 0.0000
nm 0.0777332187 0.0166 | 0.0000
n -0.0051935352 0.0008 | 0.0000
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Chapter 5

Experiments

5.1 Overview

In this chapter we describe our computational experiments and present our
results. We also discuss some of the issues associated with validating our
model. We adapt an existing metric to our problem and show how it is used to

compare the performance of our model to the simulation.

5.2 Model Validation

The primary objective of the model is to predict congestion, usually
unacceptably high levels of congestion in the airspace. If the outputs of the
model were acceptable (sector thresholds are never exceeded) our model would
be redundant, as there would be little motivation to change flight plans or
schedules. Hence, we are essentially trying to predict situations where the
capacity of the airspace is exceeded, in order that the controllers and planners
can make effective changes. In reality, when such a situation threatening safety

occurs, some control is applied to prevent such an occurrence making it is
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almost impossible to validate our model against ‘real” data, since a situation
that our model tries to predict is never allowed to occur. There are two
approaches that can be followed to validating a congestion prediction model

(Voss and Hoffman [34]).

e Deduce the presence of congestion from historical records of control

applied.
e Perform a simulation of the airspace.

This problem has also been studied by Beaton et. al. [6] using a combination
of deduction of congestion and a simulation. In our study, we use a simulation
of the airspace to validate our model, since we would like to validate it against

a very large range of test problems.

5.3 Metric

In order to compare the output of our model to the results of the simulation,
we essentially need to compare two discrete distributions against each other
(number of aircraft in a sector against time). Note that in this study, we are
comparing the expected value from the simulation against the model output.
We choose to compare the number of aircraft because comparing predictions of
congestion would depend on the definition of congestion, which is subjective.
It is tempting to compute the error as a sum of absolute or squared

deviations, but this could give rise to a significant error value when the shapes
of the two distributions being considered are similar but are offset as in Figure

5.1.
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Figure 5.1: Two curves with similar shape but offset by a few periods.

We would hence need a metric that does not penalize an offset in the
distributions as much as it penalizes a fundamental difference in the shapes of
the distributions. Such a metric, called the Rate Control Index (RCI) metric,
was proposed by Hoffman and Ball [17] in a different context, where the
objective is to compare achieved traffic flow to targeted traffic flow. This
methodology can be applied to any comparison of two discrete functions of
time. We apply the aggregate version of the RCI to the problem of comparing

sector counts obtained from the model to those obtained from the simulation.

5.3.1 The RCI Metric

The RCI measures the flow of air traffic into an airport prior to any airborne
holding that may occur and compares it to the targeted flow. The aggregate

version of the RCI involves using a greedy algorithm to compute the number of
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| PREDICTED DISTRIBUTION | | ACTUAL DISTRIBUTION |

Predicted Distribution Actual Distribution

=l

Time periods Time periods

No. of aircraft
No. of aircraft

AIRCRAFT MOVEMENTS:

1) +2 AIRCRAFT FROM PERIOD 2 TO PERIOD 1 (PERIOD 1 NOW HAS 32,
PERIOD 2 HAS 28)

2) -2 AIRCRAFT FROM PERIOD 3 TO PERIOD 2 (PERIOD 2 NOW HAS 26,
PERIOD 3 HAS 42)

3) -2 AIRCRAFT FROM PERIOD 4 TO PERIOD 3 (PERIOD 3 NOW HAS 40,
PERIOD 4 HAS 42)

4) +2 AIRCRAFT FROM THE RESERVOIR TO PERIOD 4 (PERIOD 4 NOW HAS
44)

RCI RAW SCORE = |+2] + |-2| + |-2] + |+2| = 8

Figure 5.2: Raw score computation of the RCI metric.

