
  

 

 

 

 

 

ABSTRACT 

 

 

 

 

Title of Dissertation: MULTI-DIMENSIONAL ANALYSIS 

APPROACHES FOR HETEROGENEOUS 

SINGLE-CELL DATA   

  

 Yang Shen, Doctor of Philosophy, 2018 

  

Dissertation directed by: Professor Wolfgang Losert,  

Department of Physics 

 

 

Improvements in experimental techniques have led to an explosion of information in 

biology research. The increasing number of measurements comes with challenges in 

analyzing resulting data, as well as opportunities to obtain deeper insights of biological 

systems. Conventional average based methods are unfit to analyze high dimensional 

datasets since they fail to take full advantage of such rich information. More 

importantly, they are not able to capture the heterogeneity that is prevalent in biological 

systems. Sophisticated algorithms that are able to utilize all available measurements 

simultaneously are hence emerging rapidly. These algorithms excel at making full use 

of information within datasets and revealing detailed heterogeneity. 

However, there are several important disadvantages of existing algorithms. First, 

specific knowledge in statistics or machine learning is required to appropriately 

interpret and tune parameters in these algorithms for future use. This may result in 

misusage and misinterpretation. Second, using all measurements with equal weighting 



  

runs the risk of noise contamination. In addition, information overload has become 

more common in biology research, with a large volume of irrelevant measurements. 

Third, regardless of the quality of measurements, analysis methods that simultaneously 

use a large number of measurements need to avoid the “curse of dimensionality”, which 

warns that distance estimation and nearest neighbor estimation are not meaningful in 

high dimensional space. However, most current sophisticated algorithms involve 

distance estimation and/or nearest neighbor estimation.  

In this dissertation, my goal is to build analysis methods that are complex enough to 

capture heterogeneity and at the same time output results in a format that is easy to 

interpret and familiar to biologists and medical researchers. I tackle the dimension 

reduction problem by finding not the best subspace but dividing them into multiple 

subspaces and examine them one by one. I demonstrate my methods with three types 

of datasets: image-based high-throughput screening data, flow cytometry data, and 

mass cytometry data. From each dataset, I was able to discover new biological insights 

as well as re-validate well-established findings with my methods. 
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Chapter 1 Introduction 

1.1 Overview 

Biological systems are complex and cope with a complex and ever-changing environment. 

Hence, emerging multi-parametric measurement techniques with single-cell resolution 

reveal increasing complexity among and within cell types. For example, one of the most 

widely used single-cell technique – flow cytometry – is responsible for the discovery of 

the diverse types and functionality of immune cells [1]. Novel cell (sub)-types are 

continually being identified with the increasing number of cellular markers that can be 

simultaneously measured with flow cytometry (e.g., Th17 cells, follicle T helper cells, and 

stem memory T cells) [2-4]. Today, sophisticated experimental techniques enable in-depth, 

high-content and high-throughput single cell measurements in almost every field of 

biological research. As an example, the number of parameters that can be measured by 

flow cytometry increased from the original 2 ~ 3 to about 20, and will likely reach 50 in 

the near future [5]. Mass cytometry, which is a combinatorial technique based on mass 

spectrometry and flow cytometry further expands this number to 100 [6]. In addition, 

people have combined high-throughput screening techniques with modern microscopes to 

get cell images at single cell or even sub-cellular resolution from which hundreds of 

measurements can be made [7]. On the other hand, some techniques which are capable of 

very high-dimensional measurements (e.g., RNA sequencing) have increased their 

resolution to single cell level, enabling tens of thousands measurements on several 

thousand of single cells [8]. The increasing ability to generate a large amount of high-

dimensional single cell data demands new analysis methods suitable for this type of data.  
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The challenges of analyzing high-dimensional single cell data originate from two main 

factors: heterogeneity and high dimensionality. These two factors are in fact intertwined: 

to understand heterogeneous system requires more measurements and more measurements, 

in turn, reveal higher heterogeneity. For the first challenge, not all heterogeneities have 

biological significance [9]. Since the local environment for each cell is slightly different 

from another, the properties of cells, even from the same cellular type/state, would vary 

from cell to cell. There have been speculations that cellular status is not a collection of 

distinct states but a continuous change in response to outer stimulations [9]. However, it is 

not clear under what circumstances this heterogeneity is meaningful for the biological 

functionality of the cell or organism. In addition, experimental measurements are not 

accurate, random noise and systematic errors are ubiquitous, and all contribute to the 

heterogeneous signal we observe in experiments. As a result, the appropriate analysis 

methods should be able to capture the biologically meaningful heterogeneity of single cells 

while at the same time reduce the impact of random noise in experiments. For the second 

challenge, it has been shown that in high dimensional space the distance between two 

points “may not even be qualitatively meaningful” [10] – a phenomenon termed as “curse 

of dimensionality”, rendering any distance-based analysis (e.g., clustering) problematic. In 

addition, information overload is ubiquitous in biological datasets, with many redundant 

measurements or measurements that are irrelevant to the question of interest (or of 

unknown relevance). This adds to the already high noise level in biological datasets and 

further hinders the finding of real signals in data. As a result, dimension reduction methods 

are required for analyzing high dimensional data. Since most dimension reduction methods 

aim to identify a single subspace best capture the content of original data, the results of 
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reduced dimensions are often linear or nonlinear combinations of all original measurements 

which impedes straightforward interpretation of data. What’s more, reducing high 

dimensional datasets to one definite subspace may result in overlook of small cell groups 

or subtle changes. Hence designing and applying dimension reduction methods to 

biological data should take interpretability and importance of subtle changes into 

consideration. Currently, most algorithms developed to deal with high-dimensional single 

cell data largely ignore information overload and “curse of dimensionality”. Instead, they 

fully embrace the large number of measurements and try to make full use of them (except 

algorithms to analyze single-cell RNA sequencing data where the problem of high 

dimensionality is extremely prominent). However, there has been a study showing that 

algorithms like this would pick up noise in data and lead to incorrect results [11]. In 

addition, these algorithms often produce results that are hard to interpret and hence difficult 

to experimentally validate. Thus, there is a need to build analysis methods between the two 

extremes of conventional methods, which tend to be oversimplified, average-based, and 

involve manual selection, and novel methods, which are complex and sensitive to noise 

and the “curse of dimensionality”. Here I introduce methods that are complex enough to 

capture some level of heterogeneity, but at the same time provide outputs suitable for clear 

interpretation. The methods I introduce also incorporate feature selection to avoid the 

“curse of dimensionality” and deal with information overload. 
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Figure 1.1 Summary of this dissertation. Conventional average based, single variate analysis methods are 

not fitted to analyze high-dimensional single-cell data generated by current experimental techniques. Novel 

sophisticated methods developed specifically to incorporate high dimensionality can be too complicated for 

experts outside the field of bioinformatics/statistics to interpret and require specific knowledge of the model 

for them to appropriately tune the parameters for applying to their own data. In addition, these methods are 

sensitive to noise and may suffer from a more fundamental problem: the curse of dimensionality. The goal 

of this dissertation is to build analysis methods that are complicated enough to capture heterogeneity inside 

single-cell data, but not so complicated that impedes experts from different disciplines to understand and 

apply them to their own data. 

 

In this dissertation, I am going to address the challenges in analyzing high-dimensional 

single cell data in two parts. The first part deals with the functionally non-meaningful 

heterogeneity and aims to develop a method that captures similarity within cells that are 

various but don’t form functionally distinct subsets. The second part handles high 

dimensionality in flow and mass cytometry data by dividing the data into small subspaces 

and then combining information in useful subspaces. In all, this dissertation aims to 
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develop methods that are able to automatically select important features, generate 

statistically meaningful results that are accessible to experts across disciplines for 

analyzing high-dimensional single-cell data.  

1.1 High-dimensional single-cell measurement techniques 

1.1.1 Image-based high-throughput screening/ High Content Screening (HCS) 

High-throughput screening (HTS) is a powerful technique routinely used in drug discovery, 

systematic analysis of cellular functions, and exploration of gene regulation pathways [12-

14]. The use of robotics instead of manual operation in HTS greatly reduces experimental 

variability, yet cellular heterogeneities persist. Combined with modern automated 

microscopes, image-based HTS (also known as high content screening, or HCS) allows for 

routine imaging of thousands of cells in multiple fluorescence channels [15-17]. HCS is 

one of the fastest growing techniques in biological and pharmaceutical research and is 

responsible for countless discoveries [18-21].  

1.1.1.1 Experimental procedure 

The typical experimental procedure of high content screening requires the following steps: 

sample preparation, image acquisition, and data handling [16]. Every step comes with its 

own challenges and requires proper planning with the overall goal of the experiment in 

mind. For sample preparation, it is important to figure out what type of cells is suitable for 

the experiment, how many samples (perturbations) should be tested, what perturbation 

reagents and/or fluorescent stain should be used, etc. [15]. Small-scale pilot screens are 

recommended before running the much larger whole screen. This step helps clear 

additional issues, test validity of the screen, optimize parameters in the experiment, and 

sometimes serves as a proof of concept for the experimental design. Sample preparation 

usually takes several months, much longer than the actual image acquisition process. The 
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quality of image acquisition directly affects the overall quality of the screen. Thus it is 

crucial to make sure that parameters for image acquisition are set appropriately. For 

example, the resolution of image acquisition should be high enough to capture all required 

features, but the imaging should also cover a large enough area to capture a sufficient 

number of cells for robust statistics [15]. Downstream data analysis after image acquisition 

is also an important part of image-based high throughput screening, and usually takes more 

time than the experimental process.

 
Figure 1.2 Workflow of image-based high throughput screening (adapted from [16]). Image-based high 

throughput screening produces a large volume of single cell resolution image data. A great number of cellular 

features can be extracted from images. Due to noise in both the imaging and image analysis process, and due 

to natural variability, features extracted from images may have non-ignorable variation even for cells with 
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the same biological functionality. Hence, in order to understand the behavior of a certain cellular state, a 

method to reduce noise level and identify a typical description of the cellular state is needed. This is the 

problem I’m going to address in Chapter 2.  

1.1.1.2 Data analysis 

Data analysis for HCS can be divided into two parts: image analysis and downstream 

statistical analysis. Until recently manual scoring of images dominated the analysis of low- 

and medium throughput image screening studies, and it is still widely used today [16]. 

Building on the active and fast-growing field of computer vision, many algorithms have 

been developed for bio-image analysis. Some general purpose image analysis algorithms 

are included in widely used image processing programs such as ImageJ [22, 23], Fiji [24], 

and CellProfiler [25-28]. In addition to the general purpose image analysis platforms, a 

large number of algorithms have been developed for tackling specific image analysis 

problems in a specialized field of biology, especially in neuroscience. In fact, there are 

many specialized algorithms that can be found in several online listings, for example, 

image analysis tools for neuro-images (http://nitrc.org/) [29].  

After images are analyzed, and features are measured, the second part of HCS data analysis 

utilizes statistical tools or more recently machine learning tools to phenotype the measured 

cells and reveal biological insights. Unfortunately, compared to the sophisticated image 

analysis tools, downstream data analysis methods are still “not high content” enough [30]. 

Although hundreds of features can be routinely extracted in image analysis steps, only a 

few of these features can be used in conventional downstream analysis procedures [16]. 

Conventional methods further oversimplify the selected few features by feature averaging, 

ignore rich heterogeneity among cells. This situation has improved recently, with the surge 

of analysis methods that incorporates supervised and unsupervised machine learning 
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analysis [31]. Some of the more recent approaches are starting to use multiple metrics via 

classifiers such as support vector machine (SVM) [32], hierarchical clustering [33], EM 

clustering with Gaussian mixture models to identify multiple cell subtypes to quantify 

cellular heterogeneity [34], or deep learning [35]. One caveat to keep in mind is that 

although the number of features that can be measured from images is large, some of these 

features can be redundant or irrelevant or both. So it is important to carry out feature 

selection along with machine learning.  

1.1.2 Flow cytometry 

Flow cytometry is a widely used technique that measures multiple parameters of 

fluorescently labeled single cells that flow in a stream through a photodetector system. 

Flow cytometry is routinely used in both basic biological and clinical research, due to its 

fast speed (50,000 cells/s [1]), relatively low cost, and amenability to standardization [36]. 

The past 50 years have yielded great improvements in flow cytometry techniques, in 

particular, the recent increase from 2 to 30 in the number of markers that can be measured 

simultaneously. The impact of this increase is far-reaching for our understanding of 

biological systems (including the immune system, cancer biology, cell signaling, etc.) and 

for medical applications and drug development [37]. Even with the emergence of other, 

more powerful, single-cell measurement techniques, flow cytometry is still the most widely 

used experimental technique.  

1.1.2.1 Experimental Procedure 

Flow cytometers can be roughly divided into three parts: fluidics, optics, and detectors. 

The fluidics is a cell distribution system that directs single cells in the sample to the light 

source.  It contains two parts: sheath fluid and pressured line. A pressured airline pump 

suspends cells from the sample tube into a flow chamber which is filled with sheath fluid. 
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Since the pressure of sheath fluid is always lower than the sample flow, this process ensures 

cells align as a coaxial flow as they pass through several light sources (Fig 1.3a). The optics 

system is where measurements of the fluorescence intensity of each cell take place 

simultaneously or in rapid succession for different fluorescence wavelengths. In addition 

to fluorescent signal, two types of scattered light are also detected: forward scattering (FSC) 

and side scattering (SSC) (Fig 1.3b). The intensity of FSC is proportional to the size of the 

cell, a valuable piece of information often used in Immunophenotyping. SSC is the result 

of diffraction of light perpendicular to the incoming laser beam. SSC is proportional to cell 

granularity, i.e., the inner complexity of the cell. Together, FSC and SSC provide 

information to coarsely divide cells (mainly white blood cells) into basic phenotypes 

(differentiating lymphocytes from macrophages for example). The detectors detect the 

fluorescent signal and convert it to a digital data that is proportional to light intensity. For 

surface marker detection, a logarithmic amplifier is used to capture the wide range of 

surface marker expression levels. [38, 39] The resulting data is stored in a standard manner 

according to flow cytometry standard (FCS), and the file format is hence called .fcs [40, 

41]. 



 

 

10 

 

 
Figure 1.3 Fluorescent-based high throughput multi-dimensional quantification of protein expression 

(adapted from [38]). a) A cartoon for the fluidic system in a flow cytometer. The pressure difference between 

the sample chamber and sheath enables the flow of single cells past the light source(s), which enables high-

throughput single cell measurements. b) An illustration for forward scatter (FSC) and side scatter (SSC). c) 

A cartoon showing how fluorescent measurements are made. With the development of brighter dyes and the 

improvement in differentiating light spectrum, more and more fluorescent markers can be measured 

simultaneously with flow cytometry. 

1.1.2.2 Data processing 

Because of the amplification process, raw data in FCS files has a wide range (~0 – 105) 

with a dominant peak near zero. Hence proper transformation algorithms are needed to 
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make sense of the data [42]. Traditionally, flow cytometry data are presented on a 

logarithmic scale, and the so-called “negative populations” are near zero. There have been 

lots of studies and debate about the most appropriate way to transform and visualize flow 

cytometry data. Currently, the widely accepted and used method is an algorithm called 

“logicle transformation” [43]. In essence, the logicle transformation is a generalization of 

the hyperbolic sine function with tunable parameters to better suit flow cytometry data. 

These parameters can be determined based on the range of specific datasets. Another 

important aspect of pre-processing flow cytometry data is called compensation. The need 

for compensation arises from the fact that the wavelength of fluorescent light is a 

distribution instead of a single value. Hence there will be overlap in the light spectrum one 

of fluorochromes. Overlap in the fluorescent spectrum can result in false signals and false 

correlations between measurements, and it is a major source of error in flow cytometry. 

The process to detangle the spectrum overlap is called compensation. The currently used 

compensation method operates under the assumption that overlap of spectrum results in a 

linear combination of various light spectrums. Thus detangling the overlap equals solving 

a set of linear equations. Coefficients in these equations are stored in a matrix called 

compensation matrix and can be obtained via experiments. In addition to transformation 

and compensation, batch effects can be a real problem for flow cytometry data as well. 

Especially when combining samples tested in different experimental cores. Thus, it is 

important for the experimentalist to follow standard protocols, though algorithms designed 

to reduce batch effects exist [44]. These pre-processing steps are usually done manually in 

a commercial software platform like flowJo, though a package in R [45] that provides 

commands for automatic batch processing recently became available. 
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1.1.2.3 Data analysis 

The traditional analysis method for flow cytometry data, called “gating”, involves 

manually drawing regions of interest (ROI) through a sequence of 2D scatter plots (Fig 

1.4). Manual gating has long been criticized as being “subjective and biased”, “lack of 

reproducibility”, “inefficient and time consuming”, and has been considered one of the 

major source of variability in flow cytometry analyses [5, 46-48]. With the increasing 

number of measurements and the large volume of data to be analyzed, unbiased, automated, 

and reproducible algorithms are in great need for flow cytometry data analysis. Building 

such data mining tools has been called the “real challenge” in flow cytometry application 

[49, 50]. The last decade has seen a surge in new data analysis methods for flow cytometry 

[36, 51-53]. One important goal in flow cytometry data analyzing is identifying structures 

/ cell clusters in the high-dimensional space span by all measurements. There are 

algorithms trying to achieve this by combining density based thresholding in 1D [54, 55] 

hence exhaustively identifying all possible cell subsets. Other algorithms apply clustering 

algorithms for cell subset finding, e.g., k-means clustering [56, 57] or mixture modeling 

[58-61], etc. Tree or map-based algorithms have also been developed to mine the structure 

of flow cytometry data [62-64]. Finally, binning methods that aim to resolve the position 

of density peak have been proposed as well [65-67]. There has also been an effort to 

combine multiple algorithms in a workflow so that researchers can pick the method that 

best fits their needs [68]. With a large number of cell subtypes discovered by automated 

algorithms, methods to compare the biological importance of cell types have been 

developed [69, 70], and so are methods to automatically label the ontology of cell subtypes 

[71]. In addition to cell type identification, visualization is also an important aspect of 

interpreting flow cytometry data, especially when the number of measurements is large. 
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Multiple visualization tools have been developed for this purpose [72-74]. Most clustering-

based methods that allow novel cell type discovery aim to identify regions with high cell 

density in multi-dimensional space [56, 58-60, 63, 66, 70, 72, 73, 75]. This assumes cells 

form distinct phenotypes and that only cells inside those relative high-density areas (peaks) 

are of importance. However, cells that are in between two high-density clusters (valleys) 

may also have potential biological significance [76]. Another limitation of clustering based 

methods is that batch effects from merging of multiple samples (which is a widely used 

strategy [62, 75]) can be problematic.  Batch effects are even less tractable for cross 

institutes datasets (which are common in clinical trials). In addition, these clustering-based 

methods require calculation of distance in high-dimensional space, which suffers from the 

“curse of dimensionality” and may lead to misleading results [77]. As a result, some groups 

have been calling for the return to lower dimensional methods such as gating based on 2D 

scatterplots [11]. 

 
Figure 1.4 Manual gating is a process of sequentially drawing a region of interest (ROI) manually with the 

hierarchy of marker pairs pre-defined by domain knowledge/ experience. The percentage of cells remaining 
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for further analysis decreases in each step of manual gating.  Cells outside the ROI are discarded from 

downstream analysis, and the information they contain is lost. In addition, manual gating is a subjective 

process with low reproducibility, as ROIs are drawn manually. With the increasing number of measurements, 

manual gating is also becoming too labor intensive for large studies. However, due to its intuitive nature, 

manual gating is still the most widely used and understood method for analyzing flow cytometry data. 

Incorporating the increasing number of measurements, avoiding curse of dimensionality, while at the same 

time connecting the large volume of information biologists obtain from 2D scatterplots (manual gating) is 

the goal of Chapter 3. 

1.1.3 Mass cytometry / Cytometry by time of flight (CyTOF) 

Mass cytometry is a relatively new technique designed to overcome the bottleneck faced 

by flow cytometry to further expand the number of simultaneous measurements to about 

100 in theory [78]. It combines two well-established techniques: mass spectrometry and 

flow cytometry. Currently, the most widely used mass cytometer can measure more than 

40 cellular markers at the speed of 1000 cells/s [79].  Although “low throughput” compared 

to flow cytometry, the promise to measure more than 50 parameters is “yet unparalleled” 

[1] and is starting to get more and more attention and usage in both basic science research 

and clinical research.  

1.1.3.1 Experimental Procedure 

Mass cytometry uses rare earth metal isotopes instead of fluorescent stains as tags for 

cellular markers and uses mass spectrometry to detect signals instead of photodetectors. 

These rare earth metal elements do not naturally exist in cells hence are capable of being 

used as tags. In addition, the up to 100 distinguishable isotopes ensure an equal number of 

distinct measurements for each cell [6]. Fig 1.5 shows the experimental workflow of mass 

cytometry. Single cells are acquired and incubated with isotope tagged antibodies against 

proteins of interest. Cells are then nebulized into droplets as they are directed into the mass 



 

 

15 

 

cytometer. Ions in the droplets are liberated through an inductively coupled argon plasma 

(ICP). Then the ion cloud is filtered according to their mass, and light elements that are 

abundant in cells are discarded where the heavier elements used as tags remain to be 

measured by a time-of-flight mass spectrometry [79]. Data collected in mass cytometry 

experiment is also stored in flow cytometry standard (FCS) format, and hence can be 

analyzed like flow cytometry data [80].  

 
Figure 1.5 Experimental workflow for mass cytometry (adapted from [81]). By using rare earth metal 

elements that are usually not present in cells as indicators, mass cytometry further increases the number of 

measurements to about 100. With such a large number of measurements, redundant and irrelevant 

measurements become a real problem for analyzing mass cytometry data. It has been shown that the intrinsic 

dimension of mass cytometry data is much smaller than the number of total measurements. However, feature 

selection has been difficult for mass cytometry data since the value of a single measurement is not meaningful. 

In Chapter 4, I address the problem of feature selection in mass cytometry data by defining features as point 

patterns formed by two single measurements.  
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1.1.3.2 Data processing/cleaning 

Since mass cytometry collects signal via mass spectrometry instead of fluorescent light 

intensity, there is no overlap of signals and hence no need for compensation. In addition, 

there is no light reflection and auto-fluorescence to take into consideration, so the 

background noise level is lower in mass cytometry data comparing to flow cytometry. 

However, due to the wide range of surface marker expression levels, a transformation step 

such as logicle transformation is still required to visualize and analyze mass cytometry data.  

1.1.3.3 Data analysis 

Mass cytometry shares the data storage format with flow cytometry, so the methods 

developed for analyzing flow cytometry data could be directly applied to mass cytometry 

data. However, due to the high dimensionality of mass cytometry data, analysis methods 

specifically designed for it are in need. Over the years, great progress has been made in 

developing methods that are customized for mass cytometry dataset [5]. One of the first 

methods specifically aimed to analyze mass cytometry dataset is SPADE [75]. SPADE 

utilizes an agglomerative clustering method to group cells into different subtypes. A 

minimum spanning tree (MST) based algorithm is then used for data visualization (Fig 

1.6). SPADE has been successfully applied to several mass cytometry datasets [82-84]. 

Another method called Citrus uses hierarchical clustering for cell type discovery and 

utilizes properties of these cell groups to determine a list of cell types that behave 

differently between two sample groups [85]. More recently, an algorithm called 

PhenoGraph has applied kNN (k nearest neighbors) to detect cell types in a given sample 

[86]. In addition, methods designed for flow cytometry, like FLAME [58], flowSOM [62], 

etc. have also been successfully applied to mass cytometry data [87, 88]. Most recently, 

people have managed to apply a high-dimensional data visualization method – t-
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distribution based stochastic neighborhood embedding (t-SNE) (Fig 1.7) [89] – to help with 

mass cytometry data analysis, e.g., viSNE [73] and one-SENSE [90]. In summary, these 

algorithms try to make full use of the large number of measurements in mass cytometry 

data, and they are successful in revealing the high level of complexity in biological 

systems. However, these methods ignore the existence of redundant and irrelevant 

measurements in mass cytometry data, which could result in high level of noise and false 

signal, and the curse of dimensionality. As a result, feature selection methods are needed 

as a pre-processing for mass cytometry data. However, feature selection for mass 

cytometry data is a tricky endeavor, since the expression level of single markers (that are 

usually meaningful features in other types of data) is not meaningful in mass cytometry. 

