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Within the past decades, the explosive combination of multimedia signal process-
ing, communications and networking technologies has facilitated the sharing of digital
multimedia data and enabled pervasive digital media distribution over all kinds of net-
works. People involved in the sharing and distribution of multimedia contents form mul-
timedia social networks in which users share and exchange multimedia content, as well
as other resources. Users in a multimedia social network have different objectives and
influence each other’s decision and performance. It is of ample importance to understand
how users interact with and respond to each other and analyze the impact of human fac-
tors on multimedia systems. This thesis illustrates various aspects of issues and problems
in multimedia social networks via two case studies of human behavior in multimedia
fingerprinting and peer-to-peer live streaming.

Since media security and content protection is a major issue in current multime-
dia systems, this thesis first studies the user dynamics of multimedia fingerprinting social
networks. We investigate the side information which improves the traitor-tracing per-
formance and provide the optimal strategies for both users (fingerprint detector and the

colluders) in the multimedia fingerprinting social network. Furthermore, before a collu-



sion being successfully mounted, the colluders must be stimulated to cooperate with each
other and all colluders have to agree on the attack strategy. Therefore, not all types of
collusion are possible. We reduce the possible collusion set by analyzing the incentives
and bargaining behavior among colluders. We show that the optimal strategies designed
based on human behavior can provide more information to the fingerprint detector and
effectively improve the collusion resistance.

The second part of this thesis focuses on understanding modelling and analyzing
user dynamics for users in various types of peer-to-peer live streaming social networks.
We stimulate user cooperation by designing the optimal, cheat-proof, and attack-resistant
strategies for peer-to-peer live streaming social networks over Internet as well as wireless
networks. Also, as more and more smart-phone users subscribe to the live-streaming
service, a reasonable market price has to be set to prevent the users from reselling the live
video. We start from analyzing the equilibrium between the users who want to resell the

video and the potential buyers to provide the optimal price for the content owner.
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Chapter 1

Introduction

1.1 Motivation

A social network is a structure of nodes (including individuals and organizations) that
are connected with each other via certain types of relations, for examples, values, friend-
ship, conflict, financial exchange, trade, etc. People have been studying methodologies to
formulate the relationships between members at all scales, from interpersonal to interna-
tional, and social network analysis has become a popular topic in sociology, economics,
information science and many other disciplines.

In a multimedia social network community, a group of users form a dynamically
changing network infrastructure to share and exchange data, often multimedia content, as
well as other resources [1]. In the past decades, we have witnessed the emergence of large-
scale multimedia social network communities, for instance, Napster, flickr and YouTube,
and the Internet traffic has shifted dramatically from HTML text pages to multimedia file
sharing [2]. These multimedia social networks have millions of users worldwide, and a
crucial issue there is to understand the user dynamics that influence human’s behavior.
As an example, a study showed that in a campus network, peer-to-peer file sharing can

consume 43% of the overall bandwidth, which is about three times of the WWW traffic



[3]. This poses new challenges to the efficient, scalable and robust sharing of multimedia
over large and heterogeneous networks.

By participating in multimedia social networks, users receive rewards by being able
to access extra resources from their peers, and they also contribute their own resources.
Users aim to maximize their own payoff by participating in multimedia social networks,
and different users have different (and often conflicting) objectives and full cooperation
cannot be enforced since users will try all their means to increase their own profit. For
example, in a peer-to-peer file-sharing system, users pool together the resources and co-
operate with each other to provide an inexpensive, highly scalable and robust platform
for distributed data sharing [4,5]. However, due to the voluntary participation nature in
many multimedia social networks and the limited resources available to each user, users’
full cooperation cannot be guaranteed unless there exist powerful central authorities who
mandate and enforce user cooperation. A recent study of Napster and Gnutella showed
that many users are free riders and 25% of the users in Gnutella share no files at all [6].
Thus, as demonstrated in Figure 1.1, an important issue in multimedia social networks is
to understand the optimal strategies that users will play when negotiating with each other
and achieve fairness. Game theory [7,8] provides a fundamental tool to study the fairness
dynamics among users, and the Nash Equilibrium analysis gives the optial strategies from
which no user has incentives to deviate.

The above discussion focuses on analyzing the behavior of rational users who are
willing to contribute their own resources if cooperation with others can help improve
their payoff. They are honest when exchanging information and negotiating with other

users. There are also selfish users who wish to consume others’ resources with little or
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Figure 1.1: User dynamics in social networks.

no contribution of their own. If necessary, these selfish users might even cheat during
the negotiation process in order to maximize their own payoff, as shown in Figure 1.1.
Furthermore, there might exist malicious users, whose goal is to attack and sabotage the
system. For example, in peer-to-peer file-sharing systems, they tamper the media files
with the intention of making the content useless (the so-called “pollution™ attack) [3].
They can also launch the Denial of Service (DoS) attack to exhaust other users’ resources
and make the system unavailable [9]. It is possible that a few malicious users collude with
each other to effectively attack the system, for example, the flooding Distributed Denial
of Service (DDoS) attack in peer-to-peer file-sharing systems. Therefore, cheat free and
attack resistance are fundamental requirements in order to achieve user cooperation and
provide reliable services in multimedia social networks.

To model and analyze human dynamics in multimedia social networks when there



exist selfish and malicious users, the first step is to study the strategies that selfish collud-
ers can use to cheat and those that malicious users adopt to attack the system. The next
issue is to implement monitoring mechanisms to detect and identify misbehaving users,
as illustrated in Figure 1.1. A challenging issue here is that the monitoring mechanisms
should be able to distinguish “intentional” misbehavior (for example, intentional manipu-
lation of multimedia content) from “innocent” ones (for example, transmission error and
packet loss in erroneous and congested networks). The above investigation will facilitate
the design of cheat-proof and attack-resistant strategies, which make non-cooperation
non-profitable, thus unattractive to selfish users, and minimize the damage to the system
caused by malicious users.

