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Abstract

Observer based nonlinear QDMC algorithm is presented for use with nonlinear state space
and input-output models. The proposed algorithm is an extension of Nonlinear Quadratic
Dynamic Matrix Control (NLQDMC) by Garcia (1984) and its extension by Gattu and
Zafiriou (1992a). Garcia proposed an extension of linear Quadratic Dynamic Matrix Con-
trol (QDMC) to nonlinear processes. Although a nonlinear model is used, only a single
Quadratic Program (QP) is solved on-line. Gattu and Zafiriou extended this formulation to
open-loop unstable systems, by incorporating a Kalman filter. The requirement of solving
only one QP on-line at each sampling time makes this algorithm an attractive option for
industrial implementation. This extension of NLQDMC to open-loop unstable systems was
ad hoc and did not address the problem of offset free tracking and disturbance rejection in
a general state space setting. Independent white noise was added to the model states to
handle unstable processes. The approach can stabilize the system but leads to an offset in
the presence of persistent disturbances. To obtain offset free tracking Gattu and Zafiriou
added a constant disturbance to the predicted output as done in DMC-type algorithms.
This addition is ad hoc and does not result from the filtering/prediction theory. The pro-
posed algorithm eliminates the major drawbacks of the algorithm presented by Gattu and
Zafiriou and extends that algorithm for nonlinear models identified based on input-output
information. An algorithm schematic is presented for measurement delay cases. The algo-
rithm preserves the computational advantages when compared to the other algorithms based
on nonlinear programming techniques. The illustrating examples demonstrate the usage of
tuning parameters for unstable and stable systems and points out the benefits and short
comings of the algorithm.






1 Introduction

Lately, the importance of utilizing nonlinear process models in process control applications
has been very well recognized both by academia and industry. A significant number of Model
Predictive Control (MPC) algorithms that utilize nonlinear process models in the on-line op-
timization have been appeared in the literature. In all these algorithms an objective function
is minimized to compute the future manipulated variables. The various algorithms based
on nonlinear programming techniques ( Jang et al., 1987; Brengel and Seider, 1989; Li and
Biegler, 1989; Eaton and Rawlings, 1990; Patwardhan et al., 1990; Bequette, 1991) differ in
the way how the ordinary differential equations are solved and in the optimization approach
utilized. Garcia (1984) proposed an extension of linear Quadratic Dynamic Matrix Control
(QDMC) to nonlinear processes (abbreviated to NLQDMC from here onwards). Although a
nonlinear model is used, only a single Quadratic Program (QP) is solved on-line. Gattu and
Zafiriou (1992a) extended this formulation to open-loop unstable systems, by incorporating
a Kalman filter. The requirement of solving only one QP on-line at each sampling time
makes this algorithm an attractive option for industrial implementation. This extension of
NLQDMC to open-loop unstable systems was ad hoc and did not address the problem of
offset free tracking and disturbance rejection in a general state space setting. Independent
white noise was added to the model states to handle unstable processes. The approach can
stabilize the system but leads to an offset in the presence of persistent disturbances. To
obtain offset free tracking Gattu and Zafiriou (1992a) added a constant disturbance to the
predicted output as done in DMC-type algorithms. This addition is ad hoc and does not
result from the filtering/prediction theory. This is also pointed out by Lee and Ricker (1993).

There is a recent surge in the use of nonlinear models identified based on input-output
information, for control purposes using the Model Predictive Control schemes. Saint-Donat
et al. (1991) used neural network models in the on-line optimization. They solved the on-
line optimization problem utilizing the nonlinear programming techniques. Hernandez and
Arkun (1992, 1993) used the neural network models and polynomial ARMA models in the
on-line optimization. They used the extended DMC algorithm (Peterson et al., 1992) and
the algorithm based on nonlinear programming techniques (Hernandez, 1992) for on-line
control.

In this paper, we present an algorithm for use with nonlinear state space and input-output
models which addresses the offset free tracking problem and disturbance rejection problem
in a general setting. The paper is organized as follows. In section 2, observer design is
presented. In section 3, we present the algorithm schematic for filter and predictor formula-
tions and illustrate the use of tuning parameters by application of the algorithm to a simple
example. The algorithm is extended to measurement delay cases in section 4. In section 5,
we present the algorithm for input-output models and demonstrate the applicability on a
simple example. The concluding remarks are presented in section 6.




2 Observer Design

Consider the nonlinear process and measurement models of the form

& = fo(z,u) (1)
y = h(z) (2)
where z is the state vector, u is the input vector, y is the output vector. Define
A = (GB)lemtumn
Be = ()lemtrnon
G = (30t

where the subscript k indicates the sampling instant k. £ and v are the values of z and u at
sampling instant k, for which the values are set appropriately in the algorithm schematic. Let
@, and T be discrete state space matrices (e.g., Astrém and Wittenmark, 1984), obtained
from Ay, Bi and the sampling time. y; be the measurement of the plant at &k and f(z, ux)
is denoted as the value of the state when the system model & = f.(z,u) is integrated over
one sampling time from the initial conditions z; and wu;.