Instead, the meaningful information exists in the combined expression pattern of multiple 

markers (e.g., 2D scatterplots of two markers). Hence new definition is needed for features 

in mass cytometry data as well as feature selection method. 

 
Figure 1.6 An example of results given by SPADE (generated based on dataset and guidelines provided in 

[75]). SPADE is one of the first methods developed specifically to analyze mass cytometry data. It uses an 
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agglomerative clustering methods to identify cellular subtypes in mass cytometry data with predetermined 

estimation of cluster numbers (each circle in the figure is a cluster). Each cluster is then represented by the 

mean expression level of markers (color coding in the figure shows the mean expression level for each 

marker). SPADE then uses a minimum spanning tree (MST) to visualize the clustering results as we see 

above. Though sophisticated, the results generated by SPADE lack clear biological interpretation, and require 

a good understanding of the underlying algorithms to extract robust information. Also, since SPADE utilizes 

all measurements simultaneously with equal weights, it suffers from the curse of dimensionality and extra 

noise buried in redundant and irrelevant measurements. 

 

 
Figure 1.7 An example of t-SNE plots (colored by the expression level of individual markers). t-SNE (t-

distribution based stochastic neighborhood embedding) is a dimension reduction algorithm introduced to 

embed high dimensional data into lower dimensional space while preserving similarities between data points. 

In other words, high cell density area in original high dimensional space should also be a high cell density 

area in the reduced dimension presentation. t-SNE is mainly used as a visualization tool for mass cytometry 

data, however, due to its similarity preserving property, there have been attempts to do manual gating based 

on dimension reduced t-SNE plots. t-SNE is a great method to visualize high dimensional data, nevertheless 

since the resulting dimensions are nonlinear combinations of all measurements, interpreting the results can 

be difficult. In addition, since t-SNE involves random process, the different realization of t-SNE may result 

in different patterns (with similar features).  
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Challenges in high-dimensional single cell analysis 

In this dissertation, I will focus on two major challenges in high-dimensional single cell 

analysis: heterogeneity and high dimensionality. These two challenges are inter-correlated, 

to fully understand heterogeneity one needs more measurements, more measurements 

(higher dimensionality) leads to higher level of heterogeneity as well as difficulties in 

analysis. 

1.1.4 Heterogeneity 

Heterogeneity is ubiquitous in biological systems, and its significance is starting to be 

recognized. However, the full extent of heterogeneity and its biological implications are 

still largely unknown. Taking tumor cells as an example, the heterogeneity of tumor cells 

has been identified more than 40 years ago [91], but how heterogeneity in genetic and 

epigenetic features of tumor cells affect the progress of cancer is still not fully understood 

[92].   

Simple methods that summarize cell population by its average behavior are not suitable for 

heterogeneous datasets since they oversimplify the data. The challenge of applying 

unsupervised methods to heterogeneous data lies in the fact that signals in these data come 

from a mixture of various cell phenotypes, but the exact number of phenotypes and best 

set of features to capture these phenotypes are both unknown. On the other hand, not all 

cell-to-cell variations result in meaningful cell phenotypes. Responses to the slightly 

different local cellular environments can also lead to variation which can be considered as 

noise [9]. However, when the difference in local environment is large enough, it could also 

induce cells to exhibit meaningful biological differences. As live cells constantly interact 

and respond to their surroundings, it is hard to determine when the noise stops and 

meaningful heterogeneity starts. Thus when average based methods oversimplify data, 
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sophisticated multi-variate unsupervised methods may result in unnecessary complexity. 

As a result, a method in between that is able to capture some degree of heterogeneity but 

does not add more complexity is desired. 

1.1.5 High dimensionality 

The increasingly large number of features that can be simultaneously measured 

experimentally leads to two problems: information overload and high-dimensional analysis 

(e.g., curse of dimensionality). Information overload refers to the phenomenon that not all 

features measured are biologically important, and there exists redundancy in biologically 

meaningful measurements [93]. Both unrelated and redundant measurements contribute to 

noise in data analysis and can result in misleading interpretation. To address this problem, 

dimension reduction or feature selection methods are required to capture useful information 

in datasets. The most widely used dimension reduction methods include principal 

component analysis (PCA), t-distribution based stochastic neighborhood embedding (t-

SNE), and independent component analysis. Problems with dimension reduction methods 

for biological datasets are that: (1) the reduced dimensions are a combination of all original 

measurements. Thus it is difficult to generate direct biological interpretation. (2) These 

methods try to identify only one subspace that best captures information content in original 

datasets, and some subtle but meaningful patterns may be ignored. The problem with 

simpler feature selection methods is that the selection is usually done one feature at a time, 

and ignores the correlation between features. On the other hand, analysis of high-

dimensional data comes with its own problem – the curse of dimensionality - commonly 

used distance measurements (L2 distance, for example) loses their meaning in a high 

dimensional space as in high dimensional space every point is pushed towards its surface 
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and are equal-distant from the center [77]. This further affects the estimation of point 

density and identification of nearest neighbors [11, 77] which is problematic for density-

based algorithms and clustering algorithms. Although lots of efforts have been made on 

understanding effects of dimensionality on single distribution data, the study of the curse 

of dimensionality on heterogeneously distributed datasets (as are most biological datasets) 

has just begun [94].   

1.2 Outline of this dissertation 

In this dissertation, I will tackle the problem of heterogeneity and high-dimensionality in 

single-cell data analysis with concrete examples.  

Chapter 2 will discuss the first example which concerns cellular heterogeneity in an image-

based high throughput screening dataset. This dataset records nuclear images of cultured 

cells with experimentally induced progeria (a premature ageing disease) in response to 

different RNAi perturbations. Cellular responses to the same RNAi perturbation can 

already be various, with some cells resemble healthy control, some cells resemble diseased 

control, and some cells may resemble neither controls. On the other hand, controls cells 

have a large cell-to-cell variation as well. The overall goal of this dataset is to identify 

RNAi hits that help progeria cells restore to a healthy status. To achieve this goal, I propose 

a notion called “typical cells” which are defined as cells around the center of multi-variate 

feature distribution. Under the assumption that variation in control cells are mainly caused 

by unimportant local fluctuations, I extract typical control cells and use them to build a 

stable classifier between healthy and diseased cells. This classifier is then used to assess 

the health status of every perturbed cell. Moreover, the importance of each RNAi 
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perturbation is determined by the percentage of healthy-like cells after being perturbed by 

that RNAi.  

Chapter 3 deals with finding subtle differences in high-dimensional flow cytometry data. 

The dataset I use is a publicly available dataset that tries to clarify differences of immune 

cell composition in peripheral blood between old and young healthy donors. The most 

common workflow in dealing with this type of question is – first identify all possible 

(exhaustedly identified via automated methods) or related (judged by professional 

experience) cell subtypes in the data, and the compare their frequency in old and young 

groups one by one with statistical tests. Problems with this workflow are: (1) due to “curse 

of dimensionality”, clustering methods that use all measurements simultaneously can lead 

to false cell subtypes [11]. (2) There has been hypothesis that cell states belong to a 

continuum instead of distinct stages. Hence not only high cell density regions but also 

relatively low-density region that may be transitioning between two cell stages can be 

biologically meaningful. As a result, methods that only focus on high cell density regions 

may miss potentially important signal. Here I propose a method called “CytoBinning” that 

quantifies 2D point patterns. With the help of CytoBinning, I am able to compare point 

patterns between patients without calculation of cell density in data space, thus avoid 

focusing only on high-density regions. In addition, by analyzing patterns in 2D at a time, 

“curse of dimensionality” could be avoided as well. So instead of identifying all possible 

cell subtypes before comparison, I first identify cell regions/patterns that are different 

between old and young groups and clarify types of cells in these regions later.  

In Chapter 4, I try to tackle feature selection problem in mass cytometry data with a 

publically available dataset that aims to differentiate tissue-specific immune cell signatures 
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in eight types of human tissues. Although the problem of information overload in mass 

cytometry data has started to being recognized in mass cytometry data, not many methods 

have been proposed to perform feature selection for it. This is in part due to the fact that 

meaningful features in mass cytometry data lie not in single measurements, but the 

interplay between two or more measurements (point patterns). In addition, the only 

quantifiable measurements of the interplay between two variables are correlation 

coefficients and mutual information which oversimplify the pattern and provide no details. 

Here I use CytoBinning as a quantified, detail compatible method to capture the interplay 

between two variables that enables direct, the quantified comparison between two point 

patterns. I then define features in mass cytometry data as point patterns formed by two 

measurements at a time and am able to identify tissue-specific immune cell signatures in 

eight types of tissues with only 5 features (6 unique measurements).  

Finally, in Chapter 5 I will make short summaries for each the above examples, discuss the 

potential applications of the methods I developed, and talk about future directions with 

some preliminary results. 
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Chapter 2 RefCell: Using typical cells as reference for multi-

dimensional analysis of image-based high-throughput screens 

2.1 Overview 

In this chapter, I try to tackle cell-to-cell variation in image-based data using “typical cells,” 

a method I proposed to capture typical features of single cells within mono-state cell 

samples. The experiments were performed at NCI/NIH by Dr. Nard Kubben in the 

laboratory of Dr. Tom Misteli. This chapter is adapted from a manuscript submitting to 

BMC Bioinformatics. 

2.2 Abstract 

Image-based high-throughput screening (HTS) reveals a high level of heterogeneity in 

single cells and multiple cellular states may be observed within a single population. 

However, in biomedical and clinical practice most image-based HTS analysis is based on 

average behavior. While complex analysis methods that illustrate and capture this 

heterogeneity are under development, their reliability and predictive power are still 

uncertain. Here we introduce RefCell, a multi-dimensional analysis pipeline for image-

based HTS that focuses on reproducible capturing of the cell heterogeneity and automated, 

systematic reduction of the multidimensional HTS information into biomedically 

actionable figures.  Instead of averaging, RefCell selects single cells for which all cellular 

measurements are typical.  RefCell is based on both these “typical cells” and quantitative 

assessment of the heterogeneous deviations from this typical behavior. We apply this 

pipeline to the analysis of data from a high-throughput imaging screen of a library of 320 

ubiquitin protein targeted siRNAs selected to gain insights into the mechanisms of 

premature aging. 
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2.3 Introduction 

High-throughput screening (HTS) is a powerful technique routinely used in drug discovery, 

systematic analysis of cellular functions, and exploration of gene regulation pathways [14, 

95-97]. With modern automated microscopes, image-based HTS allows for routine 

imaging of thousands of cells in multiple fluorescence channels. Due to the volume and 

complexity of imaging data, building analysis methods has become a big challenge.  

During the last decade, powerful new automated image analysis tools [13, 33, 98, 99] that 

reproducibly parametrize each cell started to emerge, as well as methods for analyzing 

high-dimensional data specifically applicable to image-based HTS [25, 32, 34, 100-107]. 

To identify multiple cell subtypes and quantify cellular heterogeneity, machine learning 

methods such as support vector machines (SVM) [32], hierarchical clustering [33], or 

clustering with Gaussian mixture models [34] have been introduced. While these methods 

are very successful in revealing cellular heterogeneity and identifying subpopulations, the 

“curse of dimensionality” dictates that for high dimensional systems clustering becomes 

ambiguous. Due to this curse of dimensionality as well as redundant and irrelevant 

measurements, these sophisticated analysis approaches may produce misleading results 

when applied to high dimensional data [11]. Furthermore, the outputs of advanced high 

dimensional analysis methods such as t-SNE or SPADE are not yet standardized, and 

biomedical and clinical researchers have little experience in how to derive actionable 

insights from the output graphs.  

Due to these challenges, recent publications are suggesting that conventional average-

based methods are sufficient for analyzing data collected from cell populations [9]. 

However, one major disadvantage of average-based analysis is that averaging is generally 

done for each dimension separately. Thus any mutual information between multiple 
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measurements for each cell are lost in the analysis. In addition, averaging tends to 

oversimplify the data by smoothing out potentially important cellular variations.  

Here we introduce a new method that incorporates multiple measurements simultaneously 

and captures similarities of cells in a single state population. Our flexible pipeline is 

focused on analysis of image-based HTS experiments of cellular phenotypes. Our approach 

captures the typical features of a single state cell population with single cell resolution. 

This is achieved by the introducing of “typical cells”.  

We introduce our approach in the context of an RNAi screen to identify cellular factors 

involved in the premature aging disease progeria. The starting point of the analysis is a set 

of single-cell metrics obtained through standard image-processing tools (e.g. [25, 108]). 

The main output of the analysis is identification of the most significant morphological 

features that together provide a holistic view of the disease phenotype, and a list of 

significant siRNA perturbations that partially rescue the disease phenotype, which we call 

“hits”. We compare our pipeline to one of the more complex methods for characterizing 

heterogenous cellular response [34] and found that our pipeline yields similar hits, yet is 

simpler, faster, and yields output graphs directly interpretable by biomedical researchers. 

2.4 Results 

We demonstrate our pipeline using datasets from an image-based high-throughput siRNA 

screen designed to investigate cellular factors that contribute to the disease mechanism in 

the premature aging disorder Hutchinson-Gilford progeria syndrome (HGPS), or progeria 

[109], a rare, fatal disease which affects one in 4 to 8 million live births [110]. HGPS is 

caused by a point mutation in the LMNA gene encoding the nuclear structural proteins 

lamin A and C [111]. The HGPS mutation creates an alternative splice donor site that 
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results in a shorter mRNA which is later translated into the progerin protein – a mutant 

isoform of the wild-type lamin A protein [110, 111]. HGPS is thought to be relevant to 

normal physiological aging as well [112-117] since low levels of the progerin protein have 

been found in blood vessels, skin and skin fibroblasts of normally aged individuals [115]. 

The progerin protein is thought to associate with the nuclear membrane and cause 

membrane bulging [118]. In addition to nuclear shape abnormalities and progerin 

expression, two additional features that have been associated with progeria are the 

accumulation of DNA damage inside the nucleus [119], as well as reduced and 

mislocalized expression of lamin B1, another lamin that functions together with lamin A 

[114].  

These cellular hallmarks of progeria are evident at the single-cell level (Fig 2.1a; Fig A1). 

Typical nuclei from healthy skin fibroblasts with no progerin expression exhibit round 

nuclear shape, homogeneous lamin B1 expression along the nuclear boundary, and little 

evidence of DNA damage (Fig A1, top). In contrast, typical nuclei from HGPS patient skin 

fibroblasts show aberrant nuclear shape, reduced lamin B levels, and increased DNA 

damage (Fig A1, bottom). For a controlled RNAi screening experiment, a previously 

described hTERT immortalized skin fibroblast cell line was used in which GFP-progerin 

expression can be induced by exposure to doxycycline, causing the various defects 

observed in HGPS patient fibroblasts [120]. RNAi screening controls consisted of 

fibroblasts in which GFP-progerin expression was induced by doxycycline treatment, in 

the presence of 1) a non-targeting control siRNA, which allowed for full expression of 

GFP-progerin and formation of a progeria-like cellular phenotype in most cells, and from 

here on will be referred to as the GFP-progerin expressing control, or 2) a GFP-targeting 
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siRNA, which eliminated GFP-progerin, restored a healthy-like phenotype, and from here 

on will be referred to as the GFP-progerin repressed control. Progerin-induced cells were 

plated in 384-well plates and screened against a library of 320 ubiquitin family targeted 

siRNAs. In addition, 12 GFP-progerin expressing controls and 12 GFP-progerin repressed 

controls were prepared on each imaging plate which enables estimation of control 

variability. Four fluorescent channels were analyzed (DAPI to visualize DNA, far red: the 

nuclear architectural protein lamin B1, green: progerin, red: γH2AX as a marker of DNA 

damage). Images were taken at 6 different locations in each well, and each plate was 

imaged 4 times under the same conditions; the whole imaging procedure was applied to 4 

replicate plates with identical setup (see Methods). Details of the screening process are 

reported in [120]. 

2.4.1 Definition of stable classification boundaries based on typical cells 

Single cell heterogeneity is prevalent in our screen (Fig 2.1). While typical progerin 

expressing cells exhibit reduced and inhomogeneous lamin B1 expression, pronounced 

DNA damage, high expression of progerin, and a blebbed cell shape, some cells in this 

population look like a typical healthy cell, with normal levels of homogeneously distributed 

lamin B1, little or no DNA damage, little to no expression of progerin, and round nuclear 

shape (Fig 2.1). Conversely, the cellular population of GFP-progerin repressed controls 

consists mostly of healthy-looking cells. However, a small fraction of cells in this 

population display features characteristic of progeria (Fig 2.1a). This heterogeneity is a 

well-established feature of HGPS patient cells [114]. 

Quantification of single cell features shows the distribution of the mean intensity for all 

nuclei (progerin channel), the distribution of standard deviations of curvature (Lamin B1 
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channel), the distribution of fluorescence intensities found along the nuclear boundary 

(boundary intensities; Lamin B1 channel), and the standard deviation of intensities inside 

nucleus (γH2AX channel) (Fig 2.1b). These metrics were extracted via automated image 

analysis tools (see Methods) from all images in all control samples. For each of the four 

channels imaged, we show the metric that best separates GFP-progerin expressing controls 

(red) from GFP-progerin repressed controls (green). Except for the intensity of progerin, 

distributions overlap significantly, highlighting substantial heterogeneity among nuclei 

within each control group. The heterogeneity is largest for γH2AX, followed by nuclear 

shape and lamin B1.  

Despite heterogenous cellular expression, the average behavior of GFP-progerin 

expressing and repressed control cells are significantly different. Since the goal of this 

screen (as many other screens for identifying potential drugs) is to identify important 

perturbations that reverse the states of diseased cells to healthy-like, we focus on 

similarities of cells in each type of controls. 

 

 
Figure 2.1 Single cell heterogeneity leads to overlapping cell populations. a) Each row corresponds to one 

fluorescent marker; columns show different nuclei selected from GFP-progerin repressed controls. Nuclear 

shapes (green contours) were extracted from the DAPI channel and mapped onto the other channels. Typical 
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healthy cells (first six columns), exhibiting normal lamin B1 expression, little DNA damage, no expression 

of progerin, and round nuclear shape, as expected for GFP-progerin repressed controls. Atypical cells (two 

rightmost columns) exhibit characteristics of progeria, namely reduced lamin B1 expression, increased DNA 

damage in the γH2AX channel, expression of progerin, and blebbed nuclear shape. b) Distribution of the 

metric that best separates the two types of controls in each channel, based on all cells in the control samples 

(green: GFP-progerin repressed cells, red: GFP-progerin expressing cells). Note that the contours obtained 

from the DAPI channel appear slightly smaller and misaligned with the images obtained in the lamin B1 

channel (see Fig S2 for the analysis of cross-channel discrepancies). The scale bar is 5 µm.   

Classification of individual cells based on such overlapping distributions is challenging, as 

indicated by the fact that the analysis of multiple sets of 300 randomly selected cells of 

each of the two reference types via a Support Vector Machine (SVM) approach (see 

Methods) does not result in a stable classification boundary (Fig 2.2). To illustrate this 

limitation, we use 200 bootstrap samplings to identify a classification boundary using all 

metric dimensions simultaneously. We then extract the variability of the classification 

boundary in each channel (Fig 2.2b). We observe that classification boundaries rotated on 

average by more than 10 degrees between trials in the progerin channel, and by somewhat 

smaller amounts in the other channels.   

Note that the angle of the classification boundary determines the relative weight of the two 

metrics shown in the scatter plot:  for example, a vertical classification boundary indicates 

that the metric plotted along the vertical axis is not important for classification.  Thus 

uncertainty about the orientation of the classification boundary implies uncertainty about 

the relative weight of the metrics in distinguishing both controls. To provide a reliable 

weighting of metrics and to find reproducible classification boundaries, we use typical 

cells, defined as cells close to the center of distribution of given cell population in a given 



 

 

31 

 

channel (see Methods). Typical cells lead to stable classification boundaries with variations 

of less than 5 degrees in all channels (Fig 2.2b).  

 
Figure 2.2 “Typical” cells yield robust metrics weighting and stable classification. a) A cartoon showing 300 

randomly selected cells for each of the two control populations and a putative classification boundary. The 

variability in angle for 200 repeats is shown in (b). The range of angles is substantially smaller when “typical” 

cells are used. 

2.4.2 Stable classification boundary enables identification of potential siRNA hits 

based on the fraction of healthy-like cells 

Once a stable classification boundary is drawn based on typical healthy-like (GFP-progerin 

repressed control) and progeria-like (GFP-progerin expressed control) samples, all cells in 

all samples can be analyzed using the classification boundary. Specifically, we measured 

the percentage of healthy-like cells in every sample (Fig 2.3). We define significant siRNA 

perturbations, or “hits”, based on the ability of the siRNA perturbation to significantly 

increase the percentage of healthy-like cells (see Methods).  
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Figure 2.3 Identifying hits from the percentage of cells classified as healthy-like. A visual representation of 

the entire screen (320 siRNA samples, 12 GFP-progerin repressed control samples, and 12 GFP-progerin 

expressed control samples). Each dot represents a sample (green: GFP-progerin repressed control, red: GFP-

progerin expressing control, blue: siRNA samples), with the vertical axis showing the average percentage 

and the error bar showing standard deviation of healthy-like cells computed from the 4 independent replicates. 

False positive rate (FPR) for each siRNA is estimated from this standard deviation. The red horizontal line 

marks the upper boundary for GFP-progerin expressing control samples used to identify hits (5 standard 

deviations from the mean of all GFP-progerin expressing controls). Only siRNAs above this line with FPR 

< 0.05 are considered as hits. The green dashed horizontal line marks the lower boundary for GFP-progerin 

repressed control samples (5 standard deviations from the mean of all GFP-progerin repressed controls).  

In all channels, GFP-progerin expressing and repressed controls are well separated, with 

the healthy-like phenotype boundary (green dashed line in Fig 2.3) above the hit selection 

threshold (red solid line in Fig 2.3). The separation between GPF-progerin expressing and 

repressed controls are the largest in the progerin channel, as expected since GFP-progerin 

repressed controls are derived from GFP-progerin expressing controls via GFP siRNA 
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modulation. According to our criteria for the selection of siRNA hits (see Methods), the 

lamin B1 has the largest number of hits (75) and followed by progerin (31), nuclear shape 

(8), and γH2AX (5) (see details in A7).  

The fraction of healthy-like cells in each well in the screen constitutes a metric not yet 

widely used in screen analysis. This metric highlights the ability of the siRNA to 

significantly alter some of the cells, but not all, whereas the more traditional metrics – 

which were also used in the original analysis of this dataset in Ref. [120] – emphasize shifts 

in the overall behavior. To compare the two metrics, we determine the Z-scores of the shifts 

in average properties (Fig 2.4a). Both types of Z-scores are determined based on GFP-

progerin expressing control samples. For the traditional metric, the threshold is held at Z-

score of 2, while our threshold is at Z-score of 5 (by Chebyshev's inequality the probability 

that the hit is spurious is less than 0.04). Note that if we increase the Z-score threshold for 

traditional metrics to 5, there will be no hits identified. These two thresholds (gray lines) 

separate each panel of Figure 2.4a into four quadrants: perturbations identified as hits by 

both methods (upper right), hits identified only by traditional metrics (lower right), hits 

identified only by the fraction of healthy-like cells (upper left), and perturbations not 

identified as hits by either method (lower left). The bottom right quadrant is empty except 

for two siRNAs in the γH2AX channel, suggesting that our method captured nearly all hits 

determined by the traditional metric. On the other hand, points in the top left quadrant 

represent siRNA hits identified only by our approach, suggesting that our metric is more 

sensitive in the sense of identifying additional possible hits. 

