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Memory systems today possess more complexity than ever. On one hand,

main memory technology has a much more diverse portfolio. Other than the main

stream DDR DRAMs, a variety of DRAM protocols have been proliferating in cer-

tain domains. Non-Volatile Memory(NVM) also finally has commodity main mem-

ory products, introducing more heterogeneity to the main memory media. On the

other hand, the scale of computer systems, from personal computers, server com-

puters, to high performance computing systems, has been growing in response to

increasing computing demand. Memory systems have to be able to keep scaling to

avoid bottlenecking the whole system. However, current memory simulation works

cannot accurately or efficiently model these developments, making it hard for re-

searchers and developers to evaluate or to optimize designs for memory systems.

In this study, we attack these issues from multiple angles. First, we develop a

fast and validated cycle accurate main memory simulator that can accurately model

almost all existing DRAM protocols and some NVM protocols, and it can be easily



extended to support upcoming protocols as well. We showcase this simulator by

conducting a thorough characterization over existing DRAM protocols and provide

insights on memory system designs.

Secondly, to efficiently simulate the increasingly paralleled memory systems,

we propose a lax synchronization model that allows efficient parallel DRAM simu-

lation. We build the first ever practical parallel DRAM simulator that can speedup

the simulation by up to a factor of three with single digit percentage loss in accuracy

comparing to cycle accurate simulations. We also developed mitigation schemes to

further improve the accuracy with no additional performance cost.

Moreover, we discuss the limitation of cycle accurate models, and explore

the possibility of alternative modeling of DRAM. We propose a novel approach that

converts DRAM timing simulation into a classification problem. By doing so we can

make predictions on DRAM latency for each memory request upon first sight, which

makes it compatible for scalable architecture simulation frameworks. We developed

prototypes based on various machine learning models and they demonstrate excellent

performance and accuracy results that makes them a promising alternative to cycle

accurate models.

Finally, for large scale memory systems where data movement is often the per-

formance limiting factor, we propose a set of interconnect topologies and implement

them in a parallel discrete event simulation framework. We evaluate the proposed

topologies through simulation and prove that their scalability and performance ex-

ceeds existing topologies with increasing system size or workloads.
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Chapter 1: Overview

Memory systems today exhibit more complexity than ever. On one hand, main

memory technology has a much more diverse portfolio. Other than the main stream

DDR DRAMs, LPDDR, GDDR, and stacked DRAMs such as HBM and HMC

have been proliferating not only in their specific domains, but also emerge with

cross domain applications. Non-volatile memories also have commodity products

in the market: Intel’s Optane (previously 3DXPoint) are available in the form of

DDR4 compatible DIMMs. This introduces more heterogeneity to the main memory

media. On the other hand, the scale of computer systems, from personal computers,

server computers, to high performance computing systems, has been increasing. The

memory systems have to be able to keep scaling in order not to bottleneck the whole

system. However, current memory simulation works cannot accurately or efficiently

model these developments, making it hard for researchers and developers to evaluate

or to optimize designs for memory systems.

In this work we address these issues from multiple angles.

First, to provide an accurate modeling tool for the diverse range of main mem-

ory technologies, we develope a fast and extendable cycle accurate main memory sim-

ulator, DRAMsim3, that can accurately model almost all existing DRAM protocols
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and some NVM protocols. We extensively validated our simulator against various

hardware models and measurements to ensure the simulation accuracy. DRAMsim3

also has state-of-the-art performance and features that no currently available sim-

ulators can offer. It can be easily extended to support upcoming protocols as well.

We showcase this simulator’s capability by conducting a thorough characterization

of various existing DRAM protocols and provide insights on modern memory system

designs. We introduce how we designed, implemented and validated the simulator

and the discovery we made from the memory characterization study in detail in

Chapter 2 and Chapter 3.

While our cycle accurate simulator offers the best performance and accuracy

of its kind, due to the fundamental limit of cycle accurate model, the simulation

performance still struggles to scale with the increasing channel-level parallelism of

modern DRAM. To address this issue, we explore the feasibility of bring paral-

lel simulation into the memory simulation world to gain speed. We proposed and

implemented the first practical parallel memory simulator, along with a lax syn-

chronization technique that we call MegaTick to boost parallel performance. In our

simulation experiments we show our parallel simulator can run up to 3x faster than

our cycle accurate simulator when simulating a 8-channel memory, with an average

of 1% loss in overall accuracy. We will expand this part in Chapter 5.

Moreover, to further push the boundary of memory simulation, and to over-

come the inherent limitation of cycle accurate simulation models, we explore al-

ternative modeling techniques. We introduce the novel idea of modeling DRAM

timing simulation as a classification problem, and hence solve it with a statistical
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and machine learning model. We prototyped a machine learning model that can

dynamically extract features from memory address streams, and it is trained with

the ground truth provided by a cycle accurate simulator. The model only needs

to be trained once before being used in any kind of workload, and thanks to its

dynamic feature extraction, it can be trained within seconds. This model runs up

to 200 times faster than a cycle accurate simulator and offers 97% accuracy in terms

of memory latency on average. We will further introduce this model in Chapter 6

with more details.

Finally, for larger scale systems like high performance computing systems,

where the performance is often dictated by data movement, we propose a new set

of high bisection bandwidth, low latency interconnect topologies to improve the

performance of data movement. Simulating large scale systems and our proposed

topology network requires distributed simulation tools, and therefore we implement

proposed topologies into a distributed parallel discrete event simulator. We then

run large scale simulations up to more than 100,000 nodes for both existing and

proposed topologies, and characterizing other factors that can be critical to system

performance such as routing and flow control, interface technology, and physical

link properties (latency, bandwidth). Detailed results and analysis can be found in

Chapter 7.

In brief, the contributions of this dissertation can be summarized as follows:

• We develop a state-of-the-art cycle accurate DRAM simulator that has the

best simulation performance and features among existing DRAM simulators.
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It is validated by hardware model and supports thermal simulation for stacked

DRAM as well.

• We conduct a thorough memory characterization over popular existing DRAM

protocols using cycle accurate simulations. Through the experiments we iden-

tify the performance bottleneck of memory intensive workloads and how mod-

ern DRAM protocols help reduce the performance overhead with increased

parallelism.

• We propose and build the first practical parallel DRAM simulator, coupled

with a relaxed synchronization scheme called MegaTick that helps boost the

parallel performance. We comprehensively evaluate the idea and show MegaT-

ick can deliver effective performance gain with modest accuracy loss for multi-

channel DRAM simulations.

• We discuss the limitations of cycle accurate DRAM simulation models, and

quantitatively demonstrate how cycle accurate models are holding back overall

simulation performance. We also showcase how cycle accurate models are

incompatible with modern architecture simulation frameworks.

• We propose and prototype the first machine learning based DRAM simulation

model. We convert the DRAM modeling problem into a multi-class classi-

fication problem for DRAM latencies, and develop a novel dynamic feature

extraction method that saves training time and improves model accuracy.

• Our machine learning prototype model runs up to about 300 times faster than
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cycle accurate model, predicts 97% memory request latencies accurately, and

it can be easily integrated into modern architecture simulation frameworks. It

opens up a completely new pathway to future DRAM modeling.

• We propose efficient interconnect topologies for large scale memory systems.

We implement our proposed topologies into a discrete parallel event simulation

framework, and evaluate with existing topologies through simulation. Our

results show the proposed topologies outperforms traditional topologies at

large network scale and workloads.
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Chapter 2: Cycle Accurate Main Memory Simulation

In this chapter we introduce the main memory technology background, its

modeling technique, and how we design and develop our cycle accurate main memory

simulator.

2.1 Memory Technology Background

DRAM
Arrays

sense amps

row
 decoder

col decoder da
ta

 b
uff

er

Drivers & 
Receivers

DRAM “Core”

pin
pin
pin
pin

bits/s bits/s

Data-I/O Subsystem

wordlines (rows)

bitlines 
(columns)

The number of data bits in this 
buffer need not equal the number 
of data pins, and in fact having a 
buffer 2x or 4x or 8x wider than the 
number of pins (or more) is what 
allows data rates to increate 2x, 
4x, 8x, or more.

Figure 2.1: Stylized DRAM internals, showing the importance of the data buffer between

DRAM core and I/O subsystem. Increasing the size of this buffer, i.e., the

fetch width to/from the core, has enabled speed increases in the I/O subsystem

that do not require commensurate speedups in the core.

Dynamic Random Access Memory (DRAM) uses a single transistor-capacitor
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pair to store each bit. A simplified internal organization is shown in Figure2.1,

which indicates the arrangement of rows and columns within the DRAM arrays and

the internal core’s connection to the external data pins through the I/O subsystem.

The use of capacitors as data cells has led to a relatively complex protocol for

reading and writing the data, as illustrated in Figure2.2. The main operations

include precharging the bitlines of an array, activating an entire row of the array

(which involves discharging the row’s capacitors onto their bitlines and sensing the

voltage changes on each), and then reading/writing the bits of a particular subset

(a column) of that row [2].

precharge array activate row access column

~15ns (tRP) ~15ns (tRCD) ~15ns (tCL) 1 burst
8 beats
4 cycles
1–10ns

CMD bus:

DATA bus:
DRAM state:

PRE ACT CAS

Constrained by physical limitations (e.g., time to send 
pulse down length of polysilicon, etc.)

Figure 2.2: DRAM read timing, with values typical for today. The burst delivery time is

not drawn to scale: it can be a very small fraction of the overall latency. Note:

though precharge is shown as the first step, in practice it is performed at the

end of each request to hide its overhead as much as possible, leaving the array

in a precharged state for the next request.

Previous studies indicate that increasing DRAM bandwidth is far easier than

decreasing DRAM latency [2–6], and this is because the determiners of DRAM

latency(e.g., precharge, activation, and column operations) are tied to physical con-

stants such as the resistivity of the materials involved and the capacitance of the
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storage cells and bitlines. Consequently, the timing parameters for these opera-

tions are measured in nanoseconds and not clock cycles; they are independent of

the DRAM’s external command and data transmission speeds; and they have only

decreased by relatively small factors since DRAM was developed (the values have

always been in the tens of nanoseconds).

The most significant changes to the DRAM architecture have come in the

data interface, where it is easier to speed things up by designing low-swing signaling

systems that are separate from the DRAM’s inner core [7]. The result is the modern

DDR architecture prevalent in today’s memory systems, in which the interface and

internal core are decoupled to allow the interface to run at speeds much higher

than the internal array-access circuitry. The organization first appeared in JEDEC

DRAMs at the first DDR generation, which introduced a 2n prefetch design that

allowed the internal and external bandwidths to remain the same, though their

effective clock speeds differed by a factor of two, by “prefetching” twice the number

of bits out of the array as the number of data pins on the package. The DDR2

generation then doubled the prefetch bits to 4x; the DDR3 generation doubled it

to 8x, and so on. This is illustrated in Figure2.1, which shows the decoupling data

buffer that lies between the core and I/O subsystem. The left side of this buffer (the

core side) runs slow and wide; the right side (the I/O side) runs fast and narrow;

the two bandwidths are equal.

This decoupling has allowed the DRAM industry to focus heavily on improving

interface speeds over the past two decades.As shown in Figure2.2, the time to trans-

mit one burst of data across the bus between controller and DRAM is measured in
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cycles and not nanoseconds, and, unlike the various operations on the internal core,

the absolute time for transmission has changed significantly in recent years. For

instance, asynchronous DRAMs as recent as the 1990s had bus speeds in the range

of single-digit Mbps per pin; DDR SDRAM appeared in the late 1990s at speeds of

200 Mbps per pin, two orders of magnitude faster; and today’s GDDR5X SGRAM

speeds, at 12 Gbps per pin, are another two orders of magnitude faster than that.

Note that every doubling of the bus speed reduces the burst time by a factor of two,

thereby exacerbating the already asymmetric relationship between the data-access

protocol (operations on the left) and the data-delivery time (the short burst on the

right).

The result is that system designers have been scrambling for years to hide

and amortize the data-access overhead, and the problem is never solved, as every

doubling of the data-bus speed renders the access overhead effectively twice as large.

This has put pressure in two places:

• The controller design. The controller determines how well one can separate

requests out to use different resources (e.g., channels and banks) that can run

independently, and also how well one can gather together multiple requests to

be satisfied by a single resource (e.g., bank) during a single period of activation.

• Parallelism in the back-end DRAM system. The back-end DRAM sys-

tem is exposed as a limitation when it fails to provide sufficient concurrency

to support the controller. This concurrency comes in the form of parallel

channels, each with multiple ranks and banks.

9



It is important for system design to balance application needs with resources

available in the memory technology. As previous research has shown, not all appli-

cations can make use of the bandwidth that a memory system can provide [8], and

even when an application can make use of significant bandwidth, allocating that re-

source without requisite parallelism renders the additional bandwidth useless [6]. In

simpler terms, more does not immediately translate to better. This chapter studies

which DRAM architectures provide more, and which architectures do it better. The

following sections describe the DRAM architectures under study in terms of their

support for concurrency and parallel access.

DDR DRAM protocols have evolved over the past couple of decades with each

successive generation more or less doubling the maximum supported theoretical pin

bandwidth of the previous generation. This has primarily been achieved either by

making the DRAM pin interface wider or by increasing the frequency at which the

data is transmitted across the DDR interface. Each of these methods have their

own limitations in terms of feasibility and power budget. For most of the modern

systems with on die memory controller and off-package DDR DIMMs, the maximum

width of the DDR interface is fundamentally limited by how many I/O pins the

CPU die allocates for interconnection with the DDR DIMMs. Since the number of

I/O pins on the CPU die is a scarce resource, the DDR bus width has remained

the same for the DDR2, DDR3, and DDR4 class of memories with the extra I/O

pins allocated utilized to increase the number of DDR channels supported by the

CPU. GDDR memories have traditionally had a wider DRAM-device interface to

support higher bandwidths at relatively low capacities. On-package memories such
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as High Bandwidth Memory (HBM) aren’t constrained by the CPU I/O pins and

hence tend to utilize extremely wide buses to support high bandwidth requirements.

Increasing the frequency of data transmission to support higher bandwidths comes

at cost an increase in power consumption and a decrease in reliability. The doubling

of maximum supported pin bandwidth across DDR2, DDR3, DDR4 generation has

primarily been achieved through an increase in the data transmission frequency.

While a higher supported maximum theoretical pin bandwidth for a given protocol

has the potential to increase the overall application performance, it only tells part

of the story. This maximum theoretical pin bandwidth is only achievable if there is

data always available at the I/O buffers to be transmitted across the DDR interface.

CLK
CLK#
CMD ACT CAS

ADDR ROW COL

DATA D0 D1 D2 D3 D0 D1 D2 D3

CAS

COL

DQS

row activation
to rank n

column access 
to rank n

column access 
to rank m, m ≠ n

one-cycle bubble inserted between 
back-to-back reads to different 
ranks (DQS hand-off)

tRCD tCL or tCAS tBurst

Figure 2.3: DDR SDRAM Read timing.

2.1.1 DDRx SDRAM

As mentioned above, the modern DDRx SDRAM protocol has become wide-

spread and is based on the organization shown in Figure 2.1, which decouples the

I/O interface speed from the core speed, requiring only that the two bandwidths on

either side of the internal data buffer match. One of the distinguishing features of
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Figure 2.4: DDRx DIMM Bus

DDRx is its data transmission, which occurs on both edges of a data clock (double

data rate, thus the name), the data clock named the DQS data-strobe signal. DQS

is source-synchronous, i.e, it is generated by whomever is driving the data bus, and

the signal travels in the same direction as the data. The signal is shown in Figure2.3,

which presents the timing for a read operation.

In our simulations, we use a DIMM organization as shown in Figure2.4: a

64-bit data bus comprising eight x8 DRAMs.

16 bits
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16 bits
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Figure 2.5: LPDDR Bus
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2.1.2 LPDDRx SDRAM

Low Power DDR SDRAM makes numerous optimizations to achieve the same

bandwidth as DDRx, in the same multi-drop organizations (e.g. multi-rank DIMMs),

but at a significantly reduced power cost. Optimizations include removing the DLL,

strict usage of the DQS strobe, and improved refresh. Since the beginning, DDRx

SDRAM has included a delay-locked loop (DLL), to align the DQS and data output

of the DRAM more closely with the external clock [2]. Providing the DLL allowed

system designers to forgo using the source-synchronous data strobe DQS and instead

use the system’s global clock signal for capturing data, thereby making a system

simpler. The downside is that the DLL is one of the most power-hungry components

in a DDRx SDRAM. However, some designers were perfectly content to design more

complex systems that would use the DQS strobe and eliminate the DLL, resulting in

lower power dissipation. Thus the LPDDR standard was born: among other power

optimizations, Low Power DDR SDRAM eliminated the DLL and required that sys-

tem designers use the DQS data strobe for the capture of data, because the output

of the DRAM would no longer be tightly aligned with the system clock. Another

optimization for LPDDR4 is that each device is not only internally multi-banked,

it is internally multi-channel [9]. Each device has two control/address buses, two

data buses, and the specification describes the Quad-Die Quad-Channel Package: it

has four dies and four separate buses, each 16 bits wide, with 16 bits coming from

each of two devices in an overlapped, dual-rank configuration. This is an incredible

amount of parallelism in a small, low-power package and approaches the parallelism
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(if not the bandwidth) of HBM.

In our simulations, we model LPDDR4 in two different ways that are common:

first, we use a DIMM like that in Figure2.4. Second, we simulate the the Quad-Die,

Quad-Channel Package shown in Figure2.5.

G
DD

R

G
DD

R

64-bit data bus
48 GB/s

(each DRAM contributes 32 bits)

Figure 2.6: GDDR Bus

2.1.3 GDDR5 SGRAM

The DDRx standards have provided high bandwidth and high capacity to

commodity systems (laptops, desktops), and the LPDDRx standards have offered

similar bandwidths at lower power. These serve embedded systems as well as super-

computers and data centers that require high performance and high capacity but

have strict power budgets.

The GDDRx SGRAM standards have been designed for graphics subsystems

and have focused on even higher bandwidths than DDRx and LPDDRx, sacrificing

channel capacity. SGRAMs are not specified to be packaged in DIMMs like the
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DDRx and LPDDRx SDRAMs. Each SGRAM is packaged as a wide-output de-

vice, typically coming in x16 or x32 datawidths, and they often require significant

innovations in the interface to reach their aggressive speeds.

For example, GDDR5 runs up to 6Gbps per pin, GDDR5X is available at

twice that, and the protocols require a new clock domain not seen in DDRx and

LPDDRx standards: Addresses are sent at double-data-rate on the system clock,

and the data strobe now runs a higher frequency than the system clock, as well as

no longer being bi-directional. This has the beneficial effect of eliminating the dead

bus cycle shown in Figure2.3 as the “DQS hand-off,” as the strobe line need not idle

if it is never turned around. Instead of being source-synchronous, the data strobe

is unidirectional and used by the DRAM for capturing data. For capturing data at

the controller side during data-read operations, the controller trains each GDDR5

SGRAM separately to adjust its data timing at a fine granularity relative to its

internal clock signal, so that the data for each SGRAM arrives at the controller in

sync with the controller’s internal data clock.

In our simulations, we use an organization as shown in Figure2.6: a 64-bit

data bus made from four x16 GDDR5 chips placed side-by-side.

2.1.4 High Bandwidth Memory (HBM)

JEDEC’s High Bandwidth Memory uses 3D integration to package a set of

DRAMs; it is similar to the DIMM package shown in Figure2.7 in that it gathers

together eight separate DRAM devices into a single parallel bus. The difference is
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3D DDR

1024-bit data bus, 128 or 256 GB/s
(subdivided into 4, 8, or 16 sub-channels)

(each DRAM contributes 128 bits)

Figure 2.7: HBM Interface

that HBM uses through-silicon vias (TSVs) as internal communication busses, which

enables far wider interfaces. Whereas a DDRx-based DIMM like that in Figure2.4

gangs together eight x8 parts (each part has 8 data pins), creating a bus totaling 64

bits wide, HBM gangs together eight x128 parts, creating a bus totaling 1024 bits

wide. This tremendous width is enabled by running the external communications

over a silicon interposer, which supports wire spacing far denser than PCBs. This

approach uses dollars to solve a bandwidth problem, which is always a good trade-

off. JEDEC calls this form of packaging “2.5D integration.”

The 8 channels of HBM can operate individually or cooperatively. HBM2

standard also introduced pseudo-channel, which further divide one channel into two

pseudo channels.

2.1.5 Hybrid Memory Cube (HMC)

Hybrid Memory Cube is unique in that, unlike all the other DRAM architec-

tures studied herein, the DRAM interface is not exported; instead, HMC packages
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Figure 2.8: HMC Interface

internally its own DRAM controllers. As shown in Figure2.8, it includes a 3D-

integrated stack of DRAMs just like HBM, but it also has a non-DRAM logic die

at the bottom of the stack that contains three important things:

1. A set of memory controllers that control the DRAM. HMC1 has 16 internal

controllers; HMC2 has up to 32.

2. The interface to the external world: a set of two or four high-speed ports that

are independent of each other and transmit a generic protocol, so that the

external world need not use the DRAM protocol shown in Figure2.2. Link

speed and width can be chosen based on needs.

3. An interconnect that connects the I/O ports to the controllers. Communica-

tion is symmetric: requests on any link can be directed to any controller, and

back.
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2.1.6 DRAM Modeling

As introduced in Section 2.1, there is a set of timing constraints on how DRAM

commands can be issued, and the new memory protocols only increase such con-

straints. The DRAM controller has the sole responsibility of bookkeeping these

commands and the constraints to ensure timing correctness and no bus conflicts.

On top of this, to maximize the performance and fairness, the controller also has

the responsibility of scheduling the requests efficiently. Studies have shown properly

designed scheduling algorithms can lead to huge performance gains [10]. Therefore,

an accurate modeling of a DRAM controller should take into account both correct-

ness and scheduling performance, and this is why we not only need to design our

simulator to be generalized to simulate all DRAM protocols with correct DRAM

timings, but also need to be specific to fully model the features that differentiate

the protocols.

2.2 Simulator Design & Capability

In this section we introduce the design and features of our new cycle accurate

DRAM simulator, DRAMsim3, and how we bridge the architecture simulation with

thermal modeling.

2.2.1 Simulator Design & Features

We build the simulator in a modular way that it not only supports almost every

major DRAM technologies existing today, but it also supports a variety of features
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Figure 2.9: Software Architecture of DRAMsim3

that comes along with these technologies. The idea is first to build a generic param-

eterized DRAM bank model which takes DRAM timing and organization inputs,

such as number of rows and columns, the values of tCK, CL, tRCD, etc. Then we

build DRAM controllers that initialize banks and bankgroups according to which

DRAM protocol it is simulating, and enable controller features only available on

that DRAM protocol. For example, dual-command issue is only enabled when sim-

ulating an HBM system, while t32AW enforcement is only enabled when simulating

a GDDR5 system. On top of the controller models, we build the system-level inter-

faces to interact with a CPU simulator or a trace frontend. This interface can also

be extended to add additional functionality, and we add a cycle accurate crossbar

and arbitration logic specifically for HMC to faithfully simulate its internals. The
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system diagram is shown as Figure 2.9.

This modular hierarchical design allows us to add basic support for new pro-

tocols as simple as adding a text configuration file without compiling the code. It

also enables us to customize protocol-specific features modularly without affecting

other protocols. In our code repository, we ship more than 80 configuration files for

various DRAM protocols.

As for the controller design, we made the following design choices:

• Scheduling and Page Policy: A First-Ready–First-Come-First-Served (FR-

FCFS) [10] scheduling policy. FR-FCFS can reduce the latency and improve

throughput by scheduling overlapped DRAM commands. We also use open-

page policy with row-buffer starvation prevention improves fairness. We apply

this scheme to all memory controllers except for HMC, because HMC only

operates in strict close-page mode.