“moves” that must be made in the realized distribution so that it equals the
planned distribution. This is then normalized by the cost of a worst case
distribution. The greedy algorithm is illustrated in Figure 5.2. The RCI metric
computes the (fictitious) flight movements required to transform the realized
traffic distribution into the planned distribution. The aggregate version of the
RCI tends to penalize errors farther away from the reservoir (in the example in
Figure 5.2 the reservoir is at the “end”, which would penalize errors early on
more.). In our implementation, we would like not to penalize errors for the time
of occurrence. Hence, we run the greedy algorithm twice (with the reservoir in
the “beginning” and at the “end”), and average over both cases. We finally

normalize by dividing the RCI score by the area of the actual distribution.
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5.4 Simulation

5.4.1 Overview

We use a continuous time simulation to validate our model. The simulation is a
simple Monte Carlo simulation which samples aircraft departures from the
given drift distribution and deterministically propagates these aircraft through
the network, ensuring FIFO at all queues. The number of replications of this
simulation depends on the network size and uncertainty in the system (drift).

The reader interested in the actual implementation and code is referred to [9].

5.4.2 Standard Error

The standard error of the mean is defined as

o

O.M:ﬁ

where o is the standard deviation of the observations, and N is the number of
observations that the distribution is based on. In our case, since we have a
distribution for the number of aircraft in a sector during each time interval, we
have a standard error for each time interval for each scenario for each sector.
We do not report all the standard errors. Instead, we report the standard
errors for only a typical case, where the standard error is defined as
o
opm = ﬁ

where @ is the standard deviation averaged over all time periods.
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5.5 Experimental Design - Network 1

We run our algorithm and compare it to the simulation and a simple fluid
approximation on the network shown in Figure 5.3. We test our algorithm
extensively on this network as it has simple structure, and it easy to detect
errors, if any, using this network. If the model works well on this network, by
predicting the expected outflow from the queue accurately, it follows that the
model will work on larger networks as well, as a larger network is a number of
smaller networks in combination. We believe that the performance of the
algorithm will improve as the network gets more complex, since greater traffic
leads to better averaging of stochastic variances in the system. This network
consists of two arrival and two departure airports and all aircraft flow from
Sector 1 to Sector 2 (refer Figure 5.3). Queueing occurs at the waypoint, and,
in some cases, at the airports. We study both cases, as the drift inputs to the
model could either be the deviation in take-off time of the aircraft from the
scheduled take-off time (airport queueing implicitly considered) or the
deviation of the gate push-back time from the scheduled push-back time

(airport queueing has to be explicitly imposed).

5.5.1 Capacity Scenarios

We run a number of capacity scenarios, with increasing “difficulty” to track the
performance of the algorithm as we move from one scenario to another. The

scenarios used are:

1. Unconstrained. Due to Theorem 3.6.1, we expect to model to give

near-exact results.
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Airport 1

Airport 3

Airport

Airport 2

Figure 5.3: Test network 1.
2. Low constant (stationary) constraints.
3. Medium constant constraints.
4. High constant constraints.
5. Time varying capacity (medium constraints) with low variance.

6. Time varying capacity (medium constraints) with high variance.

5.5.2 Drift Types

As mentioned previously, we run the models for two types of drifts: one that
implicitly considers airport queueing, and one that needs airport queueing to
be explicitly modeled. When the airport queueing is implicitly accounted for in
the drift, the drift is triangular shaped as shown in Figure 5.4(a). The actual

shape of the drift was not experimentally determined. We use this distribution

76



since it is a very simple finite distribution, and does not make any special
assumptions that would enable the problem to be solved more easily than any
other distribution. The maximum drift tends to be of the order of one hour in
this case, as this drift includes delays incurred on the runway, as well as delay
in push-back. The second type of drift is when the queueing on the runway has
to be explicitly modeled. The drift data provided gives the deviation of the
gate push-back time from the scheduled time. This drift distribution is also
triangular shaped, but the mode is at the scheduled time of push-back. This
makes intuitive sense, as we would expect to see some finite non-increasing
function over time. Again, the triangular shape has not been experimentally
validated, and is used in this study as a simple and intuitive function to model
drift. This distribution is shown in Figure 5.4(b). The maximum drift is
allowed to vary over a large set of values (10 minutes to 1 hour), in order to

test the robustness of the model.

(a) Implicit airport queueing (b) Explicit airport queueing
h(t) h(t)
4 A
; .t t
0.4 * Max drift Max drift >
Max drift
Scheduled
departure Scheduled
£ = push-back
t =

Figure 5.4: Drift probability density functions.

