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We consider a polling system which consists of a number of queues attended by a
single server. The server switches from one queue to another following a fixed cyclic
order. Such a system finds a wide variety of applications in the computer, com-
munication and manufacturing fields. Polling systems under the exhaustive service
policy, where the server serves each queue until it becomes empty, have been exten-
sively studied in the literature. This thesis studies nonexhaustive service policies, in
particular the so-called limited and Bernoulli policies. Unlike the exhaustive policy,
nonexhaustive policies usually do not lend themselves to exact analysis. We show
that approaches based on heavy and light traffic analysis, and stochastic comparison
techniques, can provide useful information about the performance of these policies.
In the first part of the thesis, we consider polling systems with a single queue,
more commonly known as vacation models. In a fairly general setting, we prove
heavy traffic limit theorems for vacation models under the Bernoulli and limited
policies. We then establish light traffic results for vacation models with Poisson
arrivals which are subsequently combined with the heavy traffic results to form the
bases for interpolation approximations. Using stochastic comparison techniques, we
identify some general conditions under which two service policies can be stochasti-
cally compared. In this framework, we establish bounds, monotonicity and compar-

ison results for various service policies. The comparison between the limited and



Bernoulli policies represents a relatively harder problem and cannot be established
in the general framework. However, we show that under more restrictive conditions,
a weaker comparison in the increasing convex ordering indeed holds.

In the second part of the thesis, we study M/GI/1 polling systems. Taking
advantage of a recently established decomposition result, we first derive a pseudo-
conservation law for the Bernoulli policy which, in the homogeneous case, leads to
closed-form formulae for some performance measures. As a by—product, we obtain a
comparison result between the Bernoulli and limited policies in homogeneous polling
systems. For the limited policy, we propose and study an approximation algorithm
which is based on the interpolation approximation developed for the vacation mod-

els.
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CHAPTER 1

BACKGROUND AND SUMMARY

1.1 Introduction

During the last decade, network architecture based on ring topology and token
passing protocol has received widespread acceptance among designers of Local Area
Network (LAN) [16]. Two notable examples of LANs employing such architecture
are the so—called Token Bus and Token Ring LANs. A Token Bus LAN consists of
a number of workstations connected to a single bidirectional communication bus.
At any given time, only one station can use the bus to transmit messages to other
stations. The stations are logically arranged to form a ring, i.e., each station stores
the unique address of the station which is to be positioned immediately following
it in the logical order. The last station in the order stores the address of the first
one. A station, after finishing its message transmission (or otherwise having to
relinquish its control of the bis under some prespecified conditions), releases a string
of control characters called a token which is intended for the next station in the
logical order. When this station detects the token, it seizes control of the bus and
starts transmitting messages if some are ready for transmission. The operation of a
Token Ring LAN is very similar to that of the Token Bus LAN; the main difference
between these two LANSs is that the stations in the Token Ring LAN are physically
arranged to form a ring. Each station is connected to the next station in the ring by
a unidirectional bus, and data is circulated around the ring on a series of station—
to—station hops.

The Token Bus and Token Ring LANs constitute two examples of systems in

which a single resource is shared by a number of users by circulating it among them

according to a fixed cyclic order. Such systems, known as polling systems, arise quite



naturally in the computer, communication and manufacturing areas. In queueing-
theoretic formulation, polling systems are modeled by the so—called cyclic—service
queueing systems. A cyclic—service queueing system consists of a set of N queues
Q1,Q2,...,QnN served by a single server. The server serves one queue at a time and
travels among the queues following a fixed cyclic order: Q1,Q2,...,Qn,Q1,Q2,- ..
A (possibly nonzero) delay called the switchover time is experienced by the server
in going from one queue to the next. Here a queue represents a user, a customer in
the queue represents a service demand from the corresponding user and a switchover
time models the processing time involved in transferring the control of the resource
from one user to the next. Since here we only consider queueing—theoretic approach
to polling systems, in the sequel we shall use the terms ‘polling system’ and ‘cyclic-
service queueing system’ interchangeably.

Polling systems have been studied since the 1950s; many variants have been
introduced to model a wide variety of systems. Variants are usually distinguished
from one another by the service policy used. Loosely speaking, the service policy
(some authors prefer to call it the switching policy) determines how long the server
stays in each queue. For instance,.under the ezhaustive service policy, the server
serves each queue until the queue becomes empty. Under a nonezrhaustive policy,
the server may switch to the next queue even though some customers are waiting
in the current queue. Numerous nonexhaustive policies have been proposed and
studied in the literature. However, unlike the exhaustive policy, the performance of
most nonexhaustive policies are not yet very well understood. In fact, for some of
these policies, in particular the so—called limited policies, exact analysis does not
appear to be feasible [82,83].

The purpose of this thesis is to study some nonexact approaches to the problem of
evaluating nonexhaustive service policies. Specifically, we combine light and heavy
traffic analysis with stochastic comparison techniques to obtain asymptotic and
structural results which are then used as bases for approximation schemes. Most of
the thesis is devoted to the limited and the so~called Bernoulli service policies, but

we expect that similar approaches can also be applied to other service policies for



which exact analysis is not feasible.

The motivation for studying nonexhaustive service policies resides in the fact
that many real systems which are modeled by polling systems do not operate under
an exhaustive service policy. This is due to a drawback of the exhaustive policy
in that it allows a user (queue) with high traffic load to practically monopolize the
resource. As the name would indicate, the limited service policy puts a fixed limit
on each queue on the number of customers the server can serve consecutively within
a visit to that queue. The Bernoulli policy also imposes a limit; the difference is
the implementation of this limit as a random variable. We shall present a more
precise description of these two service policies in the next section. As we shall
see, each of these policies is parametrized by an N-dimensional vector, thus lending
themselves to system optimization, i.e., the policy parameter can be appropriately
chosen to maximize a given performance measure. The limited policy where the
limit is set to one for all the queues is currently used in most Token Bus and Token
Ring LANs. More recently, limited policies have also been used to study FDDI
token ring protocol [74].

In the next section, we present a precise description of the systems considered
in this thesis. In Section 3, we briefly survey the literature on polling systems. This
survey is not intended as a complete account of the work done on the subject, but
rather is meant to give the reader a general feel of the methods used by researchers in
this field. We shall also point out the difficulties in analyzing nonexhaustive service
policies. In Section 4, we summarize the results of this thesis in a chronological

fashion.

1.2 Polling Systems and Vacation Models

In this section, we describe more precisely a polling system. We also introduce a
vacation model which can be seen as a polling system with N = 1. We do not define
much notation in this section; we shall do that at appropriate places in the thesis

as we go along.



e

—
Vi
Y
[ ]
Q;
—_—
v, v
Qj+1+ N
—
[ ]
[ ]
®
o
—

N

Figure 1.1: A Polling System

A polling system, depicted in Figure 1.1, consists of N infinite—capacity queues,
denoted by Qq,Q,...,@n, and a single server which serves the queues in a fixed
order: Q1,Q4,...,Qn, Q1,Q2,.... For each 7 = 1,..., N, we shall refer to a cus-
tomer which arrives to (); as a type—j customer. The arrivals to (); are governed by
the renewal process {A?H, n = 0,1,...} with the interpretation that A;-“H is the
time between the arrival of the nth and the (n + 1)st type—j customers. We take
the convention that the customer with index 0 arrives at time 0. The nth customer
of type—j brings with it a job which requires a random amount B} of processing
time. The server takes a random amount of time to switch from @Q; to @;41 (modany;
the length of the nth of such time is given by a random variable V*. We assume

that the sequences {A}“”, n=0,1,...}, {B}Y, n=0,1,...} and {V*, n=0,1,...},



7 =1,..., N, are all mutually independent and each is constituted of i.i.d. random
variables.

A limited service policy is parametrized by a vector of integer components
(ma,...,my) with m; > 1, 5 =1,..., N. The integer m; is the maximum number
of customers that can be served in one visit of the server to ;. To be more pre-
cise, at every service completion at (), the server switches to Q;4; if and only if
the queue is empty or the number of customers that have been served during the
current visit is m;.

A Bernoulli service policy is parametrized by a vector of probabilities (py, .. ., pn)
with0 <p; < 1,57 =1,...,N. At every service completion at Q;, if the queue is not
empty, the server serves the next available customer with probability p; and switches
to ;41 with probability 1 —p;. If the queue is empty at the service completion, the
server switches to (;41.

A polling system with NV = 1 is more commonly known as a vacation model,
in which case the switchover times are usually called vacation times. During these
times, the server “switches” to the same queue and becomes temporarily unavailable
to the customer-—hence the name. Although vacation models have many applica-
tions of their own in the computer communications area [22,23], these models are
usually considered in conjunction with polling systems. As we shall see in this thesis,
vacation models can usually be studied more thoroughly because of their relative
simplicity. In many instances, results obtained for vacation models can be extended
to polling systems or otherwise used as building blocks for approximation schemes.
In a polling system with an arbitrary number of queues, we can also find vacation
models embedded in the system. This can be seen by observing a queue in isolation
and looking at the time the server is away from that queue as a vacation time for
that queue.

In the context of vacation models, the limited policy with parameter m limits
to m the number of customers that can be served between any two consecutive
vacations. Under the Bernoulli policy with parameter p, if the queue is nonempty

at the end of each service, the server serves the next customer with probability p or



goes on vacation with probability 1 — p.

The most important pérforma,nce measure of interest in polling systems and
vacation models is the waiting time of customers in individual queues, i.e., the time
elapsed from the moment the customer enters the system to the moment it starts
receiving service. Other performance measures such as the server cycle time (the
time it takes the server to visit all the queues once) and the queue sizes are sometimes

also considered.

1.3 Literature Survey

Polling systems have been studied since the late 1950s when Mack et al. [61,62] used a
polling system with single-buffer queues to analyze a set of machines maintained by a
patrolling repairman. Then in the 1970s, polling systems were used to study Polling
Data Link Control—a system consisting of a number of geographically dispersed
terminals connected to a host processor through a single multidrop line (Konheim
and Meister [50] and Swartz [78]). In the 1980s, with the advent of low-cost and
more powerful microcomputers, the use of LANs to interconnect these computing
facilities and other peripheral devices has become more commonplace. The fact that
many widely used LANSs, especially those employing token passing schemes, can be
modeled by polling systems has generated a great deal of interest among researchers
in this class of systems. The reader is referred to a monograph by Takagi [81] for a
comprehensive survey and a complete list of references on polling systems; see also

his survey papers [82,83].

The Exhaustive and Gated Policies

One of the few nonexhaustive policies which have been analyzed thoroughly is the so-
called gated policy. Under this policy, the server serves only those customers which
have been waiting in a queue when the server polls that queue; those customers which
might arrive during the current visit are served in the next visit. The exhaustive and

gated policies are the service policies most extensively studied in the literature. This



1s due in part to the fact that they found applications to Polling Data Link Control
in the 1970s and in part to the fact that they can be analyzed exactly. These
two policies in the most general form (i.e., arbitrary N, nonhomogeneous queues
and nonzero switchover times) were first solved in the mid 1970s by Eisenberg [25],
Hashida [40], Aminetzah [1], and Ferguson and Aminetzah [30]. The treatment of
these policies for the case where time is slotted (discrete) can be found in Swartz [78],
and Rubin and de Moraes [70]. Earlier, the exhaustive and gated service policies
had been analyzed in more restricted settings: Avi-Itzhak et al. [3] considered the
case N = 2 with zero switchover times; Cooper and Murray [20] studied the case
N arbitrary with zero switchover times; the case N = 2 with nonzero switchover
times was investigated by Sykes [79] and Eisenberg [24]; Konheim and Meister [50]
considered the case NV arbitrary, nonzero switchover times and homogeneous queues.

In all of the above-mentioned studies, arrivals were assumed to be Poisson.
In polling systems with Poisson arrivals, we can usually identify some embedded
Markov chains. As it turned out, most performance measures of polling systems
under either the exhaustive or gated policy can be solved by analyzing these Markov

chains. Consider the Markov chains
C; ={(X}(n),...,XM(n)), n=0,1,...}, j=1,...,N (1.1)

where X!(n) is the number of customers in Q; when the server polls Q; for the
nth time. Assuming stability, we let Fj(z1,...,2n), § = 1,..., N, be the limiting
probability generating function (PGF) of the Markov chain Cj, i.e.,

n—o0

) :
Fi(z1,...,2n) = lim E[Hzi’ ], |z:] <1, e =1,...,N. (1.2)
1=1

The key step in the analysis lies in obtaining (cyclic) recursive equations for {F}, j =
1,...,N}, ie., expressing Fj41 in terms of Fj, j =1,..., N — 1 and F; in terms of
Fy. Taking the first order (partial) derivatives of both sides of these relationships,

we then obtain a set of N? linear equations involving

£i(6) = 6Fj(zlé;f"zN) . Gi=1,...,N. (1.3)

(214.-2n)=(1,...,1)

7



Taking the second order (partial) derivatives yields another set of N3 linear equations

involving

Ry, o)
0z; 0z, (21 ezn)=(Lye1)

£, k) G k=1,...,N.  (14)

For the exhaustive and gated service policies, these sets of linear equations turn out
to be closed and so can be solved numerically. Moreover, it can be shown that most
performance measures of interest can be expressed in terms of the quantities defined
in (1.3) and (1.4) above. For the special case where the queues are homogeneous,
the sets of linear equations for the exhaustive and gated policies yield closed—form

formulae for performance measures of interest.

The Limited Policy

Unfortunately for the limited policy, we cannot express most performance measures
of interest in terms of {f;(z), j,i = 1,...,N} and {f;(i,k), j,0,k = 1,...,N}
alone; other quantities are usually involved. Furthermore, taking derivatives of
both sides of the relationships between Fji; and Fj yields equations involving some
other quantities besides {f;(¢), j,z = 1,...,N} and {f;(s,k), j,5,k = 1,...,N}.
The only known case where these equations can be solved (i.e., there exist a suf-
ficient number of equations for the unknowns) is the single service policy (i.e., a
limited policy where m; =1 for ¢ =1,..., N, also called the limited—to—one policy)
with homogeneous queues. In this case, explicit formulae can actually be found, as
shown by Watson [88] and Takagi [80]. The problem of analyzing the single service
policy with N = 2 has been formulated as a Riemann—Hilbert boundary value prob-
lem and solved by Cohen and Boxma [18] (for zero switchover times), and Boxma
[7]. Approximate analysis of the single service policy with arbitrary N and non-
homogeneous queues has been done by Kuehn [51], and Boxma and Meister [11],
among other people. Boxma and Meister based their approximations on the so-
called pseudo—conservation laws which we shall discuss below. The limited policy
with arbitrary limit parameters so far has hardly been analyzed; no exact results

for this policy are available. Fuhrmann and Wang [34,35] proposed and studied

8



approximation methods for this policy, extending the work by Boxma and Meister

and exploiting upper bounds developed by Fuhrmann [32].

The Bernoulli Policy

The Bernoulli policy was introduced by Keilson and Servi [45] in the context of
vacation models. The performance of polling systems under this service policy was
approximated by Servi [72]. He considers N vacation models; each corresponds to a
queue observed in isolation, with the time the server spends in other queues being
taken as a vacation period for that queue. Assuming that a vacation time defined
in this way is independent of the service times in the isolated queue, and assuming
that we know how long the server stays in other queues per visit, we can use exact
results for vacation models to compute how long the server stays in the isolated
queue. Servi proposed an iterative algorithm based on this fact to compute the

moments of the waiting times.

Pseudo—conservation Laws

Many recent approximation methods [11,26,28,34,35] for polling systems are based
on the so—called pseudo—conservation (P-C) laws. A P-C law basically equates the
weighted sum of the mean waiting times to a simple expression which depends only
on the policy parameters and the first and second moments of the interarrival, ser-
vice and switchover times distributions. This law extends to polling systems (with
Poisson arrivals) the classical conservation law for M/GI/1 queues established by
Kleinrock [49]. P-C laws have been established for other service policies. Ferguson
and Aminetzah [30], and Watson [88] independently established this law for the
exhaustive and gated policies; in [88], Watson also presented the law for the single
policy. In [27,28], Everitt found explicit forms of the P-C law for variants of the lim-
ited policies. For these policies, however, the pseudo—conservation law still contains
some unknowns which were identified as the second factorial moments of the num-

bers of customers served in one service period at various queues. An approximation



to these unknowns is investigated in [27]. Fuhrmann [31] used decomposition results
for vacation models established by Fuhrmann and Cooper [33] (see below) to derive
P-C laws for homogeneous polling systems under the exhaustive, gated and single
policies. Boxma and Groenendijk [10] extended Fuhrmann’s arguments to establish

a work decomposition result for polling systems with any service policy.

Vacation Models

Vacation models with Poisson arrivals under exhaustive policies were first thoroughly
analyzed by Levy and Yechiali [58], although these systems have been used by Avi-
Itzhak et al. [3] and Cooper [19] to analyze polling systems. Levy and Yechiali also
considered a variant of a vacation model in which the server when becoming idle
takes only one vacation and then waits for the arrival of the next customer (if it is
not yet waiting in the queue). Doshi [22] later termed such a model a single-vacation
model; he called our vacation model a multi—vacation model. Another related system
is a single-server queue with the so-called initial set-up times. In this system, the
server is turned off whenever it becomes idle. If the server is in this state when a
customer arrives, it requires an initial set—up time before it can serve the customer.
This system was introduced by Scholl and Kleinrock [71]. In all the above-mentioned
systems, some kind of decomposition results were obtained. Basically, these results
decompose a performance measure of interest such as waiting time or queue length
into two terms: that of the corresponding M/G/1 system and another term which is
associated with the vacations (or initial set—up times). Fuhrmann and Cooper [33]
showed that these results hold for more general form of “vacations” using a unified
approach.

Decomposition results have also been extended to GI/GI/1 vacation models.
Gelenbe and lasnogorodski [36] used arguments from the theory of complex vari-
ables. Doshi [21] employed sample path arguments similar to the ones used by Levy
and Kleinrock [56] to show decomposition results for M/G/1 vacation models. Keil-
son and Servi showed decomposition results for GI/GI/1 vacation models under a

Bernoulli policy by making use of arguments similar to those used by Gelenbe and

10



lasnogorodski [36].

1.4 Thesis Summary

In this thesis, we study approaches which so far have been hardly used by researchers
in this field, namely light and heavy traffic analysis, and stochastic comparison
techniques. The thesis is divided into two parts: Part 1 consists of Chapters 2-5
while Part 2 comprises Chapters 6 and 7. In the first part, we consider vacation
models; in the second part, the results obtained for vacation models are used to study
polling systems. We conclude the thesis in Chapter 8 by making some observations
and recommendations for possible future extensions to the obtained results. In the
following, we summarize the main results of each chapter and indicate how they
relate to one another.

In Chapter 2, we establish heavy traflic limit theorems for vacation models.
Heavy traffic analysis is concerned with finding the limits of (normalized) quantities
of interest as the traffic intensity approaches its critical value. Heavy traffic limit
theorems are generally obtained by means of functional central limit theorems with
the help of the theory of weak convergence. For the exhaustive and Bernoulli policies,
we exploit a sample path representation of the vacation model in terms of the sample
path of a standard GI/GI/1 queue. Using this representation, coupled with the
so—called converging together theorem, we obtain the heavy traflic results for the
exhaustive and Bernoulli policies from available results for the GI/GI/1 queue. For
the limited policy, however, this sample path representation is not available, and
so we are forced to take a different approach. We use a method which finds for
each quantity of interest an auxiliary quantity which is more amenable to heavy
traffic analysis, and at the same time behaves very closely to the original quantity
of interest in heavy traffic.

In Chapter 3, we analyze vacation models in light traffic. Light traffic analysis
studies the system behavior as the traffic rate approaches zero. In addition to the

limits of (unnormalized) quantities of interest, light traffic analysis also yields the
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derivatives of the quantities of interest (with respect to the traffic rate) as the traffic
rate goes to zero. We use a technique, developed by Reiman and Simon, where the
computation of the nth derivative typically involves n customers in the system. The
light and heavy traflic results are then combined to form the bases of an interpolation
approximation method for vacation models, especially for those under the limited
policy. Numerical results indicate that this approximation method performs very
well.

In Chapter 4, we use stochastic ordering techniques to develop a framework in
which two service policies can be compared. We compare two service policies by
comparing some quantities of interest in a vacation model under one service policy
to the corresponding quantities under the other service policy. We use an ordering
called the stochastic ordering on random processes. We show that two service policies
can be compared in this manner under some fairly general conditions. The setting in
which the comparisons are made is also very general, as we make little assumptions
on the probabilistic structure of the interarrival, service and vacation processes
of the vacation models considered. Furthermore, for some quantities of interest,
the comparisons can be made independently of the order in which the customers
are served. We then show that various service policies in the literature can be
stochastically compared using the general framework. We also establish stochastic
monotonicity results for various classes of parametrizable service policies.

Unfortunately, the Limited and the Bernoulli policy cannot be compared in
the general framework developed in Chapter 4. In Chapter 5, we show that these
two policies can be compared in a weaker ordering, namely, the increasing convex
ordering. This comparison proves to be significantly harder to establish; we prove
the result for the special case where the vacation times are deterministic. The
comparison is shown to hold both in the transient and steady-state regimes.

In Chapter 6 and 7, we consider polling systems under the Bernoulli and lim-
ited service policies, respectively. For the Bernoulli policy, we establish a pseudo—
conservation law with the help of a work decomposition result obtained by Boxma

and Groenendijk [9]. For the case where all the queues are homogeneous, the pseudo-
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conservation law readily yields a closed—form formula for the (common) mean wait-
ing time. For the limited policy, we propose and study an approximation scheme
which exploits the interpolation approximation for vacation models developed in

Chapter 3.
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PART I

VACATION MODELS
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CHAPTER 2

HEAVY TRAFFIC LIMIT THEOREMS FOR VACATION MODELS

2.1 Introduction

In this chapter, we establish heavy traffic limit theorems for vacation models un-
der the exhaustive, Bernoulli and limited policies. In Chapter 3, these results are
combined with light traffic results to form a basis for interpolation approximations.

The theory of heavy traffic analysis of queueing systems was pioneered by King-
man [47,48] who used the term heavy traffic to refer to queueing systems with
traffic intensity less than but close to one. In [47,48], Kingman considers a sequence
{G", r=1,2,...} of stable GI/GI/1 queues, each with traffic intensity p” < 1 and
limiting waiting time distribution W". He shows that (1—p")W" converges in distri-
bution to a negative exponential distribution as p” T 1 in some fashion. Extending
Kingman’s work, Prohorov [65] and Viskov [87] obtained the limit in distribution
for the normalized version of the double sequence {W}, n,r = 1,2,...} of actual
waiting times as n and r tend to infinity simultaneously. They consider the situa-
tions where (p” — 1)4/n approaches ¢ with (i) —co < ¢ < 00, (ii) ¢ = —00, and (iii)
¢ = 0o as n,r — 0o. By doing this, they expanded the notion of heavy traffic to
include sequences of unstable queueing systems as well. In [89], Whitt considers a
(single) sequence {w", r = 1,2,...} of random functions defined by

1
W (t) = ZWh,  0Sts, (2.1)

where |z| denotes the largest integer less than or equal to . He shows that under
certain conditions, this sequence converges weakly to some diffusion process. The
primary tools in his analysis are the so—called functional central limit theorems on
the space D[0,1]. (Theorem A.4 in Appendix A). Here and in the sequel, we use

D[0,1] to denote the space of real-valued right—continuous functions on [0, 1] with

15



left~hand limits, endowed with the Skorohod metric. The reader is referred to [17],
[54] and [91] for surveys of heavy traffic results.

Since heavy traffic limit theorems for vacation models rely heavily on the avail-
able results for GI/GI/1 queues, we shall discuss these results in the next section.
In Section 3, we use these results to establish the heavy traffic limit theorems for
vacation models under the exhaustive service policy. In Section 4 and 5, we discuss
the limit theorems for the vacation models under the Bernoulli and limited service
policies, respectively.

For the reader’s convenience, important theorems and definitions in weak conver-
gence used throughout the discussion on heavy traffic are collected in Appendix A.
A word on the notation used in this chapter: For a sequence {Y,, n =1,2,...} of
i.i.d. random variables, we use Y and oy to denote the common mean and standard

deviation of Y,,, respectively.

2.2 Heavy Traffic Limit Theorems for GI/GI/1 Queues

In this section we review heavy traffic results pertaining to GI/GI/1 queues. Fol-
lowing both historical and logical sequence, we shall discuss waiting time, queue

size, and virtual waiting time processes in that order.

2.2.1 The Probabilistic Setting

Let (Q,F, P) be a probability space rich enough to support a sequence {G", r =
1,2,...} of GI/GI/1 queues with first come first serve (FCFS) service discipline.
For each r = 1,2,..., G" is represented by two independent sequences of i.i.d.
nonnegative random variables, {A7, n = 0,1,...} and {B], n = 0,1,...}. For
n=0,1,..., we interpret B}, as the nth service time and A}, as the time between
the nth and the (n+1)th arrivals in G™ with the understanding that Ay is the arrival
time of the first customer. We assume that for each r = 1,2,..., the first customer
in G7 arrives at time 0 (i.e., A} = 0) to an empty queue.

For easy reference, we shall state here a definition borrowed from [52] which we
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use throughout this chapter.

Definition 2.1 (Condition A) A double sequence {Y,7, n,r = 1,2,...} of random
variables defined on a probability space (0, F, P) is said to satisfy Condition A if

1. For each r = 1,2,..., {Y7,n = 1,2,...} is an i.i.d. sequence of random

variables with mean Y7 and standard deviation o}, .

2.V Y <0 and 0 < o} — oy with 0 < oy < 0.
3. For some € > 0, sup, E[|Y7]**] < o0.