In addition, we benchmarked our method against one of the existing multi-dimensional 

analysis approaches that is also based on the difference in cell type fractions [34]. The 
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method in Ref [34] is based on more complex clustering of all cells into multiple cell types 

(Fig 2.4b). Using the method of Ref [34], we first identified multiple clusters (9 clusters in 

progerin and γH2AX channels, and 8 clusters in lamin B1 channel) in 10,000 combined 

controls cells (5,000 for each control type). We then calculated the profile of cell 

distribution in each cluster for all siRNA samples and compared with GFP-progerin 

repressed controls (healthy-like). Since the original workflows of Ref [34] did not include 

hits selection, we adapted the workflow of Ref [34] and introduce the inverse distance 

between each siRNA sample and GFP-progerin repressed controls as the metric for hits 

selection. Figure 2.4 shows a strong correlation between the metric derived from this 

benchmarking test (horizontal axis) and the RefCell analysis pipeline (vertical axis) (see 

details in Appendix A.8). 

 
Figure 2.4 Comparing the percentage of healthy-like cells with traditional average-based metrics and another 

multi-dimensional analysis approach. a) Each panel depicts one channel (nuclear shape (DAPI channel) is 

not taken into consideration in Ref. [120], hence it is not included here). Every point represents a siRNA 

sample; the value shows Z-scores calculated based on the distance from the mean of all GFP-progerin 

expressing control samples using the traditional average-based metric calculated by directly averaging 
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intensity measurements for all cells in a sample (x-axis) and our metric (y-axis). Gray lines indicate hit 

thresholds for the corresponding metrics. Note that our metric identifies every hit found by the traditional 

method (except for the two hits in the γH2AX channel). In addition, our metric selects additional potential 

hits (siRNAs in the upper left corner) missed by the traditional metric. b) Similar as in a) each panel shows 

one channel in the screen. Each circle depicts a siRNA sample. The horizontal axis shows inverse of the 

distance to GFP-progerin repressed (healthy-like) controls, the larger this value, the similar the siRNA to 

GFP-progerin repressed controls. The vertical axis shows the percentage of healthy-like cells, and the dashed 

lines are thresholds for hits in respective channels.  

2.4.3 Classification boundary and metric weighting obtained via typical cells is 

useful for characterization of all perturbations  

As explained above, we assess the phenotype for each perturbation in our high-throughput 

screen relative to two types of controls. Thus, the weighting of metrics given by the SVM 

classification boundary is based on both control phenotypes (Fig 2.2). In Figure 2.3, we 

had focused on subsets of cells that cross the classification boundary, i.e., that exhibit a 

shift in property perpendicular to the classification boundary.  

In our next step, we characterize shifts of the phenotype both perpendicular and parallel to 

the SVM classification boundary (Fig 2.5a). We find that most perturbations shift cell 

properties perpendicular to the classification boundary.  This indicates that the imaging 

metrics which are most important to distinguish typical cells in the two control phenotypes 

are also the imaging metrics that change most for the siRNA perturbations.  However, when 

the classification metrics are computed from randomly selected cells, - the blue points in 

Figure 2.5b – we observe shifts both parallel and perpendicular to the classification 

boundary. (Fig 2.5b). One notable exception is the progerin channel in which the two 

control cases are very well separated (Fig 2.1b). The analysis above indicates that the 320 

siRNA screen focuses on perturbations that primarily affect the progeria phenotype.  
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Figure 2.5 The shift of mean cell properties by siRNA perturbations for classification boundaries computed 

from (a) typical cells and (b) randomly selected cells. Each green and red point represents the mean of all 

cells in one GFP-progerin repressed (healthy-like) or GFP-progerin expressing (progeria-like) control sample, 

respectively. There are 12 samples for each control type. Each blue point represents the mean of all cells for 

one siRNA perturbation. The classification boundary is shown as a vertical dotted black line. Four siRNA 

samples that deviate significantly from both controls in each of the four channels are labeled (siPHF13 for 

progerin; siNEDD4 for lamin B1; siTRIML1 for DAPI (nuclear shape), and siRNF8 for γH2AX). Note that 

the range of the x-axis is the same as the range of the y-axis in all panels. a) Most points are preferentially 

shifted perpendicular to the classification boundary. Variation parallel to the classification boundary is small 

compared to the variation perpendicular to it. b) siRNA perturbations are shifted both parallel and 

perpendicular to the classification boundary when the classification boundary is computed from randomly 

selected cells.  

Figure 2.5a also identifies siRNA perturbations that yield unusual changes in phenotype. 

Four examples of such siRNAs are highlighted here, one for each channel: siPHF13 for the 

progerin channel, siNEDD4 for the lamin B1 channel, siTRIML1 for the DAPI channel, 

and siRNF8 for the γH2AX channel. From each of these siRNA samples, four typical cells 

(picked using the same method as typical control cells; see Methods) are shown below in 
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Figure 2.6 (a, b, d, and e). For comparison, four typical cells in both progeria-like and 

healthy-like controls are also selected (Fig 2.6c and f). siPHF13 treated cells (Fig 2.6a) 

express even higher levels of progerin than cells in progeria-like controls and progerin 

aggregates in the nucleus. Upon examining lamin B1 levels expressed by cells treated with 

siNEDD4 (Fig 2.6b), we find that lamin B1 no longer localizes only to the nuclear 

boundary, but spreads throughout the nucleus in an inhomogeneous way. In addition, in 

this case, lamin B1 expression co-localizes with progerin expression. siTRIML1 is an 

outlier in both the progerin and nuclear shape channel, with overexpression of progerin 

similar to that observed in cells treated with siPHF13. Furthermore, cells treated with 

siTRIML1 have nuclear shapes that are even less regular than progeria controls’. Finally, 

for cells treated with siRNF8 DNA damage is more substantial but also more localized 

(isolated bright dots in the γH2AX channel) than in progeria-like controls. These results 

suggest that a classification boundary built from typical cells in controls is valuable to 

analyze the full perturbation screen and that outliers identified in this classification point 

to perturbations that yield unusual properties.  

 
Figure 2.6 Typical cells in siRNA perturbations identified as different from both controls. a) siPHF13 is an 

outlier in the progerin channel: cells treated with siPHF13 express more progerin than the progeria-like 
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control cells (f), and the expressed progerin appears to be distributed differently from the progeria control. b) 

siNEDD4 is an outlier in the lamin B1 channel; cells treated by siNEDD4 express more lamin B1 than the 

healthy-like control cells (c), and the expression is less homogenous. In addition, the expression of lamin B1 

is spatially co-localized with the expression of progerin in siNEDD4-treated cells. d) siTRIML1 is an outlier 

in both DAPI (nuclear shape) and progerin channels. Cells treated by siTRIML1 tend to have elongated nuclei 

compared to the healthy-like and the progeria-like controls. Also, clusters and increased progerin expression 

(compared to the progeria-like control (f)) can be observed. e) siRNF8 is an outlier in the γH2AX (DNA 

damage) channel. Note that the contours obtained from the DAPI channel appear slightly smaller and 

misaligned with the images obtained in the lamin B1 channel (see Fig A2 for the analysis of cross-channel 

discrepancies). The scale bar is 5 µm.  

2.4.4 Integrating information from multiple channels increases hit detection 

accuracy 

So far we have considered multiple metrics separately for each channel. This means that 

we may have labeled a cell as healthy-like based on one channel, but progeria-like when it 

is analyzed in another channel. This approach reflects uncertainty regarding the progeria 

phenotype at the single cell level: although it is known that progeria is caused by the 

expression of the lamin A-mutant progerin, it remains unknown how progerin expression 

changes other features, such as blebbed nuclear envelope, DNA damage accumulation, and 

mislocalized lamin B1 expression at the single-cell level, and how these different features 

correlate with one another. For example, in one study progeria and healthy cells were 

distinguished using only nuclear shape measurements [121], implying that nuclear shape 

is a dominant criterion in detecting progeria. However, another study found that nuclear 

shape could change independently from DNA damage accumulation inside the nucleus 

[119].  
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Thus, as a final analysis step, we study the relationships among the four features associated 

with progeria at the single-cell level. RefCell integrates single cell information from 

multiple channels in two different ways. First, we display the percentage of healthy-like 

cells for a primary marker vs. the percentage of cells identified as healthy-like according 

to the other three markers (Fig 2.7). The diameter of the circle represents the fraction of 

cells identified as healthy-like according to all four markers. As expected, GFP-progerin 

repressed controls (i.e., healthy-like controls, green circles) show a larger percentage of 

cells identified as healthy-like for all four markers than any of the 320 perturbations (blue 

circles).  Figure 2.7 shows that the percentage of healthy-like cells according to a given 

marker is correlated with the percentage identified as healthy-like according to the other 

three markers are correlated, although the correlation is weak in all channels except 

progerin. 

Second, we integrated image metrics from all channels together and applied our method on 

combined metrics. We found that the three metrics related to progerin (mean intensity, 

standard deviation of intensity and boundary intensity) are the most important metrics in 

separating GFP-progerin expressing and repressed controls, contributing more than 60% 

in the direction of classification boundary. Lamin B1 is next, contributing about 20%. In 

addition, we found that 99% siRNA hits identified by combining all channels are also 

identified by detecting hits separately for each channels; however, the combined analysis 

allows us to hone in on a subset of 61% of all hits (based on separate analysis of each 

channel). 
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Figure 2.7 Integrating information from all channels:  Percentage of healthy-like cells in one channel vs. 

percentage of cells classified as healthy-like in the other three channels. Each circle stands for a sample (green: 

GFP-progerin repressed, red: GFP-progerin expressing, blue: siRNA). The size of the circle is proportional 

to the percentage of cells that are classified as healthy-like in all four channels (scales are shown in top-right 

panel). The dashed vertical lines are thresholds for hit selection in the corresponding channel. Shown in the 

upper right corner of each panel is the linear correlation coefficient (note that p < 0.01 after Bonferroni 

correction in all cases). 

2.5 Discussion 

One of the major usages of image-based high-throughput screening (HTS) experiments is 

to identify important RNAi perturbations for pathway identification or drug discovery. A 
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major strength of image based HTS is that measurements of multiple parameters are carried 

out on each cell, thus promising insights into mutual information and correlations among 

parameters at the single cell level. However, newly developed analysis methods yield 

complex and hard to interpret end results, and may actually misrepresent the data due to 

the curse of dimensionality [11].  In fact, most current applications of image based HTS 

still rely on simple averaging of each parameter.  Here we introduce RefCell, a method that 

fills the gap between statistically sound average-based methods and statistically 

challenging high-dimensional methods. The underlying assumptions of RefCell are that the 

properties of typical cells are useful reference points for the biological or clinical question 

of interest and that the best approach to identify hits is to measure changes along a straight 

path (in high dimensions) between the references points.  

The first step in RefCell is the selection of two sets of controls and the choice of “typical” 

cells within these controls. Here we choose typical cells as cells that are average in all 

aspects of their phenotype, i.e., all the metrics are close to the mean. In our dataset, one 

control represents cell nuclei of a model for progeria which show several defects, and the 

other control approximates healthy cell nuclei. Since image-based metrics are 

heterogeneous, the corresponding distributions of measured values overlap significantly at 

the single-cell level (Fig 2.1). Selecting typical cells yields distributions that are well 

separated, enabling stable classification boundaries between healthy-like and progeria-like 

cells.  The classification boundary reveals both the value of each metric that marks this 

transition and the relative weight of each metric (Fig 2.2).   

For the HTS used in this investigation, we find that surprisingly the metrics we identified 

as important are also the metrics that change most for all perturbations. A graphical 



 

 

42 

 

representation of this observation is shown in Figure 2.5a, where the two controls (green 

and red dots) lay out a straight path between a progeria-like phenotype and a healthy-like 

phenotype.  All siRNA perturbations (blue dots in Fig 2.5a) fall along this straight path 

indicating that the metrics that were identified as important are the ones that are changing 

most in the 320 siRNA perturbations. On the other hand, if all cells rather than typical cells 

are used for classification and weighting, classification boundaries are less stable (Fig 2.2), 

and the 320 siRNA perturbations do not change the highly weighted metrics more than 

other metrics (the blue dots in Fig 2.5b form a cloud). This indicates that the screen does 

not involve random perturbations but perturbations targeted specifically to progeria.    

With these weights and a stable classification boundary, we were able to quantify the 

heterogeneity of all cells in all samples. This analysis yields a simple parameter: The 

fraction of cells identified as healthy-like in each sample. The fraction of normal cells had 

been identified in other studies as a useful parameter [122]. In RefCell, this parameter is 

used in multiple steps and is first determined separately for each channel to identify 

potential “hits” in the siRNA perturbation screen (Fig 2.3). 

Our new parameter, the fraction of healthy-like cells represents an ensemble metric for a 

cell population and correlates with the average-based metrics traditionally used in most 

HTS.  However, the classification boundary location and weight of metrics are tuned to the 

specific classification challenge by identifying two control populations. RefCell identifies 

all hits selected by an average-based method, but with higher statistical significance (Z-

score). In addition, RefCell identifies additional hits even when the cutoff Z-score for hits 

is increased to 5 for in RefCell, compared to the Z-score cutoff of 2 for the average-based 

m.  
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Furthermore, RefCells focus on the fraction of healthy-like cells means that any 

perturbation that makes a substantial fraction of cell nuclei appear healthy-like is included 

as a possible hit, even if the average cell properties do not change. This allows us to include 

all perturbations that are capable of making at least a subset of cells appear healthy-like, 

even if the same perturbation is ineffective or detrimental for other cells.   

The final step in RefCell focuses on integrating information from multiple imaging 

channels (Fig 2.7). When considering all siRNA perturbations and all channels 

simultaneously, our analysis confirms that the progerin level is the most important feature 

in progeria disease, and that decreasing progerin expression levels is the most efficient way 

of removing all four principal phenotypes associated with progeria.  However, we also note 

significant variability in how effectively a given perturbation leads to healthy-like 

phenotypes in each channel. This information helps prioritize hits that have been identified 

separately in each channel. 

In addition, we compared RefCell with a published method that aims to characterize 

heterogeneity in cells using EM clustering with Gaussian mixture models (GMM) [34].  

Since the published method did not provide a metric for hits selection, we used inverse 

distance to GFP-progerin repressed controls. This distance is calculated using symmetrized 

KL divergence as used in [34]. The higher the inversed distance, the more important the 

perturbation. We show that in both progerin and lamin B1 channel, our metric agrees well 

with the other method (see Appendix A.8) with Spearman correlation coefficient 0.98 for 

γH2AX channel and 0.91 for lamin B1 channel (p value << 0.05 in both cases). However, 

the complex clustering approach does not allow us to integrate information from all 

channels, since complex clustering cannot be used for the analysis of cell morphology (the 
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dimensionality of metrics is too large for meaningful clustering with “only” thousands of 

cell images in each sample).  

In summary, RefCell represents a simple but useful computational approach for analyzing 

image-based HTS datasets. RefCell is broadly applicable to single-cell-based high-

throughput screens that focus on perturbing cells from one distinct phenotype to another. 

RefCell uses image processing and machine learning algorithms to identify hits that 

substantially increase the fraction of cells that regain one of the two reference phenotypes. 

RefCell can be used to analyze each fluorescent channel separately, and also to integrate 

the single-cell information from all channels. Applied to a progeria HTS dataset, RefCell 

reveals a complex interplay among the four standard indicators of proteria (measured in 

four independent fluorescence channels), revealing that the list of hits depends strongly on 

the choice of indicator.  RefCell analysis further revealed that the screen was not unbiased, 

but focused on a pathway with known links to the disease.  

2.6 Methods 

2.6.1 Experimental procedure 

hTert immortalized doxycycline GFP-progerin inducible human skin fibroblasts (P1 cells) 

were generated and induced (96 hr). Reverse siRNA transfections were carried out in 

quadruplicate in a 384-well format (Perkin Elmer Cell carrier plates) in the presence of 

doxycycline (1 mg/ml) with pooled siRNA oligos (50nM; 4 siRNAs/target) from the 

Dharmacon siGENOMESMARTpool siRNA Human Ubiquitin Conjugation subset 1 and 

2 libraries. Positive and negative controls consisted of GFP-targeting and non-targeting 

siRNA (50nM; Ambion, #AM4626, #AM4611G), respectively. Transfected cells were 

incubated overnight, after which 60 ml of antibiotic and doxycycline (1 mg/ml) containing 
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medium was added, and cells were incubated for another 3 days (37 oC, 5% CO2). Details 

of the experiments are reported in [109]. A full list of screened siRNAs can be found in 

Appendix A Section 9. 

2.6.2 Image analysis 

While metrics similar to the one used in this study could be obtained with commercial 

software, we used a custom image analysis method modified from methods in [123]. 

Details are described in Appendix A Section 3. A list of measurements and short 

descriptions are shown in Table 1.  

Table 2-1 Image measurements used in this study. 

 Name of measurement Description 

Nuclear 

shape 

Area Area of nucleus 

Circularity 
Ratio of perimeter to area, normalized so that a circle 

would have ratio 1 

Eccentricity Eccentricity of nucleus 

Invaginations Number of invaginations along the nuclear boundary 

Major Axis Length 
Major axis length of the best fit ellipse to the nuclear 

boundary 

Mean Curvature Mean curvature along the nuclear boundary 

Mean Negative Curvature 
Average of only negative curvatures along the nuclear 

boundary 

Minor Axis Length Minor axis length of the best fit ellipse 

Perimeter Perimeter of nucleus 

Solidity 
Percentage of pixels inside the convex hull that are 

inside the boundary 

Std of Curvature The standard deviation of curvature 

Tortuosity Tortuosity of nuclear boundary 

Intensity 

BP Intensity Mean intensity of points along the nuclear boundary 

Mean Intensity Mean intensity inside the nucleus 

Std of Intensity Standard deviation of intensity inside nucleus 

2.6.3 Analysis of the two control groups 

Selection of typical control cells. Within each control population, typical cells were 

defined as a core of n=300 cells closest to the mean based on the L1 (Manhattan) distance, 

calculated separately for each channel. We pooled all control samples together for typical 

control cell selection. On average there are about 20,000 cells in each type of controls. 

Typical progeria-like cells, selected out of the population of GFP-progerin expressed 
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controls, show HGPS characteristic nuclear defects (increased progerin expression, 

misshapen nuclei, reduced lamin B1 protein levels, and increased DNA damage shown by 

expression of γH2AX). Typical healthy-like cells, selected from GFP-progerin repressed 

controls, show no sign of HGPS nuclear defects. This selection procedure was carried out 

independently for each replicate plate. Additional details are provided in Appendix A 

Section S4. 

Classification using Support Vector Machines (SVM). The sets of typical cells were 

used to classify healthy- and progeria-like phenotypes via SVM, an efficient and robust 

supervised machine learning algorithm for classification [124]. Using a linear kernel, SVM 

finds the optimal linear boundary in instance space (straight line in 2D, planes in higher-

dimensional spaces) that separates two classes of instance data points, while maximizing 

the margin of class separation. We performed SVM using the ksvm() function in kernlab 

package in R (version 3.1.1). After rescaling all nucleus metrics to zero mean and unit 

variance, a classification boundary was obtained between typical healthy and typical 

progeria cells. The distance from each nucleus to the classification boundary, which is a 

linear combination of all the measurements, can be used as a score to classify the proximity 

of that cell to each phenotype (healthy- or progeria-like). In order to distinguish between 

the two sides of the classification boundary, we define positive distances as associated with 

healthy-like cells, and negative distances with progeria-like cells. The SVM analysis also 

yields the relative importance of each metric in distinguishing between the two phenotypes 

as shown in Appendix A Section 5. 

2.6.4 Identification of significant perturbations 

Determination of the fraction of healthy-like cells. Having obtained a classifier 

boundary based on typical control cells, we then applied it to all samples (including all 
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control samples and siRNA perturbations samples). For this, we first normalize all cells to 

be classified using the z-score transformation determined from typical control cells (i.e., 

subtracting the mean of typical control cells and dividing by their standard deviation). Next, 

we calculate the distance from each cell to the classification boundary and use the sign of 

the distance to classify individual cells as either healthy- or progeria-like. Finally, we 

calculate the percentage of healthy-like cells in each sample. This percentage is obtained 

separately for each replicate plate.  This allows us to report the mean percentage (averaged 

over all replicate plates) and its estimated uncertainty (resulting from the variance over 

multiple replicates). The number of cells in each perturbation sample ranges from 500 to 

2000. For more details, see Appendix A Section 6. 

Identification of siRNAs that generate significant healthy-like perturbations (“hits”). 

We repeated the screen 4 times (yielding 4 independent replicates), and the analysis 

described above was done separately for each plate (i.e., given a sample, there are 4 

independent estimates for each parameter). To carry out the hit selection process, we first 

averaged each parameter over the 4 replicates. Then we excluded potentially cytotoxic 

siRNA samples, by excluding those that contain less than 50% of cells compared to GFP-

progerin repressed samples (the number of cells is similar in each sample at the start of the 

experiment). Next, a siRNA hit was selected based on the following two criteria: 1) the 

fraction of healthy-like cells is above a threshold (a mean and standard deviation were 

computed based on the percentage of healthy-like cells in each of the 12 GFP-progerin 

expressing control samples, the threshold was set to 5 standard deviations higher than the 

mean); 2) the false positive rate (FPR) based on the variation among the 4 replicates is less 

than 0.05.   
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Chapter 3 CytoBinning: immunological insights from multi-

dimensional data 

3.1 Overview 

In this chapter, I try to reconcile the conflict between difficulty in interpreting sophisticated 

high dimensional analysis methods and the impression of the low information content of 

2D scatterplots by introducing a binning method I termed “CytoBinning”. The increasingly 

large number of measurements that can now be made simultaneously using cytometry 

platforms have created the impression that 2D scatter plots, which used to be the center 

stage of cytometry data analysis, don’t contain enough information. However, 

sophisticated methods that fully embrace large numbers of measurements are hampered by 

the difficulties of interpreting high-dimensional datasets, and this limits their practical 

utility. CytoBinning fills the gap of complexity between conventional manual analysis and 

complex automated analysis to extract deep content in scatter plots which can be later 

cascaded into more complicated clustering or classification algorithms to obtain novel 

biological insights. The experimental data were obtained from the online repository: 

https://flowrepository.org/. This chapter is adapted from a manuscript submitted to PLOS 

Computational Biology. 

3.2 Abstract 

New cytometric techniques continue to push the boundaries of multi-parameter 

quantitative data acquisition at the single-cell level, particularly in immunology and 

medicine. Sophisticated analysis methods for such ever higher dimensional datasets are 

rapidly emerging, with advanced data representations and dimensional reduction 

approaches. However, these are not yet standardized, and clinical scientists and cell 

biologists are not yet experienced in their interpretation. More fundamentally their range 

https://flowrepository.org/
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of statistical validity is not yet fully established.  We, therefore, propose a new method for 

the automated and unbiased analysis of high-dimensional single-cell datasets that is simple 

and robust, with the goal of reducing this complex information into a familiar 2D scatter 

plot representation that is of immediate utility to a range of biomedical and clinical settings. 

Using publicly available flow cytometry and mass cytometry datasets, we demonstrate that 

this method (termed CytoBinning), recapitulates the results of traditional manual 

cytometric analyses and leads to new and testable hypotheses. 

3.3 Introduction 

Cytometry is a multi-parameter single-cell measurement technique that is widely used in 

biological and clinical studies [37, 125-129]. One of the main uses of flow cytometry, 

which has had a major impact across the fields of immunology and medicine, is to 

differentiate immune cells compositions among cell types or patients. Modern flow 

cytometers can routinely measure 15-20 cellular markers on millions of cells from dozens 

of samples in one experiment and can sort cells into subpopulations based on those 

markers. Recently mass cytometry has expanded the number of markers that can be 

measured simultaneously to 100, though the technique is destructive to cells and does not 

allow for sorting. The conventional way of analyzing flow cytometry data uses a gating 

strategy which requires the manual selection of regions of interest (ROI) on sequential 2D 

scatterplots. This type of analysis is very labor intensive and inefficient for such large 

datasets and also suffers from subjectivity in both the sequence of 2D scatterplots and 

selection of thresholds (ROI) [5, 37, 45, 51, 52, 127]. Therefore, as both the number of 

cells analyzed and the number of markers quantified for each cell have grown over the past 
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decade, novel, automated and unbiased analysis methods for flow cytometry data are 

emerging [1].  

