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Abstract

An algorithm for linear programming (LP) and convex quadratic programming
(CQP) is proposed, based on an interior point iteration introduced more than
ten years ago by J. Herskovits for the solution of nonlinear programming prob-
lems. Herskovits’ iteration can be simplified significantly in the LP/CQP case,
and quadratic convergence from any initial point can be achieved. Interestingly
the resulting algorithm is closely related to a popular scheme, proposed in 1989
by Kojima et al. independently of Herskovits’ work.

Keywords: Linear programming, quadratic programming, global convergence,
quadratic convergence.

1 Introduction

In 1982, J. Herskovits proposed an interior point approach to the solution of nonlinear
constrained optimization problems, based on a novel idea [1-3] (whose rudiments can
be found in [4]). Herskovits® algorithm roughly proceeds as follows. Given a strictly

IThis research was supported in part by NSF’s Engineering Research Centers Program No.
NSFD-CDR-88-03012 and by NSF grant No. DM(C-88-15996.
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feasible point, a descent direction dy is obtained by solving a linear system in (z,\)
(primal-dual pair) part of which can be viewed as a quasi-Newton iteration for the
solution = of VL(z,A) = 0, using a positive definite estimate of the Hessian of the
Lagrangian function L. As this direction may not allow a large step to be taken
within the feasible set, a modified search direction d is then computed by solving a
linear system with identical matrix and perturbed (by a function of dg) right hand
side. In [3] global and local superlinear convergence of this algorithm is proved under
certain conditions (see also [5]).

In [6] it is observed that Herskovits’ iteration can be viewed as a quasi-Newton
iteration in the pair (x, A) on all the equalities in the KKT conditions of optimality,
modified to preserve strict primal and dual feasibility. It had been pointed out by Mc-
Cormick that the corresponding Jacobian matrix is nonsingular in the neighborhood
of any strong minimizer and thus that the pure Newton iteration converges locally
with a quadratic rate [7]; Polak and Tits had then proposed to force global conver-
gence by combining this Newton iteration with a first order method [8]. Herskovits’
observation that, under the condition of primal and dual feasibility and if a positive
definite estimate of the Hessian of the Lagrangian is used, dp is a descent direc-
tion for the objective function, suggests a natural globalization of the corresponding
quasi-Newton iteration. This is fully explored in [6], where an algorithm is proposed
which, under mild assumptions, enjoys global and local superlinear convergence (in
particular, Maratos-type effects are avoided).

While Herskovits’ iteration was devised for the solution of general nonlinear pro-
gramming problems, it can be applied, in a simplified form, to problems with linear
constraints, in particular, to linear and quadratic programming problems. Applica-
bility to linear programming was first pointed out by Herskovits [9,10]. When all
constraints are linear, dy is appropriate as a search direction, removing the need to
solve a perturbed linear system. Interestingly, in the linear programming case, the
matrix in Herskovits’ iteration is identical to that appearing in the path-following
Newton iteration proposed independently by Kojima et al. [11]; the two right-hand
sides become identical as well if Kojima et al.’s barrier parameter is set to zero, as
was subsequently suggested by Monteiro et al. [12].

In this paper, we present and analyze a version of Herskovits’ iteration tailored
at linear programming (LP) and convex quadratic programming (CQP). It is directly
inspired from the algorithm in [6], with the following modifications: (i) only one
linear system of equations is solved at each iteration, (ii) the exact Hessian (possibly
singular) is used, (iii) the iteration is adjusted to allow for quadratic convergence to
take place. Under dual nondegeneracy assumption, we prove global convergence to
the solution set (somewhat stronger than the result proved in [6] for the nonlinear
cage). Under second order sufficiency conditions with strict complementarity (in the
LP case, this is identical to primal nondegeneracy), the local convergence rate is
quadratic. Most proofs are given in the appendix.
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2 Problem Definition and Algorithm Statement

