
TECHNICAL RESEARCH REPORT

A Tool Optimization Interface for a
Semiconductor Manufacturing System

By Ryan Thomas
Advised by Dr. Jeffrey Herrmann

August 18, 2000

Contents
Introduction / Abstract
Algorithm – Explanation of the program can do and the theory behind why
Example – Working through an example, demonstrating the program piece by piece
Algorithm Selection – A detailed summary of other possible methods with pros and cons
Summary / Future Suggestions
REU – Explanation of the REU program and how it benefited this work
References

2

A Tool Optimization Interface for a Semiconductor Manufacturing
System

Ryan Thomas
August 16, 2000

Introduction / Abstract

This paper will serve as the documentation for the Tool Optimization code of the HSE software. The
purpose of the software is, simply, to enable a user to optimize a factory’s tool selection. This will be
added to the existing Factory Administrator which enables users to understand the effects of changes in
many parts of the manufacturing process (i.e. Temperatures, Pressures, etc.).

To accomplish this an interface was designed via the DELPHI programming language that can take inputs
from a user as well as factory details from an Excel spreadsheet, run simulations, determine an optimal tool
configuration, and output this data as easily as possible to the user.

Figure 1

This process is shown above in Figure 1. The Interface will guide the Simulation as many times as needed
to perform its gradient analysis. After the program is complete, it determines a best-case tool configuration
that meets the user’s throughput while maintaining to his budget. The interface will output how many of
each tool to purchase as well the best possible tool allocation (usage) for each tool.

Algorithm

The algorithm will be explained in two parts. The first part will be the initial heuristic. During the
heuristic, the optimization program will determine if a system exists that can meet throughput demands
while performing under a maximum cost (budget). If an acceptable system exists, the heuristic will
determine the minimum number of each tools and how each tool should be allocated The second part will
be a “search” algorithm to determine the best use of any money remaining after the initial purchases are
made by the heuristic. The second part will entail controlling a simulation loop to find exact cycle times of
the system.

Part 1
Step 1: Read in all inputs

The interface takes direct inputs for throughput (λ, wafers per hour) and budget. In addition, it will read
processing times, tool costs, and existing tools from an Excel Spreadsheet. Each tool and its characteristics
will be stored based on its type. For example, the number of each type of tool is necessary and stored in an
array called NumCount[i]. The following is a list of variable initialized by this step and their notations.

NumCount[i] : The number of tools for each step. i = 1 represents clean tools, and so on.
NumProc[i] : The number of processes that a group of tools need to perform.
Cap[i,j,k] : Capacity of a tool for a process. Represents the capacity of tool j for the kth process of type i.

Inputs from user

Constraints from
Excel

Delphi
Interface

Factory
Simulation

3

Step 2: Determine capacities, U, and ranks
Step 2a: Finding U

Each tool will have a known capacity for each process. For example, if there are three clean processes for
which a certain tool could be used, the tool would have three capacities representing the number of wafers
that it could process for each of the cycles. Using this capacity, we can find a cost-efficiency ratio, U.

U[i,j,k] = Cap[i,j,k] / Cost[i,j]

Note that cost is independent of process and only takes on a two dimensional array. After this calculation,
we have three matrices (one for Clean, Ti Liner, and W CVD) of cost-efficiencies for each tool at each
process.

Step 2b: Finding HighU

It is obvious that in trying to optimize tool selection we want the most bang for the buck, or the most
production for each dollar. Assuming this to be true it is important to know which, of the possible tools for
each process, can complete the process’s throughput at the lowest cost. To do this, we will find the highest
U for each process, and the respective tool(s) that can produce that U.

Once this is complete, we have three lists (not matrices this time) of Uhigh[i,k]. That is, when i = 1, we
have a list of x (where x = NumProc[1]) entries that represent the highest possible U for that process.
Additionally, we have a corresponding list x entries long of UhighTool[i,k] that represent the high tool
number for the jth process of type i.

