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This dissertation develops a Dynamic Rideshare Optimized Matching (DROM) model 

and solution that is aimed at identifying suitable matches between passengers requesting 

rideshare services with appropriate drivers available to carpool for credits and HOV lane 

privileges. DROM receives passengers and drivers’ information and preferences 

continuously over time and maximizes the overall system performance subject to ride 

availability, capacity, rider and driver time window constraints, and detour and relocation 

distances while considering users’ preferences. The research develops a spatial, temporal, 

and hierarchical decomposition solution strategy that leads to the heuristic solution 

procedure. Three-Spherical Heuristic Decomposition Model (TSHDM). Quality and 

validity tests for the TSHDM algorithm are done by comparison of results between the 

exact and implemented algorithm solutions and major sensitivity analyses using the 

technique of Regression Analysis on all of the related parameters in the model are 

conducted to thoroughly investigate the properties of the proposed model and solution 

algorithm. A case study is constructed to analyze the model and TSHDM behaviors on a 

road network of northwest metropolitan area of Baltimore city. The study shows that 

however DROM is a very complicated and challenging problem from both mathematical 



 

formulation and solution algorithm perspectives, it is possible to implement a dynamic 

rideshare system using appropriate technical tools and social networking media. Major 

sensitivity analysis conducted on several parameters and variables affecting the model 

shows that most influencing factors for the rate of success in the rideshare system are, in 

order of importance: number of participating drivers, number of stops, area size, and 

number of participating riders. The study also shows rate of success for the rideshare 

system is highly dependent to the matched routes connecting directly points of origin and 

destination for participating riders and also increasing the number of connections from 

one to two which requires two consecutive change of rides for a rider has the least impact 

on the rate of success. 
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Chapter 1: Introduction 

1.1. Motivation 

The price of oil again began rising in February 2009 and it reached the two-year 

record level of  $117.12 a barrel in May 2011 (Figure 1). The analysts predict that oil 

prices will continue to rise and consumers’ budgets will be more under pressure.  The 

world economy is running fast out of the cheap oil that has powered the economic 

development since the 1950s [Londarev and Baláž, 2005]. The problems related to traffic 

congestion and environmental pollutions in big cities are increasing [Slack et al., 2006].  

 
Figure 1: Weekly all countries oil price FOB weighted 

Source: U.S. Energy Information Administration 

 

In the face of the increasing price of transportation fuel cost and the worsening 

effects of traffic congestion and environmental pollutions, wise usage of personal 

automobiles are gaining more attraction. Rideshare is a solution for car travel reduction 

aiming to bring together travelers with similar itineraries and time schedules. Ridesharing 

has generated much interest in recent years with media coverage (the Wall Street Journal 

[Saranow, 2006], Time [Sayre, 2006], Newsweek [Levy, 2007], Business Week [Walters, 

2007], ABC News [Bell, 2007], The NY Times [Wiedenkeller, 2008], USA Today 

[Jesdanun, 2008], and NBC4 News [McPeek, 2011], among many others.). Mean 

http://www.time.com/time/letters/email_letter.html
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occupancy rates of personal vehicle trips (the average number of travelers per vehicle 

trip) in the united states is 1.6 persons per vehicle mile (Table 1) ranging from 1.14 for 

work-related trips to 2.05 for social or recreational trips and weekday trips have a 

weighted (by Miles travelled in trip) occupancy of 1.5 compared to 2 people per vehicle 

mile on weekend trips [BTS, 2001].  

Table 1: Vehicle Occupancy per Vehicle Mile by Daily Trip Purpose 

 
 

The large travel demand for personal car transportation together with low 

occupancies leads to traffic congestion that is an increasingly important issue in many 

urban areas with rapid population and economic growth. Congestion has gotten worse in 

regions of all sizes in the United States. In 2007, congestion caused urban Americans to 

travel 4.2 billion hours more and to purchase an extra 2.8 billion gallons of fuel for a 

congestion cost of $87.2 billion which is an increase of more than 50% over the previous 

decade (Table 2). This was a decrease of 40 million hours and a decrease of 40 million 

gallons, but an increase of over $100 million from 2006 due to an increase in the cost of 

fuel and truck delay [UMR 2009]. An effective ridesharing system that encourages the 

travelers to share their personal car could be an effective countermeasure against traffic 

congestion with reducing personal car travel demand. 
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In the United States more than 87% of commuters travel in private vehicles which 

accounts for a daily sum of 166 million Miles and single occupancy vehicles make up a 

big portion  (77%) of the travels (Table 3), resulting in inefficient use of the 

transportation infrastructure [CIAIII, 2006] and giving a big opportunity for developing a 

rideshare system.   

Table 2: Major Findings for 2009 (The Important Numbers for the 439 U.S. Urban Areas) 

Measures of …… 1982 1997 2006 2007 

… Individual Traveler Congestion         

Annual delay per peak traveler (hours) 14 32 37 36 

Travel Time Index 1.09 1.2 1.25 1.25 

"Wasted" fuel per peak traveler (gallons) 9 21 25 24 

Congestion Cost (constant 2007 dollars) $290  $621  $758  $757  

Urban areas with 40+ hours of delay peak traveler 1 10 27 23 

…The Nation's Congestion Problem         

Travel delay(billion hours) 0.79 2.72 4.2 4.16 

"Wasted" fuel per peak traveler (gallons) 0.5 1.82 2.85 2.81 

Congestion Cost (constant 2007 dollars) $16.70  $53.60  $87.10  $87.20  

… Travel Needs Served         

Daily travel on major roads (billion vehicle-Miles) 1.68 2.93 3.79 3.82 

Annual Public transportation travel(billion person-Miles) 38.8 42.6 53.4 55.8 

…Expansion Needed to to Keep Today's Congestion Level         

Lane-Miles of freeways and major streets added every year  15,500 16,532 15,032 12,676 

Public transportation riders added every year(million) 3,456 3,876 3,779 3,129 

… The Effect of Some Solutions         

Travel delay saved by         

          Operational treatments (million hours) 7 116 307 308 

          Public transportation (milliion hours) 290 455 622 646 

Congestion costs saved by         

         Operational treatments (billions of 2007 dollars) $0.02  $2.30  $6.40  $6.50  

         Public transportation (billions of 2007 dollars) $6.30  $9.30  $13.10  $13.70  
Travel Time Index (TTI): The ratio of travel time in the peak period to travel time at free-flow conditions. 