These novel analysis methods can be divided into two categories based on the problem 

they address: 1) methods trying to mimic and automatize the process of manual gating [54, 

55, 61, 64, 69, 130, 131]; and 2) methods trying to identify cell populations using all 

markers simultaneously without prior biological knowledge [58, 59, 132, 133]. Some 

cutting-edge approaches to automating manual gating, such as flowDensity [54], are very 

successful in re-identifying cell subsets that match with manually gated subsets in an 

automatic, reproducible way. However, gating (both manual and automatic) relies heavily 

on prior experience to inform the sequence of markers to gate. Furthermore, in gating, 

researchers must define the cell phenotypes to look for in advance of their analysis, hence 

hindering discovery of novel cell types and not tapping into the full potential of the 

acquired data. Gating methods also only explore a very limited portion of the total data 

space, though unsupervised methods have been published that enhance the efficiency of 

data usage, with the potential to reveal otherwise hidden differences between datasets [70]. 

Most unsupervised methods that allow novel cell type discovery aim to identify regions 

with high cell density in multi-dimensional space [56, 58-60, 63, 66, 70, 72, 73, 75]. This 

assumes cells form distinct phenotypes and that only cells inside those relative high-density 

areas (peaks) are of importance. However, cells that are in between two high-density 

clusters (valleys) may also have potential biological significance [76]. Another limitation 

of clustering based methods is that concatenating different samples (which is a widely used 

strategy [62, 75]) with potential batch effects can be problematic, hence limiting the 

meaningful combination datasets across institutions (which is very common in clinical 
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trials). In addition, these clustering-based methods require estimation of nearest neighbors 

in high-dimensional space which suffers from “curse of dimensionality” and may lead to 

misleading results [77]. As a result, people have been calling for the use of lower 

dimensional methods such as gating based on 2D scatterplots [11]. 

In this paper, we present a new method for analyzing cytometry data that utilizes such 2D 

scatter plots. Instead of gating, we dig deeper into the scatter plots mining the information 

that is largely bypassed by other methods. This method is useful for the majority of 

comparative studies that aim to elucidate the difference between two groups of samples. 

Our method, which we term CytoBinning, identifies the most information-rich 2D scatter 

plots and extracts biological insights from them. We show that biologically relevant 

differences can be discovered from the pairs of markers identified with this approach. First, 

we introduce CytoBinning with a synthetic dataset, and then apply it to two public high-

dimensional single-cell datasets, a flow cytometry dataset comparing composition in 

immune cells between old and young healthy human donors [59], and a mass cytometry 

dataset analyzing the immune signature of eight types of human tissues [134]. 

3.4 Results 

We synthesized two point-patterns based on the expression of two virtual markers: maker 

A and marker B. Ten samples were generated for each point-pattern. The first point-pattern, 

called pattern A, consists of three point-clusters. Two large clusters each contain 5,000 

points and a third relatively small cluster contains about 2,000 points. The three clusters 

are randomly sampled from Gaussian distributions that centered at point (0, 4), (0, -4) and 

(4, 0) with standard deviation 2, 2, and 1 respectively. The second point-pattern, called 

pattern B, also consists of three point-clusters. The two large clusters are generated in the 
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same way as point-pattern A. However, the third smaller point-pattern only contains 200 

to 500 points, sampled from a Gaussian distribution centered at point (-4, 6) with standard 

deviation 1 (Fig. B1).  

 

3.4.1 Percentile-based binning is a coarse-grained representation of point patterns 

An example of percentile-based binning is shown in Figure 3.1 using one synthetic sample 

with point-pattern A. Points inside the point-pattern were first binned into 3 levels based 

on the expression of marker A and B independently, each level containing one third of 

points. The 3 levels for marker A and B were then combined on a 2D scatter plot to form 

9 sub-regions (these sub-regions are called boxes). The percentage of points in each box 

changes depending on the point-pattern. This binning method has been used as an 

alternative method to calculate mutual information (MI) in a robust and computationally 

efficient way [135]. MI is a measure of dependence between two random variables widely 

used in gene network inference [136] as a general measure of interdependency between 

genes. In our method, instead of summarizing the binning information into one number 

(MI), we used percentage of points in each box as a coarse-grained representation of point-

patterns to obtain detailed information of point-patterns. 
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Figure 3.1 An example of percentile-based binning as a representation of 2D point-pattern (number of bins 

= 3). (a) Synthesized point-pattern formed by expression of marker A and marker B. (b) Points are binned 

into 3 bins each containing 1/3 (33.3%) of the total points. The bins are labeled numerically based on the 

expression level of the related marker, with 1 the lowest and 3 the highest (similarly if points are divided into 

5 bins then the highest level is 5). This binning is done independently for marker A and marker B based on 

their expression. (c) Bins obtained in (b) are combined so that 9 sub-regions referred as boxes are formed. 

The percentage of points inside each box is calculated, and the matrix of percentages is straightened to a 

vector so that the 2D point-pattern shown in panel (a) is coarse-grained to the vector in (d). 

3.4.2 Applying percentile-based binning to multiple samples enables meaningful 

classification 

After we demonstrate how to represent point-patterns with percentile-based binning, next 

we show that this representation is able to capture real differences in point-patterns. Figure 

3.2a shows two examples of the synthetic point-patterns. In total, 10 samples were 

generated for each point-pattern, and each sample was analyzed using percentile-based 

binning to generate the row vectors shown in Figure 3.2b. Using 3 bins, our method is able 
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to cluster the two point-patterns into distinct groups, and correctly identifies the most 

significant difference (Fig. 3.2b & c). Boxplots of cell percentage in each box show that 

the box with most distinct difference between the two point-patterns is box B32 which 

contains the third cluster of point-pattern A (lower panel of Fig. 3.2b). This is the most 

significant difference between these two point-patterns, and it was captured without 

referring to density distribution of points. Minor differences between these two point-

patterns (the small cluster located at the top left corner) were not spotted, since the 

percentage of points in box B13 is similar in both point patterns (Fig. 3.2b). However, this 

third cluster in pattern B (~ 2% to 5%), was identified when the number of bins was 

increased to 6 (Fig. B2). Hence, the depth of analysis depends on the number of bins. 
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Figure 3.2 Percentile based binning is able to detect real differences between point-patterns. (a) Example of 

the two synthesized point-patterns A and B. The two large clusters in pattern A and B contain same number 

of cells and were generated with the same distribution. Pattern A contains a relatively large third cluster (10% 

to 20% of cells) at center right of the pattern and pattern B includes a smaller third cluster (2% to 5% of cells) 

on the top left corner. (b) Upper panel shows a heatmap of point percentage in each box for all samples, and 

lower panel shows boxplots of point percentage in each box between the groups of point-patterns. (c) Labels 

of each box. Highlighted is box B32. 
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3.4.3 The maximum number of bins for binning depends on the number of samples 

(patients) 

We’ve seen in the previous section that the depth of analysis depends on the number of 

bins used. And here we are going to show that the maximum number of bins we could use 

depends on the total number of samples (patients), for using a large number of bins to 

classify a small set of samples would cause overfitting. We see that false positive rate (FPR) 

increases with the numbers of bins used for binning (Fig. 3.3a). However, the maximum 

number of bins with tolerable FPR (FPR < 0.05) increased when we increase the number 

of samples from 20 to 60 (Fig. 3.3a). While with 20 samples we can only use as many as 3 

bins to keep FPR under 0.05, with 60 samples this number increased to 6. And using 6 bins, 

our method is able to identify both of the differences we artificially generated between 

point-pattern A and B (Fig. B3). To get a general picture of how the maximum number of 

bins relates to number of samples, we calculated the maximum number of bins with FPR 

= 0 (we use this stringent condition because i) Synthetic data is easier to classify; ii) Real 

dataset contains more than 2 markers, and multiple tests correction should be taken into 

consideration) for various number of samples. We found that when the two groups to be 

classified contain the same number of samples (patients), the maximum number of bins is 

around the square root of half the sample size (Fig. 3.3b). In reality, the number of samples 

(patients) in different groups is rarely equal. However, we can overcome this inequality by 

assigning different number of samples to cross validation set for different groups so that in 

training dataset each group will have the same number of samples. Thus, once we know 

the number of samples in training dataset, we get a reasonable estimate for the number of 

bins to use. 
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Figure 3.3 The maximum number of bins depends on the number of samples (patients). (a) Estimated false 

positive rate (FPR) vs. number of bins for 20 samples (red) and 60 samples (blue). The dotted black line 

represents FPR = 0.05. The number of bins that leads to a high FPR (>0.05) is considered overfitting the 

dataset. (b) The maximum number of bins with FPR = 0 vs. total number of samples used in the dataset. Blue 

dots show simulation results with our synthetic datasets and red dots shows the estimated number of bins 

using the rule of thumb: 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑠 =  𝑟𝑜𝑢𝑛𝑑(√𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠/2). 

3.4.3.1 Application to two real human cytometry datasets 

Next, we applied our method to two real flow cytometry datasets. Both datasets aim to 

identify differences between two biologically different patients/donor groups. In general, 

in order to get rid of debris and dead cells, some pre-processing steps should be taken 

before applying our method (e.g. manual/automatic gating to get live cells). In addition, 

depends on the question of interest, further gating can be applied to get more focused cell 

types, e.g. T cells, CD4+ T cells, etc. The pre-processed datasets are then the input for our 

method. We first determine the appropriate number of bins to use based on the number of 

samples in a dataset. Next, we apply the binning method showing in Figure 1 to the pre-

processed dataset. Unlike the simulated dataset showing above which only contains two 

markers, real cytometry datasets usually measure much more markers which results in even 
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more marker pairs. The binning method is applied to every possible pairs of markers. Then, 

in order to identify the important marker pairs, we separated the dataset into training and 

testing subsets. Using a classification algorithm called support vector machine (SVM) 

[124], we define important marker pairs as the ones that are able to achieve 100% 

classification accuracy in both training and testing subsets. Once these marker pairs were 

determined, we move on to identify which regions formed by these marker pairs (boxes) 

are significantly different between the two groups. 

3.4.3.2 Old versus young 

The first dataset we analyzed aims to find differences in the composition of immune cell 

types between old and young healthy donors [137]. Peripheral blood mononuclear cell 

(PBMC) samples from 34 healthy old donors (ages 60 and above) and 22 healthy young 

donors (ages 19 to 35) were taken, and their cellular composition were quantified by flow 

cytometry. In total, 16 markers were measured: Ki67, CD95, CD127, CD57, CD3, 

CD45RA, CD8, CD14, CCR4, CD27, CD11b, PD-1, CD4, CD28, CCR7, and a viability 

dye (live/dead). We first manually gated for the live cells (Fig. B4) which were used as 

input for our method. At this stage, about 20% of samples (4 young samples and 6 old 

samples) were randomly chosen as a cross validation set. We determined the optimal 

number of bins in remaining training dataset to be 5 (as the total number of samples in 

training set is 46, Fig. 3.3b), then we applied SVM classification based on the binning 

results of all possible pairs of markers. In total, we identified two pairs of markers (CD8 - 

CCR7, CD3 - CD4) that are able to classify old and young donors with 100% accuracy 

both in training and testing dataset (Fig. B5). Scatterplots of CD8 vs. CCR7 and CD3 vs. 

CD4 for randomly selected old and young donors are shown in Figure B6 and B7. Boxes 

whose cell percentages are significantly different between old and young donors are also 
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identified. We selected the two boxes that are most different between old and young donors 

for demonstration below; remaining results can be found in supplementary information 

(Fig. B8 – B10).  

3.4.3.3 Naïve CD8+ T cells are found significantly decreased in elderly donors using 

only CD8 and CCR7 expression.  

We first look at box B55 which contains cells whose expression of both CD8 and CCR7 

are in the top 20% (i.e., CD8high CCR7high, Fig. 3.4a). We find that percentage of cells inside 

box B55 decrease significantly in old donors (Fig. 3.4b). On the other hand, mean 

fluorescence intensity (MFI) of cells inside box B55 are similar among donors for all 

markers, indicating cells inside box B55 are homogeneous across all samples (Fig. 3.4c). 

Notice that CD3 and CD45RA MFI levels are high for all samples, and since cells inside 

box B55 already express highest 20% of both CD8 and CCR7, one possibility is that cells 

inside B55 are naïve CD8+ T cells. Indeed, cells in B55 agrees well with manually gated 

naïve CD8 cells (Fig. B11 & B12a) on single cell level. In addition, when comparing the 

expression of CD45RA and CCR7 between cells in B55 and manually gated CD8 naïve 

and memory cell types, we find that cells in B55 match well with naïve cells for young 

donors with slightly higher variation on CD45RA (Fig. 3.4d). Cells in B55 express higher 

variation in CD45RA for older donors, which is expected since box B55 was selected 

without expression information of CD45RA (Fig. 3.4e). Together, these results suggest 

that cells inside box B55 resemble naïve CD8+ T cells. Decreasing of naïve CD8+ T cells 

with ageing is a well-known observation in immunology [138] and is also identified in this 

dataset (Fig. B12b). In addition, we found that the abundancy of effector memory (TEM) 

and effector memory RA+ (TEMRA) CD8+ T cells are increased in old donors, as suggested 

by the increased percentage of cells in B51 (CD8high CCR7low) (Fig. B13). 



 

 

60 

 

 
Figure 3.4 Naïve CD8+ T cells were identified by our method as significantly decreased in old donors using 

only two markers: CD8 and CCR7. (a) An example showing scatter plot of CD8 vs. CCR7 with box B55 

highlighted. (b) Boxplot of cell percentage inside box B55 between the two groups of donors. Each dot is a 

donor. (c) Scatter plot of mean fluorescent intensity (MFI) of each donor, each point shows a donor (purple: 

young, orange: old). (d) & (e) MFI of CD45RA vs. MFI of CCR7 for cells in B51, naïve and memory CD8 
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T cells. Each symbol shows a donor (young donors in d and old donors in e), vertical and horizontal error 

bars show standard deviation of CCR7 and CD45RA intensity respectively.  

3.4.3.4 Distinction between naïve and memory CD8+ T cells is blurred in old donors  

Next, we analyzed cells inside box B52 (CD8highCCR7intermediate/low). The percentage of cells 

inside box B52 (Fig. 3.5a) was found to be increased in the old group (Fig. 3.5b). Similar 

to box B55, the MFI of cells in box B52 for all samples were at similar levels for most 

markers, indicating a homogeneous cell subset is identified among all donors (Fig. 3.5c). 

Notice that box B52 lies in between two peaks (Fig. 3.5a) which is a region often neglected 

or assigned to one of the peaks by manual gating, and we have shown above that cells in 

peak above B52 (i.e., B55) resemble naïve CD8 T cells and cells in peak below B52 (i.e., 

B51) resemble memory CD8 T cells (TEM and TEMRA). We hence infer that cells in B52 

are transition cells between naïve and memory cells which increases with ageing. Figure 

3.5d & e show how cells in B52 locate relative to manually gated naïve and memory CD8 

T cells. 
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Figure 3.5 An intermediate cell region which is often neglected by gating methods is identified as 

significantly increased in old donors. (a) An example of scatter plot of CD8 vs. CCR7 with box B52 

highlighted. (b) Boxplot of cell percentage inside box B52 between the two groups of donors. Each dot is a 

donor. (c) Scatter plot of mean fluorescent intensity (MFI) of each donor, each point shows a donor (purple: 

young, orange: old). (d) & (e) MFI of CD45RA vs. MFI of CCR7 for cells in B52, naïve, and memory CD8 

T cells. Each symbol shows a donor (young donors in D and old donors in E), vertical and horizontal error 

bars show standard deviation of CCR7 and CD45RA intensity respectively. 
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3.4.3.5 CD4 versus CD8 

Next, we applied our method to a mass cytometry dataset that originally aims to identify 

immune signatures among 8 types of human tissues: cord blood, PBMC, liver, spleen, skin, 

lung, tonsil, and colon [134]. There are in total 35 samples, 3 to 6 samples for each type of 

tissue (see Methods). The marker panel used for mass cytometry contains 41 markers with 

a focus on the function (cytokine expression) of T cells (a full list of all 41 markers can be 

found in supplementary information and [134]). Instead of differentiating the 8 types of 

tissues, here we tried to classify CD4+ cells from CD8+ cells in all types of tissues. This is 

a good test for our method since there exists great within-group variance (different tissues) 

in the two groups we’re comparing, and we aim to find patterns that are consistent / similar 

across all types of tissues but are significantly different between CD4+ and CD8+ cells. 

Like the previous dataset, we divide these tissue samples into training and testing sets as 

well. From the 35 CD4 samples, 5 samples are randomly selected to be cross validation 

set; and the same was done for the 35 CD8 samples separately. Since there are in total 60 

samples in training set (30 for each cell type), the number of bins to use is 5 (Fig. 3.3b). 

We identified 7 pairs of markers that were able to classify CD4+ and CD8+ cells with 100% 

accuracy for both training and cross validation datasets. Only 1 marker pair (CCR10 vs. 

CCR9) out of the 7 contains purely trafficking markers. This indicates that CD4+ and CD8+ 

T cells can be more easily differentiated by their function and lineage markers than 

trafficking markers, which is consistent with the results in the original paper [134]. We 

selected one of the seven marker pairs: Interleukin (IL)-2 vs. CD25 to show in Figure 3.6. 

The pattern formed by CD4 cells is distinct from CD8 cells in that CD4 cells express 

significantly more IL-2 and slightly more CD25 in all types of tissues, which agrees with 

previous findings based on circulating immune cells [139]. In addition, we found that 
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percentage of cells in box B13 (red shaded region in Fig 3.6, IL-2 low and CD25 

intermediate) is significantly higher in CD8 cells, which is a subtle difference that would 

be missed by algorithms based on a peak finding.  

 
Figure 3.6 Patterns formed by IL-2 vs. CD25 is distinct between CD4 and CD8 cells. One randomly chosen 

sample for each tissue is shown. The same sample for each type of tissue is chosen to illustrate both CD4 and 

CD8 cells. Percentage of cells in the red shaded box (B13: IL-2 negative and CD25 intermediate) is 
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significantly higher in CD8 cells comparing to CD4 cells. Cells inside box B13 also express CD45RA, TNF, 

and CD127 (Fig. B12). 

3.5 Discussion 

The complexity of cytometry data has increased significantly in the last few years due to 

the advancement in experimental techniques that enable measurements of dozens of 

parameters on each cell for millions of cells [5]. Novel analysis algorithms are being 

introduced at a rapid pace to deal with this data deluge that identifies clusters of cells and 

project the high dimensional information graphically in innovative ways. However, these 

graphics are not directly interpretable and translatable into hypotheses and actions by 

biomedical researchers and clinicians. There is also the flaw that nearest neighbors are not 

meaningful in high dimensions, which is a phenomenon referred to as the “curse of 

dimensionality” [11, 77]. Here we introduce a simpler, alternative approach we term 

CytoBinning. Our analysis approach combines automation of a more traditional workflow 

(as advocated in [11]) and machine learning which links the high dimensional data back to 

two biomarkers which can be represented as 2D scatter plots. The 2D scatter plot outputs 

are designed to be directly interpretable by biomedical researchers and clinicians, who have 

an established intuition for the meaning of these graphics.  Thus, we are able to leverage 

their existing expertise in interpreting these kinds of scatterplots. When the differences in 

phenotype are small, CytoBinning is able to further focus the researcher or clinician’s 

attention by identifying, which specific regions of the scatter plot exhibits the most notable 

differences between two groups of donors, allowing subtle shifts in the immune phenotype 

to be highlighted.   
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In contrast to automated gating methods that focus on the exact position of density peaks 

or the number of groups formed by cells, CytoBinning doesn’t estimate the probability 

density distribution of cells, and thus its findings are not limited to regions with high cell 

density or sensitive to shifts in calibration. Instead, it extracts the pattern of 2D dot-plots 

and represents it with a sequence of cell percentages. This enables the comparison across 

samples measured in different experiments (given the markers are the same and they are 

measured in the same channel respectively). In addition, CytoBinning does not require any 

a priori biological understanding to guide the path of analysis. Conversely, it provides a 

list of important marker pairs and related important cell sub-regions for biological 

researchers to subsequently interrogate.  

In the first public dataset we analyzed, which compares lymphocyte populations in old and 

young healthy donors, CytoBinning automatically discovered a decrease of naïve CD8+ T 

cells in the elderly, a well-known yet subtle phenotype. In addition, CytoBinning identified 

a region in the scatterplot of relatively low cell density between two well-established cell 

clusters which is increased with ageing as a new area of interest for the biological 

researcher. Two markers (CD8 and CCR7) are sufficient to pinpoint this subset of cells 

which resides between naïve and memory CD8+ T cells and is not associated with a local 

peak in cell density in the scatterplot.  Such an area would be missed by both manual gating 

and density-based algorithms, or by focusing exclusively on peaks in density.  

The second public dataset we analyzed was even higher dimensional, based on mass 

cytometry from eight types of human tissues. CytoBinning analysis of CD4+ vs. CD8+ T 

cells automatically discovered higher expression of IL-2 in CD4+ T cells as we would 

expect [139], and shows that this overexpression is consistent throughout all eight types of 
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human tissues studied. In addition, CytoBinning correctly identified that CD25 is also more 

highly expressed in CD4+ T cells [139]. This difference in CD25 and IL-2 was consistent 

among all types of tissues, which is known and therefore obvious to a biological researcher. 

However, it also demonstrates the power of our method as this marker pair was re-

discovered without prior knowledge from a heterogeneous dataset incorporating 35 

samples from 8 different tissues, each labelled with 41 markers. Hence, in addition to 

avoiding the pitfalls of density-based approaches, when applied to very high-dimensional 

datasets CytoBinning is able to select the salient markers which discriminate between 

groups of samples. 

In summary, CytoBinning as a robust, automated approach to analyze high throughput 

cytometry data presented in familiar and interpretable 2D scatter plots. While simultaneous 

assessment of all markers is an important vision and challenge, in the interim there is a 

need to facilitate interpretation of high-dimensional data given the evident gap between our 

technological ability to acquire this information and our ability to understand it. 

CytoBinning fills the void between conventional manual analysis and complex automated 

analysis to extract deep content in scatterplots which can be later cascaded into more 

complicated clustering or classification algorithms to obtain novel biological insights. This 

has particular potential value in clinical and biological research settings where high-

dimensional data is increasingly available and commonly not fully understood. 

CytoBinning is able to identify the most important markers, while also highlighting novel 

cell populations that distinguish comparator datasets even if these are to be found in areas 

of low cell density. Hence, it is a practical analysis approach with potential to fill the 
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complexity gap in the interpretation of high-dimensional data in a wide range of biomedical 

and clinical settings. 

3.6 Methods 

3.6.1 Binning 

The binning we used in our method has been previously proposed to estimate mutual 

information (MI) [135]. Given bin number b, equally populated bins are drawn based on 

single cell expression of marker A and marker B independently. These bins are then 

overlaid on each other so that a grid is formed with b2 regions (boxes). Percentage of cells 

inside each box is then an estimation of the joint probability P(Ai, Bj), where i and j are the 

corresponding bins this box locates at. For a random distribution where marker A and 

marker B is not correlated in any way, P(Ai, Bj) should be approximately the same in for 

every box. This is not true if marker A and marker B is related in any way (i.e., their mutual 

information is not zero, this relationship can be both linear and nonlinear). We use all P(Ai, 

Bj)s as a coarse-grained representation of the point pattern between single cell expression 

of marker A and marker B. (Fig. 3.1) In our method this binning is done for every pair of 

markers.  

3.6.2 Determine appropriate number of bins 

We deduced a relationship between the maximum number of bins with zero false positive 

rate (FPR) and the number of samples used in classification using our synthetic data. The 

relationship we found is:  

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑠 =  round(√𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠/2) 

Thus, for a given dataset, an estimation of the number of bins to be used is achieved. In 

addition, we estimate FPR as follows:  
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1. For a given number of bins, apply the afore-mentioned binning method to one pair 

of markers. Each sample is now represented by the vector of P(Ai, Bj). 

