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The theme of this thesis is the synchronization of coupled chaotic systems.

Background and introductory material are presented in Chapter 1.

In Chapter 2, we study the transition to coherence of ensembles of globally

coupled chaotic maps allowing for ensembles of non-identical maps and for noise.

The transition coupling strength is determined from a transfer function of the per-

turbation evolution. Analytical results are presented and tested using numerical

experiments. One of our examples suggests that the validity of the perturbation

theory approach can be problematic for an ensemble of noiseless identical ‘nonhy-

perbolic’ maps, but can be restored by noise and/or parameter spread.

The problem of estimating the state of a large evolving spatiotemporally

chaotic system from noisy observations and a model of the system dynamics is

studied in Chapters 3 – 5. This problem, refered to as ‘data assimilation’, can be



thought of as a synchorization problem where one attempts to synchronize the model

state to the system state by using incoming data to correct synchronization error.

In Chapter 3, using a simple data assimilation technique, we show the possible

occurrence of temporally and spatially localized bursts in the estimation error. We

discuss the similarity of these bursts to those occurring at the ‘bubbling transition’

in the synchronization of low dimensional chaotic systems.

In general, the model used for state estimation is imperfect and does not

exactly represent the system dynamics. In Chapter 4 we modify an ensemble Kalman

filter scheme to incorporate the effect of model bias for large chaotic systems based on

augmentation of the system state by the bias estimates, and we consider different

ways of parameterizing the model bias. The experimental results highlight the

critical role played by the selection of a good parameterization model for representing

the form of the possible bias in the model.

In Chapter 5 we further test the method developed in Chapter 4 via numerical

experiments employing previously developed codes for global weather forecasting.

The results suggest that our method can be effective for obtaining improved fore-

casting results when using an ensemble Kalman filter scheme.
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Chapter 1

Introduction

The overall theme of this thesis is synchronization of coupled dynamical sys-

tems, especially where the elements of the systems are chaotic. Four issues that

involve this general theme will be addressed.

(i) Synchronization of a large number of heterogeneous globally coupled chaotic

maps.

(ii) Error bursts in data assimilation for estimating the state of a spatiotemporal

chaotic model.

(iii) The application of state augmentation for correcting model errors in ensemble

Kalman filters for estimating the state of spatiotemporal chaotic systems.

(iv) Application of the results in part (iii) to a real weather forecasting environment.

1.1 Synchronization of a large number of heterogeneous globally cou-

pled chaotic maps

First, we consider systems of large ensembles of globally coupled dynamic

systems [6]. There are abundant examples of synchronous behavior of dynamical

systems observed in nature including the sinoatrial node in hearts [62], networks

of neurons [77, 101, 78, 43, 99], suspensions of yeast cells [22], flashing fireflies

[12, 42, 13], chirping crickets [93, 83], as well as observations in laboratories including

those on arrays of electrochemical oscillators [94, 52], semiconductor laser arrays [53],

and Josephson junction arrays [97]. It is known that these large ensembles of globally

1



coupled dynamic units experience a transition to a coherent state at some critical

coupling strength. In particular, for low coupling the individual units essentially

evolve independently (the “incoherent state”), but, as the coupling passes a critical

value, the average over all units of an appropriate function of the unit state begins to

take on a macroscopic value, signaling the onset of coherent, synchronous behavior

of the system. The transition from incoherence to synchronization with increase

of the coupling has been very extensively studied in the case where the uncoupled

dynamics is periodic.

Recently, attempts to study the transition from incoherence to synchrony in

the case where the individual units are chaotic systems of ordinary differential equa-

tion have been made [75, 79, 69]. Pikovsky et al. [75] numerically show that the

transition to coherent behavior in a system of globally coupled non-identical Rössler

systems is due to the synchronization of phases of the individual units. They con-

centrate on the case that the individual systems have phase-coherent attractors and

think of the transition as the synchronization transition in a system of coupled noisy

limit-cycle oscillators. However, they do not develop a theory for the transition to

synchrony. Sakaguchi [79] analyzes a large ensemble of globally coupled identical

Rössler systems by assuming that, at the onset of coherence, the average motion

of the ensemble is sinusoidal in time. Ott et al. [69] investigated the stability of

the incoherent state for ensembles of globally coupled continuous-time dynamical

systems using a perturbation method and analytic continuation. They numerically

applied their theory to ensembles of globally coupled heterogeneous Lorenz systems

with the parameters uniformly distributed in periodic, chaotic and mixed parameter

regions. Refs. [75, 79, 69] all treated ensembles of noise-free chaotic systems.

Concerning large systems of globally coupled chaotic maps, starting with the

work of Kaneko [50], it has been known that, depending on parameters, these sys-

tems can exhibit either incoherent behavior, or system-wide coherent oscillatory

2



(i.e., synchronized) behavior, and work has been done investigating the nature of

these behaviors [50, 72, 74, 81, 82, 16, 89]. However, only one paper (Topaj et al.

[89]) has so far given an analytical treatment of the transition from incoherence

to coherence for a large globally coupled map system. This paper, however, treats

only the very special case of identical 2x mod 2π maps. In Chapter 2, we establish

a general method to determine the critical coupling strength and the frequency of

oscillation at the onset of coherence for general chaotic maps.

1.2 Error bursts in data assimilation for estimating the state of a

spatiotemporal chaotic model

Next, we consider the problem of estimating the state of an evolving spatiotem-

porally chaotic system from noisy observations of the system state and a model of

the system dynamics [7, 8]. Spatiotemporal chaos refers to systems that exhibit

complex behavior both in time and space. There are many examples of such sys-

tems, including the Earth’s atmosphere [21, 49], laboratory fluids [19, 64], chemical

systems [28], oceans [76], etc. We view this estimation problem as a process in

which one attempts to synchronize the state of the model system to the state of the

observed system.

Estimating the current state of the system is a key first step in both control

and prediction of a system’s behavior: One can predict the future of the system

by running a model of the system with the current estimated system’s state as the

model’s initial condition, or one can attempt to control the system by introducing

active feedback perturbations whose strength and configuration are appropriately

formulated based upon knowledge of the system state. Thus, the performance of the

prediction or the control is heavily dependent on the accuracy of estimates of the

current state of the system. Such estimations are particularly nontrivial for high-
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dimensional spatiotemporal systems, for which the entire state cannot be measured

directly (e.g., in weather forecasting). Data assimilation is the process by which

an estimate of the system is obtained through the observations of the system and a

model for the system [21, 49]. Through data assimilation one endeavors to accurately

synchronize the state of the model system to the state of the observed system.

Typically, the observations have errors and the model is imperfect. As a

result, the model system may not always be in accurate synchrony with the observed

system, and occasionally large discrepancies from the observed system may occur.

In the synchronism of low dimensional chaotic systems, analogous desynchronization

events are known to occur as a result of the so-called ‘bubbling transition’ [4, 102] in

which intermittent bursts of desynchronization are observed. We find that similar

events are possible in high dimensional spatiotemporally chaotic systems, and that

the resulting intermittent bursts are localized in small spatial regions. In Chapter 3,

we show these phenomena through numerical experiments.

1.3 The application of state augmentation for correcting model errors

in ensemble Kalman filters

Considering the problem of estimating the current state of a spatiotemporally

chaotic system, one typically has to use an imperfect model. We refer to model error

as the difference between the dynamics of a real process and the dynamics of the

best available model of that process. Model error is thought to be a key issue in

weather forecasting.

Kalman filters have been considered for estimating atmospheric states to be

used as initial conditions in forecast models [34]. In Kalman filter methodology,

model error has been treated for a general setting [33] and for the weather prediction

[24]. Recently, the ensemble technique has been proposed as a computationally
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feasible means of applying Kalman filtering to the very high dimensional states

inherent in global atmospheric models [30]. One of our goals in this work is to

investigate the incorporation of model error correction in an ensemble Kalman filter.

For this purpose we will restrict our considerations to the example of one particular

ensemble Kalman filter, the Local Ensemble Kalman Filter (LEKF) proposed by

Ott et al. [70].

The technique we propose belongs to the family of schemes usually called state

space augmentation methods. In these techniques the state vector is augmented with

the uncertain model parameters, and the augmented state is estimated using data

assimilation. The augmented state space approach may provide an accurate estimate

of the parameters even for a highly chaotic system, as recently demonstrated on

a simple model by Annan and Hargreaves [3]. A practical approach for weather

prediction, first suggested by Derber [26], is to assume that the errors (bias) can

be approximately represented in the form of a limited number of bulk error terms.

Then, the task is to estimate the parameters of the bulk error terms. We present

the results of the numerical experiments which show that our scheme can estimate

biases in Chapter 4.

1.4 Application of the error correction scheme to a real weather fore-

casting environment

Model error is thought to be a key issue in Numerical Weather Prediction

(NWP) in that the presence of the model error can lead to cause large discrepancies

between the forecasts and the true atmospheric states. The difference between the

model evolution and the true atmospheric evolution stems from such causes as the

forecast model state being a finite dimensional representation of the infinite dimen-

sional atmospheric fields and the governing atmospheric equations and associated

5



parameters not being fully known. Additional sources include orography differences

and other boundary conditions that may not be known exactly.

Using our approach discussed in Sec. 1.3, we investigate the potential benefit

of bias correction for a case in which there are biases in the surface pressure by nu-

merical experiments simulating the situation of the numerical weather prediction.

We apply our model bias correction technique to the data assimilation scheme of

Ott et al. [70] as formulated by Hunt et al. [47] called the Local Ensemble Trans-

form Kalman Filter. It is found that by using the new bias model for the surface

pressure biases, the accuracies of the forecasts of the surface pressure, temperature,

meridional wind and zonal wind are all improved. Detailed results are presents in

Chapter 5.
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Chapter 2

Onset of Synchronization in Systems of Globally Coupled

Chaotic Maps

2.1 Introduction

The onset of synchronization in large ensembles of globally coupled dynamical

units is of interest in many fields [98, 65, 86, 54]. Systems of this type have been

examined in biology, where it is thought that rhythms are essential for maintaining

life. In these biological situations rhythms are typically generated by a large number

of cells or groups of cells, each one of which has a tendency to oscillate when isolated

[35, 36]. For example, heartbeats are stimulated by the sinoatrial (SA) node located

on the right atrium, and the node consists of thousands of coupled pacemaker cells

[35, 36, 62]. Each cell in the SA node has slightly different intrinsic frequency and,

through electrical coupling, achieves a consensus as to when to fire [62]. Similar

mechanisms are observed in networks of neurons [37, 77, 101, 78, 43], coupled neu-

rons in the suprachiasmatic nucleus (the circadian center) [99], and suspensions of

yeast cells [22]. Insects also exhibit synchronized behavior [12, 42, 13, 93, 83]. For

example, it has been observed that a large number of certain types of fireflies flash

on and off in unison. They apparently watch each other and adjust their flashing

according to their neighbors. A small group of fireflies starts to flash synchronously,

and the number of synchronized participants grows so that the whole swarm finally

flashes in unison [12, 42, 13]. Swarms of crickets and grasshoppers also chirp in

unison through a similar process [93, 83]. Nonbiological examples of synchrony in

large systems of globally coupled dynamical units occur in arrays of globally cou-
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pled chaotic electrochemical oscillators [94, 52], semiconductor laser arrays [53], and

Josephson junction arrays [97]. It is known that these systems experience a transi-

tion to a coherent state at some critical coupling strength. In particular, for low cou-

pling the individual units essentially evolve independently (the “incoherent state”),

but, as the coupling passes a critical value, the average over all units of an appropri-

ate function of the unit state begins to take on a macroscopic value, signaling the

onset of coherent, synchronous behavior of the system. The transition from inco-

herence to synchronization with increase of the coupling has been very extensively

studied in the case where the uncoupled dynamics is periodic [98, 65, 86, 54]. In

particular, the well-studied ‘Kuramoto model’ [54] considers many periodic oscilla-

tors whose uncoupled dynamics is described by the simple phase evolution equation,

dθ(i)(t)/dt = ω(i), for the phase θ(i) of oscillator i, which has natural frequency ω(i).

Very recently attempts to study the transition from incoherence to synchrony

in the case where the individual units are chaotic systems of ordinary differential

equation have been made [75, 79, 69]. Pikovsky et al. [75] numerically show that

the transition to coherent behavior in a system of globally coupled non-identical

Rössler systems is due to the synchronization of phases of the individual units. They

concentrate on the case that the individual systems have phase-coherent attractors

and think of the transition as the synchronization transition in a system of coupled

noisy limit-cycle oscillators. However, they do not develop a theory for the transition

to synchrony. Sakaguchi [79] analyzes a large ensemble of globally coupled identical

Rössler systems by assuming that, at the onset of coherence, the average motion

of the ensemble is sinusoidal in time. Ott et al. [69] investigated the stability of

the incoherent state for ensembles of globally coupled continuous-time dynamical

systems using a perturbation method and analytic continuation. They numerically

applied their theory to ensembles of globally coupled heterogeneous Lorenz systems

with the parameters uniformly distributed in periodic, chaotic and mixed parameter
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regions. Refs. [75, 79, 69] all treated ensembles of noise-free chaotic systems.

Concerning large systems of globally coupled chaotic maps, starting with the

work of Kaneko [50], it has been known that, depending on parameters, these sys-

tems can exhibit either incoherent behavior, or coherent oscillatory (i.e. synchro-

nized) behavior, and work has been done investigating the nature of these behaviors

[50, 72, 74, 81, 82, 16]. However, only one paper (Topaj et al. [89]) has so far given

an analytical treatment of the transition from incoherence to coherence for a large

globally coupled map system. This paper, however, treats only the special case of

identical 2x mod 2π maps.

In the present paper, we present a general method to determine the critical

coupling strength and the frequency of oscillation at the onset of coherence in a

system of globally coupled chaotic maps. Our analysis allows for arbitrary map

functions, the inclusion of noise, and the treatment of ensembles that are hetero-

geneous (i.e., it is not required that all maps in the ensemble are the same). Also,

we investigate techniques for numerical application of the analysis. Our analysis

adapts to discrete-time (maps) the perturbation method which Ott et al. [69] ap-

plied to systems of globally coupled continuous-time dynamical systems. The goal

is to relate the evolution of a perturbation of the individual uncoupled elements to

the evolution of a perturbation of the globally coupled system. Thus, we represent

the behavior of coupled systems in terms of the behavior of uncoupled elements.

The system model and the analysis of the system is presented in Section 2.2.

One-dimensional map examples employing and testing the analysis are given in Sec-

tion 2.3. One result of the numerical experiments in Section 2.3.3 is that there is

an apparent failure of the perturbation theory in a case of an ensemble of identi-

cal noiseless nonhyperbolic maps (in particular, the logistic map). However, the

introduction of noise or of parameter spread appears to have a regularizing effect

which seems to restore the validity of the perturbation theory approach. Section 2.4
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gives an example for an ensemble of two dimensional maps. The examples in Sec-

tion 2.3 and 2.4 contain ensembles of shifted Bernoulli maps, ensembles of modified

Bernoulli maps in which a parameter of the map is uniformly distributed throughout

an interval, ensembles of identical logistic maps, ensembles of identical noisy logistic

maps, ensembles of noiseless logistic maps with a uniform distribution of the map

parameter in an interval, and ensembles of cat maps.

2.2 System Model and Analysis

2.2.1 System Model

In this section we study systems of globally coupled, chaotic, one dimensional

maps similar to the system studied in Ref. [89]. (The generalization to higher

dimensional maps is made in Sec. 2.4.) In our theory, we assume that there is a

mixing chaotic attractor so that almost every orbit of the uncoupled system yields

the same long-time statistical behavior. The general form of the system we consider

is

x
(i)
n+1 = f(x(i)

n , µi) + w(i)
n + kg(x(i)

n )(〈q(xn)〉 − 〈q(x)〉∗), i = 1, . . . , N

〈q(xn)〉 =
1

N

N
∑

i=1

q(x(i)
n ). (2.1)

The quantity w
(i)
n in Eqs. (2.1) is a random noise where E[w

(i)
n ] = 0, E[w

(i)
n w

(j)
k ] =

σ2δnkδij , E[ · ] denotes the expectation value, σ2 is the variance of the noise, and

for each n and i the w
(i)
n are identically distributed. Moreover, we assume that xn

and wn are independent. We note that additive noise makes the time averaged orbit

probability distribution function of an uncoupled map smooth so that the distribu-

tion has no singularities [80, 67, 68], and noise may also eliminate small periodic

windows within the chaotic parameter region. The maps f(x, µi) are assumed to
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arise from a one parameter family with parameter µi, and we assume that the µi

are distributed in some specified manner. For example, in our examples (Sec. 2.3)

we will consider the case where the µi are distributed uniformly in an interval, and

also the case of identical maps where all the µi are the same (µi = µ). Also in

Eqs. (2.1), N is the ensemble size, k is the coupling coefficient, and the function

g(x) and q(x) are assumed to be smooth and bounded. The symbol 〈 · 〉 denotes the

average over the ensemble (the average over i) at a fixed time n, and thus depends

on n. The symbol 〈 · 〉∗ denotes the infinite time mean for a typical orbit xn of a

noisy uncoupled map (k = 0 in Eqs. (2.1), giving x
(i)
n+1 = f(x

(i)
n , µi) +w

(i)
n ) averaged

over µi; thus 〈 · 〉∗ is time independent. In the limit N → ∞, a possible solution of

Eqs. (2.1) is 〈q(xn)〉 = 〈q(x)〉∗, in which case the coupling has no effect. We refer to

this solution as the “incoherent state”. For large finite N , it is expected and numer-

ically observed that for parameter values in the predicted N → ∞ incoherent state

〈q(xn)〉 executes small fluctuations of order N−1/2 about 〈q(x)〉∗. As |k| is increased,

the incoherent state becomes unstable, and the mean field an = 〈q(xn)〉 − 〈q(x)〉∗
begins to have a macroscopic [i.e., O(N0) rather than O(N−1/2)] value. This transi-

tion typically occurs at some critical nonzero coupling coefficient kc [69, 89]. In fact

there can be two critical kc values, a positive one, at which coherence arises as k

increases through the critical value, and a negative one at which coherence arises as

k decreases through the critical value. It was shown for globally coupled, noiseless,

continuous-time systems [69] that the transition from the incoherent state to the

coherent state can be analyzed by a perturbation method. Here, we develop this

perturbation method to analyze globally coupled, noisy, discrete-time systems (i.e.,

maps). For convenience we will drop the superscript (i) if there is no confusion for

all following equations.
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2.2.2 Stability Analysis

We carry out the stability analysis for the system in the N → ∞ limit. Thus,

for the purposes of this analysis, given a function h, the symbol 〈h(x)〉 is now

understood to mean

〈h(xn)〉 = lim
N→∞

1

N

N
∑

i=1

h(x(i)
n ).

We note that, while N → ∞ in the analysis, our numerical experiments necessarily

have finite N , and, as we will see in Secs. 2.3 and 2.4, the finiteness of N will have a

profound effect for implementation of our theory in numerical examples, even though

N will be very large in these examples. For compactness of notation, where it is

unlikely to create confusion, we will henceforth drop the subscripts and superscripts

i denoting the individual maps.

To perform the N → ∞ stability analysis, we assume a small perturbation

from the incoherent state and investigate its stability. Let δn be a perturbation to

xn when there is no coupling, and let δxn be the perturbation with coupling,

δn+1 = f ′(xn, µ)δn, δ0 = 1 (2.2)

δxn+1 = f ′(xn, µ)δxn + kg(xn)〈q′(xn)δxn〉. (2.3)

(Note that, while the noise does not appear explicitly in Eqns. (2.2) and (2.3), its

presence is still important since it influences the orbit xn: x
(i)
n+1 = f(x

(i)
n , µi) +w

(i)
n .)

We are interested in how the mean field perturbation 〈q′(xn)δxn〉 develops from an

initial perturbation 〈q′(x0)δx0〉. Setting

δxn = znδn, (2.4)
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in Eq. (2.3), and employing Eq. (2.2), we obtain

zn+1 − zn = k
g(xn)

δn+1
〈q′(xn)δxn〉,

recursive application of which yields

zn+1 = k
n
∑

p=0

g(xp)

δp+1
〈q′(xp)δxp〉 + z0, (2.5)

where z0 = δx0. Using the relation (2.4), we can obtain 〈q′(xn)δxn〉 from Eq. (2.5),

〈q′(xn+1)δxn+1〉 = k

〈

n
∑

p=0

δn+1q
′(xn+1)g(xp)

δp+1
〈q′(xp)δxp〉

〉

+ δx0〈q′(xn+1)δn+1〉.

(2.6)

Now, we assume exponential instability of the incoherent state so that the mean

of the perturbation grows exponentially with n, 〈q′(xn)δxn〉 = λn〈q′(x0)δx0〉 with

|λ| > 1. Then, we can rewrite Eq. (2.6) as

λn+1 = k

〈

n
∑

p=0

δn+1q
′(xn+1)g(xp)

δp+1
λp

〉

+
δx0〈q′(xn+1)δn+1〉

〈q′(x0)δx0〉
.

Letting n → ∞, assuming convergence of the summation, and setting m = n − p,

we have

1 =
k

λ

〈

∞
∑

m=0

Pm

λm

〉

≡ kQ(λ), (2.7)

where

Pm =
δn+1q

′(xn+1)g(xn−m)

δn−m+1
.