Step 2c: Ordering HighU

As stated above, the purpose of the heuristic is find the minimum solution to the problem: the least
expensive configuration that still meets the throughput constraint. In order to this, we may need tools to
operate on wafers during more than one cycle. A tool that “overlaps” (that is, used for more than one
cycle) cycles will have more capacity than it was originally needed. However, this extra capacity may
create a situation where less of another tool is needed. In order to select which tool(s) may overlap, we
want to know which efficiency is the most efficient. Therefore, the program will rank the efficiencies of all
of the HighU’s, and this will be the order in which tool are purchased.

Step 3: Purchasing the minimum number of tools

Using the Process order found in Step 2c, the program will purchase the necessary tools for the first
process. This is an easy calculation since the number of tools (X) simply equals:

For each Process, where j = HighTool, X[i,j,k] = λ / Cap[i,j,k]

Where λ represents desired throughput and X is rounded up to the next integer. This expression then tells
us that the number of tools j needed of type i to complete the kth process is throughput divided by the
capacity for that tool for that process.

In case the capacity of these purchased tools exceed the required throughput, any extra time that it may
have (after completing the cycle it was just purchased for) is dedicated to the cycle of next highest rank.
The throughput that needs to be met for this cycle is now the original throughput minus any production that
this last purchase can accomplish.

λnew = λ - {[1 – (X[i,j,k] * λ / Cap[i,j,k])] * Cap[i,j,k+1]}

where k + 1 represents the cycle of next highest rank. From this, the program is able to purchase the next
set of tools using the above equation for X, but λ is now λnew. This is repeated for all processes.

4

Step 4: Tool Allocation

Now that we know the minimum number of tools to meet throughput, the program has to configure them to
optimize cycle time. In order to run the simulation, Factory Explorer (FX) needs to be told what
percentage of each process each tool will complete. For example, if tools 1 and 2 are going to be used for a
given process tool 1 will clean twice as many wafers in this cycle than tool 2, the FX times are 66.7% and
33.3%, respectively. If these tools are then used for multiple other cycles, it can be very complicated for
the user to determine what percentage of a tool’s time is actually being spent on each process. For this
reason, the program exports time allocations in both formats. The interface reads the percentage of a tools
time to be allocated per process and the spreadsheet takes the percentages that represent a ratio of the
cycle’s throughput. Additionally, the program must account for the cases where a tool has the highest
efficiencies for more than one process or assumes the role of an “overlap” tool. Therefore, we are able to
find a percentage of time of the tools that are purchased for a cycle to do that job.

Time[i,j,k] = λ / X[i,j,k] * Cap[i,j,k]
And

1 – Time[i,j,k] =MoreTime[i,j,k+1]

Once we have purchased tools for every process, we must sum the number of the tools of each type. For a
given process, Time is the same as above multiplied by the ratio of tools dedicated to that process over the
sum of the tools. The following is the conversion for the Time variable.

Putting all of this together, we can calculate an actual time based on the sum of the tools of a certain type,
an MoreTime that was allocated to the process, and the leftover time from the last process which is divided
into all processes, again where X[i,j] is the sum of all tools j.

ActualTime[i,j,k] ={ Time[i,j,k] * X[i,j,k] / X[i,j]} + {MoreTime[i,j,k-1] * X[i,j,k-1] / X[i,j]} +
{MoreTime[i,j,lastprocess] * X[i,j,lastprocess] /(NumProc[i] * X[i,j])}

Where Σ X[i,j,k] is the sum of X for a given tool over all j processes. This number is then converted to a
time in terms of each process for the spreadsheet. To do this, we must know a potential sum of all
capacities (how many wafers could be processed by all tools in their current dedications). We can then
multiply the Time from above by the ratio of the capacity for that process (and tool) over the sum of
capacities:

Available Capacity[i,j,k] = ActualTime[i,j,k] * X[i,j] * Cap[i,j,k]
and

FXFlow%[i,j,k] = 100% * {Available Capacity[i,j,k] / Σ Available Capacity[i,j,k] }

Step 5: Output and Error Check

Having determined the minimum combinations of tools to purchase and the best allocation for these tools,
this data is now output to the user via the programs interface. A copy of this data is also sent to the Excel
Spreadsheet for future use in Factory Explorer. This information in automatically saved so a user could
access it later or compare its results to another tool configuration. Additionally, this info, along with the
tool costs allows us to find a Minimum Cost for the system.

