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A type of network analysis successfully demonstrated to quantify growth and 

development in ecosystems is applied to the purely physical phenomenon of fluid flow. 

Simple two-dimensional models of fluid flow are created and represented as networks of 

nodes and transfers or flows between nodes.  Modeling flow data as a network enables 

the calculation of indicators or indices that quantify the activity and organization of the 

represented flow field.  The method of cellular automata is used to create three flow field 

examples, two of which introduce obstacles in the flow field to disrupt the otherwise 

uniform flow.  Four well understood examples from fluid dynamics are described 

analytically and then analyzed as networks.  These conceptual examples of fluid flow 

demonstrate the utility of network analysis as a method of quantitatively characterizing 

complex patterns of fluid flow. 

 



 
 
 
 

USING ECOSYSTEM NETWORK ANALYSIS TO QUANTIFY FLUID FLOW 

 
 
 

by  
 
 

Michael J. Zickel 
 
 
 
 

Thesis submitted to the Faculty of the Graduate School of the 
University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of   
Master of Science   

2005 
 
 
 
 
 
 
 

Advisory Committee: 
 

Professor Robert E. Ulanowicz, Chair 
Professor William C. Boicourt 
Dr. Ming Li 

 

 



 
 
 
 
 
 
 

©Copyright by 

Michael J. Zickel 

2005 

 

 



Dedication 
 

To Susan, without whom this would not have been possible. 

 

ii 



Acknowledgements 
 

First and foremost, I would like to acknowledge my advisor, Bob Ulanowicz, for 

his unwavering enthusiasm and support throughout my four years at CBL.  He always 

made himself available whenever I was in need of advice, and I always came away from 

our discussions with rekindled inspiration and focus.  His knowledge and guidance 

extended far beyond the lab and science, and I learned more from Bob than I am able to 

fully articulate.  I will always recall our exhilarating flights over Chesapeake Bay and the 

first time Bob exclaimed to me, “You’ve got the CON.” 

I am very grateful to Stefano Allesina who provided me with C code for 

calculating several of the network indices used in this research and who spent many late 

hours tutoring me in programming.  My committee members, Bill Boicourt and Ming Li, 

provided me with valuable insights into both the experimental and theoretical sides of 

physical oceanography.  Walter Boynton readily shared his vast experiences as a field 

ecologist, balancing my “flute music” with the solid, deeper tones of reality.  Jon 

Anderson reviewed portions of my computer program and made useful suggestions for 

improving the calculations.  Karen Berquist and Michael Webber were kind enough to 

read over the entire manuscript and provide helpful editorial comments.  Sarah Greene, 

Kim Makita, George Waldbusser, Mike Rearick, and many other fellow students at CBL 

engaged in thoughtful discussions on a variety of topics in environmental science that I 

found both inspiring and humbling. 

Gina Coelho and Ecosystem Management & Associates, Inc. were generously 

flexible in allowing me to pursue my degree while providing me the opportunity to gain 

experience as an environmental scientist and consultant. 

iii 



Finally, I gratefully acknowledge the daily sacrifices made by my family, 

Katherine, Peter, and my wife Susan, who gave me the precious and irreplaceable gift of 

time. 

 

 iv



Table of Contents 

DEDICATION  ................................................................................................... II 

ACKNOWLEDGEMENTS ................................................................................... III 

LIST OF TABLES ...............................................................................................VI 

LIST OF FIGURES............................................................................................VIII 

CHAPTER 1: INTRODUCTION TO NETWORK ANALYSIS AND ITS 

APPLICATION TO FLUID FLOW ............................................. 1 

1.1 Rarity and the beginnings of network theory ...............................................................................3 

1.2 Network indices as metrics of system complexity.........................................................................5 

1.2.1 A simple example: intuitive and calculated organization in a four-compartment network ..........8 

1.2.2 Network analysis applied to ecosystems ....................................................................................13 

1.3 Application to the study of fluid flow ..........................................................................................16 

1.3.1 The problem of interpreting output from large scale simulation models....................................17 

CHAPTER 2: CELLULAR AUTOMATA AS A METHOD OF GENERATING 

SIMPLE FLOW FIELDS FOR ANALYSIS AS NETWORKS... 19 

2.1 Flows across a two-dimensional flow field ..................................................................................20 

2.1.1 Assigning direction to flow ........................................................................................................21 

2.1.2 Network analysis applied to particles moving across a flow field .............................................23 

2.1.3 Methods:  A cellular automata program for simulating fluid flow.............................................24 

iv 



2.2. Results from the Cellular Automata Method .............................................................................31 

2.2.1 The free flow field—flow without obstruction...........................................................................32 

2.2.2 The barrier flow field .................................................................................................................33 

2.2.3 The channel flow field................................................................................................................42 

2.2.4 Comparison of the three flow fields ...........................................................................................50 

2.2.5 Fluid-like behavior .....................................................................................................................52 

2.2.6 Connectance ...............................................................................................................................55 

CHAPTER 3: ANALYTICAL EXAMPLES FROM FLUID DYNAMICS .......... 56 

3.1 Analytical examples of fluid flow.................................................................................................56 

3.1.1 Example 1:  Flow between two parallel boundaries with a linear velocity profile.....................57 

3.1.1.1 Appling network analysis to flow with a linear velocity profile.......................................59 

3.1.2 Example 2:  Flow between two parallel boundaries with a parabolic velocity profile ...............63 

3.1.2.1 Appling network analysis to flow with a parabolic velocity profile .................................66 

3.1.3 Example 3:  Adjacent flow of two immiscible fluids with an asymmetric velocity profile .......71 

3.1.3.1 Appling network analysis to flow of two adjacent immiscible fluids between two parallel 

boundaries.........................................................................................................................75 

3.1.4 Example 4:  Circular flow ..........................................................................................................80 

3.2 Comparing the network analysis results of the four analytical examples................................86 

CHAPTER 4.  CONCLUSION........................................................................ 90 

4.1 Summary of results .......................................................................................................................90 

4.2 Further Research ..........................................................................................................................91 

LITERATURE CITED ......................................................................................... 93 

 v



List of Tables 
 

Table 1.  Network indices describing the three four-compartment networks in Figure 1-1 where a) is the 

maximally connected minimally organized network, b) is the intermediate network, and c) is the 

minimally connected maximally organized network.....................................................................11 

Table 2.  The five scenarios that set the probability that a particle will move to the North, East, South, or 

West of its current location.  Each scenario is applied in all flow fields analyzed below. ............22 

Table 3.  Output files from the cellular automata program. ..........................................................................27 

Table 4.  Index values for the free, barrier, and channel flow fields subject to the five flow scenarios.  AMI 

values are averages taken after the time step at which equilibrium is achieved in each example.  

A is calculated as the product of f.. and AMI................................................................................51 

Table 5.  Velocity values for the linear flow profile with N = 10 and V0 = 3 cm s-1.  Velocities are in cm s-1 

and vary only with i.......................................................................................................................60 

Table 6.  Flows calculated by the model for the linear flow profile with N = 10 and V0 = 3 cm s-1.  Flows 

are calculated along the line joining grid points i and i + 1 and vary only with i.  Values have 

units of cm3 s-1...............................................................................................................................61 

Table 7.  Velocity values for the parabolic flow profile where N = 10 and V0 = 3 cm s-1.  Velocities are in 

cm s-1 and vary only with i. ...........................................................................................................67 

Table 8.  Flows calculated along the line joining grid points i and i + 1 for a fluid with a parabolic velocity 

profile where N = 10 and V0 = 3 cm s-1.  Flows vary only with i.  Values are in units of cm3 s-1. 68 

Table 9.  Velocity values for flow of two adjacent immiscible fluids where with N = 10 and Vmax = 3 cm s-1 

at i = 5.  Velocities are in cm s-1 and vary only with i. ..................................................................76 

Table 10.  Flows calculated along the line joining grid points i and i + 1 for two adjacent immiscible fluids 

where N = 10 and Vmax = 3 cm s-1.  Values are in units of cm3 s-1. ...............................................77 

Table 11.  Velocity values for circular flow with N = 10 and V0 = 3 cm s-1.  Velocities are in cm s-1 and vary 

only along the radius represented by the index i. ..........................................................................82 

vi 



Table 12.  Flows for circular flow of with maximum velocity V0 = 3 cm s-1 at N = 10.  Flows are calculated 

along the line joining grid points i and i + 1 and vary only along the radius represented by index 

i.  Values have units of cm3 s-1. ...................................................................................................84 

Table 13.  Network indices characterizing the four analytical flow fields. ...................................................87 

 

 

 vii



List of Figures 
 

Figure 1-1.  Three stages in the evolution of a four compartment network with the overall network activity 

held constant:  a) minimally organized, b) more organized, and c) maximally organized.  

Numbers represent the magnitude of the transfer and arrows indicate the direction of the 

transfer...........................................................................................................................................9 

Figure 1-2.  A four-compartment network displaying dominant internal transfers as well as transfers with the 

external environment.  The magnitude of each transfer in flow units is indicated by the number 

on each arrow, and then arrows indicate the direction of transfer. ..............................................12 

Figure 2-1.  Two-dimensional flow field with “wrap around” boundary conditions.  Cells highlighted in blue 

are discussed below.  Grid points highlighted in red and green represent as “barrier” cells used 

to create two of the flow fields referred to later in the text..........................................................20 

Figure 2-2.  Flow from one cell (60) is limited to its nearest four neighbors..................................................21 

Figure 2-3.  Two particles (black circles) encountering a barrier while moving south.  The particle on west 

side of the barrier moves to the west, and the particle on the east side moves to the east. ..........26 

Figure 2-4.  Code written in C for calculating the AMI after each time step in the cellular automata program.  

Adapted from Allesina (2004).....................................................................................................28 

Figure 2-5.  Code written in C for calculating the Aj after each time step in the cellular automata program.  

Adapted from Allesina (2004).....................................................................................................30 

Figure 2-6.  AMI after each time step for the five scenarios (labeled Free 1—Free 5 on the graph) applied to 

the free flow field.  For all cases the AMI reaches an equilibrium immediately, and increases as 

the probability of directional flow to the south increases. ...........................................................32 

Figure 2-7.  Distribution of particles across the barrier flow field after 100 time steps and with the pseudo 

random directional assignments of scenario #1.  The values on the z-axis represent the number 

of particles at each grid point. .....................................................................................................34 

Figure 2-8.  Development of the barrier flow field subject to the directional assignments of scenario #3 after 

a) 5 time steps, b) 40 time steps, and c) 100 time steps...............................................................36 

viii 



Figure 2-9.  AMI after each time step for the five scenarios (labeled Barrier 1—Barrier 5 on the graph) 

applied to the barrier flow field.  For all cases the AMI reaches an equilibrium after about 30 

time steps, and increases as the probability of directional flow to the south increases. ..............37 

Figure 2-10.  Contour plot of the contribution at each point in the barrier flow field to the overall network 

ascendency.  Values for A are generated after 100 time steps and under the conditions defined 

by scenario #3............................................................................................................................39 

Figure 2-11.  Contour plots of the contribution at each grid point in the barrier flow field to the overall 

network ascendency.  Values for A are generated after 100 time steps and under the conditions 

defined by scenarios a) #2, b) #4, and c) #5. .............................................................................41 

Figure 2-12.  Sensitivities of the overall ascendency to individual flows in the barrier flow field.  Data are 

plotted after 100 time steps and with the directional assignments of scenario #5. ....................42 

Figure 2-13.  Distribution of particles across the channel flow field after 100 time steps and with the pseudo 

random directional assignments of scenario #1.  The values on the z-axis represent the number 

of particles at each grid point.....................................................................................................44 

Figure 2-14.  Distribution of particles across the channel flow field after 1) 3 time steps, b) 30 time steps, 

and c) 100 time steps and subject to the conditions of scenario #3.  The values on the z-axis 

represent the number of particles at each grid point. .................................................................46 

Figure 2-15.  AMI after each time step for the five scenarios (labeled Channel 1—Channel 5 on the graph) 

applied to the channel flow field.  For all cases the AMI reaches an equilibrium after about 60 

time steps, and increases (although by an insignificant amount between 1 and 2) as the 

probability of directional flow to the south increases. ...............................................................47 

Figure 2-16.  Contour plot of the contribution at each point in the barrier flow field to the overall network 

ascendency.  Values for Aj are generated after 100 time steps and under the conditions defined 

by scenario #3............................................................................................................................48 

Figure 2-17.  Sensitivities of the overall ascendency to individual flows in the channel flow field.  Data are 

plotted after 100 time steps and with the directional assignments of scenario #5. ....................49 

 ix



Figure 2-18.  Movement of particles through a channel after time step 60 for the conditions given in a) 

scenario #2, b) scenario #3, and c) scenario #5.  The resulting flow patterns exhibit 

characteristics of a fluid subject to increasing rates of flow. .....................................................54 

Figure 3-1.  Flows into and out of cell i are determined by integrating along the borders with each 

neighboring cells (i-1, i+1, i-N, and i+N).  Velocity at each of the four grid points (a, b, c, and d) 

is defined, so that fij represents an average flow between any two grid points............................57 

Figure 3-2.  Steady state laminar velocity profile for fluid flow between two parallel boundaries. ...............58 

Figure 3-3.  3D contour plot of the contribution of each flow, fij, in the linear flow field to the overall 

network ascendency, A. Flow is in the x-direction and flow velocity, Vx, is such that Vx = 0 at y 

= 0, and Vx = V0 = 3 cm s-1 at y = 10. ..........................................................................................62 

Figure 3-4.  Sensitivities of the overall ascendency to individual flows in the linear flow field.  Flow is in the 

x-direction and flow velocity, Vx, is such that Vx = 0 at y = 0, and Vx = V0 = 3 cm s-1 at y = 10.