Consider the problem
1
(P)  minimize 5(:1:,H:1:) + (c,z) st. Az <b

where H = HT > 0. If H = 0, (P) is a linear programming problem; otherwise it is a
convex quadratic programming problem. Let [ = {1,---,m}, where m is the number
of rows of A, and, for ¢ € I, let a; be the ith row of A, let b; be the sth entry of b, and
let g;(z) = a;z — b;. Also let f(z) = 2(z, Hz) + (c,z). The feasible set S is given by

S={ze€R":¢i(z) <0 Vi eI},
the strictly feasible S° set by
SP={zxeR":g(z) <0 Viel},
and the solution set S* by
S*={z"€S: f(z") < f(z) Vz € S}.
A point z* € S is said to be stationary for (P) if there exists A* € R™ such that

Hz* +c+ ATX* =0 (1)
Mg(z*)=0 Viel

(in particular, all vertices of S are stationary). If furthermore A\* > 0, then z~ is a
KKT point for (P), i.e., since (P) is convex, z* € S*.

Let (z, p) be an estimate of a KKT pair (z*, A*) for (P) and let us substitute for
the left-hand side of (1) its first order expansion around (z, i) evaluated at (x +d, \),
i.e., consider the linear system of equations in (d, )

Hx+c+ Hd+ ATA =0 @)
piaid + gi(z)hy =0 Vel

It will be shown that, under mild assumptions, if x € S and pg; > 0 for all 7 € I, then
the solution d of (2), if it is nonzero, is a feasible direction which is also a direction
of descent for f, a useful property when seeking global convergence to S*. However,
it is clear from (2) that if g;(2) = 0 with g; > 0, then a;d = 0 and thus g;(z +td) =0
for all ¢, and g; will be satisfied as an equality for all subsequent iterations, possibly
preventing convergence to S*. Therefore, strict primal feasibility must be maintained
at all times. Note that another favorable effect of primal and dual feasibility is that
it implies that a;d < 0 whenever A\; < 0 so that the iterate will tend to move away
from stationary points that are not solution points.
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A pure Newton iteration for the solution of (1) amounts to selecting 2+ = z+d and
pt = X as next iterates, where (d, \) solves (2). Under appropriate nondegeneracy
assumptions, this iteration yields a local Q-quadratic rate of convergence in (z, p).
However, even close to a solution of (1), this iteration may not preserve primal and
dual feasibility. It turns out that these apparently contradictory requirements can
be reconciled, as it can be shown that the quadratic rate of convergence of Newton’s
method is preserved if each component of the next iterate is merely “close enough”
either to the corresponding component of the solution of the nonlinear system of
equations being solved, or to the corresponding component of the next iterate given
by the pure Newton iteration. In our context, given C' > 0,

et = 24 (1-C|d||)d (3)
pf = max{h,|d), i€l

meets both requirements close to the solution of (1). Updates closely related to these
are used in Algorithm A below.

The following two assumptions are made throughout.

Assumption A1l. S° # .

Assumption A2. S* is nonempty and bounded.
Clearly Assumption A2 implies that the nullspaces of H and A have a trivial inter-
section, i.e.,

{d:Hd=0}n{d: Ad=0} = {0} . (4)

Algorithm A.

Parameters. 3 € (0,1), 7@ > 0.

Data. z° € S p >0Vie I

Step 0. Initialization. Set k = 0.

Step 1. Computation of a feasible descent direction d*. Let (d*,\F) solves the
linear system in (d, A)

Hd+ AT\ = —(Hz" + ¢) (5)

prad 4+ gi(z)\ =0 Viel (6)
If d* = 0, stop.

Step 2. Updates.
(i) Compute the largest feasible stepsize

#_] if ad* <0 Viel, 7
| min{(—g:i(z*)/a;d*): a;d* > 0,i € I} otherwise.
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Set
t* = min {max {67, P |ld*]}, 1}. ®)

Set zF+! = zF + tkdk,
(ii) If A} < g;(2*) for some i € I, set

it =l Vie L. (9)
Otherwise, set
W = min{max(\F, |44}, @}, Vi € 1. (10)

(iii) Set k = k + 1. Go to Step 1.
(]

In Step 2(i), 7* is the maximum step preserving feasibility (z* +7d* € S) and the
term B%° ensures that t* is positive even when ||d¥|| is large. It will be shown that,
for some C' > 0, * > 1 — C'||d*|| so condition (3) does hold. In Step 2(ii), (9) is
introduced to prevent oscillation between non-KKT stationary points and % in (10)
to ensure boundedness of {u*} (these features are used in the proofs of Lemma 3.2
and Lemma A.2; neither may be essential in practice).