The idea is to approximate the nonlinear process as a linear model around the sampling
instant, augment the linear model with additional linear states to describe the appropriate
disturbances, then compute the estimator gains for the augmented system. Once the estima-
tor gains have been computed, we use these estimator gains to update the nonlinear states
and the augmented linear states to capture the effect of nonlinearity and disturbances. The
material presented in this subsection is very well discussed in the linear system literature in
some form or other. For the details the reader is referred to (Bitmead et al.,1990; Anderson
and Moore, 1979). We consider the two sets of linear discrete models given as

Type A:

Ziy1 = (I)ij + Fkuj + wy;
Ni+1 = Nj+ws;
yi = Crzj+nj+v; (3)
Type B:
Zig1 = (I)ij -+ Fku]' + I‘kwj + wy;
Wit = wj+ wy;
yi = Cizj+v; - (4)
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where w;, wz; and v; are the uncorrelated white noise sequences with [w;;7, we;T]7 ~ (0, Q)
and v ~ (0, R), @ and R being covariance matrices associated with process and measurement
noises. z is the state vector of the linearized model, y; is the measurement and » and w
represent additional linear states to describe the disturbances.

Type A model, represents the process model augmented with the disturbance model for the
disturbances which are step-like at the output. Type B model represents the augmented
process and disturbances models for the step-like disturbances at the input. Offset free
tracking in the presence of model-plant mismatch can be handled in an effective manner by
the use of either type of models. Also, the observer designed based on the description of the
either type can stabilize the open-loop unstable processes by putting the closed-loop observer
poles inside the unit disk provided that the controller is designed such that the regulator
poles are inside the unit disk. So, the disturbance model selection should be based on the
knowledge of disturbances i.e. whether the disturbances are like additive steps at the output
or slow drifts or like steps at the input or states. The only technical requirement in using
these kind of disturbance models is the requirement of detectability. For the existence of
stable filter, it is necessary that the augmented system is detectable. In general, it is required
that the number of states augmented are less than or equal to the number of outputs for
the detectability of the augmented system. Muske and Rawlings (1993a) also state this
requirement. This requirement forced us to consider two separate models instead of treating
them in a composite setting. For more details on the detectability of the augmented system,
the reader is referred to Morari and Stephanopoulos (1980) and Davison and Smith (1972).

2
. g 0
In our development, it is assumed that @ =~ [ '61 o2 and R = 0,21 where 04,2, 0,7°
w2
and o0,? are scalar variances. Define 0y = 0,,/0,,02 = 0u2/0, and let 0,2 = 1. The

parameters o and o3 are used as a tuning parameters which determine the value of estimator
gains. A detailed discussion on this kind of tuning parameter can be found in Gattu and

Zafiriou (1992a).

F1 P1
Let K,F 2 [ f;: - ] and K, & ﬁpz
Kalman filter formulations and predictor formulations respectively. The superscripts F' and
P stands for filter and predictor, 1 stands for the gain for the subsystem consisting of
original states and 2 stands for the gain for the subsystem consisting of augmented states.
These estimator gains are computed by solving Algebraic Riccati Equation (ARE) using the
augmented system matrices and tuning parameters oy and o;. For the literature on the
solution of ARE and expressions for the estimator gains, the reader is referred to Astrém

and Wittenmark (1984), Bitmead et «l.,(1990), Anderson and Moore (1979).

be the estimator gains computed using the

In this subsection, we have summarized the essential elements of observer design useful in
the context of the paper and for details, we referred to the relevant literature appropriately.




2.1 Prediction equations for nonlinear system

In this subsection, we present the prediction equations for the nonlinear process model states
and the augmented linear disturbance model states based on the estimator gains computed
in the previous subsection.

2.1.1 Predictor formulation

Type A augmented system:

Eepre = S(@p1,ur) + K yx — h(Erpe—1) — rp—1] (5)
Besrfe = Dap—r + K" [yx — R(Zajh-1) — Hith1] (6)
Grere = h(Zrgpape) + Drgape (7)

By taking the conditional mean (Anderson and Moore, 1979), the P-step ahead predictions
are

Trgile = f(@rpiotles Ukgio) 1=2,..., P
Mhtilk = Mepi-tf 2=2,...,P
Uepie = P(Expie) + Togipp 0=2,..., P (8)

Type B augmented system:

Eerpe = S(@p-1,ur) + Dedigpo1 + K" yk — A(Exp-1)] (9)
Wipae = Wipk-1 + Ko7 {ye — h(Erpp-1)] (10)
Gksrpe = P(Eisrp) (11)

The P-step ahead prediction equations are

Eryik = f(Erpiorpp Ukpior) + Dethpgicapp 2=2,..., P
Witie = Wrpicie 0=2,...,P
Jrtie = h(Ergi) 1=2,...,P (12)

with £oj-y = %o, foj-1 = 0 and wWoj—; = 0. The notation Ti|k-1 represents the estimate of z
at k based on the information at k — 1. P is the prediction horizon. To avoid complexity
in notation, we used the same notation for estimator gains for both Type A and Type B
systems. But in actuality they come from solving ARE’s with different system matrices.