In a nutshell, multimedia social networks involve a large number of users of dif-
ferent types with different objectives, and before multimedia social network communities
become successful, they must provide a predictable and satisfactory level of service. It
is of ample importance to understand how users interact with and respond to each other
and analyze the impact of human factors on multimedia systems. Such an understanding
provides fundamental guidelines to better design of multimedia systems and network-
ing, and to offer more secure and personalized services. All these are essential factors
to maximize the overall system performance and minimize the damage caused by ma-
licious users. In addition, for different multimedia social networks, different structures
will result in different mechanisms to monitor user behavior and achieve cheat proof and
attack resistance. The goals of this thesis are to illustrate why human behavior factors are
important and emerging issues strongly related to signal processing, and to demonstrate

that signal processing can be effectively used to model, analyze and perform behavior
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forensics for multimedia social networks.

1.2 Dissertation Outline and Contributions

From the discussion above, behavior modelling for multimedia social networks is a new
paradigm that provides guidelines for both the system designer and the users in multime-
dia systems. This thesis develops and analyzes methodologies to model the user behav-
ior dynamics and investigate the optimal strategies for multimedia fingerprinting social
networks and peer-to-peer live streaming social networks over Internet and wireless net-
works. We envision that insights from a wide range of disciplines, such as game theory,
networking, and economics, will help improve the understanding of human dynamics and
its impact on signal processing and ultimately lead to systems with more secure, efficient

and personalized services. The rest of the thesis is organized as follows.

1.2.1 Equilibriums of Multimedia Fingerprinting Social Networks

with Side Information (Chapter 2)

Multimedia fingerprinting is an emerging technology that offers proactive post-delivery
protection of multimedia content [10—14]. It labels each distributed copy with the corre-
sponding user’s identification information, called fingerprint, which can be used to track
the distribution of multimedia data and to identify the source of illicit copies. Multiuser
collusion is a cost-effective attack against multimedia fingerprinting, where a group of
attackers work collectively to remove or attenuate the embedded fingerprints [15, 16].

In multimedia fingerprinting, colluders and the fingerprint detector form a multi-



media social network: colluders who apply multiuser collusion attempt to remove the
identifying fingerprints in their copies, and the digital rights enforcer detects the embed-
ded fingerprints in the suspicious copy to capture colluders. It is obvious that the colluders
and the fingerprint detector influence each other’s performance and decision: given a col-
luded copy, the detector always wants to adjust his/her detection strategy to achieve the
best possible traitor-tracing performance. Meanwhile, during collusion, the colluders try
the best to minimize their risk based on the available information about the detection
procedure. There are many collusion strategies that the colluders can use to remove the
identifying fingerprints. Also, the detector can apply different detection strategies to iden-
tify the colluders. Thus, the dynamics between the colluders and the fingerprint detector
is complicated.

Side information is the information other than the colluded multimedia content that
can help increase the probability of detection. We propose a game-theoretical framework
to model and analyze the complex dynamics between the colluders and fingerprint de-
tector. In this thesis, we model the colluder-detector behavior dynamics as a two-stage
game, where the fingerprint detector tries to maximize the detection performance while
the colluders adjust the collusion parameters to minimize their risk under the fairness
constraint. We first study the impact of side information in multimedia fingerprinting and
show that the statistical means of the detection statistics can help the fingerprint detector
significantly improve the collusion resistance. We then investigate how to probe the side
information and model the dynamics between the fingerprint detector and the colluders
as a two-stage extensive game with perfect information. We find the equilibrium of the

colluder-detector game using backward induction and show that the min-max solution is
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a Nash equilibrium, which gives no incentive for everyone in the multimedia fingerprint
social network to deviate. This thesis demonstrates that the proposed side information
can help improve the system performance, and the self-probing fingerprint detector has
almost the same performance as the optimal correlation-based detector. Also, we provide
the solutions to how to reach optimal collusion strategy and the corresponding detection,

thus lead to a better collusion resistance [17].

1.2.2 Behavior Analysis in Colluder Social Networks (Chapter 3)

During collusion, a group of attackers collectively and effectively attack multimedia fin-
gerprinting system and use multimedia content illegally. Before the collusion being suc-
cessful, the colluders have to make agreement on how to distribute the risk and reward
by redistributing the colluded multimedia signal. Hence, the colluders in a multimedia
fingerprinting system also form a social network.

To have a better understanding of the attackers’ behavior during collusion to achieve
fairness, we first model the dynamics among colluders as a non-cooperative game, pro-
pose a general model of utility functions and study four different bargaining solution of
this game. Our framework considers both the colluders’ risk of being detected by the
digital rights enforcer and the reward received from illegal usage of multimedia content.
Moreover, the market value of the redistributed multimedia content is time sensitive. The
earlier the colluded copy being released, the more the people who are willing to pay for
it. Thus the colluders have to reach agreement on how to distribute reward and the prob-

ability being detected among themselves as soon as possible. We further incorporate the



time-sensitiveness of the colluders’ reward, and study the time-restricted bargaining equi-
librium. We also investigate how do the colluders select fellow attackers to maximize
colluders’ payoffs. We provide the solution to the equilibrium that all the colluders have
no inventive to disagree in order to maximize their own payoff.

Our analysis shows that colluding with more attackers does not always increase
an attacker’s utility, and attackers may not always want to cooperate with each other.
We first examine the necessary conditions for attackers to collude together, and study
how they select the collusion parameters such that cooperation benefits all colluders. We
then study how the number of colluders affects each attacker’s utility, and investigate
the optimum strategy that an attacker should use to select fellow attackers in order to

maximize his or her own payoff [18].

1.2.3 Incentive Cooperation Strategies for Peer-to-Peer Live Multi-
media Streaming Social Networks (Chapter 4)

With recent advance in networking, multimedia signal processing, and communication
technologies, we witness the emergence of large-scale multimedia social networks, where
millions of users form a distributed and dynamically changing infrastructure to share
media content. Peer-to-Peer (P2P) live streaming using the mesh-pull architecture [19]
is one of the biggest multimedia social networks on the Internet and has enjoyed many
successful deployments to date, for example, CoolStreaming, pplive and SopCast [20—
27]. Users in a P2P live-streaming system watch live broadcasting TV programs over

networks simultaneously. The system relies on voluntary contributions of resources from



individual users to achieve high scalability and robustness and to provide satisfactory
performance.