• DRAM Address Mapping: Our address mapping offers great flexibility,

and users can specify the bit fields in arbitrary order. As for default ad-

dress mapping schemes, to reduce row buffer conflicts and exploit parallelism

among DRAM banks, we interleaved the DRAM addresses in the pattern of

row-bank-bankgroup-column (from MSB to LSB). For configurations with mul-

tiple channels or ranks, we also interleaved the channel/rank bits in between

the row-address bits and bank-address bits. Note that DDR3 has no bank

group, and so this is ignored. Another exception: HMC enforces a close-page

policy that does not take advantage of previously opened pages, and thus
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putting column address bits on the LSB side would not be beneficial. There-

fore we adopt the address-mapping scheme as default recommended by the

HMC specification, which is row-column-bank-channel (from MSB to LSB).

• HMC Interface: Different from all other DRAM protocols, HMC uses high-

speed links that transmit a generic protocol between the CPU and HMC’s

internal vault controllers. To accurately simulate this behavior, we modeled

a crossbar interconnect between the high-speed links and the memory con-

trollers. The packets are broken down to flits to be sent across the internal

crossbar, which has two layers: one for requests and another for responses, to

avoid deadlocks. We use FIFO arbitration policy for the crossbar control.

• Refresh Policy: We have a refresh generator that can raise refresh request

based on per-rank refresh or per-bank refresh, depending on the user’s input.

The refresh policy is independent of how the controller handles the refresh,

and therefore new refresh policies can be easily integrated as well.

DRAMsim3 uses Micron’s DRAM power model [11] to calculate the power

consumption on the fly, or it can generate a command trace that can be used as

inputs for DRAMPower [12]. The power data can also be fed into an optional

thermal model running side-by-side or standalone; we will further illustrate it in

Section 2.2.2.

The software architecture of the simulator is shown in Figure 2.9 and the

protocols and features supported are listed in Table 2.1.

DRAMsim3 can be built as a shared library that can be integrated into popular
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Table 2.1: Supported Protocols & Features of DRAMsim3

Protocols Features

DDR3

DDR4

DDR5

GDDR5

GDDR5X

LPDDR3

LPDDR4

STT-MRAM

HBM

HMC

Bankgroup timings

Self-refresh timings

(GDDR5) t32AW

(GDDR5X) QDR mode

Bank-level refresh

(HBM) Dual-command issue

(HMC) High-speed link simulated

(HMC) Internal X-bar simulated

Fine-grained flexible address mapping

CPU simulators or simulation frameworks such as SST [13], ZSim [14] and Gem5 [15]

as their backend memory simulator. We will open-source the code repository, along

with the glue code to work with above stated simulators.

2.2.2 Bridging Architecture and Thermal Modeling

Fine-grained thermal simulation can be time consuming due to the amount of

calculations need to be done. Therefore, we offer the freedom to adjust the granular-

ity in both spatial and temporal domains so that the user can chose accordingly and

balance the simulation speed versus accuracy. For spatial granularity, each DRAM
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die is divided into smaller grids that in reality would correspond to DRAM subar-

rays (shown as Figure 2.11 (c) ). By default it’s 512 × 512 cells but users can also

use larger grids to speed up simulation with less accuracy. For temporal granularity,

the transient thermal calculation is done once per epoch, and the epoch length can

be configured as an arbitrary number of DRAM cycles.

During each thermal epoch, the thermal module needs to know A) how much

energy is consumed on that die, and B) what is the energy distribution (in phys-

ical location). We use Micron’s DDR power model to calculate power, and given

the time in cycles, we can calculate energy. The energy can be broken down into

per-command energy (e.g. activation, precharge, read and write) and background

energy. We assign those per-command energy values only to those locations that

the command concerns, for instance, we only distribute the activation energy to

wherever the activated row is on the die. Then we distribute the background energy

across the whole die evenly.

To know exactly the location to map the per-command energy, the physical

layout of the DRAM circuit needs be known. Unfortunately, most of the DRAM

circuit designs and layouts are proprietary information that is not publicly available.

According to the reverse-engineered results shown in a recent research [16], DRAM

manufacturers obfuscate DRAM cell locations by remapping the address bits. I.e.

the DRAM address sent by the controller is remapped internally in the DRAM

circuitry, and as a result, the row and column in the controller’s view may end up

in a different physical row and column on the DRAM die. For example, if, like [16]

discovered, the column address sent by controller is internally decoded as:
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C10...C3C2C1C0 → C10...C4C2C1C0C3

where Ci is the ith bit of column address, the controller’s view of columns 8, 9

and 10 would actually be physical columns 1, 3, and 5. Note that this rearranging is

transparent to DRAM controller and works independently from the address mapping

that controller has to perform.

To accurately model this, we implement a location mapping function which

allows users to input any arbitrary address bits location remapping schemes. e.g. If

an DRAM part has 4 bank address bits, 15 row address bits, and 10 column address

bits, the total number of allowed location mapping schemes is (4+15+10)! ≈ 8.8430.

Therefore, while we provide a default mapping scheme, the users can always change

the mapping scheme to meet a specific circuit design.

…

Row 2

Row 1

Row 0

Columns 0 1 2 … 8 9 10 …

…

Row 2

Row 1

Row 0

Columns 0 1 2 3 4 5 …

(a) Column 8-10 in DRAM Controller’s view (b) Actual physical columns after mapping

Figure 2.10: An example of how DRAM internal structures can be rearranged. (a) shows

column 8–10 in DRAM controller’s view (b) show the corresponding physical

columns internally in DRAM subarrays.
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2.2.3 Thermal Models

Given that our functional model can simulate a variety of DRAM protocols

including both stacked and planar designs, the thermal models differentiate for each

case in order to achieve more accuracy. For 3D DRAMs ( HMCs, HBMs) as il-

lustrated in Figure 2.11(a), the temperature of each stacked die is estimated. For

2D DRAMs, however, since a memory module comprises several DRAM devices

which are separated from each other in distance (Figure 2.11 (b)), we assume all

the DRAM devices in a rank have the same thermal condition, and they are inde-

pendent when calculating the temperature. Therefore, DRAMsim3 only estimates

the temperature for a single DRAM device per rank even though it simulates the

function for the whole memory module. We assume each DRAM die (or DRAM

device) comprises three layers: active layer, metal layer and dielectric layer. The

power is generated from the active layer and is dissipated to the ambient through

a silicon substrate (as illustrated in Figure 2.11(c)). We assume other surfaces of

the device are adiabatic. In the following, we will introduce the thermal modeling

method in detail.

2.2.3.1 Transient Model

We follow the energy balance method [17] to model the temperature. In

this technique, the dies are divided into small volume elements (called thermal grids)

as illustrated in Figure 2.11(c). Then each thermal grid is modeled as a nodal point

and the heat conduction in the DRAM circuit is modeled as shown in Figure 2.12.
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Figure 2.11: Illustration of (a) the 3D DRAM, (b) memory module with 2D DRAM devices

and (c) layers constituting one DRAM die

Each pair of adjacent nodal points is connected with a thermal resistor (Rvert,

Rlat) which indicates a heat conduction path between the two nodes. The thermal

resistance is calculated according to the material’s thermal conductivity (k) and the

geometrical dimension of the related thermal grids. As shown in Figure 2.12, R1,2
lat =

∆X/2
k1∆Y ∆Z

+ ∆X/2
k2∆Y ∆Z

. Rvert is calculated similarly. For the node that connects to the

ambient, the corresponding resistance is calculated as Ramb = ∆Z/2
k3∆X∆Z

. Besides the

thermal resistor, each nodal point is connected with a thermal capacitor (C) which

represents the ability of the thermal grid to store the thermal energy. Given the

specific heat capacity (Ch) of the material of a thermal grid, the related capacitance

is calculated as C = ρCh×∆X∆Y∆Z (where ρ is the density of the material within

the thermal grid). For each thermal grid on the active layer, there is a heat source

(qs) connected to the nodal point. qs represents the heat generation rate within the

thermal grid and is calculated based on the power dissipated in that grid. Given

the above information, we can estimate the temperature of a node, which represents

the average temperature within the corresponding thermal grid.
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Figure 2.12: Illustration of the thermal model

Suppose there are totally N thermal grids. Let P ∈ RN and T ∈ RN represent

the power and temperature for all grids, respectively; G ∈ RN×N represents the

matrix of thermal conductance which is calculated using the thermal resistance;

C ∈ RN×N is a diagonal matrix with each element in the diagonal representing the

thermal capacitance of the grid. Then the temperature at time t can be calculated

by solving the following equation:

GT + P = C
dT

dt
. (2.1)

In practice, the transient temperature profile is calculated every power sam-

pling epoch which is defined by the user. At the end of each epoch, we estimate

the average power profile (i.e. P ) during this epoch. This P , together with the

temperature at the end of previous epoch (Tt−1), is used to calculate the current

temperature (Tt). In DRAMsim3, we use explicit method [17] to get the solution.

This method subdivides the epoch into small time steps (∆t) and calculates the
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temperature for each ∆t iteratively. Tt is calculated at the last time step. In or-

der to guarantee the convergence, this method requires the time step to be small

enough:

∆t ≤ Ci,i

Gi,i

∀i = 0, 1, 2, ..., N − 1 (2.2)

In our simulator, users can specify the thermal parameters (including the ther-

mal conductivity, thermal capacitance etc. ), the dimension of each layer in the

DRAM, the size of a thermal grid and the length of a power sampling epoch. Given

the above information, G and C will be fixed. Therefore, we only need to calcu-

late G, C and ∆t (i.e. the proper time step) for one time at the beginning of the

simulation.

2.2.3.2 Steady State Model

At the end of simulation, DRAMsim3 also estimates the steady-state tem-

perature profile using the average power profile during the period of simulation.

The steady-state thermal model only contains the resistors; hence Equation 2.1 is

reduced to:

GT + P = 0. (2.3)

Note that Equation 2.3 is a linear equation set, and G is a sparse matrix [17]. This

equation is solved using SuperLU [18], which provides a library to solve large sparse

linear equations.
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Figure 2.13: (a) The original power profile, (b) the transient result for for the peak tem-

perature, (c) the temperature profile at 1s calculated using our thermal model

and (d) the temperature profile at 1s calculated using the FEM method

2.2.3.3 Thermal Model Validation

The proposed thermal model is validated against the Finite Element Method

(FEM) results. We use ANSYS to perform the FEM simulation. We use the ther-

mal model to estimate the temperature for a multi-core processor die. The power

profile of the multi-core processor is generated based on [19] and is illustrated in Fig-

ure 2.13(a) (Total power equals to 18W). Note that, although the processor power

is used to validate the thermal model, this model is applicable to the DRAM power.

This processor die contains three layers as illustrated in Figure 2.11(c). The sim-
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ulation is taken for 1.6s. Before 1s, the processor power stays constant as shown

in Figure 2.13(a). After 1s, the processor power is reduced by 75%. Figure 2.13(b)

shows the transient peak temperature using our model and the FEM simulation.

Figure 2.13(c) and (d) represent the temperature profile at 1s acquired using our

model and the FEM method, respectively. According to the figure, the result of our

model accurately matches the FEM result.

2.3 Evaluation

2.3.1 Simulator Validation

Other than the thermal model validation described in Section 2.2.3.3, we also

validated our DRAM timings against Micron Verilog models. We take a similar

approach as [20], that is, feeding request traces into DRAMsim3, we output DRAM

command traces and convert them into the format that fits into Micron’s Verilog

workbench. We ran the Verilog workbench through ModelSim Verilog Simulator and

no DRAM timing errors were produced. We not only validated the DDR3 model as

previous works did, but we also validated the DDR4 model as well. DRAMsim3 is

the first DRAM simulator to be validated by both models, to our knowledge.

We also use DRAMsim3 to conduct a thorough memory characterization study

of various memory protocols; the results can be found later in Chapter 3.
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2.3.2 Comparison with Existing DRAM Simulators

We compare DRAMsim3 with existing DRAM simulators including DRAM-

Sim2 [20], Ramulator [21], USIMM [22] and DrSim [23]. These are open sourced

DRAM simulators that can run as standalone packages with trace inputs, making

it viable for us to conduct a fair and reproducible comparison.

Each simulator is compiled by clang-6.0 with O3 optimization on their latest

publicly released source code (except for USIMM where we use officially distributed

binary). We use randomly generated memory request traces for all these simulators.

The requests are exactly the same for each simulator, while only the trace format

is adjusted to work with each specific simulator. The read to write request ratio

is 2:1. Since DDR3 is the only protocol all tested simulators support, we run each

simulator with a single channel, dual rank DDR3-1600 configuration and each has

the exact same DRAM structures and timing parameters. We also made sure each

simulator has comparable system parameters such as queue depth.

We measure the host simulation time for each simulator to finish processing

10 million requests from the trace, to quantify simulation performance. The results

are shown in Figure 2.14. In terms of simulation speed, DRAMsim3 offers the best

simulation performance among the contestants: it is on average 20% faster than

DRAMSim2, the next fast DRAM simulator, and more than twice as fast as the

other simulators in both random and stream request patterns.

We also examine how many simulated cycles it takes for each simulator to finish

10 million random and stream requests. This is an indicator of the throughput
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Figure 2.14: Simulation time comparison for 10 million random & stream requests of dif-

ferent DRAM simulators

or bandwidth provided by the memory controllers simulated by each simulator.

For instance, the fewer simulated cycles it takes for a simulator to simulate 10

million requests, the higher the bandwidth its simulated controller will provide.

The results are shown in Figure 2.15. DRAMsim3 is on par with other simulators in

this measurement, indicating that the scheduler and controller design in DRAMsim3

is as efficient as the controller design in other simulators.

2.4 Conclusion

In this chapter we present DRAMsim3, a fast, validated, thermal-capable

DRAM simulator. We introduced the architectural and thermal modeling capa-

bilities of DRAMsim3. Through the evaluations we demonstrated the validation of
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ferent DRAM simulators

the simulator, and showcased the unparalleled simulation performance of DRAM-

sim3 with uncompromising simulator design.
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Chapter 3: Performance and Power Comparison of Modern DRAM

Architectures

3.1 Introduction

In response to the still-growing gap between memory access time and the

rate at which processors can generate memory requests [24, 25], and especially in

response to the growing number of on-chip cores (which only exacerbates the prob-

lem), manufacturers have created several new DRAM architectures that give today’s

system designers a wide range of memory-system options from low power, to high

bandwidth, to high capacity. Many are multi-channel internally. In this chapter,

we present a simulation-based characterization of the most common DRAMs in

use today, evaluating each in terms of its effect on total execution time and power

dissipation.

We use DRAMsim3 to simulate nine modern DRAM architectures: DDR3 [26],

DDR4 [27], LPDDR3 [28], and LPDDR4 SDRAM [9]; GDDR5 SGRAM [29]; High

Bandwidth Memory (both HBM1 [30] and HBM2 [31]); and Hybrid Memory Cube

(both HMC1 [32] and HMC2 [33]). The DRAM command timings are validated, and

the tool provides power and energy estimates for each architecture. To obtain ac-
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curate memory-request timing for a contemporary multicore out-of-order processor,

we integrate our code into gem5 and use its DerivO3 CPU model [15]. To highlight

the differences inherent to the various DRAM protocols, we study single-channel

(and single-package, for those that are multi-channeled within package) DRAM sys-

tems. Doing so exposes the fundamental behaviors of the different DRAM protocols

& architectures that might otherwise be obscured in, for example, extremely large,

parallel systems like Buffer-on-Board [34] or Fully Buffered DIMM [35] systems.

This chapter asks and answers the following questions:

• Previous DRAM studies have shown that the memory overhead can be well

over 50% of total execution time (e.g., [5, 6, 36]); what is the overhead today,

and how well do the recent DRAM architectures combat it? In particular, how

well do they address the memory-latency and memory-bandwidth problems?

As our results show, main memory overheads today, for single-rank organi-

zations, are still 42–75% for nearly all applications, even given the relatively

modest 4-core system that we study. However, when sufficient parallelism is

added to the memory system to support the bandwidth, which can be as simple

as using a dual-rank organization, this overhead drops significantly. In par-

ticular, the latest high-bandwidth 3D stacked architectures (HBM and HMC)

do well for nearly all applications: these architectures reduce the memory-

stall time significantly over single-rank DDRx and LPDDR4 architectures,

reducing 42–75% overhead down to less than 30% of total execution time.

These architectures combine into a single package all forms of parallelism in
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the memory system: multiple channels, each with multiple ranks/banks. The

most important effect of these and other highly parallel architectures is to

turn many memory-bound applications to compute-bound applications, and

the total execution time for some applications can be cut by factors of 2–3x.

• Where is time and power spent in the DRAM system?

For all architectures but HBM and HMC, the majority of time is spent waiting

in the controller’s queues; this is true even though the workloads represent only

a small number of cores. Larger systems with dozens or hundreds of cores

would tend to exacerbate this problem, and this very phenomenon is seen, for

example, in measured results of physical KNL systems [37]. For HBM and

HMC systems, the time is more evenly distributed over queuing delays and

internal DRAM operations such as row activation and column access.

Power breakdowns are universal across the DRAM architectures studied: for

each, the majority of the power is spent in the I/O interface, driving bits over

the bus. This is an extremely good thing, because everything else is overhead,

in terms of power; this result means that one pays for the bandwidth one

needs, and the DRAM operations come along essentially for free. The most

recent DRAMs, HMC especially, have been optimized internally to the point

where the DRAM-specific operations are quite low, and in HMC represent

only a minor fraction of the total. In terms of power, DRAM, at least at these

capacities, has become a pay-for-bandwidth technology.

• How much locality is there in the address stream that reaches the primary
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memory system?

The stream of addresses that miss the L2 cache contains a significant amount

of locality, as measured by the hit rates in the DRAM row buffers. The hit

rates for the applications studied range 0–90% and average 39%, for a last-

level cache with 2MB per core. (This does not include hits to the row buffers

when making multiple DRAM requests to read one cache line.) This relatively

high hit rate is why optimized close-page scheduling policies, in which a page

is kept open if matching requests are already in the controller’s request queue

(e.g., [10, 38]), are so effective.

In addition, we make several observations. First, “memory latency” and

“DRAM latency” are two completely different things. Memory latency corresponds

to the delay software experiences from issuing a load instruction to getting the result

back. DRAM latency is often a small fraction of that: average memory latencies

for DDRx and LPDDRx systems are in the 80–100ns range, whereas typical DRAM

latencies are in the 15–30ns range. The difference is in arbitration delays, resource

management, and whether sufficient parallelism exists in the memory system to

support the memory traffic of the desired workload. Insufficient parallelism leads to

long queuing delays, with requests sitting in the controller’s request buffers for tens

to hundreds of cycles. If your memory latency is bad, it is likely not due to DRAM

latency.

This is not a new concept. As has been shown before [6], more bandwidth

is not always better, especially when it is allocated without enough concurrency in

37



the memory system to maintain it. Execution time is reduced 21% when moving

from single-rank DDR3 channels to dual-rank channels. Execution time is reduced

22% when moving from a single-channel LPDDR4 organization to a quad-channel

organization. Execution time is reduced 25% for some apps when moving from a

4-channel organization of HBM to an 8-channel organization. And when one looks

at the reason for the reduction, it is due to reduced time spent in queues waiting for

memory resources to become free. Though it may sound counter-intuitive, average

latencies decrease when one allocates enough parallelism in the memory system to

handle the incoming request stream. Otherwise, requests back up, and queuing

delays determine the average latency, as we see in DDRx, LPDDR4, and GDDR5

based systems. Consequently, if one’s software is slow due to latency issues, consider

improving your NoC, or increasing the number of controllers or channels to solve

the problem.

Second, bandwidth is a critical and expensive resource, so its allocation is

important. As mentioned above, having enough bandwidth with parallelism to

support it can reduce execution time by 2–3x and turn some previously memory-

bound apps into compute-bound apps. This is a welcome result: one can bring

value to advanced processor-architecture design by simply spending money on the

memory system. Critical rule of thumb to note: multicore/manycore architectures

require at a minimum ∼1GB/s of sustained memory bandwidth per core, otherwise

the extra cores sit idle [1]. Given the result mentioned above that bandwidth is the

key factor in total power dissipation, this makes bandwidth allocation a non-trivial

exercise. Note that our results indicate that even if an application’s bandwidth
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usage is not extreme, providing it with sufficient bandwidth and parallelism can cut

execution time in half or more.
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Figure 3.1: Top: as observed by Srinivasan [1], when plotting system behavior as latency

per request vs. actual bandwidth usage (or requests per unit time).

Third, for real-time systems, Hybrid Memory Cube is quite interesting, as it

provides highly deterministic latencies. This characteristic of HMC has been noted

before [25] and is due in part to the architecture’s extremely high bandwidth, which

pushes the exponential latency region out as far as possible (see Figure 3.1 for an

illustration). However, high bandwidth alone does not provide such determinism,

otherwise we would see similar deterministic latencies in HBM systems, which we

do not. The effect is due not only to bandwidth but also to the internal scheduling

algorithms of HMC, which use a close-page policy that does not opportunistically
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seek to keep a page open longer than required for the immediate request. While

this may sacrifice some amount of performance, it provides predictable latencies

and keeps the internal DRAM power down to a level below that of all other DRAM

architectures studied, including power-optimized LPDDR4.

The following sections provide more background on the topic, describe our

experimental setup, and compare & contrast the various DRAM architectures.

3.2 Experiment Setup

We run DRAMsim3 within the gem5 simulator. The following sections elabo-

rate.

Table 3.1: Gem5 Simulation Setup

CPU Gem5 DerivO3 CPU model, x86 architecture, 4-core

Core
4GHz, Out-of-order, 8-fetch, 8-issue,

192 reorder buffer entries

L1 I-Cache per-core, 32KB, 2-way associative, 64 Byte cache line, LRU

L1 D-Cache per-core, 64KB, 2-way associative, 64 Byte cache line, LRU

L2 Cache shared, MOESI protocol, 8MB, 8-way associative, 64 Byte cache line, LRU

Workloads bzip2, gcc, GemsFDTD, lbm, mcf, milc, soplex, STREAM, GUPS, HPCG

3.2.1 Simulation Setup

We configure gem5 to simulate an average desktop processor: x86-based,

4-core, out-of-order. The detailed configuration is in Table 3.1. From several
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Table 3.2: DRAM Parameters

DRAM

Type

Density
Device

Width

Page Size
# of Banks

(per rank)

Pin Speed
Max.

Bandwidth [3]

tRCD

(ns)

tRAS

(ns)

tRP

(ns)

CL/CWL

(ns)

DDR3 8Gb 8 bits 2KB 8 1.866Gbps 14.9GB/s 14 34 14 14/10

DDR4 8Gb 8 bits 1KB 16 3.2Gbps 25.6GB/s 14 33 14 14/10

LPDDR4 6Gb 16 bits 2KB 8 3.2Gbps 25.6GB/s -[5] -[5] -[5] -[5]

GDDR5 8Gb 16 bits 2KB 16 6Gbps 48GB/s 14/12[4] 28 12 16/5

HBM[1] 4Gbx8 128 bits 2KB 16 1Gbps 128GB/s 14 34 14 14/4

HBM2[1] 4Gbx8 128 bits 2KB 16 2Gbps 256GB/s 14 34 14 14/4

HMC[1] 2Gbx16 32 bits 256 Bytes 16 2.5Gbps[2] 120GB/s 14 27 14 14/14

HMC2[1] 2Gbx32 32 bits 256 Bytes 16 2.5Gbps[2] 320GB/s 14 27 14 14/14

[1] HBM and HMC have multiple channels per package, therefore the format here is channel density x channels.

[2] The speed here is HMC DRAM speed, simulated as 2.5Gbps according to [8]. HMC link speed can be 10–30Gbps.