2. Randomly divide all samples into two groups. 

3. Apply SVM classification (ksvm function in R package ks, with linear kernel and 

C=10) on the randomly divided groups. 

4. Repeat step 2 & 3 for 100 iterations, record the frequency when classification 

accuracy achieved 100% in step 3.  

5. Repeat step 1 to 4 for all marker pairs, calculate the mean frequency of one pair 

achieving 100% accuracy. This frequency is used as an estimation of FPR. 

6. Repeat steps above for all numbers of bins.   

3.6.3 Log ratio transformation 

The percentages of cells in each box obtained with CytoBinning is compositional as they 

add up to 100. To get rid of this dependency, we divide the percentages by their median 

before taking log with base 2 for every sample and every marker pair. 

3.6.4 Selecting important marker pairs 

Once the number of bins is determined, we divide all samples into a training set (about 

80% of total samples) and testing set (the remaining 20% of all samples). SVM is applied 

to the training set and classification boundary obtained for every pair of markers. We use 

the obtained classification boundary to predict the cross-validation set. Pairs that reached 

100% accuracy for both training and cross-validation datasets are chosen as important 

marker pairs. 
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3.6.5 Selecting important boxes 

We combined boxes formed by all selected marker pairs and applied statistical test 

(Wilcox) for the percentage of cells in each box. We then corrected the p values for multiple 

comparisons with Bonferroni correction, and boxes with p-value <0.001 after correction 

are selected as important boxes. Important marker pairs selected above without any 

important boxes are eliminated from the important marker pair list. 

3.6.6 Dataset 1: Comparing old and young healthy PBMCs 

Overview of samples. This dataset is published in reference [59] and downloaded at Flow 

Repository (http://flowrepository.org) website [140]. These samples were processed in two 

experiments, with 19 samples from young donors and 20 samples from old donors 

processed in the first experiment, and the remaining samples processed in the second 

experiment. The panel of markers was kept the same for both experiments. In total, 16 

markers are measured: Ki67, CD95, CD127, CD57, CD3, CD45RA, CD8, CD14, CCR4, 

CD27, CD11b, PD-1, CD4, CD28, CCR7 and a viability dye (live/dead). Details of sample 

storage and processing can be found in [59].  

Pre-processing. Downloaded FACS files were first compensated based on the spill matrix 

in the FCS files, and then manually gated to get live cells (Fig. S4). Logicle transformation 

was performed with w=0.5, t=262144, and m=4.5 using logicleTransform function in 

flowCore package with R. 

3.6.7 Dataset 2: Comparing CD4 and CD8 T cells in various types of tissues 

The dataset used for the demonstration was first published in [134] and downloaded from 

flow repository website (https://flowrepository.org/) [140]. Tissue types, number of 

samples, and the reason for surgery are listed in Table 1. Immune cells were isolated from 

collected tissues and cryopreserved. They were then thawed and washed for mass 
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cytometry experiment. Two panels of antibodies were used for staining, each containing 

41 markers. The two panels were named as “Function” and “Traffic” according to the 

antibodies included in it. We only used function panel in this paper. Details of experimental 

process and the lists of antibodies can be found in [134]. The downloaded samples from 

flow repository are FACS files, pre-gated to major immune types (e.g. CD4, CD8, NKT, 

etc.). We used only CD4 and CD8 cells. We performed logicle transformation using 

logicleTransform in R package flowCore, with parameters w = 0.25, t= 16409, m =4.5, and 

a=0 according to [134]. The logicle transformed data were then saved as text files for 

further analysis. 

 

Table 3-1 Summary of sample information 

Tissue type Number of samples Reason for surgery 

Cord Blood 5 Healthy donation at neonate 

PBMC 4 Healthy donation 

Tonsil 5 Tonsillar Hypertrophy 

Spleen 3 
Splenectomy (Due to Distal 

Pancreatectomy) 

Colon 6 Routine Colonoscopy 

Skin 5 
Abdominoplasty or Mastectomy 

- Invasive Ductal carcinoma 

Lung 4 Lung cancer resection 

Liver 3 Liver transplantation 
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Chapter 4 Feature selection with CytoBinning in mass cytometry 

data 

4.1 Overview 

In this chapter, I try to tackle feature selection problem in mass cytometry data. Since the 

informative feature in cytometry data reside not in single measurements but the point 

patterns formed by multiple measurements, I first define features for cytometry data as the 

patterns in 2D scatterplots between two measurements. Using CytoBinning, I developed 

and introduced in Chapter 3; I was able to quantify these point patterns and select features 

accordingly. The experimental data were obtained from the online repository: 

https://flowrepository.org/. 

4.2 Abstract 

Mass cytometry provides the potential to measure up to 100 different protein expressions 

simultaneously on a single cell level. To keep up with the high dimensionality of 

measurements, most analysis methods aim to utilize all measurements simultaneously by 

engaging sophisticated high dimensional algorithms. However, the real number of 

measurements that are directly related to the question of interest is much lower than the 

total number of measurements, i.e. a large number of measurements are either irrelevant or 

redundant, resulting in information overload and noise. Hence, feature selection methods 

are much needed for mass cytometry data. The difficulty in selecting features for mass 

cytometry data is that the valuable information resides not in single marker expression but 

the point pattern formed by expression of multiple markers which is hard to quantify. Here, 

I apply the binning method – CytoBinning, introduced in Chapter 3 – to quantify 

information in point patterns hence enable feature selection for mass cytometry data. I 

demonstrate with a publicly available mass cytometry dataset that CytoBinning is able to 

https://flowrepository.org/
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select meaningful features (i.e. marker pairs) within the dataset that are able to classify 

eight types of human tissues simultaneously. In addition, novel tissue-specific profiles are 

identified when combining information contained in markers from selected pairs.  

4.3 Introduction 

Mass cytometry is a relatively new technique that enables simultaneous measurements of 

more than 40 cellular parameters at a single-cell level. It outputs data in a format similar to 

flow cytometry but offers the potential of much higher dimensionality. In contrast to flow 

cytometry, it does not suffer from between channel fluorescence leaking that plagues flow 

cytometry data and hence doesn’t need compensation. On the other hand, it is able to 

measure far more cells (on the magnitude of millions) comparing to other high-content 

single cell measurement techniques like cellular imaging and single-cell RNA sequencing. 

These features make mass cytometry a perfect tool to investigate cellular heterogeneity as 

we often see in the immune system, tumor cells, etc. [79, 80, 141]. The rapidly increasing 

number of measurements, on the other hand, poses great challenges in analyzing mass 

cytometry data and also increases the probability of information overload. 

In recent years, analysis methods specifically designed for mass cytometry dataset are 

rapidly emerging [5]. Most of these methods aim to fully embrace the high dimensionality 

provided by mass cytometry by utilizing all measurements simultaneously with the same 

weights. For example, SPADE [75], as one of the most well-known methods for mass 

cytometry analysis, uses an agglomerative clustering algorithm to divide cells into different 

groups and then applies a minimum spanning tree (MST) based algorithm to visualize the 

clustering results. SPADE has been successfully applied to several mass cytometry datasets 

[82-84]. Another example is the method called Citrus which utilizes hierarchy clustering 
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for cell type discovery and then calculates properties of these cell subtypes and use them 

to determine a list of cell subtypes with significantly different frequencies between two 

sample groups [85]. There is also an algorithm called PhenoGraph that applies k nearest 

neighbors (k-NN) to identify cell subtypes in a given sample [86]. On the other hand, 

clustering based methods that are developed for flow cytometry datasets, like FLAME [58], 

flowSOM [62], etc. have also been successfully applied to mass cytometry datasets [87, 

88]. One problem of using all measurements simultaneously without weighting is that the 

definition of distance and density become less meaningful with the increase of dimension 

due to “curse of dimensionality” [77, 142]. In addition, in real datasets, the number of 

measurements that are directly related to the question of interest is often much smaller than 

the total number of measurements due to redundant measurements (e.g., markers that have 

similar biological functions) and irrelevant measurements (e.g., not known before 

experiment). Hence feature selection methods are much in need to pre-process mass 

cytometry data before distance, and density-based methods can be applied. Nevertheless, 

since the valuable information in mass cytometry data exists not in single measurement but 

the content of point patterns formed by multiple measurements, it is hard to quantify 

meaningful features for mass cytometry data. 

Here we define features of mass cytometry data as the 2D point pattern formed by two 

measurements. We use CytoBinning – the binning method we proposed in Chapter 3 – to 

quantify content in a point pattern into a vector of cell percentages. In this way, direct 

comparisons between point patterns are made possible, and important features are selected 

accordingly. We demonstrate our method with a publicly available mass cytometry dataset 

that measures immune cells collected from eight types of human tissues [134]. Without 
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any prior biological information about immune signatures in different types of tissues, we 

are able to select five pairs of markers whose point patterns are distinct among different 

types of tissues. In addition, we show tissue-specific trafficking features for immune cells 

in different types of tissues with a combination of only six markers. 

4.4 Results 

We demonstrate our method using a publicly available mass cytometry dataset first 

published in [134]. In this dataset, a total of 35 samples collected from 8 types of human 

tissues were measured using mass cytometry with two marker panels. Both panels contain 

41 cellular markers; the first panel includes mostly trafficking and surface markers while 

the second panel contains both surface markers and intracellular cytokines (see Methods). 

The first panel is called “trafficking panel” while the second is called “function panel” 

according to [134]. Table 1 summarizes the types of tissues, number of samples for each 

tissue type and the source of tissue samples. For illustration purpose, here we focus on 

CD4+ T cells that were manually gated by the authors of reference [134] with the traffic 

panel, and our goal is to identify tissue-specific trafficking profiles within CD4+ T cells. 

Using CytoBinning, we show that we are able to simultaneously classify the 8 types of 

tissues with only 2 markers (we will refer to them as marker pairs). In total, we identified 

5 such marker pairs that enable simultaneous classification. There are only 6 distinct 

markers in these 5 marker pairs. t-SNE analysis based on these 6 markers reveals point 

patterns with tissue-specific signatures.  

4.4.1 An overview of CytoBinning 

The binning method we use in this Chapter – CytoBinning – is first proposed in Chapter 3 

for analyzing flow cytometry data. In summary, CytoBinning quantifies information in 2D 
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scatterplots with percentile-based binning. To illustrate this with mass cytometry data, we 

selected two patients with similar but distinct patterns between CD45RO and CCR7 

expression (Fig 4.1a and 4.1c). The point pattern shown in Figure 4.1a contains three 

clusters, one big cluster on the upper left corner and two relatively smaller clusters on the 

upper right and lower right corner. While the pattern in Figure 4.1c is similar to 4.1a, they 

are different in that there are only two clusters in 4.1c. Instead of two distinct clusters, the 

lower right cluster has a thick and long tail that extends upwardly. As illustrated in Figure 

4.1a, CytoBinning first divides cells into a pre-defined number of bins (3 bins in Fig 4.1) 

based on the expression profile of the two markers independently; every bin contains the 

same number of cells. The bins are then combined so that the scatterplot is further divided 

into smaller boxes, and the percentage of cells in each box is calculated. These percentages 

change with the patterns in a scatterplot. We use these percentages as a coarse-grained 

representation of the point patterns in a scatterplot. CytoBinning is able to capture the 

subtle difference between different patterns as well as prominent features of a pattern. As 

shown in Figure 4.1, the distinct upper left and lower right clusters in both patient samples 

are captured by the two boxes with largest cell percentage (upper left and lower right box, 

Fig 4.1b, 4.1d). For pattern in Figure 4.1a, the third cluster (upper right) is cut into multiple 

regions with majority of the cluster inside the middle and middle right box, which reflects 

the shift between the center of the upper left and upper right cluster (Fig 4.1b). Since the 

patterns are different between Figure 4.1a and 4.1c, the CytoBinning representation is also 

different, with cell percentages in the four lower right boxes more homogeneous in Figure 

4.1d comparing to Figure 4.1b, corresponding to the wider cluster in the lower right region 

of Figure 4.1c. 



 

 

77 

 

 
Figure 4.1 An illustration of CytoBinning and how it can represent the subtle difference between two similar 

patterns. a) An example of percentile based binning as a representation of 2D point-pattern (number of bins 

= 3). b) The corresponding representation is shown in heatmap for a). c) A similar but distinct point pattern 

to a). d) The corresponding representation is shown in heatmap for c).  

4.4.2 CytoBinning is able to identify key differences among CD4 T cells in eight 

types of human tissues 

Our analysis revealed 5 marker pairs (features) that are able to simultaneously classify the 

8 types of human tissues with less than one error on average (see Methods and Fig C1): 

PD-1 & CCR7, CCR7 & CD161, CCR5 & CD27, CCR7 & CD27, and CXCR6 & CCR5. 

Each marker pair formed distinct expression patterns among different types of tissues. 
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Figure 4.2a, figure C4, figure C7, figure C10 and figure C11 illustrate point patterns formed 

by each marker pair respectively. We select the marker pair with the lowest number of 

average error – PD-1 & CCR7 – to discuss in detail here. Results for the other four marker 

pairs can be found in Appendix C.   

The scatterplots in Figure 4.2a shows randomly selected examples of PD-1 and CCR7 

expression pattern in different types of tissues. Indeed, these patterns appear different from 

tissue to tissue. Even though patterns of cord blood, liver, PBMC samples look similar to 

each other at first glance, they are indeed distinct from each other. The PBMC sample has 

a longer tail along CCR7 axis – comparing to cord blood and liver samples. Moreover, the 

liver sample has a wider spread in the lower right corner which has high expression of PD-

1 and low expression of CCR7. In particular, we notice that compared to other tissues, 

tonsil has a unique cell subtype that is PD-1high and CCR7- (highlighted in orange circle in 

Fig 4.2a). To validate this subtype, we manually gated for it (Fig C2a), calculated 

percentage of PD-1high CCR7- cells in each sample, and compared their percentage across 

tissue types. The results show that this subtype is indeed highly expressed in tonsil samples, 

but are almost not seen in other tissue types except lung and skin (Fig C2b). To better 

understand the PD-1high CCR7- subtype, we calculated their mean expression level of other 

markers expressed by cells in this subtype and identified that they also express CXCR4, 

CXCR5, CD27, CD69, ICOS and CD95 (Fig C3). Even though the simultaneous tissue 

type classification is achieved with cell percentages in all the 25 boxes, we show that with 

cell percentage in the two most important boxes in classification (B15, shaded in blue in 

Fig 4.2a; and B54, shaded in red in Fig 4.2a) one can already get a reasonably good 

separation of the eight types of tissues (Fig 4.2b). 
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Figure 4.2 Distinct patterns across eight types of human tissues are observed with marker pair PD-1 & CCR7. 

a) Scatterplot showing single cell expression pattern formed by CCR7 and PD-1. Solid black lines are 

thresholds determined by CytoBinning. The shaded areas are the two most important boxes in classifying 

tissue types (blue: B15, red: B54). The region labeled with the orange circle is a cell subset express a high 

level of PD-1 and express little CCR7. This cell subset is not observed in other tissue types except tonsil. b) 

Plot of cell percentage in box B54 (shaded in red) and box B15 (shaded in blue). Each color and shape denotes 

one type of tissues.  

Similarly, results can be seen from the other four marker pairs (Appendix C). For example, 

we found an increased frequency of CD161+CCR7+ cells in colon tissues (Fig C4 – C6) 
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and a higher level of CD27+CCR5+ cells in lung tissues (Fig C7 – C9) and validated it with 

manual gating. However, deeper biological insights cannot be generated from these 

observations since not all samples are collected from healthy donors. 

4.4.3 New insights can be identified by combining selected marker pairs 

After selection of marker pairs whose patterns are distinct across different tissue types, we 

combined these marker pairs to gain new insights of the dataset. In particular, we combined 

the 6 distinct markers in the 5 marker pairs we selected and performed t-SNE analysis on 

all samples combined (the samples are down-sampled before combining, with 250 cells 

randomly selected from each sample). We found that, as shown in Figure 4.3, the resulting 

2D scatterplot shows distinct tissue-related clusters. CD4+ T cells in cord blood, PBMC, 

and liver tissues are mixed and form a big cluster, cells in lymphoid tissues (spleen and 

tonsil) stay close together with cells in tonsil form a distinct small cluster. Cells in skin, 

lung, and colon are close together with some mixtures. In addition, we notice that cells in 

colon samples are divided into two clusters (Fig 4.3a). Both clusters express CD161 (Fig 

4.3c). However, the expression level of CCR7 are differentiated between these two 

clusters, with one cluster express higher level of CCR7 than the other (Fig 4.3b). Also, the 

highest level of CCR7 expression is observed in blood samples (cord blood and PBMC) 

and liver samples. This suggests there are more naïve CD4 T cells in circulation than in 

resident tissues. Fig 4.3b also shows the transition of CCR7+ to CCR7- from left to right, 

i.e., from circulating immune cells to immune cells resident in a distant tissue.  
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Figure 4.3 Separation of tissue types can be observed in t-SNE plot generated by the expression level of the 

6 selected markers (PD-1, CCR7, CCR5, CD27, CD161, and CXCR6). a) The contours are manually drawn 

to show the related clusters of cells. Each point is a single cell, and different color indicates cell in different 

types of tissues. b) The same scatter plot as in a) with color coding of CCR7 expression level. c) Similar to 

b), with the expression level of CD161. 

4.4.4 Distinct cytokine secretion patterns across human tissues can be illustrated 

with 8 markers 

Next, we applied similar analysis to CD4+ T cells measured with function panel. Similarly, 

we identified 5 pairs of markers that are able to simultaneously classify the eight types of 
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human tissues with less than 1.5 errors on average (but larger than 1 error) – CXCR6 & 

CCR9, CXCR6 & CD161, CXCR6 & CXCR3, PD-1 & CCR5, and CCR2 & CCR6. Note 

that they are all surface markers. We combined the unique markers from these 5 pairs and 

again performed t-SNE analysis based on all samples combined (the samples are down-

sampled before combining, with 250 cells randomly selected from each sample). As with 

the traffic panel, the t-SNE plot can be coarsely divided into 4 big regions: blood (cord 

blood and PBMC) and liver –right, secondary lymphoid tissues (tonsil and spleen) – center 

top, skin and lung – middle left, and colon – top left and bottom center (Fig 4.4a). In 

addition, we showed cytokine expression levels in t-SNE scatter plot (Fig 4.4b) divided 

into 3 levels: 0 to 1, 1 to 2 and 2 to 3. The expression level of different cytokines varies 

significantly, with IFNγ and Granulocyte-Monocyte Colony-Stimulating Factor (GM-CSF) 

most highly expressed and the expression of other cytokines much lower and sparse. In 

addition, cytokine secretions are localized related to tissue types. For example, both IFNγ 

and GM-CSF are mainly expressed by CD4 cells in colon, lung, and skin. Moreover, both 

IL-17A and IL-22 are mainly expressed by CD4 cells in colon and skin. Similar results 

were reported in reference [134] with the use of all 41 markers simultaneously. In 

comparison, our method is able to achieve better tissue distinctions. As discussed above, 

CD4 cells in colon tend to form two groups where one group express mid-level of CCR7 

and the other group do not express CCR7. We observed two groups of CD4 cells in colon 

with function panel as well, where one group (bottom center) doesn’t express any cytokines 

comparing to the other group (upper left). It is possible that the group of cells with low to 

no cytokine expression are the same as the CCR7 expressing group (naïve) identified with 

trafficking panel (Fig 4.3). In addition, other regions with low cytokine expression (blood 
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samples and lymphoid samples) are also the regions with higher CCR7 expression 

observed in Figure 4.3. However, since the function panel does not contain CCR7, we are 

not able to verify this. 

 
Figure 4.4 Tissue-specific profiles can be observed in t-SNE plot generated by the expression level of the 8 

selected markers (CXCR6, CCR9, CD161, CXCR3, PD-1, CCR5, CCR2, and CCR6) in function panel. a) t-

SNE plots labeled in red by cells in each tissue type. b) Expression of cytokines. The expression level is 

divided into 3 categories: (0, 1) light blue; (1, 2) purple; and (2, 3) dark green.  
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4.5 Discussion 

Mass cytometry expands the horizon of cytometry by enabling simultaneous measurements 

of a large number of markers and hence provides an opportunity to discover new features 

and cell types. However, the large number of measurements can also raise problems 

because of information overload and “curse of dimension”. Currently, the state-of-art 

methods incorporate all markers simultaneously via sophisticated algorithms with the 

assumption that all markers are equally important, even though the importance of markers 

varies based on the biological question and some markers could be completely irrelevant. 

The lack of dimension reduction/feature selection methods designed for mass cytometry 

data is in part due to the fact that unlike other single-cell data, meaningful information 

within mass cytometry data comes from the point patterns formed by multiple 

measurements which is difficult to quantify. Here, we aim to tackle the feature selection 

problem by define features as point pattern in pairwise scatterplots, and we propose a 

binning method – CytoBinning – to quantify point patterns and enable direct comparison 

of patterns.  

With a publicly available dataset that tries to identify the immune signature in different 

types of human tissues, we demonstrated the use of CytoBinning for feature selection in 

mass cytometry data. We identified five marker pairs that are able to simultaneously 

classify all eight types of tissues. In particular, we discovered a cell subset that is unique 

to CD4 cells in tonsil samples: PD-1highCCR7-. This subset also expresses CXCR4, 

CXCR5, CD27, CD69, ICOS, and CD95. However, since the tonsil samples are collected 

from tonsil hypertrophy patients, we do not know if this unique cell subset is due to the 

disease or a signature of CD4 cells in tonsil. Similar discoveries are made for the other 

marker pairs, such as the high expression of CD161 and CCR7 in CD4 cells in colon. In 
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addition, we identified a cell subset CD27+CCR5+ that is high in CD4 cells from lung 

samples. This cell subset also expresses CD29, CXCR4, and CD45RO. Again, because 

these lung tissues are collected from lung cancer resection, it is impossible to tell whether 

this cell subset is unique to CD4 cells in lung or is induced by tumor as CCR5 is related to 

cancer therapy.  

Combining the markers selected by CytoBinning, we were able to recapitulate the uneven 

distribution of helper T cells in different human tissues with only 8 markers instead of all 

41 markers as was done in the original publication and we achieved better tissue separation 

with the selected 8 markers. Also, we also illustrated the diversity of memory cells across 

different human tissues. What’s more, these analysis results were achieved without any 

prior biological background and hence is unbiased. In all, our simple method is able to 

obtain comparable analysis results as the more sophisticated high-dimensional analysis 

method used in the original paper, and also because the straightforwardness of our method, 

we are able to provide easy to interpret and test results (such as the PD-1highCCR7- subset 

that is unique to tonsil samples).   

We have shown that CytoBinning is able to detect subtle changes in patterns. However 

since it is designed to detect differences in overall patterns, it is indifferent to the position 

and scale of patterns. Hence, for example, if one sample contains only PD-1+CCR7+ cells 

and the other contains only PD-1-CCR7- cells, and they both form the same pattern (e.g. a 

single cluster), CytoBinning is not able to detect that. Nevertheless, if there exist small 

differences (for example a tail or thick outliers, etc.) CytoBinning will be able to identify 

them. In addition, we argue that if two markers form the same pattern (e.g. one large 

cluster) in different patient samples with very different expression level the difference will 
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show in patterns when these markers are pairing with other markers and can then be 

identified with CytoBinning.  

All in all, we defined informative features in mass cytometry dataset as point patter in a 

2D scatterplot and proposed a binning method – CytoBinning – to quantify contents in 

scatterplots. We demonstrated with a publicly available dataset that our method is able to 

recapitulate, without any prior biological background, analysis results obtained with more 

sophisticated high-dimensional analysis guided by expertise in immunology. In addition, 

our method has the advantage of easy interpretation and the ability to generate testable 

hypotheses. With moderate modification, our method can be applied to other comparative 

studies (two or multiple groups), or serve as a fast screening of datasets to quickly identify 

driving differences without diving into more complicated and time-consuming algorithms.  