The sequences {A], n,r = 1,2,...} and {B]_,, n,r = 1,2,...} are both as-

sumed to satisfy Condition A. If we define
X, =B, ,— A, n,r=1,2,..., (2.2)

then clearly {X, n,r =1,2,...} also satisfies Condition A.
We impose the following conditions (C2.1) and (C2.2) where

(C2.1) X"/r approaches C with —co < C' < 0 as r — o0;
(C2.2) 0< A" - Aand 0 < B" — B with0 < A, B < 0.

We define a continuous reflection mapping f: D[0,1] — D[0,1] by

f(y)(t) = sup [y(t) —y(s)], 0<t<1,ye D[0,1], (2.3)

0<s<t

and denote a Wiener process defined on [0,1] by W. We also let 2, denote weak

convergence.

2.2.2 The Actual Waiting Time Process

For each r = 1,2,..., let {Z7, n = 0,1,...} be the random walk associated with
(Xr, n=1,2,..1ie,

Z5 =0 and ZZL:ZX}, n=12.... (2.4)
t
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It can be shown [60] that the waiting time Wy of the nth customer (n = 0,1,...) in

G" can be expressed as
Wg =0 and W] =max{Z, -~ Z;, k=0,...,n}, n=12.... (2.5)

For r =1,2,..., let (" be D[0,1]-valued random functions defined by

C"(t)=%( Ly = XTlrt]),  0<t<1 (2.6)

and d” be a deterministic function in D[0, 1] defined by

T)=Y, 0sist (2.7)
From (2.1), (2.3) and (2.5)—(2.7), we have
W= f(("+d), r=1,2,.... (2.8)

We see that as an immediate consequence of Prohorov’s theorem, (" 2, oxW.
Applying the continuous mapping theorem (Theorem A.1 in Appendix A) and noting
from (C2.1) that

d'(t) = d(t):=Ct, 0<t <, (2.9)

we have

W 2 floxW + d). (2.10)

2.2.3 The Queue Size Process

We have seen that the heavy traffic limit theorem for the actual waiting time pro-
cess relies on the relationship (2.5) between the process and a random walk. This
relationship allows us to use Prohorov’s theorem directly. Unfortunately, such is not
the case with the queue size process. For this process, we use a technique often used
in heavy traffic theory where a modified process is analyzed in place of the process
in question. This modified process is chosen such that its heavy traffic behavior can
be analyzed with the help of either a random walk, a renewal counting process or
the sum of random number of random variables. Furthermore, this modified process

has the same heavy traffic limit as the original process.
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To that end, for r = 1,2,.. ., set

A"(t) = max{n > 1 At AL <t t>0 (2.11)

. maxi{n > 1:Bf+---+ Bl_; <t} ift> B}
Br(t)z{ { 0 1S ° t>0. (212

0 otherwise,

We then define the modified queue size process {Q"(t), t >0} by

Q (1) = Oiggt[ﬂ”(t) —H'(s)], t=0, (2.13)
where
H™(t)=A"(t) - B"(t), t>0. (2.14)

We can think of Q" (t) as the queue size process of a modified GI/GI/1 queue where
the server performs services one after another whether or not there is any customer
in the queue. A “potential service completion” signifies a real departure epoch if
the queue is not empty at that time; otherwise, nothing happens.

Define the following random functions taking values in D[0,1] (r =1,2,...):

a(t) = %:Ar(rt)—%], (2.15)
) = = [Be0- 5], .10
70 = [T - (F-5)1 =w-sw. (2.17)
V) = S2Q00 = 0 + <)) 0<t<1,(218)

where f is the reflection mapping (2.3) and e is the element of D[0, 1] defined by

e'(t) = (-/_1— - —é—) vrt,  0<t<1. (2.19)

By the central limit theorem for renewal processes (Theorem A.6 in Appendix A),
we have

o 2 %Wl (2.20)
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and

g
5 =z, (2.21)

where W, and W, are independent versions of the Wiener process. Using this

independence we can show that
y D
N —— yWs, (2.22)

where 72 = 02 /A3 + 0%/ B® and W5 is a Wiener process. Applying the continuous

mapping theorem, and noting from (C2.1) that
"(t) Ct—Ct— (1) 0<t<1 2.23
e - —1 = = B
AB s - =7 (223)

we then conclude that

X2 f(YWs +e). (2.24)

For the queue size process of the GI/GI/1 system, define x" similarly to x". It
can be shown [41] that

T AT

m(x", %) —— 0, (2.25)

where m is the Skorohod metric defined on D[0,1] and —~ denotes convergence
in probability. Applying the converging together theorem (Theorem A.2 in Ap-
pendix A), we get

X 2 f(yWs +e). (2:26)

2.2.4 The Virtual Waiting Time Process

As with the queue size process, we have to resort to a modified process to obtain
heavy traffic limit theorems for the virtual waiting time process. For a GI/GI/1
queue, the virtual waiting time process is identical to the workload process which
can be described as follows. Define for r =1,2,...
AT(1)
T(t)= > Bi,, t=0. (2.27)
i=1
This process represents the total amount of work in terms of servicing time that has

arrived up to time t. Since the amount of work is depleted with rate one if any is
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present, the workload at time ¢ is given by

U'(t) = Os<u}é)t[Y’”(t) - Y"(s)], t >0, (2.28)
where
Y™(t)=T7(t) - ¢, t>0. (2.29)

We shall not study directly the heavy traffic behavior of U"(t) but instead, we

consider

A1)

V) = Y X
=1
AT (1)
= T'(t)— > Al t>0. (2.30)
=1

Define the following random functions taking values in D[0,1] (r = 1,2,...):
Y7 (rt), (2.31)
Ur(rt) = f(4)(), (2.32)

YT(rt), (2.33)

T

AT(rt) X", (2.34)

r

A A

V7 (rt) = A ()X =7 (t) = 77(),  0<t<1 (2.35)

I
T e I

By the central limit theorem for random sums of random variables (Theorem A.5

in Appendix A), we have

D OX
T —=W. 2.36
A (236
Kyprianou [52, Lemma 1] shows that 7" 2, 7 where 7 is defined by
C
rt)==t,  0<t<L (2.37)

By [6, Theorem 4.4] and the fact that 7 is deterministic, we have

(#,7) 2 (2w, 1), (2.38)
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and so since " = ¢" + 77, we have

~

2 %W +7 (2.39)

by the continuous mapping theorem. It can be shown [52] that m(y", 12»’) N 0, so

that

o2 %W 47 (2.40)

by the converging together theorem. Since v™ = f(¥"), we then have
o2 f (—Ui_w + r) (2.41)
VA

by the continuous mapping theorem.

2.3 Heavy Traffic Limit Theorems for Vacation Models under the Ex-

haustive Service Policy

We are now ready to establish heavy traffic results for vacation models. It is rather
obvious intuitively that in heavy traffic, a vacation model under the exhaustive
service policy behaves very similarly to a GI/GI/1 queue. This is true because as
the traffic intensity becomes larger, the server has less time to take a vacation. It is
also apparent from the fact that the stability condition for a vacation model under
the exhaustive policy is equivalent to that of a GI/GI/1 system [21]. In this section,

this idea is made rigorous.

2.3.1 The Probabilistic Setting

Let {E7, r = 1,2,...} be a sequence of vacation models under the exhaustive service
policy, all defined on a common probability space (Q, F, P). For each r = 1,2,...,
E" is represented by three i.i.d. sequences of nonnegative random variables, namely,
{A7, n =0,1,...}, {B;, n=0,1,...}, and {V], n = 0,1,...}. We assume that
these three random sequences are mutually independent. For each r = 1,2,...,
the first two sequences have the same interpretation as in the GI/GI/1 system G';

the last sequence is the sequence of vacation lengths. The system E, operates as
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follows: At the end of the nth service completion, the server immediately serves
the (n + 1)st customer if it is waiting in the queue (i.e., the service is on a FCFS
basis); otherwise, the server starts a vacation. At the end of this vacation, the server
immediately serves the (n+1)st customer if it has arrived by this time; otherwise, the
server continues taking additional vacations until the (n+1)st customer is waiting in
the queue when the server returns from a vacation. The lengths of the vacations are
taken from the sequence {V;, n = 0,1,...}, i.e., the length of the nth vacation is V.
We shall assume that the sequences {A]_y, n,r =1,2,...}, {B,_;, n,r =1,2,...}
and {V]_,, n,r =1,2,...} all satisfy Condition A and that conditions (C2.1) and
(C2.2) are satisfied. We also assume that for each r = 1,2,..., the first customer
arrives at 7 at time ¢t = 0 (i.e.,, Ay = 0) to an empty queue, and immediately

receives service.

2.3.2 The Virtual Waiting Time Process

It is more convenient to consider the virtual waiting time process first. This process
is equivalent to the workload process if we interpret a vacation as work, i.e., when
the system becomes empty, the server, instead of starting a vacation of length V|
adds V;] to the workload. Denote the workload at time ¢ for E™ by UF’(t); for its
counterpart in G", use U(t) as before. Let the sequence {vE", r = 1,2,...} of
D[0,1]-valued random functions be defined by

_ L
G

We want to show that m(vE™,v") 2L, 0 such that, by the converging together

v (1) UF'(rt), 0<t<l;r=1,2,.... (2.42)

theorem and (2.41), we have

oET 2, f (%W + T> . (2.43)

We shall make use of the following lemma which follows directly from [52, Lemma 3].

Lemma 2.1 Let {Y,], n,r =1,2,...} be a double sequence of nonnegative random

variables satisfying Condition A. Forr =1,2,..., let {f"’”(t), t > 0} be the renewal
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counting process induced by the sequence {Y;, n=1,2,...}, i.e.,

Yr(1)

max{k>1:Y 4+ ---+V7 <t} ift>Yr
:{ ! cst i ! t>0.  (2.44)

0 otherwise.
Then, as r — oo, we have
1 P
— max Yy 0. .
Vragkstn) (245)
For r = 1,2,... and t > 0, define I"(¢) to be the total amount of time the
server in G" has spent idling (i.e., not serving a customer) in the interval [0,t]. For
r=1,2,..., define
k-1
n'(t) = min{k >1:) V7> IT(t)}, t>0. (2.46)
1=0

Then, n(t) is the number vacations taken up to time ¢, including the one that might

be in progress. By an argument similar to that of Doshi [21], we find that

n"(t)—1

U () =U"(t)+ >, V7 -TI(t), t>0. (2.47)
1=0
Since
m(vE ,v") < sup [F (1) — v (1), r=1,2,... (2.48)
0<i<1

[41, p. 156], we conclude from (2.32), (2.42), and (2.47) that

\/FOStsl i=0 2

1
< v =1,2,... .
- \/Foggf}()i)—lw ’ rEhEe, (249

where the second inequality follows from the definition (2.46) of n"(¢). Define

. 1 n’(rt)—1
m(v? ") < —= sup o VI =TI'(rt)

Vr(t . (2.50)

max{k>1:V 4+...+ V. <t} ift >V
) = {k > 0 k-1 } 0 £>0
0 otherwise,
which can be interpreted as the number of vacations completed in E™ up to time
¢ assuming that the server always takes vacations. Clearly, n"(r) < V7(r) and
therefore
r 1
E r T
m(v” ,v") < — max V. 2.51

OF )< 2 max (2.51)

By Lemma 2.1, the right hand side of the inequality above goes to zero in probability

as 7 — 00, and so does m(vE",v"). Therefore we have proved
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Theorem 2.1 Let {E7, r = 1,2,...} be a sequence of vacation models under the
ezhaustive service policy satisfying conditions (C2.1) and (C2.2). Assume that
{Ar_y, nyr = 1,2,...}, {Bi_q, nyr = 1,2,...}, and {V/_y, n,r = 1,2,...} all
satisfy Condition A. Then

B2, g (%W + r) : (2.52)

where vE" and B are defined in (2.42) and in (2.37), respectively.

2.3.3 The Actual Waiting Time Process

The waiting time of a customer is just the virtual waiting time evaluated at the

customer’s arrival epoch. More precisely, if we define
Cr=A+-+ A4, n=0,1,...;r=1,2,..., (2.53)
then the waiting time of the nth customer in G” can be expressed as
W, =U"(C}), n=0,1,...;r=1,2,.... (2.54)
Similarly, for E” we have
WE = UF(cm), n=0,1,...;r=1,2,.... (2.55)

Using (2.47), we can relate WE™ to W' by
n"(Cr)-1
WE =W’ + Z Vi -1(C;). (2.56)
1=0

Define a sequence {w?", r =1,2,...} of D[0,1]-valued random functions in the

same manner as we define {&”, r=1,2,...} in (2.1), i.e,for r =1,2,..., we let

. 1 . pr
W (t) = '\/—FWﬁtJ’ 0<t <. (2.57)

We want to show the following result.

Theorem 2.2 Let {E™, r =1,2,...} be a sequence of vacation models as in Theo-
rem 2.1. Then
W s floxW + d). (2.58)
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Proof: It suffices to show that m(wE",w") £ 0. Following the same arguments

used for the virtual waiting time process and using equations (2.1), (2.57), and

(2.56), we have

m(w? W) < — VI r=1,2,.... (2.59)

fss ©n-1

So, m(w?",w") £, 0if the right hand side of (2.59) goes to 0 in probability.” This

will be shown in Lemma 2.3 which in turn relies on the following simple result.

Lemma 2.2 Let {X], n,r =1,2,...} be a double sequence satisfying Condition A.
Define {Z!, n,r =1,2,...} by

Zi=XI 4+ X mr=1,2,.... (2.60)
Then, Z7 |r — X in probability.

Proof: In fact, we have a convergence in the L? sense, which of course implies

convergence in probability. We have

E[(i X’)] = E[(—Z;T--—XT)]+(?T—X)2
= ~(0%)"+ (X" - X)? (2.61)

Since the double sequence {X!, n,r = 1,2,...} satisfies Condition A, the mean
X" and the standard deviation o% each converges to a finite number, and so the

right-hand side of (2.61) goes to zero. O

Lemma 2.3 Let {Y], n,r = 1,2,...} and {X:, n,r = 1,2,...} be two double
sequences satisfying Condition A. Define {Y", r = 1,2,...} as in Lemma 2.1 and
{Z;_4, nyr=1,2,...} as in (2.60). Then

\/LFmaX{Y}:,l <k<¥Y(z) o (2.62)

Proof: For each r = 1,2,... and € > 0, we define the events A% and B,, by

1
Al = { — Y > ¢ 2.63
r {fm } (2.69)
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and

. . )
B, = { =X\ < le}. (2.64)

Then,
P(A) = P(ASNB,)+ P(ANBY), r=1,2,.... (2.65)

Observe that we have Z7 < 2|X|r on the set B,, and so

1
PANB,)<P{— Y! 0 .
(A; ) < {\/’FISkSI){}?(}Z{[XIT) Y > e} — as r — oo (2.66)

by Lemma 2.1. Furthermore,
PA:NB) < P(B;)—0 as T — 00 (2.67)

by Lemma 2.2. So, P(AS) — 0 as r — oo, and the proof is complete. O

2.3.4 The Queue Size Process

The queue size process will be analyzed with the help of the departure process.
First we define D"(t) as the number of departures (service completions) up to and

including time ¢t in G” and observe that the queue size at time ¢ can be expressed as

QT(t)=A"(t)-D"(t), t>0. (2.68)
Similarly for E7, define
QF (1) = A"(t) - DF'(t), t>0. (2.69)
For r = 1,2, ..., define
) =U@)-U(t) t>0 (2.70)
and
07" (1) = 0F"(t) if the server in G” is busy at time ¢ (>0 (2.71)

6F" (') otherwise,

where t’ is the last time before t the server in G is busy. The quantity 6% (¢) is

piecewise constant with jumps at the start of busy period epochs and represents
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the difference between the time of occurrence of a departure in E” and that of the

corresponding departure in' G". Hence
DF'(#)=D"(t - 6F"(t)), t>0. (2.72)

For r =1,2,..., define

1 .
X'(t) = WQT(Tt), 0<t<l (2.73)

and similarly
XF(t) = %Q”(rt), 0<t<I (2.74)

Our goal is to show the following result.

Theorem 2.3 Let {E", r =1,2,...} be a sequence of vacation models as in Theo-

rem 2.1. Then
X2 f(aW +e). (2.75)

Proof: We shall show that m(x®",x") — 0 in probability. Using equations (2.68),
(2.69), and (2.72), we see that

m(x) < sup ) - X ()]
1 .
= —= D" (rt) — DF (rt
\/;oségspl{ (rt) (rt)]
_ _1_ r . nr __pET !
= \/Fosslispl[z) (rt) — D" (rt — 65" (rt))).
1 +
< — "(rt) = D" | |rt - 0F" , (276
S Ze [D (rt) ([T Sup, (7'8)] )} (2.76)

where [z]* = max{0,z}. So, to obtain the desired result, it suffices to show that

both 6" and 6™ (r = 1,2,...) defined by

1
"(t) = —=D" <t<L .
§"(t) \/FD (rt), 0<t<1 (2.77)
and N
"(t) = —D" - 0 0<t<1 2.78
87 (t) \/FD ([rt 215)1 (rs)] ) , <t< (2.78)



converge weakly to the same random function. We shall do this with the help of the

random time change theorem [41, Lemma 7.1], [6, p. 145]. See also Theorem A.3 in

Appendix A.
For r =1,2,..., define
0% (rs)]*
o7(t) = [t—- sup -——@} 0<i<1. (2.79)
t<s<1 r
Then for each r, ®" is an element of D[0, 1] which is nondecreasing and satisfies
0<97(t) L1, 0<t< 1. (2.80)
Moreover, since
sup |97(¢) —t] < L sup 0F (rt)
0<t<1 T 0<t<1
1 r
= — sup [vE (1) —vr(t)] =i} (2.81)

VT o<

(see our discussion on the virtual waiting time process), we then have
m(®", 1) -2 0, (2.82)

where I is the identity mapping [0,1] — [0,1]. Iglehart and Whitt [41, p. 163] show
that 6" converges weakly to some random function X which is continuous almost

everywhere. 5o, by the random time change theorem and (2.82), we get
§ = 67(0") 2 X(I) = X, (2.83)

and this completes the proof. O

2.4 Heavy Traffic Limit Theorems for Vacation Models under Bernoulli

Service Policies

The heavy traffic results for vacation models under the exhaustive policy can be
extended to vacation models under a Bernoulli service policy. A Bernoulli policy
is a generalization of the exhaustive policy in that at a service completion, if the
queue is not empty, the server does not necessarily serve the next customer; it does
so with probability p, 0 < p < 1, and takes a vacation with probability 1 — p. The
exact probabilistic model is stated in the next section. The virtual waiting time, the

actual waiting time, and the queue size processes are then analyzed in that order.
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2.4.1 The Probabilistic Setting

Let {B", r = 1,2,...} be a sequence of vacation models defined on a common
probability space ({2, F, P). For each r = 1,2,..., B" is under the Bernoulli service
policy with parameter p", 0 < p” < 1. The system B is described by the same three
independent sequences governing E”, namely {4}, n =0,1,...}, {B, n =0,1,...},

and {V, n = 0,1,...}, together with an additional i.i.d. sequence of random

variables {U], n =0,1,...} where

Ur = 1 with probability p” n=01,..: =12,
0 with probability 1 — p",
All four sequences are assumed to be mutually independent. The behavior of the
server in B is the same as that in E” except when the queue is not empty at a
service completion. At the nth occurrence of this situation, the server in B” looks at

the value of UJ; it serves the next available customer if U? = 1 and takes a vacation

otherwise. Keilson and Servi [45] show that B" is stable if and only if
B4 (=)0 < A"

For the purpose of our discussion, we shall assume that {A” n,r=1,2,...},

n—19

{B]_4, n,r=1,2,...},and {V/_;, n,r = 1,2,...} all satisfy Condition A and that

n—1

the following conditions are satisfied:

(C2.3) (B"+ (1 —p")V" — A")\/r approaches Cp with —co < Cp < 0 as r — oo;
(C2.4) 0< A" - A 0<B - B, 0<V = V,andp” - pwith0< A, B,V <

coand 0 <p'yp < 1.

We also assume that for each r = 1,2,..., the first customer arrives at B" at time

t =0 (i.e., Ay = 0) to an empty queue and immediately receives service.

2.4.2 The Virtual and Actual Waiting Time Processes

It can be shown that, as far as waiting time processes are concerned, a vacation

model under a Bernoulli policy with parameter p is equivalent to a vacation model
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under the exhaustive policy with modified service times. In this equivalent system,
a service time is distributed as the original service time with probability p and as
the original service time plus the vacation period with probability 1 — p. This result
will be shown later in Chapter 5 (Lemma 5.4). Heuristically, the equivalence can
be seen to hold from the following argument: At the service completion of the nth
customer C,, if customer C,4; is present in the queue, the server serves C,,; or
takes a vacation and then serves Cp4y. The former occurs with probability p and
the latter with probability 1 — p. As far as C,41 is concerned, the vacation can
be regarded as part of the service given to C,. In the case where C,,; has not
arrived when C,, completes its service, the server takes a number of vacations until
it finds Cp41 in the queue upon returning from a vacation. Whether the first of
these vacations is part of the service given to C,, or not, does not change the waiting
time of C, ;.

Let {E”, r =1,2,...} be the sequence of the equivalent vacation models under
the exhaustive policy. For each r =1,2,..., E7 is described by the four sequences
describing B”, namely {A?, n =0,1,...}, {Bl, n =0,1,...}, {V/, n=0,1,...},
and {U’, n = 0,1,...}, and another sequence {Vn”, n = 0,1,...}. This sequence
is independent of the other four and is identical in law to the sequence {V], n =
0,1,...}. Furthermore, {f/nr, n,r =0,1,...} is assumed to satisfy Condition A. The
sequence {V", n = 0,1,...} is used in the modified service times in Er ie., the nth

service time Bg in £ is given by
Br=B +(1-UDV', =n=0,1,..;r=012... (2.84)

Obviously, {B;, n = 0,1,...} also satisfies Condition A. Using this fact and
conditions (C2.3)—(C2.4), we can use the results established in the previous section
to obtain the heavy traflic behavior of {E’", r=1,2,...}, which is identical to that
of {B", r =1,2,...}. We then have the following results.

Theorem 2.4 Let {B", r = 1,2,...} be a sequence of vacation models under

a Bernoulli service policy satisfying conditions (C2.3) and (C2.4). Assume that
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{Ar_y, nyr=1,2,... 3, {Br_y, n,r=1,2,...}, and {V7, n,r = 1,2,...} all satisfy
Condition A. Then

TN f (%W + ﬂB> ; (2.85)

where

6% = o} + (1 - p)od +p(1 = p)V? + o4 (2.86)

and Bp(t) = (Cp/A)t, 0 <t < 1.

Theorem 2.5 Let {B", r =1,2,...} be a sequence of vacation models as in Theo-

rem 2.4. Then,

r

wB

2 f(6xW + dg), (2.87)

where dg(t) = Cpt, 0 <t <1,

2.4.3 The Queue Size Process

Unlike the waiting time processes, the queue size process of a vacation model under
a Bernoulli policy is slightly different from that of the equivalent vacation model
under the exhaustive policy. This minor difference arises from the fact that for the
equivalent system, a customer departs at the end of a modified service time which
may include a vacation period while in the original system, the customer departs as
soon as its real service is completed. However, this time difference cannot be larger
than a vacation period and it will be shown below to be negligible in heavy traffic.

For r = 1,2,... and n = 0,1,..., denote the nth departure epoch in B" and
in its equivalent system E7, by TB" and Tfr, respectively. For r = 1,2,... and
t > 0, let DP"(t) denote the number of service completions (departures) up to and

including time ¢ in B", and denote the same quantity in E™ by DE (t). Defining

r r - r +
05 (1) = (T8 + (1= Uper (o) Vpor(y — 1] s 120, (2.88)
we then see that
DB (t) = DB (+ + 6B(¢)), t>0. (2.89)



Since

97" (1) < > 2
O > 120 (280)

we can use the same argument as in Section 2.3.4 to show that in the heavy traffic
limit, the queue size processes for both the original and the equivalent systems

become identical. Hence,

Theorem 2.6 Let {B", r =1,2,...} be a sequence of vacation models as in Theo-

rem 2.4. Then,

B 2 f(ygW + eB), (2.91)
where
o2 0%
78 = -4+ 4, (2.92)
B
op = 0g + (1 —p)oy +p(1 — p)V?, (2.93)
B=B+(1-p)V, (2.94)

and ep(t) =Cpt, 0 <t <1.

2.5 Heavy Traffic Limit Theorems for Vacation Models under Limited

Service Policies

In this section, we establish heavy traffic limit theorems for the limited service
policies. A limited service policy is characterized by an integer m. Under this
service policy, the number of consecutive services that can be performed by the
server between any two vacations is limited to m. Unlike for the Bernoulli policies,
there is no known result for the limited policies which provides equivalent vacation
models under the exhaustive policy (except for the case m = 1 which is equivalent
to the Bernoulli policy with p = 0). Therefore, we cannot use the heavy traffic
results for the exhaustive policy we established in Section 2.3 to study the heavy
traffic behavior of the limited policies. We shall resort to two auxiliary systems
which exhibit heavy traffic behavior very similar to that of a vacation model under

a limited service policy.
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2.5.1 The Probabilistic Setting

Let {L", r = 1,2,...} be a sequence of vacation models defined on a common
probability space (Q,F, P). For each r = 1,2,..., L" is under the limited service
policy with parameter m”, m" = 1,2,.... The system L" is represented by the
same three random sequences describing E”, namely {A], n =0,1,...}, {B], n =
0,1,...} and {V/, n = 0,1,...}. As usual we assume that these three random
sequences are mutually independent. For each r = 1,2,..., the operation of the
system L” is described as follows: At each service completion, the server starts a
vacation if and only if either or both of these two conditions are satisfied: 1) the
queue is empty 2) the server has performed m” consecutive services since the last
time it returned from a vacation. As in E", the server continues taking additional
vacations until at least one customer is waiting in the queue when it returns from
a vacation. We shall assume that customers are served on a FCFS basis. It can be
shown (e.g., [51]) that for each r = 1,2, ..., the system L" is stable if and only if
/T
B+ ;if; < A" (2.95)
As usual, we assume that {A]_;, n,r = 1,2,...}, {Bl_;, n,r = 1,2,...} and
{VI_,, n,r=1,2,...} each satisfies Condition A and that the additional conditions
(C2.5) and (C2.6) are satisfied, where
(C2.5) (B"+ V" /m"™ — A")\/r approaches O, with —co < C, < 0 as r — oo;
(C26) 0 < A” - A, 0< B - B 0<V - Vandl < m" — m, with
0<AB,V<ooandl<m.