5.5.3 Drift Scenarios

We test the model for five drift scenarios:
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1. Low constant (stationary) drift (max drift of the order of 10 min.).
2. Medium constant drift (max drift of the order of 30 min.).

3. High constant drift (max drift of the order of 60 min.).

4. Medium time-varying drift with low variance.

5. Medium time-varying drift with high variance.

5.5.4 Cancellation Scenarios
We test the model for three types of cancellations:
1. No cancellation.

2. Constant (stationary) cancellation probability (of the order of 10%).
Area of the departure probability density function is normalized for each
aircraft to (1 — p), where p is the probability of cancellation of that

aircraft.

3. Time-varying cancellation probability.

5.6 Experimental Setup- Network 1

The model and simulation are run for a duration of 500 minutes, far more than
the required time for any congestion prediction application. This is to detect
any consistent errors in the model that might not show up in a shorter time
span. It is assumed that the system starts with no aircraft initially. This
assumption does not affect the performance of the model in general, since the

current position of an aircraft in the network could conceivably be modeled as
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Figure 5.5: Histogram of total number of scheduled departures in network 1 over

time.

a source node in the network. The length of one period was set to one minute
(there are 500 minutes in each scenario set). The reason for choosing this for
the period length is that the approximations used in the occupancy
distributions seem to work best when the period length is approximately equal
to the miles-in-trail applied. Miles-in-trail typically range from half a minute to
about two minutes. The schedule of flights was generated in such a way that
each airport carries approximately the same load, and there are approximately
an equal number of each possible origin-destination pair. The number of
departures in the network over time is shown in Figure 5.5. The two
pronounced peaks were intentionally generated to resemble a typical schedule
in the NAS. All computations were performed on a Sun Ultra 10 workstation

on a Solaris 7 platform and all times reported are CPU times.
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5.7 Experimental Results - Network 1

The standard error of the simulation (defined in Section 5.4.2) for the network

(drift type 2, capacity scenario 3, drift scenario 2) for sector 1 is

1.442 1
oy = ————
M= /200 9.56

where the average standard deviation over all time periods is 1.442, the mean

= 1.07%

over all time periods is 9.56 and the number of replications of the simulation is
200. We will not display all of the standard errors but note that this value is
representative of the standard deviation of all other scenarios. The Monte Carlo
simulation for all the scenarios for network 1 were run for 200 replications.

The required output of the model is the number of aircraft in each sector
in each time interval. Two metrics of comparison are obtained for each sector -
the modified RCI metric, and a simple squared deviation metric, each
normalized by the area of the sector count curve. An example of such a curve
is shown in Figure 5.6. Note that the curve is not continuous, but consists of a
discrete number of aircraft for each time interval. The RCI and squared
deviation values for the two sectors are also shown.

We ran the model, the fluid approximation, and the simulation for each
of the scenarios described in the previous section (66 in all). We believe that it
is not meaningful to try and draw conclusions as to the trend behavior of the
model based on the relatively few observations available. For example, if we
observe that the RCI metric increases as capacity increases, all other factors
being constant, we might be led to draw erroneous conclusions due to the
limited scope of results. We believe that the right way to draw conclusions

from such a study would be test the statistical significance of the difference in
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Network Type Small
Drift Type Explicit airport queueing
Cancellation Scenario Time-varying Run Time (CPU sec.)
Capacity scenario Medium time-varying Model 9.36
with low variance Simulation 77.34
Drift scenario Medium time varying
with low variance

Sector 1

8 2 Modified RCI
£ /\ A — Sector count from 0.008566
b / \ /\/\ model
3 10 —— Exptd sector count L.
2 P‘J \ / \\.\ from simulation Squared deviation
S s 0.037108
F v “ .
0 T T T T

1 101 201 301 401

Time periods

Sector 2

£ 10 -

g = | s — Modified RCI

s AU, model " 0.01529

o 4 ’\/‘v \ﬂ ,J \‘\ —— Exptd sector count

E LI V W from simulation Squared deviation
“ o ] 0.041977

1 101 201 301 401

Time periods

Figure 5.6: Sample output for one set of scenarios.

one type of scenario from another. We employ a technique known as a pairwise
comparison hypothesis test. Details regarding the math behind the tests and
the applications and interpretations are available in the volume by Albright,
Winston, and Zappe [2]. For example, we can propose the null hypothesis that
the RCI metric increases as the capacity increases, and, based on the p-value
obtained from a statistical test, accept or reject that hypothesis. This approach
is much more robust because we do not have to hold all other parameters
constant while comparing the performance relative to a certain parameter.