.....................................................................................................................................................63 

Figure 3-5.  Steady state laminar parabolic velocity profile for fluid flow between two parallel boundaries.64 

Figure 3-6.  3D contour plot of the contribution of each flow, fij, in the parabolic flow field to the overall 

network ascendency, A. Flow is in the x-direction and flow velocity, Vx, is such that Vx = 0 at y 

= 0 and y = 10, and Vx = V0 = 3 cm s-1 at y = 5. ..........................................................................69 

Figure 3-7.  Sensitivities of the overall ascendency to individual flows in the parabolic flow field.  Flow is in 

the x-direction and flow velocity, Vx, is such that Vx = 0 at y = 0 and y = 10, and Vx = V0 = 3 cm 

s-1 at y = 5. ...................................................................................................................................70 

Figure 3-8.  Steady state laminar velocity profile for two immiscible fluids of differing viscosities between 

two parallel boundaries and subject to a pressure gradient inducing flow in the x-direction. .....71 

Figure 3-9.  3D contour plot of the contribution of each flow, fij, of two adjacent immiscible fluids to the 

overall flow field ascendency.  Flow is in the x-direction and flow velocity, Vx, is such that Vx = 

0 at y = 0 and y = 10, and Vx is maximum at y = 5.  Contributions to the ascendency mirror the 

velocity profile.  The red dashed lines indicate the location of the flows between y = 4 and the 

interface and the interface and y = 6............................................................................................78 

 x



Figure 3-10.  Sensitivity of the ascendency to individual flows in a flow field with two adjacent immiscible 

fluids (Fluid1 and Fluid2).  Flow is in the x-direction and flow velocity, Vx, is such that Vx = 0 

at y = 0 and y = 10, and Vx is maximum between y = 2 and y = 3.  The lower viscosity fluid 

(Fluid1) occupies the region between y = 1 and y = 5, and Fluid2 occupies the region between 

y = 6 and y = 10. Sensitivity values are indicative of regions of low activity in the flow field 

(e.g. bottlenecks).  The red dashed lines indicate the location of the flows between y = 4 and 

the interface and the interface and y = 6. .................................................................................79 

Figure 3-11.  Schematic diagram of the velocity profile for steady state laminar flow of an incomopressible 

fluid induced by an outer boundary rotating at a constant velocity, V0.  The circle formed is of 

radius R, and the velocity at any point within the flow field, Vθ, is a function of R................81 

Figure 3-12.  Flows, fij, in the flow field with a circular velocity profile increasing from the center to the 

outer boundary where the maximum velocity, V0, equals 3 cm s-1. .........................................83 

Figure 3-13.  Contribution of each flow, fij, along a single radius in the circular flow field to the overall 

flow field ascendency.  Flow occurs only in the θ-direction and flow velocity, Vθ, is such that 

Vθ = 0 at r = 0, and Vθ is maximum at r = R = 10 m.  Contributions to the ascendency 

correspond with the velocity and flow profiles........................................................................85 

Figure 3-14.  Sensitivity of the ascendency to individual flows within the circular flow field along a single 

radius.  Flow is in the θ-direction and flow velocity, Vθ, is such that Vθ = 0 at r = 0, and Vθ = 

V0 = 3 cm s-1 at r = 10. .............................................................................................................86 

 

 

 xi



Chapter 1: Introduction to network analysis and its application to fluid 
flow 

 

Networks are used to represent natural systems in such a way that the system of 

interest is described both quantitatively and holistically.  One of the challenges of 

applying quantitative methods of analysis to natural systems is defining the extent of the 

system (i.e. its boundaries) as well as its internal activity (i.e. exchanges of energy) in a 

manner that crucial exchanges, either external or internal, are not left out.  This challenge 

is amplified as systems increase in size and complexity.  Another challenge ensuing from 

the quantitative analysis of large-scale, complex systems is determining how to best 

interpret the data.  With high-speed computer processing readily available even in most 

personal computers, generating copious amounts of data describing a natural system has 

become almost commonplace.  Devising quantitative methods to analyze that data and 

holistically characterize a system in well-defined terms is less common.  Examples of 

complex systems can be found in any number of disciplines, including thermodynamics, 

meteorology, oceanography, economics, social systems, and ecology.  The focus of this 

research is on fluid flow, particularly as it pertains to problems in oceanography, and the 

network analysis approach used here parallels the successful application of the same 

analysis to ecosystems in ecology, so the remainder of the discussion will be limited 

primarily to those two fields.  It is worth noting, however, that this approach to describing 

complex systems is readily applicable to the other disciplines mentioned above.  Because 

network analysis has been well established in ecosystem ecology, initial discussion will 

concern that field; however, the main purpose of this research is to analyze fluid flow.  

Following the derivation of the network indices used to characterize systems, several 
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basic, well-understood examples of fluid flow will be analyzed to demonstrate the 

potential contribution of network analysis to the study of complex flow fields. 

 

In ecosystem ecology, large-scale models are used to assess the state of an array 

of organisms interacting with each other and their environment, often with the intent of 

first establishing and subsequently monitoring the health or development of the 

ecosystem.  This type of ecosystem model pioneered quantitative, system-level analyses 

in ecology (Lindeman 1942, Odum 1969), and ultimately lead to the network approach 

described here. 

 

A network can be defined as a collection of elements, usually referred to as nodes 

or compartments, where individual elements are joined together by a type of interaction 

or communication, often called a connection or a transfer.  For example, in a two-

compartment network describing a predator-prey relationship, one compartment would 

represent the predator the other compartment would represent the prey, and the 

interaction would be the trophic transfer of energy from prey to predator.  An advantage 

of network analysis is that networks are easily depicted in diagrams, which can often 

reveal characteristics of a system that may not be as obvious when viewing the data in 

other formats (Figure 1-1 predator-prey interaction with table of data).  

 

Network analysis places greater emphasis on the transfers between nodes rather 

than the characteristics of individual nodes (Ulanowicz 1986a).  Focusing the analysis on 

the transfers generates results that describe the dynamics of the system as a whole. 
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1.1 Rarity and the beginnings of network theory 

 

Network analysis as it is discussed here is grounded in the field of information 

theory, which in turn derives its foundations from probability theory (Tribus and 

McIrvine 1971).  In probability theory the rarity of an event, A, is quantified as 

 

S(A) = −k log p(A) 1.1 

 

where p(A) is the probability of event A occurring, k is a scalar constant, and S(A) is the 

rarity of event A.  Relating the rarity or indeterminacy of an event within a system to the 

logarithm of the probability of the event was first accomplished by Ludwig von 

Boltzmann in 1872.  If one does not expect event A to happen often, then p(A) is by 

definition small and S(A) becomes large, meaning that event A rarely occurs.  A system 

continuously in a state of flux, such as an ecosystem, might best be described by defining 

the events that connect its constituent components.  Therefore, it becomes desirable to 

understand how one event affects the indeterminacy of any subsequent events.  Given the 

occurrence of event B, the probability of event A becomes p(A|B) (i.e. the conditional 

probability of A given B), and the indeterminacy of event A decreases to  

 

S(A | B) = −k log p(A | B) 1.2 
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The reduction in the indeterminacy, S(A) – S(A|B), is also a measure of the constraint 

that the occurrence of event B places on event A, and may be written as, 

 

S(A) − S(A | B) = k log p(A | B)
p(A)

⎛ 

⎝ 
⎜ 

⎞ 

⎠  1.3 
⎟ 

 

In anticipation of generalizing the analysis to include more than two events, one may 

employ Bayes’ Theorem (Joyce 2003) to define p(A,B) as the joint probability that events 

A and B occur in combination, and equate p(A|B) with the quotient p(A,B)/p(B), so that 

(1.3) becomes, 

 

S(A) − S(A,B) = k log p(A,B)
p(A) p(B)

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 
 1.4 

 

Since events A and B represent any two arbitrary events occurring within the scope of a 

larger system comprised of many events, one can calculate the average mutual constraint 

that all system events exert on each other by multiplying (1.4) by the joint probability 

associated with each pair of events (i.e. p(Ai,Bj)) and summing over all event pair 

combinations, as denoted by the indices i and j. 

 

p(Ai,B j ) S(Ai) − S(Ai,B j )[ ]
i, j
∑ = k p(Ai,B j )log

p(Ai,B j )
p(Ai) p(B j )

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

i, j
∑

 1.5 
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At this point the quantities to be evaluated are probabilities.  To use (1.5) for evaluating 

systems, one must somehow relate these probabilities to measurable quantities. 

 

1.2 Network indices as metrics of system complexity 

 

 Let the quantity Tij be defined as the amount of medium transferred from 

compartment i to compartment j in a network.  To quantify all transfers for a given 

network one simply sums over all i and j, 

 

T.. = Tij
i, j
∑

 1.6 

 

resulting in a quantity called the total system throughput, which, as the sum of all 

transfers occurring within a network, is an indicator of system activity.  A simplified 

notation is introduced in (1.6), which will be used hereafter.  A dot used as the subscript 

indicates summation over the index it replaces.  For example, T.j = ΣiTij, signifies that 

summation occurs only over the first index, i.  From (1.6) it should be clear that the 

activity of a system increases as more transfers occur or more medium per transfer is 

exchanged.  Referring back to (1.5), the probability that subsequent transfers begin with 

event Ai (i.e. p(Ai)) is estimated as the quotient Ti./T.., and is the fraction of all transfers 

originating from compartment i.  Similarly, p(Bj) ~ T.j/T.., and the joint probability for 

each pair, p(Ai,Bj), is estimated as Tij/T..  Substituting these measurable transfers into 

(1.5) yields 
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AMC = k
Tij

T..

log
TijT..

Ti.T. j

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

i, j
∑

 1.7 

 

where AMC is the abbreviation for “average mutual constraint.”  In the field of 

information theory the terms “constraint” and “information” are used synonymously, and 

from this point forward the quantity in (1.7) will be referred to as the average mutual 

information, or AMI.  A more thorough derivation of the AMI is found in Ulanowicz 

(1986a, 2000), and a complete background on the origins of network analysis in 

information theory is found in Rutledge et al. (1976). 

 

Although quantitative and based on measured units of transfer, the AMI is also 

scaled by the as yet undefined scalar, k, which somewhat limits its utility.  By equating k 

to the total system throughput, T.., the AMI takes on physical dimensions and becomes 

an indicator of both the organization inherent in a system and the system activity.  This 

new quantity is called the system ascendency (Ulanowicz and Mann 1981), 

 

A = Tij
i, j
∑ log

T..Tij

T. jTi.

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 
 1.8 

 

and is applied in ecology as a means of quantifying growth and development in 

ecosystems (Ulanowicz 1986a).  The ascendency, like the AMI, is an indicator of system 

organization, but it is also dependent on system activity.  Given two systems with the 

same AMI, the system with the greater T.. will have a greater A.  Intuitively, this should 

make sense; given two systems that transfer energy with the same level of coherent 
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organization, the system transferring more energy should be considered more developed.  

The ascendency index quantifies that distinction. 

 

Additional network indices that define limits on the A and provide for losses to 

the environment that inevitably occur with physical-biological systems are discussed 

elsewhere (Hirata and Ulanowicz 1984, Ulanowicz 1986a, Ulanowicz 1986b). 

 

Ascendency Theory is related to the principle of Maximum Entropy Production 

(MEP), which has its foundations in thermodynamics, in that both approaches seek to 

quantify system level dynamics based upon the activity of system components.  MEP 

maintains that the non-equilibrium steady state is the one in which entropy is produced at 

the maximum rate, subject to the physical constraints defining the system (Kleidon and 

Lorenz 2005; Dewar 2005).  Characterizing systems according to their entropy 

corresponds to measuring their disorganization; whereas A is a measure of system 

organization.  Hence the two methods of characterizing systems are complimentary.  

Furthermore, Ascendency Theory has the capability of assessing the organization at the 

level of microscale transfers (or flows), and changes at this level should result in different 

rates of MEP at the macroscale system level (Ulanowicz and Zickel 2005). 

 

Because the A as it is written in (1.8) is homogeneous with respect to the 

individual transfers, Tij, one can immediately write the sensitivities of the A to any 

arbitrary transfer, Tpq, as 
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∂A
∂Tpq

= log
TpqT..

T.qTp.

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 
 1.9 

 

The transfers to which the ascendency is most sensitive are those that are limiting in the 

sense of nutrient availability in an ecosystem, or are indicative of bottlenecks in a fluid 

flow field (Ulanowicz and Baird 1999). 

 

1.2.1 A simple example: intuitive and calculated organization in a four-compartment 

network 

 

A network consisting of four nodes and no communication (or transfers) with the 

outside environment (Figure 1-1) is a very unrealistic representation of a natural system.  

However, assessing organization in such a network can be done by inspection, and the 

corresponding value for the network ascendency can be easily calculated by hand.  Such 

a demonstrable example can be useful for understanding this approach before it is applied 

to more complex and less intuitive systems (Ulanowicz 1986b). 

 

Equal amounts of a medium (e.g. carbon, energy, a fluid, etc.) are transferred 

between four compartments labeled A, B, C, and D (Figure 1-1).  For simplicity, the 

magnitudes of all transfers within each network are made equal, and the total amount 

transferred (i.e. T..) is held constant across all three networks.  A qualitative assessment 

of the organization in the three networks should lead one to determine that the network in 

Figure 1a transfers the same amount of medium in a much less organized fashion than the 

network depicted in Figure 1c.   
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a b c 

Figure 1-1.  Three stages in the evolution of a four compartment network with the 
overall network activity held constant:  a) minimally organized, b) more organized, 
and c) maximally organized.  Numbers represent the magnitude of the transfer and 
arrows indicate the direction of the transfer. 

 

If one thinks in terms of an ecosystem where each compartment represents an 

organism and transfers between organisms represent predation, then clearly the least 

organized state possible is the one in which every organism eats every other organism, 

including itself (Figure 1a).  The transfer of energy in such an ecosystem would seem 

haphazard and chaotic, and would possess no discernable direction of development.  The 

representative network would demonstrate no preferred pathways, nor would it reveal any 

permanent hierarchy or structure in the system. 

 

If the maximally connected network is also the least organized network, then it 

stands to reason that reducing the number of connections should increase the inherent 

organization of the network.  In an intermediate network (Figure 1b), half of the transfers 

are eliminated leaving two transfers per compartment, and the amount of medium 
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transferred is doubled (to 10 units) to maintain the same TST.  Organization in the 

network increases as half of the transfers are now unidirectional.  Extending the 

argument, one would conclude that the most highly organized state possible in a four 

compartment network is the one in which each compartment transfers medium to only 

one other compartment, or in terms of an ecosystem, each organism preys upon only one 

other organism (Figure 1c). 