We also assume that for each r = 1,2,..., the 0th customer arrives to L” at time
t =0 (i.e., A7 = 0) to an empty queue and immediately receives service.
2.5.2 The Auxiliary Systems

To obtain heavy traffic functional limit theorems for the sequence {L", r =1,2,...},
we shall use two sequences of auxiliary systems {L", r = 1,2,...}, and {17, r=

1,2,...}. The sequence {L", r = 1,2,...} is defined in such a way that we can
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establish heavy traffic results for it using the functional central limit theorems for
renewal processes. The sequence {IA/T, r =1,2,...} serves the purpose of bridging
between {L", r =1,2,...} and {L", r =1,2,...}.

We first describe the sequence {f/’, r=12...}. For each r = 1,2,..., the
server in L" performs a series of m” consecutive potential services, followed by one
vacation, another series of m” potential services, a vacation, and so on. The activity
of the server is independent of the arrival process. The lengths of the potential
services are taken from the sequence {B], n = 0,1,...}, and the vacation lengths

from the sequence {V, n = 0,1,...}. The arrival process is governed by the

r
n?

sequence {A7, n = 0,1,...}. The potential services are so called because at each of
their completions, a customer leaves the system (i.e., the potential service becomes a
real service) if and only if the queue is not empty at that time. If the queue is empty,
then the potential service is left unused. Note that it is possible for a customer to
arrive in the middle of a potential service and then leave at the completion of the
potential service. In this case, we can think of this customer as receiving a service
of length equal to the remaining life of the potential service time.

We now describe the sequence {L", r = 1,2,...}. For each r = 1,2,..., the
system L" is very similar to the system L. The only difference is that in L”, we
allow customers to depart only at vacation completion epochs. At each of these
epochs, either a batch of m” customers or all the available customers, whichever

is fewer, leave the system simultaneously. In both L™ and L", we adopt the FCFS

service discipline.

2.5.3 The Queue Size Process

For each r = 1,2,..., let Q" (¢) denote the queue length of L™ at time ¢ and define

the D[0, 1]-valued random function x*" by
1
Jr

Define Q’ir(t), QY (1), yL" and xI" correspondingly.

XY (1) = —=Q¥ (rt), 0<t<1L (2.96)
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For each r = 1,2,..., define the random sequence {R!, n =

R;:BTTWLT +"'—{"BE"n+l)m’—1"{"anT’ n = 0’1"

1,2,...} by

" (2.97)

and let {fir(t), t > 0} be the renewal counting process induced by this sequence,

le.,

ér(t):{max{kZl:RS—%—---—}—R’,;_lSt} ift > R{

0 otherwise.

The following is the main result of this section.

Theorem 2.7 We have
r ’D T T
X = fyW +€h)

as r — oo, where

1
2 2.2\72

A3 R3
and
L mCL
1) = ——t 0<t<1.

This result directly follows from the following lemma.

Lemma 2.4 Asr — oo, we have

r

S (R

where v and e* are defined in (2.100) and (2.101), respectively.

Proof: For each r = 1,2,..., QL' (t) can be expressed as

Q¥ (t) = sup. [HY (1) - HY (5)],  t20,

where

HY ()= A"(t) = m’R'(t), t>0.
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For each r =1,2,..., define

a(t) = % i/l’(rt) _ EH , (2.105)
0 = S [0 - 5], (2.106)
P () = '\;_F iHEr(rt) - rt(z}r— — g )] , (2.107)
= o' (t)— o' (t), 0<t<1. (2.108)
From (2.103), (2.107), and the definition of xL', we see that
X = f 4+ ), (2.109)

where f is defined in (2.3) and el is a deterministic function in D[0,1] defined by

Fr 1 4
el (t) = r (Z — %—) t, 0<t<lL (2.110)
From (C2.5), we see that
() - elt), 0<t<l (2.111)

as r — 0o. So, by the same argument as in Section 2.2.3, we obtain the desired

result. .

Lemma 2.5 Asr — oo, we have

m(x*, x¥) = 0. (2.112)
Proof: As before, the inequalities

Fr ir 1 Fr rr
m(x¥ ,xY") < —= sup Q¥ (rt) — QL (rt)], r=1,2,... (2.113)

VT o<i<t

hold true. We shall show that for each r =1,2,...,

Q¥ (1) - QY W) <m",  t20, (2.114)
so that
7 1
Lr Lr < T
m(x",x") < ———\/T_.m — 0. (2.115)



But, |
QY (1)~ Q¥ (1) = 1DV (1) - DV (1)},  t> 0,

(2.116)

where D" (t) and DL’ (t) are the number of departures up to time ¢ from the system

L™ and j}’, respectively. Denote the nth vacation completion epoch (in both L™ and

~

L") by tI. Then, it is easy to see that for each n = 0,1, ..., we have

DY () < D7),

n

DY@y - DYy <m", & <t<t
n n n+1l

and
D (y=D"(t), th<t<t,,.

Consequently, combining these three facts, we obtain
DY @) —DV () <m", t>0.

To show that
DY@y~ DV ) <m”, t>0,
we use an argument by induction. Since DL (5) < m", we obviously have
DY (t) — DY (tg) < m.
Now assume that for some n = 0,1,..., we have
DY (1) - D" (t7) <.
In view of (2.119), we can conclude that
DV ()= DY () <m’,  #, St<

We see that because of (2.123) and the fact that

QY (1) > Q¥ (tn) - Q¥ (1) = DV (1) — DV (1),

(2.117)

(2.118)

(2.119)

(2.120)

(2.121)

(2.122)

(2.123)

(2.124)

(2.125)

the number of service completions in L” in the interval (¢, ,] is at least DX"(t7) —

DL (1), ie.,
pY(ir,,) - DY (&) > DV (#1) — DV (1),
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or, equivalently,

DY (t,4) > D' (1), (2.127)
Combining this with
DY (t,,) - D (1) <, (2.128)
we get
DV (¢r,,) = DY (1) < m. (2.129)
g
Lemma 2.6
m(x", x¥) £ 0. (2.130)
Proof: For each r = 1,2,..., we reconstruct each sample path of L from that of

A~

L" such that

1. A bound for m(xL", xE") which converges to 0 in probability as r — co can

be easily identified;
2. The probabilistic structure of L" is not altered.

The construction is carried out as follows: First, define for each r = 1,2,...
a random sequence {V’, n = 0,1,...} such that it is probabilistically identical
to the sequence {V;7, n = 0,1,...} and such that {V7,,, n,r = 1,2,...} satisfies
Condition A. For each r = 1,2,..., we call a customer in L" an initiating customer
if it arrives to an empty queue (e.g., the Oth customer). Denote the starting time
of service given to the nth initiating customer by sL” (e.g., s§” = 0). Define the
nth busy period to be the period that starts at time sL” and ends at time eL” when
the queue empties for the first time since sZ’. (Hence the nth initiating customer
initiates the nth busy period.) The end of a busy period is necessarily a service
completion which is immediately followed by a vacation, and any two busy periods
are separated by at least one vacation. In L™, denote by s%r the first vacation
completion epoch after time s£", n =1,2,..., and let sf}’ = 0.

n
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We now construct the sample path of L” from that of I7. In the Oth busy

period, i.e., from time t = 0 (= s£” = sL") up to the first time the queue is empty,

let the server in L” follow exactly the server in [Af, l.e., the server in L" is serving
a customer (resp. taking a vacation) whenever the server in L” is. This means
that during this period, the service and vacation times used in L" are identical
to those used in L". At time €&, the server in L” starts a vacation and keeps
taking additional vacations until it finds at least one customer waiting in the queue
upon returning from a vacation. The lengths of these vacations are taken from
the sequence {V/, n = 0,1,...}. When the server in L returns from a vacation
and finds at least one customer in the queue, it immediately starts serving. This
vacation completion epoch is then the start of the next busy period. In this busy

period (i.e., interval [s¥", el")), again we let the server in L" follows the server in

L". This time we introduce a delay, i.e., the action of the server in L” in the interval
[sL", L) is identical to that of the server in L” not in the same interval but in the
interval s, sL” + eL” — sL"). In general, for each n = 0,1,..., the action of the

server in L in the interval [s5", L") is identical to that of the server in L7 in the

i ir T . .
sL" sL" 1 eL" — L), And, the server in L" takes vacations whose lengths

n '%n

interval |
are taken from the sequence {V,7, n =0,1,...} in the interval [eL", s} ).
We can think of L as being constructed from the random sequence

{A7 B" V' n=0,1,...} with the usual interpretation. For each n = 0,1,...,

n?

B, = B}, where k, > nis the index of the service in L™ which is chosen to be the nth

service in L". In particular, if the nth customer is an initiating customer in L", then

er

L, is the index of the service in L™ which starts at time s&

(e.g., ko = 0). The man-

ner in which k,, n = 0,1,..., are determined guarantees that {B’}, n = 0,1,...}

r
o

is i.i.d. with the same common distribution as that of {B”, n = 0,1,...}, and so

can ei-

{B" ., n,r = 1,2,...} satisfies Condition A. For each n = 1,2,..., v
ther be taken from the sequence {V/, n = 0,1,...} (if the vacation is between two
busy periods) or from the sequence {V,/, n = 0,1,...} (if the vacation is within a
busy period). Again, the random sequence {V',,n = 0,1,...} is probabilistically

identical to {V", n = 0,1,...} and furthermore {V',_;, n,r = 1,2,...} satisfies
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Condition A.

We have just shown that the system L” obtained by the elaborate construction
described above possesses the desired probabilistic characteristics. It remains to
show that this construction indeed facilitates comparison to L" which leads to the

proof of Lemma 2.6. To this end, we define for each r = 1,2, ...,
OF (1) = S (L = L)L <t < s},  t20. (2.131)
n=0

We shall see the significance of this quantity later. For now, we note from its

definition that 0% satisfies

0<6Y(t) < Ry t20, (2.132)

so that the following lemma holds.

Lemma 2.7

L sup 0% (rt) 0. (2.133)

VT o<t

Proof: The result follows directly from Lemma 2.1 since

1 r 1

— sup 0¥ (rt) £ — max R! 2.134

VT ogin (rt) < /T 0<i<Rr () (2134)
and {R]_,, n,r =1,2,...} satisfies Condition A. O

Proof of Lemma 2.6 (Continued): For each r = 1,2,..., define S”'(t) to be the

number of potential service completions in L™ in the interval [0,t] and

1[4 m'rt
(1) = == [S’(rt) - ——] . 0<t<L (2.135)
vr fr
It is plain that
ST(t)—m'R(t) <m", t>0, (2.136)
such that
m(s",m"p") < —\%—;m’, r=1,2,.... (2.137)
Therefore, as r — oo, we get
m(s",m ") — 0, (2.138)
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and so ¢" and m"g" both converge to the same D[0,1]-valued random function,
namely some multiple of Wiener process defined on [0, 1].

To prove the lemma, it suffices to show that as r — oo,

1

Er L P
— su rt) — rt)| — 0. 2.139
T 2 10 (1) = QY (1) (2139
Define for each r = 1,2,...,
tY () = max{st n=0,1,...: sL" <}, £ >0, (2.140)

i.e., the starting epoch of the busy period to which ¢ belongs (if ¢ is in the middle of

a busy period) or of the last busy period before time ¢ (if ¢ is in between two busy
periods). Also define

V(1) = max{st",n = 0,1,...: sL, <}, t>0. (2.141)

We shall show that for each r =1,2,...,

QU () - Q¥ (1) <& (t+ 0 (1) - 5(1), t20 (2.142)
and
QU () - QM (1) < S +0" (1) -5t ®)
+max{Q ((1)), Q¥ (" (1)}, >0, (2.143)
such that

T 107 () =@ ()] < wp (97t 407 (1) = §7(r0)

+—= sup QL (r7(rt)).  (2.144)

We showed earlier that ¢" converges weakly to a random function which is con-
tinuous a.s. Using this fact, together with Lemma 2.7, we can use the random time
change argument used in Section 2.3.4 to show that the first term in (2.144) con-
vergers to 0 in probability. The second term also goes to 0 in probability because

QY (77(t)) is just the number of customers that arrive during the vacation which
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ends at time 77(%). Hence,'the proof of the lemma is complete if we can show that

the bounds (2.142) and (2.143) indeed hold.

To show (2.142), we need consider only the case Qir(t) > 0 since it trivially
holds if QL7 (¢) = 0. Defining

ty=sup{0 <7< t: QD(T) =0}, (2.145)

we have

QY (1) = AT(t) — Am(t1) — [S7(t) = 57 (11)]. (2.146)
Here, we use the fact that since
QU(r)>0, u<7T<y, (2.147)

each service completion in the interval [t1,¢] leads to a customer departure. On the
other hand, the number of departures from the system L” in the same interval is

bounded above by 57(t + 60X (¢)) — 57(t), and so

QY1) = QF(t) + AT(t) — A7(tr) — [S"(t+ 0% (1) = S7(1)]

> AT(t)— AT(t) = [S"(t + 0F (1)) — S(1)]. (2.148)

Combining (2.146) and (2.148), we obtain (2.142).
To show (2.143), we again need only consider the case Q¥ (t) > 0. If ¢ is in the

middle of a busy period, then we have
DY (1) = DY (7(t)) = §7(¢ + 07 (1) - S7(" (1) + 6~ (¥"(1))), (2.149)
so that

QY (1) = Q¥ ("(1)) + AT(t) — AT(t7(1)) = [§7(t + 0¥ (1)) = S7(¢"(2) + 0% ("(1)))].

(2.150)
But, since
DY () = D" (#7(1)) 2 §7(t) - §7(¢' (1)), (2.151)
we have
Q¥ (1) = QF ) +A W) - A1) -5 -5
> AT(t) — AT( (1) — [§7(t + 0¥ (1)) = &7 (" (1)), (2.152)
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where the last inequality follows from the fact that QL (¢"(¢)) > 0 and S7(¢ +
L (t)) > §7(t). Combining (2.150) and (2.152), we obtain

QU () - QY (W) < S (W) + 0V (1) = S @)+ QY (). (2153)
On the other hand, if ¢ is between two busy period, then we have
QY (t) < QY (=" (1)) (2.154)

Combining this last inequality with (2.153), we obtain the desired result, and so the
proof of Lemma 2.6 is now complete. O

Proof of Theorem 2.7: Combining Lemmas 2.5 and 2.6, we have
m(XLr,XI_’r) Lo, (2.155)

and so by the converging together theorem the desired result follows from

Lemma 2.4. O
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CHAPTER 3

LIGHT TRAFFIC ANALYSIS AND INTERPOLATION
APPROXIMATIONS FOR VACATION MODELS

3.1 Introduction

We have seen in the previous chapter that using heavy traffic analysis, valuable
information can be obtained about the behavior of vacation models as the traffic
rate approaches its critical value. The crucial fact there is that this asymptotic
information can be obtained even though the behavior of the systems in moderate
traffic is not known. In this chapter, we use the so—called light traffic analysis to
study the behavior of vacation models as the traffic rate approaches zero. Like heavy
traffic analysis, light traffic analysis provides valuable qualitative feel and worthwhile
insights for those service policies for which exact analysis is not feasible. One use
of heavy and light traffic results is to provide a rigorous basis for interpolation
approximations. We study such approximations at the end of this chapter. In
particular, we apply these approximations to the limited policies and study their
performance by means of numerical validations.

Light traffic analysis first appeared in the literature in 1965 with the work of
Benes [5]. In 1983, Burman and Smith [12] proposed the interpolation based on light
and heavy traffic information to study multi-server queues with Poisson arrivals.
Recently, Reiman and Simon [67,68] developed a general method to obtain light
trafic results for systems with Poisson (or Poisson driven) arrivals. They were the
first authors to identify that light traffic analysis basically can be formulated as
a problem of finding the derivatives of the performance measures of interest with
respect to the arrival rate A at A = 0. They showed that if a performance measure
satisfies some conditions (they call such a performance measure admissible), then a

particular interchange of limits is justified and the method yields the correct values
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for the derivatives of that measure.

In the next section, Wé describe the Reiman-Simon method in more details.
Then in Section 3.3, we apply this method to vacation models with Poisson arrivals.
We shall concentrate throughout the chapter on the steady state waiting time as the
performance measure. We should mention at this point the decomposition results
established by Gelenbe and lasnogorodski [36] and Doshi [21] which decompose the
steady state waiting time in a vacation models under the exhaustive service policy
into two components: the steady state waiting time of the corresponding single server
queue without vacations (i.e., M/GI/1 queue) and the forward recurrence time of
the vacation periods. Since the second component is independent of the arrival rate
A, only the first component will determine the derivatives with respect to A, and
so we can in fact use the light traffic results of the M/GI/1 queue. However, we
shall derive in Section 3.3 the light traffic results for the exhaustive policy using the
Reiman—Simon method. This exercise serves to illustrate how the Reiman-Simon
method can be used to study vacation models in light traffic, in particular those
under service policies for which decomposition result is not available, such as the
limited policies. The light traffic results for the exhaustive policies can be readily
extended to the Bernoulli policies by virtue of the equivalence result discussed in
the previous chapter. Later in Section 3.3, we study the light traffic behavior of
the limited policies. We exploit some properties of the Reiman-Simon method to
show that again the light traffic results for the exhaustive policy can be extended
to these service policies. In Section 3.4, we study the applications of interpolation

approximations to the limited policies.

3.2 The Reiman—-Simon Method

Consider an open queueing system fed by a Poisson arrival stream with rate A.
Let F' be a (steady-state) performance measure of the system; in our case F is

the steady-state waiting time. We are interested in determining the derivatives of
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F()X) = E,[F] evaluated at A =0, i.e.,

Alo

with the notation f© = f and f(V(A) = d—‘f\"—,; (A),n=12....

The idea behind the Reiman-Simon method is that F' can be interpreted as
being evaluated at time zero assuming that the system has been running since time
—00, i.e., the system has reached steady state. For instance if F' is the steady state
waiting time, then it can be interpreted as the waiting time of a ‘tagged’ customer
which arrives at time zero. Let Fr denote the performance measure given that only
arrivals in the interval [—T,T] are taken into account, and let Fr()) = E\[Fr).

Then, if F satisfies certain conditions—in which case we say F' is admissible—then

the interchange of limits

o A = i T )
1/{{{)1%1_{1()10 (0 = jll_r&lgglFT (A) (3.2)
is shown to hold for n = 0,1,.... Furthermore, the left-hand side can be shown

to be just the quantity we want, namely limyjo F(™()). The significance of this
interchange of limits is that the right-hand side of the equation can be computed.
For convenience, we state below the admissibility condition and the Reiman-

Simon method.

Definition 3.1 (Admissibility) The performance measure F' is admissible if there
exist constants K, N, a and 0 with K,N < 00, 1 < a < o0 and § > 0 such that for

any 0 <T < S and j,k=0,1,..., we have
E[|Fr - Fs| | Apm(i); Awsi(k)] < K(j + k)¥ar*he™, (3.3)

where Ay (1) is the event that there are | arrivals in the intervals [—b, —a) and

(a,b].
Lemma 3.1 (Reiman—Simon) If F is admissible, then
F(0) = E[F| no other arrivals | (3.4)
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and

Fm@*ﬁ/'”/ U({ty, ..t ) dbn-dtr, n=12.... (3.5)
where
U({ts,. .. ta)) = D (=1)"7 > E[F|{ti,...,t,}] (3.6)
=0 {1y A1, om}
and
E[F|{ty,,...,t;,}] = E[F| arrivals at time t,,,...,t;]. (3.7)

3.3 The Reiman—Simon Method Applied to Vacation Models

In this section, we use the Reiman-Simon method to study vacation models under
the exhaustive policy in light traffic. We use the steady state waiting time to
illustrate the method. Later in the section, the Bernoulli and limited policies are
studied using the results for the exhaustive policy. We first describe the probabilistic

setting in which the computation of the derivatives is carried out.

3.3.1 The Probabilistic Setting

In the setting, we have a vacation model which has been running since time —co. The
system is governed by three mutually independent random sequences: {T,, n € Z},
{Bn, n € Z} and {V,,, n € Z}. The sequence {T,, n € Z} is a Poisson process
constituting the arrivals into the system; we assume that 7o = 0, i.e., there is a
customer arrival at time ¢ = 0. The sequences {B,, n € Z} and {V,, n € Z}
are each constituted of i.i.d. random variables with distribution functions B and V,

respectively, i.e.,
B(t)= P[B, <t] and V(t)= P[V, <t], n=0,1,.... (3.8)

Let Ry be a random variable which is distributed as the forward recurrence time of
the sequence {V,,, n € Z}, i.e.,

L[l =V(r)]dr
EV]

Ry(t) = P[Ry < 1] = t>0. (3.9)
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The random variable B,, is the service time of the customer which arrives at time 7.
The sequence {V,, n € Z} and the random variable Ry are interpreted as follows:
Suppose there exists n* < 0 such that T}, = —oo for all n < n* and —oco < Ty
Then, the customer which arrives at time 7« arrives to an empty queue and waits
for the server to return from vacation. The length of this remaining vacation is given
by the random variable Ry. The lengths of the subsequent vacations after time 7T},
are taken from the sequence {V,, n € Z}. We do not specify the construction of
the sample path for the case where T}, > —co for all n € Z since we do not need it
for the computation of the derivatives using the Reiman-Simon method. It should
be noted, however, that it is possible to construct the sample paths for this case.
The reader familiar with Palm probabilities is referred to a monograph by Baccelli

and Brémaud [4] for more details on construction of stationary queues.

3.3.2 The Exhaustive Policy

Let Wg denote the steady state waiting time in a vacation model under the ex-
haustive policy. In order to apply Lemma 3.1 for computing the derivatives of
WEg()\) = E\[Wg] at A = 0, we have to show that Wy is admissible. Indeed, using
the arguments used in [68], it can be shown that if there exists 8* > 0 such that
| E[e%B] < oo for all § < 6* where B is the generic service time, then Wy is admissible.
We shall now use the Reiman-Simon method to compute Wx(0) and W5(0). We
assume that the condition for the admissibility of the steady state waiting time is
satisfled. Denoting the waiting time of the customer which arrives at time ¢ = 0 by

Wy, we have by Lemma 3.1 that
Wg(0) = E[Wp| no other arrivals | = Ry (3.10)
and

WE(0) = /:: (E[Wo| exactly one arrival at time ¢ | - WE(O)) dt. (3.11)
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Notice that because of FCFS assumption, we have

E[W,| exactly one arrival at time ¢ | = E[Wj| no other arrivals ],

such that

0 _
= / (E[I/VO| exactly one arrival at time ¢ | — RV) dt.

Consider the renewal process {V,,,n =0,1,...}. Define
Sn:ZV,', n=0,1,...,
1=0

and let {V(t), t > 0} be the induced counting process, i.e.,

0 otherwise,

{max{nZl:Sn_lst} if Vo <t

The residual life at time t is defined by

n=Sppy—t, t>0.

0 _
Wg(0) = /_oo (E[Wol exactly one arrival at time ¢t | — WE(O)) dt

t>0,

(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

Let {X,Vu_1, n = 1,2,...} be a delayed renewal process, i.e., the first renewal is

given by the random variable X whose distribution might be different from that

common to the rest of the random variables. Denote the residual life at time t of

this delayed renewal process by 7.
Letting
g(r,t) := E[W,| one arrival at time ¢, Ry = r]

and noting that

we then have

(3.17)

(3.18)

(3.19)



But, it can be easily shown that

E B_r ifr<t
g(r,-—t)={ i ]_ t>0 (3.20)

r—t+B ift<r,

and

Ely]] = Blver] i <t t>0 (3.21)
t r—t  ift<r 7 '

such that
Wg(0) / / V2] — Eln- r]) dRy(r)dt

+/0 /too B dRy(r)dt. (3.22)

Denoting the first and second terms on the right-hand side by 7y and 75, respec-

tively, we then have

T, = BRy (3.23)
and
T, = /O " dRy(r) [ / M(E[vf_r] ~ Ely..]) dt} o
= [T (B2 - Ein)) du (3:24)
Now, with
A.(t)=Ply,>2] and APt)=PhP>z], 220, (3.25)
we can write (3.24) as
T, = / / [AB(t) - Au(t)] d dt. (3.26)
By the usual renewal argument [44], we have
At =1-V(t+2)+ /Ot At — y)dV(y) (3.27)
and
AB()=1-B(t+o)+ [ " Au(t—y) dB(y). (3.28)
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For simplicity, let us assume that A,(t) can be written as

A = [ Cau(r)dr + AL0),  t3>0. (3.29)

So, we can write (3.27) and (3.28) as

A(t)=1-V(t+z)+ /Ot V(t —1)a.(7)dr + A-(0)V(¢) (3.30)

and
Af(t) =1-B(t+z)+ /Ot B(t — 7)az(7)dr + A,(0)B(t), (3.31)

respectively. In that case, we obtain

T, = /waow(1—3(t+x)) dxdt—/ooo/ooo(l —V(t+2)) dedt
+ [ /0°° /Ot(B(t — 1) = V(t = ))as(r) dr du dt
+ /0 ” /0 T A0 (B@) - V(#)) de dt. (3.32)
The first and second terms on the right-hand side are easily computed to yield

B?/2 and V?/2, respectively, while the last term can be shown to be (V- B)V.
The third term, denoted by Ti3, is given by

Ty = /Ooo/()oo/t(B(t—T)—V(t—r))ax(r)drdtdx
- /OO/OOO/:O(B(t—T)—V(t—T)) dt ay(r) dr do

V= B)(By - 7). (3.33)
Now we can substitute all the terms into (3.32), and then (3.23) and (3.32) into
(3.22). Noting that Ry = V2/(2V), we finally obtain

Wg(0) = -1—3;. (3.34)

This result is in agreement with that obtained using the decomposition result for

vacation models and the Pollaczek-Khintchine formula.
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3.3.3 The Bernoulli Policies

As mentioned in the previous chapter, there exists for any vacation model under a
Bernoulli service policy with parameter p, 0 < p < 1, an equivalent vacation model
under the exhaustive policy. The equivalence is in terms of waiting times and the
equivalent vacation model differs from the original one only in the distribution of
the service times. The service times in the equivalent model are distributed as a
service time in the original model with probability p and as a service time plus
a vacation duration with probability 1 — p. In the previous chapter, we use the
transient version of this result; here we use the steady—state version of the result
which was established by Keilson and Servi in [45].