In peer-to-peer live-streaming social networks, users cooperate with each other to
provide a distributed, highly scalable and robust platform for live streaming applications.
A an essential issue to be resolved first is to stimulate user cooperation. In addition, users
in P2P live streaming systems are strategic and rational, in that they are likely to ma-
nipulate any incentive system (for example, by cheating) to maximize their payoff. As
such, in large-scale social networks, users influence each other’s decisions and perfor-
mance, and there exist complicated dynamics among users. It is of ample importance to
investigate user behavior and analyze the impact of human factors on multimedia social
networks. We propose a game-theoretic framework to model user behavior and designs
incentive-based strategies to stimulate user cooperation in peer-to-peer live streaming. We
first analyze the Nash equilibrium and the Pareto optimality of 2-person game and then
extend to multiuser case. We also take into consideration selfish users’ cheating behavior
and malicious users’ attacking behavior. Both our analytical and simulation results show
that the proposed strategies can effectively stimulate user cooperation, achieve cheat free,

attack resistance and help to provide reliable services [28,29].

1.2.4 Cooperation Stimulation Strategies for Peer-To-Peer Wireless

Live Video-Sharing Social Networks (Chapter 5)

Recent development on wireless local area network (WLAN) enable users to utilize WLAN

with low cost and high quality of service [30-33]. Users watching live streaming in the



same wireless network share the same limited bandwidth of backbone connection to the
Internet, thus they might want to cooperate with each other to obtain better video quality.
These users form a wireless live-streaming social network. Every user wishes to watch
video with high quality while paying as little as possible cost to help others. Given the un-
stable wireless channel and less user in the wireless network, the attackers can cause more
damage to the wireless live streaming social network than in the Internet phenomenon.
Therefore, the malicious-user identification mechanism has to be faster and more reliable.

This thesis focuses on providing incentives for user cooperation. We propose a
game-theoretic framework to model user behavior and to analyze the optimal strategies
for user cooperation simulation in wireless live streaming. We first analyze the Pareto op-
timality and the time-sensitive bargaining equilibrium of the two-person game. We then
extend the solution to the multiuser scenario. We also consider potential selfish users’
cheating behavior and malicious users’ attacking behavior and analyze the performance
of the proposed strategies with the existence of cheating users and malicious attackers.
We introduce the concept of trust to further bound the damage caused by malicious at-
tack. Both our analytical and simulation results show that the proposed strategies can
effectively stimulate user cooperation, achieve cheat free and attack resistance, and help

provide reliable services for wireless live streaming applications [34].
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1.2.5 Optimal Price Setting for Mobile Live Video Service (Chapter

6)

The mobile phone is becoming the most popular consumer device over all kinds of elec-
tronic products. Recently, the development of smart phones enables users to watch live
TV program by subscribing data plans from cellphone service providers. Nowadays, the
price of data plans are set only to compete with other service providers. However, due
to the high popularity and the mobility of the mobile phones, the subscribers can form a
network to re-sell the live video to the non-subscribers. Such re-selling mechanism is a
potential competitor for the service provider. The service provider has to set a reasonable
price that can prevent such re-selling behavior to protect the provider’s profit.

In this thesis, we analyze the optimal price setting for the service provider by in-
vestigating the equilibrium between the re-sellers and the non-subscribers. We model the
behavior between the re-sellers and the non-subscribers as a hybrid Stackelburg auction
game and find the optimal price for both groups of users. Such analysis can help design
a reasonable price for the less-competitor mobile live-streaming market to improve the

quality of service for end users.
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Chapter 2
Behavior Analysis in Colluder Social

Networks

During collusion, the colluders share the reward from the illegal usage of multimedia as
well as the risk of being captured by the digital rights enforcer. Before collusion rela-
tionship can be established, an agreement must be reached regarding how to distribute
the risk and the reward. Therefore, the colluders in the digital fingerprinting system also
form a social network. In the colluder social network, users collaborate with each other
to reduce their chance of being caught by the digital right enforcer and share the reward
of redistributing the colluded multimedia signal. However, each colluder prefers the col-
lusion that favors his/her payoff the most (lowest risk and highest reward), and different
colluders have different preferences. To address such a conflict, a critical issue for the
colluders is to decide how to fairly distribute the risk and the reward. It is of ample im-
portance to understand how colluders negotiate with each other to achieve fairness of the
attack.

To analyze the dynamics among the members in colluder social network, we model
the user behavior as a non-cooperative game where each colluder tries to maximize his/her

individual payoff under the fairness constraint. First, the attackers have to decide whether
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to collude with people who have the high resolution copy, or is it better to cooperate
with those who have the base layer only, and how many people should them collude
with. To minimize the risk, colluders are always willing to cooperate with each other
since it reduces all attackers’ risk, and a colluder should find as many fellow attackers as
possible. However, colluding with more attackers also means sharing with more people
the reward from illegal usage of multimedia and, therefore, colluders may not always
want to cooperate with each other. In addition, when colluders receive copies of different
resolutions, an attacker also needs to decide with whom to collude, which has been seldom
addressed in the literature.

After finding the best partners, the colluders will bargain to reach the agreement of
fairly distributing the probability of being detected and the reward of redistributing the
multimedia content. In this chapter, we consider different definitions of fairness, inves-
tigate how the colluders would like to share the risk and the reward, and study different
bargaining solutions: Nash-Bargaining, Max-Min, and Max-Sum solutions. Also, users
in the colluder social network may have different social positions, thus some users may
be willing to take higher risk and higher reward at the same time, while other users may
be more concerned about risk and want to take lower risk and lower reward. We also take
this phenomenon into consideration and study the proportional fairness collusion.

In addition, the other side of the fingerprinting system, the fingerprint detector, also
has to choose its optimal strategy according to various types of collusion. The collud-
ers will agree on the bargaining solutions if and only if the bargaining solutions are the
best strategies they can choose under the fairness criteria. Therefore, it is crucial for

both the colluders and the digital rights enforcer to investigate the optimal strategies for
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each other’s choices and reach the equilibrium for the multimedia fingerprinting social
network.

The rest of the chapter is as follows. We define the general utility functions for
the colluders and investigate under what conditions will the attackers collaborate with
each other in Section 2.1. We then analyze the fair collusion in Section 2.2, including
bargaining solutions with and without time constraint. The analysis of equilibriums for
the colluder-detector game in the multimedia fingerprinting social networks is studied in

Section 2.3 and conclusions are drawn in Section 2.4.