2.1.2 Filter formulation

Type A augmented system:

B = Bappor + KT gk — B(Ergpo1) — Depp-r] (13)
Bk = Nrpk-1 + K2 yx — h(Erpe—1) — Mige-1] (14)
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with

-1 = f(Er-1fk-1, Uk-1)

NMklk~1 = Nk-1lk-1

The P-step ahead predictions are

Tepie = S(@rpicapr Ukpicr) t=1,...,P (15)
Mhtile = fhpi-ip t=1,..., P (16)
Urgik = P(Zxqipk) + Do 2=1,..., P (17)

Type B augmented system:

Eip = Erpor + Detbrpeor + KeF yk — R(Zxp-1 + Trtdrpot)] (18)
Wi = i1 + K2 yr — A(Erpo1 + Drtdipemr)] (19)
with
§3k|k-1 = f(iik—llk—-lauk-—l)
Whlk-1 = Wi—1jk—1

The P-step ahead predictions are

Zryip = f(Zrpiorfey Ubgiz1) + Dalpgice 1=1,..., P (20)
Wryik = Wepi-ye t=1,...,P (21)
Jerie = A(Zgip) i=1,...,P (22)

with the Initial conditions Zo|~1 = o, floj-1 = 0 and g1 = 0.

3 Algorithm

The predicted output is divided into two parts as the effect of past and the effect of future
manipulated variables as done in the original version of NLQDMC (Garcia, 1984).

ﬁk_*.,‘lk =ﬁz+1|k+g1{+1|k Z= 1,...,P (23)
where §j* is the effect of past and §/ is the effect of future.

The effect of future control moves

The contribution of the effect of future manipulated variables to the predicted output is given
as Yo, SixAurgisy (4= 1,2,..., P), where Au is the change in manipulated variables,

defined as Auy 2 ug — ug—y and S;; are the step response coefficient matrices obtained by

I .
Stk =ECk(I’i_1Fk (l=1,2,...,P) (24)

i=1




For more details on computation of step response coefficients, the reader is referred to Gattu
and Zafiriou (1992a).

The effect of past control moves

The effect of past i, is defined as the predicted output if there are no input changes in
the future. Therefore, g}, is computed by using (7) and (8) or (11) and (12) or (17) or
(22) by setting ugys = ug—y for ¢ =0,1,..., P~ 1.

Optimization

P
: . Tn2(4 T 2
min -r D -7 Aui (N Aupy 25
s, S AuHM_l?;;(y"*”" k)T D (G — Tit) + Aujyy k-1 (25)
where P is the prediction horizon and M is the number of future moves to be optimized. It
is assumed that ugipr—1 = Ugenm = ... = ugyp-1. D and A are diagonal weight matrices and
r is the reference setpoint. :

The above optimization problem with constraints can be written as a standard Quadratic
Programming problem, as shown in Garcia and Morshedi (1986):

min®(X) = -;-XTGX +oTX (26)
subject to:
HTX >b (27)
where
X = [Auk ‘e Auk+M_1]T (28)

and H and b depend on the constraints on manipulated variables, change in manipulated
variables and outputs.

The M future manipulated variables are computed, but only the first move is implemented
(Garcia and Morshedi, 1986).

3.1 Algorithm schematic

Depending on whether the predictor formulation is used or the filter formulation is used,
the sequence of computations is slightly different. We provide two schematics and make
appropriate comments. The sampling instant is k in both the schematics.

Schematic I:

This schematic is based on the predictor formulation.

(a) Set & = Zpp—y and v = up_;y.

(b) Linearize (1) and (2) to get A, By and Cj and discretize to obtain ®; and T.




(c) Compute the step response coefficients.
(d) Compute the estimator gain KP

(e) Compute gi,; for i =1,..., P using (7) and (8) or (11) and (12) by setting upyi-1 =
Ugp fore=1,...,P -1

(f) Solve QP and implement u
(g) Obtain &y using (5) or (9).

Schematic II:

This schematic is based on the filter formulation.

(a) Set & = -1 and vx = ug_y.

(b) Linearize (1) and (2) to get Ay, By and Cj and discretize to obtain @ and I'.
(c) Compute the estimator gain K¥

(d) Obtain &y using (13) or (18)

(e) Set & = Tgx and v = ug_;y.

(f) Linearize (1) and (2) to get Ak, Bx and Ck.

(g) Compute the step response coefficients.

(h) Compute gz, for ¢ = 1,..., P using (17) or (22) by setting uggi—1 = ug—y for
i=1,...,P—1

(1) Solve QP and implement uy
(j) Obtain Z,yx using (15) or (20).

Remark 1: In the schematic based on filter formulation, linearization is done twice. The
additional benefit we are getting by two linearizations is that the linear model obtained
by linearing the nonlinear model at &y and u4_; is used to compute the effect of future
inputs. Whereas in the predictor formulation, the linearized model obtained by linearizing
the nonlinear model at Zjx—; and ug_; is used to compute the effect of the future inputs.