 

This qualitative assessment of organization in a four-compartment network is 

based solely upon the magnitudes (which in the example above are all equal, but this 

need not be the case) and directions of the transfers occurring between the nodes in the 

network.  A quantitative assessment is dependent upon those same network attributes.   

 

Quantifying organization in each of the three four-compartment networks in 

Figure 1 is accomplished by calculating the network indices T.., AMI, and A as shown in 

equations (6) through (8).  Throughout this thesis, log2 is used in the calculations making 

“bits” the unit of transfer.  The results of the calculations, which can easily be performed 

by hand, for the three networks (Figure 1) corroborate the initial, qualitative assessment 

of organization in a four-compartment network (Table 1).  The minimally organized and 

maximally connected network (Figure 1a) has an AMI equal to zero bits, and therefore, 

an A equal to zero flow bits. 
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Table 1.  Network indices describing the three four-compartment networks in 
Figure 1-1 where a) is the maximally connected minimally organized network, b) is 
the intermediate network, and c) is the minimally connected maximally organized 
network.   

Index 

Minimally 
Organized 
Network 

(a) 

Intermediate 
Network 

(b) 

Maximally 
Organized 
Network 

(c) 
Tij  5 10 20 
T..  80 80 80 
AMI 0 k 2k 
A 0 80 160 

 

When the number of transfers per compartment is reduced to four (Figure 1b) the result is 

a more organized system with the AMI equal to k bits and the A equal to 80 flow bits.  

Further reducing the number of transfers per compartment to two—the minimum number 

for a viable network—results in the maximally organized case, where the AMI = 2k bits 

and the A = 160 flow bits.  It is hypothesized that, in the absence of perturbations, 

systems will develop towards ever increasing values of the A (Ulanowicz 1986a, 

Ulanowicz 1997).  Because perturbations are prevalent at all levels in natural systems, it 

is unlikely that any natural system (e.g. an ecosystem) will achieve maximum 

organization.  The important role that perturbations (e.g. a hurricane or major outbreak of 

disease) play in the development of natural systems is emphasized by noting that the 

maximally organized network (Figure 1c) is also the network most susceptible to 

disruption, because, if one of the transfers is interrupted, the system is no longer fully 

connected. 

 

This oversimplified example can easily be adjusted to better represent a natural 

system by including an external input and output, and showing preferred transfers that 
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dominate over weaker ones rather than altogether eliminating transfers between nodes as 

was done above.  Increasing only slightly the complexity of a simple four-compartment 

system quickly places any qualitative assessment of organization on somewhat shakier 

ground.  A hybrid four-compartment network (Figure 1-2) representing a somewhat more 

realistic four-compartment system has T.. equal to 191, AMI equal to 1.15k bits, and A 

equal to 219 flow bits. 

 

 
Figure 1-2.  A four-compartment network displaying dominant internal transfers as 
well as transfers with the external environment.  The magnitude of each transfer in 
flow units is indicated by the number on each arrow, and the arrows indicate the 
direction of transfer. 
 

It is probably not intuitively obvious that the transfers in this network are any more or 

less organized than the similarly structured intermediate network (Figure 1-1b).  

However, comparing the AMI of the two networks indicates that the organization of 

information in the hybrid network, where the AMI = 1.15k bits, is greater than the 

organization of information in the intermediate network, where the AMI = 1k bits, 

despite the fact that the latter has fewer transfers.  The network ascendency for the hybrid 
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network (Figure 1-2) is much greater than even the maximally organized network (Figure 

1-1c), because more medium is transferred through the network making T.., which scales 

the A, greater.  If the transfers are reduced proportionately so that the T.. = 80, the AMI 

will still equal 1.15k bits, and the A will be reduced proportionately to equal 92 flow bits. 

 

The purpose of these two examples is to demonstrate how network indices reflect 

organization in systems.  For a more thorough discussion on this subject refer to 

Ulanowicz (1986a, 1986b, 1997). 

 

1.2.2 Network analysis applied to ecosystems 

 

The simplified example provided above illustrates the basics of a network 

analysis approach to quantifying complex systems.  A principal goal of this thesis is to 

demonstrate that the same approach is applicable to the study of complex systems of fluid 

flow.  To help support that argument, a brief discussion on the evolution of network 

analysis as a method for quantifying ecosystems is presented. 

 

Ecology can be defined as the study of the interactions between living organisms 

and their physical environment.  Such a scope has traditionally required ecologists to 

consider relatively large spatial regions (i.e. on the order of acres) over time periods 

ranging from seasons to decades.  Early research in ecology focused on the study of 

individual biological communities, and was dominated by the collection of experimental 

data, rather than theoretical concepts.  It was not until Lindeman (1942) published his 
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landmark paper describing trophic exchange in ecological communities that the modern 

concept of the ecosystem was introduced (Hagen 1992), and it has served as the 

fundamental element in ecology ever since.  Defining and then describing a system of 

diverse components whose very interactions are the primary, if not only, reason for 

linking them together in terms that are both quantitative and meaningful to other 

scientists has been a perpetual challenge since the advent of ecosystem ecology (Hagen 

1992).  Early attempts to describe ecosystems in quantitative terms resulted in the 

generation of large quantities of data and required creative means of summarizing and 

displaying the results (Odum 1957, Hagen 1992).  Complex diagrams comprised of 

multiple symbols connected by weighted lines, where each visual nuance conveyed some 

quantitative meaning, were devised to accomplish this difficult task.  An experienced eye 

was required in order to fully comprehend the diagrams (at times referred to as “spaghetti 

diagrams” by the trained and untrained alike) in their entirety, and to understand the 

processes comprising the ecosystem (Boynton personal communication).  Quantitative 

methods attempting to establish the ecosystem based on the connections between 

organisms were evolving, but universal definitions applicable to all varieties of 

ecosystems were lacking.  In his seminal paper describing ecosystem succession, Eugene 

Odum (1969) defines quantitative benchmarks delineating stages of ecosystem 

development.  For the first time, ecosystem ecology had a set of metrics by which the 

maturity and relative health of individual ecosystems could be judged.  For many 

ecosystem scientists, Odum’s twenty-four criteria issued an implied challenge:  to 

develop a quantitative method to analyze the diversity of ecosystem data in such a way 

that the results can be directly compared to Odum’s criteria.  One such method—the 
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method described in this thesis—expands on the “spaghetti diagrams” framework by 

adapting formulas from the field of information theory to quantify ecosystem 

characteristics.  As noted above, this is done by representing a group of organisms and 

their collective exchanges as a network, and then applying the mathematical formulas to 

characterize networks by the amount of medium they transfer, and how random or 

organized those transfers appear. 

 

Since this thesis takes only the initial step in analyzing complex patterns of fluid 

flow, an example of a system of comparable complexity is taken from ecosystem ecology 

to demonstrate that network analysis is capable of evaluating large, complex, natural 

systems.  This example, coupled with the more fundamental examples from fluid 

dynamics described in Chapter 3 of this thesis lays the groundwork for applying network 

analysis to current problems in interpreting complex fluid flow patterns, such as those 

encountered in modeling instabilities, eddies, and turbulent flow. 

 

The mesohaline ecosystem of Chesapeake Bay has been represented as a network 

of 36 nodes with exchanges of carbon as the medium of transfer between the nodes and 

the surrounding environment (Figure 1-3; Baird and Ulanowicz 1989).  In this network, 

transfers of various forms of carbon occur between organisms across trophic levels, and 

between organisms and the physical environment.  Large quantities of data including 

standing stocks associated with each compartment, rates of carbon intake, respiration, 

production, and egestion for each compartment, and rates of transfer between linked 

nodes are required to describe this ecosystem.  The network is analyzed to reveal the 
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dependence of a particular species on the abundance or presence of another species, the 

dependence of a trophic group on a single transfer or set of transfers, and to investigate 

the overall dependency of the ecosystem on seasonal cycling.  Several previously 

unrecognized characteristics of the Chesapeake Bay ecosystem were revealed, not 

through the acquisition of additional experimental data, but by integrating available data 

into one quantifiable analysis. 

 

Subsequent analysis on the Chesapeake Bay ecosystem (Ulanowicz and Baird 

1999) quantifies seasonal cycling of nutrient limitation within the ecosystem.  The 

network approach correlates well with the traditional analysis of nutrient limitation 

introduced by Liebig, but also reveals nutrient controls that would not otherwise have 

been observed had the ecosystem been represented as a collection of individual 

populations rather than as a network of transfers.  

 

1.3 Application to the study of fluid flow 

 

A network analysis approach, demonstrated to be successful in ecology, is now 

applied to the quantification of fluid flow fields, which can be represented as networks of 

nodes and flows between nodes.  A change in nomenclature is adopted to distinguish 

between the different constraints that exist when representing a fluid flow field as a 

network rather than an ecosystem.  A single flow from grid point i to grid point j will be 

represented as fij instead of the familiar Tij from this point forward.  Unlike transfers 

within an ecosystem, which may occur between any two nodes regardless of their spatial 
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juxtaposition, flows in a flow field are limited to adjacent nodes.  In a two-dimensional 

flow field, flow from any compartment must occur only between one (or more) of the 

neighboring nodes.  A thorough theoretical expansion of this type of network analysis to 

the investigation of fluid flow has recently been outlined (Ulanowicz and Zickel 2005). 

 

1.3.1 The problem of interpreting output from large scale simulation models 

 

Examples of complex patterns of fluid flow resulting from simulation models are 

analogous in many ways to other large-scale complex systems (e.g. ecosystems, socio-

economic systems, etc.).  In each case, some quantity of a chosen medium (e.g. fluid, 

carbon, currency, etc.) is transferred from one point to another at a particular rate of 

exchange.  If both the amounts and transfer rates are known or measurable, then a 

network representing the system can be created and analyzed to characterize the transfers 

of the system as ordered or stochastic.  In large eddy simulation models flows are 

separated or filtered by their spatial scale, so that large-scale flows can be simulated 

explicitly while the influence of small-scale flows is simulated through an averaging 

technique.  Large scale turbulent flows are energy producing and it is assumed that the 

unresolved small-scale (i.e. subfilter or subgrid) flows dissipate the energy into heat lost 

to the surrounding environment (Mason 1994).  Quantifying the large-scale flows and 

representing the flows as a network would allow the organization of the flow field to be 

characterized in terms of its ascendency.  As the flow field becomes more turbulent the 

number of large-scale flows should decrease as more of the flows become subgrid flows, 

and the ascendency index should decrease proportionately.  With enough 
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experimentation, the ascendency index may be able to serve as a guide in determining the 

minimal scale at which large-scale flows are explicitly calculated.  A minimum 

acceptable value of A, representing the minimum acceptable level of stochasticity in the 

large-scale flows, would allow for a comparison of different attempts at simulating the 

same turbulent flow field using an index, A, that is independent of the model. 

 

In a process analogous to the steps taken by ecologists who first developed 

methods for quantifying ecosystems, oceanographers and meteorologists achieving 

results from simulations of complex fluid flow are exploring methods of holistically 

interpreting their results (Li personal communication).  Network analysis, as 

demonstrated in this thesis, has the potential for providing an equally satisfactory tool for 

oceanographers and meteorologists as it has proven to be for ecologists. 
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Chapter 2: Cellular automata as a method of generating simple flow 
fields for analysis as networks 

 

To this point, data relevant only to the field of ecosystem ecology has been 

presented in support of a network analysis approach to investigating fluid flow.  The 

purpose of this chapter is to describe three simple flow field models created to generate 

data more representative of fluid flow.  Each model is created by employing the method 

of cellular automata (CA) to simulate the motions of a fluid in three flow fields.  The CA 

method is used for three main reasons:  1) it is simple to create a reasonable simulation of 

fluid motion and to incorporate obstacles within the flow field; 2) the groundwork for this 

approach (Ulanowicz 2000) utilized CA in modeling the migration of animals across 

landscapes; and 3) the data produced with CA are readily suitable for network analysis.  

A good introduction to the CA technique and its application to simulating physical 

systems, including fluid flow, is found in Chopard and Droz (1998).  Even though it is 

not the intent of this paper to provide an accurate simulation of the motions of an actual 

fluid, CA have been used for that very purpose.  Two-dimensional wave propagation 

models and boundary layer models have been simulated using CA (Chapard and Droz 

1998), and ocean circulation patterns have been modeled and analyzed for both two-

dimensional (Salmon 1999a) and three-dimensional flow fields (Salmon 1999b) using a 

Lattice-Boltzmann technique very similar to the CA method. 
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2.1 Flows across a two-dimensional flow field 

 

A simple two-dimensional flow field is created as a square grid of 20 x 20 cells, 

where each cell is identified by a single numerical index and all cells in the grid are 

numbered consecutively from 1 to 400 (Figure 2-1).  “Wrap around” boundary conditions 

are adopted to enable continuous flow in all directions labeled:  north, east, south, and 

west in clockwise fashion beginning at the top. 

N 

 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400  
20 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 1 
40 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 21 
60 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 41 
80 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 61 

100 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 81 
120 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 101 
140 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 121 
160 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 141 
180 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 161 
200 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 181 
220 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 201 
240 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 221 
260 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 241 
280 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 261 
300 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 281 
320 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 301 
340 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 321 
360 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 341 
380 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 361 
400 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 381 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  

W E

 
S 

Figure 2-1.  Two-dimensional flow field with “wrap around” boundary conditions.  
Cells highlighted in blue are discussed below.  Grid points highlighted in red and 
green represent “barrier” cells used to create two of the flow fields referred to later 
in the text. 
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Fluid flow is simulated by the movement of particles of flow medium from one cell to a 

neighboring cell according to a set of simple constraints.  Flow to or from any cell in the 

grid is limited to its nearest four neighboring cells.  For example, flow occurring to (or 

from) cell 60 is limited to cells:  40, 41, 59, and 80 (Figure 2-2). 