2.1 Game-theoretic Formulation and Incentives for Multi-

user Collusion

In this section, we will first introduce the multimedia fingerprinting system with side
information as discussed in Chapter 2, and then define the utility function of every user in
the colluder social network. Based on each colluder’s utility, we will discuss the criteria

that stimulates collusion.

2.1.1 Multimedia Fingerprinting with Side Information

To improve the detection performance, in Chapter 2 we investigated techniques for the
digital rights enforcer to explore the special characteristics of the colluded copy, probe
side information about multiuser collusion, and select the optimum detection strategy.

In the two-layer scalable multimedia fingerprinting system in Section 3.1, for user
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u') who receives a high resolution fingerprinted copy, let W}(j) and ng) denote u()’s
fingerprints that are embedded in the base layer and the enhancement layer, respectively.
Let Y; and Y, be the fingerprints extracted from the base layer and the enhancement layer
of the test copy, respectively.

In such a system, there are many different ways to determine if ul) participates in
collusion. For example, the fingerprint detector can use Y, and Y, collectively to deter-
mine whether u(?) is a colluder, and the fingerprint detector uses the collective detection

statistic
(Y5, W)+ (Y, W)
VIWO2 1wl

TN — 2.1)

to measure the similarity between Y and W(). From the analysis in Chapter 2, with
orthogonal fingerprint modulation, if the detection noise is i.i.d. Gaussian A((0,52), then

TNC(i) follows the Gaussian distribution

N(u?ez%;m%cw,cﬁ), if iesche,

TNY ~ 2.2)

N(0,62), if ¢ Sche.
In (2.2), Nj and N, are the lengths of the fingerprints embedded in the base layer and the
enhancement layer, respectively, and 62, is the variance of the fingerprint w.
The fingerprint detector can also use the fingerprint extracted from each individual

layer to determine whether ul) participates in collusion, and uses

v, wiy [ A (weon), it iesc

TN = S
W

(2.3)
N (0,02), if i¢SCh,

to calculate the similarity between the extracted fingerprint and the original fingerprint,
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Here, the subscript ‘t’ is the layer index and is either ‘b’ (the base layer) or ‘e’ (the

enhancement layer). In (2.3), ,ullje — U=BIVNOw o4 ube

— VNeOw
Kbe —  Kbe

Comparing (2.2) and (2.3), TNc(i), TNZ(,i) and TNegi) have the same variance but dif-
ferent statistical means, and the one with the largest mean gives the best detection per-
formance. From the analysis in Chapter 2, ,uge is always smaller than max (12, u2¢), and

TN} should not be used to identify colluders. When B < B+é Ny Ve ]I\\,/TNF\/M),

,ugi) > ,ugi) and TNC(i) is more robust against collusion attacks. If B > BT, then yfﬁ > ygi)

and TNe(i) provides a better performance.

2.1.2 Game Model

During collusion, every user in the colluder social network wants to minimize his/her own
risk and maximizes his/her own reward.
For colluder u?, his/her payoff function 1 should be composed of two terms:

colluder i’s loss if being detected plus his/her reward as follows:
2l = —pl 4 (1 . Pﬁ) R, 2.4)

In (2.4), chi) and L stand for colluder u()’s probability and loss of being detected, and
R is the reward that u®® gets after redistributing the colluded multimedia content and
sharing with other colluders. Since the total reward that will be shared by all the colluders
by redistributing the colluded copy is proportional to the video quality. For instance, the
pirated video with DVD quality would have higher value than the video with VCD quality.
In temporal scalable video coding scenario, video quality is an increasing function of the

number of frames. Here we aim to show how do different factors during collusion affect
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the behavior of the colluders, thus we introduce a simple model that the video quality is

proportional to the number of frames. As a result, R¥) can be modelled as:

e ) e

RO —
=1

Where F¢ is the number of frames in the final colluded copy, and F™* is the largest
number of frames among all the subscribers’ copies, hence F¢/F™ illustrates higher
quality of colluded copy gives higher reward to the colluders. For instance, in our system
in Section 2.1.1, if all the colluders only received the lower quality copy, then F© = Nj,
F"* = N, + N,, F¢/F™ = 1- N,/(Np + Ne) < 1, which implies the colluders cannot
get the full market value of the video. F) is the number of frames in u()’s copy; K is
the total number of colluders, M is the total number of subscribers, and D(e) is a non-
decreasing function. <F (i))y illustrates colluders with higher-quality copies would have
more reward since they already paid more money to subscribe to higher resolution copies
, and Y is the factor to control how much extra reward the colluders with higher-resolution
copies should get. For example, if y = 0, then the reward is equally distributed among
the colluders with the same quality copies, and larger Y indicates the reward distribution
favors the colluders with higher-quality copies more. Different colluders have different
evaluation of their risk. Therefore, some colluders might want to take higher risk, and
in return, they would ask for more reward. D (P[gi)) allows the colluders who take risk
would have higher reward.

In the following sections, to simplify the analysis, we assume the colluders who
receive the same quality copies agree to share the same probability of being detected as

in Section 2.1.1. Hence, the bargaining process during collusion can be modelled as the
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following game:

e Players: There are two players in the game. Colluders who receive the low-
resolution copies act as a single player in the game and they have the same utility
b, while while colluders who have the high-resolution copies act as a single player
during the bargaining process and they have the same utility ©”¢. Denote all the

colluder in SC? as sc?, and all the colluders in SC?¢ be sc in this game.

e Strategies: Based on the two-step collusion model in Chapter 2, the collusion pa-
rameter B controls the risk for both sc” and sc”¢. The control factors of the reward
distribution (y and D (chi)>) is declared before the game. Therefore, the players’

possible strategies are all the possible values of [3.

e Cost: For each player, joining the collusion and redistribute the colluded copy incur
the probability of being detected by the fingerprint detector. Being accused by the
detector causes a consequence of cost. Thus we model the cost of each player as the
probability of being detected times its loss. The loss is the private information of
each colluders, and a reasonable setting is the loss should be bounded by a maximal

value L,,,y.

e Reward: The players gain reward by redistributing the colluded copy, and the re-
ward is distributed among all the colluders. Here we assume the value of the col-

luded copy remains the same no matter how long does the collusion process take.

e Utility function: The utility function is considered as the reward minus the ex-

pected cost as in (2.4).