The following result, proved in the appendix, shows that Step 1 in Algorithm A
is well defined.

Lemma 2.1 Let z € § and g € R™ be such that {a; : ¢g;(z) = 0} is a linearly
independent set and g; > 0 for all 2 € /. Then

H AT
diag(p:)A  diag(g:(x))

is nonsingular. In particular M(z, i) is nonsingular if z € S® and g; > 0 for all ¢ € I.
O

M(z,p) =

Corollary. Algorithm A generates a uniquely defined sequence.
Remark 1. Perhaps more typical than formulation (P) in the LP/QP literature
(see, e.g., [11,12]) is the formulation

1
minimize §(x,Ha:) +{c,z) st. Az =0b, 2>0. (11)

(We chose (P) instead for sake of simpler exposition.) Adapted to this problem, linear
system (5)-(6) becomes

Hd+ ATy +X = —(Hz"+¢)
Ad 0 (12)
,Lti-gd,' + xf‘)\l = 0
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(where 9 is the updated multiplier vector for the equality constraints) and Algo-
rithm A can be transposed accordingly.

Remark 2. As pointed out in the introduction, Monteiro et al. [12] have proposed
an iteration for the LP case based on linear system (12) (with H = 0). The similarity
with Algorithm A stops there, however, as the primal and dual update formulae in
[12], when transposed to problem (P), are given by

2 = 2F 4+ ad
#k+1 — #k_i_a(/\k _”k)

(i.e., the same stepsize is used for primal and dual variables, and it is unchanged
from iteration to iteration), with « a certain number less than 1/2 (whereas our
stepsize converges to 1). Under certain assumptions, Monteiro et al. prove polynomial
convergence of their algorithm.

Remark 3. Monteiro et al. [12] point out that their iteration (in the LP case)
can be thought of as an affine scaling iteration with scaling matrix (superscripts are
left out for readability) D = (diag(u;)diag(z;'))~1/? (instead of D = diag(z;) in the
scaling-steepest descent (SSD) method of Dikin’s [13]; also see [14]). This analogy
can still be made in the CQP case, with now D = (H + diag(u;)diag(z;"))"/2.
Alternatively the SSD direction can be thought of as the direction d that Algorithm A
(transposed to the framework of formulation (11)) would yield if diag(ui) were set
to diag(z;') — Hdiag(z;), instead of being updated as in Step 2(ii). Clearly, letting
pF*t1 ~ A% as in Algorithm A accelerates convergence.

3 Convergence Analysis

First note that, if @ = 0 for some k (i.e., if Algorithm A terminates at iteration k),
then \* = 0 and Vf(2*) = Hz* + ¢ = 0, thus z* solves (P). In the sequel, it is
assumed that Algorithm A generates an infinite sequence {z*}.

3.1 Global Convergence

Given z € S, we denote by I(z) the index set of active constraints at z, i.e.
Iz)={ieI: g(z)=0}.

Assumption A3. For all z € S, {a; :7 € I(z)} is a linearly independent set.

We show that, under Assumptions A1-A3, the sequence {z*} converges to S*, the
set of solution points. First, at every iteration, the values of the objective function
and of all constraint functions with negative multiplier estimates decrease.

Proposition 3.1. If dF # 0, then
f(a* +t*d*) = f(2¥) — tF(1 — t¥/2)(d", Hd") — tF(\*, AdY) < f(2") (13)
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and
gi(z* + t*d¥) = g;(2F) + t*aid® < gi(2F) Vist. M <O, (14)

Proof. See the appendix. O

Corollary. The sequence {z*} is bounded.

Proof. Assumption A2 implies that, given any z° € S, the level set {z €
S: f(z) < f(2°)} is bounded. The claim then follows from the monotone decrease
of f(z¥). 0

We first show that {z*} converges to stationary points of (P). The argument is a
simplified version of that used in [6]. It is given here for ease of reference. The proofs
of Lemmas 3.2 and 3.3 are given in the appendix.