 

 

Figure 2-2.  Flow from one cell (60) is limited to its nearest four neighbors.  
 

Each cell in the 20 x 20 grid is initially allotted 100 particles with the exception of barrier 

cells, which contain no particles at any time during a simulation.  For each time step in 

the simulation, every particle is required to move from its current cell into a neighboring 

cell, thus maintaining a constant total system throughput (f..), and ensuring a balanced 

network (i.e. inputs = outputs). 

 

2.1.1 Assigning direction to flow 

 

The direction that a particle will move varies depending on which one of five 

scenarios is chosen (Table 2).  For example, if scenario #3 is chosen, then over the course 

of the simulation the particles will move South approximately 46% of the time, East and 

West about 25% of the time, and North only about 4% of the time.  If a particle 
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encounters a barrier (barrier cells are present in two of the flow field examples discussed 

below), then it must move into one of the neighboring non-barrier cells.   

Table 2.  The five scenarios that set the probability that a particle will move to the 
North, East, South, or West of its current location.  Each scenario is applied in all 
flow fields analyzed below. 

Scenario 

(#) 

North 
(%) 

East 
(%) 

South 
(%) 

West 
(%) 

1 25 25 25 25 
2 14 25 36 25 
3 4 25 46 25 
4 4 20 56 20 
5 2 15 68 15 

 

Inducing movement over a flow field by assigning probabilities is an attempt to 

simulate both advection in a particular direction and diffusion along gradients.  A greater 

probability of movement in one direction is akin to greater or more rapid flow in that 

direction with less time for, or likelihood of, diffusion in the remaining directions.  A 

flow field without barriers and having an equal probability of flow in all four directions is 

akin to the maximally connected and minimally organized four compartment network 

described in Chapter 1, and is most representative of random, non-directional motion.  

Such a network, which is generated by the probabilities of scenario #1, is used as a 

baseline for assessing fluid flow with a dominant direction, as is produced in scenarios 2-

5.  Although the directional probabilities described in each scenario move particles to 

simulate flow in a way that is qualitatively fluid-like, the movement of the particles is not 

based upon the physical forces that determine the movement of an actual fluid, such as 

pressure gradients, continuity laws, or momentum fluxes.  In either case, flows across the 
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flow fields represented below appear realistic, but it should be kept in mind that the 

directional scenarios are based entirely on probabilities.   

 

If a fluid flowing in one direction, say to the south, were to encounter a barrier to 

the flow, then it is more likely that the dominant direction of the flow would be redirected 

perpendicular to the initial direction of the flow, that is to the east and west, rather than 

directly opposite.  With that in mind, given that flow to the south is dominant in scenarios 

2-5, it is less likely that there would be much diffusion to the north; therefore, diffusion to 

the east and west was permitted to exceed diffusion to the north in all scenarios with a 

dominant flow. 

 

2.1.2 Network analysis applied to particles moving across a flow field 

 

After each time step, the total number of particles transferred between each 

compartment in the flow field is stored in an N2 x N2 flow matrix, where most elements in 

the flow matrix equal zero.  This last point is clear if one considers that flows from any 

single compartment are limited to its nearest four neighboring nodes, and that the flow 

matrix has the capacity to store flows from each compartment to every other 

compartment.  The network indices, f.., AMI, and A are calculated from this flow matrix 

according to equations 1.6 through 1.8, with one alteration.  The equation for the A is 

modified to calculate the contribution at each compartment to the overall network 

ascendency, and to allow each compartment’s contribution towards A to be plotted over 

the flow field as a three-dimensional contour plot.  This new quantity Aj is calculated as,  
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where Mi and Mj represent the total number of particles at compartment i and 

compartment j respectively.  This modification follows the example of Ulanowicz (2000), 

from which the following hypothesis is adapted to address fluid flow: 

In the absence of massive perturbations, particles representing the motions of a 

fluid will distribute themselves across a flow field in a way that leads to higher 

system ascendency. 

A massive perturbation in the context of fluid flow might be any disturbance that 

completely disrupts the initial pattern of flow, such that the associated network 

representing the flow would cease to function as a network.    

 

2.1.3 Methods:  A cellular automata program for simulating fluid flow 

 

A program written in the C programming language was used to create each flow 

field, move the particles through the flow field according to the scenarios described 

above for a chosen number of time steps, and to calculate the network indices after each 

time step.  All three-dimensional contour plots depicting a distribution of values over the 

flow field were produced using the R programming language (R Development Core 

Team 2003).  Neither program is appended to the thesis, but both are available from the 

author upon request. 
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A flow field consisting of a grid of 1’s and 0’s is read into the program, and 

defines the size of the flow field as well as the free flow (0’s) and barrier (1’s) grid points 

in the flow field.  All free flow grid points are then populated with 100 particles.  At each 

time step, every particle must move to one of its four neighboring grid points.  If a 

particle attempts to move to a barrier grid point it is redirected towards one of the three 

remaining grid points. 

 

A particle that does not encounter a barrier always moves according to the 

probability assignments defined by the chosen scenario (Table 2).  Once a particle 

encounters a barrier, though, a more deterministic assignment is applied.  For example, if 

a particle moving towards the south encounters a barrier blocking its path, then it is 

redirected either towards the west or the east, depending on which half of the flow field it 

is located:  particles on the western half move west, and particles on the eastern half 

move east (Figure 2-3).  The same assignments apply for a particle encountering a barrier 

when moving north.  If a particle encounters a barrier when moving east or west, then it 

is directed in the opposite direction.  These directional assignments, although arguably 

simplistic for describing fluid movement, create a reasonable simulation of fluid behavior 

for the chosen flow fields and a dominant southerly flow.  The specific functions in the 

program that address the movement of particles are called Move, MoveQuant, and 

Barrier. 
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Figure 2-3.  Two particles (black circles) encountering a barrier while moving south.  
The particle on west side of the barrier moves to the west, and the particle on the 
east side moves to the east. 

 

For each particle that is moved to grid point (i, j), the number of particles at grid 

point (i, j) is incremented by one, and after each time step a new distribution of particles 

over the flow field is established.  Simultaneously, a matrix of flows is generated, which 

increments by one the number of transfers from grid point (i, j) to grid point (k, l).  After 

each time step a complete flow matrix is available for calculating the network indices. 

 

The program generates five output files in text format (Table 3) that describe the 

development of the flow field after each time step. 
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Table 3.  Output files from the cellular automata program. 

Name Description 
filename.txt.BIOM.txt Stores the number of particles at each grid point after 

each time step.  BIOM = biomass (a holdover from the 
original ecosystem focus). 

filename.txt.AMI.txt Stores the network AMI after each time step. 
filename.txt.ASC.txt Stores the contribution of each grid point to the overall 

network ascendency (i.e. Aj) after each time step. 
filename.txt.SAsc.txt Stores the sensitivities of A to each flow fpq. 
filename.txt.OUT.txt Stores the number of particles transferred from each grid 

point (i, j) to its four neighbors after each time step. 
 

The output from each file is discussed in the Results section below. 

 

The f.. remains constant and may be calculated before any movement of particles 

takes place, because every particle is required to move once (and only once) during each 

time step, and there are no external transfers.  For a 20 x 20 grid without barrier grid 

points and 100 particles initially distributed at each grid point, the f.. = 40,000.  

Calculating the AMI after each time step is accomplished by the AMICalc function 

(Figure 2-4).  The flow matrix storing all transfers between grid points after each time 

step is referred to as Out3D in the code. 

 

1. int AMICalc(int s)  //for each timestep s 
2. { 
3. gsl_vector * SC; //define two pointers to vectors, where 
C=column and R=row and S=sum 
4. gsl_vector * SR; 
5. double tmpAMI, tmp2, tij; 
6. int i, j; 
7. SC=gsl_vector_calloc(N*N); //allocate vectors as N*N and 
initialize to zero  
8. SR=gsl_vector_calloc(N*N);  
9. for (i=0; i<(N*N); i++) 
10. { 
11. for (j=0;j<(N*N);j++) 
12. { 
13. gsl_vector_set(SC,j,gsl_vector_get(SC,j)+gsl_matrix_get(Out
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3D,i,j)); //sets the jth element of vector SC to be itself + the 
value in Out3D (i, j).  Sum all j's, i.e. all columns in row i 
14. gsl_vector_set(SR,i,gsl_vector_get(SR,i)+gsl_matrix_get(Out
3D,i,j)); //sets the ith element of vector SR to be itself + the 
value in Out3D (i, j).  Sum all i's, i.e. all rows in column j 
15. } 
16. } 
17. tmpAMI=0; 
18. //scan the matrix for Tij >0 
19. for (i=0; i<(N*N); i++) 
20. { 
21. for (j=0;j<(N*N);j++) //look at every tij in the Out3D 
flow matrix 
22. { 
23. tij=gsl_matrix_get(Out3D,i,j); //if the transfer 
between cells is not 0... 
24. if (tij!=0) //if the transfer is 0, then it does not 
contribute to the AMI 
25. { 
26. tmp2=gsl_vector_get(SC,j)*gsl_vector_get(SR,i);
 //...then calculate the denominator in the log () term of 
the AMI 
27. if (tmp2!=0)  
28. { 
29. tmpAMI=tmpAMI+(tij/TST)*log(tij*TST/tmp2); //calculate 
the AMI for one tij and store it as tmpAMI, and continue summing for 
all tij, so that once 
30. //the loops are done tmpAMI = AMI. 
31. } 
32. } 
33. } 
34. } 
35. gsl_vector_set(AMI,s,tmpAMI);  //for each time step s, set 
the sth element in the vector AMI to be tmpAMI 
36. return 0;  
37. } 

Figure 2-4.  Code written in C for calculating the AMI after each time step in the 
cellular automata program.  Adapted from Allesina (2004). 

 

In lines 13-14 the function defines two vectors SC and SR as the sums of all transfers in 

column j and row i, respectively, of the flow matrix at time step s.  Vector SC is 

equivalent to the quantity Ti. and vector SR is equivalent to the quantity f.j in the log term 

of (1.7) for the AMI.  For every non-zero transfer between grid points, the variable tmp2 

stores the product of SC and SR, and is subsequently used to calculate a running 
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summation of the AMI after each time step s.  Plots of the AMI after each time step for 

the three flow fields are discussed in the Results section. 

 

Since A = (AMI) (f..) and f.. is a constant, plotting A after every time step 

provides no additional information about the organization of the flow field not already 

discernable in the plots of the AMI after each time step.  Of greater interest is the 

distribution of the ascendency over the flow field plotted by calculating the contribution 

of each grid point to the total A, as described in (2.1).  The function performing this 

calculation following each time step is AscCalc (Figure 2-5). 

 

int AscCalc(void) 
{ 
int i, j; 
double fij, Aj; 
gsl_vector * SumC;  //*SumC = column sum pointer to the vector SumC 
SumC=gsl_vector_calloc(N*N); 
 
//Divide every flux by the f.. and compute the entropies 
 
//Preserve the flows in StoreSAsc for calculating the sensitivities 
later 
gsl_matrix_memcpy(StoreSAsc,Out3D);  
 
for(i=0;i<N*N;i++) 
{ 
 for(j=0;j<N*N;j++)  //for every element in the flow matrix... 
 { 
//Aj=fij log(fij*TST/MiMj)  //this formula refers to the A(j) 
formula which calculates the contribution of each cell in the flow 
field to the network ascendency 
  fij=gsl_matrix_get(Out3D,i,j); //temporarily store the value 
of each element in the flow matrix 
  if (fij>0) //just analyze non zero transfers 
  { //The product is Mi*Mj 
  
 tmp=gsl_matrix_get(M,(int)i/N,i%N)*gsl_matrix_get(M,(int)j/N,j%N) 
   //if the # particles at (i/N, i%N) * the # particles at 
(j/N, j%N) is greater zero, then… 
    if (tmp!=0) 
   { 
    Aj=fij*(log((fij*TST/tmp)); 
    //...calculate the Aj for that flow and store as Aj 
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    gsl_matrix_set(Out3D,i,j,Aj); //...store the 
temporary Aj values in the Out3D matrix 
   
 gsl_vector_set(SumC,j,gsl_vector_get(SumC,j)+gsl_matrix_get(Out3D,i
,j)); 
//Sum over all rows to calculate the total contribution of each cell to 
A.  To calculate the overall A I would sum over all rows and columns 
   }  
  } 
 } 
} 
for (j=0;j<N*N;j++) 
{ 
 gsl_matrix_set(AscComp,(int)j/N,j%N,gsl_vector_get(SumC,j)); //Fill 
the matrix AscComp with the values from SumC 
} 
return 0; 
} 

Figure 2-5.  Code written in C for calculating the Aj after each time step in the 
cellular automata program.  Adapted from Allesina (2004). 
 

The AscCalc function, first excludes every non-zero flow, and then calculates the product 

of the quantities Mi and Mj, which represent the number of particles (or mass) in the 

particle matrix, M, at grid points i and j respectively.  Since this product is the 

denominator in the log2 term of (2.1), a check is made to ensure no division by zero 

occurs.  The contribution to the ascendency made by each individual flow, fij, is stored in 

the N2 x N2 matrix Out3D.  The vector SumC of length N2 is used to store the summation 

of all rows, i, as is required in calculating Aj (2.1).  Once all flows occurring after time 

step s are accounted for, the values in SumC are transferred to the global N x N matrix 

AscComp, which is referenced when plotting the distribution of the ascendency over the 

flow field. 

 

 The code for calculating the sensitivities of the ascendency to individual flows is 

very much the same as the code just described above for calculating the contribution of 

each flow, fij, to the overall ascendency.  Given the similarity, the code for calculating the 
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sensitivities is not reproduced in the text.  Comparing the equations for the ascendency 

(1.8) and the sensitivities (1.9) should reveal that the sensitivities to the overall 

ascendency are represented by the logarithm term in (1.8).   