Let Wg(;) denote the steady state waiting time for a vacation model under the
Bernoulli policy with parameter p. So, if Wp(;) is an admissible performance mea-

sure, then we see from (3.34) that

_ 1 — _ -
Wp ) (0) = 5(32 + (1 —p)V2+2(1 —p)BV). (3.35)
The admissibility condition in this case can be shown to be satisfied if both the
service time and vacation length distributions have exponential tail, i.e., there exists
61 > 0 such that E[e’P] < co and E[e?"] < oo for all § < ;. Higher order derivatives

WI(BTEL)(O) can be readily obtained using the Pollaczek—-Khintchine formula.

3.3.4 The Limited Policies

Unlike a vacation model under the Bernoulli policy, there is no known equivalent
exhaustive system for a vacation model under the limited policy. However, we shall
see that the very definition of the limited policies and the fact that the computation
of the nth derivative using the Reiman-Simon method involves (n + 1) or fewer
customers enable us to use the light traffic results for the exhaustive policy.

We first discuss the admissibility of the steady—state waiting time for a vacation
model under a limited policy. We know that waiting time is admissible for the

Bernoulli policy with any parameter p, 0 < p < 1, as long as both the service time
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and vacation length distributions have exponential tail. Following the argument
in Reiman and Simon [68]; to show the admissibility of waiting time for a limited
policy, it suffices to show a Bernoulli policy which bounds the limited policy in terms
of waiting time. But, it will be shown in the next chapter that indeed the Bernoulli
policy with parameter p = 0 (which actually is identical to the limited policy with
parameter m = 1) bounds all limited policies (in fact, it bounds all policies) in
terms of waiting time. So, for the limited policies, the admissability condition
1s again satisfied if both the service time and vacation duration distribution have
exponential tail.

We now see how we can obtain light traffic results for the limited policy with
parameter m, where m > 2. Let Wy (,) denote the steady-state waiting time in a
vacation model under the limited policy with limit m. We see from (3.5) that the
computation of the nth derivative at A = 0 involves at most (n + 1) customers (n
arrivals plus the customer at time ¢t = 0). Thus as long as n + 1 < m, there can
never be more than m customers in the system for all the sample paths considered
in the computation of the nth derivative. For these sample paths, we never use the
fact that the service policy used is the limited policy with limit m, and so we might

as well think that the exhaustive service policy is used. This implies that
Wit (0) = W),  n=01,...,m—1 (3.36)

The derivatives for the exhaustive policy can be obtained using either the Pollaczek—

Khintchine formula or the Reiman-Simon method as discussed in the Section 3.3.2.

3.4 Interpolation Approximations for Vacation Models

Light traffic analysis provides us with the derivatives of a performance measure
F with respect to the arrival rate A at A = 0. These results naturally lead to a
(truncated) Taylor series expansion at A = 0 as an approximation for F(X). However,
most performance measures have a critical rate A, < oo which as A — A, the value of
the performance measure goes unbounded. So, a truncated Taylor expansion which

is a polynomial in A is not a very suitable approximation for these performance
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measures. Fortunately, if we weight (or “normalize”) the performance measure by
some function ¢()) which goes to 0 as A — )\, there is a chance that ¢()A)F()) might
be bounded on the interval [0, X.) and so it can be approximated by a polynomial.
Indeed, heavy traffic analysis shows that we can take ¢(}A) to be (A, — A) for most
performance measures. Moreover, heavy traffic analysis also provides us with the
limit

lim(\e — M) F(\) (3.37)

MAe
which can be combined with the light traffic results to form an interpolation ap-
proximations.

Interpolation approximations based on light and heavy traffic results were first
proposed by Burman and Smith [13] to study single-server systems with bursty ar-
rivals. This approach was later extended by Reiman and Simon [67] to a larger class
of systems with Poisson or Poisson driven arrivals. To describe the approximation

more precisely, let
G() = (A = N F(), 0< A< A, (3.38)

and let g(\) denote the approximation to G(A). Assuming we have up to the (n—1)st
derivative of F(\) at A = 0 and the heavy traffic limit (3.37), we construct an nth

degree polynomial g(A) which satisfies the conditions
g0 = GY(0)
= AFO0) —FEY0),  i=0,1,...,n—1 (3.39)
and
g(A;) = G(Ao). (3.40)

Let f(\) be the approximation to F'(A). To obtain f()), we ‘unnormalize’ g(}), i.e.,

we let

ﬂ»:iqa, 0< A< A (3.41)

In the next subsection, we obtain heavy traffic limits of the form (3.37) using

the heavy traffic results established in Chapter 2. We then obtain the interpola-

tion approximations for vacation models and compare their performance with exact

35



(simulation) results. Numerical examples indicate that the agreement is extremely
good; in fact, the interpolation can be easily shown to be exact for the exhaustive

and Bernoulli policies.

3.4.1 Heavy Traffic Limits

In Chapter 2, we showed that the transient version of various processes converges to
reflected Brownian motion with negative drift. In some cases, it is possible to obtain
from these results the heavy traffic behavior of the steady—state distribution of the
corresponding processes. As an example, consider the actual waiting time process
in the GI/GI/1 queue. As in Chapter 2, we consider a sequence {G", r = 1,2,...}
of GI/GI/1/ systems. For each r =1,2,..., let {W}, n=0,1,...} be the waiting
time process of the system G" and denote its limiting random variable by W[ .
We showed in Chapter 2 that the sequence {w", r = 1,2,...} of D[0,1]-valued
random processes defined by (2.1) converges weakly to a reflected Brownian motion
floxW + d). Whitt [90,92] extended this result to the space D;[0,00) which is
the set of right continuous functions z:{0,00) — IR which have left limits with
z(t) = —oo as t — oo, endowed with the so—called Whitt’s metric. Using a special
case of the argument used by Harrison in [37], we shall see below that the weak
convergence
7W<:o L2yE as r— oo, (3.42)

where F is exponentially distributed, and indeed be obtained from the weak con-
vergence of {w', r=1,2,...}.

Let = denote equivalence in probability distribution. A familiar result by Lind-
ley [59] states that (r =1,2,...)

W =q Bax, AR n=01..., (3.43)

where {Z, k =0,1,...} are defined in (2.4). This implies that

W (t) =g sup [C"(s) + d"(s)], t>0,r=1,2,..., (3.44)

0<s<t
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where (" and d" are defined in (2.6) and (2.7), respectively. In the steady state, we

thus have

%W; = sup[C7(s) + 4" (s)]. (3.45)

$20

Whitt [90] showed that the functional #: D;[0, 00) — IR defined by

7(z) = sup z(¢), z € D1[0, 00) (3.46)

>0

is continuous, and so by the continuous mapping theorem and the fact that (" —

oxW and d"(t) — d(t) := Ct, t > 0, we have

—\7~_W; L x(oxW +d). (3.47)

By [44, Corollary 5.1, p. 361}, the right-hand side is a random variable which is
exponentially distributed with rate 2|C|/c%.

To obtain the heavy traffic limit (3.37) for the mean waiting time, we fix the

mean service time for all the GI/GI/1 queues,i.e., B" = Bforallr =1,2,... and

we let A\, = 1/B. For eachr = 1,2,..., welet \" = 1/A,. We note from (C2.1) that
(Ae = AT = —=CX2. (3.48)
Taking the expectation of the left-hand side of (3.47), multiplying by (A. — A)/T

and then letting r — oo, we obtain

- Neok _ Aok +oB)
lim (A — A WL = 5 = 5 .

P4

(3.49)

For vacation models, the waiting times do not have a nice representation such as
(3.43), and so the argument used above for the GI/GI/1 queues do not extend to
vacation models. Notice that what we just showed above for the GI/GI/1 queues
is some form of limit interchange. Indeed, it can be shown [39, p. 14] using a time

reversal argument similar to that used to show (3.43) that

sup [exW(s) + d(s)] =s f(oxW + d)(1). (3.50)

0<s<t

As a result, (3.47) can be interpreted as (with an abuse of notation)

lim lim w"(t) =4 lim lim w (). (3.51)

T00 1 — 00 t—00 T—00
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We shall conjecture that such interchange of limits also holds for vacation models
under the exhaustive, Bernoulli and limited policies.

In order to obtain heavy traffic limits in the form (3.37), we consider the se-
quences {E", r = 1,2,...}, {B", r = 1,2,...} and {L", » = 1,2,...} of vaca-
tion models under the exhaustive, Bernoulli and limited service policies, respec-
tively. We shall assume in each of these sequences that V/ =, V and B, = B
for all n = 0,1,... and r = 1,2,.... In addition, we set p" = p, r = 1,2,...,
for the sequence {B", r = 1,2,...} and m" = m, r = 1,2, ..., for the sequence
{L", r =1,2,...}. In other words, in each sequence we let only the arrival process

vary with r. The critical arrival rates are then given by

M = %; (3.52)
1

)\B == e .

¢ B+(1-p)V’ (3:53)
1

N o= e (3:54)

Let us write Wg(A") for WE", Wg(,) (A7) for WE', Qr(m)(A") for Q% and Wi(m)(A")
for W2". From the heavy traffic results established in the previous chapter and from

the various convergence conditions stated in (C2.1)-(C2.6), we then obtain

(A)*(0% +0B)

lim (OF — X )Wg(x) = el 5aton) (3.55)
. - . ABV2 (0% + 0% + (1 — p)o? + p(1 — p)V?
Tl_l_,rglo()‘cB - )WB(p)()‘ ) — ( ) (UA B ( 5 p) |4 p( P) ) (356)
and
L\3( 2 2 2
lim (V2 — X Q) = BT+ v /), (3.57)
By Little’s result, the last limit is equivalent to
L\2( .2 2 2
lim ()\f _ )\T)WL(m)(/\T) — (Ac) (UA +0p + O'V/m). (358)

r—oco 2

3.4.2 Interpolation Approximations for Limited Policies

In this subsection, we apply the interpolation approximations based on heavy and

light traffic information to the limited service policies. In particular, we shall obtain
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some closed-form approximate formulae for the mean waiting time which incorpo-
rate the heavy and traffic results for the limited policies established in the previous
sections. The accuracy of these formulae are then studied by comparing them against

simulation results.
Before we do this, we first note that for the exhaustive and Bernoulli policies,

interpolating between the heavy and light traffic limits only (without the derivatives)

yields
_ NEBEN
/ = L
We\) = 50— + v (3.59)
and
. M(BT+(1-p)V24+2(1-p)BV)A -

2(AB - )
respectively. We see from the decomposition result for vacation models [21] and
the Pollaczek-Khintchine formula that these formulae are indeed the exact mean
waiting time for the respective policies. For the limited policies we do not obtain
exact formulae, but we can expect that the approximate formulae to be very close
to the exact ones. Indeed, numerical examples indicate that this is the case.

In the previous section, we have established that for the limited service policy
with limit m, the sth derivative of the mean waiting time with respect to A at
A = 0, where 7 ranges from 0 to m — 1, is given by that of the exhaustive ser-
vice policy. This derivative then can be computed either using the Reiman—-Simon
method as discussed in the previous section or simply by taking the derivative of the
Pollaczek-Khintchine formula for the corresponding M/GI/1 system. So, together
with the heavy traffic limit (3.58), we have m + 1 pieces of information which can
be used to construct an mth degree polynomial interpolation. As can be seen from
some numerical examples given below, the accuracy of the second degree polynomial

interpolation in fact is already quite acceptable for most practical purposes.

A second order interpolation approximation

From (3.10), (3.34), (3.36) and (3.58), we obtain a second order interpolation ap-

proximation for the limited policy using the method described at the outset of this
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section. Denoting the approximate mean waiting time by @y, we obtain

) ()= B>+ Lod ) X2+ 0LB2y _
o ()) = G: S _VA)) + Ry. (3.61)

Numerical Examples

We now compare (3.61) against simulation results. We consider three types of dis-
tribution for the service times and vacation lengths, namely exponential, Erlangian
and hyperexponential. For each type of distribution we consider two values of m—2
and 5—so that we have a total of six systems. We use B = 1.0 and V = 0.5 for all
the systems, and for each system we vary A/A; from 0.1 to 0.9. The variances of the
service times and vacation lengths are respectively 0.5 and 0.125 for the Erlangian
case, and 1.04 and 0.29 for the hyperexponential case.

The simulated results and the approximate values computed using (3.61) are
shown in Tables 3.1, 3.2 and 3.3 below. The simulated results and the approximate
values are listed under the headings “W())” and “wr(\)”, respectively. The “%
Error” is computed as

VI)L(/\) — VVL(/\)

% Error = W20

x 100. (3.62)

For the computation of the confidence interval of all the simulated points, we employ

the “batch means” method discussed in Law and Kelton [53, Sec. 8.6.1], and we use

90% confidence level.
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m =2 m =125
A Wr(A) | wi(A) | % Error Wr(X) | wr(A) | % Error
0.1 ] 0.544 £0.013 | 0.592 +8.8 1 0.555 £ 0.010 | 0.602 +8.5
0.2 0.700 £0.008 | 0.714 +2.0 | 0.703 £ 0.006 | 0.733 +4.3
0.3 0.885+0.010 { 0.878 —0.8 | 0.864 £+ 0.008 | 0.905 +4.7
04| 1.143+0.017 | 1.107 —3.1 [ 1.097 £0.012 | 1.138 +3.7
0.5 1.482+0.019 | 1.438 —3.0 | 1.429 £ 0.027 | 1.468 +2.7
0.6 | 2.016 £0.028 | 1.948 —3.4 11.916 £ 0.033 | 1.970 +2.8
0.7 2.937+0.080 | 2.816 —4.1 [2.793 £0.085 | 2.814 +0.8
0.8 4.627£0.175 | 4.580 —1.0 1 4.489 £0.160 | 4.515 —-0.6
0.9 {10.038 £0.368 | 9.928 —1.1 19.622 £0.210 | 9.639 +0.2
Table 3.1: Exponential service and vacation times
m =2 m=>5
A Wr(\) | @n()) | % Error Wr()) | wr()) | % Error
0.1 |0.404 £0.013 | 0.444 +9.9 | 0.415 £ 0.011 | 0.452 +8.9
0.2 10.520 £ 0.008 | 0.538 +3.5 | 0.521 £0.006 | 0.551 +5.8
0.3 ] 0.665 &+ 0.006 | 0.664 —0.2 {1 0.647 £+ 0.007 [ 0.681 +5.3
0.4 |0.864 £0.012 | 0.842 —2.5 | 0.818 £ 0.007 | 0.858 +4.9
0.511.142+0.015 | 1.100 —3.7 1 1.068 £ 0.012 | 1.110 +3.9
0.6 | 1.556 £ 0.029 | 1.500 —~3.6 | 1.431 £0.023 | 1.494 +4.4
0.7 1 2.264 £0.039 | 2.183 —3.6 | 2.070 £ 0.043 | 2.140 +3.4
0.8 |3.662+0.112 | 3.575 —2.413.324 £0.137 | 3.444 +3.6
0.9 | 7.960 &+ 0.286 | 7.800 —2.0 | 7.387 £0.202 | 7.377 —0.1

Table 3.2: Erlangian service and vacation times
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m=2 m=25
A Ae Wr(\) | wr(A) | % Error Wr(A) | wp(\) | % Error
0.1 0.629£0.016 | 0.634 +0.8 | 0.642+0.011 | 0.644 +0.3
0.2 0.789£0.008 | 0.758 -39 0.793 £0.008 | 0.778 -1.9
0.3 0.986 £0.008 | 0.926 —6.1 | 0.969 £0.013 | 0.953 -1.7
04| 1.253£0.011 | 1.159 —-7.5| 1.214+£0.016 | 1.191 —-1.9
0.5 1.610£0.016 | 1.498 —7.0 1.554£0.016 | 1.528 —1.7
0.6 | 2.186 £0.042 | 2.019 —7.6 | 2.065+0.053 | 2.041 —1.7
0.7 ] 3.062 +£0.085 | 2.906 -5.0 2.972£0.079 | 2.903 —-2.3
0.8 4.897£0.182 | 4.710 —3.8 | 4.773 £0.196 | 4.639 —2.8
0.9 | 10.658 £ 0.377 | 10.176 —4.5{10.162 £ 0.500 | 9.872 ~2.8

Table 3.3: Hyper-exponential service and vacation times




CHAPTER 4

STOCHASTIC COMPARISON AND MONOTONICITY RESULTS IN
VACATION MODELS

4.1 Introduction

In vacation models considered in this thesis, the server can start a vacation either at
a service completion or at the end of a vacation, and only at these epochs. A vacation
is always taken if the queue is empty at either a service or vacation completion. If
the queue is not empty at a vacation completion, the server has no choice but to
resume its duty. If the queue is not empty at a service completion, however, the
server has the choice of either serving the next available customer or starting a
vacation. Whether or not the server takes a vacation in this case is determined by
the service policy used.

The purpose of this chapter is to identify some conditions under which two service
policies can be compared. Two service policies are compared by comparing some
éuantities of interest in a vacation model under one service policy to the correspond-
ing quantities under the other service policy. In this chapter, we use an ordering
called stochastic ordering on random processes. This ordering is very strong; in-
deed, two processes are said to be stochastically ordered if we can construct, on a
common probability space, two processes which are probabilistically identical to the
original processes and such that each sample path of one process lies below that of
the other. We show that two service policies can be compared in this manner under
some fairly general conditions. The setting in which the comparisons are made is
also very general, as we make little assumptions on the probabilistic structure of
the interarrival, service and vacation processes of the vacation models considered.
Furthermore, for some quantities of interest, the comparisons can be made inde-

pendently of the order in which the customers are served. Comparisons between
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service policies are useful for obtaining stochastic monotonicity results, bounds, and
approximations for policies which are too difficult to analyze exactly. Work along
this line has just been started for polling systems by Levy et al. [57].

This chapter is organized as follows. In Section 2, we present a precise description
of vacation models while at the same time introducing the notation used throughout
the chapter. In section 3, some basic relations and facts about vacation models are
discussed. There, we also introduce the notion of stochastic ordering on random pro-
cesses. A general framework for stochastic comparisons between two service policies
is developed in Section 4. We then show in Section 5 that various service policies
in the literature can be stochastically compared in this framework. In Section 6, we
establish stochastic monotonicity results for various classes of parametrizable service

policies.

4.2 The Model and Notation

A vacation model is governed by the sequence of random variables

{An, Bn, Vo, Upnyn = 0,1,...} with the following interpretation (n = 0,1,...):

Ani1 = the time between the nth and the (n + 1)st arriving customer (with the
convention that Ao is the arrival time of the 0th customer);
B, = the length of the nth service;
V. = the length of the nth vacation period;
U, = the server’s decision at the end of the nth service, with U, = 1 (resp.
U, = 0) if the server decides to serve the next customer (resp. to take a

vacation).

The random variables {U,, n = 0,1,...} constitute a service policy which we shall
denote by U. From the random variables above, we define the following quantities
(n=0,1,...):

T, = the arrival time of the nth arriving customer (= 3"7_, 4;);

D,, = the departure (i.e., service completion) time of the nth departing customer;

R,, = the index of the last vacation completed before time Dy;
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@n = the number of customers left behind by the nth departing customer;

Sn = the number of customers (including the nth departing customer) that have
been served up to time D,, since the end of the last (i.e., the R,th) vacation;

Cn = the number of customers in the queue at the end of the R,th vacation;

W, = the waiting time (i.e., the time from the arrival epoch to the start of
service) of the nth arriving customer;

N(t) = the number of customers in the system at time ¢ > 0.

Notice that we make the distinction between the nth arriving and the nth de-
parting customers as we do not limit ourselves to the first-come-first-serve (FCFS)
discipline. We make the following assumptions (A1)-(A3), where

(A1) The Oth customer arrives at time ¢ = 0 (i.e., Ag = 0) to an empty system

and immediately receives service.

(A2) Once a customer enters the system, it does not leave until its service is

completed;
(A3) Once a service is started, it is carried out to completion, i.e., there is no

service preemption;

Using the notation introduced above, a vacation model can be described as
follows: At time D, the server completes a service of length B,. If U, = 1, a new
service of length B,.; begins. However, if U, = 0, the server starts a vacation of
length Vg,41. At the end of this vacation (i.e., at time D, + Vg, 1), the server starts
a service of length B,,; if the queue is not empty. Otherwise, it takes additional
vacations until at least one customer is present when it returns from a vacation.

In this chapter, we consider only simple service policies which we define below.
Definition 4.1 A service policy U is said to be simple if the conditions
PlU, =1|Z,U;, j=0,...,n—=1] = P[U, = 1|@n, Sn, Cal, n=0,1,... (41)
are satisfied, where Z denotes the random variables {A,, Bn,Va, n =0,1,...}.

Let S be the set of 3~tuples of integers (¢, s, c) where ¢ = 0,1,...;s,¢=1,2,..

and ¢ — s < gq. With any simple service policy U, we can associate a sequence
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{fn, n=0,1,...} of mappings f,:S — [0,1], n =0,1,..., defined by

fulg,s,¢) = PlU, =1|Qn = ¢, S, = 5,C,, = ], (g,s,¢) € S. (4.2)
Notice that f, is not defined for ¢ < ¢ — s because in general we have

an = C% —'5% +‘)(n7

> Cp— Sy, n=0,1,..., (4.3)

where X,, denotes the number of arrivals that occur during the (n — S, + 1)st up to

the nth services, which obviously is nonnegative.

4.3 Preliminaries

In this section, we note some basic relations which are crucial to the subsequent
development of this chapter. We then introduce the notion of stochastic order
between two random processes and recall some well-known facts which we shall use
in proving the main results of this chapter in the next section.

First, we observe that at any given time, the server is either serving a customer

or taking a vacation. From this fact, the conservation principle
n Ry
Dn=5 Bj+>_ W, n=01,... (4.4)
=0 k=0

readily follows.

Next, we see from the description of the system that the sequence {R,, n =

0,1,...} evolves according to the recursion

R,+ (1 -U,) ifQ,>0
R, = n ! . n=201,...,
min{! > Rn:ZBj + ZVk > Thi} i Qn =0,
7=0 k=0

(4.5)
with Ry = 0 by Assumption (A1). For the case @, = 0in (4.5), we use the fact that
the server immediately starts a vacation and continues taking additional vacations
until the next customer arrives. Because of Conditions (A2) and (A3), the next

customer is necessarily the (n + 1)st arriving customer.
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We now introduce the notion of stochastic ordering for random processes. First,

we define a stochastic order for IR*~valued random variables.

Definition 4.2 An IR*-valued random variable X' is stochastically smaller than

another IRF—-valued random variable X2, denoted X' <y X?, if

E[f(X)] < E[f(X?)] (4.6)

for every monotone nondecreasing function f:IR* — IR for which the expectations
are well defined. Here a monotone nondecreasing function f: IR* — IR is understood

as a function with the property that f(z1,...,2x) < f(y1,...,y%) whenever z' <
y',1<i<k.

We define a stochastic ordering for random processes as follows.

Definition 4.3 Let X' = {X'(t), t € T}, i = 1,2, be two IR-valued random pro-
cesses with T'C IR. We write X' <, X? if

(X1 (t1),y -0, XMHt)) <« (XPE(t1),..., X2(t,)) (4.7)
for eachn =1,2,... and for any t;,...,t, in T.

The following result provides an equivalent definition of the stochastic ordering
for random processes. It is a special case of Proposition 1.10.4 in Stoyan [77, p. 28]

and was originally proved by Kamae et al. [43].

Lemma 4.1 Let X' = {X'(t), t € T}, i = 1,2, be either two random sequences
with T = {0,1,...}, or two stochastic processes with sample paths which are right
continuous with left limits with T = [0,00). Then X' <y X? if and only if there exist
two stochastic processes {Xi(t), teT}, 1=1,2, defined on a common probability
space (Q,]A-', 15) such that

X)) < X*t), teT (4.8)
P-almost surely (a.s.) and
{X'(t), te T} = {X'(t), te T}, i=1,2 (4.9)

67



where =4 denotes equivalence in probability law. Furthermore, X' =4 X? if and

only if we have equality in ({.8).

We shall make use of the following result obtained by O’Brien [63] which allows
us to establish a stochastic ordering between two discrete-time random processes

by comparing their transition probabilities.