4.6 Methods 

4.6.1 Experimental procedures and pre-processing 

The dataset used for the demonstration was first published in [134] and downloaded from 

flow repository website (https://flowrepository.org/) [140]. Tissue types, number of 

samples, and the reason for surgery is listed in Table 1. Immune cells were isolated from 

collected tissues and cryopreserved. They were then thawed and washed for mass 

cytometry experiment. Two panels of antibodies were used for staining, each containing 

41 markers. The two panels were named as “Function” and “Traffic” according to the 

antibodies included in it. Details of experimental process and the lists of antibodies can be 

found in [134]. The downloaded samples from flow repository are FACS files, pre-gated 

to major immune types (e.g. CD4, CD8, NKT, etc.). We performed logicle transformation 

using logicleTransform in R package flowCore, with parameters w = 0.25, t= 16409, m 
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=4.5, and a=0 according to [134]. The logicle transformed data were then saved as text files 

for further analysis. 

Table 4-1 Summary of sample information 

Tissue type Number of samples Reason for surgery 

Cord Blood 5 Healthy donation at neonate 

PBMC 4 Healthy donation 

Tonsil 5 Tonsillar Hypertrophy 

Spleen 3 Splenectomy (Due to Distal Pancreatectomy) 

Colon 6 Routine Colonoscopy 

Skin 5 
Abdominoplasty or Mastectomy - Invasive Ductal 

carcinoma 

Lung 4 Lung cancer resection 

Liver 3 Liver transplantation 

  

Markers in traffic panel: 
CD45, CD14, CD57, TCR, CD3, HLA-DR, CD29, CD38, CD69, CD62L, CD8, CD45RO, CLA, CD4, 

CD103, CCR4, CD25, CD49a, CCR10, CXCR6, CD19, CD27, CD56, ICOS, PD-1, CD161, CCR9, CXCR3, 

CD95, CD31, CXCR5, CD49d, CCR2, Intergrin7, CCR5, CCR6, CD45RA, CCR7, CX3CR1, CXCR4, 

CD127 

 

Markers in function panel: 
CD45, CD14, CD57, TCR, IFN, TNF, IL-8, Granzyme B, IL-17F, CD45RA, CLA, CTLA.4, IL-2,  

CD25, CD103, CCR10, CXCR6, IL-5, CD19, CD56, IntegrinB7, PD-1, IL-9, CCR9, CXCR3, CD127, 

Mip1b, CXCR5, CD161, CCR2, IL-4, IL-10, CCR6, GM-CSF, CCR4, IL-22, CCR5, IL-17A 

4.6.2 CytoBinning 

In this paper, we used CytoBinning with 5 bins. For a given marker pair A & B, equally 

populated bins are drawn based on single cell expression of marker A and marker B 

independently. These bins are then overlaid on each other so that a grid is formed with 25 

(52) regions (boxes). Percentage of cells inside each box is then an estimation of the joint 

probability P(Ai, Bj), where i and j are the corresponding bins this box locates at (1 ≤ i, j ≤ 

5). For a random distribution where marker A and marker B is not correlated in any way, 

P(Ai, Bj) should be approximately the same in for every box. This is not true if marker A 

and marker B is related in any way (i.e., their mutual information is not zero, this 

relationship can be both linear and nonlinear). We use all P(Ai, Bj)s as a coarse-grained 
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representation of the point pattern between single cell expression of marker A and marker 

B. This binning process is repeated for every possible marker pairs in the dataset. 

4.6.3 Marker pair selection 

For each marker pair, multi-class SVM is applied to the binning results in R. We used svm 

function in package e1071 with linear kernel, cost = 1 and gamma = 0.01. We randomly 

divided the 35 samples into 7 groups and performed 7-fold cross-validation based on the 

dividing. The error rate of the classification was calculated as the average cross-validation 

error rate. Marker pairs with error rate < 0.2 (less than 1 error in average) were selected as 

important marker pairs. 

4.6.4 t-SNE plots 

After marker pair selection, we picked out unique markers within these pairs and performed 

tsne in R with tsne function in package tsne. We randomly selected 250 cells from each 

sample and concatenated them together before performing tsne (the number of cells for 

each tissue ranges from 750 for spleen and liver to 1,500 for colon).  
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Chapter 5 Conclusion and Discussion 

5.1 Overview 

Advancements in experimental technologies have changed the landscape of research in 

biology. As the data becoming increasingly high content and throughput, traditional 

manual-based analysis regime has passed, and computer-based automated analysis 

methods that are able to handle high-dimensional, single-cell data are on the rise. However, 

these methods often use all measurements simultaneously without weighting. This can 

result in problems such as misinterpretation of datasets due to noisy and irrelevant 

measurements, and less meaningful results due to the “curse of dimensionality”. In this 

dissertation, my goal is to develop analysis methods that are complex and multi-

dimensional to automatically extract meaningful information out of biological datasets, but 

not so high-dimensional and complicated so that straightforward interpretation can still be 

achieved.  

5.1 Conclusion 

5.1.1 Identify stable classification boundaries based on typical cells 

In Chapter 2, I presented a pipeline for analyzing high-throughput imaging data that tackles 

cell-to-cell variability in a mono-state cell population by capturing the typical features of 

cells. I demonstrated this approach using a screening dataset that aims to identify potential 

drug (siRNA) hits for a premature ageing disease (progeria) [109]. The pipeline starts with 

the selection of typical control cells (which I defined as cells close to the mean of a single 

peak multi-variate distribution, see section in Appendix A4), followed by the computation 

of a stable classification boundary between two reference conditions (e.g. healthy and 

diseased control, Fig 2.2) at the opposite ends of a continuous spectrum of cellular 
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phenotypes. Each cell in all siRNA perturbations is then compared to this classification 

boundary. Cells on the same side with typical healthy control cells were considered as 

“healthy-like”, and the fraction of “healthy-like” cells was used as a new metric for analysis 

of the screen. Moreover, potential drug hits were identified as siRNA perturbations that 

significantly increase the fraction of healthy-like cells in the population comparing to 

diseased controls (Fig 2.3). The classification boundary built with typical cells captured 

the direction where progeria cells are most significantly different from healthy cells. The 

underlying biological assumption is that – by muting one of the ubiquitin proteins, progeria 

cells would become healthier or worse (due to the loss of house-keeping protein). However, 

siRNA perturbation can also drive cells to a state that is completely different from healthy 

or progeria controls. I tested that by calculating the position of each cell in the direction 

parallel to the classification boundary. Moreover, I found that siRNA perturbed samples 

fell nicely into a line along the direction of classification boundary (Fig 2.5).  

5.1.2 CytoBinning as a new method to identify meaningful differences in 2D point 

patterns 

In Chapter 3, I introduced a binning method – CytoBinning – that can quantify information 

in 2D point patterns (Fig 3.1). The binning was done based on density distribution of single 

measurements. The bins of two measurements were then combined to get a grid that maps 

the point pattern formed by these two measurements. Percentage of cells inside each box 

of the grid was then calculated. Since these percentages change with the point pattern, they 

can be used as a numeric presentation of the pattern. I showed with synthetic datasets that 

CytoBinning can help identify both significant (Fig 3.2) and subtle differences (Fig B3) of 

point patterns, and the same can be achieved in real biological datasets (Fig 4.1). For 

classification problem, the appropriate number of bins to use is dependent on the number 
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of samples to be classified. If the two groups contain an equal number of samples, a good 

estimation of the bin number can be obtained by this formula: 

𝑚𝑎𝑥𝑖𝑚𝑢𝑚 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑖𝑛𝑠 =  𝑟𝑜𝑢𝑛𝑑(√𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 𝑠𝑎𝑚𝑝𝑙𝑒𝑠/2).  

In addition, I used a publicly available dataset that aims to find the difference of immune 

signature in peripheral blood mononuclear cells (PBMC) between old and young healthy 

donors [59] to demonstrate how to use CytoBinning for comparative studies in Chapter 3. 

I showed that CytoBinning was able to re-identify the decrease of naïve CD8 T cells in 

elderlies (Fig 3.4). In addition, CytoBinning found a new cell sub-region whose cell 

frequency increases with ageing. This sub-region resides in the valley between two well-

defined peaks – naïve CD8 T cells and memory CD8 T cells – which may be a transition 

cell state from naïve to memory.  

5.1.3 CytoBinning can be used for feature selection in high-dimensional data  

In Chapter 4, I demonstrated how to use CytoBinning for feature selection with a publicly 

available mass cytometry dataset that measures immune cells in eight types of human 

tissues [134]. The original publication managed to clarify tissue-specific features of 

immune cell composition with all 41 markers that were measured in the experiment. Since 

the expression level of individual markers is not meaningful in cytometry data, I defined 

features of mass cytometry data as the point patterns formed by two markers. With 

CytoBinning, I was able to select 5 important features (i.e., 5 marker pairs) that provide 

tissue-specific information of immune cell composition. There are only 6 unique markers 

in the 5 marker pairs, and I showed that with only the 6 markers tissue-specific features as 

identified in the original publication could be re-identified. In addition, I found that cells 

form distinct patterns among the eight types of tissues for each of the marker pair identified 
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by CytoBinning (Fig 4.2, Fig C4, Fig C7, Fig C10-11), and cell phenotypes that are unique 

to or overexpressed in particular tissue types can be found. For example, a cell phenotype 

– PD-1high CCR7low – was found to be unique to immune cells in tonsil tissues (Fig C2).   

5.2 Discussion 

5.2.1 Heterogeneity: important feature or byproduct of complex systems? 

We know that single cells are heterogeneous, not two cells are the same. As the 

measurement of more and more single cell features are made available by experiments, 

cellular heterogeneity becomes more and more apparent. However this is a paradox since 

random events are prevalent, differences are guaranteed to be found when examined 

closely enough. Hence there has been the question: “Do differences make a difference?” 

[9]. Moreover, it has been suggested that only heterogeneity that has biologically functional 

differences should be considered meaningful. Nevertheless, biologically functional 

differences are abundant as well. Since living organisms deal with environmental stress 

constantly, cells with the same genomic and epigenetic features could develop different 

features in response to slightly different environmental cues. Understanding heterogeneity 

is important, it helps us to get deeper insights into how living systems respond to its 

surroundings by regulating itself. For example, our immune cells are famously 

heterogeneous. There are at least tens of immune phenotypes that have been validated 

experimentally, and they each have distinct functions – e.g., Th1 cells are in charge of 

defense over intracellular bacteria, Th2 cells help fight against the extracellular parasite, 

Th17 cells are responsible for defense against fungi infection. Moreover, all these subsets 

can be involved in autoimmunity. In addition, our immune system protects us from various 

antigens by being able to produce antigen-specific cells. Each antigen attack would leave 
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a trace in our immune system in the form of “memory cells”, and as we age our immune 

system collects a history of antigen attacks in our body, hence no two people have the same 

repertoire of immune cell types. The immune system is a great example of how 

heterogeneous single cells can be, and how the heterogeneity can result from a dynamical 

response to the environment. Moreover, a better understanding of heterogeneity in immune 

cells can help us understand how our immune system work and how to restore it when it is 

not working properly.  

On the other hand, even though cellular heterogeneity can be meaningful and ubiquitous, 

sometimes it is the similarity shared by cells in a single phenotype that’s more important, 

especially in cultured cell lines where macroscopic and genetic variables are carefully 

controlled. One argument for the importance of similarity is that there are countless reasons 

for the cells to be heterogeneous that have nothing to do with the biological process of 

interest (e.g., fluctuation in the local distribution of chemicals, local cell density, etc.). 

Since it is nearly impossible to account for all possible reasons, focusing on heterogeneity 

could result in misleading results. Hence the typical behavior that can be observed in the 

majority of cells in response to the targeted perturbation should be of real importance. For 

example, in RNAi perturbation studies (Chapter 2), researchers often add RNAi to a group 

of cells that belong to the same phenotype (cultured from the same progenitor in the same 

macroscopic condition) and studies how these cells respond to the perturbation. That is 

where the notion of “typical cells” comes in. The definition of “typical cells” (i.e. typical 

behaviors) enables the characterization of typical behaviors shared by the majority of cells, 

which should be a more direct representation of cellular response. In addition, typical cells 

can help build a more stable classification boundary between two cell groups. 
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5.2.2 High dimensional data: divide and conquer 

Biological research today produce high-content, high-throughput data in large volume. One 

particular challenge in analyzing these datasets is the high-dimensionality. To make full 

use of the information-rich data, biological society has been embracing high-

dimensionality with more and more algorithms that can handle all the parameters 

simultaneously have been developed. However, fully embracing high-dimensionality can 

be problematic. On the one hand, the definition of distance and density is not meaningful 

in high-dimensional space which could lead to inaccurate results for distance/density based 

algorithms [11]. In addition, cell states may be a continuum instead of distinct stages and 

cells that are in between two high-density regions (i.e., the clusters found by most 

clustering algorithms) also have potential biological significance [76]. On the other hand, 

information overload is prevalent as much more parameters are measured experimentally 

than the intrinsic dimension of the question of interest. Dimension reduction and feature 

selection methods have been recruited to tackle this problem. However, some of these 

methods make strong assumptions about the datasets (e.g., PCA assumes linearity of the 

data) that are not always satisfied; and almost all methods aim to find one particular 

subspace that best captures the content of the whole dataset which will possibly undermine 

subtle signals. Dimension reduction methods often mix all parameters in finding optimal 

subspace, and the resulting dimension reduced space is a combination of all parameters. 

This is a problem for biological data analysis because the explicit interpretation of resulting 

features which is lost in parameter combination is crucial to the understanding of biological 

questions. My approach to tackling this problem is to divide high dimensional space into 

not one but multiple lower dimensional subspaces. These subspaces add up to the whole 

original space and may overlap so that there’s no missing information. For example in 
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Chapter 2, instead of combining all available measurements, I divided them into four 

subspaces based on the fluorescent staining. In so doing, the minor signal in DNA damage 

(γH2AX) could be kept from being overshadowed by the strong signal in progerin 

expression. Another commonly used method to deal with information overload in high 

dimensional data is feature selection. Instead of finding a subspace by combining features, 

feature selection methods select meaningful features separately. However, for some 

datasets (like cytometry data), instead of individual parameters, the correlation between 

two parameters is where the true information lies. Feature selection methods then rely on 

correlation measurements to assess the importance of parameters. However, to-date the 

state-of-art measurement of the correlation between two parameters are still correlation 

coefficients and mutual information which give only a gloss estimate of how much the two 

parameters are related instead of how the two parameters are related. CytoBinning fills the 

gap by providing a more detailed measurement that can quantify how two parameters are 

related (Fig 3.1, Fig 4.1). In addition, by dividing high-dimensional datasets into 2D facets 

and considering them one by one, it is possible to select all meaningful signals, both 

significant and subtle (as shown in Chapter 3). Also as CytoBinning only mix two 

parameters at a time, interpretation of its results is more straightforward comparing to the 

more sophisticated and complex algorithms. The usage of CytoBinning is not limited to 

cytometry data, in fact, it can be applied to any single cell data where the correlation 

between two parameters is of interest (e.g., single cell RNA sequencing, or even point 

patterns in images).  
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5.2.3 Next step: Application to clinical datasets 

CytoBinning could be applied to large clinical cytometry datasets since it is 

computationally efficient and parallelizable. The overall goal is to further validate the 

method and mine novel biological insights based on these datasets. There are two large 

clinical flow cytometry datasets that are made available to our lab. The first clinical trial 

attempts to generate hypotheses of immune mechanisms in an inflammatory eye disease 

(uveitis). With the help of CytoBinning, my collaborators hope to identify novel cell 

subtypes that play a role in the development of this disease. The second dataset contains 

blood samples from over 1,000 healthy donors, and the goal is to use CytoBinning to map 

the trace of ageing in peripheral immune cells [143].  

5.2.4 Generalization: CytoBinning as a tool for point pattern analysis 

In addition to analyzing cytometry data, CytoBinning can potentially be used as a general 

method to quantify how two parameters are correlated. Comparing to conventional 

measurements, CytoBinning outputs a vector that contains information about the patterns 

of point distribution, whereas correlation coefficients and mutual information (MI) only 

gives one number indicating the degree of relationship between two parameters. As a result, 

CytoBinning can be used to better estimate the similarity between two relations (e.g. 

similarity between the expression pattern of gene A and gene B and the expression pattern 

of gene A and gene C). This is important because two parameters can form different point 

patterns but still have the same mutual information (Fig 5.1). Moreover, in examples like 

reconstructing gene networks, two genes are considered connected/ similar if they are both 

highly correlated with the same gene. However, this should not be the case if the correlation 

patterns are different. Since neither correlation coefficients nor MI provides information 

about the pattern, the distinction cannot be made using these measurements alone.  
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Figure 5.1 Two different point patterns with the same value of mutual information (0.23). 

To illustrate how CytoBinning can be used to distinguish point patterns, I generated eight 

synthetic patterns (Fig 5.2, ten samples/ replicates for each pattern, 1,000 points in each 

sample) and applied CytoBinning to cluster them. The results show that CytoBinning is 

able to correctly cluster five out of the eight patterns, but the other three patterns (circle, 

random, two circles) are mixed (Fig 5.3).  

 
Figure 5.2 Examples of the eight simulated patterns. Circle: x, y-axes are both randomly sampled from 

distribution N(0, 2). Random: x, y-axes are randomly sampled from a uniform distribution ranging from 0 to 

2. Two Circles: x is sampled from two normal distributions N(-2, 1) and N(2, 1) each contains 500 points, 
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and y is sampled from N(0, 1). Three Circles: the bottom two clusters (400 points in each cluster) are sampled 

from a normal distribution centered around (-2, 0), (2, 0) respectively with standard deviation equals 1. And 

the top cluster is sampled from a normal distribution centered (0, 1) with standard deviation 1. Parabola: x 

values are sampled from N(0, 2), y = x^2 + noise where noise is sampled from N(0, 0.5). Down Parabola: the 

same as parabola, except y = -x^2 + noise. Straight Line: 𝑥 ∈ 𝑁(0, 2), y = x + 1 + noise, 𝑛𝑜𝑖𝑠𝑒 ∈ 𝑁(0, 0.25). 

Sine: 𝑥 ∈ 𝑁(0, 2), y = sin(x) + noise, 𝑛𝑜𝑖𝑠𝑒 ∈ 𝑁(0, 0.5) 

 
Figure 5.3 Clustering results of the eight patterns based on CytoBinning results (3 bins). Patterns are labeled 

by different colors (circle: red, random: yellow, two circles: green, three circles: magenta, parabola: black, 

down parabola: cyan, straight line: blue, and sine: cyan).  

The possible reason CytoBinning fails to distinguish “circle”, “random” and “two circles” 

could be that these three patterns are topologically similar (i.e., they are all symmetric to 

both axes). To test this hypothesis, I created subtle asymmetric features in these patterns 

(Fig 5.4. A small cluster is added to the upper right region of Circle pattern, and lower left 

region of the Random pattern. And the right cluster in Two Circles pattern is shifted 

upwards. These changes should break similarity shared by the three types of patterns.), and 

clustered the patterns with added asymmetry. CytoBinning is able to differentiate these 

three patterns now the symmetry is broken (Fig 5.5). As a comparison, if instead of adding 
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a small cluster in the upper right region of Circle pattern, the small cluster was added to 

the lower left region (similar to what I did to Random pattern, Fig 5.6), then Circle pattern 

and Random pattern still hold topological similarity and cannot be distinguished by 

CytoBinning (Fig 5.7). Hence we infer that it is the intrinsic similarities between patterns 

instead of symmetry of pattern itself that impedes correct clustering of pattern “Circle”, 

“Random”, and “Tow Circles”. In other words, CytoBinning would fail to recognize 

different point patterns only when they share global similarities. 

 

Figure 5.4 Examples of patterns with added features (lower row) comparing to original patterns (upper row). 

Circle v2: 1,000 points in total, for 900 points 𝑥, 𝑦 ∈ 𝑁(0, 2). And for the rest 100 points 𝑥, 𝑦 ∈ 𝑁(1, 0.5),. 

Random v2: 1,000 points in total, for 900 points, 𝑥, 𝑦 ∈ 𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0, 2); and for the rest 100 points 𝑥, 𝑦 ∈

𝑢𝑛𝑖𝑓𝑜𝑟𝑚(0.2, 0.5). Tow Circles v2: same as Two Circles, except the center of the right cluster is shifted up 

by 0.5.  
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Figure 5.5 Clustering results of patterns with added asymmetrical features. The three patterns are largely 

separated (Circle: red, Two Circles: green, Random: yellow) with only one mistake.  

 
Figure 5.6 Example of point patterns with added features. Random v2 and Two Circles v2 are generated in 

the same way described in Fig 4. For Circle v3, similar to Circle v2, except the small cluster is now centered 

around (-2, -2) with standard deviation 0.5 (lower left region). 
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Figure 5.7 Clustering results with the feature added in Circle pattern moved to lower left region (Circle: red, 

Random: yellow, Two Circles: green).  

One additional advantage of CytoBinning is that it is invariant under order-preserving 

transformations of parameters. For example, cytometry data always requires a careful 

transformation step before data analysis because the expression of surface markers tends 

to have large ranges. Figure 5.8a and Figure 5.8b show the same scatterplot before and 

after logicle transformation. The patterns look dramatically different, and algorithms based 

on the exact value of parameters would be completely confused. However, CytoBinning is 

able to give the same analysis results for both scatterplots (Fig 5.8c and 5.8d), showing that 

CytoBinning does not depend on the exact value of each parameter to measure the patterns, 

only relative position of each point.  
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Figure 5.8 The results of CytoBinning is invariant under order-preserve transformations. a)  and b) scatterplot 

of the expression level between CCR7 and CD45RO of the SAME sample (taken from the dataset used in 

Chapter 4). c) and d) heatmap showing CytoBinning results of the corresponding point patterns.  

Thanks to this invariant feature, CytoBinning can be applied to not only data analysis but 

also image analysis. For example, in neural imaging experiments, researchers often record 

neurons (points) that fire (light up) together under certain stimulations. Clarify the patterns 

of neurons firing together help the understanding of how neural circuits are connected to 

each other. CytoBinning can help with this problem by providing quantifiable 

measurements of these point patterns. 
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Appendix A Supplementary Information for Chapter 2 

Typical healthy and progeria cell nuclei 

 
Figure A1. Representative images of typical healthy (top row) and progeria (bottom row) nuclei.  

Images are shown in four different channels: progerin, DAPI, lamin B1, and γH2AX. The outline of each 

nucleus (shown in green) was first extracted from the DAPI channel (nuclear shape) and then mapped onto 

the other three channels. As the images show, typical progeria nuclei have pronounced progerin expression, 

blebbed nuclear outlines, decreased lamin B1 expression, and high levels of DNA damage (γH2AX). 

A.1 Sorting out the mismatch of images across different channels  

In Figure 2.1 (a), Figure 2.6 and Figure A1, we noticed that nucleus in Lamin B1 channel 

tends to be larger than its counterpart in DAPI channel. In addition, there is also a shift in 

the image when we tried to overlay the outline segmented from DAPI channel directly onto 

Lamin B1 channel. Since our intensity measurements (measurements for Lamin B1, 

Progerin and γH2AX channel) are based on the outlines segmented in DAPI channel (we 

did this because cells used in our experiment are perturbed in lamin B1, progerin, and 

γH2AX expression, causing them not reliable for outline segmentation), these two 

problems can lead to serious mistake. In order to sort out these two issues, we compared 
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measurements between their values calculated based on outline segmented from DAPI 

channel and outline segmented in lamin B1 channel. A random sample of nuclei in GFP-

progerin repressed control are used for this comparison, and four measurements (square 

root of area, boundary point intensity, mean intensity and standard deviation of intensity) 

are compared. Plotted in Figure A2 are the results. Each dot in Figure A2 represents a 

nucleus. As shown in Figure A2 (a), the size of nucleus measured in Lamin B1 channel is 

constantly larger than DAPI channel, with the average nuclear radius calculated in Lamin 

B1 channel ~ 600 nm longer than in DAPI channel. This difference may be due to the fact 

that DAPI attaches to DNA while Lamin B1 stain directly attaches to lamina that supports 

nuclear membrane. As to the shifting, since different cameras are used to capture images 

in different channels, even though the alignment of cameras was auto-corrected, there can 

still be slight shifts of direction. As shown in Figure A2 (b) – (c), the three intensity 

measurements are highly correlated between measurements calculated based on DAPI 

outline or Lamin B1 outline with correlation coefficients almost 1 (p-value close to 0) for 

mean intensity and boundary point intensity. These results suggest the shift in direction is 

small and intensity measurement based on DAPI outline is a reliable replacement for direct 

measurement based on outlines segmented in lamin B1 channel. Since Lamin B1 (as well 

as progerin and γH2AX) is perturbed as its expression level decreases when progerin exists 

leading some nuclei invisible in lamin B1 channel, we performed lamin B1 (as well as 

progerin and γH2AX) measurements based on DAPI outline. 
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Figure A2. Comparison between measurements obtained from outlines segmented in DAPI vs. Lamin 

B1 channels. Corresponding correlation coefficients are shown in the top left corner of each panel. 