 

2.2. Results from the Cellular Automata Method 

 

As was shown with a simple four-compartment network in Chapter 1, a higher 

AMI indicates that the represented systems transfer medium among their constituent 

components with greater order or organization than networks with a lower AMI.  One 

could also say that systems with a lower AMI are more stochastic or disorganized in the 

manner in which they transfer medium.  The same reasoning is applied to the three flow 

fields described in the previous sections of this chapter using the AMI as the criteria for 

comparing the flow fields. 

 

Results are presented for three flow field examples:  1) a flow field without 

obstruction to the flow, 2) a flow field where flow is perpendicular to an impermeable 

barrier located in the center of the flow field, and 3) a flow field where flow through a 

channel redirects particles into the center of the flow field.  The examples are referred to 

as “free,” “barrier,” and “channel,” respectively.  The grid points that make up the 

obstruction within the barrier flow field are highlighted in green, and those making up the 

obstruction in the channel flow field are highlighted in red (Figure 2-1).  All five 

scenarios summarized in Table 2.1 were run for each flow field example.  
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2.2.1 The free flow field—flow without obstruction 

 

In the free flow field, the AMI comes to equilibrium almost immediately with all 

five scenarios (Figure 2-6).   
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Figure 2-6.  AMI after each time step for the five scenarios (labeled Free 1—Free 5 
on the graph) applied to the free flow field.  For all cases the AMI reaches an 
equilibrium immediately, and increases as the probability of directional flow to the 
south increases. 
 

Increasingly greater constraint is imposed on the flow with each successive scenario 

(labeled Free 1 through Free 5 in the graph) and, as anticipated, the AMI increases 

correspondingly, signifying that the flow becomes more organized in each case.  By 

analogy, with the simple four-compartment network, the maximally connected and 

minimally organized network is generated by scenario #1 (labeled “Free 1” in the 

legend), and the most highly organized network in this example is generated by scenario 

#5.  The maximally organized case, which would have required all particles to move in 
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one and only one direction was not applied because, particularly in the barrier and 

channel flow fields, moving particles in such a restrictive way would certainly have not 

mimicked the motion of a fluid. 

 

2.2.2 The barrier flow field 

 

A barrier perpendicular to the dominant direction of flow is added to the free flow 

field by preventing particles from accessing eight centrally located grid points.  The 

barrier grid points are those bounding cells 190, 191, and 192 (Figure 2-1), and are 

henceforth collectively referred to as the barrier.  The following rules apply when a 

particle encounters the barrier: 

1) If the particle is on the western half of the barrier and is moving either north 

or south, it is directed to move west. 

2)  If the particle is on the eastern half of the barrier and is moving either north 

or south, it is directed to move east.  

3) If a particle is moving east it is directed to move west. 

4) If a particle is moving west it is directed to move east. 

The general purpose of the rules is to maintain a continuity of flow following interaction 

with the barrier. 

 

Applying these rules and the homogenous directional assignments in scenario #1 

to the barrier flow field results in a uniform distribution of particles over the flow field 

with only slight peaks adjacent to the barrier grid points (Figure 2-7).   
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Figure 2-7.  Distribution of particles across the barrier flow field after 100 time 
steps and with the pseudo random directional assignments of scenario #1.  The 
values on the z-axis represent the number of particles at each grid point. 

 

Introducing a southerly bias to the flow changes the distribution of particles over the flow 

field.  Applying the directional assignments of scenario #3 increases the probability that a 

particle will move south at each time step from 25% to 46%.  After only five time steps 

an accumulation of particles just upstream and at the ends of the barrier is evident (Figure 

2-8a).  After 40 time steps, the accumulation peaks are obvious and a minimum in the 

distribution of particles is obvious on the downstream side of the barrier (Figure 2-8b).  

After 100 time steps the distribution has reached an equilibrium, with a relatively 

constant number of particles accumulating just beyond the barrier ends, and a well 
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developed minimum on the downstream side of the barrier that nearly reaches the far-

field level before wrapping around to the northern end of the flow field (Figure 2-8c).  

 

 
a 
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b 

 

 
c 

Figure 2-8.  Development of the barrier flow field subject to the directional 
assignments of scenario #3 after a) 5 time steps, b) 40 time steps, and c) 100 time 
steps.   

 

These results agree reasonably well with those from the ecological landscape study by 

Ulanowicz (2000), which applied a similar cellular automata method. 

 

The organization of the flow field following the introduction of a barrier is 

measured in the same way as the organization of flow without a barrier.  The AMI of the 

barrier flow field increases as the probability of flow to the south increases (Figure 2-9), 

in much the same way as with the free flow field.   
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Figure 2-9.  AMI after each time step for the five scenarios (labeled Barrier 1—
Barrier 5 on the graph) applied to the barrier flow field.  For all cases the AMI 
reaches an equilibrium after about 30 time steps, and increases as the probability of 
directional flow to the south increases. 

 

A slight decline in the AMI over the first ten time steps is noticeable in each of 

the curves representing scenarios #2 through #5.  This adjustment to the AMI is 

undoubtedly caused by the introduction of the barrier.  The addition of barrier grid points 

reduces the number of possible pathways within the flow field and decreases the f.. 

relative to the f.. of the free flow field.  The AMI of the barrier flow field reaches 

equilibrium before 30 time steps for all five scenarios. 

 

The network ascendency, A, can be calculated after each time step in the same 

way the AMI is calculated.  However, because the networks studied here are closed and 

all particles move once at each time step, f.. remains constant throughout.  Recalling that 

A = (f..)(AMI), should convince the reader that plots of A after each time step will simply 

be scaled versions of the ones above.   
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In order to better visualize the dynamics of the flow, the ascendency is plotted 

over the full flow field by summing over only one index (2.1).  Three-dimensional plots 

showing the contribution of each flow, fij, in the flow field to the overall ascendency 

reveal that regions of greater activity (i.e. larger flows) appear to have a proportionately 

greater effect on the overall development of the flow field (Figure 2-10).  These are also 

the same regions most affected by the constraints (i.e. the barrier grid points) in the flow 

field.  Intuitively it makes sense that A, which is a combination of both f.. (activity) and 

AMI (information, or alternatively, constraint), increases as both of those attributes 

increase.  Regions in a flow field that provide the greatest contribution to the overall 

network ascendency are the same regions which have the greatest influence on the 

development of the flow field over time.  In terms of characterizing the flow, the regions 

making the greatest contribution to the overall ascendency are interpreted as control 

points or “bottlenecks” in the flow.   
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Figure 2-10.  Contour plot of the contribution at each point in the barrier flow field 
to the overall network ascendency.  Values for A are generated after 100 time steps 
and under the conditions defined by scenario #3. 

 

Comparable results are achieved with the assignments of scenarios #2, #4, and #5.  With 

each scenario, the same regions in the flow field display maximum and minimum values 

both in the number of particles and in the ascendency (Figure 2-11).  As the probability 

of southerly flow increases, the development of maxima and minima in the flow field 

occur more rapidly. 
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Figure 2-11.  Contour plots of the contribution at each grid point in the barrier flow 
field to the overall network ascendency.  Values for A are generated after 100 time 
steps and under the conditions defined by scenarios a) #2, b) #4, and c) #5. 

 

The sensitivity of the ascendency to individual flows is calculated according to 

(1.9).  Just as with the contributions to the ascendency, the sensitivities are distributed 

over the flow field but instead highlight those areas exhibiting the greatest amount of 

resistance to flow (Figure 2-12).  Comparing the distribution of the ascendency (Figure 2-

11) with the distribution of the sensitivities reveals that the areas of the flow field with 

the least amount of ordered activity (i.e. the lowest values in Figure 2-11) have the 

highest sensitivity values (i.e. the peak values in Figure 2-12).  Pathways of greatest 

activity are highlighted by the ascendency, and pathways of greatest resistance are 

highlighted by the sensitivities.  The highest sensitivity values (Figure 2-12) appear on 

the downstream side of the barrier; the pathways in the flow field where the fewest 

number of particles transit, and where the fewest flows, fij, occur.  By highlighting 
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inactivity the sensitivities reveal disturbances in the flow, in this case the presence of the 

barrier, that might be obscured by the flows in a more complex flow field. 

 

 
 

Figure 2-12.  Sensitivities of the overall ascendency to individual flows in the barrier 
flow field.  Data are plotted after 100 time steps and with the directional 
assignments of scenario #5. 

 

2.2.3 The channel flow field 

 

A channel is formed in the free flow field by reassigning the eight barrier grid 

points to the eastern and western edges of the flow field (Figure 2-1).  The grid points are 

collectively referred to as the channel walls.  Particles encountering a channel wall are 

directed towards the center of the flow field according to the following rules: 

 42



1) If the particle is on the western half of the flow field and is moving either 

north or south, it is directed to move east. 

2)  If the particle is on the eastern half of the flow field and is moving either 

north or south, it is directed to move west.  

3) If a particle is moving east it is directed to move west. 

4) If a particle is moving west it is directed to move east. 

As in the barrier example, the approach in defining rules is to maintain a continuity of 

flow. 

 

 Applying these rules and the assignments in scenario #1 to the channel flow field 

results in a uniform distribution of particles over the flow field, with only small peaks 

adjacent to the channel walls (Figure 2-13). 
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Figure 2-13.  Distribution of particles across the channel flow field after 100 time 
steps and with the pseudo random directional assignments of scenario #1.  The 
values on the z-axis represent the number of particles at each grid point. 

 

Introducing a southerly bias to the flow changes the distribution of particles over the flow 

field.  Applying the directional assignments of scenario #3 increases the probability that a 

particle will move south at each time step from 25% to 46%.  After three time steps, an 

accumulation of particles on the upstream side of the channel walls is observed with more 

particles accumulating towards the center of the flow field (Figure 2-14a).  After thirty 

time steps, maxima in the number of particles are established just beyond and upstream 

of the ends of the channel walls, and obvious minima are observed on the downstream 

side of the channel walls (Figure 2-14b).  After 100 time steps the distribution has 

reached an equilibrium, with a relatively constant number of particles accumulating just 

beyond the channel walls, and well developed minima on the downstream side of the 

channel walls (Figure 14c).   
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Figure 2-14.  Distribution of particles across the channel flow field after 1) 3 time 
steps, b) 30 time steps, and c) 100 time steps and subject to the conditions of scenario 
#3.  The values on the z-axis represent the number of particles at each grid point. 

 
A majority of particles remains within the channel after being redirected towards the 

center following an encounter with a channel wall.  This is particularly the case with 

scenarios #4 and #5, because once a particle moves into the center of the flow field where 

it is able to move south without encountering a channel wall, the probability that it 

continues south is 56% and 68% respectively.  The effect is that very little diffusion 

occurs to the east or west, and therefore increasingly fewer particles encounter the 

channel walls, so that the maximum number of particles occurring at the peak locations 

decreases over time.  This fluctuation in the number of particles at the peak locations is 

best observed by displaying the plots in succession from time step 1 to 100 as a movie. 

However, evidence of the phenomenon is also evident in a comparison of the peak 

locations after 30 and 100 time steps (Figure 2-14b and c)  
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The AMI of the channel flow field does not reach equilibrium until after 65 time 

steps for all five scenarios, and the distinction between the equilibrium AMI of scenario 

#1 and that of scenario #2 is negligible (Figure 2-15).  The difference in the 

organizational development, as measured by the AMI, between the channel and barrier 

flow fields is attributable to the distribution of the eight barrier grid points across each 

flow field (Figure 2-1).  All eight grid points in the channel flow field directly impede 

flow to the south, whereas only four grid points are directly exposed to southerly flow in 

the barrier flow field.  Additional experiments varying the number of blocked grid points 

in a flow field directly influenced the number of time steps required before the AMI of 

the flow field reached equilibrium.  In general, the fewer the number of grid points, the 

faster equilibrium was achieved. 
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Figure 2-15.  AMI after each time step for the five scenarios (labeled Channel 1—
Channel 5 on the graph) applied to the channel flow field.  For all cases the AMI 
reaches an equilibrium after about 60 time steps, and increases (although by an 
insignificant amount between 1 and 2) as the probability of directional flow to the 
south increases. 
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A more pronounced transient decay of the AMI (than was observed in the barrier flow 

field) is displayed over the initial time 30 steps for scenarios #2 through #5.  As in the 

barrier flow field, the decline is an adjustment to the artificially high AMI calculated after 

the first time step, when all particles have moved once according to the prescribed 

probabilities, and few have encounter the channel walls. 

 

 Consistent with the results from the barrier flow field, the contribution of each 

flow, fij, to the overall ascendency of the channel flow field reveals that regions of greater 

activity (i.e. larger flows) appear to have a proportionately greater effect on the overall 

development of the flow field (Figure 2-16).   

 

 

Figure 2-16.  Contour plot of the contribution at each point in the barrier flow field 
to the overall network ascendency.  Values for Aj are generated after 100 time steps 
and under the conditions defined by scenario #3. 
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Regions of the flow field exhibiting the least amount of ordered activity are highlighted 

by the sensitivity of the ascendency to individual flows (Figure 2-17).  Alternatively, one 

might describe these flows as the pathways of greatest resistance to the overall flow.  In 

the channel flow field, the ascendency is most sensitive to changes in the flows occurring 

immediately upstream and downstream of the barrier grid points located at the eastern 

and western extremes of the flow field.  As in the barrier flow field, areas downstream of 

the barrier grid points are those to which the ascendency is most sensitive and are those 

which exhibit the least organized activity.  Peaks in the sensitivity of the ascendency 

located in the northeastern and northwestern corners of the flow field are artifacts 

associated with the wrap-around boundary conditions. 

 

 
 

Figure 2-17.  Sensitivities of the overall ascendency to individual flows in the 
channel flow field.  Data are plotted after 100 time steps and with the directional 
assignments of scenario #5. 
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2.2.4 Comparison of the three flow fields 

 

As was done for the four-compartment network in Chapter 1, values for the 

network indices f.., AMI, and A for each flow field example are calculated (Table 4). In 

the free flow field, an increase in the probability of flow to the south from 25% to 68% 

added 0.6919 bits of information to the organization and 27,675 flow bits of ascendency 

to the dynamics of the system.  The same adjustment in the flow applied to the barrier 

flow field added 0.6283 bits of information and 24,631 flow bits of ascendency to the 

system.  In the channel flow field the organization increased by 0.6207 bits of 

information and the dynamics increased by 24,331 flow bits of ascendency. 
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Table 4.  Index values for the free, barrier, and channel flow fields subject to the 
five flow scenarios.  AMI values are averages taken after the time step at which 
equilibrium is achieved in each example.  A is calculated as the product of f.. and 
AMI. 