Lemma 4.2 Let X' = {X!, n =0,1,...}, i = 1,2, be two sequences of IR-valued

random variables. If

X5 <o X2 (4.10)
and if for each n = 0,1,..., the inequalities
z; < 73, §j=0,...,n (4.11)

imply

PXp <z|Xj=z2},7=0,...,n] > P[X2,, <z|X!=2%j=0,...,n], z€lR,
(4.12)

then we have

X< X2 (4.13)

4.4 The Main Comparison Results

In this section, we derive the main result of the chapter. We first describe the
probabilistic setting as follows: On a probability space (Q,F, P), define the inter-
arrival, service and vacation processes {Any1, Bn, Vo, 7 = 0,1,...} and two sim-
ple service policies U! and U2, where U' = {U., n = 0,1,...}, ¢ = 1,2. For
each 2 = 1,2, construct a vacation model from the sequence of random variables
{Ant1, Bn, Vo, U, n=0,1,...} in the fashion described in Section 2. Notice that the
two vacation models share the same interarrival, service and vacation processes. In
the sequel, we shall use superscript ¢ = 1,2 for any quantity associated with the ser-
vice policy U?. Our goal is to identify some general conditions on U* and U? that lead

to a comparison between the sequences {R., n =0,1,...} and {R%, n=0,1,...}.
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We shall see that this is a key comparison in that comparison results for other
quantities of interest can be readily derived from it.

We first prove the following simple lemma which we shall use in the proof of the
main result. This lemma, which is a direct consequence of (4.4) and (4.5), holds for

a vacation model under any pair of service policies.

Lemma 4.3 Forn=0,1,...,
R, <R:  implies R.L.,<RZ,,. (4.14)

Proof: The proof relies solely on equations (4.4) and (4.5). We consider the follow-

ing three cases.

Case (i) — Qf > 0: In this case, we see from (4.5) that R}, < RL +1, and so

R} < R implies R}, < R2. Since R2 < R? |, we thus have RL_;, < R? .

Case (ii) — Q;, = QZ = 0: Since @} = 0, we see from (4.5) that R}, is given by

n i
R, =min{l>R,:> B+ Vi 2T} (4.15)
j=0 k=0

But, Q2 = 0 implies
n R.
D2=3"Bj+Y Vi < Tp, (4.16)

7=0 k=0

and so, since RZ > R!, the minimization in (4.15) can be restricted to [ > K2, i.e.,

n 1
Rl = min{i>R2:Y B+ Y Vi > Toi}

j=0 k=0

- R, (4.17)

Case (iii) — QL = 0 and Q2 > 0: Since Q2 > 0, we have
n R},
DZ = Z Bj + Z Vi > Tn+1 (418)

7=1 k=1

and so R? satisfies the condition of the minimization in (4.15). Hence, R}, < R2 <

R:,,. O
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As it will become apparent later, the probabilistic structure of the random se-
quence {Ap, Bn, V4, n = 0,1,...} does not play any role in the proof of the com-
parison results. Consequently, we may assume {A,, B,,V,, n=0,1,...} to be any
deterministic sequence. In other words, in the case where the random variables
{A,,B.,V,, n =0,1,...} are indeed random, we can obtain stronger comparison
results, i.e., the comparisons can be shown to hold on any given sample path of
{An, B, Vo, n=0,1,...}.

We shall assume in the sequel that the sequence {A,, Bn,V,, n = 0,1,...} is
a deterministic sequence. To remind us of this, we shall denote the sequence by
{@n,bp,vn, n = 0,1,...}. In this setting, simple service policies U and U? each

satisfies (i = 1,2)
PUL=1U}, j=0,...,n—1]= P[U} =1|Q;,5.,C.], n=0,1,.... (4.19)

We also note that the sets of random variables {U}, j = 0,...,n — 1} and
{R;-, j =0,...,n} both contain the same amount of information, i.e., either set

can be constructed from the other. This fact, together with (4.19), implies
PlUL = 1|R:, j=0,...,n] = P[U; =1|Q},,5;,Ci], n=0,1,.... (4.20)
We are now in the position to prove the following theorem.

Theorem 4.1 Let U' and U? be two simple policies, and suppose for each n =

0,1,... that the mapping fL, f3:S — [0,1] satisfy

f’l‘ll(q7s’c) 2 f’:(q78,’ C,)’ for eaCh (q,s’c)7 (q)'s/’ CI) e S

such that s <s',c—s>c — & (4.21)
Then, the stochastic comparison
{R}, n=0,1,..} < {R, n=0,1,...} (4.22)

holds.
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Proof: By Lemma 4.2, it suffices to show that
Ry <« Ry (4.23)

and that for each n = 0,1, ..., the inequalities
cy M (4.24)

imply
PR, <rlR} =7}, j=0,...,n] 2 P[R2,, <r|[R: =72, j=0,...,n],

r=0,1,...(4.25)
Inequality (4.23) is trivial since Ry = R} = 0. Now assuming that (4.24) holds

for some n = 1,2,..., we show that (4.25) holds. To that end, we distinguish the

following three cases based only on the choice of {r;'-, J=0,...,n},i=1,2.
Case (i) — rl < r2: In this case, (4.25) follows directly by Lemma 4.3 since

Rl =r, <r?=R? implies R, < R2_,.

Case (ii) — r} = r2 and Q2 = 0: Letting R. = r! = r2 = R?, we have from
(4.4) that DL = D2?. Since the same arrival process is used under both policies, we
necessarily have Q! = Q2 = 0. The server under both policies starts a vacation at

time D} = D? and continues to take additional vacations until the (n+1)st customer

arrives. Again, since the same arrival process is used, we have R}, = RZ ,, and so

(4.25) holds.

Case (iii) — r} = r2 and Q2 > 0: As in Case (ii), we let R} =71} =r? = R?,

and so we have Q} = Q2 > 0. By (4.5), we have
R, =R, +(1-U), i=12, (4.26)

and so, to obtain (4.25), it suffices to show that
PUL=1|R;=r}, j=1,...,n] 2 PlU=1|R =7}, j=1,...,n].  (427)

But, this immediately follows from (4.20) and (4.21) if we can show that in this

case,

Sr < S2 | (4.28)
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and
Cl -S> - §2 (4.29)

Inequality (4.29) follows from (4.28). Indeed,
Ch=Si=Qn—-X., i=1.2, (4.30)

where X is the number of arrivals that occur during the (n—S% 41)st up to the nth
services in the system under U’. Since S < S2, D! = D? and a common arrival
process is used, we obviously have X} < X2. This and the fact that QL = @2,
readily imply (4.29) via (4.30).

To prove (4.28), assume that S > S%. From the definition of S} and S2, we see
that, under the policy U*, 1 = 1,2, the (n — S + 1)st up to the nth services are not
interrupted by any vacation, whereas the (n — S:)th and the (n — St + 1)st services

are separated by at least one vacation. Thus, we have
fosi <Ri_giyy=Rasipe=--=R, i=12 (4.31)

Since S} > S2, we haven — S1 +1 < n— 52 <n —1, and thus from (4.31) (with
¢t = 1) we see that

R, s =R, (4.32)

n?

But, (4.31) also implies R2_g < R2, and so, since R}, = RZ%, we have
R o <R, g. (4.33)

This contradicts (4.24), and therefore we must have Sy < S2.

The proof of Theorem 4.1 is now complete. O
Remark 4.1: We have proved Theorem 4.1 without using any knowledge of the

order in which the customers are served.

Remark 4.2: Condition (4.21) states that given the same number of customers in
the queue, the same (or smaller) number of customers that have been served since
the last vacation and the same (or larger) number of unserved customers which were
in the queue when the server returned from the last vacation, the server is less likely

to go on vacation under the policy U than under the policy U?.
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Using Theorem 4.1, comparisons of other processes in the vacation model can
be readily made. By Lemma 4.1, there exists a common probability space (ﬁt, F, }5)
where the random variables {&, n =0,1,...} and {R?, n =0,1,.. .} are defined.
For each 1 = 1,2, the probabilistic structure of {IA%;, n = 0,1,...} under P is

identical to that of {R’, n =0,1,...} under P and, furthermore, the comparison
BRL<R:  n=0,1,... (4.34)

holds P-a.s.
The comparison between the departure processes {D}, n = 0,1,...}, i = 1,2,

can be made in the following manner. On (Q,f:, }5), define
& Ry
D, =>"b;+ > v, n=20,1,...;1=1,2. (4.35)
j=1 k=1

Obviously, for each i = 1,2, the probabilistic structure of {Di, n = 0,1,...} under
P is identical to that of {Di, n =0,1,...} under P and

Dl<D? n=0,1,... (4.36)

holds P-a.s. Thus, by Lemma 4.1, the stochastic comparison {D}, n =0,1,...} <4
{D2, n=0,1,...} holds.

The comparison of other processes such as the queue size process {N*(t), t > 0}
and the waiting time process {W;, n =0,1,...} (if the service discipline is FCFS)
can be made in a similar fashion. Indeed, for i = 1,2 and ¢ > 0, N'(¢) = A(¢)~ D(t)
where A(t) = max{k : T} <t} and D¥(t) = max{k : D} < t}. If the service is FCFS,
we have Wi = D! — B, — A, forn=20,1,... and 1 = 1,2.

Corollary 4.1 For the vacation model and the service policies in Theorem 4.1, the

stochastic comparisons
{D}, n=0,1,...} <4 {D?, n=0,1,...} (4.37)

and

{N'(t), t >0} <a {N?(t), t >0} (4.38)
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hold. Furthermore, if the service discipline is FCFS, then the comparison
{(W,, n=0,1,..} < {W2, n=0,1,...} (4.39)

also holds.

It should also be mentioned that stochastic ordering between two random pro-
cesses readily extends to stochastic ordering between their limiting random variables,

whenever they exist {77, Prop. 1.2.3].

4.5 The Comparison of Various Service Policies

In this section, we use the results established in the previous section to compare
various service policies. The most extensively analyzed policies in the literature are
the exhaustive and gated policies. Under the exhaustive policy, the server goes on
vacation if and only if the queue is empty. Under the gated policy, the server, if
it finds some customers in the queue upon returning from a vacation, serves these
customers continuously before taking a vacation; those customers that arrive during
the service of these customers are served when the server returns from the next
vacation.

Among the policies introduced later are the limited and Bernoulli policies. Under
the limited policy, there is a fixed integer m such that the number of consecutive
services that the server can perform is limited to m. The limited policy comes in two
variants: the limited—erhaustive and limited—-gated. Under the limited-gated policy,
the server, if it finds n customers in the queue upon returning from a vacation, serves
continuously min(n,m) customers before taking a vacation. Under the limited-
exhaustive policy, those customers that arrive during the service of the original n
customers can still be served as long as the limit m has not been reached. Under the
Bernoulli policy, there is a fixed probability p, 0 < p < 1, such that at every service
completion, the server serves the next available customer (if any) with probability
p and goes on vacation with probability 1 — p. The Bernoulli policy also comes in

two variants: the Bernoulli-ezhaustive and the Bernoulli—gated.
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Note that all the above-mentioned service policies are simple. Using our nota-

tion, we can describe these policies more precisely as follows (n = 0,1,...):

e The exhaustive policy (denoted by FE):

f2(g,8,0) = { bitezd (4.40)

0 otherwise;

e The gated policy (denoted by G):

G 1 fe—s2>1
[ (g,8,¢) = (4.41)

0 otherwise;

e The limited—exhaustive schedule with parameter m (denoted by LE(m)), m =
1,2,...:

{1 ifg>1land s<m (4.42)

0 otherwise;

o The limited-gated schedule with parameter m (denoted by LG(m)), m =
1,2,...

1 fc—s>1land s<m

FEEm(g,5,¢) = { (4.43)

0 otherwise;

¢ The Bernoulli-exhaustive schedule with parameter p (denoted by BE(p)), 0 <

p<1l
if g >1
1P g,5,0) =4 0 1" (1.44)
0 otherwise;
¢ The Bernoulli-gated schedule with parameter p (denoted by BG(p)),0 < p < 1:
ife—s2>1
720(g,5,6) = { © - (445)
0 otherwise.

4.5.1 The Policies E and LE(1) as Extreme Policies

We show in the following theorem that the policies E and LE(1) bound any simple

policy from below and from above, respectively, in terms of the quantities of interest

discussed in Section 4.
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Theorem 4.2 For any simple service policy U, the stochastic coOmparisons
{RE, n=0,1,...} <a {RY, n=10,1,...} <4 {REFD), n=0,1,.. }, (4.46)

{D7, n=0,1,..} < {DY, n=0,1,...} < {DFFD n=0,1,..}, (4.47)

and

{N@®)", 1> 0} < {(N@®)Y, t >0} < {N@)FFD, t> 0} (4.48)

hold. Furthermore, if the service discipline is FCFS, the comparison
{(WE, n=0,1,..} <a (W, n=0,1,..} <o {(WEFPOW, n=0,1,...}  (4.49)
also holds.
Proof: For any service policy U, we have
Y(q,8,¢)=0 if ¢=0, (4.50)
and so we see from (4.40) that

F2(@,s,0) 2 fe (0,8, ¢),  for each (g,5,¢), (g,5,¢) €S

such that s < s, c—s> ¢ — 4. (4.51)

On the other hand, for the policy LE(1) (which is identical to the policies LG(1),
BE(0) and BG(0)), we have

ffE(l)(q,s,c) =0, (g,8,¢) € S, (4.52)
and so

fg(q,s,c) > fTI;E(l)(q,s',c’), for each (q,s,¢), (g,8,c) €S

such that s < s, c—s>c —s. (4.53)

By Theorem 4.1 and Corollary 4.1, inequalities (4.51) and (4.53) readily yield
the desired result. M
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4.5.2 Gated-Type vs. Nongated-Type Policies
Let us define a service policy as of gated—type if it satisfies

fYq,s,¢) =0, whenever c¢—s <0, n=0,1,.... (4.54)
We have the following result.

Theorem 4.3 Let U and U? be two simple service policies each satisfying (i=1,2)

f’:t(q7$’c) 2 f;(q,sl, C/)’ fOT eaCh (q737c)7 (q7 S/’ c,) E 8

such that s < s, c—s>c — &' (4.55)
If U? is of gated-type and

f;(q,3,0)=f3(q,3,0)’ q,S,C—‘:l,Q,...;leC—Séq, (456)

then the stochastic comparisons (4.22), (4.37), (4.38) and (4.39) (if the service is
FCFS) hold.

Proof: It can be easily shown from (4.54)—(4.56) that the condition (4.21) is sat-
isfied, and so, by Theorem 4.1 and Corollary 4.1, the desired result readily follows.

| g

Remark 4.3: Condition (4.55) basically states that under the policy U, the server

is more likely to go on vacation the more customers it has served and the fewer the

customers which were in the queue when the server returned from the last vacation

are still unserved. Most (if not all) service policies in the literature satisfy this

condition.

4.6 Stochastic Monotonicity Properties

The limited and Bernoulli service policies introduced in the previous section share
a common characteristic in that each is a family of service policies parameterized

by a single parameter, i.e., the limit m for the limited policy and the probability
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p for the Bernoulli policy. In this section, we show some stochastic monotonicity
properties of these service policies with respect to their respective parameter.

Consider the policies LE(m1) and LE(my) with my < my. From (4.42), we

observe that

FEE(g,5,¢) > [EE) (g, s, ), for each (q,s,¢), (q,5,¢) € S

such that s < ', c— s > ¢ — &, (4.57)

and so by Theorem 4.1, the policy LE(m;) dominates the policy LE(m,) in terms
of the various processes we have been considering. In other words, these processes
under the service policy LE(m) are stochastically monotone decreasing with respect

to the parameter m. Such a stochastic monotonicity property can also be shown for

the policies LG(m), BE(p) and BG(p).

Theorem 4.4 Under the service policies LE(m), LG(m), BE(p) and BG(p), the

random processes

{Rn, n=0,1,...}, {Dn, n=0,1,...}, {N(?), t >0}

(4.58)
and {W,, n=0,1,...} (if the service is FCFS)

are stochastically monotone decreasing with respect to the respective service policy

parameter.

4.7 Conclusions

In this chapter, we have developed a general framework for stochastic comparisons
between two service policies in multiple-vacation models. In this framework, we
are able to establish comparison results between some well-known service policies.
We also obtained stochastic monotonicity properties of some parametrizable service
policies.

In an independent study, Levy et al. [57] have obtained comparison results for
various service policies in polling systems. The process they consider is the to-

tal amount of unfinished work found in the system. The difference between their
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approach and ours is in the characterization of a service policy. Unlike theirs, our
characterization facilitates comparison between exhaustive- and gated-type policies.

Unfortunately, we cannot compare the limited and Bernoulli policies in the gen-
eral framework established in this chapter. The comparison between these two
policies is discussed in the next chapter. The comparison is in the convex increasing

ordering, which is weaker than the stochastic order discussed in this chapter. -
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CHAPTER 5

COMPARING BERNOULLI AND LIMITED POLICIES

5.1 Introduction

In this chapter, we compare the limited and Bernoulli policies. Fuhrmann [32]
obtained an upper bound for the steady-state mean waiting time of a symmetric
polling system under a limited service policy. Servi and Yao [73] subsequently
showed that, in the context of vacation models, this bound was exactly the mean
waiting time under a Bernoulli policy (with suitably chosen parameters). Servi
and Yao also obtained other comparison results which suggest that the steady—state
waiting times for the limited and Bernoulli policies can be compared in the increasing
convex ordering. In this chapter, we show that such a comparison indeed holds when
the vacation periods are identical and deterministic. In fact, the comparison holds
not only in the steady-state but also in the transient regime.

In the next section, we introduce the notion of increasing convex ordering. There,
we also note some preliminary results crucial to the subsequent development. In
Section 3 and 4, we derive the comparison results for the transient and steady-state

cases, respectively.

5.2 Preliminaries

Since we only consider the exhaustive variant of both the limited (with parameter m)
and Bernoulli (with paramter p) policies, we shall denote these policies by L(m) and
B(p), respectively. In the sequel, we shall use superscript B(p) (resp. L(m)) for any
quantity associated with the service policy B(p) (resp. L(m)). Let us briefly recall
the definitions of these two policies. We shall assume in this chapter that service

is given on a FCFS basis. A vacation model under the policy L(m) is described
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as follows, where we use the notation of Chapter 4. At time D,, n = 0,1,..., the
server finishes serving the 'nth customer (denoted by C,). If Q, > 0, the server
immediately serves Cy1q if 1 < §, < m; otherwise if S, = m, then the server
takes a vacation (of length Vg,11) and then serves Cn41. Under the policy B(p),
the server’s action in the case @, > 0 is determined by the random variable X,,: If
X, = 0, the server serves Cpy1; if X, = 1, it takes one vacation and then serves
Crt1. The sequence {X,, n =0,1,...} is composed of i.i.d. {0,1}-valued random
variables with

PiX,=1=1-p n=0,1,... (5.1)

and is assumed to be independent of the random variables {A,, B,,V,, n =0,1,...}.
Under either policy, if (), = 0, the server takes a vacation and keeps on taking
additional vacations until at least one customer is present when it returns from a
vacation.

We note below several simple relations which are crucial to the discussion in the

next sections. First, from the conservation principle (4.4); we have

n R,
D;:Z%BﬁkZVk, n=0,1,... (5.2)
= =0

for ¢ = B(p), L(m).
From the description of the policies B(p) and L(m) given above, we obtain
the following recursive equations describing the evolution of R, under each policy.

Under the service policy B(p), we have

Rf(p) + X, if QB > ¢
Rf—f-ﬁ) = i ! n=01,...,
min{l > RE®):S"B; + Y Vi = Topa} if QE® =0,
7=0 k=0
(5.3)
whereas under the service policy L(m), we have

[ RLom) if QL™ > 0 and SL™ < m

RpLm) ) RE™ 41 if QL™ > 0 and SE™ =m
ml n !
\ j=0 k=0
n=0,1,...(54)
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Notice that under both the limited and Bernoulli policies, we have

] ) n l )
R y=min{l>R,:Y B+ Vi>To1}if @, =0, n=0,1,.... (55)

7=0 k=0
with ¢ = B(p), L(m).

We now introduce the notion of convex increasing ordering [69, p. 270].

Definition 5.1 We say that a real-valued random variable X is smaller than an-

other real-valued random variable Y in the convex increasing ordering, denoted by
X S Y, of
E[f(X)] < E[f(Y)] (5.6)
for every monotone non—decreasing and convez function f:IR — IR for which the
ezpectations are well defined.
We shall make use of the following facts whose proofs can be found in Ross {69,
Chap. 8] and Stoyan [77].
(F1) If X and Y are nonnegative random variables, then X < Y if and only
if
E[(X —a)T) < E[(Y —a)*], a >0, (5.7)
with the notation (z)* = max{0,z};

(F2) If E[X] is finite, then it follows from Jensen’s inequality that
E[X] S;cx X; (58)
(F3) Let Z be independent of X and Y. If X <iex Y, then

X+Z <Y +Z (5.9)

5.3 The Comparison in The Transient Regime

In this section, we prove that for suitably chosen parameters p and m, the waiting
time of the nth customer under the policy L(m) is smaller than that under the

policy B(p) in the ordering <icx. In the next section, this comparison is shown to
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extend to the steady-state waiting time distributions, whenever they exist. We first

prove the following lemmas.

Lemma 5.1 Consider any two service policies Uy and U, each satisfying (5.5).

Then, for alln =0,1,..., we have

R, <R.., whenever Q% = 0. (5.10)

Proof: Since Q2 = 0, we have D2 < T,,1; which by (5.2) (with 7 = 2) implies

n R}
Y B+ > Vi <Tpr. (5.11)
7=0 k=0

We consider the following three cases which exhaust all the possibilities.
Case (i) — Rl < R2Z:
By (5.2), we have D! < D? < T,4; and so necessarily Q1 = 0. Since U, satisfies
(5.5), we then have
n l
Ry =min{l>R.:> B;+ > Vi > Thpa}. (5.12)
7=0 k=0

But, because of (5.11), we can restrict the minimization in (5.12) to [ > R2, i.e.,

R, =min{l> R%: Y::Bﬁzljv; > Tns1}, (5.13)
=0 k=0
and therefore R}, = R2_, by making use of (5.5).
Case (ii) — R} > RZ and Q] = 0:
This case is similar to Case (i) since both Q! and Q2 are zero, and the same
argument holds with Uy and U, interchanged to yield R.,, = RZ .
Case (iii) — R > R2 and QL > 0:

Since Q} > 0, we have

n R}
DL=3 Bi+ Y Vi > Tup. (5.14)
7=0 k=0

From the definition of R2, in (5.5), it then follows that
R,y < R, (5.15)

and this last fact trivially implies R2,; < R}.;.
This completes the proof of Lemma 5.1. O
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Lemma 5.2 Consider a vacation model under the policies B(p) and L(m) where p

and m are related by
l—p=1/m. (5.16)
Then, conditioned on any realization of the random sequence {An, Bn,V,, n =

0,1,...}, the comparison
RE™ < RB®  n—01,... (5.17)

holds.

Proof: The proof proceeds by induction. By assumption (A1) in the previous
chapter, we have RX(™ = RE® = 0 and so (5.17) is automatically satisfied for

n = 0. Assuming that (5.17) holds for n = 0,1,...,k, we are to show that
L{m B
Rk-s-l) Slex ng) (518)

holds.

We identify three mutually exclusive cases: (i) Q¥™ > 0, 1 < SH™ < m; (i)
Qf(m) > 0, S,CL(m) = m; and (iii) Qf(m) = 0 based on the realization of the system
under L(m). Since the policy L(m) contains no randomness, given a sample path of
{An, Bn, Va, n=10,1,...}, the realization of the system under L(m) is deterministic,
i.e. there is only one such realization. So, only one of the three cases mentioned
above can occur, and this case occurs with probability one. So, “restricted” to this
case, the asserted induction hypothesis still holds true.

We first observe from (5.3) that for a Bernoulli policy,
RE® 1 x, <RP®)  n=0,1,.... (5.19)

Here we use the fact that if QZ() = 0 then the server must take at least one vacation,
ie., RB® +1< Rf_f,’;) and otherwise Rf_{(_ﬁ) = RB(®) 4 X,,.
Case (i) — Q}I;(m) >0,1< Si(m) < m:

In this case we have Rﬂ_’?) e Rf(m) from (5.4). It then follows from the induction

hypothesis and (5.19) that

R = R{™ Siox BEP < RED. (5.20)
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Case (ii) — Q}I;(m) > 0, SII(‘(m) =m:

Since necessarily £ > m — 1, we can apply (5.19) m times to obtain

k

B B

R .+ Y X <RID. (5.21)
J=k+1-m

The enforced relation (5.16) implies that E[Y%_,,,_,. X;] = 1, and so by (F2) we

have

k
1< 3. X (5.22)

j=k+1-m
Since ng) m 18 independent of {X;, j = k+1—m,...,k}, we conclude from (F3),
(5.21) and the induction hypothesis that

RED., +1 <iex RER). (5.23)

The desired inequality (5.18) then follows since we have Rk_g_Tlm +1= RL(m) from
(5-4).

Case (iii) — QL(m =0:

In this case Rﬂ_"f < Rkai) by Lemma 5.1 which trivially implies (5.18). O

We are now in a position to prove the main result of this section.
Theorem 5.1 Consider a vacation model with deterministic vacation periods, i.e.,
Vo=V, n=0,1,... (5.24)
for some constant V. For policies B(p) and L(m) satisfying (5.16), the comparison
Whm) <, WB®  p=0,1,... (5.25)
holds.