BPintensity stands for boundary point intensity, which measures mean fluorescent intensity along the nuclear 

boundary; meanIntensity stands for mean intensity inside nucleus, and stdIntensity is the standard deviation 

of fluorescent intensity inside nucleus boundary.   

A.2 Image processing and feature selection 

The raw data for image-based HTS consists of fluorescence microscopy images. We 

studied cell nuclei imaged in four channels (see Fig A1). From the DAPI channel, we first 
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analyzed nuclear shapes extracted with an active contour algorithm [123], from which we 

determined 12 shape metrics. Out of these, 5 measurements are global metrics, i.e. 

parameters that describe the overall shape of the boundary (area, perimeter, eccentricity, 

major and minor axis length), while the remaining 7 measurements are local metrics, 

sensitive to the local features of the shape (number of invaginations, standard deviation of 

the curvature, mean curvature, solidity, mean negative curvature, circularity, and 

tortuosity). For analysis, an online open source package 

(http://downloads.openmicroscopy.org/bio-formats/5.1.2/) was incorporated into the 

nuclear shape extraction algorithm [123] to read flex format images. Furthermore, to detect 

and remove overlapping nuclei from multiple cells, we set up outlier detection thresholds 

for area and solidity at two standard deviations from the mean and discarded segmented 

nuclear outlines with area or solidity beyond the thresholds (about 6% of nuclei were 

discarded at this stage). The nuclear outlines extracted in the DAPI channel were mapped 

to the other 3 channels for analysis of fluorescence intensity, as shown by the green 

boundaries in Figure A1. In each of the 3 other channels, we determined 3 metrics as basic 

characteristics of the intensity distribution in each nucleus: mean intensity, the standard 

deviation of intensity, and mean intensity along the boundary. Therefore, in total, we 

obtained 21 metrics for each nucleus, of which 12 represent shape features and 9 represent 

3 metrics for each of the 3 channels label lamin B1, progerin, and DNA damage (γH2AX). 

       As a starting point, to select meaningful metrics that differ between GFP-progerin 

expressing and repressed controls, we analyzed each metric separately using F-scores 

[144], defined as 
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where 𝑥𝑖
(+/−)

 is the mean of the ith measurement for GFP-progerin expressing and 

repressed controls, respectively; 𝑥𝑖̅ is the mean of the ith measurement for both controls 

combined, and 𝑛+/−  is the number of cells in GPF-progerin expressing and repressed 

controls. Using this procedure, we removed 6 shape metrics (eccentricity, minor axis 

length, major axis length, mean curvature, area, and perimeter), which yielded very low F-

scores (<0.003), from further analysis. The F-scores for the included shape metrics ranged 

from 0.5 to 17.  

A.3 Determination of parameters used in the selection of typical control cells 

Typical cells for control cell type A are defined as cells that are closest to the center of the 

multi-dimensional distribution of all cells in type A. Hence, there are two parameters to be 

determined before typical cell selection: the definition of center, and the number of typical 

cells to be selected. In this paper, we tested 3 definitions of center: the mean, the median, 

and the global peak of each distribution. The peak of distribution was calculated using 

.find_peaks() function in R package openCyto [68]. We also tested 8 different numbers of 

typical cells: 100, 200, 300, 500, 1000, 2000, 3000, and 5000. 1500 cells that are next 

closest to the center (compare to typical cells) were selected as cross-validation set (CV). 

The distance between each cell and the center of distribution was calculated using L1 

Manhattan distance. Typical cells were selected independently in each channel, thus 

different cells may be selected as typical cells in different channels. We applied support 

vector machine (SVM) to classify typical healthy and typical progeria cells selected using 

all cells numbers and corresponding to all 3 definitions of center (in total 3 x 8=24 different 

conditions) for each replicate plate. After the classification, predictions were made for CV 
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cells. The accuracy of the training set (dashed lines) and cross-validation set (solid line) 

for each condition in replicate plate 1 were plotted in Figure A3. We concluded from the 

results of all replicate plates that using mean as the center definition and choosing 300 

typical cells gave the best accuracy for our data. 
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Figure SA3. Comparison of different center definition: mean (pink), median (green), peak (blue); and 

different typical cell numbers in plate 1. For reference, we also included randomly selected cells (purple). 

The vertical axis shows the accuracy of classification, and the horizontal axis is the selected typical cell 

number. Each subfigure plots results in one channel. The dashed line shows accuracy for the training set, and 

the solid line shows cross-validation set. Notice that randomly selected cells consistently behave worst, and 

for all channels, mean and peak behaved equally well in this replicate, but overall mean behaves the best. 

A.4 Relative weights of each measurement in the 4 channels 

 
Figure A4. Weights of each measurement in all channels, plates are labeled with different colors. The 

absolute value of weights indicates the importance of the corresponding measurement in classifying typical 
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healthy vs. typical progeria cells. Sign of the weights indicates in which control type the very measurement 

is higher. The negative sign means it’s higher in progeria controls, and vice versa. For example, solidity in 

shape channel has a positive sign, which means its value is higher in healthy control cells. And all 

measurements in progerin channel have a negative sign; this is to say all the 3 measurements have a higher 

value in progeria controls, which is what we expected. Solidity is the most important measurement in shape 

channel. Weights for intensity measurements are quite similar with only small differences and fluctuates over 

different plates. 

A.5 Calculation of healthy-like cell percentage in each channel 

 
Figure SA5. Probability density distribution of all cells in GFP-progerin repressed (green) and GFP-

progerin expressing (red) controls to the classification boundary in replicate plate 1. In each panel, the 
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vertical line indicates the classification boundary located at x=0. We show here the combination of cells in 

12 GFP-progerin repressed control samples (green) and 12 GFP-progerin expressing control samples (red). 

As expected, the progerin channel is the most distinctive between GFP-progerin repressed and expressing 

controls. On the bottom right of each panel, we show the average percentage of healthy-like (green) and 

progeria-like (red) cells in each channel, calculated from the 4 replicate plates. 

 
Figure A6. An example of healthy-like cell percentage calculation for one siRNA: TRIM2. Plotted here 

are the probability density distributions of all cells in TRIM2 sample in plate 1. Vertical lines are 

classification boundary, and numbers showed the average percentage of cells have positive (right, healthy-
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like) distance to the classification boundary with the standard deviations calculated from the 4 replicate 

plates. This average was later used for siRNA hits identification. 

A.6 Table of selected siRNA hits 

siRNA hits in each channel. Numbers in parenthesis show the percentage of healthy-like cells averaged 

over 4 independent replicate plates per siRNA well. Percentage of healthy-like cells of each channel in 

progeria controls are listed under channel name. 

Channel siRNA hits 

Nuclear Shape 

(Progeria 

control 

baseline: 49%) 

ASB12 (80%)     UBE2D2 (79%)     SKP2 (76%)     LOC554251 (76%)     

RNF150 (75%)      PCGF1 (74%)     FLJ25076 (73%)    FBXL10 (71%) 

Lamin B1 

(Progeria 

control 

baseline: 14%) 

UBE2T (84%)     CDC34 (82%)    KUA-UEV (81%)  UBE2O (81%)    UBE2L6 

(73%)     PHF21B (73%)     RNF39 (71%)   FBXO8 (71%)    HERC4 (70%)     

CUL5 (69%)     RNF122 (69%)  TRIM2 (68%)     FBXO28 (68%)    SMURF1 

(68%)     UBE3B (68%)      FBXL11 (68%)    RNF44 (68%)    HERC3 (67%)    

HECTD1 (67%)   UBE1L (66%)     HERC5 (66%)    PHF20 (66%)      PHF11 

(65%)     FLJ25076 (65%)    PHF17 (65%)     FBXO38 (64%)   NDP52 (64%)    

UBE2U (64%)     WWP1 (64%)     HERC2 (64%)    ITCH (63%)      RNF180 

(62%)     UBE2N (61%)    TRIM55 (59%)     ZMYND11 (58%)    CUL7 (58%)    

DCUN1D4 (58%)   VPS41 (58%)   PRICKLE1 (57%)  UBE2M (57%)   TRIM52 

(56%)    SOCS2 (56%)     UBE2D3 (56%)   UBE2E2 (56%)     RNF12 (56%)     

PDZRN3 (54%)   LOC554251 (54%)   LMO6 (53%)     ARIH1 (53%)     

UBE2Q2 (52%)   HERC6 (51%)     UBE3A (51%)     DCUN1D1 (50%)    

UBE2E3 (50%)      WWP2 (50%)    UBE2V2 (50%)    UBE3C (50%)    CBL 

(49%)        TRIP12 (48%)      RNF8 (48%)   HECTD3 (46%)    CUL4B (45%)    

INTS12 (45%)     NEDD4L (45%)      CUL2 (45%)     DTX4 (44%)        39876 

(43%)       UBE2D1 (43%)    RFPL2 (43%)     ZNRF2 (42%)    BMI1 (41%)   

FBXW8 (41%)    MGRN1 (41%)      HACE1 (41%)    UBE2D4 (39%) 

Progerin 

(Progeria 

control 

baseline: 6%) 

TIP120A (79%)    WSB1 (70%)    UBE2G2 (64%)    WWP2 (62%)     TRIM2 

(59%)    LOC554251 (55%)  FBXO38 (52%)   RNF39 (50%)      TRIM55 (49%)   

MLLT6 (45%)   FBXO17 (44%)        FLJ25076 (44%)    HERC3 (43%)    CUL3 

(43%)      UBE2D2 (40%)     FBXL13 (39%)    TRIP12 (38%)      UBE1C (37%)     

ASB5 (36%)          SMURF1 (33%)   RNF150 (33%)     RNF44 (32%)   FBXL11 

(31%)   PHF20L1 (30%)   RNF32 (28%)     ASB12 (27%)   TRIM8 (26%)    

UBE2T (25%)        HIP2 (23%)         CBLC (23%)   MYCBP2 (20%)  

γH2AX 

(Progeria 

control 

baseline: 60%) 

WWP2 (86%)    WSB1 (81%)      ZNF330 (78%)   RFPL4B (77%)     WDR24 

(75%)  

A.7 Comparison with another method 

We compared the results of our method with another multi-dimensional analysis method 

proposed in Ref [34]. We chose two channels: progerin and Lamin B1 for this comparison. 
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To analyze our data using the method in [34], we first randomly selected 5,000 cells (about 

25%) from both GFP-progerin expressing and repressed controls respectively. We pooled 

these 10,000 cells together and clustered them with GMM as described in [34]. In total, we 

identified 9 (8) clusters in progerin and γH2AX (lamin B1) channel; these were used as 

reference models for siRNA perturbation samples. We then computed the probability of 

each cell belonging to one of these 9 (8) clusters. The expectation of the proportion of cells 

inside each cluster for each perturbation is then calculated based on these probabilities. 

Using an expected fraction of cells in each cluster as a vector, the distance between each 

perturbation to GFP-progerin repressed (healthy-like) controls are calculated using KL 

divergence. The inverse of this divergence is then used as the metric to select important 

perturbations, the larger the metric, the more similar to the healthy-like controls, hence the 

more important the perturbation. We then compared our metric (percentage of healthy-like 

cells) with this metric, and we found that they correlate well with each other.  

 
Figure A7. Comparison between our metric (healthy-like cell percentage, y-axis) and metric derived using 

the method proposed in [34] (x-axis) in lamin B1, progerin and γH2AX channel. The two metrics correlate 

well in all channels, with Spearman correlation coefficient 0.98 for γH2AX channel, 0.91 for lamin B1 

channel, 0.58 for progerin channel (p-value << 0.05 in both cases).  
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A.8 List of screened siRNAs 

UBE2C SMURF1 HERC3 UBE2W DCUN1D3 BIRC6 CUL3 

ITCH DCUN1D2 CUL1 UBE2O UBE2V1 UBE1C UBE2E3 

UBE2U KUA-UEV EDD1 HIP2 UBE2V2 DCUN1D5 UBE2J2 

HECW1 HUWE1 CAND2 UBE3B UBE2A UBE2R2 

AKTIP  UBE2D1 UBE3A TIP120A KIAA0317 

HECTD1 UBE2T HERC2 UBE2N UBE1L UBE1 

UBE2D3 NEDD4 UBE2E2 HECTD3 UBE2E1 UBE3C 

TRIP12 HECTD2 UBE2D4 DCUN1D4 CDC34 FLJ34154 

UBE2Z UBE2L3 HERC1 HACE1 UBE1DC1 UBE2M UBE2I 

UBE2Q2 TSG101 UBE2G2 CUL4A HERC4 CUL4B 

UBE2L6 DCUN1D1 CUL2 HERC5 UBE2NL CUL7 UBE2S 

UEVLD UBE2F HERC6 WWP1 SMURF2 NEDD4L HECW2 

UBE2B UBE2J1 FLJ25076 UBE2Q1 UBE1L2 UBE2G1 FBXL15  

UBE2H FBXO18 CUL5 LOC554251 ARIH1 FBXL19 UBE2D2 WSB1 

WWP2  FBXL7 C10ORF46 ASB18 

FBXL16 FBXO27 FBXW10 FBXO42 FBXO21 FBXO40 

FBXO30 FBXO17 FBXL10 SKP2 SOCS7 ASB12   FBXL11 

WSB2             FBXL20 SOCS2 FBXO43 LOC200933 ASB13 SPSB1

 SOCS6 FBXO6 FBXL8 ASB16 LRRC29 FBXW8

 ASB9 FBXO4 FBXO16 ASB14 FBXW11 ASB6 

RAB40C FBXW2 SPSB3 FBXO31 FBXO9 FBXL3P SPSB2

 WDR71 FBXO41 SOCS5 FBXL13 ASB11 FBXO5

 FBXL17 FBXO28 FBXO46 

LOC342897 FBXL18 SOCS3 FBXO15 FBXO3 FBXO22

 FBXO11 FBXL14 FBXO7 FBXO25 RAB40A

 FBXL2 ASB5 CISH ASB8 FBXW9 

LOC652759 TULP4 NLRC5 FBXO8 CCNF FBXO44

 LL0XNC01-237H1.1 ASB2 FBXO24 LOC440456 FBXO2

 FBXO38 BTRC ASB7 FBXL12 FBXL3A 

ASB4 FBXO33 LGR6 FBXL6 NEURL2 ASB15 FBXO36

 FBXW5 SOCS1 FLJ10916 FBXW12 FBXL4

 FBXO32 SPSB4 FBXW7 FBXO39 

SHFM3 ASB10 FBXL5 ASB3 FBXO10 FBXL22 FBXO47

 RAB40B FBXO34 MDM2 SOCS4 PRPF19 ASB17

 TRIM6-TRIM34 ASB1 ZMYND11 

JARID1B RNF123 RKHD1 TRIM67 TRIM75 PHF17 OIT3

 MGRN1 PHF7 TRIM39 RBX1 LOC653111 LOC642678

 3/8/2009 BIRC3 MIB2 

PHF11 TRIM60 LOC644006 PHF6 TRIM42 BAHD1 RNF7

 WDSUB1 TRIM41 RNF133 HRC MYCBP2 PHF20L1

 RNF152 TRIM62 RNF125 

TRIM8 RNF122 TRIM63 RFPL4B WDR24 DTX4

 PCGF1 TRIM3 KIAA1718 RNF32 PRICKLE1 CBL

 RFWD2 RSPRY1 BMI1 PHF20 
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RNF39 RNF12 PDZRN3 C6ORF49 TRIM26 PHF21B ZNF645

 RNF5 INTS12 ZNF592 CHD5 RNF180 UNKL MID2

 ZNF313 RNF185 

RNF135 ZNRF2 PHF5A C20ORF18 3/4/2009 ANKIB1

 PHF15 BRCA1 LOC92312 ZFAND6 PHF21A HR

 MLLT6 TRIM14 ZNRF3 NDP52 

LOC643904 TRIM40 LOC399937 TRIM43 LMO6 TRIM52

 RNF144 LONRF1 SH3RF2 RNF150 PHF23 RNF25

 RUFY1 ZNF330 UBR2 TRIM2 

RFPL2 PHF16 ZNF179 RAD18 CBLC RNF44 TRIM55 BRPF3

 PCGF3 RNF8 PHF13 DTX3L RNF148 VPS41 RNF103

 TRIML1 
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Appendix B Supplementary Information for Chapter 3 

 
Figure B1. Scatter plots of simulated point patterns. First two rows show point pattern A; the lower two 

rows show point pattern B. Two major clusters in both point pattern A and B are generated from the same 

distributions. The third cluster of point pattern A, located on the center right, consists of about 10 to 20% of 

total cells. The third cluster of point pattern B, located at upper left of all points, contains only 2 to 5% of all 

cells. 
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Figure B2. Heatmap for a percentage of cells inside each box with 6 bins. Percentage of cells in box B16 

(which corresponds to the third cluster in point pattern B) is significantly different between these two point 

patterns. This is not seen with only 3 bins. However, with 20 samples, analysis results using 6 bins is not 

reliable. Hence, in order to identify the fine difference, more samples are needed.  
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Figure B3. With 6 bins, both different between pattern A and pattern B can be found by CytoBinning. 

 

 
Figure B4. Illustration of manual gating strategy to get live cells. 
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Figure B5. Select important marker pairs for the first dataset (old vs. young). Ten samples are randomly 

selected as cross-validation dataset (4 in young group and 6 in the old group). SVM classification was used 

to separate old and young samples with binning results for each marker pair separately. Two marker pairs are 

able to achieve 100% classification accuracy for both training and cross-validation dataset (CD4 vs. CD3 and 

CD8 vs. CCR7). 
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Figure B6. Scatterplots of CD8 vs. CCR7 for two randomly selected young donors (up) and two 

randomly selected old donors (down).  



 

 

121 

 

 

Figure B7. Scatterplots of CD4 vs. CD3 for two randomly selected young donors (up) and two 

randomly selected old donors (down). 



 

 

122 

 

 
Figure B8. Illustration of box B25 formed by CD4 and CD3. a) The position of box B25. b) Percentage 

of cells in B25 is higher in young donors. c) Scatter plot of mean fluorescent intensity (MFI) for all donors 

and all markers. This suggests cells in B25 are CD3+, CD8+, and CD45RA+. d) An example showing how 

cells in B25 (green) compare to manually gated naïve CD8 cells. e) Cells in B25 are divided into two 

groups: CCR7+ (expression of CCR7>1) and CCR7- (expression of CCR7<1). The boxplots show that 

difference of cell percentage between old and young donors in B25 is driven by CCR7+ cells.  
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Figure B9. Illustration of box B55 formed by CD4 and CD3. a) The position of box B55. Cells in B55 

express the highest 20% of both CD3 and CD4. Hence they might be CD4 T cells. b) Percentage of cells in 

B55 is higher in old donors. c) Scatter plot of mean fluorescent intensity (MFI) for all donors and all markers. 

It suggests cells in B55 might be CD8-, CCR7+, and CD45RA+. 
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Figure B10. Illustration of box B22 formed by CD4 and CD3. a) The position of box B22. b) Percentage 

of cells in B55 is higher in old donors. c) Scatter plot of mean fluorescent intensity (MFI) for all donors and 

all markers. It suggests cells in B22 might be CD11b+, CD14+, and CD45RA+. 

List of markers measured in Function panel. 
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Figure B11. Illustration of manual gating strategy for naïve and memory CD8 T cells. 

 

 

 

 
Figure B12. a) Overlay of cells in B55 on CD8 naïve and memory cell types for one donor. b) Boxplot of 

naïve CD8 cell percentage in live cells. 
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Figure B13. Illustration of box B51 formed by CD8 and CCR7. a) The position of box B51. b) Boxplot 

of cell percentage in B51 between young and old donors. c) Scatter plot of mean fluorescent intensity (MFI) 

for all donors and all markers. d & e) MFI of CD45RA vs. MFI of CCR7 for cells in B51, naïve and memory 

CD8 T cells. Each symbol shows a donor (young donors in d and old donors in e), vertical and horizontal 

errorbars show the standard deviation of CCR7 and CD45RA intensity respectively. 

List of markers measured in CD4 vs CD8 dataset 
CD45, CD14, CD57, TCRgD, IFNg, TNFa, IL.8, GranzymeB, IL17F, CD45RA, CLA, CTLA.4, IL2,  CD25, 

CD103, CCR10, CXCR6, IL5, CD19, CD56, IntegrinB7, PD-1, IL9, CCR9, CXCR3, CD127, Mip1b, 

CXCR5, CD161, CCR2, IL4, IL10, CCR6, GM.CSF, CCR4, IL22, CCR5, IL17A 
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Appendix C Supplementary Information of Chapter 4 

 
Figure C1. Important marker pairs are selected based on lowest training and testing errors. This 

example demonstrates the average training and testing error for a 7-fold cross validation based on multi-class 

Support Vector Machine (SVM) classification. Each training set contains 30 samples, and each testing set 

contains the remaining 5 samples.  
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Figure C2. Manual gating validates the PD-1high CCR7- cell subset is highly overexpressed in tonsil 

samples. a) Example showing manual gating for cell subsets PD-1high CCR7- (highlighted in black boxes) in 

different types of tissues. b) Boxplot showing percentage of PD-1high CCR7- cells for each type of tissues. 
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Figure C3. Mean marker expression of manually gated CCR7-PD-1high cells. The dark row of CB4 

indicates that in this cord blood sample there are no CCR7-PD-1high cells. 

 

 
Figure C4. Patterns formed by CCR7 and CD161 expression are distinct among different types of 

tissues. The black lines are binning thresholds determined by CytoBinning. Five bins are used to divide these 

patterns. Cord blood, PBMC and liver samples look similar at first glance, however, if observe closely, 

PBMC express more CD161-CCR7+ and CCR7+CD161+ cells than cord blood, and liver express more 

CD161+CCR7- cells than both PBMC and cord blood. In addition, there’s a cell phenotype: CD161+CCR7+, 

that is highly overexpressed in colon samples.  
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Figure C5. Manual gating validated that CD161+ CCR7+ cell subset is highly expressed in colon 

samples comparing to other types of tissues. a) Example showing manual gating for cell subsets CD161+ 

CCR7+ (highlighted in black boxes) in different types of tissues. b) Boxplot showing percentage of CD161+ 

CCR7+ cells for each type of tissues. 
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Figure C6. Mean marker expression level of CD161+CCR7+ cells. In addition to CD161 and CCR7, 

these cells also express CD27, CXCR4, and CD45RO (except for cord blood samples). 

 

 
Figure C7. Patterns formed by CCR5 and CD27 expression are distinct among different types of 

tissues. The black lines are binning thresholds determined by CytoBinning. Five bins are used to divide these 

patterns. A cell phenotype CD27+CCR5+ is identified to be highly overexpressed by CD4 T cells in lung. 

Since the lung samples in this dataset are collected from lung cancer resection, we’re not sure if the 

overexpression is because of immune function of lung tissues or is due to the tumor mechanism.  
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Figure C8. Manual gating validated that CD27+CCR5+ cell subset is highly expressed in lung samples 

comparing to other types of tissues. a) Example showing manual gating for cell subsets CD27+CCR5+ 

(highlighted in black boxes) in different types of tissues. b) Boxplot showing percentage of CD27+ CCR5+ 

cells for each type of tissues. 
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Figure C9. Mean marker expression level of CD27+CCR5+ cells. In addition to CD27 and CCR5, these 

cells also express CD29, CXCR4, and CD45RO (except for cord blood samples). 