TotalCost = Σ {X[i,j,k] * Costi[i,j,k]}

Should the minimum configuration cost exceed the budget, then it can be determined that there does not
exist a possible tool configuration that can meet throughput. If this is the case, the program recognizes this
fact and alerts the user to his error.

After the Heuristic is run, the interface will appear as shown below. The red “Results” section on the right
displays the given information of a tool (name, use, and cost) as well as the total number of tools purchased

5

during the heuristic. The matrices on the left represent each tool group (Clean, Ti Liner, W CVD). Each
number is ratio of the tool’s total time spent on each process. If a tool is not used for a process, the number
reads zero. The yellow boxes on top of the interface represent locations for the user’s input. As discussed
earlier, a user will enter a desired throughput, a maximum budget and the name and location of the Excel
file where tool data can be found.

Part II
Step 1: Find heuristic’s cycle time1

The heuristic being complete, the program has found the absolute minimum combination of tools that can
meet throughput. Additionally, it has alerted the user that there is extra money to be used to improve cycle
time. Currently (with such a low number of tools) it is common to have extremely high cycle times. In the
example that follows, we will see that the heuristic provides a minimum solution that takes a cycle time of
almost 200 days!

To find the “initial” cycle time, the program runs Factory Explorer with the tool configurations that it
found. This “initial” time will be referred to as the Lower Cycle Time. The program will then run the
simulation with the same figures except one more of the first tool, and then one more of the second tool,
and so on for every tool. From these simulations the program will read in the cycle times of the system if

1 It should be noted that there are several methods for gradient estimation. The one used in the Tool
Optimization software is the Forward Difference Method. These methods were researched by Praveen V.
Mellacheruvu and the FD Method was chosen as the most practical for this application. For more
information regarding the Method, reference Optimization of Tool Configurations for a semiconductor
Manufacturing System, Mellacheruvu, Fu, Herrmann, June 2000.

6

one more of each tool were added to the system. Using these cycle times, we are able to calculate a
gradient using the equation for the Forward Difference Gradient Method.

For our purposes, and since the Lower Cycle Time is constant, we can simplify the equation to

g(Θ) = 1 / N * Σ (Higher Cycle Time – Lower Cycle Time)

N represents the number of repetitions for the simulation. This makes the gradient an average of the
differences between the Lower Cycle Time and the Higher Cycle time for each tool. These gradients can
then be used to add tools to the system under the budget constraint.

Step 2: Adding Tools Based on Gradient Analysis

The Program will now have a matrix containing the gradient for each tool if it were added to the system.
The program will add one tool of the type with the highest gradient. If there is room under the budget, the
program will add one tool for a different process (again with the highest gradient). If there is still room in
the budget, a third tool (of the third type) is added.

If the budget is large enough that there is still room in the budget to add tools, the gradient process is
repeated. It is too difficult to estimate how the gradient analysis will react after one tool of each type is
added. This loop is continued until there is no longer room under the budget to purchase new tools. If the
first tool is too expensive, the program will substitute a less expensive tool of the same type if one exists
with a positive gradient. If no more tools can be added, the simulation is run once more for a final cycle
time.

Example

The example we will consider consists of 12 possible tools, 4 of each type. They will be used in a
manufacturing set-up that performs each operation (Clean, Ti Liner, and W CVD) three times.

Figure 2a

Figure 2b

Figure 2a shows the process sheet with the order of the processes. Factory
Explorer and the Tool Optimization Program read in each process until
another is listed. In the blown-up picture (Figure 2b) it is easy to see that
there are 4 tools available for the CLEAN2 Process. Since Factory Explorer
assumes that they are listed in the same order as the tool sheet (shown below
in Figure 3), the Program makes the same assumption. This means that for
the example, the first tool takes .55 hours to process one wafer, the second
takes .62 hours, and so on. Their capacities, then, are the inverse of these
numbers.

Both Factory Explorer and the Tool Optimization Program use this sheet to
determine the number of cycles for each process.

7

From the above data, the Program calculates 3 matrices of capacities and cost-efficiencies. Additionally,
we are going to assume the user has entered a through put of 5 wafers per hour and a maximum budget of
$50,000.