18



$\
K™= 206 E

payoff @)

. . . .
‘100 200 300 400 500 600
Total number of colluders (K)

Figure 2.1: 7 when all colluders receive fingerprinted copies of high resolution. N, =
N, = 50000 and 6 = 50. The probability of falsely accusing an innocent user is Py, =
1073,

2.1.3 Necessary Condition for Single-Resolution Collusion

We first discuss the situations that the attackers will collaborate with each other for multi-
user collusion. As an example, we assume that all attackers receive high resolution copies
with base layer and enhancement layer, and they generate a colluded copy of high reso-
lution, that is, K = K% and fe = 1. The analysis is similar for the scenario where all
fingerprinted copies have the base layer only and thus omitted. In such a scenario, since
all copies have the same resolution, there is no bargaining in collusion, and attackers sim-
ply average all copies that they have with equal weights. Based on (2.4), colluder ul’s

utility function can be simplified to

0 — _pl) RO
T .+ (l P, > z
where chi) = Q0 <h_ Nb;_ NeGW/K) . (2.6)

Figure 2.1 shows an example of 7)) versus the total number of colluders K. In
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Figure 2.1, the lengths of the fingerprints embedded in the base layer and the enhancement
layer are NV, = 50000 and N, = 50000, respectively. In Figure 2.1, we use 8 = 50 as an
example to illustrate colluders’ payoffs, and we observe similar trends with other values
of 8. 62, = 62 = 1 and h is selected so that the probability of falsely accusing an innocent
is 1073, From Figure 2.1, when K < 126, () < 0 due to u'!)’s large probability of being
detected. In this scenario, colluders may not want to use multimedia illegally since it is
too risky. Furthermore, from Figure 2.1, colluding with more attackers does not always
increase u()’s payoff, and ©!) becomes a decreasing function of K when there are more
than 206 attackers.

Let Ko= {K (K —1) <0,n0(K) > 0} be the smallest K that gives u()) a non-
negative payoff. Attackers will collude with each other if and only if there are more
than K colluders and when they receive positive payoffs from collusion. Also, we define
Kmaxé argy~ x, Max () as the optimum K that maximizes colluder u)’s utility when all
attackers receive copies of the same resolution. A colluder should find a total of K,
attackers if possible to maximize his/her payoff. In the example in Figure 1, Ko = 126

and K, = 206.

2.1.3.1 Analysis of K

Given Nj, N, and 0, to find the minimal number of colluders K, we solve the equation

1O (K) = — (h—\/@cw/l() N {I—Q(h_mcwﬂ(

= .

n
h— /Ny +N,0,,/K 0
or equivalently, Q( b;_ <O/ ):K+9'
n
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Define x = 1/K as the inverse of K. Then (2.7) can be rewritten as

h—+/Ny+N,C,,x B o 1
Q( o, )—Q(a—bsx)—l T or (2.8)

where a = h/c, and by = /N, + N,G,,/G,. It is difficult to find the exact analytical
solution to (2.8) due to the existence of the Gauss tail function. To analyze K, we use the

following polynomial approximation of Q(t) for t > 0 [35]

(

0.5-0.1t(44—1) for 0<r<22,

Q(t) = 4 0.01 for 2.2 <t<2.6, (2.9)

0 for t>2.6,

\

and find an approximated solution to (2.8). In this paper, we only consider the scenario
where a — bgx > 0, that is, P[Si) < 0.5 and a colluder’s chance of being detected is smaller

than 0.5. Assuming that a — bgx < 2.2, with the Q(-) function approximation in (2.9), we

have
1
0.5—-0.1(a—bwx)(44—a+bx) ~1— ror (2.10)
After rearranging both sides, (2.10) becomes a cubic equation of x
fs(x) = aox® + a1 x> +arx+az =0,
where ay = b20,a; = — (2ab0 —4.4b,0 — b?)
ay = —(4.4a0—a’0+50+2ab;—4.4b,), and a3 = —a(4.4 —a) +3.11)

The cubic equation fy(x) = 0 has three roots, which can be found using the Cardan’s

method [36]. Let ¢ = (3apaz —a?)/(9a3) and r = (9apaiaz — 27agas — 2a?})/(5443).
Furthermore, let s = {/r++/g> +r2 and s» = {/r — \/q> + r2. Then, the three roots of
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(2.11) are

ag
Xl = S1+8s——,
3ayg /3
a 3 .
X = —0~5(51+S2)—ﬁ+7(51—52)b
a 3
and x3 = —0.5(s1+s2)—ﬁ—\/7_(s1—s2)j, (2.12)

where j in (2.12) is the imaginary unit. Therefore, Ko 1 = 1/x1, Ko = 1/x2 and Ko 3 =
1/x3 are the approximated roots of (2.7). We need to examine each of the three ap-
proximated roots to find Ky. Note that Kj is a positive integer, and from Figure 2.1,
dd“—l(é) |k=k, > 0. Therefore, given {Ky 1,Ko2,Ko3}, we find the positive real root that sat-
isfies d%)(cx)\ x=1/k > 0. We then use the selected root as an approximation of Ko. That
is,

N d
Ko = H(O,i—l where K()J' eR'T and M > 0. (2.13)

dx |, /Ko,

To demonstrate the process to find the approximated Ky, we consider the example in
Figure 2.1 where N, = N, = 50000, G%V = (5% =1,6=50, and Py, = 1073, Plugging these
numbers into (2.11), the cubic function is f;(x) = 5000000x> +71848.38x% — 1015.41x +
0.9525, whose three roots are x; = 0.008011, xo = —0.023397 and x3 = 0.001016. There-
fore, Ko1 = 1/x1 = 124.82, Koo = 1/xp = —42.73 and Ko 3 = 1/x3 = 983.95. We first
eliminate Kj > since it is a negative number. We then calculate the first order derivatives

of the cubic function f;(x) at x; and x3, which are d‘i}fcx)

—1098.52and 40| —

X=X X=Xx3

<0, and select Ky = [Ko 1] = 125,
3

—853.87. Then, we can eliminate K 3 since %}Ex)