Peak Traveler: The extra time spent traveling at congested speeds rather than free-flow speeds divided by 

the number of persons making a trip during the peak period. Wasted Fuel: Extra fuel consumed during 

congested travel. Vehicle-Miles: Total of all vehicle travel. Expansion Needed: Either lane-Miles or annual 

riders to keep pace with travel growth and maintain congestion. 

Source: 2009 Urban Mobility Report, Texas Transportation Institute, the Texas A&M University System, 

July 2009 
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Single occupancy vehicles commute a daily sum of 127 million Miles [CIAIII, 

2006]. Composite national average driving cost per mile is 54.1 cents including average 

fuel, routine maintenance, tires, insurance, license and registration, loan finance charges 

and depreciation costs [AAA 2008]. Table 4 presents a more detailed breakdown by 

Miles driven and vehicle type. Therefore, a successful ridesharing program that increases 

the occupancy of vehicles may result in a significant saving in driving costs on the 

roadway system. 

Table 3: Mode share Trends, 2000-2004 

 
Source: Commuting in America III: The Third National Report on Commuting Patterns 

and Trends, 2006, Transportation Research Board, 2006 

 

Table 4: Driving cost by Miles driven and vehicle type 

 
Source: 2008 Your Driving Costs, American Automobile Association 
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 Private automobile is also the most pollutant transportation mode [Hensher, 

2008]. Transportation is a significant source of greenhouse gas (GHG) emissions. In 

2003, the transportation sector accounted for about 27 percent of total U.S. GHG 

emissions and it was predicted to continue increasing rapidly, reflecting the anticipated 

impact of factors such as economic growth, increased movement of freight by trucks and 

aircraft, and continued growth in personal travel. About 81 percent of transportation 

GHG emissions in the United States came from “on-road” vehicles. Personal transport 

accounted for 62 percent of total transportation emissions (35 percent for passenger cars 

and 27 percent for light-duty trucks including SUVs, minivans and pickup trucks and less 

than 1 percent for motorcycles). Heavy-duty vehicles including trucks and buses were 

responsible for 19 percent of total transportation emissions. (Figure 2) [Transportation 

GHG Emissions Report, 2006]. 

 
Figure 2. 2003 Transportation Greenhouse Gas Emissions, by Source 

Source: U.S. Environmental Protection Agency, 2005. Inventory of U.S. Greenhouse Gas 

Emissions and Sinks: 1990–2003. Washington, DC, Table 2-9. 

 

Ridesharing with increasing the rate of occupancy per vehicle represents an 

opportunity to decrease the cost and undesirable impacts of traffic congestion, fuel 

consumption, and pollution. Although several organized ridesharing projects have been 
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attempted, successful ridesharing systems are still in short supply. Certainly, in order to 

be widely adopted, ride-sharing must be easy, safe, flexible, quick to respond and 

economical and must be able to compete with one of the greatest advantages of private 

car usage, i.e., immediate access to door-to-door transportation.  [Agatz et al., 2010].   

Dynamic ridesharing (also called real-time ridesharing) is a form of carpooling 

system that provides rides for single, one-way trips. Dynamic ridesharing differs from 

regular carpooling and vanpooling in that ridesharing is arranged on a per trip basis rather 

than for trips made on a regular basis [Casey et al., 2000].  Traditional carpooling, 

however, is too limiting to accommodate the unconventional schedules of today’s 

rideshare demand, where many commuters will only respond to flexible commuting 

options [Levofsky et al., 2001]. Some of the transportation agencies have been working 

on innovative technologies to provide this flexibility. The focus has been on the concept 

of “smart travelers” riding in “smart vehicles”.  “Smart”, in the most advanced sense, 

means that both the people and vehicles are continuously connected via wireless 

communications and the “smart traveler” is a person who has access to real-time and 

reliable information in order to make travel decisions [Schweiger et al., 1994].  

 In a dynamic ridesharing system, individuals submit requests for a ride to an 

operations center or central database, either by telephone, e-mail, or direct input to a 

system residing on the Internet. The database of trips that have been offered by registered 

drivers is searched by the ride-matching software to see if any match the approximate 

time and destination of the trip request. A request may be made for any destination or 

time of day, but matches are more likely to be found for travel in peak periods and in 

principal commute directions. Requests for ride-matches can be made well in advance or 



7 
 

close to the time when the ride is desired. A return trip would be a separate trip request 

and could be matched with a different driver. The ITS element in dynamic ridesharing is 

the automation of the trip request matching and arrangement process, which allows trips 

to be arranged on short notice. This can be done by either the traveler using the Internet 

or by a customer service representative at a transit agency call center. The technology 

involved is rideshare software and possibly the Internet [Casey et al., 2000]. Dynamic 

ridesharing benefits both drivers and passengers. Passengers benefit by having an 

alternative when their usual mode is unavailable, and by possibly eliminating the need for 

an additional car for occasional use. Dynamic ridesharing is particularly valuable when 

public transportation is not an option. Drivers benefit by having someone to share the 

cost of the trip (although this may not always happen) or to gain enough passengers to 

qualify for high occupancy vehicle (HOV) lanes and reduce the travel time of their trip 

[Casey et al., 2000]. 

 Dynamic ridesharing could combat the increase in the numbers of vehicle trips, 

levels of Vehicle Miles Traveled, and amounts of congestion on the road. According to 

the United States Department of Transportation, 17% of the growth of VMT in the 

United States between 1983 and 1990 was caused by a decrease in vehicle occupancy – 

accounting for far more than the 13% increase due to population growth [Surface 

Transportation Policy Project. 1999]. But addressing this growth through traditional 

means is difficult because only 11% of the United States urban population lives within 

one-quarter mile of a transit stop with non-rush hour frequency of 15 minutes or less 

[National Science and Technology Council, 1999]. Dynamic ridesharing, in contrast, has 

the potential to reduce each of these factors; 35% of participants in a Bellevue Smart 
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Traveler project focus group [Haselkorn et al.  2005] and 50% of respondents to a Hawaii 

Department of Transportation study [Flannelly and McLeod, 2000] expressed a 

willingness to use such a service if it were available. The failure of the experiment in the 

large (open to the general public) dial-a-ride, door-to-door transit service in San Jose, 

CA, showed the great potential that door to door services have in attracting users. The 

transit system abolished less than six months after it opened because it was more 

successful in luring riders than its originators expected it to be [Lindsey 1975]. An 

expensive U.S. average $13 per-ride cost, however, prohibits conventional dial-a-ride 

service from becoming a viable option for a large number of trips [John A. Volpe 

National Transportation Systems Center (U.S.), 2000]. Recent technological advances in 

internet based communication devices such as PDAs, smart phones, and wireless laptops 

could be key enablers to increase popularity of dynamic ridesharing. According to 

comScore report, 234 million Americans subscribed to mobile phone plans in January 

2010. Of these, 42.7 million owned Internet-accessible smart phones, which represented 

an 18 percent increase over the three months ended in October.  