Lemma 3.2. Let z* € IR" and suppose that K, an infinite index set, is such that
{z*} converges to z* on K. If {d*} converges to zero on K, then z* is stationary
and {)\*} converges to \* on K, where \* is the unique multiplier vector associated

with z*. O
Lemma 3.3. Let z* ¢ S* and suppose that K, an infinite index set, is such that
{z*} converges to z* on K. Then {d*} goes to zero on K. ]

Proposition 3.4. {z*} converges to the set of stationary points of (P).

Proof. By contradiction. Suppose not. Then, since {z*} is bounded, there exists
some infinite index set K and some z* not stationary such that z* — z* as k — oo,
k € K. In view of Lemma 3.2, {d*} does not converge to zero on K. Thus there
is K' C K s.t. kienlgl |d*|| > 0. Since z* — z* as k — oo, k € K', this contradicts
Lemma 3.3. Thus the claim holds. O

Now note that since f decreases at such iteration, if one limit point of {z*} is
in S*, then all of them are. Proceeding by contradiction, we assume that {z*} is
bounded away from S*.

Lemma 3.5. If {z*} is bounded away from S*, then {d*} — 0.

Proof. By contradiction. Suppose there exists an infinite index set K such that
i%f ld¥|| > 0. Let K’ C K, 2* € X be such that 2* — 2* as k — oo, k£ € K'. Since

{z*} is bounded away from S* it follows that 2* € S* which, in view of Lemma 3.3,
leads to a contradiction. a

So far the proof has not made essential use of the structure of (P). In [6], however,
convergence to KKT points could not be proven without the artificial assumption that
stationary points are isolated. In the present context, no such assumption is needed.
The following key lemma is proved in the appendix.

Lemma 3.6. Suppose {z*} is bounded away from S*. Let z* and z”* be two limit
points of {z¥} and let A* and A be the associated multiplier vectors. Then \* = \'*.
a

Theorem 3.7. {z*} converges to S*.

Proof. Proceeding again by contradiction, suppose that some limit point of {z*}
is not in S* and thus, since f takes on the same value at all limit points of {z*},
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that {2*} is bounded away from S*. In view of Lemma 3.5, {d*} — 0. Let A* be the
common multiplier vector associated with all limit points of {z*} (see Lemma 3.6). A
simple contradiction argument shows that Lemma 3.2 then implies that {\*} — \*.
Since {z*} is bounded away from S*, \* # 0. Let io € I be such that A} < 0. Then
Af < 0 for all k large enough. Proposition 3.1 and strict feasibility of {z*} then
imply that, for k large enough,

0> gi,(2%) > gip (zFT) > ...

contradicting the fact that {g;,(z*)} — 0. a

3.2 Local Rate of Convergence

Let z* be a limit point of {z*} and let \* be the corresponding KKT multiplier vector.
We now assume that the second order sufficiency conditions of optimality with strict
complimentary holds at z*, i.e.,

Assumption A4. (d, Hd) > 0 for all d such that a;d =0 Vi € I(z*),

Assumption A5. X! > 0 for all ¢ € I(x*).

Assumptions A4 and A5 ensure that z* is the unique solution of (P) (in the LP case
(H = 0), under Assumption A3, they are equivalent to uniqueness of the solution, i.e.,
to primal nondegeneracy). Thus {z*} — z*. The following result is a minor variation
on a result pointed out by McCormick in 1971 [7]. It is related to Lemma 2.1 (but
Assumptions A4 and A5 are not in force in that lemma). For the sake of completeness,
a proof is given in the appendix.

Proposition 3.8. Let p* = min(\*, 7). Then M(z*, u*) is nonsingular. O
This result was used in [6] to show that, in the general nonlinear case, if the Hessian of
the Lagrangian is suitably approximated, {2*} converges to z* two-step superlinearly.
If the Hessian of the Lagrangian at (z*, A*) is positive definite over the entire space,
Q-superlinear convergence would follow. Both of these results obviously apply to
the present case since the exact Hessian is used. Here however, as announced in the
introduction, the pair {(z*, u*)} also converges Q-quadratically to (z*,A*). This is
shown now. First a preliminary result, also derived in [6] (again, it is proved in the
appendix for ease of reference).