We test some basic properties to ensure that the behavior of the models
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is as expected. In particular, we observe that in the unconstrained case (no
capacity restrictions at the waypoint or at the airport), the RCI metric value is
extremely low. This confirms the fact that the model is exact in the
unconstrained case. We can never expect the RCI value to be exactly equal to
zero due to the noise in the simulation, and the fact that the period length in

the experiments is finitely large (equal to one minute).

Hypothesis 1

The first question we are interested in answering is whether the model using
occupancy distributions gives us a significant advantage over the fluid
approximation for all the extra computation performed. We compare the RCI
metric for Sector 1 for the fluid approximation and our model to determine
which is superior. Our null hypothesis is that the fluid approximation is
superior. It is sufficient to determine the quality of the algorithm from one
sector alone as, in this case, an error in one sector implies an error in the other
due to conservation of aircraft mass. The results of this hypothesis test are in

Table 5.1.

Table 5.1: Results for hypothesis test Hl: The RCI value for the model is greater

than the RCI value for a fluid approximation.

Hypothesis p-value | Result

RCI (Model) > RCI (Fluid) | 0.000 | Reject at 10 % significance

Result 1. The model outperforms the fluid approximation in predicting

expected sector counts.
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Hypothesis 2

We next check to make sure that the model has a lower running time than the
simulation. We hypothesize that the model does not have a lower running time

than the simulation. The results of this hypothesis test are in Table 5.2.

Table 5.2: Results for hypothesis test H2: The runtime for the model is greater than

the runtime for the simulation.

Hypothesis p-value | Result

Runtime(Model) > Runtime(Sim) | 0.000 | Reject at 10 % significance

Result 2. The model outperforms the simulation in terms of runtime.

Hypotheses 3, 4, 5

We would like to know the effect that the cancellations have on model
performance. The hypothesis is that the cancellation scenario affects the
performance of the algorithms. The results of these hypothesis tests are in

Table 5.3.

Table 5.3: Results for hypothesis test H3, H4, H5 : The RCI metric obtained for

different cancellation scenarios is different.

Hypothesis p-value | Result

RCI(Cancl) # RCI(Canc2) | 0.563 | Cannot reject at 5 % significance

RCI(Canc2) # RCI(Canc3) | 0.758 | Cannot reject at 10 % significance

RCI(Cancl) # RCI(Canc3) | 0.409 | Cannot reject at 10 % significance

Results 3,4,5. Cancellations do not affect the performance of the model.
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Figure 5.7: RCI values for different capacity scenarios (refer Section 5.5.1).

Hypothesis 6

We attempt to study the behavior of the system as the capacity becomes more
constrained at the waypoint. We study this only for the drift type where there
is no queueing at the runway. This is done to isolate the behavior of exactly
one queue. The hypothesis is that the capacity scenario affects the performance
of the algorithms. Due to the small sample size, it is not possible to conduct a
meaningful statistical hypothesis test. Hence, we simply compare the means of
the RCI metric at different levels of capacity. Although the results are intuitive
and appealing, we caution against drawing strong conclusions from such a
small set of results. Plots of the RCI value against different capacity scenarios
for the model and the fluid approximation are shown in Figure 5.7.
Result 6. The performance of the model appears to deteriorate as the
complexity of queueing (probability of interactions between aircraft) increases.
However, the model easily outperforms the fluid approximation on the same
instances.

An interesting observation is that the curves are not monotonous.
Beyond a certain level of traffic, the performance of the models appears to

improve (in figure 5.7, the model does better in Capacity scenario 4 than in
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Figure 5.8: RCI values for different drift scenarios (refer Section 5.5.3).