The ratio δn+1/δn−m+1 is

δn+1

δn−m+1

= f ′(xn, µ)f ′(xn−1, µ) · · ·f ′(xn−m+1, µ). (2.8)
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For large m, this quantity increases exponentially with m as ξm(x0, µ) where ξ(x0, µ)

is the Lyapunov number of the map f(x, µ) for the initial condition x0. [For almost

all x0, ξ(x0, µ) is the same number (i.e., what is usually referred as “the” Lyapunov

number of the chaotic attractor), but there are special choices of x0 (e.g., x0 on an

unstable periodic orbit) for which ξ(x0, µ) takes on a different value.] For Eq. (2.7)

to have meaning we require that the summation over m converges. This will be so

if

|λ| > ξmax ≡ sup
x0,µ

ξ(x0, µ), (2.9)

where x0 is in the attractor basin and µ is in the range of parameter values used in

the ensemble. If |λ| < ξ(x0, µ), the m-th term in the sum increases exponentially

with m as [ξ(x0, µ)/λ]m, and Eq. (2.7) is meaningless. For the case where λ satis-

fies Eq. (2.9), the exponential convergence of the summation implies that we can

interchange the order of the average and the summation. Thus we obtain

1 =
k

λ

∞
∑

m=0

Qm

λm
≡ kQ(λ), (2.10)

where Qm = 〈Pm〉 or

Qm =

〈

δn+1

δn−m+1
q′(xn+1)g(xn−m)

〉

. (2.11)

Because we are dealing with chaotic situations (i.e., Lyapunov number greater

than one), Eq. (2.9) implies that Q(λ), given by Eq. (2.10), can, so far, only be used

for λ sufficiently larger than one. We now argue that Eq. (2.10) can be expected

to apply for |λ| < 1. This is crucial, since it is required in order to use the theory

for studying the onset of coherence. We heuristically argue in Appendix A that the

quantity Qm can be expected to decrease exponentially with m for typical chaotic

maps (a similar argument is presented in Ref. [69] for the case of continuous time

14



systems). Assuming this to be the case, we have

|Qm| < Kξ−m
∗
, (2.12)

where K and ξ∗ are positive constants and ξ∗ < 1. Thus the sum in Eq. (2.10)

now converges for all |λ| > ξ∗. Hence, while Eq. (2.10) was derived for |λ| > ξmax,

Eq. (2.12) implies that we can analytically continue Q(λ) from the region |λ| > ξmax

to the region ξmax ≥ |λ| > ξ∗ < 1.

At the transition of the incoherent state to the coherent state (i.e., at k = kc)

the system is marginally stable so that |λ| = 1 or λ = eiω with ω real. Thus,

kcQ(eiω) = 1. Taking the imaginary part of this equation, we obtain an equation

for the frequency of oscillation ω at the transition

Im{Q(eiω)} = 0. (2.13)

After solving this equation for ω, we obtain the critical coupling strength,

kc = Q(eiω)−1. (2.14)

In addition, expanding Eq. (2.10) about k = kc and λ = eiω, we obtain the following

result for λ near the transition

λ = eiω +
kc − k

k2
cQ

′(eiω)
+ O{(kc − k)2},

where Q′(λ) = dQ(λ)/dλ.
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2.3 Examples: One-Dimensional Maps

2.3.1 An Ensemble of Shifted Bernoulli Maps

Our first example is an ensemble of Bernoulli maps,

f(x(i)
n , µi) = (2x(i)

n + µi) mod 2π, i = 1, . . . , N

g(x) = sin 2x+ sin 4x, (2.15)

q(x) = cos x,

where µi is a shift which is in general different for each map i. Because of the simplic-

ity of this example, Q(λ) can be obtained analytically. After plugging Eqs. (2.15)

into Eq. (2.11), and taking the noise w to be symmetrically distributed around

w = 0, we obtain

Qn(λ) = −1

λ

n
∑

p=0

〈sin xn+1(sin 2xp + sin 4xp)〉
(

2

λ

)n−p

= − 1

2λ

(

〈coswn〉〈cosµ〉 +
2

λ
〈cos 2wn−1〉〈coswn−2〉〈cos 3µ〉

)

.

The second equality results from noting that, since xp mod 2π has a uniform density

in (0, 2π), all terms in the summation are zero except for p = n and p = n− 1. In

the above, if the ensemble of shift parameters {µi} is generated from a probability

density ρ(µ), then

〈cosMµ〉 ≡
∫

ρ(µ) cos (Mµ)dµ.

Taking the noise w to be normally distributed, we obtain

Q(eiω) = −1

2

(

e−σ2/2

eiω
〈cosµ〉 +

2e−5σ2/2

e2iω
〈cos 3µ〉

)

. (2.16)
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Figure 2.1: Results for an ensemble of N = 105 Bernoulli maps with and without
noise: (a) shows 〈a2〉 versus k. The time average 〈a2〉 is computed using 1000
iterations. The power spectral densities of an at the positive critical values are
shown in (b) for the cases without noise (k = k

(0)
c1 , solid graph) and with noise

(k = kc1, dash-dot graph). The predicted values of critical coupling strengths and
frequencies of oscillation agree with the experimental results.

For simplicity, in what follows we take ρ(µ) = δ(µ), so that 〈cosµ〉 = 〈cos 3 u〉 = 1,

which with Eq. (2.13) and Eq. (2.14), yields critical values

kc1 = e5σ2/2, ωc1 = arccos(−e2σ
2

4
),

kc2 = −2(e−σ2/2 + 2e−5σ2/2)−1, ωc2 = 0.
(2.17)

For σ = 0, Eqs. (2.17) agree with the result of Ref. [89].

We present results of numerical experiments in Figure 2.1 for the case that

the system has no noise and the case that the system has normally distributed

noise with σ2 = 0.16. Without noise (i.e., σ2 = 0), Eqs. (2.17) yield k
(0)
c1 = 1

at ω
(0)
c1 = arccos(−1

4
) ≈ 0.58π and k

(0)
c2 = −2/3 at ω

(0)
c2 = 0. With σ2 = 0.16,

Eqs. (2.17) yield the critical values kc1 ≈ 1.49 at ωc1 ≈ 0.61π and kc2 ≈ −0.88 at

ωc2 = 0. In Figure 2.1(a), 〈a2〉 is the time average of the square of the mean field

an = 〈q(xn)〉 − 〈q(x)〉∗ and this average is computed over 1000 iterations in time.

We see that the mean field starts to have macroscopic values near the predicted

critical values of the coupling strengths (the vertical dashed lines). Also, the power

17



1.2 1.4 1.6 1.8 2

0
0
.0

0
5

0
.0

1
0
.0

1
5

0
.0

2
0
.0

2
5

k

root = 1.49

(a)

a
2

〈 
  

  
〉

−0.1 −0.05 0 0.05 0.1

−0.1

−0.05

0

0.05

0.1

a

a
n
+
1

(b)
n

Figure 2.2: Linear scale plot of 〈a2〉 and orbits of an for an ensemble of 105 noisy
Bernoulli maps: (a) shows 〈a2〉 versus k (dots) and a quadratic curve fit (solid line) to
the data in the range 1.5 ≤ k ≤ 1.8. (b) shows orbits of an for k = 1.53 > kc1 ≈ 1.49
(points in halo about origin) and k = 1.45 < kc1 (points clustered near origin). 〈a2〉
approaches zero linearly and the orbits encircle the origin consistent with a Hopf
bifurcation.

spectral density of the sequence of an, Figure 2.1(b), shows that the frequencies of

oscillation at k = k
(0)
c1 and k = kc1 coincide with the predicted values ω

(0)
c1 and ωc1

for each case. Here, and in the following examples, the power spectral densities are

estimated using Welch’s method [85].

In Figure 2.2(a), we replot 〈a2〉 versus k for the above described ensemble of

noisy Bernoulli maps using a linear scale (dots). Also, a quadratic curve fit to the

numerical data in the range 1.5 ≤ k ≤ 1.8 is shown as a solid line in the same figure.

We see that the fitted line agrees well with the experimental results for k ≤ 1.8.

Consistent with the expectation that the transition is a Hopf bifurcation (since the

frequency of oscillation at transition (Figure 2.1) is nonzero), 〈a2〉 approaches zero

linearly with (k− kc1). (Close examination of the numerical results in Figure 2.2(a)

very near kc shows a slight rounding of the, otherwise sharp, transition due to finite

N .) Figure 2.2(b) shows an+1 versus an for two values of k, one slightly past kc1

(coherent) and one slightly before kc1 (incoherent). For k = 1.45 < kc1 = 1.49, we

see that the orbit points appear as a cloud centered at the origin as expected for the
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Figure 2.3: Results for ensembles of N = 104, 105, 106, 107 Bernoulli maps: (a) shows
〈a2〉 versus k. (b) shows 〈a2〉 versus N . Within the incoherent state 〈a2〉 varies as
N−1.

incoherent state. For k = 1.53 > kc1, the orbit points appear as a loop encircling the

origin. As expected, at each step n points in the ring, on average, advance in angle

by almost ωc1 radians. (A plot similar to that in Figure 2.2(b) appears in Ref. [89]

for the noiseless case, σ = 0.)

Figure 2.3 demonstrates the effect of varying the ensemble size N . Fig-

ure 2.3(a) shows results for our coupled noiseless Bernoulli map example for N =

104, 105, 106, and 107. We note that these graphs differ appreciably only in the range

k
(0)
c2 < k < k

(0)
c1 corresponding to the incoherent state. Figure 2.3(b) shows the values

of 〈a2〉 averaged over the range, (k
(0)
c2 + 0.2) ≤ k ≤ (k

(0)
c1 − 0.2), that is within the

incoherent region (we denote this average 〈a2〉), versus N on a log-log plot. Also

shown in Figure 2.3(b) is a straight line of slope −1. We see that, similar to what is

expected for a sum of random variables, a scaling of 〈a2〉 as N−1 is consistent with

the data. The behavior seen in Figure 2.3 is also seen for all our other examples

(except for that in Sec. 2.3.3). Regarding Figure 2.1(b), we also note that, as the

ensemble size is increased, the spectral power not at ωc decreases, and the spec-

tral peak at ωc becomes sharper, consistent with the spectrum approaching a delta

function at ω = ωc as N → ∞.
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Remark : In the supercritical Hopf bifurcation of a discrete time system, the

resulting stable orbit lies on a closed curve bifurcating off the basic periodic orbit

that was stable before the bifurcation (in our case, the incoherent state, which has

period one). On this curve, the orbit can be either periodic (consisting of a finite

number of discrete points) or quasiperiodic (filling out the curve, as in Figure 2.2(b)).

Generically, ωc/2π will be irrational, and, for most (in the Lebesgue sense) (k− kc)

values near zero, the orbit will be quasiperiodic, although there is an open dense set

of values of (k − kc) for which there is an attracting periodic orbit. We note that,

in our case, due to finite N , the bifurcation is noisy, and this can wash out small

windows of periodic behavior.

2.3.2 A Heterogeneous Ensemble of Modified Bernoulli Maps

The preceding example, coupled Bernoulli maps, is useful because it allows an

analytic solution for Q(λ) (preceding section and Ref. [89]). In more typical cases,

analytical solution for Q(λ) is not possible, and numerical techniques for calculating

Q(λ) must be formulated. Furthermore, the maps in the ensemble may not all be

identical. In order to illustrate these points, our second example is an ensemble

of noiseless modified Bernoulli maps depending upon a map parameter µ that is

uniformly distributed in the interval (1, 2),

fi(x) = 2x mod 2π + µi sin x, µi ∼ U(1, 2), i = 1, . . . , N

g(x) = sin 4x, q(x) = cosx,

where U(1, 2) is the uniform distribution over the interval (1, 2).

Since we do not have a closed form expression for the natural invariant density

in this case, we evaluate Q(eiω) numerically in the following way. First, we produce

N = 106 points, x0, uniformly distributed in the interval (0, 2π) with a random num-
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ber generator, and we also produce the same number of randomly chosen parameters

uniformly distributed in the interval (1, 2). Then we evolve the uncoupled (k = 0)

system forward in time for 3000 steps saving the values of x(i) for the last 31 iter-

ations. Using these values we construct histogram approximation to the invariant

density using bins of width 2π×10−3 in x. We let x3000 be xn+1 in Eq. (2.11). Using

the saved data, we obtain δ
(i)
n+1/δ

(i)
n−m+1 (from Eq. (2.8)) and g(x

(i)
n−m), and employ

Eq. (2.11) to obtain an approximation to Qm for m = 0, . . . , 30. Note that, in the

incoherent state, x(i) for the system (2.1) has an invariant density resulting from the

uncoupled individual maps. Thus, if the ensemble has an infinite number of maps

(N → ∞), and each orbit in the ensemble is given an initial perturbation δx0 (as in

our analysis in Sec. 2.2), then the uncoupled ensemble will eventually settle down

to the invariant density after a sufficiently large number of iterations. It is, there-

fore, expected that for N → ∞ the mean field perturbation 〈q′(xn)δxn〉 converges

to zero as n increases. Hence Qm converges to zero with increasing m in the large

ensemble limit N → ∞. However, due to the finite ensemble size (N = 106), our

computation of Qm does not converge to zero. What happens is that as m increases

Qm eventually becomes small; say it assumes a small value at m = mc. However, as

m becomes larger, our computed approximations to Qm become inaccurate. Since

δ
(i)
n+1/δ

(i)
n−m+1 on average increases exponentially with m (chaos), the individual terms

in the average (2.11) becomes larger and larger as m increases. On the other hand,

for N → ∞, the average decreases with m. Thus as m increases cancellation be-

tween terms in the average must become more and more precise. Hence to obtain

good statistics for Qm demands exponentially larger and larger ensemble size N as

m increases. Thus for any finite N we expect our numerical computation of Qm to

breakdown as m increases.

We plot six numerical approximations to Qm with different randomly chosen

initial conditions in Figure 2.4(a). We see that our approximations to Qm become
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Figure 2.4: Q(eiω) for an ensemble of N = 106 modified Bernoulli maps with uni-
formly distributed parameters: (a) shows six numerical approximations to Qm. The
six approximations are near zero at m = 4, 5, but then diverge from each other
due to the combined effect of chaotic dynamics and finite ensemble size. (b) shows
Q(eiω) evaluated by averaging the six results from (a) for m = 0 − 4 and taking
Qm = 0 for m ≥ 5. The imaginary part of Q(eiω) has four zero-crossing points and
we label three of them and corresponding real parts of these three points. The real
parts corresponding to ωc11 and ωc12 are close to each other.

small at around m = 4 or 5, but increase after that and clearly become unequal.

To obtain Q(eiω), we set Qm to be zero for m ≥ 5 and take the average over our

six approximations. The real and imaginary parts of the resulting approximation to

Q(eiω) are shown in Figure 2.4(b). (When the imaginary part of Q(eiω) crosses zero,

the real part has a maximum or minimum near these crossing points.) The greatest

positive Q(eiω) at a crossing point and the smallest negative Q(eiω) at a crossing

point are the reciprocals of the positive and negative critical coupling strengths

respectively. In this example, the imaginary part of Q(eiω) crosses zero four times

in the plotted range. We label three of these zeros ωc2, ωc11 and ωc12. The positive

values of Q(eiω) at ωc11 ≈ 0.37π and ωc12 ≈ π are close to each other, although

the value at ωc12 is larger. From the real part of Q(eiω), we obtain critical coupling

strengths, kc2 ≈ −1.24 and kc12 ≈ 2.48 corresponding to ωc2 and ωc12.

Results from coupled ensembles of 105 and 106 noiseless modified Bernoulli

maps are shown in Figure 2.5(a) along with the critical values (vertical dashed
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Figure 2.5: Results for ensembles of N = 105, 106 modified Bernoulli maps with
uniformly distributed parameters: (a) shows 〈a2〉 versus k, (b) is the power spectral
density of an at k = 2.48 ≈ kc1.

lines) which we obtained from our numerical approximation to Q(eiω). We see that

kc12 and kc2 closely agree with the experimental results. Figure 2.5(b) shows the

power spectral density of an for k = kc12 = 2.48; we note that peaks are present

both at ωc11 (vertical dashed line) and at ωc12, and that the peak at ωc11 is, in fact,

larger, even though kc12 is less than 1/Q(eiωc11).

2.3.3 An Ensemble of Logistic Maps

Our third example is a noiseless ensemble of logistic maps with g(x) = 1 and

q(x) = x,

x
(i)
n+1 = f(x

(i)
n ) + k(〈xn〉 − 〈x〉∗), i = 1, . . . , N,

f(x
(i)
n ) = µx

(i)
n (1 − x

(i)
n ),

(2.18)

where all maps have identical parameters (µi = µ = 3.9, i = 1, . . . , N). In this

case, we were not able to obtain useful results by use of Eq. (2.10). We include

this example mainly to illustrate that numerical implementation of Eq. (2.10) can

sometimes be problematic, and to speculate on why that might be the case.

In this example, we again do not have a closed form expression for the invariant

density of an uncoupled map. Hence, we attempted to evaluate Qm numerically
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Figure 2.6: Qm for an ensemble of N = 109 logistic maps with parameter µ = 3.9:
(a) shows Qm up to m = 17 and (b) shows Qm plotted up to m = 35. We see
that our approximations do not converge to small values before diverging from each
other.

using Eqs. (2.8) and (2.11) which in this case is simply

Qm =

〈

δn+1

δn−m+1

〉

. (2.19)

In Figure 2.6, using N = 109, we plot five approximations to Qm up to m = 35

obtained using different random initial conditions (as in Sec. 2.3.2). We see that the

five approximations stay close to each other up to m = 28 without converging to

zero. Past m = 28, they diverge from each other. Our numerical approximations to

Qm do not converge to zero before diverging from each other, and we thus cannot

predict the critical coupling strength from the theory. Since it is impractical for us

to increase N further we cannot proceed further. Indeed, since Figure 2.6 indicates

growing oscillations of Qm with increasing m, it is questionable that increase of N

would solve the problem.

Note that the logistic map has dense periodic windows in the chaotic parameter

range and that the natural invariant density ρ(x) of the logistic map for typical

chaotic parameter values has a dense countable set of x-values at which ρ(x) is

infinite [66]. We speculate that this could be the root of our problem in applying
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Figure 2.7: 〈a2〉 versus k for ensembles of logistic maps: Data for ensembles of sizes
N = 104, 105, 106 are shown in (a). We plot 〈a2〉 for ensembles of N = 105, 106, 107

logistic maps versus k in a narrower range of k in (b). We see that the N dependence
is confined to a very small region near k = 0 and that, as N increases, the confined
region becomes narrower.

Eq. (2.10) (see the Appendix B). In particular, both of these features call the

application of the perturbation theory used in Sec. 2.2 into question.

In addition, we find that the behavior found for this example is qualitatively

different from the behavior found for the examples in Secs. 2.3.1 and 2.3.2. In

particular, Figure 2.7 shows 〈a2〉 versus k for N = 104, 105, 106, and 107. We see

that, unlike Figure 2.3(a), the N dependence is confined to a very small region near

k = 0, and this confinement becomes narrower as N increases. Thus, if there are

critical values kc1 > 0 and kc2 < 0, bounding an incoherent state in kc2 < k < kc1,

these values have very small magnitude. Another possibility (which we suspect

might be the case) is that there may be no incoherent state, except at k = 0, and

that, as soon as k is nonzero, coherent behavior arises discontinuously. Such a

situation would be outside the scope of our perturbation theory.
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Figure 2.8: Q(eiω) for an ensemble of N = 106 noisy logistic maps with parameter
µ = 3.9 and normally distributed noise: (a) shows three numerical approximations
to Qm. The three approximations are near zero at m = 8, 9, but then diverge from
each other. (b) shows Q(eiω) evaluated from (a) assuming that Qm = 0 after m = 8.

2.3.4 An Ensemble of Logistic Maps with Noise

In our forth example, we consider the case studied in the previous section, but

with noise added. As mentioned in Sec. 2.2, adding noise makes the orbit density

smooth and may eliminate small periodic windows [80, 67, 68]. Hence, we can

expect that the confinement of N dependence of 〈a2〉 shown in Figure 2.7 will be

widen and we confirmed this dependence by numerical experiments. Also, we find

that the noise promotes convergence of Qm, and that application of Eq. (2.10) now

yields accurate and useful results. We consider Eqs. (2.1) with f(x) = 3.9x(1 − x),

g(x) = 1, q(x) = x, and w
(i)
n normally distributed with variance σ2 = 10−4 (see

Sec. 2.2). Note that x
(i)
n+1 in Eqs. (2.1) could fall outside the basin of attraction of

the map (0 < x < 1) because of the noise w
(i)
n+1 (the coupling term is on the order of

10−4 near the incoherent state with N = 105 noisy logistic maps). To prevent any

variable from escaping the basin, we replace x
(i)
n+1 by x

(i)
n+1 mod 1, if it falls outside

the basin.

Again we do not have a closed form expression for the orbit density, and hence

we rely on a numerical approximation toQm to obtainQ(eiω). Three approximations
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to Qm for different random number seeds are shown in Figure 2.8(a). These three

plots show good agreement with each other up to m = 9, where they assume small

values. Q(eiω) derived from one of these approximations with Qm set to zero for

m ≥ 9 is shown in Figure 2.8(b). Using the data in Figure 2.8(b), we predict that

the critical values of the coupling coefficient will be kc1 ≈ 0.29 and kc2 ≈ −0.39,

and that the corresponding frequencies of oscillation at the onset of coherence will

be ωc1 ≈ 0.34π and ωc2 ≈ 0.64π.