X=X

which is very close to the true value Ky = 126 we found using exhaustive search in the
previous section.
When 6 takes different values, Figure 2.2 plots the approximated K calculated
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using (2.13) and the true values of Ky that are found using exhaustive search. From
Figure 2.2, Kj is a decreasing function of 0. As an example, when f. = 1, Ky drops from
235 to 103 when 6 increases from 10 to 100. In addition, if we compare Figure 2.2a with
2.2b, Ky takes a smaller value if colluders generate a colluded copy of low resolution. For
example, when 6 = 50, Ko = 126 when f. = 1 and Ky = 100 when f. = 0.5.
Furthermore, in the example in Figure 2.2, when 8 > 20, Ky in (2.13) gives a very
good approximation of K. In the example in Figure 2.2a, when f. = 1 and 6 > 20, the
approximation error is no larger than 1, that is [Ko — Ko| < 1. In such cases, to improve the
accuracy, given Ky, we can verify whether it satisfies 1) (Ko — 1) < 0 and () (Kp) > 0.
If so, then Ky = K. Otherwise, we decrease Ky by one if 7(0) (130 —1) >0, and we
increase Ko by one if pad) (Ko) < 0. Then, we verify again whether the new Ky satisfies
) (Ky—1) < 0and 1) (Kp) > 0. By doing so, we will find the exact solution of K.
When 0 < 20, there is a difference between the approximated Ky and the true value
of Kp. In Figure 2.2a, when f. = 1 and 0 < 20, the largest approximation error is 10, which
happens when 6 = 10. This is because the above analysis of Ky uses the approximation
O(t) =~ 0.5—0.1¢(4.4 —t), which gives a good approximation of the Gauss tail function
for 0 <7 < 2.2. When a — b /K is larger than 2.2, the polynomial approximation of Q(r)
cannot be used. Therefore, as the last step, we need to verify that the selected root x; in
(2.13) satisfies 0 < a — bgx; < 2.2. If not, numerical methods can be used to find the root

of (2.8).
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(a) ’ ’ (b)
Figure 2.2: The approximation Kp in (2.13) and the true value of Ky. N, = N, = 50000,
62, =062=1,and Pry = 1073. (a): the colluded copy includes both layers with f. = 1.

(b): £.=0.5.
2.1.3.2 Analysis of K,

Given Ny, N, and 0, to find the maximal number of colluders Kj,,,,, we solve %”—I((l) =0, or
equivalently, find the root of ag—;) = 0, where 70 is in (2.6) and x = 1/K is the inverse

of K. Same as in the previous section, we use f. = 1 as an example, and the analysis for

other values of f, is similar and omitted. From (2.6), to find K,,,,,, we solve

(i) pli) .
LA —a—d(1+ex)+(1—P§’))e:0,

ox ox 0
O B P, by _ (a—byx)?
where P, = Q(a—bsx) and N \/ﬁex { —

} . (2.14)

Due to the existence of both the Gauss tail function and the exponential function, it is
difficult to find the analytical solution to (2.14), and we use numerical methods to solve
(2.14) and find K4y

Figure 2.3a and 2.3b show K, as a function of 8 when the colluded copy has high
and low resolutions, respectively. The system setup is the same as in Figure 2.2. If we
compare Figure 2.3a with 2.3b, K, takes a smaller value when the colluded copy has a

lower resolution. For example, in Figure 2.3, with 8 = 50, K}, = 206 when the colluded
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Figure 2.3: K versus 6. N, = N, = 50000, G%V = G,% =1, and Py, = 1073, (a): all
colluders receive fingerprinted copies of high resolution and f. = 1. (b): all attackers

receive the base layer only and f, = 0.5.
copy has high resolution, and K, = 162 when f. = 0.5.

Furthermore, K, is a decreasing function of 6. For example, when f, = 1, Kj,;x =
385 when 6 = 10 and K}, = 173 when 6 = 100. This is because, when 0 takes a smaller
value and when attackers emphasize more on risk minimization, they prefer to collude
with more people to lower their risk. Mathematically, it can be proved as follows. After

rearranging both sides of (2.14), we have

apy)

(i)

1-P — = V2r [ (a—bgx)? »
oP? = [I_Q(a_bSX)]b_seXp{T}_l =0"". (2.15)
ox

Assume that 8; > 0,, and x; and x, are the solutions to (2.15) when 6 = 6; and 6 = 05,
respectively. Note that the left hand side of (2.15) is a constant of 6. Consequently,
[1-0(a—bor)] Y exp { 450} 107! <01 =1 - Q(a— buxr)] Yexp {4l )
1. In this paper, we consider the scenario where colluders’ probability of being detected
is smaller than 0.5, that is, P = Q(a—bgx) < 0.5 and a — byx > 0. In such a scenario,
both [1 — Q(a — bsx)] and exp { M} are decreasing functions of x, thus x; > x, and
Kax = 1/%1 < K = 1/32.

To summarize, when all attackers receive copies of the same resolution, they collude
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with each other if and only if the total number of colluders is larger than Ky and when
all attackers receive positive payoffs. In addition, an attacker should try to find a total of

Kinax colluders if possible to maximize his/her payoff.

2.1.4 Necessary Condition for Multi-Resolution Collusion

In this subsection, we consider the scenario where colluders receive fingerprinted copies
of different resolutions and analyze when attackers will collude with each other.

One possible outcome of the bargaining between SC” and SC? is that they do not
reach an agreement. In such a scenario, attackers only collude with their fellow attackers
in the same subgroup, and SCP and SC?¢ do not cooperate with each other. Given Ny, N,,

K? and K”¢, if an attacker in SC? colludes with those in SC? only, his or her utility is

TCZC = _Pcl;,nc + <1 - Pc?,nc) ch
h N,© Gfb
where P = 0 (c_n — VKbo,f) -0 <a —b, /Kb> and R}, =5/ (2.16)

In (2.16), a = h/c, and by, = \/N,,G,,/G,. Similarly, if an attacker in SC* colludes with

those in SC? only, his or her payoff is

mhe = Pl (1= Pl ) Rl
h  +/Np+N.C
where ngnc = Q (G— - %) =0 (a—bS/Kbe> and R’ = %17)
n n

In (2.17), by = \/Np + NG\, /G-
If SC? and SC?¢ collaborate with each other and select the collusion parameter 3,

for an attacker i € SC?, his or her utility is

W= P+ (1-Ph )R,
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c)Y
where Py, = Q<£—BK—\/F'%)=Q<a—B%> and szggl—lggl(b(](c{)i+[-{e)