Scenario 3, even though 4 is more tightly constrained). A possible cause for
this is that as the traffic increases, the models benefit from heavy traffic limit
conditions, as predicted by several authors (Newell [27]). As the level of

queueing increases, the model tends to the fluid approximation.

Hypothesis 7

Next, we study the behavior of the model as the drift increases. We do this for
the case where the drift does not implicitly assume airport queueing. The
hypothesis is that the drift affects the performance of the model and the fluid
approximation. Plots of the RCI value against different drift scenarios for the
model and the fluid approximation are shown in Figure 5.8.
Result 7. The model does not seem as sensitive to the drift as the fluid
approximation. Also, the model easily outperforms the fluid approximation on
the same instances.

Again, we caution against drawing strong conclusions from the results of

a few instances.

85



Figure 5.9: Test network 2 [W - waypoint, A - airport, S - sector].
5.8 Experimental Design - Network 2

In this section, we study the performance of the model on a more complex
network with more aircraft movements. This network is illustrated in Figure
5.9. The larger test network tries to mimic actual flows in a region of airspace.
In general, airspace congestion initially occurs at/near an airport/set of
airports, and propagates to other regions of the airspace. An example if this is
the New York region in the Northeast United States, where congestion is
caused by a high density of large airports. In our example, we have three
arrival airports, fed by a number of arrival streams. Queueing can occur at a
number of waypoints, and an aircraft typically passes through 3-4 waypoints
once it enters the region of interest in the network. We expect the model to
perform better on this network than the smaller test network, as we expect

errors to be compensated by multi-directional flows in the network.
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Figure 5.10: Histogram of total number of scheduled departures in network 2 over

time.

We believe that performing an analysis similar to that of the smaller
network would not be useful as it would be hard to isolate the contribution of
each queue to the overall error and hence would not be of much use in terms of
learning anything new about the behavior of the model. Instead, we
demonstrate the working of the algorithm on a contrived set of scenarios, which
closely resemble the actual environment in which the model is designed to be
used. We analyze the network under conditions of time-varying drift (as in all
real-world scenarios). Since the flows into the network are not directly from
airports, drift type 2 is used (as illustrated in Figure 5.4(a)). The number of
departures is similar to the previous set of scenarios, with two significant peaks
in the departure schedule. The number of departures over time summed over

all airports is shown in Figure 5.10. Four scenarios are investigated:

1. A “base” mode where the network is completely unconstrained to ensure
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the validity of the model.

2. A scenario where the network has only nominal constraints. These are
the minimum miles-in-trail required for airspace safety. These capacities
do not vary with time - all airports have a capacity of 60 runway
operations/hour, and a miles-in-trail of 20 seconds is applied at each
waypoint over the entire time horizon of 500 minutes. None of the flights

are cancelled.

3. A scenario where the airports have time-varying capacity such that the
capacity of the airport is significantly degraded for a small period of time
and recovers (as often occurs in the case of thunderstorms affecting an
airport). This causes significant queueing at the airports, and high sector
counts in sectors containing these airports. The capacity scenarios for the
three arrival airports A-9, A-10, and A-11 (refer Figure:5.9) are shown in
Figure 5.11. The miles-in-trail at all waypoints is set equal to the
nominal MIT (20 seconds). We assume that this reduction in capacity
causes flights to have a time-varying probability of being cancelled that is
related to the capacity structure. The probability of cancellation of a

flight over time is shown in Figure 5.12.

4. In the final scenario, some time-varying control (miles-in-trail) is applied
at the waypoints to mitigate the congestion in the previous scenario.

This is shown in Figure 5.13.

The fluid approximation is also applied to each of the above four scenarios.
These scenarios are developed in an attempt to demonstrate the actual

framework within which our model could be used.
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Figure 5.11: Reduced capacity scenarios for airports A-9, A-10, and A-11.