In Figure 2.9(a) we plot the time average of the square of the mean field an for

ensembles of 104 and 105 noisy logistic maps, 〈a2〉, and the predicted values of the

critical coupling strengths (vertical dashed lines), kc1 and kc2. We replot 〈a2〉 using

a linear scale in Figure 2.9(b) (dots). Also shown in Figure 2.9(b) as a solid line is a

quadratic curve fit to the numerical data in the range 0.29 ≤ k ≤ 0.44 which agrees

well with the experimental results for k ≤ 0.51. Extrapolating the fitted quadratic

curve to 〈a2〉 = 0, we obtain an accurate estimate of the critical value of the coupling

strength, k ≈ 0.29, confirming the theoretical prediction. From Figure 2.9(b) we see

that 〈a2〉 approaches zero linearly with (k − kc1) consistent with a Hopf bifurcation

(ωc1 6= 0).

The frequency of oscillation at k = kc1 obtained from Q(eiω) is shown in

Figure 2.10(a) as a vertical dashed line, along with the power spectral density of an.

The dominant frequency of the spectrum agrees with the frequency predicted by our

analysis. Figure 2.10(b) shows an+1 versus an for two values of k, one just past kc1

(coherent) and one just before kc1 (incoherent). For k = 0.28 < kc1 = 0.29, we see

that the orbit points appear as a cloud centered at the origin. For k = 0.30 > kc1,

the orbit points appear as a loop encircling the origin (at the frequency ωc1).
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Figure 2.9: Experimental results for an ensemble of N = 104, 105 noisy logistic maps
with parameter µ = 3.9 and normally distributed noise: (a) shows a semilogarithmic
plot of 〈a2〉 versus k, and (b) shows 〈a2〉 (dots) and a quadratic curve fit to the
numerical data in the range 0.29 ≤ k ≤ 0.44 (solid line) for N = 105.

2.3.5 A Heterogeneous Ensemble of Logistic Maps

In our fifth example, as in Sec. 2.3.3, we again consider a noiseless ensemble of

logistic maps (2.18), but now with the map parameter, µ, uniformly distributed in

the interval (3.88, 3.96). We find that the introduction of parameter spread appears

to have a regularizing effect and, for this noiseless case, we now obtain results in

agreement with our perturbation theory. A similar regularizing effect has been

observed by Shibata and Kaneko [81].

Figure 2.11(a) shows six approximations to Qm for different random number

seeds. They agree well with each other up to m = 12, where they assume small

values. Q(eiω) shown in Figure 2.11(b) is derived from one of these approximations

with Qm set to zero for m ≥ 12. From Figure 2.11(b) we predict that the critical

coupling strengths will be kc1 ≈ 0.24 and kc2 ≈ −0.13, and that the corresponding

frequencies of oscillation at the onset of coherence will be ωc1 ≈ 0.37π and ωc2 ≈

0.60π.

In Figure 2.12(a) we plot the time average of the square of the mean field

for noiseless ensembles of 104, 105, and 106 logistic maps with the parameter, µ,
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Figure 2.10: Power spectral density and orbits of an for N = 104: The frequency
of oscillation and the power spectral density of an at k = kc1 are plotted in (a).
(b) shows orbits of an for k = 0.30 > kc1 ≈ 0.29 (points in halo about origin) and
k = 0.28 < kc1 (points clustered near origin).

uniformly distributed in the interval (3.88, 3.96). The power spectral density of an

at k ≈ kc1 is shown in Figure 2.12(b). We see that the predicted values agree

well with the numerical experiments. Note that the peak around ω = 0.74π is also

expected from the data in Figure 2.11(b). The real part of Q(eiω) at ω ≈ 0.74π,

where the imaginary part crosses zero, has a value comparable with that at k = kc1.

2.4 Examples: Two-Dimensional Maps

2.4.1 Multidimensional Extension of the Theory

In this section we examine globally coupled multi-dimensional systems for

which, analogous to the system (2.1), the considered system is

x
(i)
n+1 = f(x(i)

n ) + w(i)
n + G(xn)K(〈q(xn)〉 − 〈q(x)〉∗), i = 1, . . . , N,

where xn = [x1,n x2,n . . . xr,n]T, r is the dimension of a map, K is the coupling

matrix, G(xn) is a matrix function, and q(xn) is a vector function of xn. Here, w
(i)
n
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Figure 2.11: Q(eiω) for a noiseless ensemble of N = 109 logistic maps with param-
eter µ uniformly distributed in the interval (3.88, 3.96): (a) shows three numerical
approximations to Qm. The three approximations are near zero at m = 12, but
then diverge from each other. (b) shows Q(eiω) evaluated from (a) assuming that
Qm = 0 after m = 12.

is random noise where E[w
(i)
n ] = 0, E[w

(i)
n w

(j)
k

T
] = Σδijδnk, Σ is the covariance

matrix, and we assume that the noise at each iterate is identically distributed and

that xn and wn are independent.

Let Df(x) = ∂f(x)/∂x and

M(n, p) =











Df(xn−1)Df(xn−2) · · ·Df(xp), n ≥ p+ 1

I, n = p

where I is the identity matrix. Then proceeding as in Sec. 2.2, we assume that

the mean of the perturbation δx grows exponentially with n, 〈Dq(xn)δxn〉 = vλn,

where v = 〈Dq(x0)δx0〉. Letting n→ ∞, assuming convergence of the summation,

and setting m = n− p, we obtain

(I − Q(λ)K)v = 0.
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Figure 2.12: Experimental results for a noiseless ensemble of N = 104, 105, 106

logistic maps with parameter µ uniformly distributed in the interval (3.88, 3.96): (a)
shows 〈a2〉 versus k, and (b) shows the power spectral density of an at k = 0.24 ≈ kc1

for N = 106.

where

Q(λ) =
∞
∑

m=1

Qm/λ
m,

Qm = 〈Dq(xn)M(n, n−m+ 1)G(xn−m)〉,
(2.20)

which yields

det(I − Q(λ)K) = 0. (2.21)

By setting λ = eiω in Eq. (2.21), we can determine the critical coupling strength

and the frequency of oscillation (see Sec. 2.2).
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2.4.2 An Ensemble of Cat Maps

We now illustrate Eq. (2.21) by application to an ensemble of globally coupled

two dimensional maps. In particular, we take f(x) to be the cat map,

f(x) =







x+ y

x+ 2y






mod 2π, q(x) =







cos x

0






,

G(x) =







sin(2x+ 3y) 0

0 0






, K =







k 0

0 0






,

(2.22)

where xn = [xn yn]T. For the noise, we choose

E[w(i)
n ] = 0, E[w(i)

n w
(j)
k

T
] =







σ2 0

0 σ2






δijδnk,

where w
(i)
n = [w

(i)
x,n w

(i)
y,n]T. We denote the element at the k-th row and the l-th

column of a matrix A by [A]kl. Then, after plugging Eqs. (2.22) into Eqs. (2.20), we

obtain

[Qn(λ)]11 = −
n−1
∑

p=0

〈sin xn sin(2xp + 3yp)〉
[M(n, p+ 1)]11

λn−p

= − 1

2λ2
〈cos(wx,n + wx,n−1 + wy,n−1)〉.

The second equality results from noting that, since the measure generated by orbits

of the uncoupled noisy cat maps is uniform in 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π, all terms

in the summation are zero except for p = n − 2. For normally distributed noise,

[Qn(λ)]11 = −(2λ2)−1 exp(−3σ2/2). From the condition (2.21), we obtain

1

k
= −e

−3σ2/2

2e2iω
,
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Figure 2.13: Experimental results for an ensemble of N = 105 cat maps with and
without noise: (a) shows k versus 〈a2〉 for the cases with noise and without noise.
(b) show the power spectral densities of an at the positive critical values for the

cases without noise (k = k
(0)
c1 , solid graph) and with noise (k = kc1, dash-dot graph).

which yields the critical values kc1 = 2e3σ2/2 at ωc1 = π/2 and kc2 = −2e3σ2/2 at

ωc2 = 0.

Figure 2.13 shows results of numerical experiments for this system without

noise and with noise (σ2 = 0.16). Without noise, the critical values are k
(0)
c1 = 2 at

ω
(0)
c1 = π/2 and k

(0)
c2 = −2 at ω

(0)
c2 = 0. With noise, the critical values are kc1 ≈ 2.54 at

ωc2 = π/2 and kc2 ≈ −2.54 at ωc2 = 0. In Figure 2.13(a), we see that the transition

occurs near the predicted critical values for each case. Also, Figure 2.13(b) shows

that the predicted frequencies of oscillation at k = k
(0)
c1 and k = kc1 (which is π/2

in both cases) match the peaks of the power spectral densities of an for each k.

2.5 Conclusion

A large class of globally coupled systems of chaotic maps experience a transi-

tion from incoherence to coherence at critical values of a coupling coefficient. We

have shown that these critical values can be determined from a perturbation method,

and we apply our method to ensembles of homogeneous chaotic maps, ensembles of

chaotic maps with distributed parameters, and ensembles of chaotic maps with noise.
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We have shown that numerical approximations to Q(eiω) can be sufficiently accurate

to yield good predictions for the transition, provided that a large enough number of

elements is used in obtaining the approximations.

In our numerical experiments we obtained good agreement with our theory

for ensembles of a large number of noisy Bernoulli maps, for a noiseless system of

modified Bernoulli maps with distributed parameters, for noisy logistic maps, and

for a noisy system of cat maps (a two dimensional example). However, we did

not obtain useful results from our analysis when we attempted to apply it to an

ensemble of identical noise-free logistic maps. We speculate that this may be due

to the facts that the natural invariant density ρ(x) of the logistic map, in common

with other generic nonhyperbolic maps, has a dense countable set of x-values at

which ρ(x) is infinite and that the map is structurally unstable (it has a dense

set of periodic windows in its chaotic parameter range). Structural instability, for

example, implies that a small perturbation can result in totally different dynamics,

and hence application of a perturbation method may be questionable. On the other

hand, we have found that either noise or parameter spread appears to restore the

validity of the perturbation theory approach. It would be worthwhile to further

investigate noiseless ensembles of smooth maps that have a dense set of periodic

windows.
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Chapter 3

Localized Error Bursts in Estimating the State of

Spatiotemporal Chaos

3.1 Introduction

Spatiotemporal chaos refers to systems that exhibit complex behavior both in

time and space. There are many examples of such systems, including the Earth’s

atmosphere [21, 49], laboratory fluids [19, 64], chemical systems [28], oceans [76],

etc. A common problem for systems of this type is that of estimating its current

state. For example, the problem of weather forecasting consists in first estimating

the current state of the atmosphere, and then producing a forecast by integration

of an atmospheric model using the estimated current state as the initial conditions

[21, 49]. In addition to forecasting, state estimation is also a key step if one wanted

to control a spatiotemporally chaotic system: based on the current state estimate,

active perturbations to the system would be intelligently applied so as to promote

meeting desired goals for the future evolution of the system.

Even though the system is chaotic, if we had perfect knowledge of the current

state and the dynamics of a system, in principle (i.e. with an infinite computer), we

would be able to predict the future of the system for all time. In practice, however,

observations of the system have errors and the model for the system is imperfect.

The standard procedure in such circumstances is to maintain a good estimate of

the system state by running the system model and periodically applying corrections

to the model state based on observations. This process is called data assimilation

[21, 49]. Its purpose is essentially that of accurately synchronizing the state of the
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model system to the state of the observed system. Thus this problem might be

thought of as being related to recent work on the synchronism of low dimensional

chaotic dynamical systems1 [84, 66, 73], although with the obvious difference that

we are here dealing with a high dimensional spatiotemporally chaotic system. In

the case of synchronization of low dimensional chaotic dynamical systems, it was

found that there exists a threshold in parameter space past which a desynchronizing

transition, called the bubbling transition, takes place [4, 5, 91, 92, 102]. One of the

characteristic possible manifestations of the bubbling transition is the presence of

intermittent bursts of desynchronization. In particular, slightly above the bubbling

transition there are relatively short, irregularly occurring, epochs of large desyn-

chronization, between which the systems are well synchronized. As the bubbling

transition is approached from above, these desynchronization bursts become rarer,

essentially disappearing below the transition [91, 92, 102].

The main finding of the present paper is that for data assimilation in spa-

tiotemporally chaotic systems, a phenomenon similar to bubbling is possible. In

particular, we perform numerical data assimilation experiments on a simple spa-

tiotemporally chaotic model, and we observe bursts in the error of the state estimate

(essentially desynchronization bursts). As compared to the previously mentioned

work, the novel feature of these bursts is that they are spatially localized. Further-

more, in the case of a homogeneous observing network (see Section 3.3.1) the bursts

are intermittent in both space and time. That is, individual burst events occur in a

random-like manner in small localized spatial regions and time intervals. In what

follows we will describe and characterize these space/time error bursts.

In Section 3.2, we briefly describe the Lorenz-96 model [56] used in our numer-

ical experiments, as well as the data assimilation scheme that we use to estimate

the system state. Also, we outline how we conduct our numerical experiments. Our

1For example, So et al. [84] treat the problem of determining the state of a chaotic system by
making use of the phenomenon of synchronization of chaotic process.
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numerical results are presented and discussed in Section 3.3. Conclusions are given

in Section 3.4.

3.2 Experimental Design

In this paper we consider an illustrative case of spatio-temporal chaos origi-

nally proposed by Lorenz [56] as a simplified testing ground for data assimilation

techniques for atmospheric dynamics. The model has features similar to many

other spatio-temporally chaotic systems, including local interactions, propagating

nonlinear wave-like disturbances, high fractal dimension of the attractor, and many

positive Lyapunov exponents. As such, we expect that our general findings for

the behavior of data assimilation applied to this model will be similar to those of

many other systems in nature (e.g., oceans, planetary cores, stellar atmospheres,

etc.) and in the laboratory (e.g., experiments on large aspect ratio Rayleigh-Benard

convection [M. Schatz, private communication]).

The Lorenz-96 model [56] is anN -dimensional spatiotemporally chaotic system

defined by the system of differential equation

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + F, i = 1, . . . , N, (3.1)

where x−1 = xN−1, x0 = xN , xN+1 = x1 and F is a constant. The variables of this

model can be thought of as values of a space and time dependent scalar variable

at discrete locations around a circle (Fig. 3.1). Furthermore, interactions between

the variables are allowed only at close locations. In our numerical experiments, we

choose N = 40 and F = 8, for which the leading Lyapunov exponent corresponds

to a doubling time of 0.42 dimensionless time unit and the fractal dimension of the

attractor is 27.1 [56].

We generate a time series of true system state by integrating (3.1) with a
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Figure 3.1: Illustration of the Lorenz-96 model.

fourth order Runge-Kutta scheme with time step ts = 0.05 dimensionless time unit.

To refer to the true state, we introduce the vector xt = [xt
1 x

t
2 . . . x

t
N ]T (component

xt
i is the true state at location i). The initial state xt(0) is taken as the combination

of the steady state solution, xt
i = F at each location i, and a small perturbation

(∼ 10−3) at a randomly selected location. For this initial condition, the behavior

of the system appears to reach a statistically steady chaotic state after a short

transient time, t0. We define xt(n) by evaluating the true state n time steps after

the transition ended, i.e., xt(n) ≡ xt(t0 + nts), where n is a positive integer.

We assume that the true state is observed at P of the N locations (P ≤ N). A

vector of simulated noisy observations y = [y1, y2, · · · , yP ]T is generated by adding

random noise to the true state at the observational locations, i.e.,

y = Hxt + v, (3.2)

where v = [v1, v2, . . . , vP ]T is a prescribed observation error and H is a P × N

matrix such that

Hij =











1, if observation i is taken at location j,

0, otherwise.

Our simple scheme for state estimation assumes that the observational errors are nor-

mally distributed with zero mean and error covariance matrix R = E[vvT] = σ2
vIP ,
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where E[·] denotes the expectation and IP is the P×P unity matrix. This particular

choice of R is equivalent to assuming that the observational error variance is σ2
v at

all locations and the observational errors at the different locations are uncorrelated.

The observational noise we generate, however, is uniformly distributed in the inter-

val (−
√

3σv,
√

3σv). The discrepancy between the assumed and true observational

error statistics mimics common practice. For example, estimation schemes used in

atmospheric science [21, 49] typically assume a normal error distribution for the sake

of mathematical convenience, although this formulation allows for the occurrence of

large errors on some rare occasion. Real observational error, on the other hand, are

typically bounded.

By using the numerical solution of equation (3.1) to simulate the system dy-

namics, we assume that we have perfect knowledge of the behavior of the system.

Our goal is to use this model and the noisy observations to obtain an estimate of

the true state. This estimate, called the analysis and denoted by xa(n), is chosen

as the state x that minimizes the quadratic cost function [1]

J(x) = (x − xb)T(Pb)−1(x − xb) + (y − Hx)TR−1(y − Hx). (3.3)

Here xb(n) is a short term forecast (called the background) obtained by integrating

the model from the preceding analysis xa(n − 1). Pb is the assumed covariance

matrix of the background error, i.e., Pb is an estimate of E[eb(eb)T], where eb =

xb−xt. We note that xa(n) is a maximum likelihood estimate of the true state if the

observational and background errors are normally distributed, have zero means, and

R and Pb are known [1]. Our choice for R and its relation to the “true” observational

error statistics have already been explained. After a short detour, in which we

describe how the state estimate is updated, we will return to explain the algorithm

to obtain Pb.
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The minimizer of J(x) (Eq. (3.3)) is [1]

xa = xb + K(y − Hxb), (3.4)

where

K = ((Pb)−1 + HTR−1H)−1HTR−1, (3.5)

is the gain matrix, representing the gain in the knowledge of the state after com-

paring the observations to the background (our best estimate of the state prior to

collecting the observations). Based on numerical experiments, we choose the tran-

sient time t0 to be 5,000 time steps. Once t0 is passed, observation of the true state

and data assimilation are performed once every 10 time steps.

Now we explain our iterative process (also described in Ref. [70]) to obtain

Pb. The algorithm starts with a reasonable, but more or less ad hoc estimate of

Pb. Then a time series of the “true” background error vectors eb(n) = xt(n) −

xb(n), n = 1, 2, . . . ,M , is generated and the updated Pb is chosen to be (M −

1)−1
∑M

n=1 eb(n)(eb(n))T. In the next iteration step, this updated Pb is used in

(3.4) and (3.5) to generate new samples of the “true” background errors. This step

is repeated until the distance between consecutive estimates of Pb becomes small,

where we measure distance by the Frobenius matrix norm, i.e., the square root of

the sum of the squares of all the matrix elements. (For a detailed description of

the resulting Pb see Appendix C.) We emphasize that our estimate of Pb is not

necessarily optimal in the sense of providing the smallest possible analysis error

among all matrices, but it has the desirable feature that the true and assumed

covariances are consistent 2.

2We note that the P
b we use is time independent, and thus, the resulting analysis may not

be as good as could be obtained by use of a Kalman filter type procedure. However, it should
be remarked that, due to its computational speed, a constant P

b is used in important practical
situations (e.g., weather forecasting). This is not a significant issue for our present paper, in that,
the phenomenon we study, error bursting, is conjectured by us to occur independent of details in
how P

b determined. See also Sec. 3.4
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The assimilations are done once every ten steps at times n = 10m. The

analysis error for the m-th assimilation is defined as

ea(m) = xa(m) − xt(m). (3.6)

We use the root-mean-square (rms)

〈ea(m)〉 =

√

√

√

√

1

N

N
∑

k=1

(ea
k(m))2 (3.7)

of ea to assess the quality of the state estimate at a given time. Moreover, we are

using the time mean of the rms error,

〈〈ea〉〉 =
1

T

T
∑

m=1

〈ea(m)〉, T ≫ 1, (3.8)

to measure the overall performance of the estimation scheme.

3.3 Numerical Experiments

3.3.1 Experiment 1

In the first numerical experiment, we observe all model variables; i.e., P =

N = 40 and H is the N ×N identity matrix, IN . The chaotic behavior of the model

for our chosen parameters is illustrated by showing the evolution of the true state for

a randomly selected short time interval in Fig. 3.2. We see that the spatiotemporal

patterns are wave-like, but the amplitude and the period are not regular in time or

space.

In Fig. 3.3, for the case σv = 10−4, we plot the rms analysis error (3.7) along

with the time mean rms error (3.8) for the period 1 ≤ m ≤ 105. We can see that the

rms error at a given time is typically similar to the time mean error, but there are a
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Figure 3.2: Time evolution of the “true state” for a randomly selected short time
interval.

few occasions on which the error far exceeds its time mean. We call these occasion

bursts. More precisely, we define bursts by choosing a threshold, 2〈〈ea〉〉, i.e., a burst

occurs at time m if 〈ea(m)〉 ≥ 2〈〈ea〉〉. For this threshold, a burst occurs once in

4300 assimilation steps on average. Also, it is important to note that bursts do not

exist longer than one or two assimilation steps.

In what follows, we further investigate the spatial distribution of the analy-

sis errors during burst events. In Fig. 3.4, we plot the spatial distribution of the

background (forecast) error, eb = xb − xt and the analysis error ea = xa − xt for

the burst that occurred at an arbitrarily chosen time, m = 82585. We see that the

large analysis errors are confined to a narrow region of locations. Another important

feature is the strong similarity between the distribution of the analysis errors and

background errors. This indicates that the large localized analysis errors are due to

large localized background errors at the same locations. Bursts at other times we

examined were qualitatively similar.