[3] Bandwidths for DDR3/4, LPDDR4 and GDDR5 are based on 64-bit bus design; HBM and HBM2 are 8×128 bits wide;

Bandwidth of HMC and HMC2 are maximum link bandwidth of all 4 links. We use 2 links 120GB/s in most simulations.

[4] GDDR5 has different values of tRCD for read and write commands.

[5] We are using numbers from a proprietary datasheet, and they are not publishable.
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suites, we select benchmarks to exercise the memory system, including those from

SPEC2006 [39] that are memory-bound according to [40]. These benchmarks have

CPIs ranging from 2 to 14, representing moderate to relatively intensive memory

workloads. We also simulate STREAM and GUPS from the HPCC benchmark

suite [41]. STREAM tests the sustained bandwidth, while GUPS exercises the

memory’s ability to handle random requests. Finally we use HPCG [42], high-

performance conjugate gradients, which represents memory-intensive scientific com-

puting workloads. We ran four copies of each workload, one on each core of the

simulated processor. Gem5 is configured to run in system-emulation mode, and all

the benchmarks are fast-forwarded over the initialization phase of the program, and

then simulated with the DerivO3 Gem5 CPU model for 2 billion instructions (500

million per core).

DRAM Parameters: Several of the most important parameters are listed

in Table 3.2, including tRCD, tRAS, tRP, and tCL/CWL. Most of the parameters

are based on existing product datasheets or official specifications. Some parameters,

however, are not publicly available—for example, some timing parameters of HBM

and HMC are not specified in publicly available documentation. Previous studies [8,

43] have established reasonable estimations of such parameters, and so we adopt the

values given in these studies.

3.3 Results

The following sections present our results and analysis.
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3.3.1 Overall Performance Comparisons

Figure 3.2 shows performance results for the DRAM architectures across the

applications studied, as average CPI. To understand the causes for the differences,

e.g. whether from improved latency or improved bandwidth, we follow [5] and [3]:

we run multiple simulations to distinguish between true execution time and memory

overhead and distinguish between memory stalls that can be eliminated by simply

increasing bandwidth and those that cannot.

The tops of the orange bars indicate the ideal CPI obtained with a perfect

primary memory (zero latency, infinite bandwidth). The remaining portion above

the orange bars is the overhead brought by primary memory, further broken down

into stalls due to lack of bandwidth (red bar) and stalls due to latency (green

bar). For example, the best CPI that could be obtained from a perfect memory

for STREAM, as shown in Figure 3.2, is 4.3. With DDR3, the DRAM memory

contributes another 4.6 cycles to the execution time, making the total CPI 8.9.

Among these 4.6 cycles added by DDR3, only 0.3 cycles are stalls due to lack of

memory bandwidth; the remaining 4.3 cycles are due to memory latency.

The first thing to note is that the CPI values are all quite high. Cores that

should be able to retire 8 instructions per cycle are seeing on average one instruction

retire every two cycles (bzip2), to 30 cycles (GUPS). The graphs are clear: more

than half of the total overhead is memory.

As a group, the highest CPI values are single-rank (DDR3-1, DDR4-1) or

single channel (LPDDR4-1) configurations . Single rank configurations expose the

44



tFAW protocol limitations [2,44], because all requests must be satisfied by the same

set of devices. Having only one rank to schedule into, the controller cannot move to

another rank when the active one reaches the maximum activation window; thus the

controller must idle the requisite time before continuing to the next request when

this happens. The effect is seen when comparing DDR3-1 to DDR3, an average

21% improvement from simply using a dual-rank organization; or when comparing

DDR4-1 to DDR4, an average 14% improvement from simply moving to dual-rank

from single-rank.

LPDDR4-1 and LPDDR4 have the same bandwidths, but different configura-

tions (64×1 vs 16×4 buses). There is a 22% improvement when using the quad-

channel configuration, indicating that using more parallelism to hide longer data

burst time works well in this case.

From there, the comparison is DDR3 to LPDDR4 to DDR4, and the improve-

ment goes in that direction: LPDDR4 improves on DDR3 performance by an average

of 8%, and DDR4 improves on LPDDR4 by an average of 6%. This comes from

an increased number of internal banks (DDR4 has 16 per rank; LPDDR4 has 8 per

rank but more channel/ranks, DDR3 has only 8 per rank), as well as increased band-

width. The reason why LPDDR4, having more banks, does not outperform DDR4

is its slower DRAM timings, which were optimized for power but not performance.

Next in the graphs is GDDR5, which has almost twice the bandwidth of DDR4

and LPDDR4, but because it is a single-rank design (GDDR5 does not allow multi-

drop bus configurations), it behaves like the other single-rank configurations: DDR3-

1, DDR4-1, and LPDDR4-1, which is to say that it does not live up to its potential
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under our testing setup. graphics

The best-performing DRAM architectures are HBM and HMC: the workloads

are split roughly evenly on which DRAM is “best.” One may not be impressed

by the performance improvement here: though HBM and HMC have maximum

bandwidths of 128GB/s and 120GB/s, roughly 8 and 13 times more than single-

rank DDR3, they only achieve improvements of 2–3x over DDR3. Indeed, the

performance improvement is less than the bandwidth increase; however, the total

memory overhead decreases by a more significant amount, from being much more

than half of the total CPI to accounting for less than 30% of the total CPI in many

cases.

The net result is that the most advanced DRAMs, HBM and HMC, which

combine all of the techniques previously shown to be important (multiple channels,

multiple ranks and/or banks per channel, and extremely high bandwidths), out-

perform all other DRAM architectures, often by a factor of two. The difference

comes from virtually eliminating DRAM overhead, and the result is that half of the

benchmarks go from being memory-bound to being compute-bound.

Lastly, it is clear from Figure 3.2 that the performance improvement brought

by HBM and HMC is due to the significant reduction of latency stalls. In the

following section, we break down the latency component to understand better.
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3.3.2 Access Latency Analysis

Average memory latency is broken down in Figure 3.3, indicating the various

operations that cause an operation not to proceed immediately. Note that row

access time varies with the different row buffer hit rates. In the worst case, where

there is no row buffer hit, or the controller uses a close page policy (such as HMC),

the row access time would reach its upper bound tRCD. Note also that the highly

parallel, multi-channel DRAMs not only overlap DRAM-request latency with CPU

execution but with other DRAM requests as well; therefore, these averages are

tallied over individual requests.

At first glance, the reason HBM and HMC reduce the average access latency

in Figure 3.2 is that they both tend to have shorter queuing delays than the other

DRAMs. The reduced queuing delay comes from several sources, the most important

of which is the degree of parallelism: HMC has 16 controllers internally; and HBM

is configured with eight channels. This matches previous work [6], which shows

that high bandwidth must be accompanied by high degrees of parallelism, and we

also see it when comparing LPDDR as a DIMM (single-channel) with LPDDR in

the quad-channel format: both have exactly the same bandwidth, but the increased

parallelism reduces execution time significantly.

HBM and HMC also have additional parallelism from integrating many more

banks than DDR3 and DDR4: they have 128 and 256 banks per package respectively,

which is 8/16 times more than a DDR3 DIMM. Thus, potentially 8 times more

requests can be served simultaneously, and the queuing delay for requests to each
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bank is reduced.

Further latency reduction in HMC is due to the controllers attached to it.

In contrast with HMC, HBM can exploit open pages. In benchmarks such as milc,

HPCG, gcc, STREAM and lbm, the row access time for HMC is reduced significantly,

while HMC has the same constant row access time. Compared to DDR3, DDR4

and GDDR5, which also utilize open pages, HBM has more banks, meaning more

potentially opened pages and thus higher row buffer hit rates, which further reduces

the access latency. This happens in STREAM and lbm, where HBM has noticeably

lower row access time than DDR3, DDR4 and GDDR5. This can be verified by

looking at the row buffer hit rates shown in Figure 3.7.
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Figure 3.4: Access latency distribution for GUPS. Dashed lines and annotation show the

average access latency.

Note that HMC exhibits a stable average access latency. From Figure 3.3
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we see its average latency around 40ns, ranging from 39ns for soplex to 52ns for

STREAM. The average is 41ns with a standard deviation of 3.9ns. HBM has

the same average latency of 41ns, but a higher standard deviation of 8.6ns. This

implies the behavior of HMC is more predictable in access latency, and it can be

potentially useful in real-time systems, due to the deterministic nature of its close-

page scheduling policy. Also note that the average latency of HMC is nearly pushed

to its lower limit, as the row access and column access times contribute most of the

latency. Queuing time can be improved by increasing parallelism, but improving

row and column access time requires speeding up the internal DRAM arrays.

For further insight, we look at the access-latency distributions for several

DRAMs, to give an idea of the quality of service and fairness of the DRAM protocols

and DRAM-controller schedulers. Figure 3.4 shows probability densities for GUPS

running on HMC, HBM, DDR4, and DDR3. The x-axis gives latency values; the

y-axis gives the probability for each; and the area under each curve is the same.

Thus, HMC, which spikes around 35ns, has an average that is near the spike, and

the other DRAMs have average latencies that can be much higher.

3.3.3 Power, Energy, and Cost-Performance

There are two major parts of a DRAM device’s power: DRAM core power and

I/O power. We use Micron’s DRAM power model [45] to calculate the core power;

we estimate I/O power based on various sources [46–48] and assume the I/O power

for each DRAM is a constant while driving the bus.
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Figure 3.5: Average power and energy. The top 2 figure and the lower left one show the

average power breakdown of 3 benchmarks. The lower right one shows the

energy breakdown of GUPS benchmark.

Figure 3.5 shows the power estimation for a representative group of the bench-

marks. I/O power tends to dominate all other fields. The high-speed interfaces of

HBM and HMC are particularly power-hungry, driving the overall power dissipation

of DRAM system upwards of 10W. HMC has the highest power dissipation, though

its DRAM core only dissipates a small portion of its power. GDDR5 also has very

high I/O power dissipation, considering its pin bandwidth is less than half that of

HBM (48GB/s vs 128GB/s). DRAM-core power varies from application to appli-
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cation. HMC is still very steady, whereas others that adopt open-page policies see

varying DRAM-core power. For instance, the core power of HBM can vary from 2

Watts to 5 Watts, with activation power the most significant variable.

Energy. Power is not the only story: energy-to-solution is another valuable

metric, and we give the energy for GUPS in the far right graph. While the power

numbers range from min to max over a factor of 7x, the energy numbers range

only 3x from min to max, because the energy numbers represent not only power

but also execution time, which we have already seen is 2–3x faster for the highest-

performance and hottest DRAMs. Here we also see the effect of the single-rank vs.

dual-rank systems: The single-rank configurations (DDR3-1, DDR4-1) have lower

power numbers than the corresponding dual-rank configurations (DDR3, DDR4),

because they have fewer DIMMs and thus fewer DRAMs dissipating power. How-

ever, the dual-rank configurations require lower energy-to-solution because they are

significantly faster.

Power-Performance. Combining power with CPI values from earlier, we

obtain a Pareto analysis of performance vs power, as shown in Figure 3.6. We add

a few more simulation configurations that were not presented in previous sections:

HBM2 running in pseudo channel mode (16 channels), labeled HBM2-PSEUDO ;

HBM2 configured as 4 channels, each 256 bits, labeled HBM2-4CHAN ; and HMC2

which has 32 internal channels. Note also that, while HMC dissipates twice the

power of HBM, HMC2 dissipates little more than HMC since they’re configured

using same links, whereas HBM2 dissipates noticeably more power than HBM.

In the graphs, the x-axis is CPI, and the y-axis is average power dissipation.
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By Pareto analysis, the optimal designs lie along a wavefront comprising all points

closest to the origin (any design that is above, right of, or both above and to the

right of another is “dominated” by that other point and is thus a worse design). The

LPDDR4 designs are Pareto-optimal for nearly all applications, because no other

design dissipates less power; and the HBM2-PSEUDO design is Pareto-optimal for

nearly all applications, because it almost always has the lowest CPI value. HBM2-

PSEUDO is a design from the HBM2 specification in which the 8-channel HBM2

is divided into 2 pseudo channels each; as we have been discussing, this significant

increase in parallelism is the type that one might expect to make HBM2 perform

even better, and these results show that, indeed, it does.

Some interesting points to note: The improvements in design from 4-channel

HBM2 to 8-channel to 16-channel almost always lie on a diagonal line, indicating

that the 16-channel design dominates the others. HBM1 is almost always directly

below HBM2, indicating that it has roughly the same performance but dissipates less

power—this suggests that the 4-core processor is not fully exercising this DRAM,

which we show to be the case in the following section. HMC1 and HMC2 have

a similar vertical alignment, which suggests precisely the same thing. GDDR5 is

almost always dominated by other designs (it is above and further to the right than

many other DRAM designs), which indicates that its cost-performance is not as good

as, for example, HBM1 (which exceeds it in performance) or DDR4 (which is more

power-efficient). The relationship between DDR3 and DDR4 organizations is almost

always a horizontal line, indicating that DDR4 improves performance significantly

over DDR3, and a modest decrease in power dissipation.
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While the power ranges from 2 Watts to 14 Watts for each benchmark, the

changes in CPI are usually less significant (discussed in Section 3.3.1). Thus, to

deliver the significant degree of performance improvement one would expect of high

performance DRAMs like HBM and HMC, a disproportional amount of power is

paid. Only in extremely memory-intensive cases, like GUPS and STREAM and

manycore CPUs with high core counts (as we estimate in the next section), is the

power-performance justified by using stacked memories like HBM and HMC. On the

other hand, switching from DDR3 to DDR4 always seems to be beneficial in terms

of both power and performance. LPDDR4 not surprisingly has the lowest power

consumption and, in its quad-channel configuration, comparable performance to

DDR4.

3.3.4 Row Buffer Hit Rate

The row buffer is the set of sense amps holding the data from an opened DRAM

row. Accessing the data in a row buffer is much faster than accessing a closed row;

therefore, most DRAM controller designers exploit this to improve performance.

The only exception in the DRAMs studied in this work is HMC, which embraces a

close-page design.

Figure 3.7 shows the row buffer hit rate for each application. GUPS has a

near-zero row-buffer hit rate due to its completely random memory access patterns.

Other than GUPS, the row buffer hit rates range from 13% to 90%, averaging 43%

(39% if GUPS included). HBM and HBM2 have higher row hit rates than other
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Figure 3.7: Row buffer hit rate. HMC is not shown here because it uses close page policy.

GUPS has very few “lucky” row buffer hits.

DRAMs in most cases, because they have many more available rows. Note that

high row buffer hit rate alone does not guarantee better performance. For example,

DDR3 has highest row buffer hit rate in the GemsFDTD benchmark, and while the

high row buffer hits reduce the row access latency (which can be seen in Figure 3.3),

but it also has much higher queuing delay as a result of having fewer banks than

other DRAM types.

3.3.5 High Bandwidth Stress Testing

Our studies so far are limited by the scale of the simulated 4-core system and

only extract a fraction of the designed bandwidth out of the high-end memories like

HBM and HMC. When we observe average inter-arrival times for the benchmarks

(average time interval between each successive memory request), they are more than
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10ns for most benchmarks—i.e., on average, only one memory request is sent to

DRAM every 10ns. This does not come close to saturating these high-performance

main memory systems.

Therefore, to explore more fully the potentials of the DRAM architectures, we

run two contrived benchmarks designed to stress the memory systems as much as

possible:

1. We modify STREAM to use strides equal to the cache block size, which guar-

antees that every request is a cache miss.

2. We use Cray’s tabletoy benchmark, which generates random memory requests

as fast as possible and stresses the memory system significantly more than

GUPS, which is limited to pointer-chasing. If the average latency for the

DRAM is 30ns, GUPS only issues an average of one request per 30ns. Tabletoy

issues requests continuously.

3. Lastly, we scale the cycle time of the processor to generate arbitrarily high

memory-request rates.

In addition, we use higher-bandwidth HMC configurations. In the previous studies,

we used 2-link configurations for HMC and HMC2 at 120GB/s, because 4-link con-

figurations would have been overkill. For the stress-test study, we upgrade links for

both HMC and HMC2 for a maximum of 240GB/s and 320GB/s, respectively.

This should present two extremes of high-bandwidth request rates to the

DRAM system: one sequential, one random, and as the request rates increase,
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these should give one a sense of the traffic that high-core-count manycore CPUs

generate.
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Figure 3.8: Tabletoy (random), left; STREAM (sequential), right. 64 bytes per request.

Figure 3.8 shows the results. The left-hand graph shows a random request

stream; the right-hand graph shows a sequential stream. The x-axis is the frequency

of requests being sent to the memory in log scale. Each request is for a 64-byte cache

block. The request rate ranges from 100ns per request to more than 10 requests

per ns. In the left-hand graph, one can see that all the traditional DDR memories

are saturated by 3ns per request. HBM and HBM2 reach their peak bandwidths at

around 1 to 2 requests per ns, getting 32GB/s and 63GB/s respectively. HMC and

HMC2 reach their peak bandwidth at the rate of 4 to 5 requests per ns, reaching

121GB/s and 225GB/s. The difference between HMC and HMC2 here is the number

of vaults (channels) they have, 16 vs 32. The effective pin bandwidth of each vault is

10GB/s, meaning that both HMC and HMC2 reach about 75% of the peak internal
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bandwidths.

Looking at the sequential results in the right-hand graph, the high-speed

DRAMs, e.g. GDDR5, HBM and HBM2, gain significantly more bandwidth than

they do with the random stream. HMC and HMC2 only changes slightly, once again

shows its steady performance regarding different types of workloads.

The stress tests explain the bandwidth/latency relationship explained at the

beginning of the chapter in Figure 3.1. As the request rate is increased, the DRAMs

go through the constant region into the linear region (where the curves start to

increase noticeably; note that the x-axis is logarithmic, not linear). Where the stress

test’s bandwidth curves top out, the DRAM has reached its exponential region: it

outputs its maximum bandwidth, no matter what the input request rate, and the

higher the request rate, the longer that requests sit in the queue waiting to be

serviced.

The stress-test results show that any processing node with numerous cores

is going to do extremely well with the high-end, multi-channel, high-bandwidth

DRAMs.

3.4 Conclusion and Future Work

The commodity-DRAM space today has a wide range of options from low

power, to low cost and large capacity, to high cost and high performance. For the

single-channel (or single package) system sizes that we study, we see that modern

DRAMs offer performance at whatever bandwidth one is willing to pay the power
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cost for, as the interface power dominates all other aspects of operation. Note

that this would not be the case for extremely large systems: at large capacities,

refresh power may also be very significant and dominate other activities. However,

at the capacities we study, it is the transmission of bits that dominates power; thus,

this provides an important first metric for system design: determine the bandwidth

required, and get it.

Our studies show that bandwidth determines one’s execution time, even for

the modest 4-core CPU studied herein, as the higher bandwidths and, more im-

portantly, the parallelism provided in the high-performance packages, assure that

queuing delays are minimized. High-bandwidth designs such as HMC and HBM can

reduce end-to-end application execution time by 2–3x over DDRx and LPDDR4 ar-

chitectures. This translates to reducing the memory overhead from over half of the

total execution time to less than 30% of total execution time. The net result: previ-

ously memory-bound problems are turned into compute-bound problems, bringing

the focus back to architectural mechanisms in the processor that can improve CPI.
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Chapter 4: Limitations of Cycle Accurate Models

4.1 Introduction

While working on the characterization study using cycle accurate simulators

in Chapter 3, we experienced significantly long simulation times while running the

simulations, some tasks can easily take days. This drives us to explore modern

simulation techniques and opportunities outside of cycle accurate models.

Long been the prevalent main memory media, the accuracy of DRAM simula-

tion is crucial to the overall accuracy of the simulated system. Like CPU simulators

used to be, DRAM simulators are dominantly cycle-accurate models. Often times

cycle-accurate DRAM simulators are integrated with CPU simulators to provide

accurate memory timings. With CPU simulators moving away from cycle-accurate

models so that simulation runs much faster, DRAM simulation speed starts to bot-

tleneck the overall simulation speed. To demonstrate how much time is spent in the

DRAM simulators, we run a set of benchmarks with two types of CPU models using

the same DRAM simulator, and breakdown the simulation time based on the wall

timers we planted in our code. Detailed simulation configuration will be described

in Section 4.3. As shown in Figure 4.1, with cycle-accurate out-of-order (O3) CPU

model, the DRAM simulator only accounts for 10% to 30% of the overall simulation
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Figure 4.1: Simulation time breakdown, CPU vs DRAM. Upper graph is cycle-accurate

out-of-order CPU model with cycle-accurate DRAM model. Lower graph is

modern non-cycle-accurate CPU model. The DRAM simulators are the same

in both graph.

time. But as we switch to a faster CPU model, the DRAM simulation time bloats to

70% to 80% of overall simulation time. Note that the DRAM simulator we use here

is already the fastest cycle-accurate DRAM simulator available, which signifies this

is a fundamental issue of the cycle-accurate model instead of specific implementa-

tion. Also, these results are not limited to specific CPU simulator implementations,

because a CPU simulator running at a similar speed will produce similar amount of

memory requests in the same time frame, and therefore the DRAM simulator will be
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under the same amount of workload and will take the same amount of time to run.

Performance aside, some non cycle accurate CPU simulators still manage to work

with cycle-accurate DRAM simulators. But the incompatibility causes accuracy

issues, which we will further discuss in Section 4.3.3.

So, we believe it is time to review cycle accurate DRAM simulation, discuss

its limitations, and explore the alternative modeling techniques.

4.2 Background

To better understand the landscape of architecture simulation techniques, we

survey existing alternative modeling techniques of both DRAM and CPU. Note

that while this work primarily focuses on DRAM modeling, we will also look into

how CPU modeling technique is developing and what can we learn and apply to

DRAM modeling. In addition, because a DRAM simulator is often integrated as

an interactive memory backend of a CPU simulator, understanding CPU simulator

helps create compatible DRAM simulator and thus avoid problems described in

Section 4.3.3.

4.2.1 CPU Simulation Techniques

Traditionally, to achieve simulation fidelity, CPU simulators are designed to

be cycle-accurate, meaning that just like real processors, the simulator state changes

cycle by cycle, and during each cycle, the microarchitecture of CPU (and cache) is

faithfully simulated. Other simulation components such as DRAM simulators or
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storage simulators also synchronize with the CPU simulator every cycle. While sim-

ulating all the microarchitecture details reaches really good accuracy, the downside

of this approach is that simulation speed is very slow, especially when CPUs are

including more and more cores and a deeper cache hierarchy. Simulations can easily

take days, sometimes even weeks, to finish.

A lot of techniques are explored to accelerate cycle-accurate simulations, for

instance, checkpointing, which saves the simulator and program state at certain

point to a file and allows the simulator to recover from that checkpoint later with

the exact same state. This is mostly used to skip the warmup period and make sure

simulations start at the same state. Similarly, some CPU simulators use a simpler,

non-cycle-accurate model to fastforward the simulation to a warmed-up state and

then switch to cycle-accurate model for further simulation.

Some researchers such as [49] take a statistical approach, which instruments

and samples the simulated workload, uses statistical methods to identify distinctive

program segments, and then extracts these distinctive segments for future simula-

tion. The extracted segments, which are typically called simulation points, can be

then simulated with a cycle-accurate simulator. This way, the simulation time is

cut short by simulating fewer instructions, instead of improving the simulator.

More recently, CPU researchers are moving away from the cycle-accurate

model due to its scalability issues. Several approximation models are proposed

and implemented. For example, SST, Graphite [50] and Gem5 Timing CPU Model

employs One-IPC model, meaning that every instruction is one cycle in the pipeline.

Sniper [51] and ZSim [14] use approximation models for IPC which allows them to
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simulate out-of-order pipelines with relatively faster speed. Another benefit of ap-

plying this approximation model is that CPU cores and caches can be efficiently

simulated in parallel, which allows multi-core, even many-core, CPU simulation

applicable with decent scaling efficiency.