5.9 Experimental Results - Network 2

To provide an indication of the simulation accuracy, Table 5.4 gives the
standard error of the simulation (defined in Section 5.4.2) for the network
(scenario 2) for the four sectors. For example, the standard error of sector S5
was computed as

L7 1

_ 007
oM = /500 8.036 %

where the average standard deviation over all time periods is 1.442, the mean
over all time periods is 9.56 and the number of replications of the simulation is
500. The Monte Carlo simulation for all the scenarios for network 2 were run
for 500 replications.

In this section we present the computational results for each of the

scenarios described in the previous section. The output consists of plots of
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Figure 5.12: Cancellation probabilities for network 2 caused by reduced capacity.

Table 5.4: Standard error of mean for the simulation of network 2 for scenario 2

(nominal constraints).

Sector | Std. Error (%)
S5 0.97
S6 0.81
S7 0.80
S8 1.16

expected sector counts over time, and the corresponding RCI values for these
sectors. In addition, we randomly sample a set of 7 flights that enter the
network at different times in the time horizon, and compute the expected
estimated time of arrival (ETA) for each of these aircraft using the simulation

and the model. The same is done for the fluid approximation.

5.9.1 Scenario 1 (Unconstrained)

The results for the model and the fluid approximation are presented in Figure
5.14 and Figure 5.15 respectively. As expected, both the model and the fluid

approximation are almost exact as a consequence of Theorem 3.6.1.
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Figure 5.13: Reduced capacity at waypoints W1 through W8 in response to conges-

tion.
5.9.2 Scenario 2 (Nominal Constraints)

This scenario is to test the level of utilization in the airspace under “normal”
conditions. The results of this scenario using the model and the fluid
approximation are presented in Figure 5.16 and 5.17 respectively.

It is clear from the results that the fluid approximation significantly
underestimates queueing, while the model estimates queueing delays
accurately. This is reflected in the low RCI values as well as the fact that the
ETA from the fluid approximation is consistently earlier than the ETA from
the simulation. Another observation is that the sector counts are at or slightly
above the capacities recommended (refer Table 1.1). This implies that any
degradation in capacity of the airports will cause the sector counts to violate

sector capacity constraints.
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5.9.3 Scenario 3 (Capacity Reduction at Airports)

This scenario tries to mimic a realistic capacity scenario where each of the
airports’ capacity is degraded in a time-varying fashion. Such a capacity
degradation is commonly encountered when an airport is affected by a
thunderstorm. The results from the model and the fluid approximation for this
scenario are presented in Figures 5.18 and 5.19.

It is clear from these results that the model outperforms the fluid
approximation (the RCI values for sectors S5, S6, and S7 are significantly lower
for the model than the fluid approximation). It also appears that the model
tends to overestimate congestion in cases of very high queueing. The sector
counts obtained from the model and the fluid approximation clearly indicate
that the sector capacity constraints are very likely to be violated in sectors S5,

S6, and S7.

5.9.4 Scenario 4 (Controls Applied to Mitigate

Congestion)

In the previous scenario, the sector capacities of three sectors are likely to be
exceeded significantly. This calls for some intervention from the traffic flow
managers/ controllers/ airlines to mitigate this congestion. In this scenario, we
assume that the only reaction to this congestion comes from the flow managers
who set some time-varying miles-in-trail at the waypoints leading into the
network (waypoints W1 - W8) in order to decrease the rate of flow of aircraft
into the congested sectors. The traffic low manager attempts to mitigate

congestion by applying some miles-in-trail at the incoming fixes (W1 to W38).
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The reduced capacities of the waypoints are shown in Figure 5.13. The results
from the model and the fluid approximation for this scenario are presented in
Figures 5.20 and 5.21.

Based on the RCI values, it is clear that the model outperforms the fluid
approximation in this scenario. Another observation (also seen in Scenario 3) is
that the model sometimes tends to overestimate queueing, while the fluid
usually tends to underestimate queueing.

We also observe that the flow management initiatives (miles-in-trail
applied at incoming fixes (W1 to W8) have still not solved the congestion
problem. Sector S5 remains congested, implying that greater miles-in-trail
needs to be applied at W3 and W4. Congestion in sector S6 has been
mitigated in the earlier half of the time horizon, though stricter control
probably needs to be applied to control congestion in the second half of the
time horizon. Congestion in sector S7 has been reduced considerably.