To quantify the spatial extent of localization in the error patterns, we define
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Figure 3.4: Spatial distribution of the background error (a) and the analysis error
(b) at a given time during a burst event. Note that the difference between the scales
of the y-axes.
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a ratio,

ρ(w,m) = max
j

∑j+w−1
k=j (ea

k(m))2

∑N
k=1(e

a
k(m))2

. (3.9)

This ratio tells us the largest portion of the total rms error that is confined to a

local window of length w at a given time. We are primarily interested in the average

of ρ(w,m) over given sets (S) of the time indices,

〈ρ(w, S)〉 =
1

|S|
∑

m∈S

ρ(w,m), (3.10)

where |S| is the size of S. We evaluate the average (3.10) over all burst events, i.e.,

S1 = {m : 〈ea(m)〉 ≥ 2〈〈ea〉〉}, and also over a randomly selected set of times, S2,

at which bursts are not observed, i.e., S2 = {m : m /∈ S1 and |S2| = |S1|}.

In Fig. 3.5, we plot the average ratio, 〈ρ(w, S1)〉 with |S1| = 3077 (solid line),

and 〈ρ(w, S2)〉 with |S2| = 3077 (dashed line). The largest difference between the

ratios 〈ρ(w, S1)〉 and 〈ρ(w, S2)〉 is at window size w = 7 (gray vertical line in Fig. 3.5)

indicating that bursts are typically confined to a window of size 7.

In Fig. 3.6, we plot the number of bursts with window size 7 at each location.

That is, we evaluate ρ(w,m) in Eq. (3.9) for w = 7 and m ∈ S1, and we record

the j which yields ρ(7, m). We find that the |S1| = 3077 bursts are fairly evenly
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Figure 3.6: The spatial distribution of the burst events.

distributed over all locations. This result is not unexpected since neither the model

dynamics, nor the observational errors change with location.

A similar kind of bursting phenomenon, known as a bubbling transition, was

observed in two coupled chaotic oscillators [4, 5, 91, 92, 102]. For a certain cou-

pling strength, in the absence of noise, the system of two identical coupled chaotic

oscillators has a stable manifold on which the two oscillators are synchronized. Ad-

ditionally, the manifold may possess transversely unstable invariant sets. In the

presence of parameter mismatch or noise, the synchronized trajectories are near to,

but not exactly on, the stable manifold. When the trajectories come close to the

unstable invariant sets, they are repelled in the transverse direction (the two os-

cillators are desynchronized), and, if there are no other attractors, the trajectories

subsequently return to being close to the stable manifold. These desynchronized

bursts occur as a system parameter passes the bubbling transition [102]. In our

case, a one way coupling is established once every 10 time steps through the assim-

ilation process. In other words, the data assimilation attempts to synchronize the

model system to the true system based on the observations. However, due to the

noise in the observations, the two systems cannot be exactly synchronized, hence

bursts may occur. We note that bursts are not seen when the observational noise
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variance σ2
v is reduced and that bursts become more frequent with increasing σ2

v .

Although we have not attempted an analysis of our high dimensional system estab-

lishing the burst mechanism in terms of unstable invariant sets (as previously done

for low dimensional systems [91, 92, 102]), the similarity of the burst phenomenon

we observe to that for low dimensional synchronized chaotic systems leads us to

conjecture that the mechanisms involved might be also similar.

3.3.2 Experiment 2

Our second numerical experiment is identical to the first one except that ob-

servations are never taken at a fixed location (location 20). This seemingly slight

change leads to important changes in the spatial distribution of the analysis error.

To better understand these changes, we recall that the analysis at the j-th location

is obtained by

xa
j = xb

j +

P
∑

k=1

Kjk[yk − (Hxb)k]. (3.11)

The (j, k) element of K, Kjk, controls how an observation taken at location k affects

the state estimate at location j. [(Hxb)k is the k-th element of the vector Hxb.] Since

R is always diagonal in our experiments, and Pb is near diagonal when observations

are taken at each location, K is also near diagonal. Thus the state estimate at a

given location is to a rough approximation a linear combination of the background

and the observation at that same location. The situation is substantially different at

a location, where observations are not taken. This is illustrated by Fig. 3.7, in which

two rows of K are plotted; one of them (K19,k) is associated with a typical location

(location 19), while the other one (K20,k) is associated with the missing observation.

At location 20, the elements of the gain matrix K are smaller, indicating smaller

corrections in the state estimate at that location based on the observed information.

Also, the corrections are influenced by a number of observations at nearby locations.
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iment 2.
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Figure 3.8: Time evolution of the rms analysis error. Also shown is the time mean
analysis error (white dashed line), 〈〈ea〉〉 = 0.0103.

The rms error for 1 ≤ m ≤ 105 is plotted in Fig. 3.8. By comparing Figs. 3.3

and 3.8, we can see that bursts now occur much more frequently than in the case in

which all locations are observed. The time mean rms error is now 〈〈ea〉〉 ≈ 0.0103

which is one order of magnitude higher than in the previous experiment (we increase

the threshold value (2〈〈ea〉〉) accordingly). The average frequency of bursts is about

one per 1069 assimilation steps.

The large analysis errors during burst events are localized, but as an important
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new feature, they are almost always confined to the location where observations are

not taken (Figs. 3.9 and 3.10(a)). The portion of bursts occurring at location other

than 20 is less than 1% (the vertical scale in Fig. 3.9(a) goes up to 250,000 while

that in Fig. 3.9(b) goes up to 40). Fig. 3.10(a) suggests that bursts occur due to

insufficient correction of the state estimate at location 20. This is in contrast to

the behavior of bursts, in which the background and analysis errors have the same

spatial distribution. Another interesting feature, seen in Fig. 3.9, is the very efficient

reduction of background errors by the data assimilation step between locations 21

and 26. This is due to the specific structure of Pb, that correctly expects an elevated

error level in this region, thus forcing the analysis to give larger weights to the

observations (see Appendix).
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Figure 3.9: The spatial distribution of the burst events. (b) has a different vertical
scale from (a) in order to see the burst events at other locations.

Fig. 3.11 indicates that there is also an important change in the spatial extent

of the burst. The largest difference between 〈ρ(w, S1)〉 and 〈ρ(w, S2)〉 is at window

size w = 1, which is very different from w = 7 observed in Experiment 1.

Finally, we note that we also conducted experiment in which observations were

not taken at two far apart locations. The results were very similar to those shown

in Experiment 2, except that the bursts were approximately equally distributed
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Figure 3.10: Spatial distribution of the background error (a) and the analysis error
(b) at a given time during a burst event.
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between the two locations. However, when two neighboring locations were not

observed, our iterative procedure for the estimation of Pb failed. We decided not to

pursue this experiment.

3.4 Conclusion and Discussion

In this paper, we have demonstrated that large, temporally intermittent and

spatially localized error bursts can occur in data assimilation estimates of the state

of a spatiotemporally chaotic system. We considered two scenarios; in one of them,

the system was fully observed, while in the other, one of the model variables was

never observed. Error bursts occurred in both cases, though some characteristics of

the burst events were distinctly different in the two experiments. When all variables

were observed, bursts occurred with equal likelihood at the different locations, and

they were typically confined to a 7-location wide local region. On the other hand,

when a selected variable was never observed, the burst events were almost always

confined to the unobserved location and were much more localized.

In our estimation scheme Pb is constant, which is the formulation most op-

erational weather prediction center (e.g., the National Weather Services) has im-

plemented. There exists a more advanced family of schemes, the Kalman filters, in

which Pb is dynamically evolved (e.g., Ref [71] and references therein). It was shown

[70] that bursts can occur even in a Kalman filter scheme and that the occurrence

of bursts can be prevented by inflating (artificially increasing) the background error

covariance Pb. Inflating Pb can be viewed as increasing the coupling between the

observed and model systems at estimation time (see Eqs. (3.4) and (3.5)). In this

sense, the bursting observed in this paper is similar to the phenomenon of bubbling

transition in the synchronization of two low dimensional chaotic systems: a weaker

coupling parameter leads to intermittent bursts of desynchronization.

In general, the error burst phenomenon we find is undesirable in practice. For
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example, this phenomenon may explain some of the occasional large errors known

to occur in operational numerical weather prediction systems (e.g., see Fig. 5.6.1

in Ref [49]). Thus, when designing data assimilation systems, the avoidance of

rare large error may be an essential goal in addition to the more obvious goal of

maintaining a low time averaged error.
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Chapter 4

Local Ensemble Kalman Filtering in the Presence of Model Bias

4.1 Introduction

In many situations the dynamics of a real process may differ from those of

the best available model of that process. We refer to this difference as model error.

Model error is thought to be a key issue in weather forecasting in that the pres-

ence of model error can lead to large descrepancies between the forecasts and the

true atmospheric states. In this connection, we note (i) that Kalman filters have

been considered for estimating atmospheric states to be used as initial conditions

in forecast models [34], and, (ii) that the general Kalman filter methodology has

long been adapted to account for model error [33]. Recently, the ensemble tech-

nique has been proposed as a computationally feasible means of applying Kalman

filtering to the very high dimensional states inherent in global atmospheric mod-

els [31, 45, 44, 2, 11, 40, 95, 70]. One of our goals in this paper is to investigate

the incorporation of model error correction in an ensemble Kalman filter. Here,

we consider only the case where the evolution of the model error is governed by a

deterministic equation, i.e., the model error has no random component. We refer to

this type of error as model bias, since when the state of the model is described by a

probabilistic variable, as is the case in data assimilation, such errors become equal

to the expected error in the model forecast.

We will restrict our considerations to the example of one particular ensemble

Kalman filter, the Local Ensemble Kalman Filter (LEKF) proposed by Ott et al.

[70]. (This scheme has been successfully tested on a reduced resolution version of

the operational Global Forecast System (GFS) of the National Centers for Envi-
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ronmental Prediction (NCEP) for the perfect forecast model scenario [87].) We

believe that our results in the present paper, using the LEKF example, may also

be more generally applicable, providing an indication of what to expect if model

bias correction is attempted using other related ensemble Kalman filter methods.

In addition, some of our ideas may also be useful in designing weakly constrained

4DVAR schemes [e.g., 26, 103], which also allow for model errors.

The technique we propose belongs to the family of schemes usually called state

space augmentation methods [18]. In these techniques the state vector is augmented

with the uncertain model parameters, and the augmented state is estimated using

the forecast model in conjunction with observations. In principle, the uncertain

parameters can occur in otherwise completely known forecast model equations. In

such a case, the augmented state space approach may provide an accurate estimate

of the parameters even for a highly chaotic system, as recently demonstrated on

a simple model by Annan and Hargreaves [3]. In reality, the equations governing

the motion of the atmospheric flow are not known exactly, thus uncertainties also

arise due to our limited knowledge of the dynamics. Also, estimating all parameters

of the forecast model equations would not be computationally feasible due to the

large number of the parameters. A practical approach, first suggested by Derber

[26], is to assume that the uncertainties in the forecast model can be approximately

represented in the form of a limited number of bulk error terms. Then the task is

to estimate the parameters of the bulk error terms. We recall that since the error

terms are modeled as random vectors, the parameters to be estimated are the mean

errors (model biases).

The information encapsulated in the bias can be used either to modify the

forecast model equations or to modify the analysis scheme. Here we follow the

second approach. That is, we treat the forecast model as a “black box”, that does

not yield the true time evolution of the atmosphere, and we attempt to use this
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black box in conjunction with observations to account for model bias in the state

estimation.

The two key components of the aforementioned strategy are the selection of

a bias model that efficiently represents the bias and the design of a computational

strategy that can efficiently estimate the parameters of the bias model. The most

common assumption is that the bias is constant or has a simple evolution in time. It

is also frequently assumed that the uncertainties in the forecast model state and the

bias are uncorrelated. These assumptions were used to derive the bias estimation

schemes of Dee and Da Silva [24], Dee and Todling [25], Carton et al. [15], Martin

et al. [61], and Bell et al. [10].

The scheme we propose allows for correlations between the uncertainties of

the forecast model state and the bias. This additional flexibility is necessitated by

the structure of our technique (see Section 4.2.4), and is affordable due to the high

computational efficiency of the LEKF approach. In Section 4.2, we introduce three

different bias models. Bias Model I is a simple additive correction to the model

forecast. Bias Model II is motivated by envisioning a situation in which the forecast

model evolution takes place on an attractor that is shifted from the attractor for the

true system evolution. Bias Model III is essentially a combination of Bias Models I

and II. Section 4.3 presents the results of numerical experiments with the Lorenz-

96 model [e.g., 56] for several cases of the difference between the forecast model

evolution and the evolution of the true state. Conclusions and discussion follow in

Section 4.4.

A main result is the importance of selecting a bias model that effectively

parameterizes the form of possible bias in the forecast model. In particular, if the

bias model can parameterize the possible bias of the forecast model, then our results

suggest that substantial improvement in forecasts may result. On the other hand, if

the parameterization of the model bias through the bias model does not sufficiently
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capture the form of the true biases in the forecast model, then substantial forecast

improvements were not obtained in our numerical experiments.

4.2 Bias Modeling and Data Assimilation

The discrepancy between the forecast model evolution and the evolution of the

real atmosphere has two sources: (i) due to numerical solution on a grid of a finite

number of points, the forecast model state is a finite dimensional representation

of the infinite dimensional atmospheric fields, and (ii) the equations that govern

the true evolution of the atmosphere are not known exactly. These two sources of

forecast model errors are not independent, since the errors in the forecast model

formulation are mainly associated with the inherent problems of considering only

a limited number of interactions between the finite number of components of the

state vector and the imperfect representation of the effects of the subgrid processes

on the motions at the resolved scales.

Denoting the true atmospheric state at tn by xt
n, the true atmospheric evolu-

tion is denoted

xt
n+1 = Ft(xt

n), (4.1)

where Ft is the (unknown) true atmospheric evolution operator and xt
n+1 is the true

atmospheric state at time tn+1 = tn +∆t. Denoting the forecast model state at time

tn by xm
n , the black-box produces a forecast model state at time tn+1,

xm
n+1 = Fm(xm

n ), (4.2)

where Fm is the forecast model evolution operator that mimics Ft. Note that the

dimensions of xt and xm are, in general, different; for example, in the case of real

weather forecasting the true state is infinite dimensional and the forecast model state

is finite dimensional. In what follows we will treat a scenario in which xm and xt
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have the same (finite) dimensionality, and we henceforth assume this circumstance.

With respect to the situation of atmospheric weather forecasting, this assumption

restricts the character of the errors and their means (biases) that can be addressed

by our bias models. In particular, we regard our treatment to follow as addressing

only those types of forecast model biases that can be represented as dynamics in the

state space of the forecast model variables. Thus, we ignore dynamics that occur

at smaller scales than the forecast model resolves. On the other hand, if we think

of the dynamics at the unresolved scales as random perturbations to the forecast

model dynamics, our methods may be able to correct for the mean bias due to such

perturbations. Meanwhile, the uncertainty in the small-scale fluctuations is modeled

as representativeness error in the observation error statistics.

In this section we define three ways of modeling the bias that can arise due

to forecast model error. We refer to these as Bias Model I, Bias Model II, and Bias

Model III.

4.2.1 Bias Model I

In general, it is desired to have the forecast model state as close to the true

state as possible so that, assuming that the forecast model and the true evolution

operators are the same, the forecast model state stays near the true state after its

evolution. In practice, however, the forecast model evolution operator differs from

the true evolution operator. As a result, even if we evolve the forecast model state

from an initial condition corresponding to the true state at the initial time (e.g.,

xm
n−1 = xt

n−1), it is likely that the forecast model state departs from the true state

as it evolves. In Bias Model I, we attempt to estimate

bt
n = Ft(xt

n−1) − Fm(xt
n−1), (4.3)
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Figure 4.1: Illustration of Bias Model I: xt
n is the true state evolving according to Ft

from the previous true state, and xm
n is the forecast model state evolving according

to Fm from the previous true state.

i.e., the departure of the forecast model state from the true state as illustrated in

Fig. 4.1.

In order to estimate bt
n, we must use some model of how it is related to past

values of the bias bt
i (i < n). For example, we can assume that the bias is constant in

time. If so, the true system evolution can be written in terms of the model evolution

as follows:

xt
n = Fm(xt

n−1) + bt
n, (4.4)

bt
n = bt

n−1. (4.5)

Though we could write this system more concisely as xt
n = Fm(xt

n−1) + b, where b

is an unknown parameter vector, we write the system in terms of the augmented

state vector (xt
n,b

t
n) in order to facilitate the iterative estimation of both xt

n and bt
n

by our data assimilation procedure. More generally, we can replace eq. (4.5) with

another model for the bias of the form,

bt
n = Gb(bt

n−1,x
t
n−1), (4.6)

where Gb is the evolution operator for the bias correction term. Another alternative

is to assume that the model error evolution is a Markov process. In that case bt
n is
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Figure 4.2: Illustration of data assimilation with Bias Model I: Data assimilation
produces an unbiased analysis for the true state, xa

n, and an analysis for the bias
correction term, ba

n.

represented as bt
n−1 multiplied by a matrix that describes the temporal covariance

between the model errors at different spatial location, and the right-hand side of

eq. (4.6) also includes an additive random term [e.g., 48, 20, 103].

Then given an estimate (xa
n−1,b

a
n−1) of the augmented state vector at time

tn−1 (the “analysis” from the previous data assimilation), we take the forecast (or

“background”) of this vector (xb
n,b

b
n) at time tn to be

xb
n = Fm(xa

n−1) + bb
n, (4.7)

bb
n = Gb(ba

n−1,x
a
n−1), (4.8)

where we have assumed bias evolution by eq. (4.6). We then perform data assimila-

tion using (xb
n,b

b
n), and the observations at time tn to obtain the analysis (xa

n,b
a
n).

This way of taking forecast model error into account is illustrated in Fig. 4.2,

and is the general scheme used in several previous methods appearing in the litera-

ture [e.g., 24, 25, 15, 61, 10]. The vector yn in Fig 4.2 is the observation of the true

state at time tn, which we assume to obey a model equation of the form,

yn = H(xt
n) + ǫn, (4.9)

where H is the observation operator mapping the true states to the observations.

and ǫn is the observational noise.
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Basically, in Bias Model I it is supposed that the best forecast is produced

when the input to the forecast model evolution is as close to the truth as possible.

One can imagine problems with this. For example, say that atmospheric balance for

the forecast model is not the same as that for the true atmosphere. Then, if a very

good estimate of the true state at time tn is inserted into the forecast model, the

forecast model state at time tn could often be out of balance, and spurious gravity

wave activity might be excited. In the practice of numerical weather prediction, such

spurious gravity wave activity is prevented by a filtering process, called initialization,

applied to the fields provided by the data assimilation process [e.g., 59, 9, 58, 57].

The general wisdom is that a well designed Kalman filter might eliminate the need

for initialization process. This consideration motivates Bias Model II.

4.2.2 Bias Model II

A consequence of the imperfect model is that the forecast model system has a

different attractor from the true system. In some cases, it might be desirable to let

the forecast model state follow its own attractor, since plugging a very good approx-

imation of the true state into the forecast model system can result in completely

different dynamics (like gravity wave excitation). In addition, one can envision a

situation in which forecast model dynamics and true dynamics become more sim-

ilar through an (a priori unknown) coordinate transformation. For instance, such

transformations were rigorously derived to correct for truncation errors in numer-

ical solution of the two-dimensional Navier-Stokes equations [60]. Having found a

similar transformation for the weather prediction model, we may obtain a better

estimate of the true trajectory by applying this transformation to an appropriate

forecast model trajectory after it has been computed than by forcing the forecast

model state to be close to the truth and then computing its trajectory. For simplic-

ity, we assume the transformation is just a shift of the forecast model state to the
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Figure 4.3: Illustration of Bias Model II: xt
n and xm

n evolve according to their own
dynamics but the behavior of the forecast model is similar to the behavior of the
truth.

true state, and we define the bias ct
n at time tn by

ct
n = Ft(xt

n−1) − Fm(xm
n−1)

= Ft(xt
n−1) − Fm(xt

n−1 − ct
n−1).

(4.10)

A schematic illustration of this bias model is shown in Fig. 4.3. The forecast model

state is not pushed to the true state. Instead, it mimics the true dynamics in a

shifted location of the state space.

Unlike the bias in Bias Model I, the bias in Bias Model II at time tn depends not

only on Ft, Fm, and xt
n−1, but also on the previous bias ct

n−1. Nonetheless, we may

assume that for some choice of ct
n−1, the correction term ct

n approximately obeys a

simplified evolution model such as ct
n = ct

n−1, or more generally ct
n = G̃c(ct

n−1,x
t
n−1).