Proof: From (5.2) and (5.24), we conclude that for ¢ = B(p), L(m)

=3 B;+ VR, n=0,1,.... (5.26)
=0
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Let us consider a sample path of {A4,,B,, n=0,1,.. .}. We see from Lemma 5.2

and (F'3) that conditioned on this sample path, we have DL(m) <, DB®), Since

—1CcX

the waiting time of C, can be expressed as
Wi =D,~B,~T, i=B(p),Lm);n=0,1,..., (5.27)

we again obtain from (F3) that W™ < WB®), Unconditioning with respect to

{A., B,, n=0,1,...} completes the proof. O

5.4 The Comparison in The Steady—State Regime

In this section, the comparison result derived in the previous section is extended to
the steady-state regime. We assume that under both B(p) and L(m) (with p and
m related by (5.16)) the vacation model is stable, i.e.,

WE 2, wBE)  and W 2, pyim) (5.28)

where WB®) and W™ are almost surely finite. It is well known [45,51] that the
necessary and sufficient condition for this stability is given by

B+(1-p)V=B+-V<4 (5.29)
where B = E[B,] and A = E[A,)].

Theorem 5.2 For the vacation model of Theorem 5.1 under the stability condition
(5.28), the comparison
wilm) <iex wB® (5.30)

holds.

Before we prove the theorem above, we first establish some general results stated

in the following lemmas.

Lemma 5.3 Let a modified vacation model {An,én, n = 0,1,...} be constructed

from the random variables {A..,B..,X,.,n =0,1,...} where /i,, and én are given by
A,=A, B,=B,+X.V, n=01,... (5.31)
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and the length of each vacation period is given by V. Then, the waiting time Wf
of the nth customer in this vacation model under the ezhaustive service policy is
identical to that of the original vacation model under the Bernoulli policy which

corresponds to the sequence {X,, n =0,1,...}, i.e.,
WE=wBF),  n=o1,.... (5.32)
Proof: The proof proceeds by induction. By Assumption (A3), we have
WE =wE® =9 (5.33)

and so (5.32) trivially holds for n = 0. We take as induction hypothesis that

WE=wPW =.w,  n=0,...k (5.34)
and show that
2 B
WE, = w2®, (5.35)
With the notation
jf(p) =min{j > 0: Wi + By — A1 +J5V > 0}, (5.36)

we see that the waiting time W,i(f) of the (k + 1)st customer is given by
WED = Wy, + Bi — Agpr + Xel{Wi + By — Apyy > 0}V + 550V, (5.37)

From the definition of the exhaustive policy and (5.31), we see that W,ﬂl is given

by

WE | = Wi+ By + X4V — Agpa + 52V, (5.38)
where
JF =min{j > 0: Wi + By + X4V — Ay +jV > 0}. (5.39)

Thus to obtain (5.35), we are to show that
IF + Xk =3P + X l{Wi + Bi — Agyr > 0}. (5.40)

Let us consider the case Wi + Br — Arq1 > 0 first. In this case, we also have

Wi + By + XV — Agy1 > 0 since Xj > 0, and so from (5.36) and (5.39) we have
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i8 = jF = 0 and therefore (5.40) immediately follows. For the case Wj +Br—Ary1 <

0, we have to show that

X + 5 = 5B (5.41)
But, this is apparent from (5.36) and (5.39) upon examining the cases X} = 0 and
X = 1 separately. O
Remark: Lemma 5.3 above can be generalized to the case where the vacation

periods are not necessarily deterministic. This result, which actually is not needed

in this chapter, was used in Section 2.4.2 and is stated in Lemma 5.4 below.

Lemma 5.4 Consider the vacation model under the Bernoulli policy and the modi-
fied vacation model under the ezhaustive policy in Lemma 5.3, except that the vaca-
tion periods {V,, n =0,1,...} are not necessarily deterministic. Then, the stochas-
tic equalities

WE =, wB®), n=0,1,... (5.42)

hold.

Proof: Consider a random sequence {V/, n = 0,1,...} which is probabilistically
equivalent to {V,, n = 0,1,...}. We redefine the vacation models as follows. For
‘the Bernoulli model, the lengths of vacations which are started when the queue is
not empty are chosen from the sequence {V,, n = 0,1,...}, while the vacations
which are started when the queue is empty are chosen from {V!, n = 0,1,...}.
Similarly for the modified exhaustive model, the lengths of vacations used in the
modified service times (cf. (5.31)) are chosen from {V,, n = 0,1,...} while others are
chosen from {V!, n =0,1,...}. Obviously, redefining the vacation models this way
does not change their probabilistic structure. Moreover, we can follow the proof of
Lemma 5.3 with the vacation lengths being chosen from either {V,,, n =0,1,...} or
{V!, n=0,1,...} as appropriate to show that (5.32) indeed holds for the redefined

vacation models. This fact readily yields the desired result (5.42). O
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Lemma 5.5 Let {Z,, n = 0,1,...} and Z be nonnegative random variables and
suppose that Z, 2,7, If there exists an integrable nonnegative random variable Y

such that
Zn Siex Y, n=201,..., (5.43)

then Z s also integrable and moreover

lim E[Z,] = E[Z]. (5.44)

=00

Proof: Taking f(z) = z in the definition of the ordering <;cx, we obtain from (5.43)
that
E[Z,) < E[Y], n=0,1,.... (5.45)

Since Z, — Z, it follows by [6, Theorem 5.3] that

E[Z] < liminf E[Z,). (5.46)

n—00

Therefore, combining these inequalities yields
E[Z] < E[Y] < o0, (5.47)

and so Z is integrable.

For each a > 0, define a mapping f,: IRy — IR} by

fulz) = (5.48)

e ifz>a.

{:1: Hfo<er<a

Since f, is bounded and continuous, the definition of weak convergence then asserts

that
lim EUf.(Z)) = EU(2)] (549)
Combining this fact with
E(Z,) = Elfu(Z,)] + E[(Zn - a)7] (5.50)
and
E[Z] = Elfa(D)] + E[(Z - a)*], | (5.51)
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we obtain

lim sup| E[Z,] - E[Z)| < sup {El(Z: - o))+ E[(2Z - a)*]}. (5.52)

n—oo

But, by (F1), we have from (5.43) that

E((Z, — a)"] < E[(Y — a)*], n=0,1,..., (5.53)
and so
liiris()tlplE[Zn] — E[Z]| < E[(Y — a)*] + E[(Z - a)*]. (5.54)

The proof of (5.44) is now completed by letting @ — oo in (5.54) and using the
fact that both Z and Y are integrable. ad

Proof of Theorem 5.2: Only the case where E[WP{)] < 0o needs to be considered
since E[WBW] = oo trivially implies (5.30). By Proposition 1.3.2 of [77], (5.30)

directly follows if we can show that the limits

lim EWSP)] = EWE®)] and  lim E[WE™)] = E[WE) (5.55)

hold true and finite. To that end, we shall make use of Lemmas 5.3 and 5.5.

Doshi [21] established a sample path comparison between a vacation model under
the exhaustive policy and its corresponding GI/GI/1 queue (the same system with
no vacations). Using this result, ﬁ’f can be decomposed into the waiting time
W, of the nth customer in the corresponding GI/GI/1 queue and a term Y, that
corresponds to the vacations. The term Y, is always smaller than the last vacation

period taken, and so

WE<W,4+V, n=01,.... (5.56)

Note that under the stability assumption, the corresponding GI/GI/1 queue is

also stable, i.e., W, —= W for some nondefective . Moreover, since E[WP®)] is

A

finite, so is E[W]. Theorem 5.1.1 of [77] thus yields
Wo<ix W, n=0,1,.... (5.57)
This inequality, together with (5.32) and (5.56) implies that
WEP < W4V, n=0,1,.... (5.58)
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Subsequently, a use of Theorem 5.1 yields
WE™ < W+V,  n=0,1,.... (5.59)

By Lemma 5.5, the icx—ordering bounds (5.58) and (5.59), together with (5.28)
readily imply (5.55), and so the proof of Theorem 5.2 is complete. I
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PART II

POLLING SYSTEMS
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CHAPTER 6

POLLING SYSTEMS UNDER THE BERNOULLI POLICIES

6.1 Introduction

In this chapter and the next, we study polling systems under the Bernoulli and
limited policies, respectively. As mentioned earlier in the thesis, we shall see that
results obtained for vacation models often can be either extended to or used in
approximating polling systems. In this chapter, we establish exact results for polling
systems under the Bernoulli policy by first studying a queue in isolation; in the next
chapter, we use the interpolation approximations for limited vacation models to
devise an approximation scheme for polling systems under the limited policy.

In this chapter, we establish the pseudo~conservation law for the Bernoulli pol-
icy with the help of a work decomposition result recently established by Boxma and
Groenendijk [8,9,10]. The pseudo-conservation law basically equates the weighted
sum of mean waiting times associated with the individual queues to a simple ex-
pression which depends only on the first and second moments of the interarrival,
service and switchover times distributions. This law extends to polling systems the
classical conservation law for M/GI/1 queues established by Kleinrock [49],

The decomposition result of Boxma and Groenendijk states that the mean
amount of work in a general cyclic-service queueing system can be decomposed
into two components: one component is independent of the service policy while the
other is the sum of the mean amounts of work the server leaves behind at various
queues when it switches from one queue to the next. The second component de-
pends on the service policy and once it is determined, the pseudo—conservation law
for that service policy is established. To obtain this component for the Bernoulli

policy, we establish other exact results for the Bernoulli policy which are of interest
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in their own right.

Pseudo—conservation laws have been established for other service policies. Fer-
guson and Aminetzah [30] and Watson [88] independently established this law for
the exhaustive and gated policies; in [88], Watson also presented the law for the
limited—to—-one policy. In [27] and [28], Everitt found explicit forms of the pseudo—
conservation law for variants of the limited policies. For these policies, however, the
pseudo—conservation law still contains some unknowns which were identified as the
second factorial moments of the numbers of customers served in one service period
at various queues. In [27], an approximation to these unknowns is investigated.
Fuhrmann and Wang [34,35] established bounds for the pseudo-conservation law
for the limited policies which they then used as the basis for an approximation.

This chapter is organized as follows. The model is described in Section 2. In
Section 3, we derive the Laplace-Stieltjes transform (LST) of the limiting waiting
time at a particular queue in terms of the limiting probability generating function
(PGF) of the number of customers in that queue at the beginning of a service period.
In this derivation, we make use of an expression for the average number of customers
served from a queue in a service period. The derivation of this expression is deferred
until Section 5. The result of Section 3 is used in Section 4 to establish the pseudo-
conservation law for the Bernoulli policy. In Section 6, we analyze a homogeneous
cyclic-service queue under a Bernoulli policy. In this case, the pseudo—conservation
law readily provides a closed-form formula for the mean waiting time. In Section 7,
we conclude the chapter by studying an approximation for the nonhomogeneous
queue which is based on the pseudo—conservation law.

Throughout the chapter we use the following convention. For any IR,-valued
random variable X, we use X* to denote the LST of its distribution. If X is integer—
valued, we use X to denote its PGF. In both cases, we use X, X2, and 0% to denote

the mean, second moment, and variance of X, respectively.
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6.2 Model and Notation

We consider an M/GI/1 cyclic-service system consisting of N infinite capac-
ity queues which are denoted by @1,...,Qn. A Bernoulli service policy, which
is parametrized by a vector of probabilities (pi,...,py) where 0 < p; <1,
J =1,...,N, is described as follows. At the beginning of each visit to a queue,
the server always serves a customer if the queue is not empty. At the completion of
every service given to a customer at @, if the queue is not empty, the server flips a
biased coin. The outcome of the flip is ‘1’ with probability p; or ‘0’ with probability
1 — p;. If the server flips ‘I’, the next available customer in the queue is served.
Otherwise, the server goes to the next queue down the line, i.e., Qj+1(moaN). If Q;
is empty at the service completion, the server goes to @41 (modan) With probability
one. Within a queue, the service discipline is FCFS. The server takes a random
amount of time, the so—called switchover time, to go from Q5 t0 Q41 (mod N)-
The random variables governing the system are listed below, with j = 1,..., N
and n =0,1,...
A?*! = the interarrival time between the nth and the (n + 1)st customer in Q;,
with the convention that the customer with index 0 arrives at time t = 0.
The process {A?, n =0,1,...} is assumed Poisson with parameter ;.
B7 = the service time of the nth customer in ;. The random variables
{BJ’-‘, n = 0,1,...} are i.i.d. with a general common distribution.
Throughout, B; denotes a generic service time at Q);.
Ui = the nth coin flip in @;. The random variables {U}, n = 0,1,...} are i.i.d.,
{0,1}~valued with P[U? =1]=1—P[U} = 0] =p; for alln = 0,1,....
V" = the nth switchover time from @; to @j41(moany. The random vari-

ables {V*, n = 0,1,...} are i.i.d. with a general common distribution.

Throughout, V; denotes a generic switchover time from @Q);.

We assume that all the processes described above within a queue as well as among
all the queues in the network are mutually independent. Also define p; = );B;,

Jj=1,...,N, pT:Zﬁlpj,and set VT=E;-V=1V}.
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Throughout this chapter, we refer to an instant the server arrives at Q; from

Qj-1 as a polling instant of Q); and the period starting from a polling instant for @,
and ending with the server’s departure as a server’s visit period to Q; or simply a

service period of Q).

6.3 The Waiting Time at a Queue in Isolation

In this section, we focus our attention to one particular queue in a cyclic-service
system under a Bernoulli policy. We suppress the index of the queue for notational

simplicity and define

K™ = the number of customers at the beginning of the mth service period, m =
0,1,..

Z™ = the number of customers served during the mth service period, m =
0,1,..

W' = the waiting time of the rth customer, r =0,1,....

We assume that K™, Z™, and W" converge in distribution to some non—-defective
random variables K, Z, and W, respectively. In fact, it can be shown that each

queue is stable if

L—p;+pr
(1-p)Vr+B;’
We have the following result which expresses the LST of the limiting waiting time

A < j=1,...,N. (6.1)

in terms of the PGF of the limiting number of customers at the polling instant.

Theorem 6.1 Consider a particular queue in a stable M/GI]1 cyclic-service
queueing system under a Bernoulli policy. Let p, 0 < p < 1, be the Bernoull:
probability assigned to that queue. Then, the limiting LST of the waiting time of an

arbitrary customer in that queue is given by

v Al=p)  E(-s/})—K(®0,p)
W(S)’1—1§’(<I>(o,p)) A=s—pAB*(s)

where K is the limiting PGF of the number of customers at the beginning of a service

A —s| < A, (6.2)

period, and © satisfies the relation
B(s,z) = zB* (s + X — A®(s,2)), R(s) >0,]2| < 1. (6.3)
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The value of W*(s) for p =1 is understood to be the limit of the right-hand side of
(6.2) as p — 1.

Proof. In what follows, an epoch is either a polling instant or a service completion.
Describe the queue by a sequence of pairs of random variables {(X",J"), n =
0,1,...} with the following interpretation: X" denotes the number of customers in
the queue at the nth epoch, while J* = 1 (resp. J" = 0) if the epoch marks the
end of a service (resp. a polling instant). Let 7(n) denote the index of the customer
whose service is completed at or immediately before the nth epoch. Similarly, define
¢(n) as the index of the polling instant which occurs at or immediately before the
nth epoch. Both r(n) and ¢(n) are random variables that go to infinity with n. Also,
let R™ be the number of arrivals that occur during the service of the rth customer.

The evolution of the sequence {(X™,J"), n =0,1,...} is then given by

(X* =14+ R0HD 1) i X7 > 0,J" =0
(Xn+1, Jn+1) = or X" >0, J = 1, Ur(n) =1 (64)

(K1) 0) otherwise.

We are interested in Q", the number of customers in the queue immediately
following the departure of the rth customer, and its limiting random variable Q).

For n =0,1,..., define
U"(z) = E[zX"|J"=1] and Z*(z)=E[*"|J"=0], |2/<1 (6.5)
so that Q"(™(z) = U™(z), K<™ (z) = Z*(2), and
lim ¥ (z) = Q(z), and lim =7(z) = K(z), |z} < 1. (6.6)

From (6.4), we see that

Pt(z) = E[XTJM =1

E[zxn_1+Rr(n+1)|Jn+l _ 1]

= 2z7'B*(A = Az2) E[2*"|J" = 1]. (6.7)
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We also observe from (6.4) that
(=1 =A"UB", n=0,1,..., (6.8)
where the sets 4™ and B" are defined by
A*=[X">0,J"=0] and B"=[X">0J"=10"=1], (69)

respectively. Since A™ and B™ are disjoint, we have from (6.8) that

E[2X" Lin] 4+ E[2X" I4]

ETM = 1) = :
where 1,4 is the indicator function of set A.
From the definition of =" and ¥™, we have
E[%"I4] = P[J" = 0](2"(2) - Z(0)) (6.11)
and
E[z*"Iga] = p P[J" = 1](¥"(2) — ¥™(0)) (6.12)

which we can substitute into (6.10) and then into (6.7) to obtain

z71B*(A — Az)

Ut (z) = Pl = 1]

[P[J" = 0](E"(x)-2(0)) +p P[J" = 1] (\I/”(z)—\I!”(O))].
(6.13)

Taking the limit of the above as n — oo and rearranging terms, we finally obtain

. Pl =0] K(z) - K(0) - pp=}Q(0)
1] z—pB*(A = )z)

B () - \z). (6.14)

Note that %%]1 is nothing but the average number of customers served in one

service period Z, so that

. 1K) - R(0) - pQ(0)Z

Q(z) = 7 2 pB (- A B*(\ — Az). (6.15)

Letting z = 1 in (6.15) and solving for Q(0), we obtain

G0) = =1 - (1 -p)Z - K(0)], (6.16)

L
pZ
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which can be substituted back into (6.15) to get

~ __lf((z)—l-}—(l——p)z
Q=) = Z  z—pB*(A - \2)

B*(\ — Az). (6.17)

Since the service is given on a FCFS basis, the customers present when an arbitrary
customer leaves the queue are those that arrive during its waiting and service time,

whence
Q(z) = W (A = Az) B*(A = Xz). (6.18)
Solving for W* from (6.17) and (6.18) and letting s = A — Az, we have

AK(1-s/A)—-14+(1-p)Z
Z A — 38— pAB*(s) ’

W*(s) = IA—s| <A (6.19)

We show in Section 5 that Z can be expressed in terms of K as

1 — K(9(0,p))

Z = T—p

(6.20)

Hence, substituting (6.20) into (6.19) yields (6.2), and the proof is complete. a
Note that by letting p = 0 in (6.2), we obtain the waiting time for the limited-

to—-one policy as 5 ~

W*(s) = /\~ K(l-—s/)\)—-K(O),
1 - K(0) A—s

which is in agreement with previously established results [88, p. 526]. Note also that

® as defined in (6.3) is the joint LST-PGF of the length of a busy period and the

(6.21)

number of customers served during that busy period in an M/GI/1 system. It can
be easily shown that :—pfb(O,p) evaluated at p = 1 is equal to 1/(1 — p). Using this
fact, we can let p =1 in (6.2) and perform ’Hospital’s rule on the first factor of the
right-hand side to obtain

(1-p) RA-s/N) -1
K X1-B+s)-5s’

W(s) = 2 (6.22)

which is the waiting time LST for the exhaustive policy.

We readily obtain the mean waiting time in terms of the mean number of cus-
tomers at the beginning of the busy period by taking the first derivative of both
sides of (6.2) with respect to s and letting s = 0.
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Corollary 6.1 The mean waiting time of an arbitrary customer in the queue in
Theorem 6.1 is given by
o K(=p) — (1= K(2(0,)(1 = pp)
A1 = K(2(0,p)))(1 —p) ’

where the value evaluated at p = 1 is understood to be the limit as p — 1. 4

(6.23)

Again, (6.23) evaluated at the extreme values of p agrees with the formulae
available in the literature [88, p. 527]. Note that for p = 1, we have to use ’'Hospital’s

rule twice.

6.4 Pseudo—conservation law for the Bernoulli policy

In this section, we shall derive the pseudo—conservation law for the Bernoulli policy
using the result in the previous section and the work decomposition result established
by Boxma and Groenendijk [9,10]. The work decomposition result states that for
an M/GI/1 cyclic-service under any service policy, we have

N N

Y piW;=C+3 L;B;, (6.24)

j=1 i=1
where L; is the mean number of remaining customers in @; when the server leaves
that queue, i.e., the number of customers at the end of a service period for ¢);. In
general, L; is dependent on the service policy. On the other hand, C is independent

of the service policy and is given by

,UT V VT N 2
C= Dy ( _ ) 6.25
1—,0T Z T pT ;P] (6.25)

To obtain the pseudo-conservation law, we are going to express L; for j =

., N as a function of W;. To this end, we first note that
Li=K;+Zj(p;-1), j=1,...,N (6.26)

which simply says that the mean number of customers at the end of a service period
in @Q; is the mean number at the beginning of the service period plus the mean

number of arrivals minus the mean number of departures in the same service period.
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For an M/G1I/1 cyclic-service queue, Z; is independent of the service policy and is

given by B .
= ANVr ,
%:1:ﬁ’ i=1,...,N. (6.27)
Using (6.20), we can rewrite (6.23) as
- 1 K; 1- p-p) :
W, = - 1) j=1,...,N. 6.28
’ 1-%(&@ Aj (6.28)

Combining (6.24)-(6.28) and collecting the terms W; to the left-hand side, the

pseudo-conservation law is obtained in the following form.

Theorem 6.2 For a stable M/GI[1 cyclic-service queueing system under a
Bernoulli service policy with parameter (pi,...,pn), 0 < p; <1, j =1,...,N,

the relation

fj-p— M%"u— ﬂﬂk—6%+—ji—-£ 2(1=p;) (6.29)
ot Pj 1 —pr b; J (1 —PT) j::p] J .

holds.

Remark 6.1: Fuhrmann and Wang [35] showed that for a polling system under
the limited policy with parameters (my,...,my), the mean waiting times VV]'L, J=

1,..., N, satisfy the inequality

a MNVr o g RN
pill - ——— W< C+ —Y 2L, 6.30)
224 mAP—MJ ? (1—mﬁg;m (
If we choose
m; = L j=1,...,N, (6.31)
1 —p;

then both sides of equality (6.29) are identical to their respective side of inequality
(6.30), and so we have
AV

- -], 632)
=1

where VVJB’S denote the mean waiting times under the Bernoulli policy.
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6.5 The Service Period

Equation (6.20) relates the mean number of customers served in a service period
with the number of customers at the beginning of the service period. As promised,
we now present the derivation of this relation. As it will become apparent, it is more
natural to include the length of the service period in the analysis as well.
For m = 0,1,..., we define S™ as the length of the mth service period and
denote the joint LST-PGF of 8™ and Z™ by
F™(s,z) = E[e™*%"2%"], R(s)>0, |z| < 1. (6.33)

The following theorem provides an expression for this quantity.

Theorem 6.3 For the queue in Theorem 6.1, the joint LST-PGF of S™ and Z™

is given by

F™(s,z) = (1 =T(s,2))K™(®(s,pz)) + I'(s, 2), (6.34)
where

T(s,z) = %{%, R(s) > 0,]z] < 1 (6.35)

and ®(s,z) satisfies (6.3).

Proof. Without loss of generality, we shall prove the theorem for m = 0. First, we
define £ and 7 as the length of the first service period and the number of customers

served in the service period, respectively, when the queue is saturated, i.e.
r=min{k >1:U*"! =0} and ¢(=B°+-.--4+B"L (6.36)

We can easily verify that E[e™*27] = I'(s,2) as defined in (6.35). Next, define 8
and 7 as the length of the first service period and the number of customers served
in the service period, respectively, when K° customers are present at the start of
the service period, and the service policy is exhaustive. If K° = 1, then 3 and 7 are
just the length of a busy period and the number of customers served in the busy
period for a regular M/GI/1 system. It is a well-known fact that if p < 1, then

®(s,2) 1= E[e™*P2"|K° = 1] satisfies (6.3). Moreover, using Takdcs’ argument and
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the fact that K° is independent of the subsequent interarrival and service times, we

can also show that
E[e=8z" = K°(®(s, z)). (6.37)
Note that the number of customers served in a service period is determined either

by 7, if the server flips 0 before the queue is empty, or by 7, if the queue is empty

before the server flips 0, and so
Z° = min(r,7) and 5% = B%+... 4+ BZ-1, (6.38)
Defining the set A = [ < 7], we can write
FOs,2) = Ele™% 2% 1] + E[e™* 2% 14¢). (6.39)
On the set A, Z° =5 and S° = 3, so that

E[e—ssozzo I4] = E[e=%02114]

(6.40)
= Ele™*?2"E[148,n]].
But, under the enforced independence assumptions, we have
E[14]8,1] = PIAI,n] = p" (6.41)
and it therefore follows from (6.37) that
Ele=*5°27°1,] = E[e~%02"p"
[ 4] ~[ p"] (6.42)
= K%®(s,pz)).
On the set A°, we have Z° = 7 and S° = ¢, so that
E ~38° ZOI d =F -s€ L P
(677 e  Lae] = Ele™ 27 L] (6.43)

= Ele~*2"] — E[e™*2714)].
Let us now define 7’ and ¢’ as
' =min{k>1: U1 =0} and E=B"+---+ BT (6.44)

The random variable 7 is a stopping time with respect to the i.i.d. sequence
{(A"*,B",U"), n = 0,1,...}. We have < oo as. since p < 1. Fur
thermore, it can be shown that {(A™1,B" U"), n = 0,1,...,7} 1s indepen-
dent of {(A7t"t1 B7tn Umtn) n = 0,1,...} which itself is i.i.d. In particular,
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{(Amtntl prin Untn) p = 0,1,...} is independent of n and 3. Notice also that I
is determined once we know the value of n and U™, n =0,1,...,7, i.e., I is a func-
tion of {(A™', B",U"), n =0,1,...,n}. So, {(A™"*+ Br Untn) n =0,1,...}
is independent of I4 as well. The random variables 7' and ¢’ defined above are
functions of {(A"+"+1, B"t" U"t") n =0,1,...} and so they are independent of 7,
B and I4. Moreover, by the i.i.d. nature of {(A™™+! Bmm Untn) n =0,1,...},
we have

Ele™*%'2"] = I(s, 2). (6.45)

On the set A, we have 7 = 9 + 7" and £ = S + &', and consequently, by the

previous remarks, we find that

Ele=*¢2714] = Ele=*fe*¢ 272" 1 4]
[e=*P2"14] E[e=*¢' 2" (6.46)

K°(®(s,pz))T(s, 2).