Remark 2: For the Type A augmented system, if there is no process noise i.e., if o1 = 0, the
filter and predictor formulations are identical. For a choice of o1 = 0, the disturbances are
viewed as independent random steps affecting each of the plant outputs with measurement
noise being white, i.e., type 1 disturbances as discussed by Morari and Lee (1991). For this
choice of tuning parameter, the gains Ki*' and K" result in a value of zero. The gains
K.F? and K,F? will be equal and result in diagonal matrices with each diagonal element
K} ; given by an expression (Ricker, 1991)



2

L+ 1+ 5

where p is the number of outputs. As the value of o, varies from zero to infinity with oy = 0,
Ki.F* and K;*? will take a value from zero to I. For a value of I, the formulation is identical
to Garcia’s (1984) nonlinear version of QDMC.

Kii= for 1=1,2,...,p (29)

Remark 3: For type 2 disturbances i.e. independent double integrated white noise affecting
each of the outputs (Morari and Lee, 1991), the augmented system can be described as

Ziy1 = (I)ij + FkUj
Tyr = N5+
niw1 = 05 +wy

yi = Cizjt+ni+v;

For a choice of o, = 0.0 and for a nonzero value of o;, the the expression for the estimator

1
gain, Kj; = [ g:".z } is given by (Ricker, 1991)

Kk,,-l = %—i\/oﬂlagz-{-lﬁ-—af for 1=1,...,p

(Ki;:')?

K 2 —_—
. Kii' +2

where Kj; has the same meaning as in remark 2.

Remark 4: In the begining of the simulation, the estimator (Type A or Type B) is initialized
by solving equations 5 — 7 or 9— 11 open-loop. It is suggested to do an open-loop simulation
keeping the input constant at the steady state value to obtain the steady state values for
the estimator states.

Remark 5: Throughout the formulation, persistent disturbances entering the state equa-
tions are considered as input disturbances by adding I'yw to the state equations. However, T';
in Tyw of (7) can be different provided that the augmented system satisfies the detectability
requirement.

3.2 Tuning guidelines for o; and o

3.2.1 Type A model:

For open-loop unstable systems, nonzero values of o, and o3 are recommended. A nonzero
value of o7 puts the closed-loop poles of the observer inside the unit disk and a nonzero

value of o, rejects the disturbances or tracks the nonzero setpoints without offset. For stable
systems, o is not required.
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3.2.2 Type B model:

A nonzero value of o3 is recommended for both open-loop unstable and stable system for
offset free disturbance rejection and tracking.

In both the cases, smaller values for o; and o, are recommended in the presence of measure-
ment noise.

3.3 Illustration

In this section, the proposed algorithm is applied to control a chemical reactor at unstable
steady state point. Predictor formulation is used in all the simulations. The example problem
is taken from Sistu and Bequette (1991). The process is an exothermic, first order, irreversible
reaction in an adiabatic CSTR with dynamic equations given by

d.’El _ )

™ = —¢$16$P(TT7) + q(z15 — 21)

d(L‘z

- = ,Bqﬂxle:cp(l + / ) = (q+ 8)x2 + bu+ qzay
Yy = 23

where z; is the dimensionless concentration, z; is the dimensionless reactor temperature
and u is the dimensionless cooling jacket temperature. The controlled variable is the di-
mensionless reactor temperature and the manipulated variable is the dimensionless cooling
jacket temperature. For the manipulated variable value of zero, the plant has three stable
steady states, with the unstable steady state at [0.5528,2.7517] and two stable steady states
at [0.8560,0.8859] and [.2354,4.7050]. The values of the parameters used are 8 = 8.0,6 =
0.3,7z;5 =1.0,9 = 1.0,¢ = 0.072,v = 20.0, 255 = 0.0 and u = 0.0. The objective of the con-
trol is to control the reactor temperature at the unstable steady state point in the presence of
disturbances and parametric uncertainty. In the simulations, the parametric uncertainty is
simulated by giving the values for heat transfer coefficient  as épian: = 0.3 and §moder = 0.2.
In all the simulations, we assume that there is a parametric uncertainty, a values of P = 5,
M = 2 and a sampling time of 0.25 is used and the input is constrained between —1.0 and
2.0. The steady state equilibrium curve is given in figure 1. Note that the model has only
one steady state for the manipulated variable value of zero. However, for a small negative
value of input, the model has three steady states.

Setpoint tracking

Figure 2 illustrates the response of the reactor temperature for a setpoint change from
the lower steady state of yo = 0.8859 to the unstable steady state point corresponds to
y = 2.7517. With type B model, tuning parameter values of A = 0.2,0y = 0.0 and o2 = 100.0
are used in the simulations. With type A model, tuning parameter values of A = 0.2,0y = 1.0
and o3 = 10.0 are used. The results are comparable with those of Sistu and Bequette who
use both state and parameter estimation. In the presence of parametric uncertainty, Sitsu
and Bequette observed that the use of state estimation alone results in a poor performance.