Lemma 3.9. (i) {d*} — 0 and {\¥} — X*; (ii) for k large enough {1 : \F > 0} =
I(z*); (iil) if A\* <@ Vi € I, then {p*} — M= O

To prove Q-quadratic convergence of {(z*,u¥)}, the following property of New-
ton’s method will be used. Its proof is given in the appendix.

Proposition 3.10. Let F' : R® — IR" be twice continuously differentiable and
let 2* € R"™ and p > 0 be such that F(2*) = 0 and 2E(2) is nonsingular whenever
z € B(z5,p) == {z : ||z* — 2| < p}. Let dV : B(z*,p) — RR" be defined by
dN(z) = — (%}f(z))“l F(z). Then given any ¢; > 0 there exists c; > 0 such that

2% = 27|l < collz — 2| Vz € B(z",p) (15)
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for every z € B(z*, p) and z* € R" for which, for each i € {1,..., n}, either
() |5 = 22| < alldV(2)II> Yz e B(z*p)

or
(i) |2 — (zi +dN(2)| S alldV ()P Vz € B(z*,p).

O

Theorem 3.11. If A} < 7 Vi € I, then {(z*,u*)} converges to (z*,X*) Q-
quadratically.

Proof. With reference to Proposition 3.10, let p > 0 be such that M(z, ) is non-
singular for all (z, u) € B((z*, A*), p) (in view of Proposition 3.8, such p exists). Since
{(z*,u*)} — (2*,1*) as k — oo, there exists ko such that (2%, u*) € B((z*,\*),p)
for all k > ko. Now let us first consider {¢*}. For i € I(z*), pb*' = Is for k
large enough, so that condition (ii) in Proposition 3.10 holds for k large enough. For

i & I(z*), for each k either again uft! = A¥ or " = ||d*||%. In the latter case, since

A = 0, condition (i) in Proposition 3.10 holds. Next, consider {z*}. For ¢ I( ),

Il o)l
T agds] T

as k — oo.

Thus, if I(z*) = §, then, in view of Step 2 (i) in Algorithm A, t* = 1 for k large
enough and otherwise

T = min{uf/AF 1 i€ I(2"))
and

¢ = min{1, 1 4] (16)

for k large enough, for some i;, € I(z*). In particular, t* converges to 1. Thus, for &
large enough and some i, € I(z*)

Iz = (&* + )| = [¢* - 1]]1d°]

AF =t
<IN+ | 1.
Since A¥ > 0 for all ¢ € I(z*), it follows that for some C' > 1 and all £ large enough

254! = (2" + ) < (1] + CIN* = D"
(1 O]+ X = f1)?

VANVAN

Thus condition (ii) of Proposition 3.10 holds. The claim then follows from Lemma 3.9
and Proposition 3.10. O



4 Discussion

A simple algorithm, inspired from an iteration due to Herskovits, has been proposed
for the solution of linear programming and convex quadratic programming problerms.
Under nondegeneracy assumptions, convergence is global, with a local Q-quadratic
rate. The importance of a fast rate of convergence, even for problems that can be
solved in finitely many iterations (such as LP and CQP problems) has been stressed
by several authors (e.g., [15,16] and references therein) and recently an interior point
method has been shown to be both polynomial-time and Q-quadratically convergent
[17]. The algorithm proposed here however has the advantage of greater simplicity
(no barrier parameter to be iteratively adjusted).