In terms of this model, we approximate the true system evolution by the augmented

model system,

xt
n = Fm(xt

n−1 − ct
n−1) + ct

n, (4.11)

ct
n = G̃c(ct

n−1,x
t
n−1). (4.12)

For this bias model (and for Bias Model III to follow), our goal is not that

the analysis state vector xa
n closely approximates the true state xt

n, but rather that
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it approximates the best forecast model state xm
n = xt

n − ct
n from which to make

future forecasts. Thus, we rewrite eqs. (4.11) and (4.12) as

xm
n = Fm(xm

n−1), (4.13)

ct
n = Gc(ct

n−1,x
m
n−1), (4.14)

where G(c,x) = G̃c(c,x + c). We can then write the background augmented state

vector (xb
n, c

b
n) in terms of the previous analysis (xa

n−1, c
a
n−1) as follows:

xb
n = Fm(xa

n−1), (4.15)

cb
n = Gc(ca

n−1,x
a
n−1), (4.16)

In taking this approach, one must keep in mind that the bias should be added

to the forecast model state vector whenever making comparisons to observations.

Thus instead of eq. (4.9), we use the observation model,

yn = H(xm
n + ct

n) + ǫn (4.17)

when performing data assimilation. The analysis (xa
n, c

a
n) represents an approxima-

tion to the augmented state vector (xm
n , c

t
n), and thus forecasts made using xa

n as

the initial condition should also be corrected by the approximated bias in order to

better predict the true system. Data assimilation with Bias Model II is illustrated

in Fig. 4.4.

To the best of our knowledge, Bias Model II is a novel approach to the effects

of model errors on the accuracy of the state estimates. Hansen [41] also argued for

the model attractor, but he suggested the use of a multimodel approach as opposed

to the state augmentation we propose.
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Figure 4.4: Illustration of data assimilation with Bias Model II: Data assimilation
produces an analysis of the best forecast model state, xm

n = xt
n−ct

n, and an analysis
for the correction term, ct

n.

4.2.3 Bias Model III

In Bias Model III, we combine Bias Model I and Bias Model II. Formally,

we combine the equations describing the previous two bias models in the following

manner. We evolve the analysis augmented state vector (xa
n−1,b

a
n−1, c

a
n−1) to the

background at the next step using the model

xb
n = Fm(xa

n−1) + bb
n (4.18)

bb
n = Gb(xa

n−1,b
a
n−1, c

a
n−1) (4.19)

cb
n = Gc(xa

n−1,b
a
n−1, c

a
n−1), (4.20)

and we compare the background state with observations according to eq. (4.17).

Since xb
n and cb

n represent the best available approximations to xm
n and ct

n prior to

the data assimilation at time tn, the observation increment we use is

yn − H(xb
n + cb

n). (4.21)

Notice that if Gb(x,b, c) = 0, then this model reduces to Bias Model II, while

if Gc(x,b, c) = 0, this model reduces to Bias Model I. In its simplest form, our model

uses Gb(x,b, c) = b and Gc(x,b, c) = c. However, we find a slightly different bias

evolution function to be advantageous in some situations (see Sec. 4.3.6).
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4.2.4 Augmented Local Ensemble Kalman Filter

For the purposes of all subsequent discussion we henceforth take the system

state at time tn to be a scalar variable xn,i defined on a discrete one dimensional

spatial domain, i = 1, 2, · · · , N . Thus we represent the system state as a vector

xn = [xn,1, xn,2, · · · , xn,N ]T, where the superscript T denotes the transpose.

Once a suitable model for the bias is chosen, it can be incorporated into the

formulation of the Kalman filter. For example, in the case of Bias Model III, the

new equations can be obtained by replacing the state xn, by the augmented state,

vn = [xn,bn, cn]
T, in the Kalman filter equations. Here, the correction terms,

bn = [bn,1, bn,2, · · · , bn,N ]T, and cn = [cn,1, cn,2, · · · , cn,N ]T, have the same dimension,

N , which is typically equal to the number of grid point variables in a numerical

weather prediction model. By inserting the augmented state into the Kalman filter

equations, we assume that ψ(vb
n), the background probability distribution of the

augmented state, is Gaussian; that is,

ψ(vb
n) ∼ exp

[

−1

2
(vb

n − v̄b
n)T(Pb

v
)−1(vb

n − v̄b
n)

]

, (4.22)

where v̄b
n is the background mean of the augmented state, and P

b
v

is the background

error covariance matrix for the augmented state.

The main computational challenge in designing an augmented Kalman filter

is to find a computationally efficient approach to estimate P
b
v
, whose dimension in-

creases by N when a new parameter is added to the state. One frequently applied

approach to reduce the computational burden associated with the estimation of P
b
v

is to assume that many entries of the matrix are zero, e.g., by assuming that the

(non-augmented) state and the bias parameters are uncorrelated. We propose a

different approach, which involves estimating the background mean and the back-

ground error covariance matrix by an ensemble, and solving the ensemble Kalman
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Figure 4.5: Illustration of a local state centered about location m.

filter equations locally in grid space applying the Local Ensemble Kalman Filter

[70] to the augmented state. The LEKF scheme estimates ‘local states’ as illus-

trated in Fig. 4.5. In particular, considering the LEKF procedure without model

bias correction [i.e., as in 70], for each point m on the spatial grid, we consider a

neighborhood consisting of the 2l + 1 points centered at m; these points have loca-

tions m− l, m− l + 1, · · · , m, · · · , m+ l− 1, m+ l (e.g., l = 3 in Fig. 4.5). At

time t = tn, the LEKF does data assimilation on local regions centered at each grid

point using the local state,
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. (4.23)

The global analysis state (i.e., the analysis state at t = tn at each grid point over

the entire grid) is then taken to be the state at the center of each local region (see

Ott et al. [70] for further discussion).

In order to adapt the LEKF to correct for model bias, we augment each local

state to include the bias estimate of the bias model employed. For example, for Bias

Model III, we form an augmented local state, vn(m) = [xn(m),bn(m), cn(m)]T,

for the data assimilation at location m. Similarly, for Bias Model I, vn(m) =
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[xn(m),bn(m)]T, and, for Bias Model II, vn(m) = [xn(m), cn(m)]T. Since the aug-

mented local state is derived from the global state vn, it can be also assumed to

have a Gaussian distribution,

ψm

(

vb
n(m)

)

∼ exp

{

−1

2

[

vb
n(m) − v̄b

n(m)
]T

× [

P
b
n(m)

]−1 [
vb

n(m) − v̄b
n(m)

]

}

,

(4.24)

where v̄b
n(m) is the background mean of the augmented local state, and P

b
n(m) is

the background error covariance matrix for the augmented local state. In this way,

the dimension of the space for data assimilation is reduced to 2(2l + 1) for Bias

Model I or II and to 3(2l + 1) for Bias Model III. An important property of this

scheme is that it allows for (and also requires) the estimation of cross-correlations

between uncertainties in the state estimates and uncertainties in the estimation of

the model bias terms.

4.3 Numerical Experiments

4.3.1 Experimental Setup

For testing our assimilation scheme, we consider the Lorenz-96 model [56]

which is defined by the system of differential equations,

dxi

dt
= (xi+1 − xi−2)xi−1 − xi + Θ, i = 1, . . . , N, (4.25)

where x−1 = xN−1, x0 = xN , xN+1 = x1 and Θ is a constant. The variables form

a cyclic chain and may be thought of as roughly analogous to the values of some

unspecified scalar meteorological quantity at N equally spaced sites along a latitude
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circle. For compactness of notation, we will also represent eq. (4.25) as

dx

dt
= L(x), (4.26)

where x = [x1, x2, · · · , xN ]T. We solve eq. (4.25) with a fourth-order Runge-Kutta

method using a time step of 0.05 dimensionless units for which the system is com-

putationally stable. Lorenz and Emanuel [56] consider this time step as roughly

corresponding to 6 hours of real atmospheric evolution. With Θ = 8.0 and N = 40,

Lorenz and Emanuel demonstrate that the system (4.25) results in a westward (i.e.,

in the direction of low index of locations) progression of individual maxima and

minima and an eastward progression of the center of activity with a dominant

wavenumber of 8. In addition, they also find that the system is chaotic with 13

positive Lyapunov exponents and a Lyapunov dimension of 27.1. Throughout our

numerical experiments we use Θ = 8.0 and N = 40.

In what follows we will assume that our forecast model dynamics is given by

eq. (4.25) but that the true dynamics of the system whose state we are concerned

with obeys dynamics that may differ from those of our forecast model. We will

consider situations in which the true dynamics differ from the forecast model in

three ways, which we refer to as Type A truth bias, Type B truth bias, and Type

C truth bias. The dynamical behaviors of the true system in these three cases are

as follows:

dx

dt
= L(x) + β (Type A), (4.27)

dx

dt
= L(x + ζ) (Type B), (4.28)

dx

dt
= L(x + ζ) + β (Type C), (4.29)

where β = [β1, β2, · · · , βN ]T and ζ = [ζ1, ζ2, · · · , ζN ]T. When the true dynamics is
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described by the same equation [eq. (4.25)] as the forecast model, we say that the

forecast model is ‘perfect’. Note that Bias Model I would be a natural choice if

it were known that the deviation of the true dynamics from the model dynamics

(4.26) was such that the true dynamics belonged to a family of systems of the form

given by (4.27) (Type A truth bias). Similar statements apply with regard to the

relation between Bias Model II and Type B truth bias and between Bias Model III

and Type C truth bias.

With small values of β and ζ, we conjecture that the systems (4.27)–(4.29)

exhibit behaviors similar to those of system (4.25). In our numerical experiments,

the elements of β and ζ vary in space (i) and have the forms

βi = A sin

(

2π
i− 1

N

)

, (4.30)

ζi = B sin

(

2π
i− 1

N

)

, i = 1, . . . , N, (4.31)

where A and B are scalar constants.

The true states are generated by integrating one of the three equations (4.27)–

(4.29), while the forecast model states are generated by integrating eq. (4.26). The

evolution operators, Ft and Fm, are the integrations of the above equations (4.26)–

(4.29) from some time t to t + ∆t where ∆t = 0.05 and the states are available

at every discrete time tn = t0 + n∆t, where t0 is the time at which an experiment

begins and n is a positive integer.

We assume that the observations are available at every time tn for n ≥ 0 and

the state variables themselves are directly observed. Thus the observation operator

in eqs. (4.9) and (4.17) is the identity operator [i.e., H(x) = x]. We also assume

that the observational noise ǫn has zero expected value and is uncorrelated, white

and Gaussian with variance σ2. Thus the local observation error covariance matrix

is a diagonal matrix whose components are σ2. Correspondingly, we generate our
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simulated ‘observations’ (4.9) by adding uncorrelated Gaussian random numbers

with variance σ2 to the true state variables xt
i and form a local observation yn(m) =

[yn,m−l, · · · , yn,m+l]
T. Throughout our numerical experiments, we take σ2 = 0.09.

Data assimilations are done at every integration time tn. The analysis error is

defined as

ea
n = x̄a

n − xt
n, (4.32)

for Bias Model I, and

ea
n = x̄a

n + c̄a
n − xt

n, (4.33)

for Bias Model II and Bias Model III, where x̄a
n is the ensemble mean of the analysis

and where c̄a
n is the ensemble mean of the estimate of the Type II bias. We use the

root-mean-square (rms) of the analysis error,

rms{ea
n} =

√

√

√

√

1

N

N
∑

i=1

(ea
n,i)

2, (4.34)

to assess the quality of the analysis at a given time, and the time mean of the rms

error over a long time interval T ,

〈〈ea〉〉 =
1

T

n0+T
∑

n=n0+1

rms{ea
n}, T ≫ 1, (4.35)

to measure the overall performance of the assimilation scheme. Here, n0 is the time

we allow for the analysis to converge to the true state.

To improve the analyses in our numerical experiments, we employ variance

inflation,

P̂
a

n(m) → P̂
a

n(m) +
µΛ

k
Ik, (4.36)

where P̂
a

n(m) is the local analysis error covariance matrix defined in the ‘internal’

coordinate system [70] whose basis is the set of eigenvectors of the local background
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error covariance matrix P
b
n(m), µ is an inflation coefficient, and Λ = Trace{P̂a

n(m)}.

This particular form of variance inflation was proposed in Ott et al. [70] where it

is referred to as ‘enhanced variance inflation’. Enhanced variance inflation has the

effect of enhancing the estimated probability of error in directions that formally

show only very small error probability. [This modification of P̂
a

n(m) also modifies

the ensemble perturbations through the square root filter; see Ott et al. [70].] The

general purpose of employing a variance inflation is to correct for the loss of variance

in the ensemble due to nonlinearities and sampling errors. Most importantly, vari-

ance inflation can also stabilize the Kalman filter in the presence of model errors, as

it was shown in Ott et al. [71] for the Loranz-96 model and in Whitaker et al. [96]

for the NCEP GFS model preparing a historical reanalysis data set. Since variance

inflation schemes are computationally less expensive than the state augmentation

method, we hope to see that the technique we propose here lead to larger improve-

ments in the accuracy of the state estimates than what can be achieved by simply

tuning the variance inflation coefficient µ.

For the dimension of local states used in the LEKF, we select 13 (i.e., l = 6)

which is known to be a good choice for the Lorenz model (4.25) with Θ = 8 and

N = 40 [70]. Hence, the augmented local states have 26 dimensions for the states

used in Bias Model I or Bias Model II, and 39 dimensions for the states used in

Bias Model III. In our numerical experiments we choose the number of ensemble

members to be the same as the dimension of the augmented local states so that

the local background error covariance matrix has full rank. This choice means that

the ensemble size is 13 when bias is not estimated in the assimilation, 26 when

Bias Model I or II is used, and 39 when Bias Model III is used. Thus we take into

account the added dimensionality of the augmented local states, anticipating that

this increased dimensionality necessitates correspondingly increased ensemble size

in order to properly represent it. This increased ensemble size is part of the added
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computational cost that is paid in order to correct for model bias. In practice,

for given computer resources, the need for a large ensemble may thus necessitate

consideration of benefit trade-offs amongst ensemble size, local domain size, model

resolution, etc.

Finally, for bias evolution (eqs. (4.8), (4.16), (4.19), and (4.20)) we use Gb(x,b, c) =

b and Gc(x,b, c) = c, until Sec. 4.3.6 where we consider different evolution.

4.3.2 Perfect Forecast Model

We first test our bias models for the case of a perfect forecast model, i.e., for

the case when the true values of β and ζ in eqs. (4.27)–(4.29) are 0. In this cast,

the evolution operators for the true state and the forecast model state are identical,

Ft = Fm.

In order to generate the true states for this run, we first integrate eq. (4.25)

for 104 time steps from a random initial condition, allowing the system to approach

its attractor. After this, we perform data assimilation at every time step. The

initial ensemble members for the first data assimilation are generated by adding

independent, zero mean, normally distributed random numbers of variance 1.3 to

the true state at every spatial point i. Before obtaining the rms time mean of the

analysis error (4.35), we run 2 × 104 data assimilations to allow convergence. Past

this time (denoted n0), it is found that the rms analysis error reaches a statistically

steady state in which it fluctuates about a temporally constant mean value which

we denote 〈〈ea〉〉.

The data plotted in Fig. 4.6 show the time averaged rms analysis error (4.35)

as a function of the inflation coefficient µ (4.36). Here, the rms analysis error is

averaged over T = 3× 104 time steps. For the case in which no state augmentation

is employed in the assimilation (data plotted as ∗ symbols) the best performance is

obtained near µ = 0.005 for which 〈〈ea〉〉 = 0.057. The other three curves in Fig. 4.6
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Figure 4.6: Time averaged rms analysis error, 〈〈ea〉〉, versus variance inflation coef-
ficient, µ, for the perfect forecast model experiment: With a perfect forecast model,
any attempt to estimate and correct for a bias results in slightly higher analysis
error.

show the analysis errors for the cases when the same observations are assimilated

with using the three different bias models of Sec. 4.2.4 in the state estimation. In

these cases, we try to estimate a bias that is zero in reality. The estimated bias

terms tend to fluctuate about zero, resulting in a slight (∼8%) increase of the error.

The above results from examining this case provide a standard against which we

can compare results that we will subsequently obtain for situations with error in the

forecast model.

In Fig. 4.6, we see that the minima of 〈〈ea〉〉 appear at a lower inflation coef-

ficient when the states are augmented by an estimate of the bias, bb (i.e., for Bias

Models I and III). In order to see why this occurs we consider the local perturbations

for the augmented local background,

δvb(j)
n (m) = vb(j)

n (m) − v̄b
n(m), (4.37)

where {vb(j)
n (m)} are the ensemble members of the augmented local background.

These perturbations are used to estimate the local background error covariance
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matrix [70]

P
b
n(m) = V

b
n(m)

[

V
b
n(m)

]T
, (4.38)

where

V
b
n(m) = k−

1

2

[

δvb(1)
n (m)|δvb(2)

n (m)| · · · |δvb(k+1)
n (m)

]

(4.39)

and k+1 is the number of the local ensemble members. We rewrite eq. (4.37) using

eq. (4.7) as

δvb(j)
n (m) =







δx
b(j)
n (m)

δb
b(j)
n (m)






=







δx̃
b(j)
n (m) + δb

b(j)
n (m)

δb
b(j)
n (m)






, (4.40)

where {δxb(j)
n (m)} are perturbations for the local background, x̃b

n = Fm(xa
n−1), and

{δbb(j)
n (m)} are perturbations for the local prediction for Bias Model I. In our exper-

iments we observe that {δbb(j)
n (m)} are only weakly correlated with each other and

almost uncorrelated with {δx̃b(j)
n (m)}. Effectively, therefore, uncorrelated random

vectors are added to the state perturbations {δx̃b(j)
n (m)} in eq. (4.40). In conse-

quence, P
b
n(m) (4.38) is effectively inflated mostly on the diagonal components by

the amount of the variance of {δbb(j)
n (m)}. (This effective inflation created by using

eq. (4.7) to obtain the background will also be observed when the forecast model is

not perfect as shown in the following subsections.)

4.3.3 Data Assimilation with Type A Truth Bias

In this experiment, we perform data assimilation using the three augmented

local states as described in Section 4.2.4 and an unaugmented state when the true

state is evolved using eq. (4.27) with A = 0.2Θ = 1.6 in eq. (4.30) corresponding

to Type A truth bias. Again the forecast model state is evolved using eq. (4.25).

We can approximate the bias bt
n given by eq. (4.3) as follows. Recall that Ft and

Fm are the time ∆t maps of the true dynamics (eq. (4.27)) and the forecast model
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(eq. (4.26)) and that eq. (4.3) is based on the assumption that xm(tn−1) = xt(tn−1).

Taking the difference between the true equation (4.27) and the model equation

(4.26),

d

dt
(xt − xm) = L(xt) + β − L(xm) ≈ β, (4.41)

then, integrating eq. (4.41) for the time interval tn−1 ≤ t ≤ tn with the initial

condition xt(tn−1) = xm(tn−1) = xt
n−1, to obtain bt

n = xt(tn) − xm(tn), yields

xt − xm ≈
∫ tn

tn−1

βdt = β∆t. (4.42)

Using eq. (4.3) and (4.42) we obtain bt
n ≈ β∆t. For the situation in this section,

∆t = 0.05, and we have taken β to be constant in time,

βi = A sin

(

2π
i− 1

N

)

= 1.6 sin

(

2π
i− 1

N

)

. (4.43)

Time averaged rms analysis errors for each case are shown in Fig. 4.7. In the

case where the bias is not estimated, the error is around 0.167 at µ ≈ 0.7, which

is still lower than the rms error of the noisy observations. If we, however, augment

the state using Bias Model I the error is reduced dramatically, and slightly more

if we augment the state using Bias Model III, yielding 〈〈ea〉〉 = 0.068 and 0.061,

respectively, at µ ≈ 10−5 [Fig. 4.7(b)]. If, however, we augment the state using Bias

Model II, then the rms error is around 0.225 at µ ≈ 0.3, worse than what is obtained

when no bias estimation is employed. Here, we see again that using the unbiased

background (4.7) for data assimilation effectively inflates the local background error

covariance matrix, and a smaller variance inflation yields the lowest analysis error,

〈〈ea〉〉. The good results obtained when the state is augmented using either Bias

Model I or Bias Model III might reasonably be ascribed to the fact that estimation

of bt
n can be regarded as correcting for precisely the form of truth bias that is present
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Figure 4.7: Time averaged rms analysis error, 〈〈ea〉〉, versus µ for the case of Type
A truth bias: Note that (b) shows the same results as (a) for Bias Model I and Bias
Model III but for a different vertical scale.

when the truth evolves by eq. (4.27).

In Fig. 4.8, we plot
〈

b̄a
〉

, the time average of the ensemble mean of the bias

estimate,

〈

b̄a
〉

=
1

T

n0+T
∑

n=n0+1

b̄a
n, (4.44)

b̄a
n =

1

k + 1

k+1
∑

i=1

ba(j)
n , (4.45)

where T = 2000 and n0 = 15000, for the experiment with the state augmented using

Bias Model I at µ = 10−5 (where the rms error is minimum in Fig. 4.7). We see that
〈

b̄a
〉

agrees well with the approximation to bt
n given by (4.42) and (4.43) (shown

as the solid curve). Also, although the shape is not shown here, for the case that

the state is augmented using Bias Model III,
〈

b̄a
〉

again agrees well with (4.42) and

(4.43).

We now examine the analysis errors using Bias Model I and III. In Fig. 4.9,

we plot the analysis error (4.32) averaged over 5000 time steps,

〈ea〉 =
1

T

n0+T
∑

n=n0+1

ea
n, (4.46)
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Figure 4.8: The average bias estimate of location i is shown as ◦. The approximate
true bias βi∆t is shown as the solid curve.

Figure 4.9: Time average of the analysis error as a function of location: The Type
A truth bias is corrected best when we perform the assimilation using Bias Model
III.