Network Index 

Flow Field Scenario 
f.. 

(flow units)
AMI 
(bits) 

A 
(flow bits)

1 6.6565 266,259 
2 6.7286 269,145 
3 6.9562 278,246 
4 7.0750 283,000 

Fr
ee

 

5 

40,000 

7.3484 293,934 
1 6.6274 259,795 
2 6.6809 261,893 
3 6.8974 270,378 
4 7.0020 274,476 B

ar
ri

er
 

5 

39,200 

7.2558 284,426 
1 6.6235 259,641 
2 6.6912 262,294 
3 6.7948 266,355 
4 7.0254 275,395 C

ha
nn

el
 

5 

39,200 

7.2442 283,972 
 

Plots of the contribution to the ascendency are unremarkable in the free flow field, 

because without any obstacles to redirect flow each cell in the flow field contributes 

about equally to the overall system ascendency.  This is not the case for the barrier and 

channel flow fields (Figure 2-11, Figure 2-16).  In both examples, cells that are both 

adjacent to the barrier cells and exposed to the regions of free flow contribute most to the 

overall ascendency, and are therefore critical to the development of each flow field. 

 

A seemingly obvious conclusion to draw from a comparison of the three flow 

fields is that adding barriers to a flow decreases the organization, or ordered flow, 

through a flow field.  For each scenario, the ascendency of the free flow field is greater 
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than the barrier flow field, which in turn is greater than the channel flow field.  This trend 

contradicts the results achieved by Ulanowicz (2000), who reported a slight increase in 

the AMI with the insertion of a barrier impeding the flow.  However, a key distinction 

and the likely explanation for this discrepancy is that an increase in the f.. is reported by 

Ulanowicz (as an artifact) with the inclusion of a barrier, and a decrease in the f.. occurs 

in the examples just presented.   

 

2.2.5 Fluid-like behavior 

 

As the probability of moving to the south increases in the barrier flow field, the 

particles are induced to move around the barrier in much the same way a fluid, subject to 

an increase in flow rate, would move around a similar barrier in an actual flow field 

(Batchelor 1970).  Other models of two-dimensional flow where obstacles are inserted 

into the flow field have yielded similar patterns (Pozrikidis 1999).   

 

Comparing the results from scenarios #2, #4, and #5 for the channel flow field 

after 60 time steps highlights this fluid-like behavior of the particles (Figure 2-18).  With 

a probability of flow to the south at 36% (Figure 2-18a), the flow field is characterized by 

peaks at the inner edge and just upstream of the channel opening and slight ridges that 

form downstream of the peaks.  The ridges diffuse almost completely before the particles 

wrap around to the northern end of the flow field.  With the probability of flow to the 

south at 46% (Figure 2-18b), the particles build up more rapidly at the same peak 

locations as they try to circumvent the side barriers and have less opportunity to diffuse, 
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resulting in a greater channeling of the particles.  This behavior is analogous to a fluid 

moving through a channel at an initial rate, and then having the flow increased to a 

greater rate.  The effect is even more pronounced when the probability of movement to 

the south increases to 68% (Figure 2-18c).  Here very little time is left for diffusion to the 

east and west as the fluid is propelled through the opening. 

 

 
a 
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Figure 2-18.  Movement of particles through a channel after time step 60 for the 
conditions given in a) scenario #2, b) scenario #3, and c) scenario #5.  The resulting 
flow patterns exhibit characteristics of a fluid subject to increasing rates of flow. 
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2.2.6 Connectance 

 

Another means of characterizing a network of flows is to describe its structure in 

terms of the network connectance.  The connectance is the average number of 

connections, or flows, initiating from each grid point within the network.  The 

connectance, like the AMI, varies with every time step.  In the free flow field, every grid 

point exchanges flows with at least one other grid point but no more than four grid points.  

Therefore, the number of connections in a representative network must be between N 

(unlikely) and 4N (more likely).  As directional flow strengthens, the distribution of 

flows among these connections also varies, so that calculating an “effective connectance” 

(Zorach and Ulanowicz 2003) is another way of describing a network. 
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Chapter 3: Analytical Examples from Fluid Dynamics 
 

Four well understood analytical examples from the field of fluid dynamics are 

modeled and represented as networks.  These examples were chosen because they are 

relatively simple to model and because the characteristics and behavior of the flow will 

be familiar to fluid dynamicists and physical oceanographers for whom the results of this 

research have the greatest potential benefit.  All four examples are adapted from 

descriptions found in Bird et al. (1960), and unless otherwise stated, any additional 

information desired by the reader should be available in that reference. 

 

3.1 Analytical examples of fluid flow 

 

A flow, fij, within the flow matrix is determined by calculating the integral along a 

line connecting two grid points.  The result of the integration is essentially the average 

flow occurring between two grid points.  For laminar flow in the x-direction with 

velocity, V(x), defined at each grid point (a, b) the flow, fi-1,i, would be calculated as, 

 

fi−1,i = V (x)dy
b

a

∫
 3.1 

 

where the line between grid points a and b is the border between cells i-1 and i (Figure 3-

1).  Similarly, for flow in the y-direction with velocity, V(y), defined at each grid point 

(a, d) the flow, fi-N,i, is given by, 
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fi−N ,i = V (y)dx
a

d

∫
 3.2 

 

where N is the total number of cells formed by the grid. 

 

igure 3-1.  Flows into and out of cell i are determined by integrating along the 
borders with each neighboring cells (i-1, i+1, i-N, and i+N).  Velocity at each of the 

 

.1.1 Example 1:  Flow between two parallel boundaries with a linear velocity profile  

This simple example of a linear velocity profile, like the four-compartment 

networ

tate, 

F

four grid points (a, b, c, and d) is defined, so that fij represents an average flow 
between any two grid points. 

 

3

 

ks described in Chapter 1, has the added benefit of offering the reader the 

opportunity to perform the required calculations rather quickly by hand.  Steady s

laminar flow between two flat, parallel boundaries can be achieved by accelerating the 
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bottom boundary to a velocity, V0, and holding the top boundary fixed, so that V(y=0) =

0 and V(y=R) = V

 

 

igure 3-2.  Steady state laminar velocity profile for fluid flow between two parallel 
oundaries. 

nce the fluid reaches a steady state velocity, a linear velocity profile between the two 

0 (Figure 3-2).  Both boundaries are of length, L, and separated by a 

distance of R such that L >> R and end effects are negligible. 

 

Vmin = 0 

x
y

Vmax = V0

R
Vx (y)

F
b
 

O

boundaries is given by, 

 

Vx =
V0

R
(y − R) + V0

 3.3 

 

here y = 0 at the top boundary and y = R at the bottom boundary.  Overlaying the flow w

field with a grid of N x N cells and then translating from an x-y coordinate system to an i-

j coordinate system results in a new equation for the velocity with Vx defined at every 

grid point, V(i, j), 

 

Vx =
V0

N
(i − N) + V0

 3.4 
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where i is incremented from 0 to N.  The velocity varies only in the vertical direction, so 

all flows, fij, in this flow field are found by calculating a line integral between each pair 

of grid points in the vertical direction.  The average flow between any two grid points, i 

and i+1, is calculated as, 

 

fij = Vx
i

i+1

∫ dy =
V0

2N
(2i +1)

 3.5 

 

nd again to cover the entire flow field i is incremented from 0 to N.  Each flow, fij, is 

.1.1.1 Appling network analysis to flow with a linear velocity profile 

Network indices characterizing the flow are calculated by applying the equations 

introdu

a

stored in a N2 x N2 flow matrix in preparation for calculating the information indices.   

 

3

 

ced in Chapter 1 to the flows calculated from (3.5) and stored in the flow matrix.  

As in the cellular automata examples of Chapter 2, wrap around boundary conditions are 

utilized to allow continuous flow in the horizontal direction.  For N = 10 and V0 = 3 cm s-

1 the flow velocities (Table 5) increase linearly from i = 0 to i= N, with a maximum 

velocity, V0 = 3 cm s-1, occurring at i = N. 
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Table 5.  Velocity values for the linear flow profile with N = 10 and V0 = 3 cm s-1.  
Velocities are in cm s-1 and vary only with i. 

i j 0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 0 

1 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

2 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

3 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 

4 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 

5 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 

6 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 

7 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 

8 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 

9 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 

10 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 
 

The flows are stored in a 100 x 100 flow matrix, which is too large to present in the text 

in its entirety.  However, for laminar flow most entries into the flow matrix equal zero, so 

it is possible to present all nonzero flows (Table 6).  Like the velocities, the flows only 

vary with i, and are maximum at i = N.  Since each flow is calculated along a line joining 

two grid points, only ten flows are calculated for the 11 grid point velocities presented 

(Table 5).   
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Table 6.  Flows calculated by the model for the linear flow profile with N = 10 and 
V0 = 3 cm s-1.  Flows are calculated along the line joining grid points i and i + 1 and 
vary only with i.  Values have units of cm3 s-1. 

i/i+1 j 0 1 2 3 4 5 6 7 8 9 10 

0/1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

1/2 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 

2/3 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

3/4 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 

4/5 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 

5/6 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 

6/7 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 

7/8 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 

8/9 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 

9/10 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 
 

The total system throughput, f.., is equal to 165 cm3 s-1, and is representative of a 

measure of mass transport or flux.  This is easily verified by summing all nonzero flows 

(Table 6).  Organization or the ordered component of the flow is measured by the AMI, 

which is equal to 6.508 bits of information.  The overall network ascendency, A, for this 

flow field is calculated as A = (AMI) x (f..) = 1,074 flow bits.  Identifying which flows 

within the flow field have the greatest contribution to the A is accomplished by plotting 

the distribution of the A (Figure 3-3).  As one might expect, the flows with the greatest 

contribution to the A are located at the bottom of the flow field where the velocity is 

greatest.  A similar plot of the distribution of the sensitivities of the A to individual flows 

highlights those flows that exhibit the greatest resistance to the overall flow or activity 

within the flow field (Figure 3-4).  Areas with the highest sensitivity values are 

effectively acting as bottlenecks in a flow field.  In a more complex flow field with 
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multidirectional flows, the locations of bottlenecks within the flow field may not be as 

intuitively obvious. 

 

 
 

Figure 3-3.  3D contour plot of the contribution of each flow, fij, in the linear flow 
field to the overall network ascendency, A. Flow is in the x-direction and flow 
velocity, Vx, is such that Vx = 0 at y = 0, and Vx = V0 = 3 cm s-1 at y = 10. 

 

Even though the velocity profile varies linearly in the x-direction, both the A profile and 

the sensitivity of the A profile vary as a function of log2 in the x-direction, by definition.  

This dependency is more pronounced in the sensitivities (Figure 3-4), which are not 

scaled by the flows, and explains how areas of low activity and high resistance are 

highlighted in the calculation of the sensitivity of the A to each flow.   
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Figure 3-4.  Sensitivities of the overall ascendency to individual flows in the linear 
flow field.  Flow is in the x-direction and flow velocity, Vx, is such that Vx = 0 at y = 
0, and Vx = V0 = 3 cm s-1 at y = 10. 
 

3.1.2 Example 2:  Flow between two parallel boundaries with a parabolic velocity 

profile 

 

A flow field with a parabolic velocity profile symmetric about the centerline 

between two parallel boundaries has Vmax occurring along the centerline and Vmin = 0 at 

both boundaries (Figure 3-5).  As in the previous example, the length of the boundaries, 

L, is much greater than R to avoid end effects. 

 

 After a steady state flow is reached, the velocity profile is described by, 
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Vx = K 1−
(2y − R)2

R2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
 3.6 

 

where Vx = 0 at y = 0 and y = R, and Vx = K = Vmax at y = R/2.  The constant K is defined 

as, 

 

K ≡
ΔPR2

4μL  3.7 

 

where ΔP represents a pressure gradient in the direction of the flow and μ is the viscosity 

of the fluid.  

 

y
VR/2 = Vmax

Vmin = 0 

x

Vmin = 0 

R

Vx (y)

 

Figure 3-5.  Steady state laminar parabolic velocity profile for fluid flow between 
two parallel boundaries. 
 

Values for the constants were chosen to make a direct comparison between the 

results from each of the four examples as simple and straightforward as possible.  A 

maximum velocity of 3 cm s-1 was chosen as representative of oceanic currents.  The 

separation between boundaries, R, was set at 10 m, and the length of the boundaries, L, 
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was set at 1 km.  The viscosity, μ, of water at 20 °C is 0.001 kg m-1 s-1, so for K equal to 

3 cm s-1, ΔP = 1.2 x 10-3 N m-2. 

 

The values for the constants are set with the understanding that laminar flow is 

maintained if the Reynolds Number (Re) is less than about 2,500 (Mann and Lazier 

1996).  For the values chosen, 

 

Re =
ρVxR

μ
= 3.0x105 >> 2,500

 3.8 

 

where ρ = 1,000 kg m-3 is the density of water.  Clearly, laminar flow cannot be assumed 

for the conditions described above.  If constants are chosen so that Re < 2,500, then the 

flow values, fij, are invariably small, and the information indices also calculate to be quite 

small.  Comparing organization among different flow fields using the differences 

between small numbers is a bit cumbersome and detracts from the focus of the research, 

which is to demonstrate the applicability of network analysis to fluid flow, and not to 

model the physical behavior of actual fluids. 

 

 The velocity equation (3.6) is translated from the x-y coordinate system to the i-j 

coordinate system, 

 

Vx = K 1−
(2i − N)2

N 2

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 
 3.9 
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where i is incremented from 0 to N.  The velocity varies only in the vertical direction, so 

all flows, fij, in this flow field are found by calculating a line integral between each pair 

of grid points in the vertical direction.  The average flow between any pair of grid points, 

i and i+1, is calculated as, 

 

fij =
2K
3N 2 −6i2 − 6i 1− N( )+ 3N − 2[ ]

 3.10 

 

by integrating (3.9) from i to i+1. 