5 Appendix: Proof of Some Results

Proof of Lemma 2.1. Let (d, A) be such that M(z, u) (i) = 0. Thus
Hd+ AT\ =0 (17)
diag (p;)Ad + diag (g;(z))A = 0. (18)

Taking the inner product of both sides of (17) by d yields
(d, Hd) + (d, ATX) = 0. (19)

Since p; > 0 for all ¢ € I, left multiplying both sides of (18) by diag(x; ') and taking
the inner product with A yields

(A, Ad) + (\, diag (g:(z)/)A) = 0. (20)
From (19) and (20) we get

<da Hd) = (Aadiag (gi(m)/:ui))‘%

in which the left hand side is nonnegative and the right hand side nonpositive. Thus
Hd = 0 and diag(g;(z))A = 0. In view of (18) the latter implies that Ad = 0. It
then follows from (4) that d = 0 and, from (17), A”X = 0. This together with
Assumption A3 and the fact that diag(g;(«))A = 0 implies that A = 0.
Proof of Proposition 3.1. The proof will make use of the following lemma.
Lemma A.1. Let r € S, 4 € R™ cuch that g; > 0 for all 4+ € I, and let (d, )
satisfy

diag (i) Ad + diag (gi())A = 0 (21)
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Then (i) (A, Ad) > 0 and (ii) (A, Ad) = 0 only if Ad = 0.
Proof. Left multiplying both sides of (21) by diag (u;') and taking the inner
product with A yields

(A, Ad) + (A, diag (g:(z)/:)A) = 0.

Thus (A, Ad) > 0. Moreover, if (A, Ad) = 0 then \; = 0 for every i for which g;(z) # 0.
Together with (21), this implies that Ad = 0.
Proof of Proposition 3.1. Since f is quadratic, it follows from (5) that

flk+hd) = fla) (V) d) + 5 (1) )

= (k)= o (0¥, Ha) + (d¥, ATAY) 4 S( 0, H)
= f(aF) — (1 — 5/2)(d", Hd¥) -t (AF, AdY).

Next, since H > 0 and since, by construction, t; € (0, 1], it follows from Lemma A.1(i)
that
f(a®) — 5 (1 — t*/2)(d*, Hd") — tF(\F) AdY) < ("),

with equality holding only if (d¥, Hd*) = (A, Ad*) = 0. In view of Lemma A.1(ii)
and of (4) and since d* # 0, this cannot occur, thus (13) is proved. Next, since g is
linear,

g,-(:z:k + tkdk) = gi(a:k) +thad® i=1,..., m.
Since p¥ > 0 for all i € I, it follows from (6) that a;d* < 0 whenever \¥ < 0, proving
(14).

Proof of Lemma 3.2. Suppose {d*} — 0 as k — oo, k € K. Since {u*}
is bounded, it follows from (6) that for all ¢ for which g;(z*) < 0, {A\*} — 0 as
k — oo, k € K. Since in view of (5), {ATA*} converges on K, it follows from
Assumption A3 that {\*} converges on K, say to A\*. Taking limits in (5)-(6) then
yields

Hz* +c+ ATA =0

Agi(z*)=0,1=1,...,m,

implying that z* is stationary, with multiplier vector A*.

Proof of Lemma 3.3. Let J* = {i € I : \¥F < g;(z*)}. The proof will make use
of the following result.

Lemma A.2. Let K be an infinite index set such that

inf{||d*7||: ke K, J*' =90} > 0.

Then {d*} -0 as k — o0, k € K.
Proof. In view of (9) and (10), for all € I, p¥ is bounded away from zero on
K. Proceeding by contradiction, assume that, for some infinite index set K’ C K,
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kinIg [|d¥]| > 0. Since {z*} and {u*} are bounded, we may assume, without loss of
€ 1]

generality, that for some z* and w*, with uF > 0 for all %,

{2F} - 2* as k— o0, ke K’

(¥} - p* as k- o0, ke K’

Since in view of Lemma 2.1 and Assumption A3, M(z*, u*) is nonsingular, it follows
that, for some d* and A\*, with d* # 0 (since kiél}’gl |ld¥|| > 0),

{d*}y - d* as k— oo, kekK',
{M¥} > X as k— oo, kelkK'

From (6) and (7) it follows that

s f oo A <0 Viel,
T min{(pF/XF):XF >0, ¢ €I} otherwise.