The objective of the above scenario was not to eliminate congestion, but
to demonstrate the use of the model as a decision support tool that would
enable traffic low managers analyze the effects of different traffic flow

initiatives.

5.10 A Note on the Confidence Interval on the

Model Output

In order for any prediction of a variable to be complete in a probabilistic
setting, it should not only have a mean, but an associated variance as well, so

that the spread of this distribution is known. In the examples above, we were
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concerned primarily with predicting the ezpected number of aircraft in a sector
at any given time. If the model were run on some arbitrary day, the actual
realization of the sector counts could be different from the expected value (this
would correspond to one run of the Monte Carlo simulation). Hence, we would
like to place some confidence interval on our prediction so that it is more
complete in describing the sector count. The model cannot, as such, predict
the variance associated with the sector count at some time. A possible
approach to the problem is to estimate the variance approximately using the
knowledge of the number of packets, and their masses, which are available from
the model. We recall that our interpretation of a packet mass is the probability
of the existence of a packet at a given point in time and space. Thus, we
essentially have a number of packets (entities) which have a binary state based
on a probability (either in the sector or not in the sector). If all the masses of
the packets were identical, this would correspond to a binomial distribution of
n trials with a success probability of m, where n is the number of packets in
the sector at a given time, and m is the mass of each packet. In our model,
however, the masses of each packet are different, and hence this is not a
classical binomial distribution. However, if the number of packets were large
enough for the variance in the packet mass to be inconsequential, then we
could obtain a binomial distribution for the sector count with parameters n,
the number of packets, and 77, the mean mass of all the packets. It is also
known that as the number of packets increases, the binomial distribution can
be approximated by a normal distribution. Hence, given a large number of
packets with similar mass, we can obtain the mean and variance of a

corresponding binomial/ normal curve, which would give a confidence interval
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on the prediction. In this thesis, we focus on the mean of the sector counts,
and not the variance.

We observe for our computational experiments for network 2 that the
standard deviation in the sector counts over all runs of the Monte Carlo
simulation are of the order of 1 to 2 aircraft. The expected sector count varies
from 10 to 40 aircraft. Hence, a congestion prediction based on the expected
value alone would still be useful since one or two aircraft would not
significantly change a congestion prediction, especially if averaged over a 15

minute interval (as in the case of Monitor Alert - refer Section 1.2.4).
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Figure 5.14: Results of scenario 1 (unconstrained) for network 2 using the model.
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Figure 5.15: Results of scenario 1 (unconstrained) for network 2 using the fluid

approximation.
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Figure 5.16: Results of scenario 2 (nominal constraints) for network 2 using the model.

98



Sector count for S5 Sector count for S6
B 20 s 30
8 A 8 2s pat
E i A
N 1o \ A A {\Q ——Fluid App N 1s R;\J \\ ——Fluid App
° /U\\! \l\ W\\fv \‘ — simulatio ° / N\ N — simulatio
. 10
S s \A'S \V 2 5 [V VW
v \A
° O @® > W WY MmN Hd O O O,—< o o ® > VW W ¥ M N H O O
o TI;:meNPemri;vdsm T o T:meNPeNri:dsm T
RCI = .1170 RCI
Sector count for S7 Sector count for S8
£ 30 £ 20
E 25 /’\\\ E A
e e vos | L B
° A — simulatio ° M — simulatio
I I A VA e & £ s \’VNWW\\
0 @® WY 1w ¥ M N 4 O 0 0 ® VW W ¥ M N d O O
U7 rine perions TR LLLLT T
RCI = .064[7 RCI
FLIGHT NO ETA (MODEL) ETA (SIMULATION)
228 107.8 108.7
348 138.8 140. 3
353 210.5 212.9
156 276.7 278.6
707 314.8 316.3
566 405.8 407 .8
885 444 .8 446 .8
MODEL (CPU SECONDS) 17.98
SIMULATION RUNTIME (CPU SECONDS) 1035.54