11



The response by using type A model is much sluggish than the response by using type B
model. This is because of the location of the observer poles of the linearized models. The
observer poles are not affected much by tuning parameters and therefore the performance
cannot be improved by tuning when type A model is used.

Output disturbances

Figure 3 demonstrates the response of the reactor temperature for a step output disturbance
in a reactor running at unstable steady state setpoint. A value of 0.3 is used for the output
disturbance. The output disturbance value of 0.3 pushes the plant steady state away from
the model and increases the model-plant mismatch. With Type A model, tuning parameter
values of A = 0.05, 0; = 2 and o2 = 10.0 and with the Type B model, tuning parameter
values of A = 0.5, 0y = 0.0 and o2 = 100.0 are used. Since the system is open-loop unstable
a nonzero value of oy is must to stabilize the system and a nonzero value of o, is used to get
the offset free response. Also, as observed in the case of setpoint tracking, by using Type A
model, due to the location of the poles of the observers of the linearized models, the integral
action is slow.

Input disturbances

Figure 4 demonstrates the response for an input disturbance of 0.3 in a reactor running at
open-loop unstable steady state setpoint. With Type A model, tuning parameter values of
A =0.05, 0y = 0.1 and o7 = 10.0 and with the Type B model, tuning parameter values of
A =0.1, 0, =0.0 and o3 = 100.0 are used. As observed in the case of output disturbances,
the performance using Type B model is better than the performance using Type A model.

To summarize, for open-loop unstable processes use of augmented models of Type B gives a
better performance. Similar observation is made by Muske and Rawlings (1993b) for control
of linear unstable systems.

4 Measurement delay systems

So far it is assumed that, there is no delay in the measurements. In quite a few process
control applications, there is always a delay from the sensors. So, it is important to consider
the measurement delay information. In this section we present the algorithm for the mea-
surement delay processes. It is assumed that the sum of distributed delays is represented by
a lumped delay of d sampling intervals at the plant output.

For simplicity, we present the prediction equations and the algorithm only for Type A aug-
mented system with the predictor formulation. It is easy to write the other cases based on
this formulation.

4.1 Prediction equations

Bhedprfhmd = F(Eredpoda1, h-a) + Kiea" Yod — M(Ex-dlk-d—1) — Dk-afe—d-1] (30)
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Nk—d41jk~d
Th-dyalk-d
Mk—det2j~d

Tk|k—d
Nklk—d

Adppmd—1 + Ki-a" 2 [Yhod — h(Er—dik-d-1) — Tkmdlk—d—1]
f(fi‘k-d+1|k—d, Uk—d+1)
Mk—d+1)k—d

F(Zk—1jk=d, Ur-1)

ﬁk—llk—d

The P-step ahead predictions are

Eiyihmd = f(Erpictpe—dr Ukgi-1) 2=1,..., P
Mhtilk—-d = Nktimtfo—d t=1,..., P
Uktilk—d = P(Ergip-d) + Tegipp—a 1=1,..., P

4.2 Algorithm schematic

(a) Set & = Zx_ak—a-1 and vx = Up_g_1.

(b) Linearize (1) and (2) to get Ay, Bx and Cy and discretize to obtain ®; and I'.

(c) Compute the estimator gain KP

(d) Obtain #g—q using (35)

(e) Set fk = fik|k—d and Vi = Ug-1.

(f) Linearize (1) and (2) to get Ak, By and Ck.

(g) Compute the step response coefficients.

(31)
(32)
(33)
(34)
(35)
(36)
(37)

(h) Compute §z ;g for ¢ = 1,..., P using (38) by setting uxti—1 = up—q for i =

1,...,P—1

(i) Solve QP and implement uy

(j) Obtain Zx_g41jk—a using (30).

5 Input-Output models

In this section, we present the observer based NLQDMC algorithm for the control of nonlinear
processes based on the models identified from input-output data. The models of the form

Y = f(yk—l, Yk—25- - ,'!/k—nyauk—l,uk—2, e )uk—nu)

13
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where n, is the number of past outputs, n, is the number of past inputs, are considered
whether they are identified using neural networks or polynomial ARMA structure or by some
other input-output identification method. For simplicity sake, only the predictor formulation
is presented here. The filter formulation can be formulated as in the case of state space
formulation. For better understanding, first the procedure for one-step ahead prediction is
presented for the linear models and later the nonlinear implementation is outlined. Consider
the linear model given by

y; = —Alyj._l - Azyj_g e — Anyyj_ny + Blu]'_l + Bqu'_g +...+ B,,uu,-_,,“ (40)

Then a minimal state space realization is constructed using the above model. Software from
the package CONSYD is used to construct minimal state space model. The software is
based on the algorithm developed by Economou (1982) which utilizes Rosenbrock’s (1968)
algorithm. Let the minimal state space model is given by

Tijy1 = <I>:1:J'+I‘uj
v = Cay (41)

Then the observer is designed by augmenting the disturbance models to the above model
equations as in the case of state space formulation. The augmented models are given as