(here, T = 5000 and n0 = 15000) for the case that no bias estimation is performed

in data assimilation (∗), the case that the estimation is performed using Bias Model

I in the assimilation (▽), and the case that the bias estimation is performed using

Bias Model III (◦). The variance inflation coefficients are µ = 1.0, 10−5, and 10−5,

respectively, at which the errors, 〈〈ea〉〉, are minimum for each case.

In order to understand why Bias Model III does better than Bias Model I for

this case, recall that both models determine the background state xb
n at time tn by

xb
n = Fm(xa

n−1) + bb
n where bb

n is approximately constant in time (eqs. (4.7) and

(4.18)). However, Bias Model I tries to make xb
n close to xt

n, whereas Bias Model

III tries to make xb
n + cb

n close to xt
n, where cb

n is also approximately constant in

time. Suppose that bb
n has converged to the time-independent approximation β∆t

of bt
n (see eq. (4.42)), that cb

n has converged to a constant vector c, and that the
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Figure 4.10: Figure (a) depicts the case c = 0, corresponding Bias Model I, while
figure (b) depicts the case c ≈ −β/2 in Bias Model III.

analysis at time tn−1 is perfect: xa
n−1 +c = xt

n. Consider the model trajectory xm(t)

of eq. (4.26) with xm(tn−1) = xa
n−1 and the true trajectory xt(t) of eq. (4.27) with

xt(tn−1) = xt
n−1. Then xt

n = xt(tn) and xb
n = xm(tn) + β∆t, and the background is

most accurate if xb
n + c = xt

n. As in eq. (4.41),

xt
n − (xb

n + c) = xt(tn) − (xm(tn) + β∆t+ c)

= xt(tn−1) − (xm(tn−1) + β∆t+ c)

+

∫ tn

tn−1

[L(xt(t)) + β − L(xm(t))]dt

= xt
n−1 − (xa

n−1 + β∆t+ c)

+

∫ tn

tn−1

[L(xt(t)) − L(xm(t))]dt+ β∆t

=

∫ tn

tn−1

[L(xt(t)) − L(xm(t))]dt.

(4.47)

Thus, we desire that the average value of L(xt(t)) − L(xm(t)) to be as small as

possible over the interval tn−1 ≤ t ≤ tn. Using c = −β∆t/2 makes this average

zero to first order, and is thus superior to using c = 0, which corresponds to Bias

Model I. (see Fig. 4.10.) This is confirmed in Fig. 4.11, from which one observes

〈c̄a〉 ≈ −β∆t/2 in the experiment with Bias Model III.
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Figure 4.11: The average bias estimate of location i is shown as +. The the value
of −βi∆t/2 is shown as the solid curve.

4.3.4 Data Assimilation with Type B Truth Bias

In this experiment, we simulate a bias by evolving the true state with eq. (4.28)

with temporally constant ζ and estimate it with three different augmentation meth-

ods as done in Sec. 4.3.3. To obtain the true value of ct, defined by (4.10), we

use

dct

dt
=

dxt

dt
− dxm

dt

= L(xt + ζ) − L(xm)

= L(xt + ζ) − L(xt − ct).

(4.48)

A trivial solution to eq. (4.48) is ct = −ζ whose i-th element is given by

ctn,i = −B sin

(

2π
i− 1

N

)

= −1.6 sin

(

2π
i− 1

N

)

, (4.49)

where we take B = 0.2Θ = 1.6 in this experiment.

The time averaged rms analysis errors for each case are shown in Fig. 4.12.

We see that, when we augment the state using Bias Model II in the assimilation,

we can correct for the bias. The minimum rms error for this assimilation is about

0.061 and occurs near µ = 0.003. The minimum rms error for the assimilation with

the augmented state using the Bias Model III is about 0.062 and occurs at a lower

µ value (as expected) of about µ = 2×10−5. Without bias correction, the minimum

rms error is 0.263 and occurs near µ = 4.0, similar to what is obtained using Bias
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Figure 4.12: Time averaged rms analysis error, 〈〈ea〉〉, versus µ for the case of Type
B truth bias. (b) has a different vertical scale from (a) for transparency.

Figure 4.13: Bias estimate for the Bias Model II is shown as ◦. The true bias (4.49)
is shown as the solid curve.

Model I (〈〈ea〉〉 ≈ 0.234 near µ = 0.5). Also, due to the variance inflation effect

of Bias Model I, the best assimilation result with the augmented state using the

Bias Model III occurs at a lower value of variance inflation than the assimilation

with the augmented state using Bias Model II. For the same reason, the rms error,

〈〈ea〉〉, for the case of assimilation with the augmented state using Bias Model I has

lower values in the region of variance inflation, 10−5 ≤ µ ≤ 1.0, than for the case of

assimilation with no state augmentation.

We show 〈c̄a〉 in Fig. 4.13 for the case in which the state is augmented using

Bias Model II at µ = 0.003. It is seen that the result (plotted as ◦) agrees very well

with eq. (4.49) (plotted as the solid line). We obtain the same result for 〈c̄a〉 when

the state is augmented using Bias Model III at µ = 2 × 10−5.
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4.3.5 Data Assimilation with Type C Truth Bias

Now, we combine the two biases in the truth [see eq. (4.29)], and estimate

them with three augmented states as done in previous sections. In this case, we can

regard the Type A truth bias as added to a system that already has Type B truth

bias. Hence, a differential equation for bt can be written as

dbt

dt
= L(xt + ζ) + β − L(xt − ct), (4.50)

where ζ and β are constant in time in the present experiment. A solution to

eq. (4.50) is

dbt

dt
= β if ct = −ζ; (4.51)

that is, the individual true bias is the same as if the system has only one bias. The

quantities β, ζ, are thus again given by eq. (4.43) and (4.49).

Figure 4.14 shows the resulting time averaged rms analysis error, 〈〈ea〉〉, for

each estimation method. The best result is obtained using Bias Model III. This

might be anticipated since augmentation by one bias estimate alone cannot satisfy

the solution (4.51). The minimum rms error is around 0.062 and occurs near 2×10−5;

this is the same as in the previous experiments. The other assimilation methods

yields 〈〈ea〉〉 ≈ 0.261 at µ ≈ 4.0 without state augmentation, 〈〈ea〉〉 ≈ 0.236 at

µ ≈ 0.5 using Bias Model I, and 〈〈ea〉〉 ≈ 0.224 at µ ≈ 0.3 using Bias Model II.

4.3.6 Settling Time

Even though the state augmented LEKF can correct for various biases in

the true state, for the truth biases considered here it requires longer settling time

for the forecast model state to converge toward the true state as compared to the

LEKF without state augmentation. We regard the time it takes for the rms analysis

79



Figure 4.14: Time averaged rms analysis error, 〈〈ea〉〉, versus µ for the case in which
the truth has Type C truth bias: In order to correct for the biases, the augmented
state used in the assimilations must contain both the b and c bias estimates, Here,
we again use a different vertical scale in (b) from (a) for transparency.

error (4.34) to settle near its time averaged rms analysis error (4.35) as the settling

time. With a perfect forecast model as in Sec. 4.3.2, the settling time is around

50 time steps with the k + 1 = 13 ensemble members we are using for the regular

(i.e., without state augmentation) LEKF assimilation scheme. The settling time,

however, becomes between 100 and 200 time steps when either Bias Model I or

Bias Model II are used in the assimilation to respectively correct for Type A or

B truth bias. The longest settling time, which is near 15000 time steps, appears

when assimilations are done using Bias Model III to correct for Type B and Type C

truth biases (when using Bias Model III to correct for Type A truth bias, we found

settling times that were generally below 500).

However, it turns out that we can easily correct this problem by using a priori

information on the bias which could be obtained by looking at the innovation, the

difference between the forecast and the observation,

d̄n = H(x̄b
n) − yn, (4.52)

for the case when no bias estimation is performed. We plot the time average of
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Figure 4.15: Time averaged innovation for the case that no bias estimation is per-
formed with various biases in the truth.

the innovation in Fig. 4.15 for the case that no bias estimations are performed

even though Type A, B or C truth bias is present in the truth. Since we take the

observations to be unbiased, we can think of the time averaged innovation as the

forecast bias. We see that these averages are large and vary slowly in space.

In the previous experiments, the initial ensemble variance for the bias estimate

is 0.1. By increasing the initial variance to 1.0 (somewhat larger than the spread

in the time averaged innovations), we can dramatically decrease the longest settling

time from 15000 time steps to 800 time steps, while for the case that the settling

time is already small (between 100 and 200 time steps) no significant change in the

settling time is observed. We can decrease the settling time further if we exploit the

fact that the biases vary slowly in space. To incorporate this added knowledge into

our data assimilation scheme we now use a diffusion process for the time evolution,

eqs. (4.8) and (4.16), of the biases,

bbn+1,i = (1 − 2αb)b
a
n,i + αbb

a
n,i−1 + αbb

a
n,i+1, (4.53)

cbn+1,i = (1 − 2αc)c
a
n,i + αcc

a
n,i−1 + αcc

a
n,i+1, (4.54)

where αb and αc are diffusion coefficients. By introducing diffusion in this way,

81



rapid spatial variation of the bias estimates is damped, leading to smooth spatial

variation consistent with the actual case, eqs. (4.30) and (4.31), and the evidence of

Fig. 4.15.

Our experiments show that there is a modest improvement in the settling time

in the case that there is one type of bias in the truth (truth bias A or B) and that it is

corrected using the corresponding bias model (Bias Model I or II, respectively); the

settling time is decreased from between 100 and 200 time steps to between 80 and

130 time steps when αb (or αc) is increased from zero to αb = 0.01 (or αc = 0.01).

When we consider the case of Type C truth bias and augment the state using Bias

Model III, nonzero αb diffusion (with αc = 0) can achieve a large decrease in the

settling time, from 800 time steps to 300 time steps.

All of the decreases in settling time we have described come without significant

increase in the time averaged rms analysis error 〈〈ea〉〉. We find that using diffusive

evolution on bias estimates actually decreases 〈〈ea〉〉 in some cases. Figure 4.16

shows the time asymptotic analysis errors as a function of αb for the case of Type

C truth bias and Bias Model III assimilation. We see that a small amount of diffu-

sion, in addition to shortening the settling time, also improves the time asymptotic

performance of the assimilation. This improvement is not seen in the experiments

with Bias Model I and II.

Finally, we note that if diffusion (eqs. (4.53) and (4.54)) is added in the perfect

forecast model case (Sec. 4.3.2), all three cases of augmentation have the same values

of rms analysis error as that of the unaugmented case. That is, curves corresponding

to the four cases in Fig. 4.6 have the same minimum values with appropriate amounts

of diffusion. Evidently diffused evolution of the bias estimate allows the estimate

to converge to the truth faster, and also reduces the rms analysis error of the state

augmented estimates.
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Figure 4.16: Time averaged rms analysis error, 〈〈ea〉〉, versus µ with various αb and
αc = 0 for the case of Type C truth bias corrected using Bias Model III: Small
diffusion improves the performance of the assimilation up to αb = 0.01.

4.3.7 A Simple State Dependent Model Error

In this section, we introduce a simple model error, γx2
i , which is proportional

to the square of the state variable. That is, the dynamic equation for the true system

is as follows:

dxi

dt
= (xi+1 − xi−2)xi−1 − xi − γx2

i + Θ, i = 1, . . . , N, (4.55)

where γ = 0.05 and Θ = 10.0. Here, Θ is increased to maintain chaotic behavior

of the true dynamics (introducing γx2
i without changing Θ from its previous value

of Θ = 8.0 results in dominance of time periodic behavior of the true dynamics).

For the forecast model, we use eq. (4.25) with Θ = 10.0. Through the numerical

experiment, we obtain the time average 〈−γx2
i 〉 ≈ −0.95 at each point i while

−γx2
i itself has large temporal fluctuations ranging from 0 to around −10. The

task we undertake here is to successfully estimate the time mean effect of the model

bias, 〈−γx2
i 〉, with our bias estimation schemes. Using analysis similar to that in
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Figure 4.17: Time averaged rms analysis error, 〈〈ea〉〉, versus µ with the simple state
dependent model error: With Bias Model I and diffusion process, we can improve
the performance in terms of the rms analysis error.

eqs. (4.41) and (4.42), we obtain

〈

bti
〉

≈
〈

−γ
∫ tn

tn−1

(xt
i)

2dt

〉

≈ −γ
〈

(xt
i)

2
〉

∆t, (4.56)

and hence 〈bti〉 ≈ −0.048 for each location i.

In Fig. 4.17, we plot the rms analysis errors of the numerical experiments.

Without bias estimation the minimum rms analysis error 〈〈ea〉〉 ≈ 0.186 is obtained

at µ ≈ 1.0. Among the three bias models, Bias Model I produces the best result,

〈〈ea〉〉 ≈ 0.171 at µ ≈ 0.05. In terms of the difference with the error in the perfect

model case (〈〈ea〉〉 ≈ 0.057), this represents a 12% improvement toward the perfect

model performance. If we employ diffusive evolution (with αb = 0.05), we can further

decrease the rms error to obtain 〈〈ea〉〉 ≈ 0.163 at µ ≈ 0.09 and 18% improvement

toward the perfect model performance. In both cases (with and without diffusion),

we obtain
〈

b̄ai
〉

≈ −0.05, which is a good estimate of 〈bti〉, with smaller spatial

variations when we use diffusion.

We also find that the performance of the assimilation with Bias Model I is

not sensitive to the selection of Θ in the model equation while the performance of
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the assimilation without bias estimation is sensitive to the selection of Θ. We can

also achieve the same performance with Bias Model III with appropriate diffusion

(αb = 0.05, αc = 0.2), but we cannot achieve it with Bias Model II. We conjecture

that the reason is because the form of the bias in eq. (4.55) is closer to Type A truth

bias than Type B.

4.4 Conclusions and Discussion

In this paper, we considered three bias models for use in state space augmen-

tation strategies to mitigate the effects of model biases on forecasts:

• Bias Model I is based on the assumption that the best background information

is obtained when the initial condition of the short term forecast that provides

the background (the analysis at the previous assimilation time) is as close to

the truth as possible.

• Bias Model II is based on the assumption that there exists a transformation

from orbits on the attractor of the forecast model to orbits on the attractor of

the true system.

• Bias Model III combines Bias Model I and Bias Model II.

While Bias Model I was considered by others in earlier papers for schemes other than

the LEKF, Bias Model II and Bias Model III are (to the best of our knowledge) first

introduced in the present paper.

To evaluate the performance of the proposed bias models for use in augmented

ensemble Kalman filtering, we carried out experiments with the Lorenz-96 model.

While we used the original model equation of Lorenz and Emanuel [56] to evolve

the model state, we employed altered versions of Lorenz and Emanuel’s equation

to generate sets of time series of the true states. Each alteration of the equation
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corresponded to distinctly different types of model biases. The main results of these

numerical experiments are the following:

• The effectiveness of the different bias models strongly depends on the actual

form of the true model bias. In our numerical experiments it was found that

when the bias model was suited to the bias of the forecast model in modeling

the true dynamics, then good results were obtained. However, when this

was not the case, the results were not improved by the model bias correction

scheme. This suggests that serious consideration of the choice of the bias model

may be crucial in obtaining a successful scheme for model bias mitigation.

• For the bias models we considered, Bias Model III performed as well or better

than the other bias models in terms of average analysis error, at the expense

of requiring a larger ensemble and in some cases increasing the settling time.

In most cases, the inclusion of parameters that were not present in the model

bias did not yield improved performance. However, in the case of Type A

truth bias, Bias Model III did outperform Bias Model I, due to the fact that

the model bias was added to a continuous time forecast model, while the bias

correction was applied at discrete times (see Sec. 4.3.3).

• We found (Sec. 4.3.6) that the model bias correction scheme took many more

iteration steps to converge than in the case in which no model biases are

present. The settling time strongly depends on the actual model bias, and

on the bias model employed. As a result of the possibility of long settling

times, one might anticipate that use of these model correction schemes may

become problematic. We can, however, dramatically reduce the settling time

by increase of the initial ensemble spread of the bias estimates. Moreover, when

the model bias is slowly varying in space, we demonstrated that choosing a

diffusive evolution of the model bias can also reduce the settling time.
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• In a case with state-dependent, and thus time-varying, additive model error

(Sec. 4.3.7), Bias Model I estimated a model bias that was close to the time

average of the model error. In this sense it found the best estimate of the

model error within our constant-in-time parameterization. The improvement

in performance compared to no bias estimation was modest but significant.

Finally we note, that state space augmentation is not the only way to account

for the effect of model errors in the state estimation process. As we mentioned ear-

lier, variance inflation (both additive and multiplicative) can improve the resilience

of Kalman filter schemes to the effects of model errors. Promising results were

achieved by employing additive variance inflation schemes [46, 39] and by using

hybrid Ensemble/3DVAR schemes [29] first proposed by Hamill and Snyder [38].

Nevertheless, we believe that optimal parameterization of model errors in the data

assimilation process is a very promising means of mitigating model error and that

much remains to be done along these lines. We view our paper as a contribution only

to the initial phase of the quest for efficient model error parameterization algorithms.
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Chapter 5

Correction of surface pressure model bias with an ensemble-based

Kalman filter

5.1 Introduction

The dynamics of a numerical weather prediction model and the dynamics of

the real atmosphere are different. In general, we view errors as fluctuating in space

and time, and we think of them as the sum of a component that is smoothly varying

on the space-time discretization scale of the model and a component that has the

characteristics of random noise. In this chapter, our focus is on the slowly varying,

component, which we call model bias.

The contribution of model bias to the discrepancy between a background fore-

cast and the true atmospheric state can be comparable, or even larger, than the

contribution of the initial condition errors and the chaotic model dynamics. Model

errors have many sources, such as the finite resolution discretization of the con-

tinuous atmospheric fields, limited knowledge and imperfect representation of the

sub-grid physical processes and imperfect specification of the boundary conditions.

Although some of these sources are completely independent, it is not feasible to

identify and parameterize each of them independently. One way to account for

model bias, first suggested by Derber [26], is to assume that the total effect of all

sources of the bias in the forecast model can be represented in the form of a limited

number of bulk error terms added to the model forecast. Here, the amplitude of

the bulk error terms is specified by parameters, which evolve smoothly with respect

to the model discretization. Then, the approach is to estimate these parameters as
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part of the data assimilation process.

The general problem of model bias estimation in Kalman filtering was first

studied by Friedland [33], who suggested a scheme in which the state was augmented

by a bias component. In Friedland’s work the dynamics was taken to be linear

and the bias was decoupled and estimated separately from the model state. This

approach was introduced to the data assimilation literature by Dee and Da Silva [24],

who achieved separation of the estimates of the state and the bias by assuming that

the uncertainties in the two estimates were uncorrelated. Since then, this approach

has been applied with some success to the assimilation of atmospheric observations

[25, 15, 61, 10, 55, 17, 51, 27] More recently, Baek et al. [8] and Zupanski and

Zupanski [104] suggested incorporating the method of state augmentation into the

formulation of the ensemble-based Kalman filter data assimilations schemes.

In Baek et al. [8], we have also shown that the traditional approach to bias

correction (henceforth referred to as Bias Model I), in which the background is first

corrected with the estimated bias from the previous analysis cycle and then the

state is estimated by updating the bias corrected background based on the latest

observations, is often inefficient in improving the accuracy of the state estimate. To

address this problem, we also proposed a new approach to incorporate the effects

of model bias into the data assimilation process in Baek et al. [8]. This approach,

called Bias Model II, is motivated by envisioning a situation in which the forecast

model evolution takes place on an attractor shifted from the attractor of the true

dynamics. In such a situation, making a correction to the background states that

moves the background state estimate from the model attractor to the the true system

attractor, as done in Bias Model I, may trigger an adjustment process during the

next model integration step. The effects of such an adjustment on the accuracy

of the state estimate are unpredictable and often negative. To avoid triggering a

strong adjustment process , in Bias Model II we search for a state estimate that
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best represents the true state on the the model attractor. This involves finding the

parameters of a transformation between the model attractor and the true attractor.

Bias Model I and II are defined more precisely in Section 2. [We note that other

approaches based on assuming a mismatch between the model attractor and the

true attractor were also proposed recently by Drécourt et al. [27] and Toth and

Peña [90]].

In this chapter, we investigate the potential benefits of correcting the bias in

the surface pressure state variable with Bias Model II. To simulate the situation faced

in numerical weather prediction, we use two forecast models at different resolutions

and with different level of sophistication in the physical parameterization packages

to generate the “true” atmospheric state and to analyze and forecast the “true”

states. In particular, the true atmospheric states are generated by the 2004 version

of Global Forecast System (GFS) model of the National Centers for Environmen-

tal Prediction (NCEP) at resolution T62L28 (the global atmosphere is represented

by 144 × 73 × 28 grid points), while the analyses and forecasts are obtained with

the Simplified Parameterization Primitive-Equation Dynamics (SPEEDY) model at

resolution T30L7 (the global atmosphere is represented by 96× 48× 7 grid points).