Gn

Similarly, for 0 < B < BT, an attacker i € SC?’s payoff is

ne = —Pfl’i + <1 —Pj;) R where
h (1-P)Ny+N. o, bs . bpe Y 0
pbe  — = W) = _ dRY = ———— 249
de = ©Q (cn Ko m, im0y )~ C\0 khe T Pire ) MRS = e )

In (2.19), bp, = %
Therefore, among all the possible solutions {(nb , nbe)} in the feasible set S, collud-

ers are only interested in those in S, = {(nb,nbe) € S:nb > nb = max(0,7L,), 7w > ¢ = max(0,72,),0

where cooperation helps both SC? and SC? increase their payoffs.

e From (2.18), Pg . 1s an increasing function of B and, therefore, 7’ is a decreasing
function of B. Let B be the B that makes ©t’ equal to ni’, that is, n°(B) = n’. Then,

the constraint ©° > i’ is equivalent to let B < B.

e Similarly, from (2.19), Pagb:) is a decreasing function of 3, and thus 7% is an increas-

ing function of B. Let B be the B that makes n’¢ equal to ¥, that is, ¢ (B) = be.

Therefore, the constraint ¢ > 1”¢ is equivalent to select B > B.

e Furthermore, if we compare (2.17) and (2.19), Pfl’ec = PP when B = 0. That is,

d,nc
if colluders select B = 0, then collaborating with SC? does not help SC”¢ further
reduce their risk of being detected. Meanwhile, R% < R2¢ and colluders in SC

receive less reward if they cooperate with SC”. Consequently, 17¢(0) < 12¢ < wtb¢ =

max (n¢,0) = nb (B). Thus, B > 0 since b€ is an increasing function of .

From the above analysis, we can rewrite S, as S, = {(ﬂ;b, ) € S: B<B< min(B, ) }
When attackers receive fingerprinted copies of different resolutions, the two subgroups of
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colluders SC? and SC?¢ will collude with each other if and only if there exists at least one

B such that B < < min (B, "), or equivalently, when S,, is not empty.

2.1.4.1 Lower and Upper Bounds of [3

To further understand under what conditions SC? and SC? will cooperate with each other,
we will first analyze [ and B.
From the previous discussion, given Ny, Ne, K? and Kbe, colluders should select 3

such that
7 (B) = —Pho(B)+ [1-PL(B)| RE=n = max (0,7, ), (220)

where PZ .(B) and R? are in (2.18). Consequently, we have

b _ b
b . Bby, R —m
Pi(B)=0 <a— ﬁ) < Rclg—l—l : (2.21)
Since Q(x) is a decreasing function of x, therefore, we have
bb 1 Rh — TEb
—_R==Z > _c =
a-Prp = € ( RE+1 )’
or equivalentl B < B 0! R - K’ /b (2.22)
= |la— — . :
q Y, = R1C7+1 b
Similarly, given Np, N, K? and K", colluders should select B such that
n(B) = — P (B)+ [1 - PI(B) | R = w —max (0,nl) . (223)
where P2¢ (B) and R% are in (2.19). Therefore, we have
be V Nb + Necw Bbhe R?e — Ebe
Pd70<B) = Q a-— Kbe be > be ?
On K RX+1
Rbe — gbe VN, +N.G
or equivalently, >B = |07} (c—_) —a+—ew] K" /by,
q y, B=B { RE 1 b beecn /bpe
Np+Ne _1 (RX—m be
= ———— | —a| K /bp.. (224
N J{Q (Ré’e+1 a| K"/ bpe - 2:24)
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Figure 2.4: The upper bound and lower bound of B.(a): Kb =120, (b): K? = 50.

Figure 2.1.4.1 shows examples of B and B. K¢ = 120 in Figure 2.1.4.1a, and K” =
50 in Figure 2.1.4.1b. From Figure 2.1.4.1(a), p < B when K’ <9, and B> B* when
K > 358. Therefore, in this example where K¢ is fixed as 120, S, # 0 if and only
if 9 < kK < 358. Similarly, from Figure 2.1.4.1(b), B > B if K?* < 94 or K** > 207.
Thus, when K? = 50 is fixed, SC? and SC? will collude with each other if and only if

94 < Kb < 207.

2.1.4.2 Analysis of K,

From Figure 2.1.4.1, given Nj, N, and 0, for some pairs of (K”, K?¢), S, may be empty
and thus, SC? and SC%® will not cooperate. Define ]Kpé {(Kb,Kbe) 1S, # @} as the set
including all pairs of (K?,K”¢) where S, is not empty and where SC” and SC%* will
collude with each other.

Given Ny, N, and 6, SC? and SC?¢ will collude with each other if and only if S, # 0,

that is, when E < B" and E < PB. Since ® in (2.19) is an increasing function of B, if
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B < B, then we have

(pt) =

or equivalently, R =

Ph(BF) + |1 PA(BT) | R > m(B) =
0 n” + Pl (BY)
Kb(fo)T+ Kb =~ 1P (B*)

(2.25)

Consequently, to ensure < B, (K?, K¢) must satisfy

Kb S Kb/(KbE):

o 8(1-PE () g

(wre P (B0)) (fo)r - ()T

(2.26)

From (2.22) and (2.24), to ensure § < B, (K?, K¢) must satisfy

be _ —be be _ b _ gb b
(o (B2 o (D)) o

Np

Rbe +1

Combining (2.26) and (2.27), we have

0 (1 —ng(ﬁﬂ) Kb

Kp:{(Kb7Kbe) . Kb <

Ny + N,
Ny

(e + PB)) (o)t ()"

Rbe o che Kbe Rb . TCb b
—1 c [l . -1 [ [l
o ()~ e = o G| B

The shaded area in Figure 2.5 shows an example of K. At point ‘A’ in Figure 2.5,

when K?¢ < 91, no matter which value K? takes, S p» 18 always empty and attackers will not

collude with each other. Similarly, when K”¢ > 226 (point ‘B’ in Figure 2.5), no matter

how many attackers are in SC® and how they select B, cooperation between SC? and SC

cannot improve all colluders’ payoffs. Furthermore, when K? > 431 (point ‘C’ in Figure

2.5), SC? and SCP¢ will not collude with each other. To quantify the above boundary

points of K, we define

Kbe é

Kbe é

min{Kbe 3K s.t. (Kb KP) € Kp} :
max{Kbg :3KP s.t. (K?,KP) € Kp},
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Figure 2.5: An example of K. N;, = N, = 50000 and 6 = 50. The probability of falsely

accusing an innocent user is Py, = 1073,

and K 2 max{Kb:Elee S.t. (Kb,Kbe)er}. (2.29)

In the example in Figure 2.5, K¢ =91, K”¢ =226 and K” = 431.