1.2. Definition and Features of Real-Time Ridesharing 

Dynamic ridesharing also known as dynamic carpooling, real-time ridesharing, ad-

hoc ridesharing, and instant ridesharing has been defined differently by different scholars. 

An early effort to increase the industry’s knowledge and adoption of successful 

applications of advanced technologies defined dynamic car-pooling as “a mode of 

transportation that is ready when you are. They are multipurpose and can be arranged 

either in real-time or close to it (near term). Participants pre-qualify and are put into a 

database. Upon receipt of a trip enquiry, the database is searched for others who are 
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traveling in the same direction at the same time. Participants can not only use this 

database to arrange for carpools to and from work, but also to a shopping center, medical 

facility or any other trip generator” [Schweiger et al., 1994] . One of the other first 

definitions proposed was developed in preparation for a field operational test in 

Sacramento, CA in 1994 that defined dynamic ridesharing as “a one-time rideshare match 

obtained for a one-way trip either the same day or the evening before” [Kowshik et al., 

1996]. Another trial in 1997 which was aimed to test the concept of dynamic rideshare 

matching services using Internet and e-mail at the University of Washington in Seattle 

defined dynamic ridesharing as “two or more people sharing a single trip, without regard 

to previous arrangements or history among the individuals involved. In comparison to 

traditional ride-matching services, which focus on commuters traveling to and from the 

same origins and destinations on fixed schedules, a dynamic ridesharing system must be 

able to match random trip requests at any time. Thus, the system must be able to match 

potential carpoolers quickly to respond to same-day trip requests, as well as the more 

traditional commute trips” [Dailey et al., 1997]. ‘dynamicridesharing.org’ defines 

dynamic ridesharing as “A system that facilitates the ability of drivers and passengers to 

make one-time ride-matches close to their departure time, with sufficient convenience 

and flexibility to be used on a daily basis” [Kirshner, 2008]. A recent definition proposed 

for dynamic ridesharing described it as “an automated system that facilitates drivers and 

riders to share one-time trips close to their desired departure times” and characterized it 

by the following features: Dynamic, independent private entities, cost sharing, non-

recurring trips, prearranged, and automated matching [Agatz, et al., 2010]. Another 

recent work suggests real-time ridesharing as “A single or recurring rideshare trip with no 
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fixed schedule, organized on a one-time basis, with matching of participants occurring as 

little as a few minutes before departure or as far in advance as the evening before a trip is 

scheduled to take place” [Amey, 2010]. 

All definitions emphasize that dynamic ridesharing is occasional in their nature and 

has no fixed amount of advanced notice required for establishing the shared trip. For the 

purposes of the study presented in this dissertation, real-time ridesharing is defined as: “A 

non-recurring multipurpose rideshare trip which is prearranged on a per trip basis on a 

short-notice to establish shared trips close to the desired departure times and locations of 

the participants to gain HOV lanes privileges or share the cost of the trip. ” 

1.3. Research Problem Statement 

This research project develops a Dynamic Rideshare Optimized Matching (DROM) 

model and solution that identifies suitable matches between passengers requesting 

rideshare services with appropriate drivers available to carpool for credits and HOV lane 

privileges. The optimization model seeks for optimal matched routes that maximize the 

overall system performance subject to ride availability, capacity, and rider and driver 

time window constraints while considering users’ preferences. DROM receives 

passengers and drivers information and preferences continuously over time and assigns 

passengers to drivers with respect to proximity in time and space and compatibility of 

characteristics and preferences among the passengers, drivers and passengers onboard. 

DROM is a core component of a typical real time rideshare system shown in Figure 3. 
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Figure 3: Real-time rideshare components 

The present study will be concerned with the following research questions: 

1. How has the transportation research communities responded to development of 

optimization models to increase popularity of Dynamic ridesharing in the era of 

emerging key enablers? 

2. Is it possible to rely on commercial solvers for obtaining optimal solutions in a 

reasonable computing time? If not so,  

3. How to develop an efficient solution algorithm for solving the optimization model 

proposed in this study? 

4. How do the characteristics of model and system environment impact the 

solutions?  

5. How do the model and solution behave in a real road network?      

1.4.  Organization of the Dissertation 

1. Passenger 
2. Cellular Infrastructure 
3. Optimization Server 
4. Hub 
5. Participating Vehicle 

(VANET) 
6. Inter-Vehicle 

Communication 
7. Roadside Sensors 
8. Urban Communication 

Infrastructure 
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 The research presented in this dissertation is carried out in the following order: 

Chapter 2 reviews the state-of-the-art of dynamic ridesharing projects and research. At 

the end of the chapter a summary of reviews is presented. Chapter 3 defines the problem 

of dynamic rideshare optimized matching. Chapter 4 presents the MIP mathematical 

formulation for the problem. Chapter 5 tests the model and validity of the solutions. 

Chapter 6 develops an efficient heuristic solution method for DROM problem, namely 

Three-Spherical Heuristic Decomposition Model. Chapter 7 analyzes the sensitivity of 

model parameters with the most influencing on results. Chapter 8 presents a case to 

illustrate the DROM and evaluate the solution approach on a real non-virtual road 

network. Chapter 9 concludes the research and suggests directions for future research.  