λ = 5
Money = 50,000

Step1: Read in Inputs

TOOL COST TOOL COST TOOL COST
AMAT2CLEAN 1000 AMAT2tiliner 2500 novellus3CVD 6000
Novellus1clean 2000 Amat3tiliner 3000 novellus2CVD 5400
Novellus2clean 2500 Novellus3tiliner 1200 AMAT2cvd 7200
Hitachi2clean 4500 Lam2liner 8500 silicon3cvd 8700

PER LOT PROCESSING
TIME

CAP

TOOL NAME CLEAN 1 CLEAN 2 CLEAN 3 CLEAN 1 CLEAN 2 CLEAN 3
AMAT2CLEAN 0.41 0.55 0.8 2.439024 1.818182 1.25
Novellus1clean 0.8 0.62 0.6 1.25 1.612903 1.666667
Novellus2clean 0.666 0.12 0.2 1.501502 8.333333 5
Hitachi2clean 0.363 0.355 0.1 2.754821 2.816901 10

TOOL NAME TI 1 TI 2 TI 3 TI 1 TI 2 TI 3
AMAT2tiliner 0.2 0.3 0.7 5 3.333333 1.428571
Amat3tiliner 0.137 0.15 0.4 7.29927 6.666667 2.5
Novellus3tiliner 0.125 0.25 0.5 8 4 2
Lam2liner 0.2 0.2 0.6 5 5 1.666667

TOOL NAME W 1 W 2 W 3 W 1 W 2 W 3
novellus3CVD 0.1 0.15 0.2 10 6.666667 5
novellus2CVD 0.1333 0.16 0.35 7.501875 6.25 2.857143
AMAT2cvd 0.142 0.08 0.15 7.042254 12.5 6.666667
silicon3cvd 0.1026 0.09 0.099999 9.746589 11.11111 10.0001

8

Step 2a: Find U’s

COST CAPACITY
TOOL NAME CLEAN 1 CLEAN 2 CLEAN 3
AMAT2CLEAN 0.002439 0.001818 0.00125
Novellus1clean 0.000625 0.000806 0.000833
Novellus2clean 0.000601 0.003333 0.002
Hitachi2clean 0.000612 0.000626 0.002222

TOOL NAME TI 1 TI 2 TI 3
AMAT2tiliner 0.002 0.001333 0.000571
Amat3tiliner 0.002433 0.002222 0.000833
Novellus3tiliner 0.006667 0.003333 0.001667
Lam2liner 0.000588 0.000588 0.000196

TOOL NAME W 1 W 2 W 3
Novellus3CVD 0.001667 0.001111 0.000833
Novellus2CVD 0.001389 0.001157 0.000529
AMAT2cvd 0.000978 0.001736 0.000926
Silicon3cvd 0.00112 0.001277 0.001149

Step 3: Purchase minimum tools

Going in the order found in Step 2c, we start with the clean tools. The first process is CLEAN 2 where tool
number 3 is the High Tool. For the 2nd Process, the 3rd tool has a capacity of 8.33. Therefore, we only need
to purchase one tool to complete the throughput of 5.

Before we go to the next Cycle (CLEAN 1), we need to find the next throughput.

λnew = λ - {[1 – λ/(Cap[i,j,k]* X[i,j,k])] * Cap[i,j,k+1]}
λnew = 5 – {[1-(5/8.33*1)] * 1.50} = 4.40

The high tool for the second Clean Process (CLEAN 1) is tool 1 with a capacity of 2.44.

4.40 / 2.44 = 1.80, which we round up to two. This cycle continues for all cycles of all processes. Note
how the program has already cut costs by “overlapping” the 3rd tool purchase for CLEAN 2. If we were to
fill a throughput of 5, then we would have needed to purchase 3 of the 1st tool for CLEAN 2. This would
have wasted at least $1000. After completing the process, we see that the heuristic finds the following
tools:

Step 2b: Rank U’s

The Cost-Capacities are ranked for each
process-cycle.