E
E

Il

Substituting (6.46) into (6.43), and then (6.42)-(6.43) into (6.39) completes the
proof.

O

If the system is stable, there exist F' and K such that as m — oo, F™(s,z) goes
to F(s,z) and K™(z) goes to K(z) for all ®(s) > 0 and |2] < 1. As a result, we

easily obtain the following corollary.

Corollary 6.2 For the queue in Theorem 6.1, the relation
F(s,z) = (1 =T(s,2))K(®(s,pz)) + I'(s,2), R(s) > 0,]z| <1 (6.47)
holds with T' and ® defined by (6.35) and (6.3), respectively.

By letting s = 0 in (6.47), we obtain the number of customers served in a service

period.

Corollary 6.3 If the system is stable with Z™ going to Z in distribution, then

Z(z) = (1 = T(0,2))K(®(0,pz)) + I'(0, 2). (6.48)
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Taking the first derivative of both sides of (6.48) and letting z = 1 yield

1 — f((@(ﬂ,p))
l1-p

7 =

, (6.49)

which is the result we wanted to show in this section.

We note that a result that expresses the joint LST-PGF of the length of a service
period and the number of customers present at the end of that service period in terms
of the PGF of the number of customers at the beginning of the service period can
also be obtained using the method used in this section. This result has been derived

by Ramaswamy and Servi in [66] using a different method.

6.6 The Exact Solution for the Homogeneous Case

If the system is homogeneous in the sense that the processes governing each queue
(including the switchover times) are stochastically identical, then Wy=-.=Wy=
W. Using (6.29) we can directly solve for W since W can be pulled out of the
summation. In fact, the average waiting time taken over all the queues in the
system can be solved under a much less stringent condition. If the system is such
that \, = ---=Ayv =\, By =+-- = By = B,and py = -+ = py = p, then the
coeficients in front of W;’s are all identical and can be pulled out of the summation.
If we define

-1 X

W= “N'ZH/J" (6.50)

=1

]:
then again we can solve for W using (6.29). Notice that, under this condition, it is
not clear that the individual W;’s will be identical. The following theorem states

the result discussed above.

Theorem 6.4 For a stable M/GI/1 cyclic-service queueing system under Bernoulli
service policy where Ay = --- = AN = A, Bi=--=By=B,andp, = =pny =

p, 0 < p < 1, the average waiting time defined in (6.50) is given by

- 1 Y= Q—pr)ol, &
W= _ [A B?+——=——-T+V~1+p—2pp], 6.51
2(1 = pr = AVr(1 = p)] Jz=:1 ’ Vr a ) (83D

where p = AB, and p = Np.
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6.7 Approximation for the Nonhomogeneous Case

Following [11,26,28,34,35], we can use the pseudo—conservation law to approximate
the individual waiting times for the nonhomogeneous case. Generally the approxi-

mate mean waiting time takes the form

W, ~ vz, j=1,...,N, (6.52)

where 7; is a known function of the system parameters, and z is an unknown which
is solved using equation (6.29).

The application of the pseudo-conservation law to approximation methods was
first studied by Everitt [26] for the gated and exhaustive policies and by Boxma and
Meister [11] for the limited—to—one policy. Recently, Fuhrmann and Wang [34,35]
and Everitt [28] extended this study to the general limited policies.

Fuhrmann and Wang [35] heuristically derived the approximations

W n L i+ (pi/my)[1 + 1/(1 = pr)]
3 RN
(1—pr)m,

r, 7=1,...

,N, (6.53)

for the limited service policy. For the Bernoulli policy, we can use the same heuristic
arguments to arrive to the same approximations; the only difference is that 1/m; is

now replaced by (1 — p;). Hence,

W L P+ (L= pi)pi[L +1/(1 = pr)]
" 1 —222(1 — p;)

1-pr

z, j=1,....N. (6.54)

Numerical Results

In the following, we compare the mean waiting times obtained using the approxima-
tions above with simulation results. We consider four examples, the first two with
small N (N = 3) and the last two with large N (N = 10). From these examples,
we observe that the approximation tends to perform worse as the system becomes

less and less homogeneous. This trend is expected since by its construction the

approximation becomes exact when the system iS homogeneous.

Example 1. Small N (N = 3); medium load (pr = 0.5); homogeneous service times
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(pl,Pz,Pg) Measure | Simulation | Approx.
(2,0,0) W, 1.406 1.487
W, 2.859 2.826

Wi 2.945 2.826

(%,1,0) 1474 1.399 | 1.474
W, 1.912 1.957

Ws 3.084 3.025

(2,0,%) W, 1474 | 1.508
W, 3.283 3.096

Wi 1.667 1.720

(0,2,2) Wy 2.481 |  2.342
W, 1.825 1.843

Ws 1.865 |  1.843

Table 6.1: Example 1

and switchover times (B; = 1.0 exponential, V; = 0.25 deterministic, i = 1,2,3);

nonhomogeneous arrival rates (A; = 0.1, Ay = A3 = 0.2).

Example 2. Small N (N = 3); medium load (pr = 0.6); homogeneous switchover

times (V; = 0.25, deterministic, i = 1,2,3); nonhomogeneous service times and

arrival rates (Bl = 2.0, B, = B; = 1.0 all exponential, Ay = 0.1, Ay = A5 = 0.2).

Example 3. Large N (N = 10); low load (pr = 0.4); homogeneous service times,
switchover times and arrival rates (B; = 1.0 exponential, V; = 0.25 deterministic,

X =0.04,i=1,...,10).

Example 4. Large N (N = 10); medium load (pr = 0.594); homogeneous
switchover times (V; = 0.25 deterministic, ¢ = 1,...,10); nonhomogeneous service
times and arrival rates (B; = 1.0, 7 = 1,2,3, B; = 0.6, : = 4,..., 10, all exponential;

X =01,i=1,2,3, X =0071=4,...,10).
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(p1,p2, p3) | Measure Simuiation Approx.
(%,0,0) W 2.017 | 2.494
W, 2.985 5.430

W 8.979 5.430

(5:%:0) Wi 1.884 | 2.355
W, 2.424 3.522

W 9.641 5.972

(5,0,3) Wi 2.300 |  2.417
W, 4.368 6.130

W 3.673 3.017

0,%,%) W 3.088 |  3.427
W, 2.729 3.189

Wi 3.659 3.189

Table 6.2: Example 2

(p1y.. - P10) Measure | Simulation | Approx.
(3,0,0,0,0,0,0,0,0,0) Wi 2.791 2.808
Wa-10 3.398 3.409

(3,1,1,4,1,0,0,0,0,0) W, 2.660 |  2.704
Wa_s 2.918 2.972

We-10 3.456 3.441

(£,0,0,0,0,2,2 2 2 2) Wy 2.653 2.744
Wa_s 3.443 3.460

We—10 2.822 2.850

Table 6.3; Example 3
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(p1,--.,p10) Measure | Simulation | Approx.
(%,0,0,0,0,0,0,0,0,0) 174 4.662 4.948
Wa_s 13.431 | 12.563

Wi-10 7.566 7.511

(3:3333,0,0,0,0,0) W, 4.105 | 4.299
Wa_s 6.419 6.246

Wi_s 5.198 5.292

We-10 8.296 7.812

(3,0,0,0,0,%,2 2 2 2 Wi 4.203 | 4.850
Wa_s 14.391 | 16.154

Wa_s 7.818 8.950

We—10 4.472 5.161

Table 6.4: Example 4
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CHAPTER 7

POLLING SYSTEMS UNDER THE LIMITED POLICIES

7.1 Introduction

As mentioned earlier, the limited policies do not lend themselves to analysis by
“traditional” methods used very successfully for the exhaustive and gated policies.
Nor can they be analyzed using the method used in the preceding chapter since the
limited policies lack the memoryless property enjoyed by the Bernoulli policies. This
property was crucial in the derivation of Theorem 6.1 which leads to the relationship
(6.28) used in establishing the pseudo—conservation law. In this chapter, we propose
and study an approximation algorithm for polling systems with Poisson arrivals
under the limited policies. This algorithm is based on the heavy and light traffic
interpolation approximation for the vacation models developed in Chapter 3.

The proposed algorithm takes advantage of the nonexhaustive nature of the lim-
ited policy and the fact that the interpolation approximation for vacation models
under the limited policy is extremely accurate. We shall see that the nonexhaus-
tiveness of the limited policy enables us to approximate the mean waiting time at
a particular queue using two polling systems, each with one less queue than the
original system. This reduction of dimensionality is repeated until we end up with
vacation models, at which point we can use the interpolation approximation for the
vacation models.

In the next section, we present the model and notation used throughout the
chapter. For ease of exposition, we shall first consider polling systems with two
queues. In Section 3, we propose an algorithm for these systems. In Section 4, we

extend the algorithm to polling systems with an arbitrary number of queues. Finally

in Section 5, we report some numerical results on the performance of the algorithm.
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7.2 Model and Notation

We consider a polling system consisting of N queues, @1,...,Qp, under a lim-
ited policy. The policy is parametrized by a vector (my,...,mpy), where m;
is the maximum number of customers that can be served during one server’s
visit to ();. In this chapter we more or less adopt the notation of the preced-
ing chapter. We denote the random variables constituting a polling syst:eﬁ by
{A}* BT, Vi, n=0,1,...;7 =1,2,..., N}, with the same interpretations as those
given in the preceding chapter. We also make the same assumptions concerning the

probabilistic structure of these random variables.

7.8 An Approximation for N =2

We consider in this section a polling system consisting of two queues. We first
look closely at the stability conditions for this system and then make some key
observations which lead to the development of an approximation method to compute

the mean waiting times at the individual queues.

7.3.1 Stability Conditions

We say that Q);, j = 1,2, is stable if the waiting time W of the nth type-j customer
converges to an almost surely finite random variable W;. We say that the system
is stable if both Q; and Q, are stable. Let C' denote the (steady state) mean cycle
time, i.e., the average amount of time it takes the server to make one full trip around
the system. If both queues are stable, then for j = 1,2, A;C, is the mean number

of type—j customers served in one cycle, and so
— 2 U -
CZZ)\J'CBJ'+VT, (71)
J=1

where Vp = V; + V,. Rearranging the terms yields

Vr

C = ,
1—pr

(7.2)
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B, )
v 1= B,
/ ' B1+f'T/m1
TS
\ 11—\ B
Ql, Q- stable / 2 m
//// N
1
B

Figure 7.1: The Stability Region for N = 2

where pr = p; + p = A\; By + A2 B,. For both Q; and Q, to be stable, it is necessary

that B
~ % .
2O =T cmi, 5 =1,2 (7.3)
1—pr
or equivalently B
1—pr+ ;B .
A < —= - , =1,2. 7.4

These conditions were first derived by Kuehn [51]; Szpankowski and Rego [76]
showed that these conditions were also sufficient. The stability region of a polling
system under the limited policy with parameters (m,,m;) is shown in Figure 7.1.
We see that the preceding derivation of stability conditions can be easily extended

to the case N arbitrary.
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7.3.2 Observations

We seek to approximate the mean waiting time Wi (A1, A;) at Qq, where A; and A,
are the rate of the Poisson arrival to ¢y and @Q,, respectively. (The approximation
of W can be carried out in exactly the same manner and so we only discuss W,

here.) First, we make the following observations:

1. If Q); is unstable, Q; can still be stable if and only if

h<mE+ZE+%' (7.5)
Indeed, denoting the mean cycle time in this case by Cy, we have
Cy = MC1 By + meBy + V7, (7.6)
and so B B
= %%1. (7.7)

The necessary and sufficient condition for Q1 to be stableis A;C; < m; which is
equivalent to (7.5). As far as @1 is concerned, the system can be considered as
a vacation model under the policy L(m;) with (J1 as the queue and vacation
periods being distributed as B} + --- + Bj"? + Vr (where the additions are
independent). The stability condition (7.5) can be seen to be consistent with
(3.54).

2. If \; =0, then Q; can again be considered as a vacation model. In this case,

the vacation periods are distributed as Vr, and @) is stable if and only if

1

M =——.
! By + Vr/myq

(7.8)

So, for the cases Q, unstable and A, = 0, W; can be approximated very ac-
curately using the interpolation approximation for vacation models developed in
Chapter 3. These cases are depicted in Figure 7.1 as the top side T'S and bottom
side BS of the quadrilateral representing the stability region. The approximation
of Wi along the lines T'S and BS is very accurate, and we would like to exploit this
information to approximate Wi(A%,A3) for (A}, A;) in the interior of the stability

region. We consider below one interpolation method to do exactly this.
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Ay = 1h/\ll§l
2 P T T e
/ By + Vr/m,

(AL, 0)

Figure 7.2: An interpolation
7.3.3 An Interpolation

Given (A3, A}) in the interior of the stability region, we use the information along
TS and BS by interpolating along a line connecting a point (AY,AY) on T'S and
a point (A,0) on BS which crosses (A}, ;). Obviously, there are infinitely many
choices of (AV,\Y) and (AF,0) for any given (A}, A}); we shall consider one choice
which is obtained as follows. From the point (0, 33;), draw a straight line crossing
(A%, A3) and take the point where it crosses T'S as (AY, AY) and where it crosses BS
as (AL',0) (see Figure 7.2). Simple algebra will show that this line indeed crosses
TS and BS and that furthermore the obtained AY and A satisfy (7.5) and (7.8),
respectively.

To be more specific, the approximation of W;(A}, A3) is carried out as follows:

114



1. Given (A7, A3), set

(WY, V) = ( _ MVr ____ m(l=—pr) )

mng(l — pT) + VT(l — )\EBQ)’ mng(l - PT) + VT(]. —- A;Bz)
(7.9)

and
(AL, 0) = (A— o) (7.10)
v 1—-X3By' ) a
2. If my > 1, approximate W1(AV, \Y) using (3.61) with

V=myBy + Vr and oy = maoy + oy, (7.11)

Otherwise if m = 1, Wi (AV,AY) can be computed exactly using (3.60) with
p = 0 and with vacation mean and variance given above. Denote the computed

Wi(AY, A]) by o (A7)
3. Approximate or compute Wy (A, 0) similarly, with
V=V and o} =07 (7.12)
Again, denote the computed W;(A\L,0) by @Y ().

4. Approximate Wy (A}, \3) by w;(\}, A3) given by

A =AY

B, 43) = @ () + Sp—p [0 ) - e D)) (7.19)

7.4 An Algorithm for N Arbitrary

In this section, we extend the interpolation approximation for the case N = 2 to
the case N arbitrary. First, as mentioned earlier, the stability conditions for this
case can be derived in the same manner as for the case N == 2. Thus, the system is
stable if and only if

1—pr+ \;B;

A < —= = ,
77 Bj+ Vr[m;

j=1,...,N, (7.14)

where PT = Zﬁl )\,'Bi and VT = Zﬁl ‘_/;
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7.4.1 Observations

In the case N = 2 considered in the last section, Wi (%, A3) is approximated by in-
terpolating between two points: (AY,AY) and (A£,0). At these two points, as far as
W is concerned, the system can be considered as a vacation model. This idea can be
naturally extended to the case N arbitrary as follows. Given (A],...,A}) in the sta-
bility region, we find two points (AV,...,\{) and (AF,..., % _,,0). Assuming that
Wi (WY, .. 2%) and Wi (AE, ... AL _,0) (or their approximations) are available, we
then approximate Wi(M5,...,A%) by interpolating between these two points. The
point (AY,...,A¥) is chosen such that at this point Qx is unstable. Obviously, as
far as W, is concerned, the system is equivalent to a polling system with N — 1
queues (after modifying the total switchover times) at the two points mentioned
above. As a result, the computation (approximation) of W;(AV, ..., A{) is reduced
to the computation of W; of an equivalent polling system with N — 1 queues and
with arrival rates (AY,...,A%_,). Similarly, Wi (AE, ... Ak _,,0) is exactly W; of an
equivalent polling system with N — 1 queues and with arrival rates (AL, ..., % _,).
For the point (AV,...,X{), the total switchover times of the equivalent system are
distributed as By + - -+ + By~ + Vr (where the additions are independent); for the
point (AF,... Ak _|,0), the total switchover times are distributed as the ones in the
original system.

Given (A5,...,A\%) in the stability region, we obtain (AY,...;)\{) and
(AL, .., 2k _,,0) by drawing a straight line from (0,...,0,1—§1;) to (A],..., AN)-
Again, simple algebra will show that indeed this line and its extension crosses the

stability “plane” of Qu, B

1= AB;
~ By +Vp/my’
and the plane Ay = 0, and that the resulting (A\V,... ;A% _;) and (\l,..., % ;)

AN (7.15)

satisfy the stability conditions for their respective equivalent polling system.
To approximate Wi(A\V,...,\¥) and Wi(A\F,...,A%_;,0), the same approach
used to approximate Wl()\i‘,. ..y A%) can be applied. For example, the approxi-

mation of Wi(AL,...,Ak_,,0) will involve the two points (AfV,...,A%7,,0) and
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(AEL .., AEF,,0,0). This line of argument is repeated N — 1 times until we end up
with only vacation models, at which point we can use the interpolation approxima-

tion for vacation models developed in Chapter 3.

7.4.2 The Algorithm

The algorithm consists of two phases: the reduction phase and the interpolation
phase. In the reduction phase, we reduce the dimensionality of the system in a
manner described above; in the interpolation phase, we perform interpolation be-
tween pairs of points. The reduction phase is subsequently divided into N stages:
{Rj, 7 =0,...,N}. At stage R;, we have polling systems with N — j queues, i.e.,
we have “removed” Qn,...,QN-j+1.

Let {SUK k= 0,...,2/ — 1}, be the polling systems (with N — j queues) at
stage R;, 3 =0,..., N—1. The numbering of the systems within one stage is done as
follows. Let the j-bit binary expansion of k be given by do, . ..,d;—;. Then, SUF) is
obtained by removing Q.. ., @n-;4+1 Where the removal of Q;, 2 = N—j+1,..., N,
corresponds to either letting A; = 0 (if d; = 0) or saturating Q; (if d; = 1).

Let (k) = (:cgj’k),...,m%’f;), j=0,...,N—1; k = 0,...,27 — 1, be the
arrival rate vectors corresponding to SGE) - For example, 2(°® would be equal
to (A5 ..., A%), 20D = AV, AL ), @D = (A ARV ) and (37 =
(AUY,...,ARY,). Also denote the (generic) total switchover time for SU*) by ViH)
and the mean waiting time at (), and its approximation by ﬁ/l(j *) and fbgj ’k), respec-
tively.

Given zU) we generate xUt12%) and glU+1.2%+1) a5 follows. The parametric

) and 2% is given by

representation of the line connecting (0,...,0, Bno

- " 1 n 1
(tmg»k),,_.,tx%_}_l,m+ (2§72 - BN_j)t>, t>0. (7.16)

Let tgj’k) be the value of ¢ when this line crosses the stability plane of Qn_; (as part

of the system SU*)) namely

I e 2iB;
By + V3" fmn_;

ITN-—j

: (7.17)
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and let tgj’k) be the value of ¢ when the line crosses the plane zny_; = 0. Thus,

pU+L2E) and 2 (+12k41) 500 given by

LU+L2E) _ (tgf»k)ng ) t(’ ) (sz 1) (7.18)
and
. ik ik Lk ik
LUHL2k41) (tgj SR 4 )x%_;_l), (7.19)

respectively. It can be shown using simple algebra that tgj’k) and t(()j’k) are given by

. V(j,k)
17 = = GEN L TR (k) (7.:20)
my—;By_;(1 — pp™’) + V7" (1 — 287, Bn-;)
and
. 1
108 = , , (7.21)

11— m%’f%BN_j
respectively, where p(]’k) 21_1 x(J ' B;.

The Algorithm:

** Initialization **

@0  (A%,...,A%)
V%9  Vr and 0‘2/}0,0) — o},
** Reduction phase **
doj=0, N-2
dok=0,2 -1
compute zU+12%) ysing (7.18) and (7.21)
ngjﬂ,zk) - ngj,k)
Uf,gu,zk) - Uf,;m
compute z(+12+1) ysing (7.19) and (7.20)

ngj+1,2k+1) - VT(j,k) + mN—jBN—j

2 2 72
O G+12k41) € Oy GR T MN-;0B,
T T
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** Interpolation phase: **

dok=0,2""1-1

compute @\~ ¥ using (3.61) or (3.60)

doj=N-2,0, —1
do £ =0, 2 —1
u—)y,k) - w§j+l,2k) + (w§j+1,2k+1) _ ngﬂ’zk))w‘%’f;/x%i;’%ﬂ)

7.5 Numerical Results

In this section, we study the performance of the algorithm proposed above. We
compare approximations computed using the algorithm with simulation results. We
also compare our algorithm to Fuhrmann and Wang’s approximation [35]. This
approximation uses the idea discussed in Section 6.7 with the pseudo—conservation
law for the limited policy being approximated by that for the Bernoulli policy.
This approximation is reasonable in view of the comparison result mentioned in
Remark 6.1.

In the following tables, the simulated results are listed under the heading “W;”;
our approximations under “w;”; and Fuhrmann & Wang’s approximation under
“©fW?»_ As in Chapter 3, we use 90% confidence level for computing the confidence

intervals of the simulated points.

System 1. Small N (N = 3); low load (pr = 0.3); homogeneous service times,
switchover times and arrival rates (B; = 1.0 exponential, V; = 0.05 deterministic,

Ar=0.1,i=1,2,3).

System 2. Small N (N = 3); medium load (pr = 0.5); homogeneous service times
and switchover times (B; = 1.0 exponential, V; = 0.25 deterministic, 1 = 1,2, 3);

nonhomogeneous arrival rates (A} = 0.1, A} = A} = 0.2).

System 3. Small N (N = 3); medium load (pr = 0.6); homogeneous switchover

times (V; = 0.25, deterministic, ¢ = 1,2,3); nonhomogeneous service times and
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(my1, ma, m3) W, wy | %Error | wf™
(3,1,1) | 0.453+£0.008 | 0.412 | —9.1 | 0.491
(6,2,1) 0.467 £ 0.008 | 0.460 —1.5 1 0.490
(6,1,3) | 0.4724£0.008 | 0.510 | +8.1 | 0.495
(1,3,3) 0.637 £0.015 | 0.644 +1.1 } 0.606
(1,2,5) 0.625 £0.012 | 0.695 +11.7 | 0.605

Table 7.1: System 1

(my, ma, m3) 1574 wy | %Error | @V
(3,1,1) |1.265+0.024 | 1.161 | —8.2 | 1.487
(6,2,1) 1.294 4+ 0.025 | 1.250 —3.4 11474
(6,1,3) |1.377+£0.026 | 1.349 | —2.0 | 1.508
(1,3,3) 2.550 £0.112 | 1.990 | —22.0 | 2.342
(1,2,5) 2.432 £0.096 | 2.105 | —13.4 | 2.329

Table 7.2: System 2
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(ml,mg,m3) W, wy | %oError | wfW
(3,1,1) |1.783+0.052 | 1.694 | —5.0 | 2.494
( ) 1.704 £0.037 | 1.704 0.0 | 2.355
(6,1,3) |2.044+0.045 | 1.967 | —6.0 | 2.417
(2,3,3) 2.827 £0.131 | 2.169 | —23.3 | 3.427
(2,25

3.308 £0.105 | 2.424 | —26.7 | 3.407

Table 7.3: System 3

(mq,ma, m3) Wi w; | %Error | wfW
(3,1,1) 10.46 +£0.28 | 9.11 —-12.9 | 18.59
6,2,1) | 878+030| 9.07| +3.3]15.18
(6,1,3) 10.09£0.36 | 9.15 —9.3 | 15.53
(3,1,5) 13.34 + 0.50 | 10.45 —21.7 | 20.21
(2,1,3) |15.214+0.54 | 10.83 | —28.8 | 23.89

Table 7.4: System 4

arrival rates (B; = 2.0, By = B3 = 1.0 all exponential, \¥ = 0.1, A} = A3 = 0.2).

System 4. Small N (N = 3); heavy load (pr = 0.8); homogeneous switchover
times (V; = 0.25, deterministic, ¢ = 1,2,3); nonhomogeneous service times and
arrival rates (B; = 5.0, B, = 1.0, B; = 3.0 all exponential, A} = 0.1, A} = 0.15,
Ay = 0.05).

System 5. Large N (N = 10); low load (pr = 0.4); homogeneous service times,
switchover times and arrival rates (B; = 1.0 exponential, V; = 0.25 deterministic,

Ar=0.04,i=1,...,10).

System 6. Large N (N = 10); medium load (pr = 0.594); homogeneous switchover

times (V; = 0.25 deterministic, ¢ = 1,...,10); nonhomogeneous service times and
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Wi

~FW

(ma,...,mio) wy | %Error | @}
(3,1,1,1,1,1,1,1,1,1) | 2.529 £ 0.025 | 2.391 —5.5 | 2.807
(6,2,2,2,2,1,1,1,1,1) | 2.534 £ 0.038 | 2.462 | —2.8 | 2.704
(5,1,1,1,1,3,3,3,3,3) | 2.585 £+ 0.030 | 2.583 —0.1 | 2.744

Table 7.5: System 5

(m1,...,m0) Wi w; | %Error | wfW
(3,1,1,1,1,1,1,1,1,1) | 3.598 £ 0.067 | 3.367 —6.4 | 4.949
(6,2,2,2,2,1,1,1,1,1) | 3.559 £ 0.056 | 3.354 -5.8 | 4.299
(5,1,1,1,1,3,3,3,3,3) | 3.514 +0.046 | 3.374 —4.0 | 4.850

Table 7.6: System 6

arrival rates (B; = 1.0, 1 = 1,2,3, B; = 0.6, i = 4,..., 10, all exponential; A* = 0.1,
:=1,2,3, \¥ =0.07, ¢ =4,...,10).