2.1.4.3 Analysis of the Bounds of Number of Colluders

From Figure 2.5 and (2.29), if K > K?, K?¢ < K¢, or K¢ > K", then it is impossible
to find a B that increases all colluders’ payoffs, and SC” and SC”¢ will not cooperate with
each other. Therefore, during collusion, as a preliminary step, colluders should first check
that K? < K? and K”® < K?¢ < K%, Then, they should ensure that (K?, K*¢) is in the set
K, defined in (2.29), and guarantee that there exists at least one [ that increases both sct
and SC®’s payoffs. In the following section, we will analyze the boundary points of K,

(K"¢, kP and K?) in details.

K% Using exhaustive search, we find that at point ‘A’ in Figure 2.5, K” = 56 and K?¢ =

91. Since K < Ko(f. = f») = 100 and K** < Ko(f. = 1) = 126, we have T2, < 0, t2¢ < 0,
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Figure 2.6: Upper and lower bound of B at point ‘A’ in Figure 2.5. N, = N, = 50000,

=o02=1,y=1/3, Pr, = 1073, and 8 = 50. (a): K¥ = 56, (b): K** =91.

and ©”¢ = ® = 0. To have a better understanding of K¢, Figure 2.5 plots E and P around
the point (K? = 56, K” = 91). As can be seen from Figure 2.5, at point ‘A’, B= B=p,
and S, has only one item, which is S, = {(n®,7%) : p=pT}. Since 7% = ¢ when
p=P,and n = n® when B = B. Therefore, at the boundary point ‘A’, (K?, K%¢) satisfies
TCb(Kb,Kbe, B+> — Eb — 0,
(2.30)
che(Kb,Kbe, B+) — 7.l:be =0.
To find K, we should first find the solution (K”, K”¢) to the above equation (2.30) and
then select K”¢ = [K?¢]. Using Figure 2.5 as an example, given the parameters Nj, =
N, = 50000, y=1/3, 6 =50 and Py = 1073, we first find the solution to (2.30), which
is (K? = 55.88, K" = 90.15). We then calculate K¢ = [K*¢] = 91, which is consistent

with the result we find using exhaustive search.

K’ To analyze KPe, using exhaustive search, we find that at point ‘B’ in Figure 2.5,
K’ =1 < Ko(f: = fp) = 100 and K” = 226 > Ko(f. = 1) = 126. Therefore, at this
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Figure 2.7: Upper and lower bound of B at point ‘B’ in Figure 2.5. N, = N, = 50000,
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point, t” = 0 and ©”° = %% > 0. As shown in Figure 2.7, at this point, B= B,and S, =
{(nb,nbe) B= E = B} has only one entry. Also, from Figure 2.7b, when K¢ = K¢,
if SC? has more than one attacker (that 1is, Kb > 2), there is no P that can improve both

SCP¢ and SC”’s payoffs. Therefore, point ‘B’ corresponds to the scenario where K = 1,

Kbe = Rbe and B= B. Thus, from (2.22) and (2.24), to find K?¢, we first solve

Np+N, [ Rb¢ —mbe Kb . ( R 1
_ Ze e ) _ —B=|a— —< )| —, (31
b Np +{Q (R’Z“rl “| By p=]a-9 RE+1)]| by 23D

and then let K¢ = |K?¢|. In (2.31), R% = 0/[(f,)Y + K"¢], R® = 0(f,)"/[(f»)Y + K"¢],

and 2¢ is in (2.17). As an example, given the system setup in Figure 2.5, the solution to
(2.31) is K?¢ = 226.64 and thus K*® = |226.64 | = 226. It is consistent with the result we

found using exhaustive search.

K? At point ‘C” in Figure 2.5, we find K? = 431 and K?¢ = 125 using exhaustive search
and = BT, as shown in Figure 2.8. From the analysis in Section 2.1.4.2, for a given
K", to satisfy the constraint B < B*, it is required that K" < K?, where K is defined
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Figure 2.9: K” versus K”. Nj, = N, = 50000, 6% = o2 =1, y=1/3, P; = 1073, and

6 =50.
in (2.26). Therefore, we have K = | max g Kb/J. Using the system setup in Figure 2.5

as an example, Figure 2.9 plots K" versus K’ and K" achieves a maximum of 431.88
when K?¢ = 125. Consequently, K? = |431.88| = 431, which agrees with the result we
found using exhaustive search.

To summarize, given Np, N,, and other parameters including 6 and v, in order to en-
sure that cooperation can help both SC” and SC?¢ improve their payoffs, colluders should

first follow the analysis in Section 2.1.4.3 and ensure that Kbe < Kb < K and K? < K?.
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Then, attackers should further check whether (K?, K?¢) satisfies the constraints in (2.28)
and whether S, is not empty. If (K?,K%¢) € K,, colluders should use (2.22) and (2.24)
to calculate B and E, respectively, and find S, = {(nb,nbe) :E <PB< min(B, [3+)} By
doing so, no matter which pair (n?,7%¢) that colluders select in S p» 1t 1s a Pareto optimal

solution and all colluders increase their payoffs by cooperating with each other.

2.2 Fair Bargaining Solutions in Colluders Social Net-

work

Based on the discussion in Section 2.1, we know the situations that the attackers will
mount multi-user collusion. The next question to ask is which collusion strategy is fair

and all colluders will agree with it.

2.2.1 Fairness Criteria

Depending on the definition of fairness and the objectives of collusion, colluders select
different collusion strategies and aim to reach agreement under different fairness criteria.
In this section, we demonstrate the behavior analysis of colluder social network by four
commonly used fairness criteria during bargaining.

Absolute Fairness: The most straight-forward fairness criteria is the absolute fairness,