 

3.1.2.1 Appling network analysis to flow with a parabolic velocity profile 

 

 Wrap around boundary conditions apply in the x-direction so that flow is 

continuous in that direction.  The velocity matrix (Table 7) shows that velocity increases 

from Vx = 0 at i = 0 to a maximum velocity at the center of the flow field where Vx = K = 

3 cm s-1.  The velocity then decreases symmetrically to equal 0 at i = N. 
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Table 7.  Velocity values for the parabolic flow profile where N = 10 and V0 = 3 cm s-

1.  Velocities are in cm s-1 and vary only with i. 

i j 0 1 2 3 4 5 6 7 8 9 10 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 

2 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 

3 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 

4 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 

5 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

6 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 2.88 

7 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 2.52 

8 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 1.92 

9 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 

Examining all nonzero flows from the 100 x 100 flow matrix (Table 8) shows that, as 

anticipated, the flows between vertically spaced grid points are greatest in the center of 

the flow field and minimal at the boundaries. 
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Table 8.  Flows calculated along the line joining grid points i and i + 1 for a fluid 
with a parabolic velocity profile where N = 10 and V0 = 3 cm s-1.  Flows vary only 
with i.  Values are in units of cm3 s-1. 

i/i+1 j 0 1 2 3 4 5 6 7 8 9 10 

0/1 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 

1/2 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 

2/3 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 

3/4 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.72 

4/5 2.96 2.96 2.96 2.96 2.96 2.96 2.96 2.96 2.96 2.96 2.96 

5/6 2.96 2.96 2.96 2.96 2.96 2.96 2.96 2.96 2.96 2.96 2.96 

6/7 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.72 2.72 

7/8 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 

8/9 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 1.52 

9/10 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 0.56 
 

The total system throughput, f.., for flow with a parabolic velocity profile is 220 cm3 s-1.  

This calculation is easily verified by summing all nonzero flows (Table 8).  The ordered 

component of the flow is measured by the AMI, which is equal to 6.620 bits of 

information.  The network ascendency, A, for a parabolic flow profile is calculated as A 

= (AMI) x (f..) = 1,456 flow bits.  Identifying the contribution of each individual flow in 

the flow field to the A is accomplished visually by plotting the distribution of the A over 

the flow field (Figure 3-6).  As one might expect from the velocity profile, the flows with 

the greatest contribution to the A are located in the center of the flow field where the 

velocity is greatest.  Fluid moves more rapidly through the cells overlaying the center of 

the flow field, so the flows through those same cells are greater than at any other location 

in the flow field. 
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Figure 3-6.  3D contour plot of the contribution of each flow, fij, in the parabolic 
flow field to the overall network ascendency, A. Flow is in the x-direction and flow 
velocity, Vx, is such that Vx = 0 at y = 0 and y = 10, and Vx = V0 = 3 cm s-1 at y = 5. 
 

A similar plot of the distribution of the sensitivity of the A to individual flows highlights 

those flows that exhibit the greatest resistance to the overall flow or activity within the 

flow field (Figure 3-7).  Areas with the highest sensitivity values may be regarded as 

bottlenecks to the flow.  These areas exhibit the fewest number of flows, a characteristic 

that might also be attributable to calm waters on the downstream side of an obstruction to 

flow in a river, for example.  In a more complex flow field where the dominant flow is 

redirected multiple times or must circumvent multiple obstructions, the locations of 

bottlenecks within the flow field may not be obvious in the distribution of the 

ascendency, because the ascendency is scaled by each flow, fij.   
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Figure 3-7.  Sensitivities of the overall ascendency to individual flows in the 
parabolic flow field.  Flow is in the x-direction and flow velocity, Vx, is such that Vx 
= 0 at y = 0 and y = 10, and Vx = V0 = 3 cm s-1 at y = 5. 
 

The sensitivities, on the other hand, are not scaled by the flows, and vary on a log scale, 

which tends to amplify smaller values.  In the parabolic flow field, it is only the flows 

adjacent to the boundaries that are obviously highlighted (Figure 3-7); the sensitivities 

associated with the remainder of the flows are not easily distinguishable from the 

maximum central flow, which stands in contrast to the ascendency and velocity profiles.  

Shear stress in the fluid is greatest near the boundaries, where frictional forces between 

the fluid and the boundaries cause resistance to the flow.  The relative magnitude and 

location of greatest resistance is quantified by the sensitivity values.   
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3.1.3 Example 3:  Adjacent flow of two immiscible fluids with an asymmetric velocity 

profile 

 

A flow field consisting of two immiscible fluids, Fluid1 and Fluid2, with 

viscosities μ1 and μ2 (where μ2 > μ1), and enclosed on two sides by parallel boundaries 

has an asymmetric velocity profile with Vmax occurring in the fluid with the lower 

viscosity (i.e. Fluid1) (Figure 3-8).  If the entire flow field is subject to the same pressure 

gradient force, then the velocity, Vx, at both boundaries will be zero, just as in the 

pervious example with a parabolic velocity profile; however, both fluids do not reach the 

same steady state velocities away from the boundaries because of their differing 

viscosities.   

 

VR/2 < Vmax

Vmin = 0 

x
y

Vmin = 0 

R 

Vx (y)

Interface

μ1

μ2

 

Figure 3-8.  Steady state laminar velocity profile for two immiscible fluids of 
differing viscosities between two parallel boundaries and subject to a pressure 
gradient inducing flow in the x-direction. 
 

Fluid2 has a greater resistance to flow than Fluid1, and requires a greater pressure gradient 

to achieve a matching velocity profile.  The same pressure gradient generates flow in 

both fluids, so Fluid2 will lag behind Fluid1.  The maximum velocity should no longer be 

at the centerline, as it was in the previous example.  To maintain continuity of flow across 
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the interface, the velocity of both fluids must be the same at the interface.  One could 

imagine the more viscous Fluid2 effectively dragging on the adjacent portion of Fluid1 at 

the interface and reducing its velocity.  The maximum velocity is achieved within the 

domain of Fluid1 just off the centerline at the point where the shear induced by the 

influence of Fluid2 and the shear induced by friction at the boundary are both zero (Bird 

et al. 1960).  In the model for this example, the velocity profiles are expressed as one half 

of different parabolic functions, where the curvature of the profile for Fluid2 is flatter 

than the profile for Fluid1, but both profiles reach the same velocity at the interface. 

 

 After steady state flow is achieved, the velocities, Vx
I and Vx

II, are given by, 

 

Vx
I = −K1(2y − R)2 −

C1
I

μ1

(2y − R)2 + C2
I

 3.12a 

Vx
II = −K2(2y − R)2 −

C1
II

μ2

(2y − R)2 + C2
II

 3.12b 

 

where the K1 and K2 are defined as, 

 

K1 =
ΔP

2μ1L  3.13a 

K2 =
ΔP

2μ2L  3.13b 
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and the constants C1 and C2 are calculated by applying the following three boundary 

conditions: 

 

 

BC#2 :
at y = 0

Vx
I = 0 = −K1R

2 +
C1

I

μ1

R + C2

∴ C2 = K1R
2 −

C1
I

μ1

R

BC#1:

at y =
R
2

Vx
I = Vx

II

∴ C2
I = C2

II = C2

BC# 3 :
at y = R

Vx
II = 0 = −K2R

2 +
C1

II

μ II

R +C2

= −K2R
2 +

C1
II

μ II

R + K1R
2 −

C1
I

μ1

R
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

The momentum transport across the interface must be continuous (Bird et al. 1960), 

therefore C1
I = C1

II = C1, and the boundary conditions may now be used to solve for C1 

and C2, 

 

C1 =
R K1 − K2( )

1
μ1

+
1
μ2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

  

C2 = K1R
2 −

R2 K1 − K2( )

μ1
1
μ1

+
1
μ2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

 3.14 

 

Values for the constants were chosen to make a direct comparison between the 

results from each of the four examples as simple and straightforward as possible.  A 

maximum velocity of 3 cm s-1 was chosen as representative of oceanic currents.  The 

separation between boundaries, R, was set at 10 m, and the length of the boundaries, L, 

was set at 1 km.  Choosing water as the less viscous Fluid1, μ1 = 0.001 kg m-1 s-1 at 20 

°C, and choosing seawater as Fluid2, μ2 = 0.0012 kg m-1 s-1 at 20 °C (Elert 2002).  For the 

same pressure gradient used in the previous example, ΔP = 1.2 x 10-3 N m-2, a maximum 

velocity of ~2.7 cm s-1 is reached in Fluid1, because of the influence of more viscous 

 73



Fluid2.  Other fluids with higher viscosities (e.g. Olive Oil, μ = 0.084 kg m-1 s-1) were 

tested, but the variation in the flow profile between fluids was so exaggerated that any 

characterization of the flow field by the information indices would have been dominated 

by the obvious disparity in the velocities of the fluids. 

 

As in the previous example, the length of the boundaries, L, is much greater than 

R to avoid end effects, and laminar flow is assumed even though results of the Reynolds 

number calculations for both fluids contradict that assumption.  The Reynolds number for 

water is about the same as in the previous example, 2.7 x 105, and the Reynolds number 

for seawater is somewhat less at 2.3 x 105 (ρ ~ 1030 kg m-3), but still well beyond the 

threshold for purely laminar flow (Mann and Lazier 1996). 

 

The velocity equations (3.12a and 3.12b) are translated from the x-y coordinate 

system to the i-j coordinate system, 

 

Vx
I = −K1(2i − N)2 −

C1

μ1

(2i − N)2 + C2
 3.15a 

Vx
II = −K2(2i − N)2 −

C1

μ2

(2i − N)2 + C2
 3.15b 

 

by a direct exchange of y for i and R for N.  The same substitution of variables is made 

for C1 and C2 in (3.14).  At the interface between Fluid1 and Fluid2 (i.e. at i = 5) Vx
I = Vx

II 

= C2.  The velocity varies only in the vertical direction, so all flows, fij, in this flow field 

are found by calculating the line integral of (3.15a and 3.15b) between each pair of grid 
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points in the vertical direction.  The average flow between any pair of grid points, i and 

i+1, is calculated as, 

 

fij
I ,II = −

K1,2

3
12i2 +12i + 4 −12Ni − 6N + 3N 2( )−

C1

μ1,2

2i +1− N( )+ C2
 3.16 

 

where fij
I is calculated using K1 and μ1 and represents the flows in Fluid1, and fij

II is 

calculated using K2 and μ2 and represents the flows in Fluid2. 

 

3.1.3.1 Appling network analysis to flow of two adjacent immiscible fluids between 

two parallel boundaries 

 

Wrap around boundary conditions are applied so that flow is continuous in the x-

direction.  Velocity increases from Vx = 0 at i = 0 to a maximum, Vx = 2.7 cm s-1, at the 

interface where i = 5 (Table 9).  The velocity then decreases asymmetrically to equal 0 at 

i = N.  Velocity values in the domain of Fluid1 are all greater than their corresponding 

pairs in the domain of Fluid2. 
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Table 9.  Velocity values for flow of two adjacent immiscible fluids where with N = 
10 and Vmax = 3 cm s-1 at i = 5.  Velocities are in cm s-1 and vary only with i. 

i j 0 1 2 3 4 5 6 7 8 9 10 

0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

1 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 

2 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81 1.81 

3 2.36 2.36 2.36 2.36 2.36 2.36 2.36 2.36 2.36 2.36 2.36 

4 2.66 2.66 2.66 2.66 2.66 2.66 2.66 2.66 2.66 2.66 2.66 

5 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 

6 2.58 2.58 2.58 2.58 2.58 2.58 2.58 2.58 2.58 2.58 2.58 

7 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 2.24 

8 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 1.69 

9 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95 

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
 

The distribution of all nonzero flows from the 100 x 100 flow matrix (Table 10) shows 

that the flows are greatest in the domain of Fluid1 and decrease at slightly steeper 

gradient in the domain of Fluid2.  In the matrix, the interface occurs between rows 4/5 

and 5/6 (Table 10). 
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Table 10.  Flows calculated along the line joining grid points i and i + 1 for two 
adjacent immiscible fluids where N = 10 and Vmax = 3 cm s-1.  Values are in units of 
cm3 s-1. 

i/i+1 j 0 1 2 3 4 5 6 7 8 9 10 

0/1 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 0.53 

1/2 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 1.44 

2/3 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 

3/4 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53 

4/5 2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.71 2.71 

5/6 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 2.73 

6/7 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 2.43 

7/8 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 1.98 

8/9 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 1.33 

9/10 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 
 

The total system throughput, f.., for the flow of two adjacent immiscible fluids is 201 cm3 

s-1.  This calculation is easily verified by summing all nonzero flows (Table 10).  The 

ordered component of the flow is measured by the AMI, which is equal to 6.618 bits of 

information.  The network ascendency, A, a combination of the activity and organization 

of the flow field, is calculated as A = (AMI) x (f..) and A = 1,330 flow bits.  Displaying 

the contribution of each individual flow in the flow field to the A is accomplished by 

plotting the distribution of the A over the flow field (Figure 3-9).  As one might expect 

from the matrix of flows, the greatest contribution to the A is from the region within the 

domain of Fluid1 where the velocities are greater.  Fluid1 moves more rapidly through the 

flow field, so the flows within the domain of Fluid1 are greater than the flows within the 

domain of Fluid2, and those same regions have the greatest contributions to the A. 
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Figure 3-9.  3D contour plot of the contribution of each flow, fij, of two adjacent 
immiscible fluids to the overall flow field ascendency.  Flow is in the x-direction and 
flow velocity, Vx, is such that Vx = 0 at y = 0 and y = 10, and Vx is maximum at y = 5.  
Contributions to the ascendency mirror the velocity profile.  The red dashed lines 
indicate the location of the flows between y = 4 and the interface and the interface 
and y = 6. 