System 7. Large N (N = 10); heavy load (pr = 0.718); homogeneous switchover
times (V; = 0.25 deterministic, ¢ = 1,...,10); nonhomogeneous service times,
switchover times and arrival rates (B; = 0.6, 1 = 1,2,3,8,9,10, B; = 1.0,
t = 4,...,7, all exponential; A\¥ = 0.1, = 1,2,3, AT = 0.08, + = 4,5, AT = 0.09,

i=6,7, \r =0.11, i = 8,9, 10).

In the examples above, we see that the algorithm indeed performs quite well.

(m1,...,m10) Wi w; | %Error | wf%
(3,1,1,1,1,1,1,1,1,1) | 5.031 £ 0.060 | 4.874 | —3.1|7.915
(6,2,2,2,2,1,1,1,1,1) | 4.731 £0.060 | 4.712 —0.4 | 6.482
(5,1,1,1,1,3,3,3,3,3) | 5122 £0.082 | 4.927 | —3.8 | 8.822

Table 7.7: System 7



(A5, A%) W, w; | %Error | wf"W
(0.10,0.20) | 0.424 £0.009 | 0.467 | +10.1 | 0.455
(0.10,1.00) | 1.180 £0.019 | 1.092 | —7.5| 1.497
(0.10,1.40) | 1.561 +0.027 | 1.469 | —5.9 | 2.948
(0.50,0.20) | 2.469 £0.119 | 2.083 | —15.6 | 2.617
( )

( )

0.70,0.20) | 16.826 £1.358 | 12.839 | —23.7 | 17.008
0.30,0.70 2,469 £0.132 | 1.5316 | —38.6 | 2.579

Table 7.8: System 8

We notice from Systems 1-4 that the accuracy of the algorithm generally tends to
decrease as we increase the system load. However, this degradation is not as severe
as in Fuhrmann & Wang’s approximation. One surprising observation is that the
algorithm performs well even for large NV (Systems 5-7); we would expect the error
to accumulate as we increase N. A possible explanation for this is illustrated by the
following three examples (Systems 8-10). In these three examples, we consider a
polling system with N = 2. We increase the mean total switchover times (System 8
has the smallest mean total switchover times, System 10 has the highest) while
keeping other system parameters constant. For each system, we consider a set of six
points whose relative locations in their respective stability region are kept roughly
the same for all three systems. We observe that the accuracy of the approximations
increases as we increase the mean total switchover times. This observation may
provide an explanation to the fact that the algorithm performs well even for large

N because as we increase N, the mean total switchover times increases.

System 8. N =2; my = 2, my = 4; B; = 1.0, B, = 0.5 exponential; V; = V; = 0.2

deterministic.

System 9. N = 2; m; = 2, my = 4; B; = 1.0, B, = 0.5 exponential; V; = V; = 0.5

deterministic.
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(A1, 23) Wi wy | %Error | wfY
(0.10,0.20) | 0.789 +0.014 | 0.815 +3.3 | 0.874
(0.10,0.50) | 1.096 £ 0.021 | 1.103 +0.6 | 1.236
(0.10,1.00) | 1.734 £ 0.029 | 1.632 —5.9 2.385
(0.30,0.20) | 1.659 £ 0.062 | 1.505 —9.3 1 1.934
(0.50,0.20) | 6.934 +0.222 | 5475 | —21.0 | 7.316
(0.30,0.50) | 2.879 £0.054 | 2.132 | —25.9 | 3.281

Table 7.9: System 9

(AL A3) Wi Wy | %Error | i
(0.10,0.20) | 1.439 £0.022 | 1.416 —-1.6 | 1.653
(0.10,0.40) | 1.724 £0.029 | 1.679 —2.6 | 3.021
(0.10,0.70) | 2.22540.039 | 2.111 —5.1 | 2.837
(0.25,0.20) | 2.572 £0.092 | 2.369 -7.9 1 3.306
(0.40,0.20) | 12.048 £0.191 | 10.635 | —11.7 | 14.961
(0.25,0.40) | 3.799 £0.096 | 3.062 | —21.9 | 4.655

System 10. N = 2; m; = 2, m; = 4; B; = 1.0, B; = 0.5 exponential; V; = V5 = 1.0

deterministic.

Table 7.10: System 10
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CHAPTER 8

CONCLUSIONS

In this thesis, we showed that nonexact methods based on heavy and light traffic
analysis and stochastic comparison techniques could indeed provide useful informa-
tion about the performance of some nonexhaustive service policies in polling systems
and vacation models. Most nonexhaustive policies, in particular the limited pol-
icy, have been deemed mathematically untractable; “traditional” exact approaches
which have been very successfully used to study the exhaustive and gated policies
have been shown to be unsuitable for these policies [82,83]. Numerous approxima-
tions have also been studied in the literature; more recent approximations are based
on the pseudo~conservation laws. Unfortunately, pseudo-conservation laws for the
limited policy and some other nonexhaustive policies have not been established ei-
ther. Some approximation methods based on approximate pseudo-conservation laws
have been studied [34,35]. In the first part of this thesis, we established heavy and
light traflic results for vacation models. These results were then used as bases for
interpolation approximations for vacation models. In the second part of the thesis,
the interpolation approximations were extended to polling systems with an arbitrary
number of queues. Because they are based on exact results for heavy and light traffic
conditions, these approximations tend to be very accurate in the extreme traffic re-
gions. Numerical examples also suggested that the approximations perform well on
polling systems in which the queues are highly nonhomogeneous—systems which are
not handled well by approximations based on (approximate) pseudo—conservation
laws. One other advantage of interpolation approximations is that their accuracy
can always be improved by additional information about the system which might
be obtained in the future.

For service policies which cannot be analyzed exactly, it is useful to know if their
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performance is bounded by the performance of some other policies which are analyz-
able. Motivated by this idea, we developed a framework in which the performance
of service policies in the context of vacation models can be stochastically compared.
The comparison between the Bernoulli and limited policies is particularly impor-
tant since the Bernoulli policy is more tractable than the limited policy. We showed
that under some conditions, the Bernoulli policy upper—-bounds the limited policy
in terms of some performance measures of interest. Analysis of the Bernoulli policy
yielded a similar but weaker comparison in the context of polling systems.

The approaches to performance evaluation of polling systems studied in this
thesis have hardly been used by researchers in the field. A work on stochastic
comparison of policies in the context of polling systems has just been started by
Levy et al. [57]. Kella and Whitt [46] established heavy traffic results for vacation
models where the vacation times and/or the time between vacations increase as the
traffic intensity increases. They showed that the steady-state distributions of the
heavy traffic limit processes exhibit decomposition properties. We believe that more
results along these lines should be established to better understand the behavior of
polling systems and vacation models under nonexhaustive policies. In the following,
we propose some possible extensions to the results established in this thesis.

For the heavy and light traffic analysis and the resulting interpolation approxi-
mations, we considered mostly the limited and Bernoulli policies. We expect that a
similar approach can be used for other nontractable service policies. In particular,
we should be able to obtain heavy and light traffic results for the gated variants of
the limited and Bernoulli policies using the methods used here with minor modifi-
cations.

In this thesis, we stochastically compared various service policies in vacation
models in terms of waiting time processes, among others. We expect that these
results, or at least the underlying techniques, can be extended to polling systems.
In [57], Levy et al. compared service policies in polling systems in terms of the total
amount of work in the system; it would be of interest to combine their approach

with ours to obtain comparison results for waiting time processes in polling systems.
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APPENDIX A

WEAK CONVERGENCE THEOREMS

In this Appendix, we collect theorems in the theory of weak convergence that are
used in the thesis. Our primary source for terminology and basic theorems is
Billingsley [6]. However, functional limit theorems that deal with double sequences
are taken from Kyprianou [52]. Special cases of these results for single sequences

can be found in Billingsley. We use W to denote a Wiener process on [0, 1].

Theorem A.1 (Continuous mapping) Let (S,S) and (S',S’) be two probability
spaces where both S and S’ are metric spaces. Let {P,, n = 0,1,...} and P be
probability measures on (S,8) and h :+ S — S’ be a measurable map. Suppose
P(Dy) = 0 where Dy, is the set of discontinuities of h. If P, L, Pin S, then
Pt 2 PRl in &,

Theorem A.2 (Converging together) Let {X,, n = 0,1,...} and {Y,, n =
0,1,...} be two sequences of random variables with range (S,8); S a separable met-
ric space with metric p. Suppose that X, and Y, have a common domain so that
p(Xn,Ys) is a real valued random variable. If X, 2, X and (X, Y,) L, 0, then
Y, 2 X.

Theorem A.3 (Random Time Change) Let {X,, n = 0,1,...} be a sequence
of D[0,1]-valued random functions and {®,, n = 0,1,...} a sequence of Do[0,1]-
valued random functions, where Do[0,1] consists of nondecreasing functions ¢ in
D[0,1] that satisfy 0 < ¢(t) < 1. Assume that for each n, X, and ®, have the
same domain (which may vary with n). If X, 2, X with P[X € C[0,1]] = 1 and

m(D,,, $) 2,0 for some continuous function ¢ in Do, then
Xa(20) 2 X(9). (A1)
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Theorem A.4 (Prohorov) If the double sequence {Z, r,n = 1,2,...} satisfies
Condition A in Definition 2.1 with Z§ =0 and E[Z7] =0 for allT = 1,2,..., then

& defined by
[rt]
Z 0<t<1 (A.2)

£t JZ\/—

converges weakly to W as r — oo.

Theorem A.5 (Random sums) Let {Y, r,n =1,2,...} be a sequence of zero-

mean random variables and {X], r,n = 1,2,...} a sequence of nonnegative random

variables, both satisfying Condition A. Forr =1,2,..., set X] = Y] = 0 and define
N'(t) =max{n > 0: X7+ -+ X] <t}, t>0. (A.3)

Then, (" defined by

X~ Nr(Tt)
Y. v, 0<t<1 (A.4)
UY\/F 1=0

converges weakly to W as r — oo.

Theorem A.6 (Renewal process) Let {X’, r,n = 1,2,...} be a sequence of
nonnegative random wvariables satisfying Conditon A and define N" as in Theo-

rem A.5. Set

[V (rt) = rt/X7],  0<t<1, (A.5)

Then, v" converges weakly to W as r — oo.

128



REFERENCES

[1] Y. Aminetzah (1975), An Ezact Approach to the Polling System, Ph.D. Thesis,
Department of Electrical Engineering, McGill University, Montreal, Quebec.

[2] J.M. Appleton and M.M. Peterson (1986), “Traffic analysis of a token ring
PBX,” IEEE Transactions on Communications COM-34 (5), pp. 417-422.

[3] B. Avi-Itzhak, W.L. Maxwell and L.W. Miller (1965), “Queueing with alter-
nating priorities,” Operations Research 13 (2), pp. 306-318.

[4] F. Baccelli and P. Brémaud (1987), Palm Probabilities and Stationary Queues,
Springer—Verlag, Berlin.

[5] V. Benes (1965), Mathematical Theory of Connecting Networks and Telephone
Traffic, Academic Press, New York.

[6] P.Billingsley (1968), Convergence of Probability Measures, John Wiley & Sons,
New York.

[7] O.J. Boxma (1986), “Models of two queues: A few new issues,” in Teletraffic
Analysis and Computer Performance Evaluation, O.J. Boxma, J.W. Cohen

and H.C. Tijms, Editors, North-Holland, pp. 75-98.

[8] O.J. Boxma (1989), “Workloads and waiting times in single-server systems
with multiple customer classes,” Queueing Systems— Theory & Applications

5, pp. 185-214.

[9] O.J. Boxma and W.P. Groenendijk (1987), “Pseudo-conservation laws in

cyclic—service systems,” Journal of Applied Probability 24 (4), pp. 949-964.

[10] O.J. Boxma and W.P. Groenendijk (1988), “Waiting times in discrete-time
cyclic-service systems,” IEEE Transactions on Communications COM-36

(2), pp. 164-170.

129



(11] O0.J. Boxma and B.W. Meister (1987), “Waiting time approximations for cyclic

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

service systems with switchover times,” Performance Evaluation 7, pp. 299-

308.

D.Y. Burman and D.R. Smith (1983), “A light-traffic theorem for multi-server
queues,” Mathematics of Operations Research 8, pp. 15-25.

D.Y. Burman and D.R. Smith (1983), “Asymptotic analysis of a queueing
model with bursty traffic,” Bell System Technical Journal 62, pp. 1433-1453.

W. Bux (1981), “Local-area subnetworks: A performance comparison,” IEEE
Transactions on Communications COM—-29 (10), pp. 1465-1473.

W. Bux (1984), “Performance issues in local-area networks,” IBM Systems

Journal 23 (4), pp. 351-374.

W. Bux (1989), “Token-ring local-area networks and their performance,” Pro-

ceedings of the IEEE 77 (2), pp. 238-256.

E.G. Coffman, Jr. and M.I. Reiman (1984), “Diffusion approximation for
computer/communication systems,” in Mathematical Computer Performance
and Reliability, G. lazeolla, P.-J. Courtois and A. Hordijk, Editors, North-
Holland, pp. 419-422.

J.W. Cohen and O.J. Boxma (1981), “The M/G/1 queue with alternating
service formulated as a Riemann-Hilbert problem,” in Performance ’81, F.J.

Kylstra, Editor, North—-Holland, pp. 181-199.

R.B. Cooper (1970), “Queues served in cyclic order: Waiting times,” Bell
System Technical Journal 49 (3), pp. 399-413.

R.B. Cooper and G. Murray (1969), “Queues served in cyclic order,” Bell
System Technical Journal 48 (3), pp. 675-689.

130



[21]

[22]

[23]

[24]

[25]

[30]

31]

B.T. Doshi (1985), “A note on stochastic decomposition in GI/GI/1 queue

with vacations or set—up times,” Journal of Applied Probability 22, pp. 419
422,

B.T. Doshi (1986), “Queueing system with vacations—A survey,” Queueing
Systems— Theory & Applications 1 (1), pp. 22-66.

B.T. Doshi (1990) “Single server queues with vacations,” in Stochastic Analysis
of Computer and Communication Systems, H. Takagi, Editor, North-Holland,
Amsterdam, pp. 217-265.

M. Eisenberg (1971), “Two queues with changeover times,” Operations Re-
search 19 (2), pp. 386—401.

M. Eisenberg (1972), “Queues with periodic service and changeover times,”

Operations Research 20 (2), pp. 440-451.

D. Everitt (1986), “Simple approximations for token ring,” IEEE Transactions
on Communications COM-34 (7), pp. 719-721.

D. Everitt (1986), “A conservation-type law for the token ring with limited
service,” British Telecorn Technology Journal 4 (2), pp. 51-61.

D. Everitt (1988), “Approximations for asymmetric token rings with a limited

service discipline,” British Telecom Technology Journal 6 (3), pp. 5-10.

D. Everitt, “A note on the pseudo-conservation laws for cyclic service sys-
tems with limited service disciplines,” IEEE Transactions on Communications

COM-37 (7), pp. 781-783.

F.J. Ferguson and Y.J. Aminetzah (1985), “Exact results for non-symmetric
token-ring systems,” IEEE Transactions on Communications COM-33 (3),
pp- 223-231.

S.W. Fuhrmann (1985), “Symmetric queues served in cyclic order,” Operations

Research Letters 4 (3), pp. 139-144.

131



32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

S.W. Fuhrmann (1987), “Inequalities for cyclic service systems with limited
service disciplines,” in Proceedings of IEEE/IEICE Global Telecommunica-
tions Conference 1987, Tokyo, November 1987, pp. 182-186.

S.W. Fuhrmann and R.B. Cooper (1985), “Stochastic decompositions in the

M/G/1 queue with generalized vacations,” Operations Research 33 (5), pp.
1117-1129. ’

S.W. Fuhrmann and Y.T. Wang (1987), ”Mean waiting time approximations of
cyclic service systems with limited service,” in Performance ’87, P.~J. Courtois

and G. Latouche, Editors, North~Holland, Amsterdam, pp. 253-265.

S.W. Fuhrmann and Y.T. Wang (1988), “Analysis of cyclic service systems
with limited service: Bounds and approximations,” Performance FEvaluation

9, pp. 35-54.

E. Gelenbe and R. lasnogorodski (1980), “A queue with server of walking
type,” Annales de UInstitut Henri Poincaré 16, pp. 63-73.

J.M. Harrison (1973), “The heavy traffic approximation for single server

queues in series,” Journal of Applied Probability 10, pp. 613-629.

J.M. Harrison (1978), “Diffusion approximation for tandem queues in heavy

traffic,” Advances in Applied Probability 10, pp. 886-905.

J.M. Harrison (1985), Brownian Motion and Stochastic Flow Systems, John
Wiley & Sons, New York.

O. Hashida (1972), “Analysis of multiqueue,” Review of the Electrical Com-
munication Laboratories 20 (3-4), pp. 189-199.

D.L. Iglehart and W. Whitt (1970), “Multiple channel queues in heavy traffic
1,” Advances in Applied Probability 2, pp. 150-177.

D.L. Iglehart and W. Whitt (1970), “Multiple channel queues in heavy traffic
II: Sequences, networks, and batches,” AAP 2, pp. 355-369.

132



[43]

[44]

[45)

[46]

[47]

48]

[49]

[50]

[51]

[52]

[33]

T. Kamae, U. Krengel, and G.L. O'Brien (1977), “Stochastic inequalities on
partially ordered spaces,” Annals of Probability 5, pp. 899-912.

S. Karlin and H.M. Taylor (1975), A First Course in Stochastic Processes, 2nd
ed. Academic Press, New York.

J. Keilson and L.D. Servi (1986), “Oscillating random walk models for GI/G/1
vacation systems with Bernoulli schedules,” Journal of Applied Probability 23,
pp- 790-802.

O. Kella and W. Whitt (1989), “Heavy-traffic limits for queues with server

vacations,” submitted for publication.

J.F.C. Kingman (1961), “The single server queue in heavy traffic,” Proceedings
of the Cambridge Philosophical Society 57, pp. 902-904.

J.F.C. Kingman (1962), “On queues in heavy traffic,” Journal of the Royal
Statistical Society, Series B 24, pp. 383-392.

L. Kleinrock (1976), Queueing Systems Volume II: Computer Applications,
Wiley, New York.

A.G. Konheim and B. Meister (1974), “Waiting lines and times in a system

with polling,” Journal of the Association for Computing Machinery 21 (3),
pp- 470-490.

P.J. Kuehn (1979), “Multiqueue systems with nonexhaustive cyclic service,”

Bell System Technical Journal 58 (3), pp. 671-698.

E. Kyprianou (1971), “The virtual waiting time of the GI/G/1 queue in heavy
traffic,” Advances in Applied Probability 3, pp. 249-268.

A. M. Law and W. D. Kelton (1982), Simulation Modeling and Analysis,
MeGraw-Hill, New York.

133



[54]

[55]

[61]

[62]

[63]

A.J. Lemoine (1978), “Networks of queues—A survey of weak convergence

results,” Management Science 24, pp. 1175-1193.

H. Levy (1988), “Analysis of cyclic—polling systems with binomial-gated ser-
vice,” in Performance of Distributed and Parallel Systems, T. Hasegawa, H.

Takagi, Y. Takahashi, Editors, North-Holland, Amsterdam, pp. 127-139.

H. Levy and L. Kleinrock (1986), “A queue with starter and a queue with
vacations: delay analysis by decomposition,” Operations Research 34 (3), pp.

426-436.

H. Levy, M. Sidi and O.J. Boxma (1990), “Dominance relations in polling
systems,” Queueing Systems—Theory & Applications 6, pp. 155-171.

Y. Levy and U. Yechiali (1975), “Utilization of idle time in an M/G/1 queueing
system,” Management Science 22, pp. 202-211.

D. Lindley (1952), “Theory of queues with a single server,” Proceedings of the
Cambridge Philosophical Society 48, pp. 277-289.

R.M. Loynes (1962), “The stability of a queue with non-independent interar-
rival and service times,” Proceedings of the Cambridge Philosophical Society

58, pp. 497-520.

C. Mack (1957), “The efficiency of N machines uni-directionally patrolled by
one operative when walking time is constant and repair times are variable,”

Journal of the Royal Statistical Society, Series B 19 (1), pp. 173-178.

C. Mack, T. Murphy and N.L. Webb (1957), “The efficiency of N machines
uni—directionally patrolled by one operative when walking time is constant and
repair times are constants,” Journal of the Royal Statistical Society, Series B

19 (1), pp. 166-172.

G.L. O’Brien (1975), “The comparison method for stochastic processes,” An-
nals of Probability 3, pp. 80-88.

134



[64]

[65]

[66]

[67]

[68]

[69]

[70]

[711]

[72]

[73]

[74]

Yu. V. Prohorov (1956), “Convergence of random processes and limit theorems

in probability theory,” Theory of Probability and Its Applications 1, pp. 157~
214.

Yu. V. Prohorov (1963), “Transient phenomena in processes of mass service,”

Litovskii Matematicheskii Sbornik 3, pp. 199-205.

R. Ramaswamy and L.D. Servi (1988), “The busy period of the M/G/1 vaca-
tion model with a Bernoulli schedule,” Stochastic Models 4, pp. 507-521.

M.I. Reiman and B. Simon (1989), “An interpolation approximation for queue-

ing systems with Poisson input,” Operations Research 36 (3), pp. 454-469.

M.I. Reiman and B. Simon (1989), “Open queueing system in light traffic,”
Mathematics of Operations Research 14 (1), pp. 26-59.

S.M. Ross (1983), Stochastic Processes, John Wiley and Sons, New York.

I. Rubin and L.F.M. de Moraes (1983), “Message delay analysis for polling
and token multiple-access schemes for local communication networks,” JEEE

Journal on Selected Areas in Communications SAC-1 (5), pp. 935-947.

M. Scholl and L. Kleinrock (1983), “On the M/G/1 queue with rest period and
certain service-independent queueing discipline,” Operations Research 31, pp.

705-719.

L.D. Servi (1986), “Average delay approximation of M/G/1 cyclic service
queues with Bernoulli schedules,” IEEE Journal on Selected Areas in Com-

munications SAC-4, pp. 813-822.

L.D. Servi and D.D. Yao (1989), “Stochastic bounds for queueing systems

with limited service schedules,” Performance Evaluation 9, pp. 247-261.

K.C. Sevcik and M.J. Johnson (1987), “Cycle time properties of the FDDI
token ring protocol,” IEEE Transactions on Software Engineering SE-13 (3),
pp- 376-385.

135



[75]

[76]

[81]

[82]

[83]

[84]

[85]

W. Szpankowski ( 1990), “Towards computable stability criteria for some mul-
tidimensional stochastic process,” in Stochastic Analysis of Computer and
Communication Systems, H. Takagi, Editor, North-Holland, Amsterdam, pp.
131-172.

W. Szpankowski and V. Rego (1987), “Ultimate stability conditions for
some multidimensional distributed systems,” Technical Report, Department

of Computer Science, Purdue University, West Lafayette, Indiana.

D. Stoyan (1983), Comparison methods for queues and other stochastic models,
English Translation (D. J. Daley, Editor), John Wiley and Sons, New York.

G.B. Swartz (1980), “Polling in a loop system,” Journal of the Association for
Computing Machinery 27 (1), pp. 42-59.

J.S. Sykes (1970), “Simplified analysis of an alternating-priority queueing
model with setup times,” Operations Research 18 (6), pp. 1182-1192.

H. Takagi (1985), “Mean message waiting times in symmetric multi-queue

systems with cyclic service,” Performance Evaluation 5 (4), pp. 271—271.
H. Takagi (1986), Analysis of Polling Systems, MIT Press, Cambridge, MA.

H. Takagi (1988), “Queueing analysis of polling models,” ACM Computing
Surveys 20 (1), pp. 5-28.

H. Takagi (1990), “Queueing analysis of polling models: An update,” in
Stochastic Analysis of Computer and Communication Systems, H. Takagi, Ed-
itor, North-Holland, Amsterdam, pp. 267-318.

Tedijanto (1988), “Stochastic comparison in vacation models,” International
Workshop on the Analysis of Polling Models, December 1988, Kyoto, Japan.

Also to appear in Stochastic Models .

Tedijanto (1990), “Exact results for the cyclic-service queue with a Bernoulli

schedule,” to appear in Performance Evaluation .

136



[86]

[91]

[92]

Tedijanto (1990), “A note on the comparison between Bernoulli and limited

»

policies in vacation models,” submitted to Performance Evaluation .

O. Viskov (1964), “T'wo asymptotic formulae in the theory of mass service,”

Theory of Probability and Its Applications 9, pp. 177-178.

K.S. Watson (1984), “Performance evaluation of cyclic service strategies—A
survey,” in Performance ‘84, E. Gelenbe, Editor, North-Holland, Amsterdam,
pp. 521-533.

W. Whitt (1968), Weak Convergence Theorems for Queues in Heavy Traffic,
Ph.D Thesis, Cornell University.

W. Whitt (1970), “Weak Convergence of Probability Measures on the Function
Space D[0,00),” Technical Report, Department of Administrative Sciences,

Yale University.

W. Whitt (1974), “Heavy traffic limit theorems for queues: A survey,” in
Mathematical Methods in Queueing Theory, A. B. Clarke, Editor, Springer—
Verlag, Berlin, pp. 307-350.

W. Whitt (1980), “Some useful functions for functional limit theorems,” Math-

ematics of Operations Research 5 (1), pp. 67-85.

137