1.5.  Contribution of the Dissertation 

A viability analysis for dynamic rideshare system that examined both theoretical 

concepts and actual implementation of a dynamic rideshare system in Los Angeles [Hall 

and Qureshi, 1997] concluded that in theory dynamic ridesharing is a viable concept and 

a user should be successful to find a ride-match but in practice the story is different and at 

best one can expect a one in five chance of someone offering a ride. In another study, A 

GIS approach analysis to identify common clusters of commuters in University of 

Toronto [Sarraino et al., 2008] found that during morning commute hours (7:00–

10:30am), 1,461 of 3,030 drive trips (48%) were suitable for ridesharing based on 

residential proximity and similar residential departure times. A similar study in 

Massachusetts Institute of Technology suggested that between 50% and 77% of the 

commuting population could rideshare on a maximum-effort day that is significantly 

higher than the 8% of the MIT community that currently choose to rideshare [Amey, 



13 
 

2011]. A simulation study in Metro Atlanta showed that the use of sophisticated 

optimization methods substantially increases the likelihood to find the ride-matches and 

also that dynamic ridesharing has potential for success in large U.S. metropolitan areas 

[Agatz et al., 2010]. While technological advances have greatly eased the communication 

and reputation systems and social network tools have tackled the fear of sharing a ride 

with strangers, the development of optimization algorithms for matching the participant 

in real-time and ultimately increasing the rate of participation in the ridesharing system 

has been largely ignored by transportation research community. This research is the first 

of its kind that: 

1- Develops an optimization model for real-time rideshare matching problem. 

2- Develops an optimization model with negotiating policies for rideshare preference 

matches for rideshare matching problem. 

3- Develops a decomposition based solution strategy and algorithm to solve dynamic 

rideshare matching problem. 
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Chapter 2: Review of the Literature 

 The aim of the following is to review the state-of-the-art of dynamic ridesharing 

projects and research.     

2.1. Bellevue Smart Traveler 

The goal of the Bellevue Smart Traveler (BST) project was to design and test a 

traveler information center (TIC) prototype in downtown Bellevue, Washington, east of 

Seattle that is an area with concentrated employment facilities and a high percentage of 

single occupancy vehicle (SOV) commuters. The idea was to provide the participant with 

convenient off-site access to the TIC’s information including up-to-the-minute traffic 

congestion information, transit information, and carpool/vanpoo1 ride-matches using a 

telephone, and/or a hand-held alpha-numeric pager.  

The user population was employees of downtown Bellevue companies taking part in the 

BST demonstration project. Registered users had access to pagers in addition to the 

phone-based system and would be tracked to determine how they used the system and 

whether or not the system was effective in encouraging their use of HOV transportation 

options. The registration application acquired information such as: full name, gender, 

employer, Washington state driver’s license number, work address, home address, work 

phone number, home phone number (public or private), work days, work hours, preferred 

arrival time to work, preferred departure time from work, schedule flexibility (in terms of 

time), preferred pickup points (three of them, selected from a list, in ranked order), 

smoking preference, gender preference (exclusive and nonexclusive), willingness to be a 

driver (how often, how many seats available), and willingness to be a rider (how often).  
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For ridesharing purposes, registered users were divided into “ride groups”. All 

registered users were working in a four square block area of downtown Bellevue but 

lived throughout the Puget Sound area. Hence, ride groups were based on where users 

lived so that each ride group was consisting of users that commute to and from the same 

general areas to increase the potential for successful dynamic ride-matches; each ride 

group had enough users so that a reasonable number of ride matches were possible. 

However, each ride group was not so large to prevent overflow of information for riders 

looking for rides. Ride groups covered a small enough geographical area so that drivers 

and riders could meet and be dropped off at convenient locations. The formation of ride 

groups was based on zip codes and preferred pick-up/drop-off points (as specified on the 

application). The TIC was tested and demonstrated over a five-month period (from late 

November 1993 to late April 1994). During that time, 53 users were registered. Of the 

registered users, 48 formed three ride groups: 23 from areas south of Bellevue, 10 from 

areas east of Bellevue, and 15 from areas north of Bellevue. Members from the ride 

groups offered 509 rides and only six ride-matches were logged. Results from the usage 

patterns and various surveys that were conducted suggested that participants liked the 

idea of dynamic ridesharing, the presentation of the information and the technology. 

However, for various reasons they were either unable or unwilling to form ride-matches. 

Some of the reasons were: insufficient rideshare choices due to the limited size of 

rideshare groups, being uncomfortable getting into someone else’s car, limited time 

saving incentives due to lack of HOV lanes in the Bellevue area, and technology 

limitations that reduced the effectiveness of pager delivery. Another possible reason for 

failure of the project may have been the inconvenience of the rideshare service. The 
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system did not actually match the riders. When users received potential matches from 

their ride groups, they were left to coordinate the trip. 

 The BST project conclusions suggested that rideshare group is a new social entity 

and more work is needed to determine (1) how to encourage ride acceptance and (2) the 

dynamics of a viable ride group. Incentives such as management support and 

encouragement could have played a stronger role. Placing the BST TIC on the Internet 

would help people more easily obtain and respond to rideshare information [Haselkorn et 

al., 1995].  Since participants were placed in location-based ride groups, trips were 

limited to work and home, with time of the trip as the sole variable. For maximum 

benefits, dynamic ride-matching systems need to allow both location and time to vary to 

enable matching for work and non-work trips [Dailey et al., 1997]. 

2.2. Los Angeles Smart Traveler Field Operational Test 

The Los Angeles Smart Traveler Field Operational Test (FOT) was one of the 

largest and most comprehensive Automated Rideshare Matching System (ARMS) 

experiments to date that operated only from July 1994 to September 1994 and it was 

limited to the approximately 68,000 people. The purpose of the study was to evaluate the 

performance and effectiveness of the Advanced Traveler Information System (ATIS). 

This project was implemented in Los Angeles as part of the new technology 

demonstrations being carried out by the California Advanced Public Transportation 

Systems Group (CAPTS) at Caltrans District 7. It was designed as a field operational test 

of three different media approaches for providing traveler information: fully automated 

telephone systems; automated multi-media touch screen kiosks; and PC via modem. The 
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information included: transit routes, fares and services; traffic conditions on the freeways; 

and ride-matching information for ridesharing on both frequent and one time occasions.  

Survey results indicated a high degree of user satisfaction for the kiosks that 

provided a new medium for obtaining pre-trip traveler information, yet the overall usage 

rate was low (an average of 25 transactions per day), relative to the cost of providing the 

kiosk service. Low usage combined with high capital and operating costs yielded a total 

cost per use of approximately $2.00 (over a five-year lifetime of the kiosk). Kiosks 

placed in office locations had the lowest usage while kiosks placed in Union Station in 

downtown Los Angeles and shopping malls had the highest usage. This finding suggests 

that the kiosks may be used more for non-work related trip information when users have 

more time, such as for shopping trips or by tourists.  