Since, on K’, {)\*} is bounded and, for each i € I, {y*} is bounded away from
zero, it follows that 7 is bounded away from zero on K’, and so is t* (Step 2 (i) in
Algorithm A). On the other hand, in view of Lemma A.1 (i) and Proposition 3.1, it
follows that

% (e +td*) = — (1 = t)(d", Hd*) + (\*, Ad") <0 e [o,1).
Since t¥ € (0,1] for all k, it then follows from Proposition 3.1 that there exists ¢ > 0
such that

fla® +t5d") < f(=*) - (t - %f){d’“,Hd’“) —t(\F, Ad") Vke K.

Now, in view of (4), either (or both) (d*, Hd*) > 0 or Ad* # 0. In the latter case,
in view of Lemma A.1, since pf > 0 for all i € I, (A*, Ad*) > 0, so (A\¥, Ad*) > 0
for k large enough, k € K’. Since, in view of Proposition 3.1, f(z*) is monotonic
nonincreasing, it follows that f(z*) — —o0 as ¥ — 2*, contradicting continuity of f.

Proof of Lemma 3.3. Let us again proceed by contradiction, i.e., suppose {d*} does
not converge to zero as k — oo, k € K. In view of Lemma A.2, there exists an infinite

index set K’ C K such that J¥=1 = { for all k € K’ and kiél}\f_l |d*=1|| = 0. Without

loss of generality, assume that {d*~'} — 0 as k — oo, k € K’. Since {z*} — z~ as
k— o0, k€ K and ||z* — 25| = ||th=1a*~1|| < ||d*Y|, it follows that {z*~'} — 2~
as k — oo, k € K’ which implies, in view of Lemma 3.2, that z* is stationary and
{M=1} 5 A as k — oo, b € K, where A* is the corresponding multiplier vector.
Since J*=! = @ for all k € K, it follows that \* > 0 for all ¢ € I(z*), thus 2* € S*, a
contradiction.
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Proof of Lemma 3.6. Let L be the set of limit points of {z*} (in view of Propo-
sition 3.4, all of these are stationary points of (P)). We first prove three auxiliary
lemmas.

Lemma A.3. Let z,2' € L be such that I(z) = I(2'). Then H(z — 2') = 0.

Proof. Let I* := I(z)(= I(z')). Then for some X, X',

Hz +c+ ZAm?zO,
el

Hz' +c+ Y Nal =0,
el

which implies that, for all a € (0,1),

Hzx,+c+ Z )\a,iaf =0, (22)
t€J
with z, = (1 — @)z + a2’ and A, = (1 — a)A + a). Now [* = I(z) = I(z') implies
that a;(2' — ) = 0 for all i € I* which, together with (22), implies that

(Hzo +c,2’' —2) =0 Vae (0,1).
Since z, = = + a2’ — z), we get, for all a € (0,1),
(Hz+aH(z' —2) 4+ ¢,(2' — 2)) = 0,

(Hz + ¢,a' — ) + a(a’ — z, H(2' — z)) = 0.

Thus (¢’ — 2z, H(2' — 2)) = 0. Since H > 0, the claim follows.

Lemma A.4. If {z*} is bounded away from S*, then, for all z, 2’ € L, H(2'—z) = 0.

Proof. Since there are only finitely many possible combinations of binding con-
straints, in view of Lemma A.3, L is a finite union of “parallel” affine sets of the form
LN (z+N(H)), with z € L, where N(H) = {d: Hd = 0}. In view of Lemma 3.3,
all these affine sets must be identical, which proves the claim.

Lemma A.5. If {z*} is bounded away from S*, then L is connected.

Proof. Suppose not. Then there exists £, F C IR", both nonempty, such that
L=EUF,ENF =0, ENTF = {. Since L is compact E and F must be compact.

Thus 6 := Elglin . ||z — 2| > 0. A simple contradiction argument using the fact that
zeE,x'e

{*} is bounded shows that, for k large enough, mingey ||2* — || < 6/3, i.e., either
mingeg ||z* — z|| < §/3 or minger ||z* — z|| < §/3. Moreover, since both E and F are
nonempty (i.e., contain limit points of {z*}), each of these situations occurs infinitely
many times. Thus K := {k : mingeg ||z* — z|| < §/3, minger ||eFt* — z|] < §/3} is an
infinite index set and ||d¥|| > §/3 > 0 for all £ € K. On the other hand since {z*}ex
is bounded and bounded away from S*, it has some limit point z* ¢ S*. In view of
Lemma 3.3, this is a contradiction.
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Proof of Lemma 3.6. Given any z € L, let A(z) be the multiplier vector associated
with z and let J(z) be the index set of “binding” constraints at z, 1.e.,

J(z)={i € I:X(z)#0}.