4.2.2 DRAM Simulation Techniques

Before cycle-accurate simulators were adopted en masse, researchers applied

very simplistic models for DRAM simulations. For example, the fixed-latency model

assumes all DRAM requests take the same amount of time to finish, which com-

pletely ignores scheduling and queueing contentions that may cause significantly

longer latency. There are also queued models that account for the queueing delay,

but they fails to comply with various DRAM timing constraints. Previous stud-

ies such as [52] have shown that such simplistic models suffer from low accuracy

compared to cycle-accurate DRAM models.

Then came along cycle accurate DRAM models, such as [20,22,23,53,54] and

DRAMsim3. These cycle-accurate DRAM simulators improved DRAM simulation

accuracy, some are also validated by hardware models, but as we have shown, they

started to lag the simulation performance.

Other than cycle-accurate models, there are also event based models such

as [55, 56]. Event based models do not strictly enforce DRAM timing constraints,

and can accelerate the simulation if the events are not frequent. But just as [56]

pointed out, when memory workloads gets more intensive, memory events will be
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as frequent as every cycle, and therefore will undermine the advantage of the event-

based approach.

Finally, there are analytical DRAM models such as [57, 58]. [57] presents a

DRAM timing parameter analysis but does not provide a simulation model. The

model in [58] provides predictions on DRAM efficiency instead of per-access timing

information. These analytical models provide insights on the timing parameters and

high level interpretations, but have limited usage by design.

4.3 Empirical Study

In this section we setup our simulation framework to quantitatively evaluate

DRAM models on simulation speed and accuracy. Table 4.1 shows our simulation

setup.

Table 4.1: Simulation Setup

CPU Gem5 Timing CPU model, x86 architecture

Core 4GHz, IPC=1

L1 I-Cache per-core, 32KB, 4-way associative, 64 Byte cache line, LRU

L1 D-Cache per-core, 64KB, 4-way associative, 64 Byte cache line, LRU

L2 Cache private, MOESI protocol, 256KB, 8-way associative, 64 Byte cache line, LRU

L3 Cache shared, MOESI protocol, 2MB, 16-way associative, 64 Byte cache line, LRU

Main Memory Dual-rank DDR4: 1, 2, 4 channels. 8-channel HBM2.

Workloads A subset of SPEC CPU2017 benchmarks, STREAM, and memory latency benchmark (ram lat).

We choose Gem5 not only because of its reputation for accuracy, but also
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because it supports multiple CPU models and DRAM models and can be easily

swapped. This allows us to directly compare two different models, whether they’re

CPU models or DRAM models, while keeping all other components of the simulation

the same. And therefore we can fairly compare and evaluate different models.

We have two CPU model choices here. First is out-of-order (O3, or DerivO3)

CPU, that faithfully simulates the details of the core architecture, but only simulates

at the rate of tens of thousands instructions per second on the host machine. The

other is Timing CPU model; this is a One-IPC core model, which does not offer core

microarchitecture simulation, but runs more than 10 times faster than the O3 CPU

model. Note we only use this Timing CPU model for simulation speed experiments,

in which case it represents other CPU simulators running at similar rate. For all

accuracy evaluations, we use O3 CPU as it is the most accurate and reliable option

we have.

For DRAM models, we use DRAMsim3 as the representative cycle-accurate

simulator, because it offers the best simulation speed, and it is also hardware vali-

dated. For event based model, we choose [55], because it is conveniently integrated

into Gem5 and offers similar DRAM protocols to DRAMsim3 that allows us to di-

rectly compare against. The DDR4 configuration in both models is single channel,

dual rank, and has the same timing parameters. The HBM configuration in both

models is 8 channel and 128 bits wide each.

To test a wide range of memory characteristics, we use a subset of SPEC

CPU2017 benchmarks that are most representative according to [59]. We also in-

clude STREAM , which is very bandwidth sensitive, and ram lat, an LMBench-like
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memory benchmark that is latency sensitive. These benchmarks will show us the

full spectrum of memory characteristics and behaviors.

4.3.1 Quantifying DRAM Simulation Time

First we experiment how much simulation time is spent in the DRAM simulator

versus the CPU simulator. The two graphs in Figure 4.1 were obtained by using O3

CPU model and Timing CPU model respectively and have the same DRAMsim3

HBM backend.

Note that because HBM has 8 channels, and each channel has an independent

DRAM controller, and it therefore takes more time to simulate HBM than a regular 1

channel DRAM. To quantify how the number of channels affects simulation time, we

sweep 1, 2, 4 channels of DDR4 with Timing CPU and show the absolute simulation

time in Figure 4.2.

It can be seen that even with only one channel of DDR4, the cycle-accurate

DRAM simulator still accounts for an average 40% of overall simulation time with

a minimum of 30% and a maximum of 56%. For two channel DDR4, DRAM sim-

ulation time ranges from 46% to 69% with an average of 53%. For 4 channels,

the min, max and average number are 62%, 81% and 68% respectively. While

these numbers are produced with a single simulated core, modern CPU simulators

such as [13,14,50,51] can utilize multiple host cores to simulate multiple simulated

cores, making the core simulation time scalable. Therefore, we can still conclude

that DRAM cycle-accurate simulation does not scale with regards to the number of
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Figure 4.2: Absolute simulation time breakdown of Timing CPU with 1, 2, and 4 channels

of cycle-accurate DDR4. The bottom component of each bar represents the

CPU simulation time and the top component is the DRAM simulation time.

channels, and it takes a significant proportion of simulation time even with only 1

DRAM channel.

4.3.2 Synchronization Overhead

The nature of cycle accurate simulation requires A) the CPU simulator to

synchronize with the DRAM simulator every DRAM cycle and B) when there are

multiple channels within the DRAM, they have to synchronize with each other every

cycle. As we will see later in Chapter 5, these are huge issues when moving to parallel

simulation. Moreover, another aspect of synchronization problem is the performance

cost when integrated into other parallel simulation framework such as SST. As

a simulation framework, SST can integrate individual component simulators (e.g.
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DRAMSim2) and provide an interface for each component to communicate with each

other. Doing so allows SST to distribute simulated components to different cores

or machines and simulate them in parallel. The implementation of the wrapper

interface for DRAMSim2, for instance, treats each cycle of DRAM as an event.

This means the simulation framework, when a cycle accurate DRAM simulator is

present, has to synchronize with the DRAM simulator every single cycle, even if the

synchronization event could be a costly MPI call over the wire. At this point it is

hard to justify running the DRAM simulator in a separate thread or process in such

a simulation framework.

4.3.3 Compatibility: A Case Study of ZSim
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Figure 4.3: DRAM latency and overall latency reported by Gem5 and ZSim.

Besides the poor simulation performance, cycle accurate DRAM simulation

also poses compatibility issues when integrating with modern CPU simulators or
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Figure 4.4: ZSim 2-phase memory model timeline diagram compared with real hard-

ware/cycle accurate model. Three back-to-back memory requests (0, 1, 2) are

issued to the memory model.

frameworks, especially those that rely on parallel simulation for speed, as cycle

accurate models require synchronization every cycle, which will create huge overhead

for parallel performance. For example, [50,51] do not include a cycle accurate main

memory backend at all. [14] supports a cycle accurate memory backend, but as we

will see soon, it has its issues when integrating a cycle accurate memory backend.

The problem was first discovered by [60], who observed a memory latency

error of about 20ns when they tested a memory latency benchmark. But [60] did

not answer where this 20ns missing latency comes from, as they suspected it came

from the cycle accurate DRAM simulator they were using. We will analyze this

situation and provide a conclusive answer to this question.
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To replicate the issue independently, we developed a simplified version of

LMBench(ram lat we referred in Table 4.1) that randomly traverses a huge ar-

ray, and measured the average latency of each access. When the array is too large

to fit in the cache and most accesses go to DRAM, the average access latency will

include the DRAM latency. The benchmark inserts time stamps before and after

the memory traversal, and it uses them to determine the overall latency of a certain

number of memory requests, dividing by the number of requests to obtain average

memory latency. This average memory latency consists of cache latency and DRAM

latency, and thus we use the term overall latency in the following discussion.

Like [60], we ran this benchmark natively on our machine to obtain “hardware

measured” latency(72ns), then ran it in ZSim along with DRAMSim2 as the DRAM

backend, and we were able to reproduce similar results as [60]. That is, the overall

latency (43ns) is 29ns lower than hardware measurement (72ns). To determine

whether this is a ZSim specific issue or DRAM simulator issue, we ran the same

benchmark in Gem5 with the same cache and DRAM parameters, and this time, the

overall latency is 78ns, much closer to our hardware measurement. So we conclude

this is a ZSim specific issue not a DRAM simulator issue. We then further looked into

the simulator statistics, and found that the DRAM latency reported by the DRAM

simulator in Gem5 is 55ns, which makes sense as the overall latency (78ns) should

be a combination of DRAM latency (55ns) and cache latency (23ns). However, in

ZSim, the DRAM latency reported by the DRAM simulator is 73ns, much higher

than overall latency, which makes no sense. Figure 4.3 shows these results. This

again confirms that the issue lies within the ZSim memory model.
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The way ZSim memory model works is, it has two phases of memory models,

the first phase is a fixed latency model that assumes a fixed “minimum latency” for

all memory events. The purpose is to simulate instructions as fast as possible, and

generate a trace of memory events. After the memory event trace is generated, the

second phase kicks in, and that’s when the cycle accurate DRAM simulator actually

works, the cycle accurate simulation uses the event trace as input and updates

latency timings associated with these events.

For instance, Figure 4.4 demonstrates how ZSim memory model handles mem-

ory requests differently from hardware/cycle accurate models. Suppose there are 3

back-to-back memory requests(each relies on the finishing of previous one). In real

hardware or a cycle accurate model, each memory request’s latency may vary, and

the next request cannot be issued until the previous request is returned. In ZSim

Phase 1, all requests are assumed to be finished with “minimum latency”, and there-

fore finish earlier than they should. Then in ZSim Phase 2, cycle accurate simulation

is performed, more accurate latency timing is produced by cycle accurate simulator

and all 3 requests update their timings. But even if all memory requests obtain

correct timings in Phase 2, unfortunately, when the simulated program, like our

benchmark, has instrumenting instructions such as reading the system clock, it will

obtain the timing numbers during Phase 1, which can be substantially smaller. This

is why the overall latency is much smaller than DRAM latency.

So in other words, the “minimum latency” ZSim parameter will dictate the

latency observed by the simulated program. To verify this claim, we run the same

simulation with different “minimum latency” parameters, and plot them against the
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benchmark reported latency and DRAM simulator reported latency altogether, as

in Figure 4.5.
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Figure 4.5: Varying ZSim “minimum latency” parameter changes the benchmark reported

latency, but has little to none effect on DRAM simulator.

It can be seen in Figure 4.5 that, while we increase the “minimum latency”

parameter, the overall latency pronounced by benchmark increases correspondingly,

while the DRAM simulator reported latency keeps steady.

The reason that ZSim has to use a two-phase memory model is that it has to

have a memory model that can give a latency upon first sight so that it can generate

an event trace during an interval. The only model that is able to do so is a fixed

latency model, but apparently it is not accurate enough and cannot handle dynamic

contention, and therefore ZSim requires a second, cycle accurate phase to correct

the timings. In addition to this self-instrumenting error, the broader issue is that

during the second phase, the memory requests received by the memory controller
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will have an inaccurate inter-arrival timing produced by Phase 1, which may alter

the results of cycle accurate simulation results. In other words, the inaccuracy in

Phase 1 can lead to further inaccuracy of Phase 2 memory simulation.

The root cause for the convoluted memory model of ZSim, and other fast

simulators that do not support cycle accurate DRAM simulators is, cycle accurate

DRAM simulator is no longer compatible with these fast abstract simulation models,

and there are as yet no good alternatives that work with these abstract models.

4.3.4 Event-based Model

As we stated earlier, even based DRAM models typically offer better simula-

tion performance than cycle-accurate models. But a general concern is the accuracy

implication. To obtain a comprehension of event based model accuracy, we com-

pare the event based DRAM model [55] included in Gem5 with DRAMsim3. Both

simulators are integrated into the same Gem5 build so that we can conduct a fair

comparison of the same CPU, cache, and benchmark with only the DRAM model

being different. For both DRAM models, we run all the benchmarks with a DDR4

profile and an HBM profile. The DDR4/HBM timing parameters are configured

to be the same in both DRAMsim3 and the event based model. The CPU model

we use to evaluate accuracy is the Gem5 O3 CPU model, which provides deter-

ministic, reproducible results. We use the CPI numbers obtained by DRAMsim3

backed simulations as baseline, and plot the relative CPI of event based simulations

in percentage, shown in Figure 4.6.
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Figure 4.6: CPI differences of an event based model in percentage comparing to its cycle-

accurate counterpart. DDR4 and HBM protocols are evaluated.

The CPI difference ranges from 3% to almost 60% across all benchmarks. In

general, less memory-intensive benchmarks tend to have lower CPI differences. The

DDR4 event based model averages a 15% CPI difference, and the HBM event based

model averages a 28% CPI difference from their cycle accurate counterparts. While

we cannot conclusively say the difference in CPI translates to inaccuracy as the

event based model implements a different scheduling policy for the controller, the

CPI difference is much higher than those between cycle accurate models. So even

though event based models can be several times faster than cycle accurate models,

one has to make sure the accuracy is acceptable for the kind of workload he or she

wants to simulate.
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4.4 Conclusion

In this chapter we empirically discussed the limitations of cycle accurate

DRAM simulation models. We showed that while still being the most accurate

model, cycle accurate DRAM models cannot keep up with the trend of architecture

simulator development in terms of simulation performance and model compatibil-

ity. As for alternative modeling solutions, the event based model we evaluated here

does not have convincing accuracy. To overcome these limitations of cycle accurate

models, we propose our solutions in Chapter 5 and Chapter 6.
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Chapter 5: Parallel Main Memory Simulation

To address the scalability issue of multi-channel DRAM simulation raised in

Chapter 4, we explore the possibility and pathways of simulating DRAM in parallel.

From the architecture’s point of view, in a multi-channel DRAM system, each

DRAM channel can operate on its own and is independent from other channels.

So theoretically the DRAM channels can be naturally simulated in parallel with-

out having to synchronize with each other. Although in practice, we still need an

interface to handle inputs and outputs such as taking requests from traces or a

front-end simulator, mapping DRAM addresses to channels, aggregating statistics

across channels, and so on.

5.1 Naive Parallel Memory Simulation

5.1.1 Implementation

We first start a naive parallel implementation. Based on DRAMsim3, we de-

veloped a multi-threaded DRAM simulator using OpenMP [61]. OpenMP is an

industry standard parallel programming diagram, it allows non-intrusive implemen-

tation of multi-threading without changing the source code of a program. However,
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to avoid data races, synchronization overhead, and parallelization overhead, we do

need to optimize the code for best parallel performance.

We implement the following optimizations to the original serial DRAMsim3

code:

• We eliminate shared writable data structures across channels inside the parallel

region of the program, so that there will be no locking or synchronization

mechanisms needed when executing the parallel code. This helps us minimizes

the parallelization overhead.

• The program will automatically choose the number of threads based on the

user’s setting or number of channels to be simulated, whichever is smaller, to

make sure that no more threads than the number of channels are spawned.

• We use static scheduling of OpenMP as it has low overhead when dealing with

small amount of data and similar amount of work for each thread.

Figure 5.1 is a system diagram of how we partition the simulator into serial

and parallel regions. In this naive implementation, we have a unified input interface

that takes requests and map each to its corresponding channel; then we start the

parallel simulation, and each channel simulates one cycle. This includes further

address translation, scheduling, updating bank states and timings, and update of

statistics of that channel. Finally after each cycle we enters another serial region,

which returns any completed requests from each channel, and optionally aggregates

statistics from all channels.
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Figure 5.1: Parallel DRAM simulator architecture.

5.1.2 Evaluation

First, we examine the execution speedup of the parallel DRAM simulator over

trace inputs. The trace frontend contributes little overhead to the overall simulation

time. We can also load traces to keep the DRAM simulator busy all the time to

maximize the simulation time spent in the DRAM simulator. Therefore it is the

ideal scenario for testing parallelization speedup.

We run two types of trace, stream and random, for 10 million cycles on a

8-channel HBM configuration. We compare the simulation time of running the

simulation in 1, 2, 4, and 8 threads respectively.
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The results are intriguing: as shown in Figure 5.2, the random trace simula-

tions get slightly speed up when using more and more cores, and it eventually settles

for 60% of single thread simulation time at 8 threads. The stream trace simulations,

however, take a performance hit when using multiple threads, and the simulation

usually runs more than 1.2 times slower when using multiple threads than the single

thread version.

For perspective, the single thread stream trace simulation only takes 48 seconds

while the single thread random trace simulation takes 127 seconds for the same

number of simulated cycles. This makes sense given that when simulating the stream

trace, it is easier for the scheduler to find the next available request in the request

queue whereas for the random trace the scheduler typically has to search through

the entire queue. It means there is much more “work” to be done in each simulated

cycle for a random trace. This is important for the multi-thread performance

Regardless of the reasoning, running the simulation 40% faster using 8 threads
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at best is underwhelming, and running slower on more threads is disappointing. In

the next section, we propose a new scheme to break this performance barrier.

5.2 Multi-cycle Synchronization: MegaTick

The problem we encountered in Section 5.1.2 is that the benefit of multi-

threading is overshadowed by the overhead. The core issue is, a cycle-accurate

DRAM simulator has to synchronize every DRAM cycle, creating very frequently

reoccurring synchronization overhead each scheduled cycle, which eventually con-

sumes all the speedup gained from multi-threading.

To address this problem, we propose a semi-accurate approach, that is, to

synchronize the DRAM simulator and the serial interface every few DRAM cycles,

instead of every DRAM cycle, and in between two synchronization points the DRAM

is still simulated cycle-accurately. We call each synchronization period a MegaTick.

Figure 5.3 shows the difference of the MegaTick model versus a cycle-accurate model

using 8-cycle MegaTick as an example. In a cycle-accurate model, requests can be
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issued to and returned from DRAM every DRAM cycle. whereas in the MegaTick

model, these events can only happen on a MegaTick boundary, meaning that these

events will have to be delayed until the next synchronization point.

Using MegaTick allows more DRAM cycles to be simulated in parallel continu-

ously, which may increase the threading efficiency and thus accelerate the simulation.

On the other hand, if paired with a CPU simulator, from the CPU’s perspective,

it means the CPU has to hold outstanding requests longer to issue to the DRAM,

and receive the response from DRAM later than it should. This could mean accu-

racy loss. So the question becomes, how many DRAM cycles should there be in a

MegaTick, what is the accuracy implication when using MegaTick, and how much

speedup can we gain using this technique?

To answer these questions, we set up simulations in similar configurations

as Section 5.1.2 but change the CPU-DRAM simulator interface so that they now

use MegaTick synchronization. We vary the number of MegaTicks from 2, 4, 8 to

16 DRAM cycles, and compare the simulation speed and several accuracy metrics

against cycle-accurate simulations as shown in the following section.

5.2.1 Performance Evaluation

We again run trace simulations with the same setup as Section 5.1.2 except

this time we use MegaTick synchronization. We test MegaTick values from 2, 4, 8

to 16 and measure the simulation time.

The results can be seen in Figure 5.4. For the random trace, previously we were
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Figure 5.4: Simulation time using MegaTick synchronization. Random(left) and

stream(right) traces.

only able to get 40% faster simulation time at best comparing to single-thread base-

line. Using MegaTick we are able to run the simulation 3.3 times faster. Although

we do start to see a diminishing return after 8 cycles per MegaTick. Similarly for

the stream trace, we were not able to run the simulation faster, because each parallel

region is too short. With MegaTick we are able to run twice as fast compared to

the single thread version.

While trace simulations prove that MegaTick synchronization does indeed im-

proves simulation speed, it is time to further validate whether MegaTick can improve

simulation speed when using DRAM simulator that is integrated with a CPU simu-

lator. We integrate the MegaTick DRAMsim3 with Gem5 TimingCPU Model with

3 levels of cache (same parameters as in Table 4.1), and use an 8-channel HBM as

memory backend. We run all the parallel simulations with 8 threads and compare

the simulation time of using various of MegaTick values. We normalize the sim-

ulation time against the single-thread cycle-accurate setup. Figure 5.5 shows the

results.
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Figure 5.5: MegaTick relative simulation time to serial cycle-accurate model (“Baseline-

all”) with relative CPU simulation time for each benchmark(“Baseline-CPU”).

8-channel HBM. 8 threads for parallel setups.

Similar to trace simulations, cycle-accurate multi-thread simulations are al-

ways slower than single-thread simulations, in this case they average a 34% slow-

down. “Mega2” (synchronizing every 2 cycles) seems to be a break-even point for

using parallel simulations in this case, and though some benchmarks are slightly

slower than the single-thread version, the overall average speedup is 10% over the

single-thread simulations. “Mega4” setup sees the largest performance jump rel-

ative to the baseline, where we observe and average of a 31% performance boost.

“Mega8” and “Mega16” further improves the overall simulation speed by 41% and
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47% respectively, with several cases shortening the overall simulation time by half.

Again, we are seeing a diminishing return after “Mega16” and therefore we did not

go beyond it. In addition, comparing to the CPU simulation time, MegaTick re-

duces the DRAM simulation time to less or equal to CPU simulation time for most

benchmarks. This makes the multi-channel DRAM simulation time no longer the

dominant component of the overall simulation time, accomplishing part of the

5.2.2 Accuracy Evaluation

While MegaTick does not require any changes to the internals of the cycle-

accurate memory controller model, as we previously pointed out in Section 5.2, the

latency of incoming and outgoing memory requests may be increased because of the

longer synchronization period with the CPU.

Because the main memory system is at the bottom of the memory hierarchy,

any changes we make can affect the performance of everything up the chain like

caches and processors. Besides, even though MegaTick does not change the internals

of the cycle-accurate memory controller, the interface changes may or may not have

impact on the behaviors of the controller. Therefore, we use a comprehensive set of

metrics on different components to examine the accuracy impact of the MegaTick

model.

For overall system accuracy and core accuracy impact evaluation, we use

CPI(cycles per instruction). For cache impact, we mainly rely on last level cache

(LLC) statistics, as it directly interacts with main memory. In our simulation setup
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we have a 3 level cache, and therefore we choose the L3 miss latency as the met-

ric. For memory controllers, the interface timing change is directly perceived as the

changes on inter-arrival timings. The inter-arrival timings may alter scheduler be-

havior, as some of the scheduling decisions are based on the timings of the requests,

and it ultimately reflects on the bandwidth or throughput of the memory system.

To best evaluate these metrics, we use the deterministic, cycle-accurate out-

of-order CPU model provided by Gem5 (DerivO3 CPU model), along with a 3-level

cache hierarchy, and swap only the main memory models for each run. We compare

our proposed MegaTick models against cycle-accurate model (DRAMSim3). We

configure these 2 models with the same parameters wherever applicable, and use the

cycle-accurate model as the baseline for comparison. The benchmarks and memory

model configurations are the same as Section 5.2.1.

5.2.2.1 CPI Accuracy Evaluation

First, we compare the overall system accuracy in terms of CPI. We use the

CPI numbers from cycle-accurate simulation results as baseline, and calculate the

percentage error of CPI from other configurations. The results are shown in Fig-

ure 5.6.

As can be seen in Figure 5.6, The absolute average CPI error for MegaT-

ick models are 1.5%(Mega2), 2.7%(Mega4), 4.7%(Mega8) and 9.5%(Mega16). The

worst cases are Mega16 results which exceed 20% error, which is not ideal. But

Mega4 and Mega8 both have acceptable accuracy, especially for the benchmarks
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Figure 5.6: CPI error comparison of MegaTick model. Cycle-accurate results are the com-

parison baseline(0%).

that are not very memory intensive.