Step 2c: Order HighU

HIGH TOOL HIGH U
CLEAN 1 1 0.002439
CLEAN 2 3 0.003333
CLEAN 3 4 0.002222
TI 1 3 0.006667
TI 2 3 0.003333
TI 3 3 0.001667
W 1 1 0.001667
W 2 3 0.001736
W 3 4 0.001149

ORDER
S

CLEAN TI W
First 2 1 2
Second 1 2 1
Third 3 3 3

9

TOOL PURCHASES
Tool # X Tool # X Tool # X

AMAT2CLEAN 1 2 AMAT2tiliner 1 0 novellus3CVD 1 1
Novellus1clean 2 0 Amat3tiliner 2 0 novellus2CVD 2 0
Novellus2clean 3 1 Novellus3tiliner 3 5 AMAT2cvd 3 1
Hitachi2clean 4 1 Lam2liner 4 0 silicon3cvd 4 1

Step 4: Tool Allocations

Once again, we use the order as found in Step 2c. Beginning with CLEAN 2, we find the minimum time
for the tool that was originally dedicated to that process. This is simply a ratio of Potential capacity under
needed throughput. For the first tool, of which we purchased one, the time needed to complete CLEAN 2
is:

5.00 / (1 * 8.33) = .60024, which means that 60.024% of its operations, this tool is working on CLEAN 2.
The other 1 - .60024 is allocated to the next cycle. When we reach the last process (such that there is no
next cycle for the remaining time to do) the remainder is divided by the number of cycles and shared
between them. This will help alleviate the cycle time at all cycles in a process. The process is completed
for all processes. For this example we arrive at the following Times:

Clean1 Clean2 Clean 3
AMAT2CLEAN 1 0.90187687 0 0.092123123
Novellus1clean 2 0 0 0
Novellus2clean 3 0.4 0.6 0
Hitachi2clean 4 0.17075513 0.17075513 0.65848973

Ti 1 Ti2 Ti3
AMAT2tiliner 1 0 0 0
Amat3tiliner 2 0 0 0

Novellus3tiliner 3 0.167 0.292 0.542
Lam2liner 4 0 0 0

W1 W2 W3
novellus3CVD 1 0.077464788 0 0.8225321
novellus2CVD 2 0 0 0

AMAT2cvd 3 0.6 0.4 0
silicon3cvd 4 0.3204226 0.3204226 0.35915467

For the clean process, the time allocations were fairly simple since each process had a unique tool with a
HighU. This was obvioulsy not the case with the Ti Processes since the same tool actually has the HighU
for all three cycles. In this case an initial time was calculated based on the total capacity bought at that
cycle divided by the thoughput for that cycle. In other words, each percentage was a percentage of the time
of the tools bought by that cycle, not of all of the tools. To convert this to the later we multiply this
percentage by the ratio of the number of tools bought by that process over the total number of that tool
type.

The program will also calculate percentages for each tool as a ratio of time for each process. To do this it
simply takes the above matrix and multiplies each by the capacity dedicated to that process over the total
capacity for that process.

For example, for the first cycle of clean, there are three tools that help complete the process: Tool 1, 3, and
4. We know the percentage of each tool’s time that it is going to dedicate to this process, the total number

10

of that tool, and the capacity of that tool do complete CLEAN 1. Using this info, we can sum the possible
capacity for each tool (and add them to find the sum).

Sum = (0.90187687 * 2 * 2.439024) + (.4 * 1 * 1.501502) + (0.17075513 * 1 * 2.754821) = 5.4683

Capacity for Tool 1 = (0.90187687 * 2 * 2.439024) = 4.39939

FXFlow% for Tool 1 = 4.39939 / 5.4683 = .8042

Therefore, the FXFlow% for the first tool for the first process is 80.42%. This process is again
completed for every cycle. For this example we arrive at the following FXFlow%:

FXFlow
%

TOOL NAME CLEAN 1 CLEAN 2 CLEAN 3
AMAT2CLEAN 80.4219 0 3.591514
Novellus1clean 0 0 0
Novellus2clean 10.9791 91.22422 0
Hitachi2clean 8.599002 8.775777 96.40849