Smart Traveler Automated Ride-matching Service (ARMS) allowed users to use 

their touch tone phone to find rideshare partners. It was designed to provide individuals 

with lists of potential compatible rideshare partners for either regular carpooling or an 

occasional emergency ride home. As with the kiosks, the service was available in both 

English and Spanish. For the purposes of finding either regular rideshare partners or a 

once only ride, those using the system used the touch tone phone to enter changes in 

preferred travel times. They received a computer generated list of people to contact who 

live and work near them with similar schedules. The user could then choose to call some 

or all of the people on the list, or record a message that Smart Traveler would 

automatically deliver to potential carpool partners, allowing them to call the individual 

back if they were interested in sharing a ride. The ARMS was found to have very little 

usage (34 persons per week). From a small telephone survey of ARMS users it was 
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concluded that most users used the service to seek regular ridesharing opportunities and 

not the featured one-time ride service. The researchers concluded that there is not enough 

interest in ARMS to justify its cost of operation.  

The modem service was found to have significant usage. In a period of 35 weeks 

a total of 83,155 uses were recorded (on an average weekday there were circa 400 uses 

per day). These levels of use indicated that there was indeed a demand for the service. 

This component of the ATIS system did not have the multi-modal component at the time 

of evaluation and instead only reported Caltrans congestion information. Usage was 

found to be higher in the mornings and evenings, consistent with commuter trip planning 

[Giulian et al., 1995]. 

 In order to use ARMS, individuals had to be registered with Commuter 

Transportation Services. There is no way to know how many matches where actually 

made because users were not required to report them. The evaluation concluded that the 

market for “one-day-only” rides was very limited because of participants’ concerns over 

safety [Golob and Giuliano, 1996]. 

2.3. Sacramento Rideshare Matching Field Operational Test 

A real-time rideshare matching field operational test evaluation was conducted in 

Sacramento, California which began in late 1994 and terminated in 1995 with the 

participation of the Federal Transit Administration, Caltrans, PATH, Sacramento 

Rideshare, and U.C. Davis Institute of Transportation Studies. The service was not 

automated, but operator-based. Users answered questions over the telephone about origin 

and destination locations, purpose of trip, etc. Trip matches were made by sorting from 

database orientation and destination zip codes, and then prioritizing by the closeness of 
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desired trip times. Three hundred and sixty people (from a database of 5,000 who 

expressed interest in carpooling) registered as drivers willing to offer on-demand rides. 

The rate of match was very low and from the ten requests made for dynamic ridesharing, 

only one potential match was made, and it is not known if the match was secured.  

 The final report concluded there were several reasons for the poor performance of 

the program including poor marketing of the service and personal security concerns. As 

part of the system design, user needs were assessed through a review of literature and 

focus group discussions. Six user needs were identified: background screening; 

information security; matching and system reliability; system access; flexibility; and, a 

compensation scheme. The users needed flexible ridesharing arrangements that would 

allow users with non-identical origins and destinations to be matched as well as a reliable 

system that would be able to generate a large number of potential matches for any given 

trip [Kowshik et al., 1996].   

2.4. Coachella Valley TransAction Network  

 Commuter Transportation Services, Inc. (CTS) developed the Coachella Valley 

TransAction Network (TAN) in 1994 as a pilot test for providing information on transit 

and ridesharing.  The project was similar to the Los Angeles Smart Traveler project, in 

that real-time traffic and transit information and rideshare information were provided to 

over 700,000 registrants throughout the Riverside area via four stand-alone commuter 

information kiosks. During the seven-month test period, more than 21,510 people 

accessed the kiosk system. Approximately one-third of them accessed information on 

ridesharing and only 256 printouts were rideshare match lists. The project was expensive 

to implement and usage was low. CTS concluded that kiosks were probably not the best 
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medium for obtaining real-time rideshare information and recommended it not be 

included in future models [Haselkorn et al., 1995]. 

2.5. Seattle Smart Traveler  

Seattle Smart Traveler (SST) project was part of a larger Intelligent 

Transportation System Field Operational Test conducted by the Washington State 

Department of Transportation, the University of Washington, King County Metro, and 

five private sector partners from 1995 to 1997.  This project was designed to test the 

concept of automated dynamic rideshare matching using the Internet and electronic mail 

at the University of Washington in Seattle [Dailey et al., 1999]. The SST project defined 

dynamic ridesharing as “two or more people sharing a single trip, without regard to 

previous arrangements or history among the individuals involved” and addressed the 

differences between dynamic ridesharing with traditional ride-matching services, which 

focus on commuters traveling to and from the same origins and destinations on fixed 

schedules, as “a dynamic ridesharing system must be able to match random trip requests 

at any time” [Federal Transit Administration, 1996]. User group was limited to faculty, 

students, and staff from the University of Washington. The SST was designed to respond 

to the request of three types of matches: regular commute trips, additional regular trips, 

and occasional trips. A user entered the origin, destination, day of week, departure time, 

and arrival time for each trip type. The system then identified potential matches using a 

search structure containing four levels of detail. To provide flexibility in the matching of 

trips, a time range or window was used for both the requested departure and arrival times. 

The SST automatically generated and sent an e-mail message with this information if the 
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user desired or the participant could call the potential matches [Federal Transit 

Administration, 1996]. 

 The evaluation report found that faculty and staff made up 68% of users, with 

students comprising the remaining 32%. Approximately 700 ride-matches were requested 

during the 15-month test period, of those 150 potential matches generated, and At least 

41 matches actually made. It was possible that more ride-matches were made, as there 

was no requirement that actual trips be reported [Casey et al., 2000]. SST suggested that 

the relationship between the number of users and the number of carpools formed was 

quadratic, i.e., rate of carpooling would increase with the number of users. It also 

suggested that carpooling has the potential to have a larger effect on traffic demand 

management (TDM) if large groups of people participate. Further, SST suggested that a 

web-based ride-match system can be as effective as traditional ride-matching. SST 

suggested the following quantitative relationships between numbers of users, matches, 

and carpools. SST estimated the number matches expected (Tm) given U users is:  

 

(1) 

And, the actual number of carpools (Cp) is: 

 (2) 

Where  and  are constant coefficients,  is the probability for a pair of trips matching 

assuming: (1) the probability of trips matching is approximately constant across the 

population of trips, (2) the relationship between the number of users and the number of 

trips is linear, and (3) the relationship between matches and actual carpools is linear 

[Dailey et al., 1999]. The SST project identified some issues that may have limited the 

use of the system. First, the project was implemented before the real boom in Internet 
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use. Second, the developing technology for the dynamic ride-matching capabilities was 

somewhat cumbersome. Third, the SST had been viewed by some targeted users as a 

temporary endeavor. Fourth, there were no sufficient incentives to encourage greater 

ridesharing. Finally, there were safety concerns regarding sharing rides with strangers. 