We first show that, if 2,2’ € L are such that J(z) = J(2'), then A(z) = A(2'). Indeed,
in view of (1), it follows from Lemma A.4 that

Z /\j(:v Z Ai( a ,
JjeJ(z) J€J(z)

and the claim follows from linear independence of {af : j € I(z)} (Assumption
A3) and from the fact that J(z) C I(z). To conclude the proof, we show that,
for any z,2' € L, J(z) = J(2'). Let & € L be arbitrary, let J = J(&), and let

={z € L: J( ) = J(#)} and F = {z € L : J(x) # J(&)}. Proceeding
by contradlctlon suppose that F' is nonempty. Since L is connected (Lemma A. 5),

ENF+#0. Let $ € ENF and let {y*} — £, {yz} C E. Since J(y%) = J for all £, it
follows from the first part of this proof that A(y®) = A for all £ for some A, i.e,

Hy*+c+ATA=0 VL

Thus
Hi+c+ ATA = 0.

Also, for all £, g;(y%) = 0 for all j such that A; # 0, so that g;(%) = 0 for all j such
that A; # 0. It follows that A(2) = X and thus J(&) = J(&), contradicting that fact
that £ € F.

Proof of Proposition 3.8. Let (d,\) be such that M(2*, ) ( i ) = 0. Thus

Hd+ATA=0 (23)

diag(p;)Ad + diag(gi(z*))A = 0. (24)
In view of Assumption A5, (24) implies that

a;d=0 VYiel(z) (25)
and, since uf = A} =0 when i & I(z*),
=0 VigI(z). (26)

It follows that
(d, AT)) = (Ad,\) =

Taking the inner product of both sides of (23) with d thus yields
(d, Hd) =

14



i.e., since H >0,
Hd =0.

In view of (25) and Assumption A4, it follows that d = 0. Finally, it follows from
(23), (26) and Assumption A3 that A = 0.

Proof of Lemma 3.9. We first prove by contradiction that {d*} — 0. Thus
suppose that there exists an infinite index set K such that i%f |d*|| > 0. In view

of Lemma A.2, there exists an infinite index set K’ C K such that {d*~1} — 0 as
k — oo, k € K' and, for all k € K', \™! > g;(2*=") for all i € I. It then follows
from Lemma 3.2 that {)\*7'} — X\* as k& — oo, £ € K’ and from the update rule
for u* in Step 2 (ii) of Algotihm A that, for all ¢ € I, u¥ — pf = min(A\},z) as
k — oo, k € K'. In view of Proposition 3.8, M(z*, 4*) is nonsingular and thus, since
z* € §*,{d*} — 0as k — oo, k € K’, a contradiction. Thus {d*} — 0. It now follows
from Lemma 3.2 that {\*} — X* and, in view of Assumption A5, J* = 0 for k large
enough. Lemma 3.2 and the update rule for u* again implies that {¢f} — min(A}, %)
for all : € I.

Proof of Proposition 3.10. First, let 1 € {1,..., n} be such that (i) holds.

Since (%If(z)) ~ is bounded in B(z*,p) and F is Lipschitz continuous in the same
ball, there exists c¢; > 0 such that, for all z € B(z*, p)

|7 — 27| < clll%];(Z)*HzHF(Z) = F)|* < eallz = 271"

Next, suppose (ii) holds. Then

|z =2 < Jaf = (24 dV (@)l + 127 — (2 + dV(2)i]
clld™ () + ll2* = (2 + dV(2))]

< alld @I+ 150 () IFE) + S - )l

IN

The first term in the right hand side is as in (i). Boundedness of 2£(z)~" in B(z", p)
and regularity of F' thus again imply that the claim holds.
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