Figure 5.17: Results of scenario 2 (nominal constraints) for network 2 using the fluid

approximation.
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Figure 5.18: Results of scenario 3 (reduced arrival capacity) for network 2 using the

model.
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Figure 5.19: Results of scenario 3 (reduced arrival capacity) for network 2 using the

fluid approximation.
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Figure 5.20: Results of scenario 4 (controls applied in response to congestion) for

network 2 using the model.
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Figure 5.21: Results of scenario 4 (controls applied in response to congestion) for

network 2 using the fluid approximation.
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Chapter 6

Conclusions and Future Work

6.1 Conclusions

We have presented a model for the analysis of queueing delays in highly
dynamic networks with schedule-based stochastic arrivals and time-varying

capacities. Two types of schedule uncertainty were addressed:
1. Uncertainty in the time of birth of an entity in the system.
2. Uncertainty in the fact that the entity is born (cancellations).

The model was tested on a large number of scenarios on a small network with
varying problem parameters. The model was also applied to a larger
representative network to observe the performance of the model under
“real-world” conditions. Conditions under which the model is exact were
investigated, and demonstrated empirically.

A fluid approximation was developed, where the problem was solved as a
simple network flow model. The performance of the fluid approximation was

analyzed over the same test instances.
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A sub-problem of the original problem (generating server occupancy
distributions) was also analyzed, and exact results presented for some special
cases. An approximation technique was developed to estimate occupancy

distributions, and successfully incorporated into the model.

6.2 Application

The model was successfully implemented and applied to a sample problem of
estimating queueing delays in the airspace. The performance of the model was
compared to a simulation of the same network. The example in Section 5.9
demonstrated the environment in which the model is expected to operate. The
model could be used either as a congestion prediction tool, or as a decision
support tool that enables decision makers (flow managers, airlines) evaluate the
impact of proposed changes in schedules, flightpaths, and miles-in-trail on the

level of congestion and delays.

6.3 Other Applications

The model is not restricted to the airspace alone, and could conceivably be
applied on a wide variety of similar networks. We believe that the model could
be applied to at least one other type of problem that occurs in manufacturing
systems. Manufacturing usually follows a planned schedule of production,
subject to uncertainty in adherence to this schedule. Although service times
usually are not very dynamic, the model could be used to predict queueing
delays in such an environment. Readers interested in applications of queueing

theory in manufacturing are referred to [28].
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Many of the approximations used in the model were developed
specifically keeping typical airspace traffic in mind. If the model were designed
to be used in a different setting, two major parts of the model will have to be

re-calibrated:

e Occupancy distributions - The regression equations presented in Section

4.3.3 will have to be re-estimated.

e The value of v in Equation 3.9 will have to be adjusted for the “typical”

level of traffic.

6.4 Future Work

Occupancy distributions were estimated using linear regression. We believe
that a more accurate and robust approach to this problem would be to develop
a neural network model that generates occupancy probability distribution
parameters based on model inputs.

We envision that the model will ultimately be available to traffic flow
managers as well as airlines. Since each player tries to maximize efficiency with
incomplete information regarding the schedules and proposed traffic flow
initiatives, the model presents extensive gaming opportunities to all players.
Hence, the model would eventually have to be coupled with a game-theoretic
model of the network, which analyzes the effect of incomplete information on
the decisions taken by each player in the network.

A fairly recent development in the characterization of airspace congestion
has been the concept of dynamic density [24]. The approach advocates that a

simple threshold number, such as the Monitor Alert Parameter, does not,
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sufficiently capture the complexity of traffic within a sector to accurately
identify congestion. The concept of dynamic density tries to incorporate the
complexity of traffic into a congestion metric, thus giving more accurate
congestion predictions in terms of controller workload. We believe that our
model could be used in such a setting, as our model keeps track of individual
aircraft, and its characteristics. It is thus possible to obtain from the model an
aggregate number of aircraft belonging to each type of flow in a sector and
other aircraft characteristics such as the aircraft type that contribute to the
dynamic density metric. Once a clear definition of dynamic density emerges,
some research would be necessary to map the model output onto a dynamic

density metric.
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