Although the test ended in June 1997, the SST continued to operate for a few years later 

even though no staff was assigned to the project. Without staff support, the database was 

not updated or purged of former users [Turnbull, 1999].  

The SST system is no longer operational; however, an offline demonstration of 

the project can be viewed by following the SST link: http://sst.its.washington.edu/sst/.  

2.6. Missoula Ravalli Transportation Management Association 

 The Missoula Ravalli Transportation Management Association (MRTMA) 

operated a ridesharing program in Missoula, Montana using GeoMatch information 

system for matching new applicants with existing carpools. GeoMatch is a geographic 

based system that matches people with carpools, vanpools, and provides transit 

information. The program runs on personal computers using the Microsoft Access 

database software. Rideshare requests were provided by telephone and generating a 

match list usually took about four minutes. The rideshare program was in operation from 

1997 and had over 300 names in the carpool database by September 2000. During that 

time period, it formed 30 regular carpools and four vanpools and received three to five 

rideshare request calls per week, one to two of those were one-time rides [Casey, 2000]. 

2.7. King County Metro's Regional Ride-match System 

King County is located in Washington State and comprises 2,134 square Miles 

with more than 1.8 million people. Major cities include Seattle and Bellevue. Washington 

http://sst.its.washington.edu/sst/
http://sst.its.washington.edu/sst/
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State’ s Commute Trip Reduction (CTR) Act that was passed in 1991 and reauthorized in 

2006, as a part of the Washington Clean Air Act,  required major employers to reduce 

drive-alone commuting by their employees and provided a regulatory framework for 

measuring employer success. Since passage of the CTR Act, King County Metro Transit 

has worked closely with major employers to design products and programs to help them 

meet the CTR goals. Almost all these efforts focus on working with employers to reach 

employees and providing tools and incentives to employees to use alternatives like 

busing, carpooling, biking, telecommuting, and compressed work schedules [Travel 

Behavior, Environmental, and Health Impacts of Community Design and Transportation 

Investment, 2005]. 

King County Metro with about 1,300 transit coaches and more than 700 vans in 

its vanpool fleet and a well-integrated bicycle support program, has incorporated special 

event ride-matching into its regional rideshare program, rideshareonline, that is a self-

serve, public, internet-based rideshare matching service in association with regional 

carpool/vanpool providers [Cooper, 2007]. RideshareOnline.com instantly matches 

registered commuters with carpool or vanpool partners with a similar daily commute in 

the area. Users enter their commuting times and locations and can instantly see a list of 

ride-matches to whom they may e-mail a rideshare request anytime for everything from 

carpools, vanpools, SchoolPools and biking to work, to one-time special events like 

ballgames, concerts and conferences [King County Metro Transit, 2010].  

2.8. Redmond Transportation Management Association’s Ride-match system  

Redmond is the seventh most populous city in King County and the fifteenth most 

populous city in the State of Washington, with a residential population of over 46,000. It 



24 
 

encompasses an area of over 16.6 square Miles. The city is well known as a center of 

technology and the location for a number of known high-tech and biomedical companies 

such as Microsoft, Nintendo, AT&T Wireless, and Medtronic Physio-Control. The 

Greater Redmond Transportation Management Association (GRTMA) has established an 

automated ride-matching system for carpools and vanpools on the Internet. RideQuest is 

an employer and geographic information system (GIS) based system with the database 

accessible by SQL Server. Registered users enter a street address or a nearby intersection, 

and the software produces a map showing that location for verification by the registrant.  

Then the request is entered into the database along with information on the users travel 

needs and preferences such as whether they wish to drive or ride, ride with smokers or 

non-smokers, or ride with employees of specific companies. People are matched based on 

their origin address and final destination with a numbering system of the best match to 

least potential match [Knapp, 2005].  

 The system can send automatic emails to other registered commuters who may be 

able to rideshare. A map showing the requestor’s location and the location of potential 

matches is displayed on the screen together with their names and methods of contacting 

them. Individuals can change their information at any time or remove themselves from 

the system if they have found satisfactory ridesharing arrangements, moved, changed 

jobs, etc. Every three months, e-mails are automatically sent to all registrants asking for 

their continued interest in participation. Non-respondents are automatically removed 

along with those responding in the negative. An early version of the system was tested in 

April 1999 with 1,200 registrants. There are no statistics available on carpool formation 

[Casey, 2000]. 
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 GRTMA promotes the program using posters, post cards, email and the web site 

and has a variety of promotions throughout the year to encourage people to register in the 

rideshare system including a trip to Hawaii, and a 12-oz Starbucks Coffee beverage free. 

Vanpool drivers don't have to pay the monthly vanpool fare and they also receive up to 

40 personal use Miles on the van [Knapp, 2005]. 

2.9. Minerva Dynamic Ridesharing System 

Aegis Transportation Systems developed a system called MINERVA in Oregon 

that takes advantage of ATHENA smart traveler system. ATHENA was developed in 

City of Ontario, California, with funding from the FTA in 1994, but the project was 

abandoned in 1996 due to a turnover of the city council. The ATHENA project differed 

from other dynamic ridesharing programs in that trip requestors would not receive a list 

of potential drivers, and would not have to contact trip providers to arrange travel. 

Instead, a central computer would arrange the match and advise the rider and driver of 

pickup points, times, and fares. The ATHENA project incorporated a central database 

that interfaced with personal digital assistants (PDA’s) and hand held devices that have 

messaging and GIS capabilities. Interested parties would pre-register with ATHENA. 

Once registered, all ATHENA drivers would receive a PDA for their car, and all potential 

passengers would also use telephone-based information systems and other computer and 

communications technologies to integrate these new personalized transportation services 

with conventional transit (e.g. bus, rail, ferry), paratransit (e.g. taxi, shuttle, dial-a-ride), 

and ridesharing (e.g. carpool, vanpool, buspool) modes to develop more cost-effective 

public transportation systems. Market research studies indicate that this approach would 

reduce vehicle trips and vehicle Miles traveled (VMT) per capita significantly, at a low 
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cost to taxpayers. MINERVA used “smart” technology including cellular phones, 

palmtop computers, and wireless data communications to provide low-cost alternatives to 

transportation in low-density areas and low travel corridors. MINERVA took the 

ATHENA concept one step further.  MINERVA integrated the smart traveler system with 

other online information services—home shopping, telebanking, e-mail, and interactive 

games—in an attempt to reduce the need for some trips altogether [Levofsky et al., 

2001]. 