Most of the MegaTick models have higher CPIs than cycle-accurate model be-

cause of the increasing memory latency. But there is one exception of the STREAM

benchmark with the Mega2 model, which has a lower CPI than the cycle-accurate

mode. To verify this outlier result, we discovered that, like other MegaTick models,

this configuration also has higher average memory latency, but also has a higher av-

erage memory bandwidth than the cycle-accurate model. The possible reason could

be this particular synchronization mode accidentally favors the controller schedul-

ing and thus produces higher bandwidth. STREAM is a more bandwidth sensitive

benchmark and thus has a lower CPI in this case.
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Figure 5.7: LLC average miss latency percentage difference comparing to cycle-accurate

model.

5.2.2.2 LLC Accuracy Evaluation

Unlike the CPI errors we see in Section 5.2.2.1, the LLC average miss latency

errors are more observable. Mega2 and Mega4 still have relatively low errors of 3.0%

and 7.1% on average. Mega8 and Mega16 sees an increasing 12% and 27% error.

This is expected because the average LLC miss latency is already low, typically

20ns to 30ns, and a few nanoseconds of delay per memory request is going to be a

much more observable portion of the overall miss latency. For the very same reason,

ram lat benchmark has lowest average percentage error among the benchmarks

because the memory access pattern of this benchmark is highly random, making

it hard to prefetch and creating row misses in the DRAM backend. Therefore the

absolute miss latency is already high enough that having a few nanoseconds of extra
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delay translates to a smaller percentage error.

5.2.2.3 Memory Accuracy Evaluation

From the memory controller’s perspective, the MegaTick model directly alters

the request inter-arrival timings, and it works both ways: The incoming request

may be delayed if it misses a synchronization cycle, therefore increasing the inter-

arrival latency. The returning request may also be delayed for the same reason, and

the next incoming request that depends on the returning request is therefore also

delayed.

To better visually present the changes of the inter-arrival timings, we plot

histogram density in Figure 5.8. We overlap the distribution of cycle-accurate re-

sults with MegaTick results in each graph for better comparison. It can be clearly

seen that, from Mega2 to Mega16, the “shifting” of the distribution away from its

cycle-accurate base becomes more and more clear. To quantitatively describe this

“shifting”, we calculate the intersection [62] value between the two histograms.

The intersection of two histograms can be understood as the scale of overlap-

ping area of two histograms, and the histogram intersection of two histograms, H1

and H2, can be calculated as follows:

intersection(H1, H2) =
∑
i

min(H1(i), H2(i))

We can obtain the normalized intersection (to H1) by dividing the intersection

value to
∑

iH1(i). This normalized intersection value ranges from 0 to 1, with 0
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Figure 5.8: Inter-arrival latency distributions density of bwaves r benchmark. Mega2(top

left), Mega4(top right), Mega8(bottom left), and Mega16(bottom right).

meaning H2 has no overlap with H1 and 1 meaning H2 fully overlaps with H1. In the

graphs we refer to this normalized intersection value as “intersection” for simplicity.

As can be seen in Figure 5.8, as we increase MegaTick value, the shifting of

MegaTick distribution widens, and the intersection with cycle-accurate distribution

decreases. We only show bwavesr benchmark in consideration of space.
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5.2.2.4 Summary

As we demonstrated in this section, the MegaTick models show promising

accuracy results, especially for Mega4 and Mega8 cases. However, the changes in

LLC miss latency is not negligible. In the next section, we propose mitigation

schemes that further significantly improve the overall CPI accuracy and LLC miss

latency accuracy.

5.3 Accuracy Mitigation

The root cause of inaccuracy brought by MegaTick is due to increased mem-

ory latency of memory requests in between synchronization points(as shown in Fig-

ure 5.3). To be more specific, there are two aspects of this problem: memory

requests are held by the processor longer to wait for the next synchronization cycle;

and returning memory requests are held by the memory controller longer to wait

for the next synchronization cycle. Some of these requests are closer to the previous

synchronization cycle than the next synchronization cycle. So if we can issue or

return these requests in the previous synchronization cycle instead of waiting for

the next synchronization cycle, we can get a more accurate latency by balancing

out the errors.

While from the memory controller’s perspective, there is no way that it can

predict when the next memory request will arrive, the memory controller does cer-

tainly know when the next memory request will return: when the memory controller

issues a READ or WRITE DRAM command, it takes tCL + tburst cycles to finish
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this request, which is typically more than a dozen DRAM cycles. Therefore, the

memory controller knows ahead of the time when a memory request will complete in

a future cycle, and at each synchronization cycle, the memory controller can simply

look ahead in the returning queue and determine which request to return earlier.

Sync

Request 2 (+3 cycles)

Sync

 MegaTick(8)
No Mitigation

Request 1 (+7 cycles)

Sync

Request 2 (+3 cycles)

Sync
 MegaTick(8)

Balanced 
Return

Request 1 (-1 cycles)

Cutoff Point

Sync

Request 2 (-5 cycles)

Sync
 MegaTick(8)

Proactive 
Return

Request 1 (-1 cycles)
Actual Return Cycle

Scheduled Return Cycle

Figure 5.9: MegaTick and its accuracy mitigation schemes. Balanced Return will return

some requests before the next MegaTick (middle graph). Proactive Return will

return all requests before the next MegaTick (lower graph).

Based on this advantage, we propose two mitigation schemes: Balanced Return

(BR) and Proactive Return (PR).

Balanced Return (Figure 5.9, middle) draws the line at the middle point be-

tween 2 MegaTicks, returns requests before the midpoint at the previous MegaTick

and returns requests after the midpoint at the next MegaTick. This will create an

average memory latency close to the cycle-accurate model.
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Proactive Return (Figure 5.9, lower) returns all requests before the next MegaT-

ick at current MegaTick. This will result in lower average memory latency comparing

to cycle-accurate model, but it will also balance the effects of increased incoming

request latencies, which the memory controller cannot control.

We implement these mitigation schemes into our simulation framework, and

run the same experiments with mitigation. The results are shown as the following.

5.3.1 CPI Errors after Mitigation

First we measure the CPI of each configuration and plot the percentage dif-

ference compared to the corresponding cycle-accurate model. The results are shown

in Figure 5.10 and Figure 5.11.
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Figure 5.10: CPI difference comparing to cycle-accurate model using Balanced Return mit-

igation. Absolute average CPI errors are shown in the legend.

For the Balanced Return scheme, although the error improves a lot comparing
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Figure 5.11: CPI difference comparing to cycle-accurate model using Proactive Return mit-

igation. Absolute average CPI errors are shown in the legend.

to MegaTick without mitigation, the majority of benchmarks still shows a higher

CPI, indicating that compensating the returning memory latency is still not enough

for the cycles lost in the incoming latency. The average CPI error is a mere 1.2% for

Mega4, with a worst case of 4% error. Mega8 averages a 1.9% CPI error but worse

cases reaches 5%. Mega16 further brings down the worst case error to 7% with an

average of 3%.

For the Proactive Return scheme, the CPI accuracy further improves for almost

all settings comparing to Balanced Return scheme. Mega4 averages 0.5% error

without exceeding 2% error in any benchmark. Mega8 improves to 1.1% error with

only 1 benchmark slightly over -4%. Mega16 sees the worst error here with -12%

error in ram lat benchmark, the most latency sensitive benchmark in the selection,

but still manages to reduce the overall average error down to 2.5%.
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5.3.2 LLC Errors after Mitigation
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Figure 5.12: Balanced Return model LLC average miss latency percentage difference com-

paring to cycle-accurate model.

As for LLC average miss latency, we see a similar trend as with CPI accuracy:

For Mega4 and Mega8 configurations, Balanced Return reduces the average LLC

miss latency error from 7.1% and 12% to 2.6% and 4.0%, respectively. Worst case

errors in Mega16 also significantly reduced by one third. The majority of configura-

tions still show an increase in LLC miss latency because even though the returning

requests are “balanced”, the incoming request delay is still there.

Proactive Return further reduces the Mega4 and Mega8 errors to 0.85% and

0.95% respectively. For Mega16, even though the absolute error decreases to 7.5%

from 11% of Balanced Return, we see a swinging distribution of the errors around

zero, meaning that even with aggressively proactive returning, some cache misses

96



still take longer than before. This is due to the long synchronization window that

causes the distribution of latencies to be compensated in one direction.
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Figure 5.13: Proactive Return model LLC average miss latency percentage difference com-

paring to cycle-accurate model.

5.3.3 Memory Impact after Mitigation

Finally, on the memory controller side, the mitigation schemes effectively cor-

rect the “shifting” inter-arrival latency distribution. As the example shown in Fig-

ure 5.14, with Proactive Return mitigation, the intersection of Mega4 and Mega8

increases to 0.98 and 0.97 respectively, and Mega16 also jumps 0.07 to 0.87. While

inter-arrival latency distributions cannot entirely represent the internals of a DRAM

simulator, they demonstrate how the mitigation can minimize the effects of MegaT-

ick.
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Figure 5.14: Inter-arrival latency distributions density of bwaves r benchmark with Proac-

tive Return mitigation. Mega2(top left), Mega4(top right), Mega8(bottom

left), and Mega16(bottom right).

5.3.4 Summary

Comparing to MegaTick without mitigation, we are able to reduce the average

CPI error from 2.7% to 0.5% for Mega4 model, and from 4.7% to 1.1% for Mega8

model with worst case errors also cut down by more than half. Similarly for LLC

miss latency, Proactive Return mitigation is able to bring down the LLC miss latency

error to low single digit percentage numbers. This proves the effectiveness of these

mitigation schemes. Moreover, these mitigation schemes add no additional overhead
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to the simulation time because, from the memory controller’s point of view it only

needs to change the timing threshold of returning requests from the current cycle

to a future cycle, and no additional operations are needed.

5.4 Discussion

After the extensive testing, we can recommend some the accuracy versus per-

formance tradeoffs when using the MegaTick technique. As we have already shown,

the biggest performance jump is from Mega2 to Mega4, whereas the performance

only gains marginally from Mega4 to Mega8. Combining with the accuracy results,

We recommend Mega8/4 for best performance/accuracy results.

As for the number of threads used in simulations, generally matching numbers

of threads to number of channels is good practice using MegaTicks. 2 channels or

less is still better off using single thread.

5.5 Conclusion

In this chapter, we developed the first parallel DRAM simulator, and further

proposed a lax synchronization scheme to reduce the parallelization overhead and

to achieve practical speedup over single thread simulations. We also applied accu-

racy mitigation mechanisms to improve accuracy loss from the lax synchronization,

making it a fast and accurate alternative to single thread DRAM simulators.
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Chapter 6: Statistical DRAM Model

While we successfully implemented a practical parallel simulator that tackles

multi-channel DRAM simulation scalability, it is still cycle-based, and thus the single

channel performance and the interface compatibility issues are still unaddressed.

These challenges require a fundamental change in simulation model, and hence we

present our proposed statistical/machine learning DRAM simulation model.

6.1 Propositions

Different from analytic models that provide a high level analysis, which we

discussed in Section 2.1.6, the statistical models here mean to provide an on-the-

fly DRAM timing per request based on a “trained” statistical or machine learning

model.

The foundation of why such a statistical model would work on DRAM is that:

• DRAM banks only have a finite number of states.

• The timing of each DRAM request has already been largely dictated by the

DRAM states when it arrives at the controller.

• Our observation shows most DRAM request latencies fall into a very few la-
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tency buckets, indicating that this behavior is likely the result of the previous

two points.

And we will expand each of the claims one by one as follows.

DRAM banks only have a finite number of states: a DRAM bank

can be modeled as a state machine: it can be in idle, open, refreshing, or low power

states. Although there are typically thousands of rows that can be opened or closed,

what matters to a specific request to a bank is whether the row of that request is

open or not, so it will reduce to 2 states in this regard. Similarly, while there can be

multiple banks in a rank and even multiple ranks in a channel, but for each request

there is only a subset of these states that really matter to the timing of that request.

Also, the queuing status when a new request arrives can also be accounted as states.

The timing of each DRAM request has already been largely dictated

by the DRAM states when it arrives at the controller: intuitively speaking,

when a request arrives at the DRAM controller, there are very limited actions that

the controller can take. It can either A) process this request, whether because it

is prioritized by the scheduler, or just because there are no other requests to be

processed at the time, or B) hold the request whether because there is contention,

other events are happening such as the current rank/bank is refreshing. Most of the

scenarios here can be represented as a “state” like we previously discussed.

Our observation shows most DRAM request latencies fall into very

few latency buckets, meaning that they are likely to be predictable: we

plot the memory latency distribution of the 12 benchmarks we tested as Figure 6.1.
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Figure 6.1: Latency density histogram for each benchmark obtained by Gem5 O3 CPU

and 1-channel DDR4 DRAM. X-axis of each graph is cut off at 99 percentile

latency point, the average and 90-percentile point are marked in each graph for

reference.
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Note we clip each histogram at the 99 percentile latency point for better visual. It

can be seen that although every benchmark has a long tail latency that stretches to

over 400 cycles (likely the result of having to wait for a refresh which is 420 cycles in

this case), the 90-percentile line and the distribution itself both indicate that most

of the memory latencies are limited to just quite a few latency buckets.

This distribution fits into a statistical or machine learning model very well:

the majority of the cases are predictable while the corner cases are there to optimize.

With a statistical or machine learning model, we cannot handle 100% of the requests

accurately like cycle accurate simulator. However, if we can accurately predict, say

90% of the requests at the cost of a fraction of simulation time, then the trade-off

may be worth the accuracy loss, especially for CPU and cache researchers who only

need an “accurate enough” but preferably faster memory model.

6.2 Proposed Model

6.2.1 Classification

It is clear now that the latency distribution for most memory requests is con-

centrated in a very small range. But there can still be tens of numeric values in that

small range. These numeric values create noises to prevent the model from con-

verging. For example, some requests have the latency of 20 cycles, which is exactly

the minimum cycles it takes to complete a row buffer hit. But requests of 21, 22,

23, and all the way to 30 cycles also represents row buffer hit conditions, because

if it is not a row buffer hit, then the minimum latency will be 20 + tRCD, which
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is well over 30 cycles. All the variations of 20+ cycles are caused by reasons such

as bus contention, or rank switching, but they are still essentially row buffer hits,

and therefore they should all be classified as one category instead of 10 individual

numbers.

As we stated in Section 6.1, the dominating factor of the latency of a memory

request is the DRAM states. For instance, a row buffer hit results in 20 cycles la-

tency; a request to an idled bank takes 35 cycles; a row buffer miss takes 50 cycles; a

request blocked by refresh operations can take 400 cycles. These are far more influ-

ential than one or two cycles of bus contention. Plus, these smaller numbers are very

specific to the DRAM protocol and are thus not portable/universal. Therefore we

propose to classify requests into these collective categories as opposed to individual

values.

Based on how DRAM works, we propose the following latency classes and their

corresponding latency number in DRAM timing parameters:

• idle: this class of latency occurs when the memory request goes to an idle or

precharged DRAM bank, requires an activation (ACT), and then read/write.

• row-hit: this class of latency occurs when the memory request happens to

goes to a DRAM page that was left open by some previous memory requests.

• row-miss this class of latency occurs when the memory request goes to the a

DRAM bank that has a different page opened by previous memory requests.

Therefore, to complete this request, the controller must precharge the bank,

then activate, and then read/write.

104



• refresh this class of latency occurs when the memory request is delayed by a

refresh operation. Depending on whether the request comes before the refresh

or during the refresh, the latency in this class may vary.

We do not seek to reproduce the exact latency as cycle accurate simulation,

but extrapolate an appropriate latency number based on DRAM timing parameters.

We will further explain this in Section 6.2.2.

6.2.2 Latency Recovery

Once we have latency classes in hand, combined with DRAM timing param-

eters, we can recover their latency into approximate DRAM cycles. By doing this

we can avoid relying on any specific numbers but rather have a portable generic

model. For example, we can simply plug in a DRAM profile with timing parameters

to obtain latency numbers for that profile, and if we want latency numbers for a

different profile, we simply plug in another DRAM profile without having to retrain

the whole model.

We specify how we recover a latency cycle number from each latency class as

follows:

• idle: the minimum latency of this class is a row access followed by a column

access. In DRAM parameters it is typically tRCD+ tCL+BL/2. Note there

are some variances. For instance, read or write operations may have different

tRCD, tCL values, and for GDDR the burst cycles can be BL/4 as well.

• row-hit: the minimum latency of this class is simply the time of a column
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access. In DRAM parameters it is typically tCMD + tCL + BL/2. Again,

there are protocol specific variances like the idle class.

• row-miss: the minimum latency of this class is a full row cycle. In DRAM

parameters it is typically tRP + tRCD + tCL+BL/2.

• refresh: We use a refresh counter similar to the refresh counters in DRAM

controller, to provide timestamps of when each rank should refresh. We only

use the timestamps as references to determine whether a request arrives right

before a refresh or during a refresh. If the request comes right before the

refresh, then we estimate the latency as tRFC + tRCD + tCL + BL/2. If

the request arrives during the refresh cycle, e.g. n cycles after the reference

refresh clock (n < tRFC), then we estimate the latency as tRFC−n+tRCD+

tCL+BL/2. For example, the refresh counter marks cycle 7200, 14400, .etc as

refresh cycles for rank 0, and if a request arrives at cycle 7201, then it will be

regarded as arriving during a refresh. Now by no means our reference refresh

timestamps can matches precisely the real refresh cycle in a cycle accurate

simulation, but it is a good approximation for the impact of refresh.

6.2.3 Dynamic Feature Extraction

To train a statistical or machine learning model, we need “features” that pro-

vides distinctive information about the latency classes.

As we know, the latency of each memory request is largely dependent on the

DRAM states, which are the results of previous memory requests. For example, a
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previous request opened a page when the DRAM bank was idle, then a following

request that goes to the same bank same row can take that advantage. So the

features we are looking for here should come from the address streams, especially

the previous requests, and we need to be able to extract features dynamically from

these address streams.

There are two aspects of extracting features from address streams, temporal

features and spatial features. Temporal features reflect the potential dependency

between requests. For example, a previous request that is 5 cycles ahead should

have more impact on the timing of the current request than another previous request

5000 cycles ahead. The difficulty is how to translate the timing intervals into useful

features. Again we cannot rely on specific values because there would be too many

features to be useful. But instead, we use generic DRAM parameters to classify how

far or near is a previous request. For example, we consider a request “near” if it was

arrived within tRC cycles, the intuition is that in tRC cycles, which represents the

full row cycle, the DRAM can be activated and then precharged by a request, which

renders that DRAM state unchanged to a following request outside of tRC cycles.

Another line we draw here is the “far” line, which uses the number of tRFC, which

is the number of cycles it takes to do a refresh. It may imply a reset state for the

DRAM.

Spatial features need to reflect the structures of DRAM, in particular, banks

and rows, because the state of each bank is the most determining factor for the

incoming DRAM request. For example, if we are trying to predict the timing of

one request, the previous requests that go to the same bank weigh more than the
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Figure 6.2: Feature extraction diagram. We use one request as an example to show how

the features are extracted.

previous requests go to any other banks. And same as temporal features, we don’t

need to identify each bank and row by their specific bank number, but instead we

identify them by “same row”, “same bank”, “same rank”(but different bank), or

“different rank”. We can evaluate a request with previous requests on these fields

easily once they have their physical addresses translated to DRAM addresses(rank,

bank, row, column). And to simplify and facilitate feature extraction, we maintain a

request queue for each bank and put requests into each bank queue after the address

translation. Unlike the queues in DRAM controllers, this bank queue is not actively

managed and is strictly FIFO with a maximum length imposed for performance

optimizations.

Combining the temporal features with spatial features, we can have features

coded with both temporal feature and spatial feature. For instance, num−recent−

bank feature counts the number of previous requests that go to the same bank and
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that are recent. We propose a list of features in Table 6.1; these features can give

hints on the possible state that the DRAM banks are in and how DRAM controllers

can make scheduling decisions etc.

The feature extraction using one request as an example is shown in Figure 6.2.

6.2.4 Model Training

Feature 
Extraction

same-row-last near-ref ... Class

0 0 ... idle

.. idle

... ...

Training
Trained
Model

Synthetic
Traces

DRAMsim3

cycle addr op

0 0x1F R

10 0x2E W

... ... ...

Training
Dataset

cycle rank bank row op Class

0 1 0 0x123 R idle

10 2 1 0x234 W idle

... ...

Pre-processed
Trace

Yes No

Yes No

Configuration
(tRC, tRFC...)

Figure 6.3: Model Training Flow Diagram

Having the features and classes ready, we now put pieces together and build

the training flow shown in Figure 6.3. We use synthetic traces as training data, and

use a cycle accurate DRAM simulator, DRAMsim3, to provide ground truth. The

beauty of using synthetic traces is that we can use a small amount of synthetic traces

to represent a wide range of real world workloads. For example, we can control the

inter-arrival timings of the synthetic traces to reflect to intensity of workloads; we can

also generate contiguous access streams and random access streams and interleave

them to cover all types of memory access patterns of real workloads. Plus, we also

don’t have to worry about the contamination of testing dataset when we test the

model with real workloads.
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Table 6.1: Features with Descriptions

Feature Values Description Intuition

same-row-last 0/1

whether the last request

that goes to same bank has the same row

(as this one)

key factor for the most

recent bank state

is-last-recent 0/1
whether the last request to the

same bank added recently (tRC)

relevancy of the last request

to the same bank

is-last-far 0/1
whether the last request to the

same bank added long ago (tRFC)

relevancy of the last request

to the same bank

op 0/1 operation(read/write) for potential R/W scheduling

last-op 0/1 operation of last request to the same bank for potential R/W scheduling

ref-after-last 0/1
whether there is a refresh since

last request to the same bank

refresh reset the

bank to idle

near-ref 0/1 whether this cycle is near a refresh cycle
latency can be really

high if it’s near a refresh

same-row-prev int
number of previous requests with

same row to the same bank

if there is same row

request then OOO

may be possible

num-recent-bank int
number of requests added recently

to the same bank

contention/queuing

in the bank

num-recent-rank int
number of recent requests added

recently to the same rank

contention

num-recent-all int
number of recent requests added

recently to all ranks

contention
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We run the synthetic traces through DRAMsim3 with a DRAM configuration

file as usual. To mark the ground truth, we modified DRAMsim3 so that it gener-

ates a trace output that can be used for training. Because the DRAMsim3 knows

exactly what happens to each request inside its controller, it can precisely classify

the requests into any of the categories we proposed in Section 6.2.1. And once the

requests are classified, we run them through the feature extraction to obtain fea-

tures. Finally, we run the features along with the classes into a model to obtain a

model.

There are many machine learning models that can potentially handle this

particular classification problem and we are not going to test every one of them as

it is out of the scope of this thesis. In this study we start with simple and efficient

models like decision tree [63] and random forest [64] for this study:

• These models are simple, intuitive, and explainable, which is quite important

for prototyping work like this: it helps to be able to look at the model to

examine and debug.

• The an ensemble tree model mimics how a DRAM controller works naturally,

but instead of doing it in a series of cycles, the decision tree makes the decision

instantly.

• The simplicity of these models makes both training and inference fast, the

later is crucial for simulations performance.

As far as hyperparameter tuning goes, while decision tree model is relatively

simple, there are still many hyper-parameters to tune. Luckily the model is not
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hard to train, and it does not take much time to go through many parameters. We

tried several different approaches(including brute force), and they all work decently.

But what we have found that produced best accuracy is Stratified K-fold Cross

Validation [65]. Stratification samples help reduce the imbalance of classes in our

training dataset, especially the refresh class that is much rarer than other classes.