Type A:

ztiy1 = Px; 4+ Tuj + wyj
Ni+1 = 1 + Wy
yi = Czj+n;+v; (42)
Type B:
ziy1 = Oz; + Tu; + Tw; + wy;
Wit = Wi+ W
yi = Czj+v (43)
P1
Let kP 2 gm } be the estimator gain computed using either (42) or (43). The one-step

ahead prediction equations are given as

Type A augmented system:

Eipgj = Oj5-1 + Dy + Ky — C&j1-0 — )i (44)
Aigr; = fji-1 + K2 y; — C&jjjon — 5151 (45)
Jiv1i = Cjpapi + M) (46)
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by taking the z-transform, (z) is given by
§(2) = C(zI — ®)'Tu(z) + [C(z] — ®) 'K + (2] - DTTEP?(y(2) — Ci(2) — 1(2)) (47)

Since by construction C(z] — )T = (I + %, A;z~) " (7, Biz™)

i) = (I+iZ:Afz“)"(gBez")u(zH
(O] = 8) K + (2] — I KP\(y(2) — §(2)) (48)

i2) = =3 Ai(z) + (3 Biru(e) +

I+ iA,-z“)[C(zI — )V KP4 (2] - D)TTEP(y(2) — §(2)) (49)

The first two terms on the right hand side of the above prediction equation represent the
contribution from the original process model and the third term is due to the correction for
the disturbance model assumed. Therefore, in the time domain the predicted output at j
can be represented as

A “d A

Yili-1 = Yjlj-1 T y]c‘|j-1 (50)

where ﬁ;-il ;1 Tepresents the deterministic contribution and §5);_, represents the correction due
to stochastic disturbance assumptions. In the time domain representation the deterministic
contribution is given by

?7}1|j._1 = “Al'gj—llj—Z - Az@j—zh‘—a el Any?)j—nylj—ny—l + Byuj1 + Baujr + ...+ Bp tj-n,
(51)

Stochastic contribution

Define Ao 2 I,9(2) = y(z) — §(z) and denote the third term on the right hand side of (49)

as §°(z).

§°(z) = (2 Aiz[C(2] = ®) K + (2] — 1) KPi(2) (52)
§°(z) = (;\j Aiz7HC(2] — ®)T K o(2) + (gj Aiz") (2l = I)T'KP?5(2)  (53)

Denoting the first term and the second term of the right hand side of the above expression
as §°!(z) and §°*(z) respectively,

5(2) = §°(2) + 9() (54)
The corresponding time domain expression is

955-1 = Gl + ISl (55)
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Now, §°!(2) can be represented in the time domain using the state space representation as

g1 = Oz + KF'9

yig = AiCzi;
ny
Pihi1 = gy.-,,- (56)

with initial conditions zo = 0 and ¥ = y; — §iji—y. Since the identified mput output model
assumes the use of only past n, outputs information, in the computation of y]| ._1, the values
of 0; are set to zero for | < j — n,. Similarly ym , is represented in the state space form by
replacing ® by I of appropriate dimension and A;C by A; and K*! by K*? in (56).

Type B augmented system:

ip1 = D&jjo1 + Puj + Dibjjjoa + K[y — O] (57)
Bjpay = Wjjjor + K72[y; — Oy (58)
Jinrj = Cjpy (59)

By taking the z-transform and on simplification

§(z) = —nZyAiZ—‘??(Z) + (i Biz " u( ZB 27 w(z) +

=1 =1

I+EA2 C (=1 = @) K (y(2) - i(2)) (60)

1=1

To represent the predicted output in the time domain similar procedure is used as that for
type A augmented system.

5.1 Nonlinear implementation

At sampling instant k, linear model is obtained by linearizing (39) at Yxjx-1,- -+ » Yk—ny+1jk=ny,
and ug_y,...,Uk—n, and is given by

yi = —A1ayi1 — Asp¥icz = - Ay Yion, + Buitior + Bagjz + -+ Buypttjon,  (61)
The corresponding minimal state space realization is represented as

Tjp1 = (I)k:l:j + Fku]-
yi = Czj Y (62)
Then the additional states to represent the disturbances are augmented to obtain type A or

I(Ic P1

type B augmented model and the estimator gain K W 2 [ P2
k

] is computed.

Prediction
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The predicted output is expressed as the sum of deterministic contribution and the correction
due to stochastic disturbance assumptions.

gk+:’|k = ?7g+i|k + 17]¢:-+£|k for 1=1,...,P (63)
where P is the prediction horizon.

Deterministic contribution

Define, m(!) & min(k, 1)

»d
Tirite = FUktiztimk4i=2)s - -+ s Yhobiony Im(k-bimny —1)s Ukbi=1y - « +y Ukepizny, ) (64)

for : = 1,..., P. The above expression is a nonlinear function in the future manipulated
variables. Therefore, to formulate the optimization problem as a single quadratic program
the deterministic contribution is subdivided into the effect of past and future.

- ad ad .
y:+i|k = ykp+i|k + ?/kf+;|k for i=1,...,P (65)

where g):fi’_'. ¢ is the effect of past and gZ’;ilk is the effect of future. The effect of past is
computed by setting ugy; = ug—y fort =0,1,..., P — 1. The computation of effect of future
is same as that described in section 3 for state space formulation of the algorithm.