The physical parameterization schemes and the surface boundary condition in the

SPEEDY model are strongly simplified compared to those in the NCEP GFS. Since

the vertical coordinate of the SPEEDY model is sigma, defined by the ratio between

pressure and the surface pressure, correcting the bias in the surface pressure affects

the assimilation of all other variables. Also, because the systematic difference be-

tween the surface pressure in the SPEEDY and NCEP GFS models is mainly due to

the difference between the orographies of the two models, it is especially appropriate

to use Bias Model II: it would not make sense to bias correct the background surface

pressure in the SPEEDY model to match the surface pressure of the NCEP GFS

model, which is associated with a much higher resolution orography.
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For data assimilation we use the latest, computationally most efficient, version

of the the scheme first proposed in Ott et al. [70]. This version was formulated by

Hunt et al. [47] and is called the Local Ensemble Transform Kalman Filter (LETKF).

The most important feature of this scheme is that it obtains the analysis indepen-

dently for each grid point, assimilating all observations influencing the analysis at

a given grid point simultaneously. This allows for a computationally efficient par-

allel implementation. Although our experiments employ the LETKF, we believe

that the results we obtain regarding the quality of the bias estimates would hold

for any other ensemble-based data assimilation schemes [e.g., for those proposed by

14, 45, 44, 2, 11, 40, 95, 105].

We present the bias model and the data assimilation scheme in Section 2.

Section 3 presents the results of our numerical experiments, while conclusions and

discussion are offered in Section 4.

5.2 Data assimilation with bias correction

5.2.1 Bias modeling

In the numerical weather prediction, the real atmospheric states are in infinite

dimensional space and forecast model states that are used to predict the atmo-

spheric states are in finite dimensional space (or a model space). We denote a finite

dimensional representation (or a model space representation) of the infinite dimen-

sional atmospheric state at time tn by xt
n and call it ‘true state’. Then, the true

atmospheric evolution in the model space can be written by

xt
n+1 = f t(xt

n), (5.1)
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where xt
n+1 is the true state at time tn+1 = tn + ∆t and f t is the evolution operator

for the true state. In general, one wants to devise a forecast model that mimics the

model space representation (5.1) in order to predict the true atmospheric state into

the future. Denoting the forecast model state at time tn by xm
n , the forecast model

evolution can be written by

xm
n+1 = fm(xm

n ), (5.2)

where fm is the forecast model evolution operator.

Traditionally, it is assumed that the best estimate of the current true state

can generate the best forecast for the true state. In Bias Model I, we follow this

approach. This is similar to assuming that the evolution of the true state (5.1) and

the evolution of the forecast model state (5.2) are the same so that the forecast

model state stays near the true state after the evolution. In practice, however, the

two evolution operators differ from each other. As a result, even if the forecast

model state is evolved from an initial condition corresponding to the true state at

the initial time (e.g. xm
n−1 = xt

n−1), it is likely that the forecast model state departs

from the true state as it evolves. Denoting this departure at time tn by bt
n, or

bt
n = fm(xt

n−1) − f t(xt
n−1), (5.3)

we can write the evolution of the true state (5.1) in terms of the forecast model

evolution as follows:

xt
n = fm(xt

n−1) − bt
n, (5.4)

bt
n = gb(bt

n−1,x
t
n−1), (5.5)

where gb is the evolution operator for the bias correction term. Then given an

estimate (or ‘analysis’) of the augmented state (xa
n−1,b

a
n−1) at time tn−1, we take
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the forecast (or ‘background’) of the augmented state (xb
n,b

b
n) at time tn to be

xb
n = fm(xa

n−1) − bb
n, (5.6)

bb
n = gb(ba

n−1,x
a
n−1). (5.7)

A consequence of the discrepancies between the true evolusion and the forecast

model evolution is that the true system and the forecast model system may have

different attarctors to each other. In Bias Model II, we try to keep the actual forecast

model state within or near its own attractor and to find a transformation between

the two attractors rather than try to move the model state to the true state at the

assimilation time. For simplicity, we assume that the transformation is just a shift

of the forecast model state to the true state. Denoting the shift at time tn by ct
n, or

ct
n = fm(xm

n−1) − f t(xt
n−1) = fm(xt

n−1 + ct
n−1) − f t(xt

n−1), (5.8)

we can rewrite the true evolution (5.1) as

xt
n = fm(xt

n−1 + ct
n−1) − ct

n, (5.9)

ct
n = gc(ct

n−1,x
t
n−1 + ct

n−1), (5.10)

where gc is the evolution operator of the transformation. Since our goal in this model

is that the analysis state xa
n closely approximates the model state xm

n = xt
n + ct

n

from which we can make future forecasts, we rewrite eqs. (5.9) and (5.10) as

xm
n = fm(xm

n−1), (5.11)

ct
n = gc(ct

n−1,x
m
n−1). (5.12)

Then we can write the background state (xb
n, c

b
n) in terms of the previous analysis

93



state (xa
n−1, c

a
n−1) as follows:

xb
n = fm(xa

n−1), (5.13)

cb
n = gc(ca

n−1,x
a
n−1). (5.14)

We note that, since xa
n and xb

n are the analysis and the forecast of xm
n , the analysis

and the background for the true state xt
n are xa

n + ca
n and xb

n + cb
n.

5.2.2 Bias correction with LETKF

Once a suitable model for the bias is chosen, it can be incorporated into the

formulation of the local ensemble transform Kalman filter [LETKF, 70, 47] using

state space augmentation [33, 24]. The LETKF scheme estimates local states in

a local region. As illustrated in Fig. 5.1 for instance, the states at grid point r =

(longitude, latitide, height) can be estimated using the states and the observations

within the local region which is colored grey and contains 9 grid points. To perform

data assimilation for this local region at time tn, we establish a local state vector, xr

(we drop time index n in this section for simplicity), which may, for example, contain

temperature, meridional wind, zonal wind and surface pressure for each grid point

so that the dimension of the local state vector in Fig. 5.1 is 4(states)×9(grids) = 36.

We also assume that we have local bias estimates br or cr depending on the bias

model that we have chosen. Then, we form an augmented local state vector,

vr =













xr

br

cr













, (5.15)

and, by applying Kalman filter equations, we obtain a local analysis. The global

analysis is then taken to be the state at the center of each local region.
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Figure 5.1: Illustration of local region: Dots represent grid points and the grey box
represent a local region. (a) is the top view of the local region and (b) is the side
view of it. The local region in the figure is a 3 × 3 × 1 box. The black dot in the
local region, r, is the grid point whose states are estimated in the assimilation time
using the states and the observation within this local region.

By inserting the local augmented state vector into the Kalman filter equa-

tions, we assume that ψ(vb
r
), the background probability distribution of the local

augmented state, is Gaussian; that is,

ψ
(

vb
r

)

∼ exp

{

−1

2

[

vb
r
− v̄b

r

]T [

Pb
r

]−1 [
vb

r
− v̄b

r

]

}

, (5.16)

where v̄b
r

is the background mean of the augmented local state, and Pb
r

is the back-

ground error covariance matrix for the augmented local state. In LETKF, v̄b
r

and

Pb
r

are estimated using an ensemble of augmented local state vectors v
b(i)
r . That is,

v̄b
r

can be estimated as a sample mean,

v̄b
r

=
1

k

k
∑

i=1

vb(i)
r
, (5.17)
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and Pb
r

as an unbiased sample variance,

Pb
r

= (k − 1)−1Vb
r

[

Vb
r

]T
, (5.18)

where k is the number of ensemble members, v
b(i)
r is the i-th ensemble member

(i = 1, . . . , k), Vb
r

is the matrix of background ensemble perturbations,

Vb
r

=
[

δvb(1)
r

∣

∣δvb(2)
r

∣

∣ . . .
∣

∣δvb(k)
r

]

, (5.19)

and

δvb(i)
r

= vb(i)
r

− v̄b
r
. (5.20)

In this way, our scheme allows for the estimation of cross-correlations between un-

certainties in the state estimates and uncertainties in the estimation of the model

bias and simultaneously estimates the atmospheric state and the model bias.

In what follows, we briefly introduce LETKF formulation for the augmented

state vectors (see Hunt et al. [47] for further discussion). Although, a similar formu-

lation could be applied to other ensemble Kalman filters [e.g., 8], we employ LETKF

since it has been found to be effective and efficient for operational weather models

[88]. By applying the observation operator, ĥ(·) to an ensemble of the global aug-

mented background, we obtain an ensemble of the global background observation,

yb(i) = ĥ(vb(i)), i = 1, . . . , k. (5.21)

From the these ensemble members (5.21), we can obtain an ensemble of local back-

ground observation, {yb(i)
r }, the local mean, ȳb

r
, and the local perturbation matrix,

Yb
r
, similar to eqs. (5.17), (5.19) and (5.20). Then, the analysis equations for the
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augmented local state become

v̄a
r

= v̄b
r
+ Vb

r
P̃a

r

(

Yb
r

)T
R−1

r

(

yo
r
− ȳb

r

)

, (5.22)

P̃a
r

=
[

(k − 1)I +
(

Yb
r

)T
R−1

r
Yb

r

]

−1

, (5.23)

Pa
r

= Vb
r
P̃a

r

(

Vb
r

)T
, (5.24)

where v̄a
r

is the mean analysis for the augmented local state, Pa
r

is the local analysis

error covariance matrix, yo
r

is the local observation vector which consists of the

observations within the local region, and Rr is the local observation error covariance

matrix. LETKF determines the matrix of local analysis ensemble perturbation, Va
r
,

using a square root of the local analysis error covariance matrix:

Va
r

= (k − 1)1/2Vb
r

[

P̃a
r

]1/2

. (5.25)

An ensemble of the local augmented analysis, {va(i)
r }, can then be obtained by

adding va
r

to each of the columns of Va
r
:

va(i)
r

= v̄a
r

+ Va(i)
r
, (5.26)

where V
a(i)
r is the i-th column of va

r
.

In practice, we modify this approach using multiplicative covariance inflation

on the analysis, in effect multiplying Pa
r

by a factor greater than 1. This prevents the

filter covariances from decaying toward 0 over time. Notice that, since the ensemble

of bias estimates does not change during the forecast step, its covariance remains

constant during each forecast, and (like the state variable covariance) decreases dur-

ing each analysis. Thus, if no covariance inflation is applied, the filter’s uncertainty

about its bias estimates will decrease to zero over time; this is undesirable unless

the bias is truly time-independent. We find that it is often advantageous to apply

97



more inflation to the bias estimates than to the state variables, and to do so we

inflate Va
r

before applying eq. (5.26); see also Sections 5.3.2 and 5.3.3.

5.3 Numerical experiments

5.3.1 Experimental setup

The true states are generated by running the NCEP model for 3 months (91

days), starting from the operational NCEP analysis, which was truncated to T62L28

resolution, at 0000 UTC on 1 January 2004. Observations are generated with six-

hour frequency, at 0000 UTC, 0600 UTC, 1200 UTC and 1800 UTC, at seven pres-

sure levels, at 925, 850, 700, 500, 300, 200 and 100 hPa. The horizontal locations of

the observations are chosen to coincide with the horizontal locations of the model

grid points in the SPEEDY model. When some of seven observed pressure levels are

below the surface of the SPEEDY model at a horizontal location, no observation

is created at those pressure levels at the given horizontal location. The observa-

tions are generated by adding random “observation noise” to the “true” state at

the observational locations. The observation noise has zero mean for all observed

quantities and standard deviation of 1 hPa for the surface pressure, 1 K for the

temperature and 1 m/s for the wind.

Our goal is to account for the bias in the 6-hour background forecasts with the

SPPEDY model. This bias for the 3-month period is shown in Figure 5.2. As can be

expected, this surface pressure bias is dominantly due to the difference between the

“true” orography of the NCEP model and the “model” orgraphy of the SPEEDY

model (Figueres 5.3 and 5.4).

If we removed the bias from the surface pressure background, as done in Bias

Model I, the surface pressure analysis would have a value consistent with the higher

resolution “true” orography. This would induce an adjustment process of the surface
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Figure 5.2: 6-hour forecast bias of the surface pressure without bias correction:
In many regions, the amount of the bias is proportional to the magnitude of the
orography difference but sometimes they are negatively correlated. There are also
regions that shows small difference in orography but have moderate amount of the
biases.

Figure 5.3: Orography difference between SPEEDY and NCEP models: Surface
geopotential height of NCEP model is subtracted from that of SPEEDY model.
Discrepancies are mostly on mountain areas. The scales are different in negative
and positive directions.
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Figure 5.4: Correlation between orography difference and surface pressure bias.
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pressure, and of the other state variables through their dynamical relation to the

surface pressure, to the SPEEDY orography in the forecast phase of the next analysis

cycle. Thus the surface pressure bias of our experimental design, and of the real-life

situation, is an ideal candidate to be treated with Bias Model II.

The ensemble of 6-hour model forecast at time tn is generated by integrating

the SPEEDY model from ensemble of the analysis at previous time tn−1. The

initial ensemble states at time t0, {xb(i)
0 }, are taken from a free run of the SPEEDY

model. The initial condition for the free run is obtained from the NCEP true state

at 1800 UTC on 31 March 2004. The initial ensemble estimates for the bias are

obtained from Gaussian random numbers with certain means and variances which

will be described later. Then the augmented initial ensemble, {vb(i)
0 }, is formed

by augmenting the initial states by the initial bias estimates. We start our data

assimilation cycle at time t0 (= 0000 UTC on 1 January 2004) by assimilating the

observation, yo
0, into the initial ensemble, {vb(i)

0 }, to generate the analysis ensemble,

{va(i)
0 }.

Throughout our experiments, we employ 3 × 3 × 1 grid points for the local

regions since we found that increasing the dimension of the local regions does not

significantly improve the accuracy of the analyses and forecasts but requires more

ensemble members and longer computational time. The local dimension is, therefore,

9×4 = 36 for the states without bias correction and can be increased up to 72 if we

correct for the biases in all state variables with one type of bias model. In all of our

experiments, we use 60 ensemble members which must be enough to account for the

dimension of the local states augmented by various combinations of bias estimates.

Since the local region is defined in the model space, the number of observations

in the local regions for each grid points can be different. In some areas, the sigma

levels are dense and therefore the local regions in these areas only can contain very

few observations or no observation. For example, we depict two local regions at
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Figure 5.5: Local observation areas at latitude 31.5◦ between longitude 96◦ and
120◦: The lowest line with circle ◦ represents the surface pressure (PS) and above
it, four sigma level lines are depicted. Along the sigma levels, we put symbols to
indicate the grid point where the model stats are estimated. Symbol X’s indicate
the available observations which are at levels 925hPa, 850hPa, 700hPa, 500hPa, and
300hPa above the surface. Two 3×3×1 local regions are shown as a dashed line and
a dash-dotted line. We see that they are different from the region in Fig. 5.1(b) and
each region contains different number of observations due to the different coordinate
space between model space and observation space.

latitude 31.5◦ and at longitude 96◦ through 120◦ along the third sigma level in

Fig. 5.5. It is essentially the same with Fig. 5.1 except that it is on the pressure

coordinates and contains observations. The observations of winds and temperatures

are available at 7 pressure heights above the surface (in the figure we can see only 4

levels). In the Fig. 5.5, the local region enclosed with dashed line has one grid point

for the observation of the wind and the temperature that can be used to estimate

the states of three grid point enclosed by the line, while the local region enclosed

by dash-dotted line has three grid points. It happens near the mountain areas and

therefore the accuracy of the analysis and forecast may be worse in these areas.

To assess the quality of the analysis and the forecast, the errors are evaluated

in the observation space with the known “true” state at the observation location,

yt
n, which are generated by running the NCEP model. We define 6-hour forecast
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error at time tn, eb
n, as

eb
n = ȳb

n − yt
n, (5.27)

where ȳb
n is the ensemble mean of the background observation (5.21), and similarly

the analysis error, ea
n, can be defined by

ea
n = ȳa

n − yt
n, (5.28)

where ȳa
n is the ensemble mean of the analysis observation. Then, for each vertical

level, we use the root-mean-square (rms) of the analysis and forecast errors over the

horizontal grids. For example, the rms of the temperature analysis error is given by

rms (ea
T,n) =

√

√

√

√

1

N ×M

N
∑

i=1

M
∑

j=1

[

ea
T,n(i, j)

]2
, (5.29)

where N × M is the number of horizontal grid points at each vertical level and

ea
T,n(i, j) is the temperature analysis error at grid (longitude, latitude)=(i, j) at

time tn. (Here, we use subscript T to represent temperature error. For other states,

we use subscript V for meridional wind, U for zonal wind and PS for surface pressure.)

The overall performance of the assimilation scheme is measured by the time average

of the rms error over a long time interval T ,

〈〈ea
T
〉〉 =

1

T

n0+T
∑

n=n0+1

rms (ea
T,n), (5.30)

where n0 indicates the time we allow for the analysis to converge near the true state.

In our experiments, we allow n0 = 10 days to converge and hence the rms error is

averaged over next T = 81 days to obtain 〈〈ea
T
〉〉. Similarly, in order to assess the

ability to correct for the model bias, we examine the analysis bias, 〈ea
n〉, and the

forecast bias,
〈

eb
n

〉

, which are defined by the time average of ea
n and eb

n over the time
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interval T . For example, the analysis bias for the temperature can be obtained by

〈ea
T〉 =

1

T

n0+T
∑

n=n0+1

ea
T,n. (5.31)

We also examine the rms of the bias over the horizontal grids to assess overall bias

correction performance for each vertical level. For the temperature bias, we obtain

its rms by

rms (〈ea
T
〉) =

√

√

√

√

1

N ×M

N
∑

i=1

M
∑

j=1

〈ea
T
(i, j)〉2. (5.32)

5.3.2 Data assimilation without bias correction

In our first numerical experiment, we try to keep the analysis observation,

ȳa
n, and the background observation, ȳb

n, close to the true state at the observation

location, yt
n, for all time without explicitly accounting for the model error. That

is, we just use a covariance inflation scheme to achieve our goal. General purpose

of employing a covariance inflation is to correct for the loss of covariance in the

ensemble due to nonlinearities and sampling errors. Covariance inflation can also

stabilize the Kalman filter in the presence of model errors [70, 96]. In our numerical

experiments, we employ multiplicative covariance inflation on the analysis error

covariance,

Pa
r

→ (1 + γ)Pa
r
, (5.33)

where γ is an inflation coefficient. From eq. (5.25), this is equivalent to multiplying

the analysis perturbations by
√

1 + γ and since the inflation does not depend on the

location in our experiments, we can inflate the perturbation globally, such that

Va →
√

1 + γVa. (5.34)

Figure 5.6 (a) shows the rms values of the analysis bias and forecast bias
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Figure 5.6: Surface pressure analysis and 6-hour forecast rms errors and biases versus
variance inflation without bias correction: The analysis error of surface pressure is
getting smaller as the variance inflation is getting larger. However, the 6-hour
forecast error remains almost the same.

of the surface pressure, rms (〈ea
PS
〉) and rms (

〈

eb
PS

〉

), and Fig. 5.6 (b) shows the

time averaged rms errors of the analysis and forecast, 〈〈ea
PS
〉〉 and 〈〈eb

PS
〉〉, versus

covariance inflation coefficient, γ. Since more weight is put on the observation by

increasing the inflation coefficient, the analysis is getting closer to the observation

and the rms analysis error is decreasing as the inflation coefficient is increasing.

Meanwhile, the forecast rms error does not have significant improvement as the

inflation coefficient increases and has its minimum at around γ = 1.0. By comparing

Fig. 5.6 (a) and (b), we can see that large portion of the error in the surface pressure

comes from its bias and a better analysis of the surface pressure does not produce

a better forecast.

The same characteristics are seen in the zonal wind as shown in Fig. 5.7 where

analysis rms errors, 6-hour forecast rms errors, analysis biases, and 6-hour forecast

biases of the zonal wind for a range of the covariance inflation coefficients are de-

picted. It is apparent that a better analysis does not generate a better forecast

beyond γ = 1.0. We also see that the analysis rms error and bias keep getting

better as the coefficient is increasing until the model states become out of accepted

range for the SPEEDY model at γ = 2.2 like the surface pressure. It is also seen in
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the meridional wind but we do not show this case here.

The temperature error, however, has a little different characteristics. 6-hour

forecast rms errors and biases of the temperature also shows the same characteristics

as the winds and the surface pressure for which the accuracy of them is not improved

beyond certain covariance inflation as shown in Fig. 5.8. Meanwhile, the analysis

rms error of the temperature is not always getting better as the covariance inflation

is increasing. Each height has different optimal values of the inflation coefficient

and even for some coefficients, the analysis rms errors are worse than the forecast

rms errors. For example, we see that the analysis rms error at 700hPa height with

γ = 2.2 is worse than the forecast rms error at the same height with the same

coefficient.

It has been shown that, in local ensemble Kalman filtering, increasing the

inflation coefficient beyond a certain value does not improve the analysis and further

increasing may degrades the performance [70, 8]. In our experiments, however, since

the model error is too large, we see the improvements for large values of the inflation

coefficient. Furthermore, too much increase of the coefficient makes the spread of

analysis ensemble so large that the states of some ensemble members are out of

balance and rejected by the forecast model so that the forecasts corresponding to

those ensemble members are not available. In this experiment, it happens around

γ = 2.2. Even though we could employ a filtering process to balance out the states to

prevent such an event [for example, initialization process can be employed to prevent

spurious gravity waves [59, 58]], we decided not to employ such a process to increase

the inflation coefficient since the 6-hour forecast errors are already saturated around

γ = 1.0 and further increase of γ does not improve the quality of the forecasts.