K-fold Cross Validation divides the training data sets into k folds, and for each fold,

uses it as test set and the rest k− 1 folds as training sets.. This further reduces the

bias and overfitting of the model. The details of hyperparameter training can be

found later in Section 6.3.1.

6.2.5 Inference

Inference is relatively straightforward, as shown in Figure 6.4. However, one

thing to note is that, if we are to compare the inference results to the results of cycle

accurate simulation, we have to use the same DRAM configuration profile as the

cycle accurate simulation. Otherwise we are not required to use the same DRAM

configuration profiles.

In implementation, the entire inference process only takes one function call

combining the request cycle, address, and operation(read/write), and the inference

function returns the number of cycles that the request is going to take to complete.

This is great relief from the cycle accurate interface where the frontend has

to always stay synchronized with the DRAM model. It allows much more flexible

integration into other models.
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Figure 6.4: Model Inference Flow Diagram

6.2.6 Other Potential Models

The innovation of this work is to translate what is an essentially time-series

problem into a non-time-series problems. We are aware of that there are models

that work on time-series problem. Some of the temporal features in the data are

easy to extract, whereas if we use models to automatically extract features, it will be

costly when it comes to training. Additionally, our approach preserves portability

and model reusability when it comes to different DRAM profiles, which we believe

is not easy to preserve in other models. That being said, we certainly look forward

to other efficient implementations of this problem.

113



6.3 Experiments & Evaluation

6.3.1 Hyperparameters

We use the Scikit-learn [66] package to train our model, which contains a set of

tools and models that are readily available. The hyperparameters we use for training

the decision tree model is shown in Table 6.2. We use the StratifiedShuffleSplit

module to conduct a grid search on the these hyperparameters to find the best fitting

model.

Table 6.2: Hyperparameters of the decision tree model.

Hyperparameter Values Explanation

max-depth None, 3, 5, 8, 10
Max depth of any path in the decision tree

(“None” means unlimited)

min-samples-leaf 5, 20, 20, 30, 0.1, 0.2
Min number of samples needed to create a leaf node

in the tree. Float number means ratio.

min-samples-split 5, 10, 20, 0.05, 0.1
Min number of samples to create a split in the tree.

Float number means ratio.

min-weight-fraction-leaf 0, 0.05, 0.1
Min weighted fraction of the sum total of weights

required to be at a leaf node.

max-features auto, 0.2, 0.5, 0.8
Max number of features to consider. Auto means

square root of number of features.

random state 1, 3, 5 Help train reproducible model.

On top of these hyperparameters, we also use k − fold = 5 for K-fold cross

validation. The end result is that there are a total of 5400 × 5 = 27000 models to
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train. Fortunately, each model trains quickly and the training can be distributed to

multiple cores/threads in parallel. It takes less than a minute to train and evaluate

all 27000 models using a 4-core desktop CPU.

The best hyperparameters will be automatically selected among all models

trained based on accuracy. The values of the “best” hyperparameters are listed in

Table 6.3. The best accuracy is 96.76% (for all cross-validation data).

Table 6.3: Hyperparameter Values of Best Accuracy

Hyperparameter Value

max-depth None

min-samples-leaf 20

min-samples-split 5

min-weight-fraction-leaf 0

max-features 0.8

random state 3

As for the hyperparameters of random forest model, the default parameters

provided by Scikit-learn package works out of the box, trains in seconds, and pro-

duces an accuracy as good as the decision tree model. Therefore we did not explore

the hyperparameters of random forest model.
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Figure 6.5: Feature importance in percentage for decision tree and random forest

6.3.2 Feature Importance

We analyze the trained models and see how they treat the features differently.

To better visualize the importance of features, we clip the least important features

into one category(“others”), and plot the pie chart as Figure 6.5.

The two models handles different features differently, with the two most im-

portant features the same: same− row− last and ref −afterr− last, contributing

to more than 50% combined. It can also be seen that the distribution of importance

is more balanced in the random forest model than the decision tree model.

6.3.3 Accuracy

We now apply the trained model on real-world benchmarks. The benchmarks

are the same as what we used in Chapter 5. We run all the benchmarks with cycle
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accurate, out-of-order Gem5 CPU along with DRAMsim3, and this will provide us

the golden standard for our accuracy tests. A address trace for each of the bench-

mark is generated as the input to the statistical models, this allows the statistical

model and cycle accurate model to have exactly the same inputs to work with. For

each request we also record its latency class and latency value in cycles labeled by

DRAMsim3 so that we can use it for comparison with the statistical models.

Note that there are two aspects of accuracy, classification accuracy, which

represents how many requests the statistical model can correctly classify according

to the cycle accurate models; and latency accuracy, which is the numeric latency

values of the request produced by the statistical models.

First we look at classification accuracy for decision tree and random forest

models, as shown in Figure 6.6 and Figure 6.7.

As can be seen in Figure 6.6 and Figure 6.7, overall the predictors produces

great classification accuracy across all benchmarks for both models. The average

classification accuracy is 97.9% for decision tree and 98.0% for random forest. In

most cases the classification accuracy even exceeds our training accuracy. This is

because our training traces generally contain more address patterns than most real-

world workloads, and is thus harder to work with. Also note that the accuracy

between random forest and decision tree models is almost indistinguishable, the

largest difference being a mere 0.4% for lbm benchmark, in all other cases the

difference is often 0.1% to 0% difference. This shows signs of our model converging.

Being able to correctly classify the latency categories is the important first

step. The next step is to verify that our latency recovery model can also reproduce
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Figure 6.6: Classification accuracy and average latency accuracy for decision tree model

on various benchmarks.

the latency value in cycles according to the DRAM configuration profile. Our model

translate the latency class for each memory request to a numeric value in DRAM cy-

cles, and we compare these numeric latency values against our cycle accurate model

baseline. To put into perspective of the classification accuracy, we again use the

cycle accurate numbers as the baseline and plot the average latency value from our

statistical models normalized to the cycle accurate model as the accuracy measure-

ment. We call this measurement “Average Latency Accuracy”. The average latency

accuracy are plotted side by side with classification accuracy in both Figure 6.6 and

Figure 6.7. The average relative latency for both decision tree model and random

forest model are 0.969 comparing to cycle accurate base with worst case 0.94 for

stream and ram lat benchmarks. This is rather impressive, considering that our
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Figure 6.7: Classification accuracy and average latency accuracy for random forest model

on various benchmarks.

cycle based MegaTick model even has a higher error than this. We also have a

discussion on how to further reduce the latency accuracy in Section 6.3.5.

6.3.4 Performance

We now compare the simulation performance. The simulation time of cycle

accurate is measured as usual. The simulation time of inference models is measured

from end to end, which starts from the time of parsing the trace to all the predictions

are done. We use the inverse of simulation time as simulation speed, and plot

the simulation speed normalized to the cycle accurate simulations, as shown in

Figure 6.8.

It can be seen that our prediction model runs 2.2x to 250x faster than the cycle
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Figure 6.8: Simulation speed relative to cycle accurate model, y-axis is log scale.

accurate model. The simulation speed of an inference model is solely dependent on

the number of requests, because the work to predict each request is the same. In

contrast, there are many more factors for cycle accurate simulations: first off, each

cycle has to be simulated even if there is no memory request at all; the memory

address patterns, which alter the behavior of scheduler, also impact the simulation

performance.

To demonstrate linearity of inference models, we sort the benchmarks by the

number of memory requests they generate, and plot the simulation time over the the

number of requests as in Figure 6.9. Both random forest and decision tree model

exhibit almost strictly linear performance. The random forest model is slightly

slower than decision tree, due to its more complex inference structures, but it is

120



0 1000000 2000000 3000000 4000000 5000000 6000000
No. Requests

0

20

40

60

80

100

Si
m

ul
at

io
n 

Ti
m

e(
S)

Decision Tree
Random Forest

Figure 6.9: Simulation speed vs number of memory requests per simulation.

linear as well. We can conclude that the time complexity of our model is O(n)

where n is the number of requests, and hence O(1) for each request.

Note that our implementation of the inference flow is far from perfect, espe-

cially the feature extraction which is coded in a plain python script, takes about

90% to 95% of the overall inference flow. With an efficient C/C++ implementation

we should be able to see another order of magnitude speedup.

6.3.5 Multi-core Workloads

Previous experiments show our proposed model can successfully model DRAM

timings for single core workloads, no matter the memory activity intensity. The

success is based on the premise that the high accuracy classification can translate to
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Table 6.4: Randomly mixed multi-workloads.

Mix Benchmarks

0 stream, xalancbmk r, lbm r, bwaves r

1 bwaves r, mcf r, lbm r, fotonik3d r

2 deepsjeng r, bwaves r, gcc r, fotonik3d r

3 xalancbmk r, x264 r, bwaves r, gcc r

4 mcf r, stream, ram lat, lbm r

high accuracy latency prediction because the variances are low in each class. While

this might be true for single core workloads, multi-core workloads may break the

assumption.

To validate how well our model holds against scaling workloads, we amplify

the workload by randomly mixing 4 traces of different workloads together to reflect

intensive multi-core memory activities, and we use the same methodology to evaluate

the accuracy. The mix of benchmarks is shown in Table 6.4.

It can be seen, in Figure 6.10, that our model still demonstrate very high

classification accuracy with 0.99 for each mix, but the average latency sees a decrease

down to 0.88 in the worst case (mix 4). The accuracy disparity between classification

accuracy and latency accuracy is due to the long gap between the latency category

edges. For instance, in the DDR4 configuration we tested, the row − hit class is 22

cycles while the next near class, idle, is 39 cycles, leaving 17 cycles in between.
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Figure 6.10: Classification accuracy and average latency accuracy for randomly mixed

multi-workloads.

To further quantify this effect, we breakdown each latency class to those whose

actual (cycle accurate simulated) latency matches exactly with their predicted la-

tency; and those whose actual latency is more than their predicted latency, which

we name as “Class+”. For instance, the in the DDR4 configuration, row−hit class

translate to 22 cycles, while row−hit+ class represents those requests that are “row

hit” situations but with more than 23 cycles due to contention. Figure 6.11 shows

the breakdown of such classes for each mix. Each bar in the graph represents the

percentage of the total requests for each class. Note that the predicted latency of

refresh classes is a variation itself so it does not accompany a “+” class like others.

It can be seen that for mixes that have higher latency accuracy such as Mix2 and

Mix3, the percentage of the “+” classes are much smaller, typically less than 10

percent combined. The opposite can be observed from other mixes such as 0, 1
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Figure 6.11: Request percentage breakdown of latency classes and their associated con-

tention classes for randomly mixed multi-workloads. “+” classes are the con-

tention classes apart from their base classes.
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and 4, where the “+” classes contribute to more than 20% of the total requests,

resulting the inaccuracy in their latencies. Further looking into the specific bench-

marks in each mix, we can confirm that the mixes with higher percentage of “+”

all consist of more than 2 memory intensive benchmarks, whereas the mixes with

lower percentage of “+” have at most 1 memory intensive benchmark.

One way to combat the extra latencies introduced by contention is to train the

model with more latency classes, i.e., filling the latency gap between current classes

with more latency classes. This may increase the training efforts but should reduce

the latency discrepancy between our statistical model and cycle accurate model.

6.4 Discussion

6.4.1 Implications of Using Fewer Features

In the early stage of prototyping the machine learning model, we did not obtain

results as good as Section 6.3.3. However, these results are still valuable in providing

insights to the future improvement of the model. Therefore, we document the early

prototype and results in this discussion.

One early prototype we had did not have the FIFO queue structure, but instead

only keeping the latest previous memory request to the same bank, i.e. effectively

a depth = 1 queue. This only allows us to extract features such as same-row-

last, is-last-recent, is-last-far, op, and last-op. We only trained decision tree for for

evaluation, and the classification accuracy and average latency accuracy for each of

the benchmarks we tested are shown in Figure 6.12.
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Figure 6.12: Classification accuracy vs average latency accuracy of an early prototype of

a decision tree model.

As can be seen in Figure 6.12, the classification accuracy ranges from 0.5 to

0.94, with an average of 0.74; perhaps surprisingly, the average latency accuracy is

better on numbers: ranging from 0.91 to 1.25, with an average accuracy of 1.07, or

an absolute 10% error. In some benchmarks, classification accuracy can be 40 to

50 percent off while latency difference is much smaller. The reason behind this is

that, with only the last request to the same bank being recorded, the model tends to

predict more requests as row-hit or row-miss than it should, whereas in reality, a lot

of these requests should be idle. Coincidentally, with the DDR4 DRAM parameters,

the average latency of row-hit, 22 cycles, and row-miss, 56 cycles, is 39 cycles, which
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is the idle latency. Therefore, while lots are latency classes are mis-predicted, the

average latency numbers are not too far off. This presents a good reason that we

should examine both classification accuracy and latency accuracy instead of focusing

solely on one measurement.

The lack of tracking for previous requests beyond one entry, and no account for

refresh operations are the primary reasons for low classification accuracy. Tracking

for previous requests beyond one entry allows the scheduler to make out-of-order

scheduling decisions. Another wildcard that we did not anticipate is the role of

refresh. Although there are typically only less than 3% of memory requests are

directly blocked by DRAM refresh operations, the subsequent impact of refresh is

larger: each DRAM refresh operation resets the bank(s) to idle state, which leads

to the next round of requests to these banks to have idle latency. When there are

not many requests issued to the refresh-impacted banks in between two refreshes,

the refresh operation will render a much larger impact.

6.4.2 Interface & Integration

Traditionally, the cycle accurate DRAM simulator interface is “asynchro-

nous”, meaning that the request and response are separated in time: the CPU

simulator sends a request to the DRAM simulator without knowing at which cycle

the response comes back; while waiting for the memory request to finish, the CPU

simulators has to work on something else every cycle; finally, when the DRAM

simulator finishes the request, it calls back the CPU simulator, who processes this
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memory request and its associated instructions. This asynchronous interface only

works in cycle accurate simulator designs, as the CPU simulator has to check in with

the DRAM simulator every cycle to get the correct timing of each memory request.

The statistical model, however, brings an “atomic” interface to the simulator

design, meaning that upon the arrival of each request, the timing of this request

can be provided back to the CPU simulator immediately with high fidelity. This

will enable much easier integration into other models than cycle accurate models.

For example, when integrated into an event-based simulator, the response memory

event can be immediately scheduled to the future cycle provided by the statistical

model, and no future event rearranging is needed.

Furthermore, the atomic interface provided by the statistical model will ben-

efit parallel simulation framework. Because in a parallel simulation framework,

simulated components interacting with each other generate synchronization events

across the simulation framework, and frequent synchronization will negatively im-

pact the simulation performance. The statistical model only needs to be accessed

when needed, thus reducing the synchronization need to a minimum.

6.5 Conclusion & Future Work

In this chapter, we discussed the limitation of cycle accurate DRAM models

and explore alternative modeling techniques. We proposed and implemented a novel

machine learning based DRAM latency model. The model achieves highest accuracy

among non-cycle-accurate models, and performs much faster than a cycle accurate
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model, making it a competitive offering for cycle accurate model replacement.

The model still has room to improve as future works. First off, currently the

model is implemented in Python, and if the entire flow can be implemented in C++,

we can expect much more performance gain without any impact on classification

accuracy. Secondly, introducing more latency classes can bridge the gap between

latency accuracy and classification accuracy for memory intensive workloads. Or

rather, more latency classes can be constructed to model the working mechanisms

of more sophisticated controller/scheduler designs beyond our currently modeled

out-of-order open-page scheduler, providing more flexibility to the model. Finally,

we only trained and tested decision tree and random forest models for the purpose

of prototyping, and we realize that there are lots of alternative machine learning

models that could also work for this problem, so it may be worth exploring other

models in the future.
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Chapter 7: Memory System for High Performance Computing Sys-

tems

In this chapter, we introduce the background and challenges of the memory

system design in high performance computing systems, present our proposed inter-

connect topology and routing algorithms, and describe our experiments and results.

7.1 Introduction

On large scale memory system such as the memory system in a High Per-

formance Computing (HPC) system, computational efficiency is the fundamental

barrier, and it is dominated by the cost of moving data from one point to another,

not by the cost of executing floating-point operations [67–69]. Data movement has

been the identified problem for many years and still dominates the performance

of real applications in supercomputer environments today [70]. In a recent talk,

Jack Dongarra showed the extent of the problem: his slide, reproduced in Fig-

ure 7.1, shows the vast difference, observed in actual systems (the top 20 of the Top

500 List), between peak FLOPS, the achieved FLOPS on Linpack (HPL), and the

achieved FLOPS on Conjugate Gradients (HPCG), which has an all-to-all communi-

cation pattern within it. While systems routinely achieve 90% of peak performance
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Abstract — Data movement is the limiting factor in  modern su-
percomputing systems, as system performance drops by several 
orders of magnitude whenever applications need to move data. 
Therefore, focusing on low latency (e.g., low diameter) networks 
that also have high bisection bandwidth is critical. We present a 
cost/performance analysis  of  a  wide range of  high-radix  inter-
connect  topologies,  in  terms  of  bisection  widths,  average  hop 
counts, and the port costs required to achieve those metrics. We 
study variants of traditional topologies as well as one novel topol-
ogy. We identify several designs that have reasonable port costs 
and  can  scale  to  hundreds  of  thousands,  perhaps  millions,  of 
nodes with maximum latencies as low as two network hops and 
high bisection bandwidths.

I. INTRODUCTION

Computational efficiency is the fundamental barrier to exas-
cale computing, and it is dominated by the cost of moving data 
from one point to another, not by the cost of executing float-
ing-point operations [1; 2]. Data movement has been the iden-
tified problem for many years (e.g., “the memory wall” is a 
well-known limiting factor  [3])  and still  dominates  the per-
formance of real applications in supercomputer environments 
today [4]. In a recent talk, Jack Dongarra showed the extent of 
the problem: his slide, reproduced in Figure 1, shows the vast 
difference, observed in actual systems (the top 20 of the Top 
500 List), between peak FLOPS, the achieved FLOPS on Lin-
pack (HPL), and the achieved FLOPS on Conjugate Gradients 
(HPCG), which has an all-to-all communication pattern within 
it. While systems routinely achieve 90% of peak performance 
on Linpack, they rarely achieve more than a few percent of 

peak  performance  on  HPCG:  as  soon  as  data  needs  to  be 
moved, system performance suffers by orders of magnitude.

Thus, to ensure efficient system design at exascale-class 
system sizes, it is critical that the system interconnect provide 
good  all-to-all  communication:  this  means  high  bisection 
bandwidth and short inter-node latencies. Exascale-class ma-
chines are expected to have on the order of one million nodes, 
with high degrees of integration including hundreds of cores 
per chip, tightly coupled GPUs (on-chip or on-package), and 
integrated networking. Integrating components both increases 
inter-component  bandwidth  and reduces  power  and latency; 
moreover, integrating the router with the CPU (concentration 
factor  C=1)  reduces  end-to-end latency by two high-energy 
chip/package crossings.  In  addition  to  considering bisection 
and latency characteristics, the network design should consid-
er costs in terms of router ports, as these have a dollar cost and 
also dictate power and energy overheads.

We present a cost/performance analysis of several high-
radix  network  topologies,  evaluating  each  in  terms  of  port 
costs,  bisection  bandwidths,  and  average  latencies.  System 
sizes presented here range from 100 nodes to one million. We 
find the following:

• Perhaps not surprisingly, the best topology changes with 
the system size. Router ports can be spent to increase bi-
section bandwidth, reduce latency (network/graph diame-
ter), and increase total system size: any two can be im-
proved at the expense of the third.

• Flattened Butterfly networks match and exceed the bisec-
tion bandwidth curves set by Moore bounds and scale 
well to large sizes by increasing dimension and thus di-
ameter.

• Dragonfly networks in which the number of inter-group 
links is scaled have extremely high bisection bandwidth 
and match that of the Moore bound when extrapolated to 
their diameter-2 limit.

• High-dimensional tori scale to very large system sizes, as 
their port costs are constant, and their average latencies 
are reasonably low (5–10 network hops) and scale well.

• Novel topologies based on Fishnet (a method of intercon-
necting two-hop subnets) become efficient at very large 
sizes — hundreds of thousands of nodes and beyond.

Our  findings  show  that  highly  efficient  network  topologies 
exist for tomorrow’s exascale systems. For modest port costs, 
one can scale to extreme node counts, maintain high bisection 
bandwidths, and still retain low network diameters.

Low Latency, High Bisection Bandwidth Networks 
for Exascale Memory Systems

Figure 1. A comparison of max theoretical performance, and real 
scores on Linpack (HPL) and Conjugate Gradients (HPCG). 
Source: Jack Dongarra
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Figure 7.1: A comparison of max theoretical performance, and real scores on Linpack

(HPL) and Conjugate Gradients (HPCG). Source: Jack Dongarra

on Linpack, they rarely achieve more than a few percent of peak performance on

HPCG: as soon as data needs to be moved, system performance suffers by orders

of magnitude. Considering when systems are moving towards exascale, which is

roughly 10× the scale of most powerful system today, this problem will be more and

more critical.

To ensure efficient system design at large scale system sizes, it is critical that

the system interconnect provide good all-to-all communication: this means high

bisection bandwidth and short inter-node latencies. We propose a new set of high

bisection bandwidth, low latency topologies, namely, Fishnet interconnect, to alle-

viate this issue.

To accurately evaluate proposed topology, simulations comparing against ex-

isting topologies are needed. Therefore, we implemented Fishnet into Booksim [71],

a cycle-accurate network simulator. Using Booksim, we are able to obtain prelim-

inary results for various topologies under synthetic traffic workloads. To further
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improve the accuracy and verify the results, we implemented Fishnet topologies in

Structural Simulation Toolkit (SST) [13], which allows us to simulate the system

with more detailed hardware models and realistic workloads. We use SST to con-

duct large scale simulations up to more than 100,000 nodes for both existing and

proposed topologies, and taking into account of the other factors that can be critical

to system performance such as routing and flow control, interface technology, and

physical link properties (latency, bandwidth).

With the help of the large volume of data obtained from simulation, we are

able to gain a comprehensive view of these topologies and it is therefore helpful for

assessing their usage in Exascale. To conclude, we summarize our contributions in

this section as follows:

• We perform large scale, fine grained network simulations and design space

explorations. We simulate the network size with up to 100,000 nodes and

collect more than 3,000 data points. To our knowledge, it is by far the largest

design space exploration at such large scale.

• We propose and evaluate adaptive routing algorithms tailored for Fishnet and

Fishnet-lite topologies. Our evaluation shows properly implemented routing

can reduce the execution slowdown by 20x under heavy adversarial workloads.

• We show how the different network parameters influence the performance of

each topology under different workloads. We observe that most topologies

benefit from an increasing link bandwidth while they are less sensitive to

longer link latency.
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• We evaluate the interconnect topologies for their scaling efficiency and their

capability to handle increasing workloads, which provides useful insights on

the interconnect system design for Exascale.

Our findings show that highly efficient network topologies exist for tomorrow’s

supercomputer systems. For modest port costs, one can scale to extreme node

counts, maintain high bisection bandwidths, and still retain low network diameters.

7.2 Background and Related Work

To achieve low latency high bandwidth exascale network, traditional low radix

routers with wide ports are replaced by high radix routers with large amount of

narrow ports in the system design to reduce the average hop count. Most recent

interconnect network topology researches are based on high radix routers. Kim, J.

et al. [72] introduced a dragonfly network with unity global diameter with increased

effective radix virtual router which was built by a group of high radix routers. Cray

Cascade system [73] was also based on dragonfly topology with 48-port router and

four independent dual Xeon socket nodes per Cascade blade. The system size was

range from 3,072 to 24,576 nodes. Mubarak, M. et al. [74] performed simulations of

million-node dragonfly networks based on Rensselaer Optimistic Simulation System

(ROSS) framework which is a discrete-event base simulator on IBM Blue Gene/P

and Blue Gene/Q. HyperX [75] is a n-dimension network with each dimension being

fully connected. It’s an extension of the hypercube topology, n-dimension torus with

2 nodes in each dimension. A 4,096 nodes with 32-port router HyperX network was
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simulated and compared against the fattree topology. [76] used Moore graphs to

construct diameter-2 interconnect topologies. We will introduce some of the most

representative topologies in detail in Section 7.2.1. Among these works, we did a

comprehensive comparison between traditional network topologies, and also a novel

topology, fishnet, which will be explained in the next section.