Stochastic contribution

The computation of the linear correction gj il 1 exactly same as that described in the

previous subsection with the only modification that the system matrices A;, ®, K¥,T" and C
are replaced by A; i, O, K ", T'x and Cj respectively. As in the case of state space formulation
of the algorithm, in the absence of measurement information in the future, by taking the
conditional mean, it is assumed that yxi; — Jeqip =0 for e =1,..., P.

Once the predicted output is computed, the future manipulated variables are obtained by
solving the optimization problem (25).

5.2 Algorithm schematic
(a) Linearize (39) at ykjk—1,-..,Yk—n,+1lk—n, and Ug_1,...,Uk_n, to obtain A;; for i =
1,...,nyand Biyfori=1,...,n,
(b) Obtain the minimal state realization of the linearized input-output model

(¢) Compute the step response coeflicients

(d) Compute the estimator gain I;”
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(e) Compute ﬁ:ii)k fori =1,..., P using (64) by setting ugy; = ug-y for¢ =0,1,...,P—1.
ompute the linear correction based on the expressions -
f) C the li ion based 1 i 52 56
(g) Solve QP and implement uy

(h) Obtain Ji41x using (63) with deterministic part computed using nonlinear input-output
model

5.3 TIllustration

In this section, the algorithm is applied to control the reactions in series (A — B — C)
in a CSTR. The desired product is the intermediate product B. The differential equations
describing the system are given by (Hernandez, 1992)

dIL']_ _ —-Ey -—E2

—dz- = 1- Iy — E3€IBP( 3 )(I)] + E46$p( T3 )IE2

dz -FE —E

—C—sz = —z2+4 E3ea:p(—a?l)z1 — Eqexp( m:)‘“

dz —E —E

d_t3 = u— x5+ 0.05(Ezexp( xal Yz1 — Eqexp( w;)xz)
y = &2

with E; = 50, E; = 70, E3 = 300000 and E; = 60000000; where z; and z, are the
dimensionless concentrations of A and B in the reaction mixture, z3 is the dimensionless
reactor temperature and u is the dimensionless temperature of the jacket surrounding the
reactor vessel. The reactor equilibrium curve of concentration of B as a function of jacket
temperature has a well defined maximum. The control objective is to operate the reactor
at the maximum concentration of product B. The concentration has a maximum value of
0.314. The output maximum of this process makes this example a challenging problem for
control due to the change in the sign of the gain around this steady state. Gattu and Zafiriou
(1992b) demonstrated the successful application of state estimation NLQDMC algorithm to
this process for setpoint changes and input disturbances without model-plant mismatch. In
this paper, we use the plant described by the above differential equations and the model
as the input-output description taken from Hernandez (1992). The model-plant mismatch
introduced here makes this example more interesting and challenging.

The input-output model is a sigmoid polynomial model and is given as (Hernandez,1992)

y(k+1) = (0 + 01y(k) + Oauy(k — 1) + 03y (k — 2) + Oquy(k)us(k — Vus(k — 3))
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where, the map o(.) is the sigmoid function defined as

1

o(=) 1 + exp(—=z)

which is bounded between 0 and 1. The input u, is the scaled input and is defined as

v = u-—2
T4
The parameter values are 6y = —2.751, 6, = 6.791, 0, = .241, 03 = —8.693 and
0, = —.226. The steady state equilibrium curves for the model and plant are given in figure

(5). In all the simulations tuning parameter values of P = 10 and M = 1 are used and a
sampling time value of 0.5 is used. The input is constrained between —2 and 2.

Figure 6 demonstrates the response for a step change in setpoint starting from the left of
the peak. A step setpoint change is made from the steady state value of y = 0.1461 and
u = 3.5 to a value of y = 0.314. The tuning parameter values of gy = 0.0, o3 = 1000.0 and
A = 1.0 are used using both Type A and Type B models. In the entire left side of the peak,
the model and plant gains have the same sign. So, it does not a pose a challenging problem
and the responses using both Type A and Type B models are excellent.

Figure 7 demonstrates the response for a step change in setpoint from the right of the peak.
A step setpoint change is made from the steady state value of y = 0.1581 and u = 5.5 to
a value of y = 0.314. The tuning parameter values of o; = 0.0.0; = 1000.0 and A = 0.05
are used with Type A model and the tuning parameter values of o7 = 0.0.02 = 1000.0 and
A = 0.3 are used with Type B model. Note that the gain of the model equilibrium curve
changes its sign on the right side of the plant peak. The use of Type B model resulted in the
steady state offset. The control action got ”stuck” at the zero gain area of the model and
plant settled at an output value corresponding the input value at the zero gain area. Whereas
by using Type A model, the control and observer parameters can be tuned such a way that
it does not get stuck at the zero gain area. The oscillations are due to the aggressive control
around the zero gain area. Figure 8 demonstrates the response for the setpoint trajectory
tracking from the same steady state. With Type B model, tuning parameter values oy = 0.0,
o, = 1000.0 and A = 0.2 are used. With Type A model, tuning parameter values oy = 0.0,
oy = 1000.0 and A = 0.01 are used and the change in the manipulated variable is constrained
between —0.5 and 0.5. Similar responses are observed as in the case of step setpoint change.
The oscillation in the response when using the Type A model is due to the aggressive control
action in the zero gain area. Figure 9 shows that, in the zero gain area, the change in the
manipulated variable hits the constraints. The aggressive control action around the zero
gain area is due to the result of using a linear model for future prediction. This situation
here points out the shortcoming of the linearization based nonlinear MPC algorithms. By
choosing a large value of P in an algorithm utilizing nonlinear programming techniques, the
oscillations could be reduced.