The Oregon State legislature committed $1.5 million to the project, with 

additional commitments of $3 million in matching funds from local pilot sites, and $1 

million in in-kind support from private management consulting outfits. A dozen Oregon 

cities expressed their interest in piloting MINERVA [Victoria Transport Policy Institute, 

2010]. Both ATHENA and MINERVA did not progress beyond the developmental stage 

and were never implemented. However, their Internet and GIS components formed the 

basis of many ridesharing programs in use today [Chan and Shaheen, 2011]. 

2.10 Online Ride-Matching and Traveler Information Services 

With respect to the fact that most of the dynamic ride-matching applications and 

pilot tests of the 1980s and 90s failed to provide enough users to consistently create a 

successful instant ridesharing match, next generation of the most dynamic ridesharing 

focused on more reliable strategies to encourage ridesharing including online ride-

matching and traveler information services. Before 1999, the websites for ride-matching 

applications were either simple pages listing agency contact information, online forms for 

users to email the agency to receive a match list, or online notice boards for users to 

manually post or search carpool listings [Bower, 2004]. Between 1999 and 2004, private 
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software companies began developing ride-matching platforms. Although it became 

much easier to find ride-matches in a larger online database, the carpools still suffered 

from the same inflexibility drawback as traditional carpools. Online ride-matching 

programs tended to be more static and inflexible and best suited for commutes with 

regular prearranged schedules and were not competitive enough to compete with the 

flexibility that private auto travel offered [Chan and Shaheen, 2011].  

In another attempt, on July 2000, the Federal Communications Commission 

designated a uniform “511” as the traveler information telephone number to make real-

time traveler information more widely available for local, regional, and state agencies 

across the U.S. including carpool and/or vanpool information services [Profiles of 511 

Traveler Information Systems Update, 2009]. 

2.11. Dynamic Ridesharing in the era of Internet Enabling Technologies 

From 2004 to the present, dynamic ridesharing programs have taken advantage of 

the incentive strategies that encourage ridesharing such as HOV lanes, and park-and-ride 

efforts and they have integrated Internet enabling technologies such as World Wide Web, 

Smart phones, Global Positioning System (GPS), Data Repository, Automated Financial 

Transactions, and social networking. To the best of the author’s knowledge, there are 

approximately 33 notable applications and software platforms that offer ridesharing 

services. However, the systems typically serve as platforms that bring users together, 

rather than as active mechanisms that generate rideshare plans and provide fair payments 

[Kamar and Horvitz, 2009].  A brief description for those applications and software 

platforms is given below. 
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 Aktalita is an application currently under development that combines the Web, a 

geospatially enabled database, and a Java enabled cellphone to provide real-time 

carpooling between drivers and passengers. When a driver is about to travel or a 

passenger needs a ride, they enter an offer or request to the system via the web or 

Java enabled cellphone. The system then queries its geospatial database to attempt to 

match passenger and driver, and notifies them for further negotiation 

[http://www.aktalita.com]. 

 AlterNetRides.com works nationwide but also can be tailored for a community. It is 

completely automated, a person can become a member, set up a ride and be viewing 

others wanting to rideshare in just minutes [http://alternetrides.com/]. 

 Avego is a proprietary application for Apple iPhone. It uses GPS technologies and 

presents an intuitive user interface. The application relies on a proprietary service 

called Futurefleet, on which no implementation details are given 

[http://www.avego.com]. 

 Carpoolconnect.com matches up carpooling commuters based on similar commutes 

defined by home and work zip codes [http://carpoolconnect.com/]. 

 Carpoolworld.com uses the commuter's precise latitude and longitude coordinates to 

find the best matches for their trip among the other commuters in the database, based 

on exactly how close together they live and exactly how close together they work 

[http://www.carpoolworld.com/]. 

 Carpool.ca is available via the internet and uses home and destination locations, 

driving route and other personal information to help commuters identify potential 

carpool partners. This self-serve system has various levels of security, limiting 
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individual access to personal rideshare information while providing rideshare 

program administrators broader access. The program includes a built in CO2 savings 

calculator [http://www.carpool.ca/]. 

 Carriva is a proprietary solution using phone calls as communication system and a 

fixed price of 0.10€/km. It has got 1118 active users 

[https://www.carriva.org/MFC/app]. 

 Carticipate is a proprietary iPhone application that integrates with Facebook. It has 

an interface looking like Google Maps mobile. It is an experiment in social 

transportation. According to the website, it is available in 59 countries 

[http://www.carticipate.com]. 

 Commuter Register is a multimedia publication that provides listings of car and 

vanpools, transit routes and schedules, Park and Ride lots, and articles and helpful 

travel tips focusing on employee commute matching [http://www.2plus.com/].  

 Divide The Ride is a static, web-based solution organized around children and family 

activities. Families invite other trusted families to join their group. Groups get 

notifications when a ride is needed [http://www.dividetheride.com/]. 

 Ecolane DRT and Ecolane Dynamic Carpool are two ridesharing software offered by 

Ecolane Company integrated with Nokia touchscreen device. Among the features, 

they declare that the device is capable of real-time data communication, reports of 

arrivals and departures with time information, device locking mechanisms, GPS 

location and direction, mileage tracking, and detailed trip information. It is a 

completely web-based, turn-key scheduling and dispatching solution with user 

interfaces that are accessed securely using a standard web-browser using seamless 
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integration with multiple Mobile Data Terminal (MDT) and Automatic Vehicle 

Location (AVL) platforms. It enables commuters to overcome the biggest obstacles of 

traditional carpooling today - irregular working schedules and finding a carpool 

partner. Commuters are able to select if they want to rideshare in as little as 15 

minutes and create an instant carpool with the mobile phone or web-based 

applications. The Ecolane Dynamic Carpool software communicates the needs of 

both drivers and passengers, and automatically matches potential carpoolers based on 

digital maps, individual profiles, user groups, and user ratings 

[http://www.ecolane.com/]. 

 eCommuter is an internet-based technology application specializing in Real-Time 

Internet traveler solutions. It is the first-to-market in the category of Internet ride-

matching that gives commuters the power to find their own partners for sharing a 

carpool or vanpool to work [http://www.ecommuter.com]. 

 eRideShare.com is a free service for connecting travelers going the same way. 