The forecast bias of the surface pressure,
〈

xb
PS

〉

, with covariance inflation γ =

1.5 is shown in Fig. 5.2. One may notice that the regions with large biases are at

and dear the regions with large orography differences in Fig. 5.3, even though we
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Figure 5.7: Zonal wind analysis rms errors (a), 6-hour forecast rms errors (b),
analysis biases (a), and 6-hour forecast biases (b) without bias correction: Similar to
the case of the surface pressure, the analysis errors become smaller as the covariance
inflation coefficient increases but the forecast errors stay the same after γ = 1.0.
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Figure 5.8: Temperature analysis rms errors (a), and 6-hour forecast rms errors
(b), analysis biases (c), and 6-hour forecast biases (d) without bias correction: The
forecast rms error, the analysis bias and the forecast bias of the temperature become
smaller as the covariance inflation coefficient increases. For the inflation coefficient
greater than 1.0, the analysis rms error of the temperature is greater than the
forecast rms error.
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adjust the surface pressure to compensate the orography difference. We employ a

simple formula to perform the adjustment. Denoting the adjusted surface pressure

for the orography difference ∆z by xb
PS

(∆z)

xb
PS

(∆z) = xb
PS

· exp{g∆z/RT̄}, (5.35)

T̄ = Ts + 0.5 Γ∆z, (5.36)

where xb
PS

is the surface pressure forecast obtained from the SPEEDY model, g =

9.8 m/s2 is the gravitational acceleration, R = 287 J kg−1K−1 is the gas constant

for dry air, Ts is the surface temperature and Γ = −6.5 K km−1 is the lapse rate of

temperature. Although the adjustment formula (5.35) is very simple, the resulting

accuracy of the forecasts are better than that of the forecasts in case that we do

not adjust orography differences, especially in the regions with large orography

differences in our experiments. However, the biases in that region are still large

and the amplitude of the bias is proportional to the amplitude of the orography

difference but some are negatively correlated. The forecast biases of the surface

pressure is also in the region where the orography differences are so small that the

adjustments by the above formula are negligible. As a result, the overall forecast

bias of the surface pressure is still large even after the orography adjustment.

5.3.3 Bias correction for surface pressure

We correct for the bias in the surface pressure since the error in the surface

pressure mostly comes from the bias in the surface pressure unlike other state vari-

ables and hence the correction for the surface pressure bias may result in a significant

improvement in the accuracy of the surface pressure analysis and forecast. Further-

more, the surface pressure variables are included in all the local state vectors even

for the higher levels and, therefore, if the surface pressure becomes more accurate,
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the accuracy of the other state variables in all the levels can also be improved. In

this section, we mainly present the results from the case that we correct the surface

pressure bias with Bias Model II since this scheme is most effective in improving

overall accuracies of the analysis and the forecast.

The observation operator for surface pressure bias correction, ĥ, consists of a

sequence of two operations, the vertical interpolation to obtain background obser-

vation in pressure coordinate and subtraction of the bias estimate from the surface

pressure to correct for the surface pressure bias. That is, we write

ĥ(v) = H(x) −







0

c






, (5.37)

where H is the vertical interpolation operator and c is the estimate of the surface

pressure bias. Note that the interpolation precedes the subtraction. As shown in

Fig. 5.5, an observation at a certain pressure height is assimilated to estimate a

model state at a sigma level whose pressure height is closer to the pressure height

of the observation. The pressure height of this sigma level is obtained by a simple

function of the surface pressure of the model state. Therefore, in order to obtain

the background observation or the analysis observation, we must use the surface

pressure of the model state to obtain the pressure heights of the sigma levels and

interpolate the state variables based on these pressure heights to obtain the back-

ground observation or the analysis observation.

In correcting for the surface pressure bias, we modify the inflation scheme

(5.34) so that each state perturbations and bias perturbations are multiplied by
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different amounts of covariance inflation,

Va →













√
1 + γx Xa

√
1 + γPS Xa

PS

√
1 + γc C

a













, (5.38)

where γPS is the inflation coefficient for the surface pressure state variables, γx is

the coefficient for the state variables other than surface pressure, γc is the coefficient

for the bias estimates, and subscript PS represents surface pressure. Here, Xa, Xa
PS

and Ca are perturbation matrices for state variables and bias estimates as defined

in eqs. (5.19) and (5.20). We keep the ratio of the three coefficient in a sufficient

range in order to prevent some ensemble members from being out of balance for

the forecast model. In general, if we inflate each state variables with different ratio,

it is possible to have one or more ensemble members whose state variables are not

reasonable for the atmospheric states to the forecast model. In our experiments, we

have to keep the ratio of the three coefficients between 1/3 and 3.

In Fig. 5.9, we show the 6-hour forecast bias after we correct for the surface

pressure bias using Bias Model II with the covariance inflation coefficients γx = 1.0,

γPS = 0.4 and γc = 0.8. The initial bias estimate for this experiment has zero mean

and ensemble spread of 10 hPa. Comparing with Fig. 5.2, we can see that the bias

correction scheme significantly reduces the bias in the surface pressure. (Note that

the color-coded pressure scale in Fig. 5.9 is 1/20 of that in Fig. 5.2.) Hence, the

time averages of the analysis and the forecast rms errors for the surface pressure,

〈〈ea
PS
〉〉 and 〈〈eb

PS
〉〉, are significantly improved as shown in table 5.1 such that both

the analysis and forecast rms errors are more than 8 times smaller than before.

The improved accuracy in the surface pressure analysis and forecast leads to

improvement in accuracies in the analysis and the forecast of other state variables

as shown in Figs. 5.10 and 5.11. The time averaged rms analysis error (solid lines)
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Figure 5.9: 6-hour forecast bias of the surface pressure with type II surface pressure
bias correction: Most of the large biases existed in the experiments in Sec. 5.3.2 are
mitigated to the magnitude less than 1 hPa except for the polar areas.

Table 5.1: Time average of the surface pressure analysis and forecast rms error:
Bias correction for the surface pressure with Bias Model II results in a significant
improvement in the analysis and the forecast.

No correction Correction with Bias Model II

〈〈ea
PS
〉〉 7.95 hPa 0.90 hPa

〈〈eb
PS
〉〉 14.25 hPa 1.75 hPa
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Figure 5.10: Time averages of analysis and 6-hour forecast rms errors of the zonal
wind (a) and rms values of the analysis and 6-hour forecast bias of the zonal wind (b)
with and without surface pressure bias correction: Solid lines represent the analysis
rms errors and biases, and dashed lines represent the forecast rms errors and biases.
The accuracy of the forecast is more improved than the accuracy of the analysis. At
the highest level, the analysis error is larger than the case that no bias correction is
performed.

and forecast error (dashed lines) of zonal wind are plotted in Fig. 5.10(a), and rms

values of the analysis bias (solid lines) and forecast bias (dashed lines) are shown in

Fig. 5.10(b) with and without surface pressure bias correction. For the comparison,

we plot the same quantities of the zonal wind using the line with symbol circle ◦

in the case that the surface pressure bias is not corrected. In this case, covariance

inflation coefficient γ = 2.2 is used. The forecast and the analysis is improved at

all pressure levels except the analysis at pressure level 100hPa. The same pattern

is observed in the analysis and forecast errors of the meridional wind variable (not

shown here). In both wind state variables, the forecasts are more improved than

the analyses by correcting for the surface pressure bias.

In Fig. 5.11, we plot the time averaged rms error of the analysis (solid lines)

and forecast (dashed lines) and rms values of the analysis (solid lines) and forecast
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Figure 5.11: Time averages of analysis and 6-hour forecast rms errors of the temper-
ature (a) and rms values of the analysis and 6-hour forecast bias of the temperature
(b) with and without surface pressure bias correction: Solid lines represent the anal-
ysis rms errors and biases, and dashed lines represent the forecast rms errors and
biases. The accuracy of the analysis is better than the accuracy of the forecast. At
the highest level, the biases of the analysis and the forecast are both degraded.

(dashed lines) biases for the temperature. As done in Fig. 5.10, we also plot the same

quantities from the experiments where no bias correction performed. Unlike the

wind variables, for the temperature, the accuracy of the analysis is more improved

than the accuracy of the forecast. Also, both of the analysis bias and the forecast

bias are degraded at the highest level.

In the SPEEDY model, the top and th bottom layer provide a bulk repre-

sentation of the stratosphere and the planetary boundary layer [63] while, in the

NCEP model, several model layers represent these layers. From the experiments

in Sec. 5.3.2, we can see that the dynamics of the bottom layer of the SPEEDY

model represents the planetary boundary layer of the NCEP model than the top

layer represents the stratosphere of the NCEP model and it is still true in case that

the surface pressure bias is corrected.

In fig. 5.12, we plot the rms value (solid line), rms (cb
n), the global spread
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(dashed line), spr (cb
n), and the global mean (dash-dotted line), ave (cb

n), of the bias

estimate for the surface pressure. From eq. (5.29), the rms value of the bias estimate

at time tn is given by

rms (cb
n) =

√

√

√

√

1

N ×M

N
∑

i=1

M
∑

j=1

[cbn(i, j)]2, (5.39)

where cb
n is the bias estimate of the surface pressure forecast at time tn. The global

mean is an averaged value of the bias estimate over the globe at time tn,

ave (cb
n) =

1

N ×M

N
∑

i=1

M
∑

j=1

cbn(i, j), (5.40)

and the global spread is the rms value of the bias estimate whose global mean is

eliminated,

spr (cb
n) =

√

√

√

√

1

N ×M

N
∑

i=1

M
∑

j=1

[cbn(i, j) − ave (cb
n)]

2. (5.41)

The bias estimate captures the global shape of the surface pressure bias within few

days and increases slowly after that due to the seasonal variation of the surface

pressure in the NCEP model. This seasonal variation is also observed in the state

variable of the surface pressure, xPS. That is, the seasonal variation is split to the

state variable, xPS, and the bias estimate, c.

The global mean of the bias estimate increases throughout the experimental

period but slows down at the end of the interval. As the bias estimate increases, the

model state for the surface pressure also increases. It indicates that the SPEEDY

model with the states that has an air mass higher than normal provides a dynamics

close to that of the NCEP model. In our experiments, the bias estimate finds

the global shape of the surface pressure bias, but it slowly finds the difference of

the surface pressure between the two models that leads to higher air mass in the
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Figure 5.12: Rms, global spread and global average of the bias estimate: In a few
time steps, the bias estimate captures the global structure of the bias in the surface
pressure and slowly push the surface pressure to a high air mass state where the
SPEEDY model can provide a dynamics similar to that of the NCEP model.

SPEEDY model. Finding the global shape of the surface pressure bias does not

require the other state variables to be changed since the surface pressure is corrected

for the bias after the interpolation and it does not change the balance between state

variables. However, finding the optimal air mass requires the other state variables to

be changed to have a proper balance with increased surface pressure and it happens

very slowly in our experiments. In order to further examine the increase of the mean

of the bias estimate, we reuse the ensemble of the final forecast (i.e., the forecast at

0000 UTC on 1 April 2004) as the initial ensemble states at time t0 (i.e., 0000 UTC

on 1 January 20004) and run another 3 months data assimilation. We keep reusing

the final forecast again until the mean of the bias estimate does not increase during

3 months experimental period. After 3 reuse, the mean of the bias estimate keeps

the value around 29.5 hPa. During this process, the accuracy of the forecast and

the analysis remains the same indicating that the process is a normal phenomenon.
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5.4 Conclusions and discussion

In this chapter, we presented a modified Ensemble Transform Kalman Filter

(LETKF) scheme to correct for model bias and investigated the potential benefit of

correction for the bias in the surface pressure.

We simulated the situation of numerical weather prediction by using Global

Forecast System of the National Centers for Environmental Prediction with high res-

olution to generate the true atmospheric states while using the SPEEDY (Simplified

Parametrization, primitivE-Equation DYnamics) model to perform forecasts with

low resolution. And hence, in the simulated situation, the true atmospheric states

and the forecast model states have different resolution, different boundary condi-

tions and different physical parameterizations. We also assumed that the observation

takes place in pressure coordinates while the model state evolves in σ-coordinates.

We introduced three different bias models for use in the state space augmen-

tation method. Bias Model I is based on the assumption that the best forecast is

obtained when the analysis at the previous assimilation time is as close to the true

state as possible. In Bias Model II, it is assumed that there exists a transformation

from trajectories of the model state to the trajectories of the true atmospheric state.

Bias Model III combines Bias Model I and Bias Model II. We found that, among

the above bias models, correcting the bias in the surface pressure using Bias Model

II is most effective in such a way that it improves the accuracies of the analyses and

the forecasts of all the atmospheric states considered here, surface pressure, zonal

wind, meridional wind and temperature.

In our experiments, it seems that the SPEEDY model with high air mass

better follows the dynamics of the NCEP model than that with normal air mass

does. Our bias correction scheme successfully estimates this difference as well as the

spatial distribution of the surface pressure bias. It takes only few days to correct

for the bias in the surface pressure while it takes long time to reach the state with
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optimal air mass. However, it is shown that the slow movement to the optimal state

is normal and the performance is not degraded along the process.

We also found that it is important to make the covariance inflation coefficients

different for each state estimates and the bias estimates to have the bias correction

scheme work properly. However, the difference should not be to large otherwise the

states of some ensemble members of the analysis from the inflated covariance tends

to be out of balance for the forecast model.

Bias Model II can also be considered as a model for the observation bias with

a different situation and is applicable to the correction for the observation bias. In

reality, both the forecast model and the observation can be biased depending on the

nature of the observation and the model states and it may be reasonable to consider

the forecast model bias and the observation bias at the same time. It is, however,

not clear that the model bias and the observation bias can always be correctly and

simultaneously identified in the analysis [23] although it has to be considered in the

future to improve the quality of the forecasts.

Finally, we note that it is possible to further improve the accuracy of other

variables, for example, the temperature, by estimating the bias in the temperature

in addition to estimating the bias in the surface pressure. It may increases the

dimension of the augmented local state vectors and hence require more ensemble

members to properly estimate the covariance matrices. One can reduce the dimen-

sion of the augmented state by employing a different parameterization for the bias.

For example, it can be assumed that the bias in the surface pressure is proportional

to the surface temperature as done by Fertig et al. [32] in correcting for the bias

in the satellite observation. Effective parameterization of the bias lead to smaller

number of ensemble members or inclusion of many bias estimates that can mitigate

the effect of model bias in many atmospheric states. It might even be possible to

differentiate the bias in the forecast model and the bias in the observation model

117



and hence they can be corrected at the same time.
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Appendix A

Decay of Qm with Increasing m

In this Appendix we give a heuristic argument suggesting that, in typical

cases, it is reasonable to hypothesize that, for large m, Qm decays exponentially

with increasing m. For definiteness, we consider the case of a map xn+1 = f(xn) of

the real line, −∞ ≤ x ≤ +∞, which has a single chaotic attractor in some bounded

region of x, and we also assume that this attractor has a natural invariant measure

[also called a SRB (Sinai-Ruelle-Bowen) measure]. By definition the natural measure

is the unique invariant measure, ν, such that, for any smooth function s(x), the time

average of s(xn) over an orbit is
∫

s(x)dν for orbits generated by Lebesgue almost

every initial condition x0 in the basin of attractor. Recalling that g(x) and q(x)

are smooth bounded functions, we anticipate that the decay of Qm does not depend

critically on details of these functions. Thus we consider the illustrative example of

Eq. (2.19). Using Eq. (2.8) we express Eq. (2.19) as

Qm = 〈f ′(xn)f ′(xn−1) · · · f ′(xn−m+1)〉.

The average, 〈· · · 〉, is over an infinite number of initial conditions x
(i)
0 which are

distributed on the attractor according to the natural invariant measure. Since the

natural measure is invariant,

Qm = 〈f ′(xm−1)f
′(xm−2) · · · f ′(x0)〉

= 〈δm〉.

The quantity 〈δm〉 has a simple geometric interpretation. Imagine that, at time

m = 0, we displace all the initial condition by the same amount dx0. That is,
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we rigidly translate the natural invariant measure by an amount dx0. Thus, at

any subsequent time m, 〈δm〉dx0 is the displacement of the evolved orbits averaged

over all orbits. In other words, 〈δm〉dx0 is the displacement of the centroid of

the evolved measure from the centroid of the natural invariant measure. Since,

by definition, the natural invariant measure is generated by the time average of

Lebesgue almost any initial condition in the basin of the attractor, 〈δm〉 should

relax to zero as m increases. Thus, for the example (2.19), our hypothesis that Qm

decays exponentially, is equivalent to the hypothesis that the displaced centroid of a

cloud of orbits relaxes exponentially to its equilibrium value. This is rigorously true

for the case of hyperbolic attractors [100], and we also adopt it as a useful working

hypothesis for the general case. We caution, however, that this hypothesis may not

always be valid (see Sec. 2.3.3 and Appendix B).
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Appendix B

Orbit Densities for Ensembles of Logistic Maps

In this Appendix, we attempt to gain understanding concerning the observed

lack of convergence found for the example in Sec. 2.3.3. To do this we numerically

examine how the orbit density evolves after a small perturbation from the natural

time asymptotic invariant density. We evolve a large number of orbits (107 with

µ = 3.9), initially uniformly distributed, forward in time for many iterates, (to

approximately reach the invariant orbit density), and, by duplicating, two identical

orbit distributions are created. Then, one of the orbit distributions is perturbed

by adding the same small perturbation δx0 = 10−3 to every orbit points. We then

evolve both sets of orbits forward in time and observe the orbit densities to see how

the perturbed density relates to the unperturbed invariant density. We divide the

interval (0, 1) into 1000 subintervals, count the number of orbits in each subinterval,

normalize the numbers, and plot these numbers for each subinterval. This histogram

procedure yields an approximation to the density with resolution 10−3.

In Figure B.1, we plot our histogram approximation of the orbit densities for

the perturbed case (grey) and for the unperturbed case (black) in a small interval

0.35 ≤ x ≤ 0.55. The perturbation δx0 = 10−3 rigidly shifts the original invariant

density slightly to the right. Setting t to 0 at this moment, Figure B.1(a) and (b)

show the orbit densities at t = 4 and t = 10 respectively. We find that the perturbed

density is distorted significantly by around t = 8 so that the outstanding peaks

in the perturbed density do not match those in the unperturbed (i.e. invariant)

density. Thus the small perturbation δx0 in the orbit location points leads to large

perturbations in the absolute value of the histogram approximation of orbit density

121



0.35 0.4 0.45 0.5 0.55
0

1

2

3

4

5
x 10

−3

x

D
en

si
ty

 D
is

tr
ib

ut
io

n
Unperturbed
Perturbed

0.35 0.4 0.45 0.5 0.55
0

1

2

3

4

5
x 10

−3

x

D
en

si
ty

 D
is

tr
ib

ut
io

n

Unperturbed
Perturbed

Figure B.1: The histogram approximated orbit densities in the interval [0.35, 0.55]
for ensembles of 107 identical logistic maps with parameter µ = 3.9 with the initial
perturbation δx0 = 10−3 (grey) and without perturbation (black): We set time t to
0 at which the perturbation is applied. (a) and (b) show the densities at t = 4 and
t = 10 respectively.

near points where the histogram approximated density has strong narrow peaks.

After t = 8, the histogram approximated perturbed density becomes closer to the

histogram approximated invariant density. However, it is to be expected that as

the resolution of the histogram is increased, large differences in the approximated

densities would be observed out to later and later times. This is a reflection of the

singular nature of the density and suggests that the perturbation theory approach

is not valid.
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Appendix C

Background Error Covariance Matrix

In Fig. C.1, we plot the Frobenius norms of Pb
k and Pb

k − Pb
k−1 for each iter-

ation step k of our algorithm for determining Pb. Here, we use 5 × 104 samples of

background error vectors to estimate Pb for each iteration step assuming that the

observational error variance is σ2
v = 10−4 (the value used in Section 3.3). We see

that, after about 10 iteration steps, ||Pb
k|| and ||Pb

k−1|| changes only very little, and

||Pb
k − Pb

k−1|| is at least one order of magnitude smaller than ||Pb
k||.

In Fig. C.2, we show the estimate of the background error covariance at iter-

ation step k = 40. (We note that beyond k = 5, the estimate maintains a similar

shape throughout the process.) The background errors at neighboring locations are

correlated, but the spatial correlation length is rather small.

We also obtain an estimate of the background error covariance matrix in the

case when observations are not taken at location 20. The evolution of the Frobenius

norms of Pb
k and Pb

k−Pb
k−1 (not shown) is very similar to that shown in Fig. C.1. On

the other hand, important changes can be observed in the shape of the Pb (Fig. C.3).
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Figure C.1: Convergence of the Frobenius norms of Pb
k and Pb

k−Pb
k−1 for Experiment

1.
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Figure C.2: Pb after 40 iteration steps for Experiment 1.
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Figure C.3: Pb after 40 iteration steps for Experiment 2.

First, the diagonal elements of Pb
k are not identical any more; a new narrow region of

elevated background errors emerges in the neighborhood of the missing observation.

Interestingly, this region is centered at location 23 and not at location 20 where

observations are not taken. This is due to the wave-like propagation (Fig. 3.2)

of initial uncertainty toward the higher indices in the Lorenz-96 model. Since Pb

describes errors in 10 time-step model integrations, the error propagation leads to

a shift in the location of the largest errors toward the higher indices. Secondly, the

off-diagonal elements of Pb describing covariances between locations near to location

20 become somewhat larger.
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