Figure 10 demonstrates the response for an input disturbance of —0.2 in a system running
at peak. The introduction of negative input disturbance moves the plant curve closer to
the zero gain area of the model. The tuning parameter values of o, = 1000.0 and A = 0.5
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are used with Type A model and the tuning parameter values of o2 = 1000.0 and A = 0.9
are used with Type B model. Even in the case of input disturbance, use of Type A model
results in a better performance. This is because, using a smaller value of A with Type B
model moves the estimator states into zero gain area of the model and results in steady state
offset. It can be seen from figure 11 that the slower response using Type B model is due to
the slower input action.

6 Conclusions

Observer based NLQDMC algorithm is presented for use with nonlinear state space and
input-output models. The proposed algorithm eliminates the major drawbacks of the al-
gorithm presented in Gattu and Zafiriou (1992a) for nonlinear state space models. The
proposed algorithm handles the unstable processes and disturbance rejection in a general
setting using linear filtering theory. In addition, the algorithm is presented for nonlinear
models identified based on the input-output information. The modifications still preserve
the major advantage of the original algorithm: the computational simplicity by solving only
a single quadratic program at each sampling time

For open-loop unstable processes, it is demonstrated in the example that the process and
disturbance augmented models of Type B performs better when compared to augmented
models of Type A. Similar observation is made by Muske and Rawlings (1993b) for control
of linear unstable systems.

The open-loop stable example with the sign change in the gain, it was demonstrated that
the use of augmented models of Type A performs better than augmented models of Type B.
The example also demonstrated the shortcomings of the algorithm. It is seen clearly that the
performance loss around the zero gain area is due to the use of linear model for the future
prediction.

The drawback of this algorithm or any other Model Predictive Control algorithms is that
the tuning can be tedious sometimes. Use of automatic off-line tuning scheme proposed by
Ali and Zafiriou (1993) would be advantageous to get the desired response. Work in this
direction to implement automatic tuning scheme with observer based NLQDMC algorithm
is currently under way in our research group.
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Notation
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Greek letters

A
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A
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ag
05,05
Mk Vk

Subscripts

Superscripts

inequality constraint equation vector
continuous state space matrices
coeflicients in input-output model description
diagonal weight matrix

constants

the gradient vector

hessian matrix

inequality constraint equation matrix
current sampling time index

estimate at k+1 based on information at k
estimator gain

no. of future moves

prediction horizon

covariance matrices

set point

step response coefficient matrix

time

sampling time

white noise processes

state

vector of change in manipulated variables
output

diagonal weight matrices
discrete state space matrices
change in the associated variable
constants

ratio o, /0,

scalar variances

values of z and u at k

initial or nominal value
current sampling time index
initial or nominal value at k
scaled variable
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1, P2

estimated value

transpose

represents the effect of past

represents the effect of future

represents deterministic contribution
correction due to stochastic contribution
represens filter

represents predictor
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Figure 1: Dimensionless reactor temperature vs. Dimensionless cooling jacket temperature;
equilibrium curve
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Figure 2: Dimensionless temperature vs. Dimensionless time. Setpoint tracking; Solid line
—Type B model; Dotted line ~Type A model
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Figure 3: Dimensionless temperature vs. Dimensionless time. Output disturbances; Solid
line -Type B model; Dotted line - Type A model
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Figure 4: Dimensionless temperature vs. Dimensionless time. Input disturbances; Solid line
-Type B model; Dotted line - Type A model
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Figure 5: Steady state output vs. Steady state input. Solid line —-Plant; Dotted line — Model
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Figure 6: Concentration vs. time. Step setpoint change from left of the peak; Solid line
-Type A model; Dotted line — Type B model
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Figure 7: Concentration vs. time. Step setpoint change from right of the peak; Solid line
—Type A model; Dotted line - Type B model
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Figure 8: Concentration vs. time. Setpoint trajectory tracking from right of the peak; Solid
line ~Type A model; Dotted line - Type B model; Dashed line - Setpoint trajectory
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Figure 9: Cooling jacket temperature vs. time. Setpoint trajectory tracking from right of
the peak; Solid line -Type A model; Dotted line - Type B model;
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Figure 10: Concentration vs. time. Input disturbances; Solid line -Type A model; Dotted
line — Type B model;
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Figure 11: Cooling jacket temperature vs. time. Input disturbances; Solid line ~Type A
model; Dotted line — Type B model;
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