 

 

 
Figure C10. Patterns formed by CCR7 and CD27 expression are distinct among different types of tissues. 

The black lines are binning thresholds determined by CytoBinning. Five bins are used to divide these patterns. 
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Figure C11. Patterns formed by CCR5 and CXCR6 expression are distinct among different types of 

tissues. The black lines are binning thresholds determined by CytoBinning. Five bins are used to divide these 

patterns. 
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Appendix D Package ‘RefCellScreening’ 

Type Package 

Title Identify important siRNA hits using typical cells 

Version 0.0.0.900 

Date 2018-04-16 

Author Yang Shen <shenyang@umd.edu> 

Description This package contains functions for typical cell selection and batch processing 

of samples in high-throughput screening data 

Imports data.table, kernlab, ks 

Needs Compilation no 

typical_cell_selection    selects typical cells 

Description 

This function selects typical cells and returns selected typical cells as a matrix 

Usage 

typical_cell_selection (indata, 1000, features, method='peak') 

Arguments 

input   Input matrix that contains all cells 

number  The number of typical cells to select 

index Indices of measurements based on which typical cells are selected, should 

be a vector of integers 

method  Methods to define the center of typical cells, can choose from "mean" and 

"peak" 

Values 

A list contains two elements, the first element is a matrix contain typical cells, and the 

second element is a vector of index for typical cells 

 

appends    append element to a list object 

Description 

This function appends a new element to an existing list object at the end (the original list 

can be empty) 

Usage 

appends(list, to_add) 

Arguments 

lists   The original list 
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to_add  The element to be added to the list 

Value 

A new list with the element added at the end 

 

combine_data   combine all data files within a certain directory 

Description 

This function combines all data files in a given folder 

Usage 

combine_data(directory, pattern = NULL) 

Arguments 

directory  The directory of the folder that stores all the data files to be combined 

pattern  An optional regular expression. Only files match this expression with be 

combined. The default value is NULL.  

Value 

A data frame that contains all data 

 

SVM   performs SVM to classify data points in two matrices 

Description 

This function applies SVM in kernlab package to classify two groups of data points stored 

in two matrices and returns the accuracy of SVM classification and the direction of the 

classification boundary 

Usage 

SVM (healthy,disease,feature_index=c(1:ncol(healthy))) 

Arguments 

healthy  Matrix of healthy cells to be classified 

disease  Matrix of diseased cells to be classified 

feature_index  A vector contains index of measurements used in classification, should be 

a vector of integers; length must be larger than 1 

Values 

accuracy  Accuracy of the classification 

weightnorm  Normalized weights of each feature. Negative weights are higher in disease 

matrix 

center  The center (average) of all data points (healthy and disease combined). Can 

be used to normalize test datasets 
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std  The standard deviation of all data points (healthy and disease combined). 

Can be used to normalize test datasets 

SVM_bn  adjusted constant for calculating the distance between data point to 

classification boundary in test data points 

 

SVM_cv  performs SVM classification and testing together 

Description 

This function applies SVM in kernlab package to classify two groups of data points stored 

in two matrices, applies its classification boundary to the testing dataset and outputs the 

corresponding accuracy. 

Usage 

SVM_cv(controls,exper,feature_index,test.control,test.exp) 

Arguments 

controls  Training matrix of healthy cells to be classified 

exper   Training matrix of diseased cells to be classified 

feature_index  A vector contains index of measurements used in classification, should be 

a vector of integers; length must be larger than 1 

test.control  Testing matrix of healthy cells 

test.exp  Testing matrix of diseased cells 

Values 

accuracy  Classificaiton accuracy of the training dataset 

test   Classification accuracy of the test dataset 

weight   Normalized weights of the features 

 

projection project additional data points along the direction of the classification 

boundary 

Description 

This function projects additional data points along the direction of classification boundary 

after normalizing it based on the center and std of classification data (used in SVM), 

calculates the length of projection and percentage of cells along the same direction of the 

classification boundary 

Usage 

projection(to_be_normed, center, std, weight) 

Arguments 

to_be_normed  Matrix containing single cells information to be projected 



 

 

139 

 

center    Center of typical cells, output from SVM() 

std    Standard deviations of typical cells, output from SVM() 

weight  Direction of boundary plane given by SVM(), weight should be 

formatted as a n by 1 matrix, n is the number of dimensions 

Values 

projected  A list of projected distance between each test data point to the classification 

boundary 

percent  percentage of data points in a to_be_normed matrix that has a positive 

distance to the classification boundary 

 

batch_projection batch projection of data in siRNA files to classification boundary 

Description 

This function projects data in multiple data files to the direction of classification boundary 

identified in SVM() 

Usage 

batch_projection(directory,index,center,std,weight) 

Arguments 

directory  Directory of the folder that contains all data files to be projected 

index   A vector of the index for features to be used for projection 

center   Center of typical cells, outputs of SVM() 

std   Standard deviations of typical cells, outputs of SVM() 

weights  Weights of each feature (i.e., the direction of the classification boundary), 

outputs of SVM() 

Values 

percentages  A vector of the percentage of cells with a positive projection for each data 

file 

cell.counts  A vector of cell numbers in each data file 

names   A vector of names for each data file 

 

hits_identification  Identify important siRNA hits 

Description 

This function identifies important siRNA hits as the ones with the percentage of healthy-

like cells above a threshold 

Usage 
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hits_identification(disease_percent, siRNA_percent, std_siRNA_percent, siRNA_number, 
siRNA_name, number_of_plates) 

Arguments 

disease_percent  A vector of healthy-like cell percentage in disease control samples 

siRNA_percent  A vector of healthy-like cell percentage in siRNA samples 

std_siRNA_percent  A vector of standard deviations of each siRNA sample across 

replicate experiments 

siRNA_number  A vector of the ratio between the number of cells in each siRNA 

sample and mean cell numbers in healthy control samples 

siRNA_name   A character vector contains the names of each siRNA 

number_of_plates  The number of replicate experiments 

Value 

A character vector containing the names of siRNA hits 
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Appendix E Package ‘CytoBinning’ 

Type Package 

Title CytoBinning 

Version 0.0.0.900 

Date 2018-04-16 

Author Yang Shen <shenyang@umd.edu> 

Description This package contains functions to perform CytoBinning 

Imports flowCore, kernlab, ks  

Needs Compilation no 

 

preprocess  perform compensation and logicle transformation 

Description 

This function performs logicle transformation on all FCS files in a folder and outputs 

transformed data in text format 

Usage 

preprocess = function(input.directory, output.directory, marker.index, marker.names) 

Arguments 

input.directory  Directory of the folder contains all fcs files 

output.directory  Directory of the folder to store all transformed data in text format 

marker.index   Indices of markers that need to be logicle transformed 

marker.names  Names of markers in the same order as the indices 

Value 

NULL 
 

CytoBinning  perform CytoBinning on all files in a folder 

Description 

This function performs CytoBinning on all data files in a folder and output a matrix where 

each row is the binning result for a data file 

Usage 

CytoBinning(bin.number, marker.names, input.dir, output.dir) 

Arguments 

bin.number   A vector of the selected number of bins 

marker.names  A vector contains names of markers to be used in binning 

input.dir   Directory of the folder that contains pre-processed text data files 
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output.dir  Directory of the folder that contains binning results, each file stores 

one marker pair of a given bin number 

Value 

NULL 

 

SVM   performs SVM to classify data points in two matrices 

Description 

This function applies SVM in kernlab package to classify two groups of data points stored 

in two matrices and returns the accuracy of SVM classification and the direction of the 

classification boundary 

Usage 

SVM (healthy,disease,feature_index=c(1:ncol(healthy))) 

Arguments 

healthy  Matrix of healthy cells to be classified 

disease  Matrix of diseased cells to be classified 

feature_index  A vector contains an index of measurements used in classification, should 

be a vector of integers; length must be larger than 1 

Values 

accuracy  Accuracy of the classification 

weightnorm  Normalized weights of each feature. Negative weights are higher in disease 

matrix 

center  The center (average) of all data points (healthy and disease combined). Can 

be used to normalize test datasets 

std  The standard deviation of all data points (healthy and disease combined). 

Can be used to normalize test datasets 

SVM_bn  adjusted constant for calculating the distance between data point to 

classification boundary in test data points 
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Appendix F Between and within cell line heterogeneity in 

breast tumor: insights from tumor cell stiffness 

F.1 Overview 

The experiments and data pre-processing were performed by members in Professor Josef 

A. Käs’s laboratory at Leipzig University in Germany. I designed downstream analysis 

approach, performed analysis and wrote the manuscript. 

F.2 Abstract 

Cellular heterogeneity in tumor cells is a well-established phenomenon. Genetic and 

phenotypic cell-to-cell variability has been observed in numerous studies both within the 

same type of cancer cells and across different types of cancers. Here we show that similar 

heterogeneity can also be seen in mechanical properties of cells both within and between 

breast tumor cell lines. In particular, we identified two clusters within MDA-231 cells, with 

cells in one cluster softer than the other. Since stiffness of tumor cells can be an indicator 

of malignancy potential, this result suggests that metastatic abilities could vary within the 

same tumor cell line. In addition, we show that MDA-231 and MDA-436 cells are more 

different from each other than from MCF-10A cells in their mechanical properties, 

suggesting the existence of different paths to metastasis and the possibility of 

differentiating and understanding these paths with mechanical properties of single cells.  

F.3 Introduction 

Recognized as early as 1958 [145], genetic heterogeneity is a well-established phenomenon 

in tumor cells, especially during metastatic stages [92, 146-148]. Studies have shown that 

cells from a single type of cancer typically contains multiple genetically distinct subgroups 
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[149]. Such high level of heterogeneity has been accused of being the reason why cancer 

is hard to cure [150-152]. However, to-date the reason and extent of tumor cell 

heterogeneity is still not well-understood [92]. Two main theories have been proposed to 

explain the origin of tumor cells heterogeneity: cancer stem cell [153] and clonal evolution 

[150]. These two theories try to explain the heterogeneity in ecological and evolutional 

aspects respectively, and there has been evidence for each theory [154]. Variations in gene 

expression lead to molecular variations which in turn affect cellular function and other 

properties. One of the most important impacts may be cellular stiffness. Changes in actin 

expression and cytoskeleton organization are related to the fact that metastatic tumor cells 

are softer than their benign counterparts as well as normal cells [155-157]. Since metastasis 

is responsible for more than 90% of cancer fatality [158], great effort has been made to 

study the properties of metastatic tumor cells and how mechanical properties of tumor cell 

affect its metastatic ability.  

Multiple experimental tools have been applied to study cell stiffness, such as atomic force 

microscope (AFM) [159], quantitative deformability cytometry (q-DC) [160], microfluidic 

optical cell stretcher [161], etc. Using these tools, a large volume of evidence has been 

identified linking lower stiffness of tumor cells to higher metastatic ability [155]. In 

addition, studies have suggested the potential of using mechanical properties as a 

biomarker of metastasis [162] and for cancer diagnosis [163]. Even though single-cell level 

measurements can be achieved using these techniques, most studies still perform average 

based analysis on these data, causing possible oversimplification of the results. 

In this paper, we use a microfluidic optical cell stretcher to measure mechanical properties 

of single cells from three cell lines: MCF-10A, MDA-231, and MDA-436. With single-cell 
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data analysis, we show that heterogeneity of cellular stiffness exists both within and 

between cell lines. In particular, we observed two groups of MDA-231 cells. Cells in one 

of the groups are significantly softer than the other. In addition, we found that although 

MDA-231 and MDA-436 are both triple-negative cell lines with the metastatic tendency, 

they are quite distinct: more different from each other than from nonmalignant cell line 

MCF-10A. 

F.4 Results 

We used a Microfluidic Optical Cell Stretcher to mechanically stretch individual tumor 

cells and measure their stiffness [164, 165]. Suspended single cells were trapped for 1 

second and subsequently stretched for 2 seconds and then relaxed in trapping condition for 

another 2 seconds (Fig F1). Images of cells were taken at the rate of 30 frames per second, 

and the length of long axis was measured in each frame for each individual cell. In this 

paper, we use only two mechanical features calculated from these measurements: 1. 

Normalized long axis deformation at the end of stretch (Deformation EOS), and 2. 

Normalized long axis deformation during the relaxation period (Relaxation EOE) (Fig F1). 

The value of EOS is reversely proportional to Young’s modulus, where higher EOS value 

indicates lower Young’s modulus (easier to stretch). On the other hand, EOE is a 

measurement of the ability of a cell to restore its shape, where the higher absolute value of 

EOE suggests greater ability to restore original shape. Together, these two features give a 

good representation of the stiffness of a single cell.  

Using this technique, we measured cells from three different breast cancer cell lines: MCF-

10A, MDA-231, and MDA-436. MCF-10A is a non-malignant and non-metastatic cell line 

which is often used as a control cell line for cancer cell studies. MDA-231 and MDA-436 
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are both triple negative breast cancer cell lines (i.e. they do not express estrogen receptors, 

progesterone receptors nor HER2), they both have metastatic potential with MDA-231 

considered more malignant than MDA-436 [166].  

 
Figure F1. An illustration of the data and features calculated from the data (adapted from [164]).  

F.4.1 Two subgroups observed in MDA-231 cells 

We first identified two subgroups within MDA-231 cells, one subgroup (cluster 2, Fig F2) 

have higher deformation at the end of stretch (EOS) and higher absolute value of relaxation 

at the end of the experiment (EOE) than cluster 1 (Fig F2). Higher absolute values of both 

EOS and EOE indicates cells in cluster 2 are more elastic (easier to stretch and easier to 

restore original shape) comparing to cluster 1 which overlaps with MDA-436 and MCF-

10A cells (Fig F3a).  
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Figure F2. Two clusters of MDA-231 cells are observed. a) Scatterplot of Relaxation EOE vs. Deformation 

EOS for MDA-231 cells. The two subgroups are labeled by different colors (red: cluster 1, blue: cluster 2). 

b) Boxplot comparing relaxation at the end of experiment between cluster 1 and cluster 2 of MDA-231 cells. 

c) Boxplot comparing deformation at the end of stretch between the two subgroups of MDA-231 cells. 

F.4.2 The more elastic group does not exist in E-cadherin labeled MDA-231 cells  

E-cadherin is an important cellular marker for cell-cell adherence. Metastatic tumor cells 

like MDA-231 cells express limited E-cadherin and hence are less adhesive. In our 

experiment, we also measured mechanical properties for MDA-231 cells that are labeled 

with E-cadherin antibodies. Surprisingly, different properties are observed between the E-

cadherin labeled and original MDA-231 cells. In particular, E-cadherin labeled MDA-231 

cells only formed one cluster instead of two clusters as is observed in unlabeled MDA-231 

cells. The labeled 231 cells overlap with cluster 1 of MDA-231 cells which is the less 

elastic subgroup (Fig. F3b).  
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Figure F3. MCF-10A, MDA-436, and E-cadherin labeled MDA-231 cells all overlap with cluster 1 (the 

less elastic group) in unlabeled MDA-231 cells. a) Scatterplot of Relaxation EOE vs Deformation EOE for 

MCF-10A (red), MDA-231 (green) and MDA-436 (blue) cells. b) Scatterplot of Relaxation EOE vs. 

Deformation EOE for E-cadherin labeled (blue) and unlabeled (red) MDA-231 cells. 

F.4.3 MDA-231 and MDA-436 cells are more different from each other than from 

MCF-10A cells 

We showed above that there is a subgroup in MDA-231 cells that greatly overlap with 

MCF-10A and MDA-436 cells. We then move to ask the question that are these 

overlapping phenotypes similar to each other or are they separable on single cell level? To 

answer this question, we applied k nearest neighbors (k-NN) algorithm for a pairwise 

classification of the three phenotypes. We first divided the cells into two groups: train and 

test. Phenotype labels are provided for cells in train group but not for the test group. Then, 

given the position of a single cell in the test group, k-NN identifies its nearest k neighbors 

within the training group. The k neighbors then take a vote with their phenotype, and the 

cell from test group is assigned to the phenotype that has highest votes. After classification, 

we calculated the sensitivity (true positive rate) and specificity (true negative rate) for each 

pair of classification. We found that classification between MCF-10A and MDA-436 cells 

has the lowest sensitivity and specificity regardless of the value of k (Fig F4a and F4b). 
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This indicates that the distinction between MCF-10A and MDA-436 cells are less clear 

than the other two pairs. Indeed, F1 score (a measure of classification result, the higher the 

score the better the classification, the maximum F1 score is 1) is much lower for MCF-10A 

and MDA-436 cells for all tested values of k (Fig F4c). This result is expected given that 

MDA-436 is only a mildly malignant cell line. Since both MDA-436 and MDA-231 cell 

lines are malignant, it is reasonable to expect they would be similar as well. However, this 

is not what we observed. Based on the classification results, classification between cluster 

1 of MDA-231 and MDA-436 cells has the highest level of F1 scores (Fig F4c) – which is 

even higher than the classification between MCF-10A and MDA-231 cells. Similar results 

are obtained with a different classification algorithm (SVM), where the classification 

between MDA-231 and MDA-436 cells also has the highest F1 value (Table F1). SVM 

takes a different approach in classification and aims to find the linear plane that best 

separates two groups to classify. In addition, when all the four phenotypes are classified 

simultaneously, MDA-436 cells are less likely to be miss-classified as MDA-231 cells than 

as MCF-10A cells and vice versa (Fig F5). Together, these results suggest that cells in 

cluster 1 of MDA-231 are more different from MDA-436 cells than from MCF-10A cells.  

 
Figure F4. Pairwise k-NN classification results show that MDA-231 and MDA-436 cells are more 

different from each other than from MCF-10A cells. a) Sensitivity (true positive rate) for the three 
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comparisons versus different values of k. b) Specificity (true negative rate) for the three comparisons versus 

different values of k. c) F1 score for the three comparisons versus different values of k.  

Table F1. Pairwise classification results by support vector machine (SVM). 

 Sensitivity Specificity F1 

MCF-10A (positive) vs MDA-

231 cluster 1 (negative) 
0.69 0.68 0.68 

MCF-10A (positive) vs MDA-

436 (negative) 
0.63 0.61 0.60 

MDA-231 cluster 1 (positive) 

vs MDA-436 (negative) 
0.76 0.74 0.74 

 

 
Figure F5. k-NN classification results of E-cadherin added MDA-231 cells (Ecad), MCF-10A cells, 

cluster 1 in MDA-231 cells and MDA-436 cells, with k = 10. MDA-231 and MDA-436 cells are less likely 

to be miss-classified as each other than as MCF-10A cells.  

F.5 Discussion 

Mechanical properties of tumors cells are important indicators of their malignancy. Studies 

have shown that metastatic tumor cells are on average softer than non-metastatic ones. In 

this paper, we illustrated the heterogeneity of tumor cell stiffness both within and between 

cell lines. With only mechanical properties, we show that there are two distinct clusters 

within MDA-231 cells. One of these two clusters greatly overlap with MCF-10A and 
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MDA-436 cells, and cells in the other cluster are softer (easier to deform and restore to 

original shape) than the other. In addition, we found that the two malignant cell lines: 

MDA-231 and MDA-436 are more different from each other than from the nonmalignant 

MCF-10A cell line.   

Heterogeneity within MDA-231 cell line has been shown before based on their molecular 

expressions. For example, it has been shown that there are two distinct subgroups of MDA-

231 cells which differ significantly in the cell surface density of various cytokine receptors 

(CCR5, CXCR3, CXCR1) [167]. In particular, CXCR3 was found to be overexpressed in 

metastatic tumor cells, and drugs targeting CXCR3 decreased tumor cell migration [168]. 

Hence our results agree with previous findings. Additional experiments can be performed 

to validate the two mechanically distinct subtypes of MDA-231 cells and whether this 

separation agrees with their cytokine receptor expression. 

We also identified heterogeneity between triple negative breast cancer (TNBC) cell lines, 

i.e., we found that MDA-231 and MDA-436 cells are quite distinct from each other, even 

more so than from the nonmalignant MCF-10A cell line. This finding is feasible from the 

perspective of the classical clonal evolution model. Assuming the genetic and (more 

importantly) the phenotypic characteristics of normal breast tissue are similar among all 

women. Thus, both patients from which the MDA-231 and MDA-436 cell lines are derived 

had initially breast tissue which is very similar to the MCF-10A tissue. From this healthy 

starting population of cells, different paths can be taken to reach a metastatic phenotype. It 

seems actually unlikely that two completely different patients accumulate the exact same 

cancer cell phenotype with the same optical stretching characteristics. What’s more, our 

findings may have important clinical implications. Patients with triple-negative breast 
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cancer are currently considered to have a very poor prognosis. However, there has been an 

emerging trend to regard TNBC as a heterogeneous group of patients with some actually 

having not such a bad prognosis. Furthermore, TNBCs can have very different molecular 

characteristics, potentially rendering some tumors more suitable to targeted therapies. It is 

of paramount clinical importance to identify those patients. The present data is intriguing 

in that it shows, that two TNBC cell lines (which would be put into one prognostic basket 

clinically) are indeed very different. It is interesting to speculate whether optical stretching 

analysis could be used to differentiate those TNBC cases with a better prognosis (i.e., a 

lower rate of relapse and distant metastasis) from those with a worse prognosis. 

In addition, our findings on the between cell line heterogeneity is an indication that average 

based analysis method would oversimplify tumor cell data. If one only looks at the 

scatterplot as in figure 3a, one would conclude that MCF-10A, MDA-436 and cluster 1 of 

MDA-231 cells are similar to each other with the probably minor difference in the average 

values. However, when classified with a more sophisticated algorithm like k-NN, 

reasonably good classification accuracy was achieved. That is to say, even though cells 

from the three cell lines overlap on at a higher level, locally cells from a certain cell line 

are more close to cells from the same cell line than from other cell lines. This cannot be 

found if averaging methods were used. 

Lastly, we found that E-cadherin labeled MDA-231 cells have different phenotype profiles 

comparing to the unlabeled cells. We reason that this is because binding of the antibody to 

the E-cadherin receptor simulates cell-cell binding, which causes cadherin clustering and 

stimulates the actin cortex bound to cadherin. This is a good example of how antibody 
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labeling would change the properties of cells be labeled, and a label-free measuring 

mechanism would give better / more accurate results. 

In all, we illustrated within and between cell line tumor cell heterogeneity with only cellular 

mechanical properties. Our results have great implications for future studies on how a 

change in chemokine receptor expression correlates with tumor cell stiffness and how 

differentiating mechanical properties of cancer cells could help identify triple negative 

breast cancer patients with better prognosis.  

F.6 Methods 

F.6.1 Experimental procedures 

Suspended single cells were trapped for 1 second and subsequently stretched for 2 seconds 

and then relaxed in trapping condition for another 2 seconds (Fig F1). Images of cells were 

taken at the rate of 30 frames per second, and the length of long axis was measured in each 

frame for each individual cell.  

F.6.2 Data analysis 

The two clusters of MDA-231 cells were clustered using kmeans() function in R (version 

3.0.3) with 2 centers, 1,000 iterations, and 50 random initial conditions. For kNN 

classification, 1,200 cells were first randomly selected from each cell line. From the 1,200 

cells, 200 were randomly selected as a testing set, and the remaining 1,000 were used as a 

training set for each cell line. The classification was done separately for each pair of cell 

line using knn() function in R with 8 different values of k (2, 3, 5, 7, 10, 20, 50, 100). 

Similarly, simultaneous classification of the four cell lines was done. After classification, 

false positive rate was calculated as FPR = (false positives) / (false positives + true 

positives). And false negative rate (FNR) = (false negatives) / (false negatives + true 
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negatives). Finally, pairwise SVM classifications were done based on all the 1,200 

randomly selected cells using ksvm() function with linear kernel and C=10 in R package 

kernlab. All plots were made with the ggplot2 package in R.  
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