As for the methodology of studying large scale interconnect, it has always been

challenging to study large scale systems. On the one hand, simulating a system

with even thousands of nodes is difficult (let alone millions), because it can require

significant resources and time. Therefore, carefully engineered tools are required

to perform such simulations in an efficient way. Jiang et al. developed Booksim, a

cycle accurate interconnection network simulator [71], but its single-threaded design

makes it very hard to simulate large scale network. Carothers et al. designed and

implemented the Rensselaer Optimistic Simulation System (ROSS) simulator [77]

based on time warp technique and is highly efficient on parallel execution. Rodrigues

et al. developed Structural Simulation Toolkit (SST) [13], a parallel discrete event

simulation toolkit that aims to help design and evaluate supercomputer systems.

Its modular design makes it easier to extend their models.

On the other hand, there are many factors that could influence the performance

and cost of large scale interconnection networks and a variety of studies exist on

characterizing such interconnection networks. Mubarak et al. has studied and

simulated high dimension torus networks with up to 1 million nodes and showed that

large scale simulations are critical for designing Exascale systems [78]. [72–74, 79]

studied different aspects of Dragonfly networks and characterized Dragonfly as a
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highly scalable and efficient interconnect. [80, 81] evaluated diameter-2 topologies

with various routing algorithms and traffic patterns. Li et al. introduced more

scalable Fishnet and Fishnet-lite diameter-4 interconnect topology and performed a

preliminary performance/cost analysis [82].

7.2.1 Existing Interconnect Topologies

Rtr
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Rtr
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Rtr

Rtr

...
Rtr
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Rtr Rtr
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Figure 7.2: Torus

Torus (Figure 7.2) is organized as an n-dimensional grid with k nodes per

dimension (k-ary n-cube) [83]. The simplicity of a torus makes it easier to implement

and study compared to other topologies. Although low-dimension torus networks are

not considered scalable due to a network diameter that increases significantly with

the system size, as well as a relatively low bisection bandwidth, high-dimension torus

networks have diameters that scale much more slowly and have shown interesting

characteristics such as high bisection bandwidth [78]. Researchers have also built

petascale supercomputers using a variant of a 6D torus (Tofu [84]), proving it to be

a promising candidate for exascale.
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Figure 7.3: 3-level Fattree

Fat-Tree (Figure 7.3), also referred as a folded Clos topology [85,86], enables

low latency and high bisection bandwidth using high-radix routers. The architec-

ture of Fat-tree provides very high bisection bandwidth and is used in real world

supercomputer systems [87]. The disadvantage of the fat-tree topology is its scala-

bility: for example, a 2-level Fat-tree would require 100 ports per router to scale to

50,000 nodes. The port cost and its associated power cost would be prohibitively

expensive for building an Exascale network within 2 levels. Increasing the number

of levels of a Fat-tree will alleviate its scalability issues but would also introduce

more end-to-end latencies. Given the network scale that we target (100k node), we

focus on 3- and 4-level Fat-tree topologies, which could scale to 100k node within

100 ports per router.

Dragonfly (Figure 7.4) [88] was proposed to address the scalability issues

of previous topologies such as Fat-tree networks and flattened butterfly topologies

[89]. The concept of a virtual router was introduced here as a means to reduce

the port cost and achieve scalability. A virtual router is essentially a hierarchical

design that groups routers and treats them as one, thereby reducing the number of
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Figure 7.4: Dragonfly

expensive global links. There are different ways of setting up a Dragonfly topology

so that one can obtain high efficiency (by maximizing system size with minimal

number of ports per router) or high performance (by adding more global links per

router). In Figure 7.6 we show how different setups of Dragonfly can result in very

different scalability (“Dragonfly (max)” in 7.6 refers to the high efficiency setup

while “Dragonfly (min)” refers to high performance setup). Because our goal is to

explore extremely large scale networks, we follow the efficiency setup recommended

by [88], that is, a = 2p = 2h, where a is number of routers per group, p is number of

nodes per router, and h is number of global links per router. In this way we are able

to scale up to 100,000 nodes with only 51 ports per router (p = 13). This allows us

to scale up to 100k nodes with only 51 ports per router.

Slimfly: Bao et al. first proposed using Hoffman-Singleton graph (a 50-node

diameter-2 graph) as an interconnection topology for high density servers [90]. Besta

et al further proposed Slimfly topology to construct much larger scale networks

based on Moore graphs [76] (An example of 10-node graph is shown in Figure 7.5).

The low network diameter provides potentially lower latency and the Moore graph
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Figure 7.5: A diameter-2 graph (n = 10, k′ = 3)

architecture provides high path diversity. An example of 10 node, diameter-2 Moore

graph is shown in 7.5. In Slimfly, assuming the number of links of a nodes that

connects to other nodes in the network is k′ and number of endpoints attached

to a node is p, then the number of endpoints in a system will be approximately

k′2 × p. To avoid oversubscribing a router, a setup of p ≤ k′/2 is recommended

by [76]. Following this setup, we are able to construct a network with k′ = 79 and

p = 18 to get a 101,124 node network within 100 ports per router. We do not

want to oversubscribe the router for it would not be a fair comparison against other

topologies.

Routing There are already a variety of established routing algorithms for the

topologies described in this study. For example, [91] proposed and compared de-

terministic routing and adaptive routing for Fat-tree. Their evaluation show both

deterministic and adaptive routing are effective in reducing packet latencies. Min-

imal, VAL, and UGAL are successfully used in Dragonfly and diameter-2 topolo-

gies [76, 80, 88]. We will implement these routing algorithms and evaluate them
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Figure 7.6: Scalability of different topologies studied in this work

by simulation to get a comprehensive understanding of the effectiveness of routing

algorithms.

7.3 Fishnet and Fishnet-Lite Topologies

In this section, we present our proposed interconnect topology, Fishnet. We

demonstrate how to construct a Fishnet topology, and discuss the routing algorithms

tailored for Fishnet topologies.

7.3.1 Topology Construction

The Fishnet interconnection methodology is a novel means to connect multi-

ple copies of a given subnetwork [92], for instance a 2-hop Moore graph or 2-hop

Flattened Butterfly network. Each subnet is connected by multiple links, the origi-
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the network size achievable with a relatively small number of 
ports grows rapidly. For instance, on the right of Figure 3 is 
shown a diameter-3 graph with 22 nodes; a diameter-4 graph 
has an upper bound of 46. In actuality, the largest known di-
ameter-3 graph has 20 nodes, and the largest known diameter-
4 graph has 38. The table below shows the difference between 
the various bounds (labeled “Max”) and the known graph sizes 
that have been discovered (labeled “Real”): the difference fac-
tor grows with both diameter and number of ports [10].

D. Dragonfly and High-Bisection Extensions
The  Dragonfly  interconnect  [11]  is  an  internet  structure,  a 
network of subnetworks. Perhaps the most common form of 
Dragonfly, which is the form we analyze here, is a fully con-
nected graph of fully connected graphs, which gives it a diam-
eter 3 across the whole network. This is illustrated in Figure 5. 
Dragonfly networks  can use  any number  of  ports  for  inter-
subnet connections, and any number for intra-subnet connec-
tions. We vary the number of inter-subnet links, characterizing 
1, 2, 4, etc. links connecting each subnet, noting that, when the 
number of inter-subnet links is equal to one more than the in-
tra-subnet links, the entire network has a diameter of 2, not 3 
(if every node has a connection to each of its local nodes as 
well as a connection to each one of the remote subnets, then it 
is by definition a two-hop network), which in our graphs later 
we will label as the “Dragonfly Limit.” 

In general, Dragonfly networks of this form have the fol-
lowing characteristics, where p is the number of ports for in-
tra-subnet connections, and s is the number of ports connected 
to remote subnets:

• Nodes: (p + 1)(p + 2)
• Ports: p + s
• Bisection Links: ~ s((p+2)2 ÷ 4)
• Maximum Latency: 3 

The  bisection  depends  on  actual  configuration,  such  as 
whether the number of subnets (p+1) is even or odd. 

E. Fishnet: Angelfish and Flying Fish
The Fishnet interconnection methodology is a novel means to 
connect multiple copies of a given subnetwork [12],  for in-
stance a 2-hop Moore graph or 2-hop Flattened Butterfly net-
work. Each subnet is connected by multiple links, the originat-
ing nodes in each subnet chosen so as to lie at a maximum 
distance of 1 from all other nodes in the subnet. For instance, 
in a Moore graph, each node defines such a subset: its nearest 

neighbors by definition lie at  a distance of 1 from all  other 
nodes in the graph, and they lie at a distance of 2 from each 
other. Figure 6 illustrates.

Using nearest-neighbor subsets to connect the members of 
different subnetworks to each other produces a system-wide 
diameter of 4, given diameter-2 subnets: to reach remote sub-
network i, one must first reach one of the nearest neighbors of 
node i within the local subnetwork. By definition, this takes at 
most one hop. Another hop reaches the remote network, where 
it is at most two hops to reach the desired node. The “Fishnet 
Lite” variant uses a single link to connect each subnet, as in a 
typical Dragonfly, and has maximum five hops between any 
two nodes, as opposed to four.

An example topology using the Petersen graph is illus-
trated in Figure 7: given a 2-hop subnet of n nodes, each node 
having p ports (in this case each subnet has 10 nodes, and each 
node has 3 ports), one can construct a system of n+1 subnets, 
in two ways: the first uses p+1 ports per node and has a maxi-
mum latency of five hops within the system; the second uses 
2p ports per node and has a maximum latency of four hops. 

The nodes of subnet 0 are labeled 1..n; the nodes of sub-
net  1  are  labeled  1,2..n;  the  nodes  of  subnet  2  are  labeled 
0,1,3..n; the nodes of subnet 3 are labeled 0..2,4..n; etc. In the 
top illustration, node i in subnet j connects directly to node j in 
subnet i. In the bottom illustration, the immediate neighbors of 
node i in subnet j connect to the immediate neighbors of node 
j in subnet i. 

Using the Fishnet interconnection methodology to com-
bine Moore networks produces an Angelfish network, illustrat-
ed in Figure 7. Using Fishnet on a Flattened Butterfly network 
produces a Flying Fish network, illustrated in Figures 8 and 9. 
Figure 8 illustrates a Flying Fish Lite network based on 7x7 
49-node  Flattened  Butterfly  subnets.  The  same  numbering 
scheme is used as in the Angelfish example: for all subnets X 
from 0 to 49 there is a connection between subnet X, node Y 

Figure 6. Each node, via its set of nearest neighbors, defines a 
unique subset of nodes that lies at a maximum of 1 hop from all 
other nodes in the graph. In other words, it only takes 1 hop from 
anywhere in the graph to reach one of the nodes in the subset. 
Nearest-neighbor subsets are shown in a Petersen graph for six of 
the graph’s nodes.
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Figure 5. Dragonfly interconnect: a fully connected graph of fully 
connected graphs.
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Figure 7.7: Each node, via its set of nearest neighbors, defines a unique subset of nodes

that lies at a maximum of 1 hop from all other nodes in the graph. In other

words, it only takes 1 hop from anywhere in the graph to reach one of the nodes

in the subset. Nearest-neighbor subsets are shown in a Petersen graph for six

of the graph’s nodes.

nating nodes in each subnet chosen so as to lie at a maximum distance of 1 from all

other nodes in the subnet. For instance, in a Moore graph, each node defines such a

subset: its nearest neighbors by definition lie at a distance of 1 from all other nodes

in the graph, and they lie at a distance of 2 from each other. Figure 7.7 illustrates.

Using nearest-neighbor subsets to connect the members of different subnet-

works to each other produces a system-wide diameter of 4, given diameter-2 sub-

nets: to reach remote subnetwork i, one must first reach one of the nearest neighbors

of node i within the local subnetwork. By definition, this takes at most one hop.

Another hop reaches the remote network, where it is at most two hops to reach the

desired node. The “Fishnet Lite” variant uses a single link to connect each subnet,

as in a typical Dragonfly, and has maximum five hops between any two nodes, as
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and subnet Y, node X. The result is a 2450-node network with 
a maximum 5-hop latency and 13 ports per node. Note that 
this is similar to the Cray Cascade [13], in that it is a complete 
graph of Flattened Butterfly subnets, with a single link con-
necting each subnet.

Figure  9  gives  an  example  of  connecting  subnets  in  a 
“full” configuration. Fishnet interconnects identify subsets of 
nodes within each subnetwork that are reachable within a sin-
gle hop from all other nodes: Flattened Butterflies have nu-
merous  such  subsets,  including  horizontal  groups,  vertical 
groups, diagonal groups, etc.  The example in Figure 9 uses 
horizontal and vertical groups: 98 subnets, numbered 1H..49H 
and 1V..49V. When contacting an “H” subnet, one uses any 
node in the horizontal row containing that numbered node. For 
example, to communicate from subnet 1H to subnet 16H, one 
connects to any node in the horizontal row containing node 
16. To communicate from subnet 1H to subnet 42V, one con-
nects to any node in the vertical column containing node 42. 
Given that Flattened Butterfly networks are constructed out of 
fully connected graphs in both horizontal and vertical dimen-
sions, this means that one can reach a remote subnet in at most 
two hops. From there, it is a maximum of two hops within the 
remote subnet to reach the desired target node. For a Flattened 
Butterfly subnet of NxN nodes, one can build a system of 2N4 
nodes with 4N–2 ports per node and a maximum latency of 4 

hops. This can be extended even further by allowing diagonal 
sets as well.

In general, the Angelfish graphs have the following char-
acteristics, where p is the number of ports that are used to con-
struct the fundamental Moore graph, from which the rest of 
the network is constructed. As mentioned above with Moore 
graphs, the number of nodes is an upper bound, unless specific 
implementations are described, where the numbers are actual.

Angelfish

• Nodes: (p2 + 1)(p2 + 2)
• Ports: 2p
• Bisection Links: ~ p((p2 + 1) 2 ÷ 4)
• Maximum Latency: 4

Angelfish Lite

• Nodes: (p2 + 1)(p2 + 2)
• Ports: p+1
• Bisection Links: ~ (p2 + 1) 2 ÷ 4
• Maximum Latency: 5

In general, the Flying Fish graphs have the following charac-
teristics, where n is the length of a side:

Figure 8. Flying Fish Lite network based on a 7x7 Flattened Butterfly subnet — 50 subnets of 49 nodes (2450 nodes, 13 ports each, 5-hop 
latency). Note that this is the same type of arrangement as the Cray Cascade network.
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Figure 7. Angelfish (bottom) and Angelfish Lite (top) networks based on a Petersen graph.
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Figure 7.8: Angelfish (bottom) and Angelfish Lite (top) networks based on a Petersen

graph.

opposed to four.

An example topology using the Petersen graph is illustrated in Figure 7.8:

given a 2-hop subnet of n nodes, each node having p ports (in this case each subnet

has 10 nodes, and each node has 3 ports), one can construct a system of n + 1

subnets, in two ways: the first uses p + 1 ports per node and has a maximum

latency of five hops within the system; the second uses 2p ports per node and has a

maximum latency of four hops.

7.3.2 Routing Algorithm

Routing algorithms play an important role in fully exploring the potentials

of an interconnect topology. Previous studies have shown that applying proper

routing algorithms could result in significant latency and throughput improvements

[72,80,91] on various topologies. In this section, we will explore routing algorithms
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for Fishnet topologies (we use Angelfish as an example) as well as review options

for traditional topologies.

Fishnet and Fishnet-lite interconnects were briefly studied in [82] but only

minimal routing was discussed in their study. It is necessary to further study more

efficient routing schemes for such topologies to fully explore their potentials. Espe-

cially for Fishnet-lite, where only one global link is used to connect between subnets,

using minimal routing could congest the global link easily and thus leads to perfor-

mance degradation.

To address this problem, we propose Valiant random routing and adaptive

routing algorithms tailored for the architecture of Fishnet and Fishnet-Lite.

7.3.3 Valiant Random Routing Algorithm (VAL)

The Valiant Random Routing algorithm [93] is used in multiple interconnect

topologies to alleviate adversarial traffics [76, 88]. The idea of Valiant routing is to

randomly select a intermediate router (other than the source and destination router)

and route the packet through 2 shortest paths between the source to intermediate

and between the intermediate to destination, respectively. By doing so, additional

end-to-end distance is added into the path, but it may also avoid a congested link

and balance the load on more links, and lower the overall latency.

Applying Valiant routing to Fishnet family will be similar to Dragonfly topol-

ogy, where global links between groups/subnets are more likely to be congested

when the traffic pattern requires more communication between groups/subnets. In
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Dragonfly, a random intermediate group is used to reroute the packet to the target

group.

Similarly, for Fishnet-lite, we randomly select a intermediate subnet and route

the packet to the intermediate subnet and then to its destination subnet. This

could increase the worst case hop count from 5 to 8, but would also increase the

path diversity, with k′ − 1 more paths, and reduce the minimal route link load to

1/k′ of its previous value.

For Fishnet, we apply a similar technique, which will result in a hop count

from 4 to 6 in worst case, but expand the path diversity from k′ to k′2.

7.3.4 Adaptive Routing

The idea of adaptive routing is to make routing decisions based on route in-

formation. One of the widely used adaptive routing schemes, Universal Globally-

Adaptive Load-balanced Algorithm (UGAL), [94] takes VAL generated routes and

compares them with the minimal route, selecting the one with less congestion. The

key here is to decide which route has less congestion. Ideally, if we have global infor-

mation of all routes and all routers, it would be easy to make such decisions. How-

ever, in real systems, it is impractical to have such information across the system.

Therefore, a more reasonable approach is to only use local information, (UGAL-

Local, or UGAL-L) such as examining the depth/usage of local output buffers.

UGAL-L works well on topologies such as Dragonfly and Slimfly. However,

its effectiveness will be limited in Fishnet since the local information obtained from
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output buffer cannot reflect route congestion accurately when the next link is con-

gested and the information is not propagated back. This also happens in Dragonfly

networks, as described in [95].

0
1

Source 
Subnet

Destination 
Subnet

Global Link

Figure 7.9: Example of how inappropriate adaptive routing in Fishnet-lite will cause con-

gestion. Green tiles means low buffer usage while red tiles means high buffer

usage.

An example of how traditional UGAL-L might not work well for Fishnet-lite is

shown in Figure 7.9. Imagine the worst case scenario where all k′ nodes in the source

subnet want to send packets to the destination subnet. Because in Fishnet-lite there

is only one global link connecting between the source and destination subnet, all the

minimal routes will pass through that router (router 0 in fig. 7.9). If all the output

buffers towards that router have very low usage, traditional adaptive routing will

prefer the minimal path over Valiant path. This would keep happening until the

intermediate buffers are almost full, and by then there will be a lot of packets in the

buffers waiting for the global link to be available, jamming routers on both side of

the global link.

To avoid this situation, we have tailored adaptive routing for the Fishnet

family in the following way: When the router connects to the destination subnet
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is not greater than 1 hop away, we adapt the minimal path, otherwise use a VAL

path. By doing this, we effectively enforce the path diversity between subnets from

1 to k and reduce the number of packets to be routed minimally to the congested

link from k′2 to k′ in the worst case traffic pattern. Moreover, because all other

k2 − k packets are routed randomly to other k − 1 intermediate subnets through

k− 1 global links, those global links will route k packets per link as well. Therefore,

all the global links will have equal workloads in worst case traffic pattern.

For Fishnet, there is another place where adaptive routing decision can be

made. Since there are k′ links between any two subnets, minimal routing would

arbitrarily route to one of them. For adaptive routing, we can examine the output

buffer usage to those k′ routers that offer global links to the destination subnet and

choose the one with the lowest buffer usage. Because there are at most 2 hops in

this process, the back propagation problem discussed earlier will be less severe here.

We refer these routing algorithms as “adaptive routing” for the rest of the

thesis and we will evaluate the effectiveness of these routing algorithms along with

other comprehensive evaluations in the later parts of this chapter.

7.3.5 Deadlock Avoidance

In this study, we will adapt and implement the virtual channel method pro-

posed in [96] for each topology. Since previous studies have illustrated how to

implement such methods, we will not repeat the details here.
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7.4 Experiment Setup

In this section we describe how our simulation is set up. We introduce the

simulator used in this study, SST, and the network parameters and workloads chosen

for this study.

7.4.1 Simulation Environments

As we have stated, it is inherently challenging to simulate a network at very

large scale: given the enormous number of nodes in the system to simulate, it

would require a huge amount of memory, and the simulations may take very long

to finish if the simulator is not properly designed. Additionally, if we would also

simulate a variety of network parameters and workloads, meaning that there are

more simulations to perform.

We conduct a two-stage simulation: A) the first stage only model the router

in detail and use synthetic traffic to model workloads, this simplified model is fast

and thus allows us to get a quick but still reliable estimation of the topologies we

studied. B) The second stage uses a more detailed model on not only the router,

but also the compute nodes, physical links, software stack, and workloads. This

detailed simulation is more time consuming but can give us more accurate results

and allows us to simulate the topologies with a more parameters.

A summary of our detailed simulation configurations and workloads can be

found in Table 7.1, and we will describe these parameters in more details.

We use SST as our simulator for this study. SST is a discrete event simulator
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Table 7.1: Simulated Configurations and Workloads

System Size * 50,000 and 100,000

Topology
Dragonfly, Slimfly, Fat-tree (3 to 4 levels),

Fishnet, Fishnet-Lite

Routing Algorithm † Minimal, Valiant, Adaptive(UGAL)

Link Latency 10ns, 20ns, 50ns, 100ns, 200ns

Link Bandwidth 8GB/s, 16GB/s, 32GB/s, 48GB/s, 64GB/s

MPI Workloads AllPingPong, AllReduce, Halo, Random

Total # configurations > 3000

*Note that the system size here is approximate since most

topologies cannot be configured to be these exact numbers.

† Not all topologies supports all of these routing algorithms.

e.g. We only simulated deterministic and adaptive routing for Fat-tree.

developed by Sandia National Lab, designed for modeling and simulating DOE su-

percomputer systems [13,97]. To support massively parallel simulation, SST is built

on top of MPI and is able to partition simulated objects across multiple MPI ranks;

this can significantly speed up simulations. SST has a modular design that separate

router models and end-point models. SST’s Merlin high-radix router model has

built-in support for torus, Fat-tree, and Dragonfly topologies, and it also provides

a set of MPI workloads (by its Ember endpoint model). Additionally, SST also

has built in configurable NIC model and middleware model such as firefly and her-

mes which provide the ability to simulate low-level protocols and message passing

interfaces.
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We extended SST’s Merlin router model to support Slimfly, Fishnet and

Fishnet-lite topologies along with their routing algorithms, and open sourced the

code (link is not provided here for reviewing purposes). An overview of our simulated

system can be found in Figure 7.10.

Figure 7.10: Overview of Simulation Setup

Each simulation is configured to run 10 iterations, and simulated execution

time data is collected as the metric for performance.

7.4.2 Network parameters

In this study we primarily focus on link bandwidth and link latency as network

parameter variables. Not only do these parameters have a significant influence on

system performance, they also represent one of the more significant physical costs

of the system.