TOOL NAME TI 1 TI 2 TI 3
AMAT2tiliner 0 0 0
Amat3tiliner 0 0 0
Novellus3tiliner 100 100 100
Lam2liner 0 0 0

TOOL NAME W 1 W 2 W 3
novellus3CVD 9.536443 0 56.22295
novellus2CVD 0 0 0
AMAT2cvd 52.01696 58.4095 0
silicon3cvd 38.4466 41.5905 43.77705

Step 5: Output and Error Check

All of the above data is outputted to the interface and to Excel. The total cost is

TotalCost = (2 * 1000) + (1 * 2500) + (1 * 4500) + (5 * 1200) + (1 * 6000) + (1 * 7200) + (1 * 8700)
Total Cost = $36,900

This is under the budget of $50,000, so no error will appear. There is a total of $13,100 extra.

Part II
Step 1

The Lower Cycle Time for this system was found to be 4315.6 hours, almost 200 days.

11

Step 2
The following chart displays the Cycle Times and respective gradients for each tool.

Upper Cycle Time Lower Cycle Time Gradient Cost
Tool (Hours) (Hours) ($)

AMAT2CLEAN 1,1 2849.3 4315.6 1466.3 1000
Novellus1clean 1,2 3077.6 4315.6 1238 2000
Novellus2clean 1,3 1831.3 4315.6 2484.3 2500
Hitachi2clean 1,4 1236.1 4315.6 3079.5 4500
AMAT2tiliner 2,1 4300.2 4315.6 15.4 2500
Amat3tiliner 2,2 4315.6 4315.6 0 3000

Novellus3tiliner 2,3 4304.7 4315.6 10.9 1200
Lam2liner 2,4 4308 4315.6 7.6 8500

novellus3CVD 3,1 4310.5 4315.6 5.1 6000
novellus2CVD 3,2 4316.6 4315.6 -1 5400

AMAT2cvd 3,3 4308.8 4315.6 6.8 7200
silicon3cvd 3,4 4384.4 4315.6 -68.8 8700

From this data, the program sees that the greatest gradient (by far) is that of the Hitachi2clean
tool. It will add one since the cost for one of these is less than the money available. The
available money is now

Money = Money – Cost
Money = $13,100 - $4,500 = 8,600

The next tool to purchase is an AMAT2tiliner for $2,500: hence we have 6,100. Since the next
tool is an AMAT2cvd, the program wants to purchase it. However the cost exceeds the
remaining money. Because of this condition, the program will look for a less expensive CVD tool
with a positive gradient. The next highest gradient belongs to the Novellus3CVD which costs
$6,000, which is affordable. Since there is only $100 remaining (which is less than the cost for
any tool), no more gradients are calculated.

The final number of tools is as follows:

TOOL PURCHASES
Tool # X Tool # X Tool # X

AMAT2CLEAN 1 2 AMAT2tiliner 1 1 novellus3CVD 1 2
Novellus1clean 2 0 Amat3tiliner 2 0 novellus2CVD 2 0
Novellus2clean 3 1 Novellus3tiliner 3 5 AMAT2cvd 3 1
Hitachi2clean 4 2 Lam2liner 4 0 silicon3cvd 4 1

Algorithm Selection

A lot of time and effort was spent trying to optimize both parts of the algorithm. The heuristic has
proven to work quite effectively. Obviously there are cases where a solution exists that is better
than the one the heuristic would provide. However, the simplicity of the heuristic versus the
results it provides is very effective.

The search part of the program, however, is much more difficult to evaluate. Obviously the most
effective way to add tools would be to run the gradient analysis after each tool is added. This
would eliminate making small jumps where large ones are possible. Additionally, the search
algorithm does not take into account the raw cost of the tool. This means that no matter how

12

much more tool A costs than any tool B, as long as it provides a slightly higher gradient, it will be
purchased over tool B. This makes initially makes little sense. This strategy (Mellacheruvu) is
based on the idea that we want to make the largest leaps in gradients: even though a
combination of another tool(s) may create a higher gradient, we do not have data for this. In
other words, to ensure that this would be better than purchasing the highest gradient, we would
have to simulate every possible combination. This would be incredibly calculation intensive. A
few alternate search algorithms are listed below. Pros and Cons for each are discussed.