 

A similar plot of the distribution of the sensitivity of the A to individual flows 

highlights those flows that exhibit the greatest resistance within the flow field, or exhibit 

the lowest activity within the flow field (Figure 3-10).  Areas with the highest sensitivity 

values may be regarded as bottlenecks to the overall flow, because they exhibit the least 

amount of ordered activity within the flow field.  Activity, measured by the amount of 

medium transferred, is lowest within the domain of Fluid2, and correspondingly the 

highest sensitivity values are found in the domain of Fluid2 where the resistance is 

highest (Figure 3-10).   
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Figure 3-10.  Sensitivity of the ascendency to individual flows in a flow field with 
two adjacent immiscible fluids (Fluid1 and Fluid2).  Flow is in the x-direction and 
flow velocity, Vx, is such that Vx = 0 at y = 0 and y = 10, and Vx is maximum between 
y = 2 and y = 3.  The lower viscosity fluid (Fluid1) occupies the region between y = 1 
and y = 5, and Fluid2 occupies the region between y = 6 and y = 10. Sensitivity values 
are indicative of regions of low activity in the flow field (e.g. bottlenecks).  The red 
dashed lines indicate the location of the flows between y = 4 and the interface and 
the interface and y = 6. 

 

The dynamics of the flow field, as measured by the ascendency, is most sensitive to 

changes in the smallest flows.  Adjustments in the largest flows will certainly affect the 

ascendency of the flow field, but changes to the smallest flows (i.e. flows with the highest 

sensitivities) will have a greater impact on the ascendency. 
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3.1.4 Example 4:  Circular flow 

 

An incompressible fluid enclosed by a circular boundary (e.g. a cylinder), which 

is rotating at a constant velocity, Vo, has a laminar velocity profile described by, 

 

V = Vθ + Vr =
r
R

V0
 3.18 

 

where Vθ is the tangential velocity calculated at each grid point along a radius of length R 

(Figure 3-11).  For steady state laminar flow the radial velocity, Vr, is equal to zero (the 

axial velocity, Vz, is also equal to zero under these conditions).  The velocity varies from 

zero at the center to Vo at the boundary, and is calculated from (3.18) at 10 equally 

spaced grid points along 11 radii separated by about 32.7° around the circle, for a total of 

110 grid points at which the velocity is defined analytically. 
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Figure 3-11.  Schematic diagram of the velocity profile for steady state laminar flow 
of an incomopressible fluid induced by an outer boundary rotating at a constant 
velocity, V0.  The circle formed is of radius R, and the velocity at any point within 
the flow field, Vθ, is a function of R. 

 

Of the four examples described in this chapter, this is the only one that has true two-

dimensional flow; although, the calculations are simplified considerably by working in 

cylindrical coordinates instead of the Cartesian coordinates used in the other three 

examples.  Since the velocity at each fraction of R (i.e. r/R) is constant around the entire 

flow field, converting (3.18) from cylindrical coordinates into i-j space simply requires 

swapping i for r and N for R, 

 

Vθ =
i
N

V0
 3.19 

 

where N is the total number and i increments from zero to N.  Integrating (3.19) along 

each line segment connecting grid points i and i + 1 with respect to i results in an 

expression describing the flow, fij, between each cell, 
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fij =
iVθ

Ni

i+1

∫ di =
Vθ

2N
2i +1( )

 3.20 

 

3.1.4.1 Appling network analysis to laminar circular flow 

 

From the velocity matrix (Table 11) one can see that the velocity increases 

radially from zero at the center to a maximum of 3 cm s-1 at the boundary.  The velocities 

along concentric circles a distance i/R from the center are equal.  In actuality, the 

velocities along each concentric circle represent an average of the linear velocity profile 

between concentric bands that must exist in order for flow to be continuous along R.   

 

Table 11.  Velocity values for circular flow with N = 10 and V0 = 3 cm s-1.  Velocities 
are in cm s-1 and vary only along the radius represented by the index i. 

i j 0 1 2 3 4 5 6 7 8 9 10 

0 0 0 0 0 0 0 0 0 0 0 0 

1 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 0.30 

2 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 0.60 

3 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 0.90 

4 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20 

5 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50 

6 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 1.80 

7 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 2.10 

8 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 2.40 

9 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 2.70 

10 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 
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For laminar flow most entries into the flow matrix equal zero.  Examining all nonzero 

flows (Table 12) reveals that, like the velocities, the flows vary only with i, and are 

maximum at i = N along the circular boundary.  Each flow is calculated along a line 

joining two grid points, so only ten flows are calculated between the 11 grid point 

velocities (Table 11).  A three-dimensional contour plot of the flows with velocity 

increasing in the positive z-directions shows that the flows increase radially in all 

directions (Figure 3-12). 

 

 

Flow
 M

agnitude

Figure 3-12.  Flows, fij, in the flow field with a circular velocity profile increasing 
from the center to the outer boundary where the maximum velocity, V0, equals 3 cm 
s-1. 
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Table 12.  Flows for circular flow of with maximum velocity V0 = 3 cm s-1 at N = 10.  
Flows are calculated along the line joining grid points i and i + 1 and vary only 
along the radius represented by index i.  Values have units of cm3 s-1. 

i/i+1 j 0 1 2 3 4 5 6 7 8 9 10 

0/1 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 

1/2 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 

2/3 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 

3/4 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05 

4/5 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35 

5/6 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 1.65 

6/7 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 1.95 

7/8 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 2.25 

8/9 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 

9/10 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 
 

The total system throughput, f.., is 165 m3 s-1.  This is easily verified by summing all 

nonzero flows (Table 12).  Organization or the ordered component of the flow is 

measured by the AMI, which is equal to 6.508 bits of information.  The overall network 

ascendency, A, calculated as A = (AMI) x (f..), is 1,074 flow bits.  Identifying which 

flows make the greatest contribution to the A can be seen by plotting the distribution of 

the A (Figure 3-13) over the flow field.  As one might derive from examining the flow 

matrix, the flows with the greatest contribution to the A are located along the boundary of 

the flow field where the velocity is greatest.   
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Figure 3-13.  Contribution of each flow, fij, along a single radius in the circular flow 
field to the overall flow field ascendency.  Flow occurs only in the θ-direction and 
flow velocity, Vθ, is such that Vθ = 0 at r = 0, and Vθ is maximum at r = R = 10 m.  
Contributions to the ascendency correspond with the velocity and flow profiles. 

 

A similar plot of the distribution of the sensitivities of the A to individual flows along a 

single radius highlights those flows that exhibit the greatest resistance, or alternatively 

the least amount of structured activity, to the overall flow within the flow field (Figure 3-

14).  Areas with the highest sensitivity values are effectively acting as bottlenecks in a 

flow field.  The flows are all structured similarly (i.e. they all map concentric circles 

within the flow field), so it is the activity (i.e. the sum of the magnitudes of the flows) 

that differentiates the flows and dominates the sensitivities. 
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Figure 3-14.  Sensitivity of the ascendency to individual flows within the circular 
flow field along a single radius.  Flow is in the θ-direction and flow velocity, Vθ, is 
such that Vθ = 0 at r = 0, and Vθ = V0 = 3 cm s-1 at r = 10. 
 

Even though the velocity profile increases linearly as a function of R, both the A profile 

and the sensitivity of the A profile vary as a function of log2 in the radial direction.  This 

dependency is more pronounced in the sensitivities (Figure 3-14), which are not scaled by 

the individual flows, and explains why areas of low activity are highlighted in the 

calculation of the sensitivity of the A to each flow. 

 

3.2 Comparing the network analysis results of the four analytical examples 

 

All four examples were designed to enable a straightforward comparison of the 

network analysis results generated by each flow field.  Values of constants such as the 
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maximum velocity and variables such as the size of the grid applied to each flow field 

were purposefully chosen to remain the same in all four examples.  These constraints are 

certainly not essential for a comparison of network analysis results (Ulanowicz 1986a; 

Ulanowicz and Baird 1999), but they do serve to focus the comparison on the distinctions 

between the networks, and how those distinctions are represented by the network indices. 

 

The total system throughput for each of the four analytical examples is a function 

of the velocity profile across each flow field.  Summing all flows in a flow field is a 

holistic way of measuring the flow field activity, a characteristic represented by the f.., 

and in the case of the four analytical examples, indicates that the parabolic flow profile 

moves the largest volume of fluid per unit time (Table 13).  The f.. provides no indication 

of flow direction, and it is entirely conceivable to have a flow field with very high 

activity (f..) and no discernable overall flow; a highly turbulent flow field might be 

described in such a way.  

 

Table 13.  Network indices characterizing the four analytical flow fields. 

Flow Field  
f.. 

(cm3 s-1) 
AMI 
(bits) 

A 
(flow bits)

Maximum 
Sensitivity 

(bits) 
1. Linear 

Profile 165 6.508 1,074 10.103 

2. Parabolic 
Profile 220 6.620 1,456 8.617 

3. Adjacent 
Fluids 210 6.618 1,330 8.682 

4. Circular 
Flow 165 6.508 1,074 10.103 
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The AMI reports the amount of direction in the flow field, or alternatively, is a measure 

of how well organized the flows are in generating that activity.  Flow with a parabolic 

velocity profile exhibited the highest level of organization (Table 13) with an AMI only 

slightly greater than the flow of two adjacent immiscible fluids.  The higher viscosity of 

Fluid2 in the third example reduced the velocity in half of the flow field resulting in an 

asymmetric profile and ultimately in a less organized transfer of fluid, as in comparison 

to the second example (Table 13).  Recalling that the AMI is also referred to as the 

average mutual constraint (AMC), one may regard the velocity profile of the two adjacent 

fluids as being less constrained than the parabolic velocity profile. 

 

The example of circular flow differs only qualitatively from the linear velocity 

profile example (Table 12).  This is the case because the wrap around boundary 

conditions used in the linear profile example result in the same continuous flow normally 

characteristic only of circular flow.  Having equivalent velocity profiles results in 

identical network indices; and the two flow fields transfer medium with the same level of 

organization.  The highest sensitivity values are found in the two examples with linear 

flow profiles (Table 12).  Even though all four flow fields have at least one boundary 

where the velocity is zero (also the areas where the sensitivity is highest), the velocity of 

the non-linear flow profile examples increases more rapidly from i = 0 to i = 1, so the 

flows are greater and the sensitivities are less. 

 

As a point of reference, a fifth flow field example consisting of a single fluid 

flowing between two frictionless boundaries with a uniformly linear velocity profile 
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where Vx = 1.5 cm s-1 between y = 0 and y = R is analyzed as a network.  A velocity of 

1.5 cm s-1 is chosen because it is (or is quite close to) the average velocity for the velocity 

profiles discussed above.  For the uniform flow example, the f.. = 182 cm3 s-1 and the 

AMI = 6.781 bits resulting in an A of 1,234 flow bits.  Uniform flow represents the most 

highly constrained flow field, and thus an upper limit to the development of any flow 

field with the same basic characteristics (i.e. laminar flow between two parallel 

boundaries and wrap around conditions).  The uniform flow example is analogous to the 

maximally organized, minimally connected example from Chapter 1 (Figure 1-1). 
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Chapter 4.  Conclusion 
 

Basic generalized examples of fluid flow are modeled and represented as 

networks to demonstrate the applicability and potential benefits of network analysis to the 

characterization of complex systems of fluid flow, such as data from large eddy 

simulations. 

 

4.1 Summary of results 

 

The technique of cellular automata was used to create three simple flow fields that 

demonstrate a correlation between the ascendency index, A, and an increase in ordered or 

directional flow.  The correlation is maintained following the introduction of obstructions 

to the flow field designed to disturb and redirect the otherwise uniform flow.  In these 

cases, the ascendency index is used to highlight areas within the flow field exhibiting the 

greatest amount of ordered activity.  The flows making the greatest contribution to the 

system ascendency are the flows or pathways of greatest activity.  Calculating the 

sensitivity of the ascendency to individual flows highlights areas in a flow field that 

exhibit the least amount of ordered activity or the greatest resistance to flow.  Examining 

the contributions to the ascendency and the sensitivities of the ascendency for a given 

flow field reveals those flows that contribute the greatest to the organization of the flow 

and those flows that exhibit the greatest resistance to flow, respectively.  The highest 

sensitivity areas correspond with control points or bottlenecks in the flow fields. 
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In the second approach demonstrating the applicability of network analysis to 

fluid flow, four analytical examples, familiar to both oceanographers and fluid 

dynamicists, were modeled and their flows were analyzed as networks.  The examples are 

distinguished by their velocity profiles which are:  1) linear, 2) parabolic, 3) parabolic 

with two adjacent immiscible fluids, and 4) linear with circular flow.  Parabolic flow 

between two parallel boundaries resulted in the highest ascendency, and is characterized 

as the most organized flow field.  Dividing the flow field in half and assigning a slightly 

more viscous fluid to one half reduces the velocity in that half of the flow field.  A 

corresponding drop in the total system throughput (f..) and the average mutual 

information (AMI) was observed.  Since the ascendency is a product of these two 

quantities, a more pronounced reduction in the ascendency was also recoded.  In each of 

the four analytical examples, the highest sensitivity values corresponded well with the 

regions of the flow field one would intuitively associate with the areas of greatest shear 

stress.  These same areas can be described as exhibiting the greatest resistance to flow 

and should correspond equally well with bottlenecks to the flow in more complex flow 

fields.  

 

4.2 Further Research 
 

The flow fields analyzed as networks in this research are simple expressions of 

fluid flow.  To fully demonstrate the usefulness of network analysis to the 

characterization of fluid flow, actual flows derived from models that take into account the 

forces driving fluid motion must be analyzed.  To characterize turbulent flow and to 

contribute to the analysis of large eddy simulation data, network analysis must 
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accommodate flows occurring in three dimensions.  This not a strain on the technique; 

individual cells from a three-dimensional grid can be numbered consecutively from 0 to 

N and stored in a matrix just as easily as numbering cells in a two-dimensional grid.  The 

difficulty may come in interpreting the network analysis results of these more complex 

flow fields.  An understanding of how network analysis characterizes fluid flows is 

gained by first investigating simple examples like the ones described in this thesis, and 

then building on that understanding to the point where more complex and less intuitively 

obvious flows can be confidently described in terms of their network indices. 
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