To focus the range of the simulation parameters appropriately, we referenced

some real world systems to get a perspective. Sunway TaihuLight reports the com-

munication between nodes via MPI has a bandwidth of 12GB/s and a latency of
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1µs [98]. The Tianhe-2 (MilkyWay-2) supercomputer has a MPI broadcast band-

width of 6.36GB/s and latency of 9µs [87]. The Titan supercomputer is built on

Cray’s Gemini interconnect, which can achieve a peak bandwidth of 6.9GB/s and

has a latency of 1µs [99]. The Sequoia supercomputer has a 5D torus network, and

each node has ten 2GB/s links [100].

For Exascale, we are envisioning better physical interconnection technologies

than today, with 400Gbps fabric and even 1Tb Ethernet is on the way [101–103].

Therefore, we will simulate physical link bandwidth from 8GB/s to 64GB/s and

latency from 10ns to 200ns, which are likely to be achieved in the foreseeable fu-

ture. Note that these are just the the properties of physical links; there are also

other network parameters that are tunable in SST. However, simulating all of them

is impractical and out of the scope of this study, therefore we use typical or default

values for those parameters unless otherwise specified. For example, the flit size is

64 Bytes and each MPI message size (payload) is 4KB; the input latency (queu-

ing/buffering) is 30ns and output latency (switching and routing decision) is 30ns.

There are also delays introduced on the host side, e.g. router to host NIC latency

is 4ns, etc.

7.4.3 Workloads

As for workloads, many previous studies of such large-scale networks have

used synthetic traffic patterns [71,76,78,81,82,88,104], e.g. uniform random traffic,

nearest neighbor traffic, etc. While it is a simple way to characterize networks, it also
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hides communication overheads, which can be significant [105]. Therefore, we chose

to use more fine-grained simulated MPI workloads offered by the SST simulator’s

Ember endpoint model [13]. SST not only generates traffic to the network, but also

simulates the real-world behaviors during the entire life cycle of an MPI program, as

well as low level protocol and interfaces. Here are brief descriptions of the workloads

as well as a graph illustration of them in Figure 7.11.

(m, n)

(m, n-1)(m-1, n-1) (m+1, n-1)

(m+1, n+1)(m-1, n+1) (m, n+1)

(m-1, n) (m+1, n)

0 N/2

1 N/2+1

N/2-1 N-1

... ...

0

1 2

3 54 6

... ...... ...

Figure 7.11: Graphic illustrations of MPI workloads used in this study. Upper row:

Halo(left), AllPingPong(right); Lower row: AllReduce(left), Random(right).

Halo-2D: Halo exchange pattern is a commonly used communication pattern

for domain decomposition problems [106]. Data is partitioned into grids which

are mapped to MPI ranks, and at each time step, adjacent ranks exchange their

boundary data.
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AllPingPong: AllPingPong is a communication pattern that tests the net-

work’s bisection bandwidth performance: half of the ranks in the network send/receive

packages to/from the other half of the network.

AllReduce: AllReduce tests the network’s capability of data aggregation.

The communication pattern resembles traffic from a tree’s leaf nodes to its root. It

is the reverse process of “mapping”.

Random: Random pattern does as the name suggests: each node sending

packets to uniformly random target nodes within the network. So unlike previous

workloads which all have some locality or certain traffic patterns, Random does not

has locality and could thus test the network’s ability to handle global traffics.

Workload scaling There are 2 types of scalability measurements, strong scaling

and weak scaling [107]. Strong scaling refers to a fixed problem size and increased

system size, the efficiency is defined as the speed up weak scaling refers to fixed

problem size on each node in the system therefore the overall workloads scales with

the system size. Due to the irregular and various system sizes of topologies and

different natures of workloads, it is hard to have a fixed workload and partition it

across all the nodes in the system evenly. Therefore we use weak scaling workloads.

7.5 Synthetic Cycle-Accurate Simulation Results

To compare how the different topologies handle all-to-all traffic, we simulated

them using a modified version of Booksim [108] , a widely used, cycle-accurate sim-

ulator for interconnect networks. It provides a set of built-in topology models and
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D. Cycle-Accurate Simulations
To compare how the different topologies handle all-to-all traf-
fic, we simulated them using a modified version of Booksim 
[25], a widely used, cycle-accurate simulator for interconnect 
networks.  It  provides a  set  of  built-in  topology models  and 
offers  the  flexibility  for  custom  topologies  by  accepting  a 
netlist.  The tool uses Dijkstra's algorithm to build the mini-
mum-path routing tables for those configurations that are not 
in its set of built-in topologies. We simulated injection mode 
with  a  uniform traffic pattern.  The configurations  simulated 
include  the  topologies  described  earlier,  as  well  as  2-hop 
Moore graphs labeled “MMS2.” These latter networks are not 
bounds but graphs, the same graphs used to construct the An-
gelfish networks studied in this analysis section; they represent 
sizes from 18 to 5618 nodes.

The results are shown in Figure 14, which presents aver-
age network latency, including transmission time as well  as 
time spent in queues at  routers.  The figure shows the same 
graph twice, at different y-axis scales. The left graph shows 
enough data points to see the sharply increasing slope of the 
low-dimension tori. The graph on the right shows details of 
the graphs with the lowest average latencies. There are several 
things to note. First, it is clear that, at the much higher dimen-
sions, the high-D tori will have latencies on the same scale as 
the  other  topologies.  Second,  the  Dragonfly  networks  are 
shown scaled out beyond 100,000 nodes, which requires sev-
eral hundred ports per node, assuming routers are integrated 
on the CPU. Our simulations show that a configuration using 
an external router would incur an order of magnitude higher 
latencies  due  to  congestion  at  the  routers  and  longer  hop 

counts.  The Angelfish and Angelfish Mesh networks at  this 
scale require 38 and 21 ports per node, respectively. Third, the 
3D/4D  Flattened  Butterfly  designs  have  identical  physical 
organization as the 3D/4D tori; they simply use many more 
wires to connect nodes in each dimension. One can see the net 
effect: the Flattened Butterfly designs have half the latency of 
the same-sized tori.  

VI. CONCLUSIONS

There is a clear set of design options to choose from, given the 
balance between the desire for low average interconnect laten-
cy and the desire to reduce the number of wires connecting 
each router chip. Extremely low latencies (e.g., 2–3 hops) are 
certainly possible: two hops can be maintained into the tens of 
thousands of nodes; three hops can be achieved at system sizes 
in the range of 1,000,000 nodes; four hops can be maintained 
through system sizes approaching 1 billion nodes. The cost for 
a network is latency and the number of ports per router. If one 
can live with longer latencies,  the port  requirements can be 
reduced significantly. If one can live with higher port costs, 
latencies can be reduced significantly. 
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Figure 14. Simulations of network topologies under constant load; the MMS2 graphs are the 2-hop Moore graphs based on MMS techniques 
that were used to construct the Angelfish networks.

Figure 7.12: Simulations of network topologies under constant load; the MMS2 graphs are

the 2-hop Moore graphs based on MMS techniques that were used to construct

the Angelfish networks.

offers the flexibility for custom topologies by accepting a netlist. The tool uses Dijk-

stra’s algorithm to build the minimum-path routing tables for those configurations

that are not in its set of built-in topologies. We simulated injection mode with a uni-

form traffic pattern. The configurations simulated include the topologies described

earlier, as well as 2-hop Moore graphs labeled “MMS2.” These latter networks are

not bounds but graphs, the same graphs used to construct the Angelfish networks

studied in this analysis section; they represent sizes from 18 to 5618 nodes.

The results are shown in Figure 7.12, which presents average network latency,

including transmission time as well as time spent in queues at routers. The figure

shows the same graph twice, at different y-axis scales. The left graph shows enough

data points to see the sharply increasing slope of the low-dimension tori. The graph
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on the right shows details of the graphs with the lowest average latencies. There

are several things to note. First, it is clear that, at the much higher dimensions, the

high-D tori will have latencies on the same scale as the other topologies. Second,

the Dragonfly networks are shown scaled out beyond 100,000 nodes, which requires

several hundred ports per node, assuming routers are integrated on the CPU. Our

simulations show that a configuration using an external router would incur an order

of magnitude higher latencies due to congestion at the routers and longer hop counts.

The Angelfish and Angelfish Mesh networks at this scale require 38 and 21 ports

per node, respectively. Third, the 3D/4D Flattened Butterfly designs have identical

physical organization as the 3D/4D tori; they simply use many more wires to connect

nodes in each dimension. One can see the net effect: the Flattened Butterfly designs

have half the latency of the same-sized tori.

7.6 Detailed Simulation Results

As mentioned earlier, our experiments cover the effective cross-product of the

parameter ranges given in Table 7.1. We present slices through the dataset, from

different angles, to provide the full scope of our results.

In each of the following subsections, we will discuss one aspect from our

dataset.

Also, to increase the readability of data visualization, we applied the following

general rules to process the graphs plotted from the dataset:

• We only present at most 2 routing algorithms for each topology in the graph
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to reduce the number of datapoints in each graph. For example, the difference

between deterministic and adaptive routing for Fat-tree is relatively small

(comparing to Dragonfly and Fishnet-Lite) in most cases and therefore we only

show the results of its adaptive routing. For those topologies with minimal,

Valiant, and adaptive routings, we only present the results of adaptive and

minimal routings in the graphs as they usually deliver best/worst results while

VAL is often in between the two.

• We use the following abbreviations in graphs and tables for simplicity: FT3=3-

level Fat-Tree, FT4=4-level Fat-Tree, DF=Dragonfly, SF=Slimfly, FN=Fishnet,

FL=Fishnet-Lite, min=minimal routing, ada=adaptive routing. For example,

DF-ada will refer to Dragonfly with adaptive routing.

7.6.1 Link Bandwidth

In this subsection we study the effects of link bandwidth while keeping the

network scale and link latency constant, (100k-node and 100ns, respectively). We

then break down our data sets by 4 workloads and plot each subset. In each plot,

we use the execution time of DF-ada at 8GB/s as a performance baseline and the

execution time ratio of other configurations to represent their relative performance.

Each bar cluster in every graph is ordered in SF-ada, SF-min, DF-ada, DF-min,

FT3-ada, FT4-ada, FL-ada, FL-min, FN-ada, FN-min from left to right

AllReduce Figure 7.13 shows the performance of different topology-routing

configurations under AllReduce workloads at different bandwidths limits. AllReduce
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Figure 7.13: AllReduce workload comparison for all topology-routing combinations

aggregates traffic from all leaf nodes to one root node recursively. This traffic pattern

is beneficial for topologies like Fat-tree, whose architecture resembles the software

behavior, and is adversarial for irregularly constructed topologies. From Figure 7.13,

we can see Dragonfly and Fishnet-lite suffers greatly when using minimal routing.

Adaptive routing helps improve the performance by a factor of 5 in such cases.

We can also see that the advantage brought by topology is significant when

lower bandwidths are available. e.g. both 3 level and 4 level Fat-trees have relatively

better performances at 8GB/s bandwidth limits. As bandwidth limits increases,

the difference in performance between topologies decreases, and ones with lower

diameter and higher bisection bandwidth start to outperform others (although with

thin margins).

AllPingPong The performance of AllPingPong workloads can represent the

bisection bandwidth capability of a network. Not surprisingly, Fat-tree topologies
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again performs very well when the bandwidth limit is lower due to its high bisection

bandwidth design as shown in Figure 7.14. But as the bandwidth limit increases,

other topologies are no longer bounded by bandwidth and start to outperform Fat-

trees.
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Figure 7.14: AllPingpong workload comparison for all topology-routing combinations

Halo: Halo represents a nearest neighbor communication pattern, therefore

topologies with better locality generally perform better. Consequently, without suf-

ficient bandwidth, Fat-trees performs better than other topologies. Also note that

DF-ada performs almost as good as Fat-trees at 8GB/s bandwidth, while DF-min

is the slowest among all setups. Part of the reason, as previously mentioned, is the

global link between groups gets congested. The other part of the reason is that

Dragonfly has better “locality” because all the routers within a group are fully con-

nected and can guarantee 1 router hop for the hosts within a group. While Slimfly

connects even more hosts within 1 router hop, it’s not as good as Dragonfly under
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Figure 7.15: Halo workload comparison for all topology-routing combinations

8GB/s and 16GB/s bandwidth limit. The reason behind this is consecutive MPI

Ranks (logical ranks) will be mapped to the hosts within a group for Dragonfly, but

they are not guaranteed to be mapped to the adjacent routers in Slimfly. Conse-

quently, some of the consecutive ranks in Slimfly will sometimes have 2-hop latency

instead of 1-hop as in Dragonfly.

Random The results of random are largely different from all other workloads

as shown in Figure 7.16. This is because random workloads generates uniform traffic

pattern across all nodes, which would make use of almost no locality and the load

on all the links are inherently balanced.

As a result, low diameter topologies with more path diversities, such as Fish-

net, outperforms other topologies at lower bandwidth limits. The differences be-

tween topologies at lower bandwidth limits also significantly drops to a factor of

less than 2 (comparing to a factor of 5 to 7 for other workloads). At higher band-
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width limit (64GB/s), the performance differences are still very significant where

diameter-2 graphs beats 4-level Fat-tree by 20.5%.
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Figure 7.16: Random workload comparison for all topology-routing combinations

Discussion We now compare across the 4 workloads and see how bandwidth

affects performance for each topology. Dragonfly and Fishnet-lite with minimal

routing benefit most from the growths of global link bandwidth. Increasing the

bandwidth from 8GB/s to 64GB/s decreases the execution time by up to 6 to 7

times. Other topology/routing combinations tend not to gain as much performance

from the bandwidth increase, but there is still an average 20% to 50% performance

gain from 8GB/s to 16GB/s. To be more specific, FN-ada has a gain of 17%, SF-ada

26%, FT3-ada 36%, FL-ada 43% and DF-ada 56%.

Under our setup, bandwidth will no longer be a major bottleneck from 32GB/s

and beyond as evident from Figures 7.13 to 7.16. Moving forward, this is not

saying that bandwidth is unimportant once it’s greater than 32GB/s; the demand
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for bandwidth can always be elevated by factors such as application behavior or

node level architecture, e.g. if an endpoint utilizes GPUs or other accelerators that

generate significantly more throughput, its demand for bandwidth can be very high.

Therefore it might be more reasonable to assume that bandwidth demands will not

be easily satisfied, and that the data points transition from 8GB/s to 16GB/s will

be more likely to represent the real-world situations of how bandwidth increases can

benefit performance.

7.6.2 Link Latency

In this section we will discuss how global link latency can affect network per-

formance. We configured the physical link latency from 10ns to 200ns, and within

this range, most network topologies only suffers a less than 20% slowdown moving

from 10ns links to 200ns links. This indicates that most of these configurations are

not latency sensitive in this range.

The only two exceptions here are Dragonfly and Fishnet-lite with minimal

routing, both of which witness a slowdown of a factor of 2 moving from 10ns to

200ns latency. The global links between router groups here once again becomes the

bottleneck, and it can be alleviated by using adaptive routing algorithms.

These results imply that within 200ns, link latency does not significantly sway

the overall performance. Therefore, system architects may be able to exchange an

increase in link latency, for greater benefits elsewhere in the system. For example,

allowing more latency will extend the maximum allowable physical space to build the
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system, enabling more flexibility in physical cabinets placement, cable management,

and thermal dissipation, etc.

7.6.3 Performance Scaling Efficiency

All the topologies that we choose to study in this chapter have constant net-

work diameters with regards to the scale of the network. So, as the network size

scales up, the average distance between 2 nodes will remain the same. This does

not mean there will be no performance degradations, as we will explain later with

examples from our simulation data.

We simulated both 50k-node and 100k-node scale networks, each with more

than 1,000 data points, on different topologies, workloads, and network parameters.

By looking at this broad range of configurations, we are able to get a comprehensive

view of how each topology scales.

To measure the scaling efficiency, we first find a pair of simulation data points

that have the exact same configuration except for the number of nodes. Then we

take the ratio of execution time of the one with 50k-node to the one with 100k-node.

If there is performance degradation, meaning the same amount of workload takes

more time to finish on 100k-node than 50k-node network, then this ratio will be less

than 1. So the closer this ratio is to one, the better scaling efficiency the topology

has.

By doing so, we obtain more than 1,000 scaling efficiency ratios for different

workload, topology, and network parameter combinations. Due to the large volume
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Figure 7.17: Averaged scaling efficiency from 50k-node to 100k-node

of the data, we turn to a statistical approach. We observed that the scaling efficiency

is relatively consistent for each workload-topology-routing combination, therefore

we took the average of all the data points with the same workload-topology-routing

configuration, and further reduced the number of data points to 40, as shown in

Figure 7.17. We calculated the standard deviation for the averaged data points,

and most standard deviations are below 0.01 (about 1% of the basis), indicating

these averaged numbers are representative for their samples.

One would immediately notice in Figure 7.17 that unlike all other setups,

Dragonfly and Fishnet-lite both have poor scaling efficiency when using minimal

routing. The reason being that, even though the network diameter does not change,

the number of nodes within a group/subnet increases. Dragonfly and Fishnet-lite

both only have one global link per router group, and they will be more likely to

be congested under non-uniform pattern workloads. For Random workload, the
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increased traffic generated by the host in the group/subnet are evenly distributed to

more global links instead of a specific global link, thus it has good scaling efficiency.

(In fact, for the same reason, Random has the best scaling efficiency over almost all

setups)

Also note that the scaling efficiency for 4-level Fat-tree with Halo workload

exceeds 1. This is because when we scale from 50,000 to 100,000 nodes, the number of

nodes per router at bottom level of the Fat-tree increases, therefore more “neighbor”

nodes are available within a shorter distance, which benefits nearest neighbor traffic

such as Halo.

To conclude, all the topologies studied in this chapter have decent scaling

efficiency (greater than 0.9) with appropriate routing algorithms, which is a desired

feature when moving to even larger system.

7.6.4 Stress Test
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Figure 7.18: Execution slowdown of different topologies under increasing workload

In this subsection, we stress test topologies with increasing workloads. We will
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keep the network parameters constant and increase the workload on each topology.

Then we evaluate the topology’s ability to handle increasing workload by observing

the increase in execution time.

In this series of tests, we limit the physical link bandwidth to 8GB/s to make

sure that light workloads are also able to cause congestions in the network, so that

the efforts of increasing workloads will not be offset by high performance network

parameters.

As for workloads, previous results have shown AllReduce generates adversarial

traffics for most topologies while Random is benign to most topologies. Therefore

we choose these two workloads for this test. To increase the workload, we double

the MPI message size each time, from 512 Bytes to 64KB, which results in: 1. more

packets to be sent for a message and thus more congestion in a network; 2. the

input/output buffers will be filled more quickly, and NICs will have to stall to wait

until the buffer is available.

Figure 7.18 shows the execution slowdown of different topologies under in-

creasing AllReduce and Random workloads, respectively. The execution time of

512B message size for each configuration is chosen as the baseline (1).

Looking at the upper row of Figure 7.18, we can tell that Fishnet and Fishnet-

lite has the modest slowdown of less than 20x in AllReduce workload when us-

ing adaptive routing, while all other configurations have more than 20x slowdown.

This indicates the high bisection bandwidth and high path diversity designs of

Fishnet/Fishnet-lite contributes to their performance in handling adversarial work-

loads.
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The lower row of Figure 7.18 shows the slowdown of Random workload. Due

to the benign nature of Random workload, the difference in performance is not as

huge as it is for AllReduce workloads when the workload increases, but it can still

be seen that high bisection bandwidth architectures such as Fishnet, and Fat-tree

outperform others under increasing workloads.

The effectiveness of routing algorithms against adversarial traffics could also

be reflected here. By applying proper routing algorithms, the topology’s ability to

handle heavy workloads can be strengthened. For example, Fishnet-lite reduced

the slowdown from 40x to 20x in AllReduce workload when moving from minimal

routing to adaptive routing. This further proves the effectiveness of our proposed

routing algorithms for Fishnet topologies.

The performance difference from routing algorithm for Fat-tree is almost neg-

ligible for AllReduce workload. This is because AllReduce is considered to be a

benign traffic pattern for Fat-tree, and increasing workload does not affect the rout-

ing decision heavily. As a contrast, routing algorithm under Random workload,

which causes packets to traverse more distances than AllReduce, makes more of a

difference for Fat-tree, as shown in Figure 7.18.

7.7 Conclusion

In this chapter, we study a wide range of network topologies that are promising

candidates for large scale high performance computing systems. We extend SST

to perform large scale, fine-grained simulations for each concerned topology with
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different routing algorithms, various workloads and network parameters at different

scales.

From a network parameter perspective, our study shows all topologies can gain

a decent amount of performance from the increase of physical link bandwidth. How-

ever, the amount of performance gain from the growth of bandwidth differs greatly

from topology to topology (ranging from 17% to 56%), as shown in Section 7.6.1.

As for physical link latency, topologies with higher network diameters are naturally

more sensitive to link latency, but in general, the latency range studied in this chap-

ter (10ns to 200ns) makes less contributions to the overall system performance. If

allowing more latency will be beneficial for the overall system design, it might be a

worthy trade-off.

The results of performance scaling efficiency and the stress test show that the

studied topologies all have good performance scaling efficiency if properly set up,

but their ability to handle increased workloads differs. This provides useful insights

on the scenarios that we are yet unable to simulate in this study. e.g. larger scale

network with even heavier workloads.

Furthermore, we identified various cases during our study where software be-

havior can result in significant differences in system performance. Although it is

well known, we are the first to provide examples based on simulation data for a lot

of the recently proposed topologies combined with network parameters, and these

examples will be helpful for software optimization.
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Chapter 8: Conclusions

This dissertation proposes a series of measures and methods to address the

issues that memory system simulation could not keep up with the heterogeneity and

scalability of modern memory systems.

We first developed a feature-rich, validated cycle accurate simulator that can

simulate a variety of modern DRAM and even non-volatile memory protocols. We

extensively validated the simulator, and conduct a thorough DRAM architecture

characterization with cycle accurate simulations, which provides insights on DRAM

architectures and system designs.

Based on the validated cycle accurate simulator, we explored methods to pro-

mote the scalability of memory simulator with minimized impact on accuracy, and

overcame the limitations of cycle accurate memory models.

We proposed and implemented an effective parallel memory simulator with a

relaxed synchronization scheme named MegaTick. We also improved the method

with accuracy mitigation, which helps achieve more than a factor of two speedup on

multi-channel memory simulation at the cost of one percent or less overall accuracy.

We further explored the feasibility of using a statistical/machine learning

model to accelerate DRAM modeling. We propose modeling DRAM timings as
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a classification problem and successfully prototyped a decision tree model that sped

up simulation 2 to 200 times with modest errors in latency modeling.

Finally, we studied and experimented large scale interconnect topologies for

high performance computing memory systems with a parallel distributed simulator,

and demonstrated the effectiveness and scalability of our proposed topology design.
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jković, Eduard Ayguadé, and Bruce Jacob. Main memory latency simulation:
the missing link. In Proceedings of the International Symposium on Memory
Systems, pages 107–116. ACM, 2018.

[61] Leonardo Dagum and Ramesh Menon. Openmp: An industry-standard api for
shared-memory programming. Computing in Science & Engineering, (1):46–
55, 1998.

[62] Annalisa Barla, Francesca Odone, and Alessandro Verri. Histogram intersec-
tion kernel for image classification. In Proceedings 2003 international confer-
ence on image processing (Cat. No. 03CH37429), volume 3, pages III–513.
IEEE, 2003.

[63] J. Ross Quinlan. Induction of decision trees. Machine learning, 1(1):81–106,
1986.

[64] Andy Liaw, Matthew Wiener, et al. Classification and regression by random-
forest. R news, 2(3):18–22, 2002.

[65] Ron Kohavi et al. A study of cross-validation and bootstrap for accuracy esti-
mation and model selection. In Ijcai, volume 14, pages 1137–1145. Montreal,
Canada, 1995.
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