Current Method: The current method employs performing a gradient analysis and purchasing up
to one of each type of tool, then repeating the process until budget is met. The benefit of this
method is that for realistic cases it provides relatively accurate outputs and keeps computation
times to a minimum.

Every Case Method: The best possible algorithm would be one that considers every tool
combination that is able to produce a given throughput while remaining under budget. The
program would simulate each of these cases and alert the user of the cost and cycle time of each
case. The dilemma for this case is computation. The algorithm for such a program would be
fairly simple, however for the example used above with 10 repetitions per case, the program
could take several days to run. As the factory becomes larger, this could take weeks, months, or
years. A possible solution to this problem is to perform a much more complicated algorithm to
narrow the field to, say, the best possible 100 cases. We could run one simulation for each of
these, choose the top 10 and run 10 repetitions for each of these. This would mean that there
would be 200 runs, which could be completed in approximately 2 hours.2

Gradient Every Tool Method: This method is similar to the current method except that it would
perform a new gradient analysis for every tool purchased. This may not cause too large of a
problem unless the budget is far greater than the cost of the heuristic’s solution. In some of these
cases, this method could also take up to a day or longer to run.

Cost Based Method: Again, this method is very similar to the current method. The improvement
here is that the gradient for each tool is divided by the cost of that tool. In essence the program
will purchase tools on a gradient per dollar basis instead of a gradient one. The problem with this
solution is that case where two of a tool causes a slower cycle time than does one. This is the
problem addressed by Praveen Mellacheruvu in that we are uncertain of the data beyond the
current analysis and have no basis to buy any tool other than the one with the greatest gradient.

Summary / Future Suggestions

The program is effective if used properly. Some ideas to improve the program include building on
the robustness of the code and researching the effects of other search algorithms. Overall, the
program provides a very good base for professionals designing a factory as well as a learning
tool for students. The interface provides a link to the Factory Administrator that allows a user to
perform sensitivity analyses on several different variables. These two programs are able to guide
users through design and optimization of use of a semi-conductor factory. For students, the
programs allow classroom simulation and numerical data to compare and demonstrate classroom
theory.

REU

This paper is a summary of the work done by Ryan Thomas from June to August 2000 at the
University of Maryland. Throughout this time I was enrolled in the Research Experience for
Undergraduates Program. This is a program developed and guided by the Institute for Systems
Research (ISR) and funded by the National Science Foundation (NSF).

2 Note that processing times are those of a 500 MHz Intel Processor.

13

The program allows students to gain experience in systems engineering at the University of
Maryland while earning a stipend. Students are advised by a faculty member in ISR and assist
them with their research throughout the summer.

My work was done under advisement from Dr. Jeffrey Herrmann, with assistance from Dr. Gary
Rubloff and Dr. Laurent Henn-Lecordier. The project was Integrating Product Dynamics and
Process Models (IPDPM) which studied a very broad scope of aspects affecting semi-conductor
manufacturing and optimization. The work I have done was applying the research of a former
graduate student (see References) and developing it into a practical interface that was able to
handle more realistic situations.

I am currently a senior Mechanical Engineer at the Carnegie Mellon University in Pittsburgh,
Pennsylvania. I will graduate in May 2001 and will pursue a career in the Washington DC metro
area. The REU program has provided a great deal of insight and experience into my field as
well as a practical understanding of simulation. Additionally, I was part of weekly meetings with
the entire IPDPM staff (consisting of full-time faculty, research faculty, and graduate students).
These meetings created an excellent “team” atmosphere and both benefited my research and
insured the well-being of the IPDPM project.

References

The Tool Optimization Program was based on the work of Praveen Mellacheruvu (University of
Maryland, 1998-2000). Two of his papers were directly referenced in this paper:

Mellacheruvu, Praveen V; Fu, Michael C; and Herrmann, Jeffrey W., Comparing Gradient
Estimation Methods to Stochastic Manufacturing Systems, 2000.

Mellacheruvu, Praveen, Sensitivity Analysis and Discrete Stochastic Optimization for
Semiconductor Manufacturing Systems, pp. 67-85, 2000.