According to Yahoo and Google it is the leading carpool/ridesharing website and has 

been recognized as "Best of the Net" by About.com. The site has over 17,000 

commuters and travelers throughout the US and Canada 

[http://www.erideshare.com/]. 

 Flinc comes from Germany and is a dynamic carpooling application system that can 

be used on smart phones or online. This application utilizes the location based 

capabilities of mobile phones and navigational software to connect passengers and 

drivers, offering a customer to customer (C2C) interaction both for ride coordination 

and financial interaction. The system analyzes real-time traffic and brings riders and 
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drivers together, eliminating the need for coordination methods such as phone calls, 

emails, or text messaging. Passengers can identify available seats in cars belonging to 

drivers in their network and send a request to be picked up at their location. The 

driver, after confirming the pickup, receives instructions via the navigation software 

and arrives to pick up the passenger [http://www.flinc.org/world/]. 

 GoLoco is a proprietary web application that also relies on Facebook. It uses a private 

payment system and coordinates carpool and vanpools for work, campus, religious 

and group events [http://goloco.org/]. 

 Goose Networks is a web-based ride-matching service that allows commuters to 

connect with each other for flexible, one-way carpools or for regular recurring trips. 

Users simply input their commute schedule online; existing matches are immediately 

shown and built-in email and SMS text message notifications help keep users 

informed of new options as they become available [http://www.goosenetworks.com]. 

 GreenRide Connect Metro has two employer and campus editions that combine a 

user-friendly interface with rich content management with multi-tiered 

administration.  Social network integration, content management, GIS capabilities, 

employer management, single-trip matching, raffle management, cluster mapping, 

savings tracking (energy, economic, environmental), comprehensive and exportable 

reports, vanpool management are all available through the suite of GreenRide 

solutions [http://www.greenride.com/]. 

 Hover (High Occupancy Vehicles in Express Routes) is a casual carpooling system 

that was inspired in Auckland, New Zealand when a city manager observed that “if 

everyone shared a ride one day a week there would be 20% less traffic”. Hover 
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creates a community of rideshare commuters who share benefit of the savings through 

the own credit system. Each time a driver provides a ride, he receives one credit from 

each passenger and each time a rider takes a ride, he uses one credit. The members 

are approved after security check and with two personal references. Hover uses RFID 

technology to identify members and cars and operates to agreed destinations. In 

morning, each member drives or walks to a Hover park that is a secure and safe place 

to leave the cars. Each Hover park, along the route to destination, has parking areas 

set up for agreed destinations. In general they require about 100 participants from one 

Hover park to a given destination area to keep the waiting times to a workable level 

and form a trip with at least 3 people. In the evening, participants make their way 

either on foot or by car to a Hover Port. Riders from the morning might wait at a 

Hover Point, like a bus stop. Drivers going by these Hover Point will stop and pick up 

riders and take them to the Hover Port. At the Hover Port passengers will get out of 

the car they came in and change to a car that is going back to their Hover park. On 

exiting the Hover Park, the system recognizes driver and passengers and distributes 

credit points. It also offers a guaranteed back-to-home system, by using taxis 

[http://www.hoverport.org/]. 

 iCarpool is a static, online and custom branded hosted solution for employers and 

regional public agencies with interactive maps, privacy protection, high precision trip 

matching and support for all trip types such as daily commute, one time trips or real 

time (dynamic carpool) trips. The application also supports - multiple modes such as 

carpool, vanpool, bike, walk and transit, integrated GIS data such as park-and-ride 

lots, bike routes, multi modal trip calendar and integrated incentives provided by 

http://www.hoverport.org/build/tooltip_5.php
http://www.hoverport.org/build/tooltip_5.php
http://www.hoverport.org/build/tooltip_5.php
http://www.hoverport.org/build/tooltip_5.php
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employers or regional public agencies. Matching criteria includes social relationships, 

but no details are given [http://www.icarpool.com]. 

 KOMOTOR TDM management system offered by Base Technologies is a 

comprehensive, web-based total TDM service that combines ride-matching, 

management, measurement, and reporting tools in one product site 

[http://www.basetech.com/]. 

 MyCasualCarpool.com helps users find others with similar daily commuting patterns 

and create rideshare lots using only resources available in virtually every residential 

neighborhood [http://www.MyCasualCarpool.com]. 

 NuRide Network is the incentive-based ride network that rewards people every time 

they share a ride. Through the NuRide Network®, individuals can easily arrange 

individual ridesharing trips for work or pleasure and earn rewards for every 

confirmed trip they take. Unlike a traditional carpool, NuRide is flexible and casual 

with users being able to share a single ride without any ongoing commitments. The 

Miles-based reward points can be redeemed for gift cards, gift certificates and other 

rewards from their corporate sponsors [http://www.nuride.com]. 

 Pathway EnRoute is a turnkey solution to enable and track carpooling and vanpooling 

both public, and across organizations in Metropolitan Toronto and Ontario 

[http://www.carpoolzone.ca] and British Columbia [http://www.online.ride-

share.com] in Canada. Pathway EnRoute claims that it has the most sophisticated 

route-based ride-matching available today as it not only finds passengers whose 

endpoints the driver pass by, but also the Pathway EnRoute Search Engine finds 

driver routes that pass by the driver endpoints and claims that this second category 

http://www.basetech.com/
http://www.carpoolzone.smartcommute.ca/en/my/
http://online.ride-share.com/en/my/
http://online.ride-share.com/en/my/
http://pathwayintelligence.com/enroute-search-engine.html
http://pathwayintelligence.com/enroute-search-engine.html
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typically accounts for increase in up to 50% of matches, and other systems are blind 

to these matches. Additional EnRoute Search Engine features include: instantly 

adding and dragging waypoints by clicking on maps for editing a route, viewing 

multiple routes together with capability of switching between routes without page 

reloads, and continually searching for matches and automatically sending 

notifications of suitable matches even after users log off. Pathway Rewards include: a 

calendar-based incentive tracking system and an online emergency ride home service 

[http://www.pathwayintelligence.com/]. 

 Piggyback is an Android application using a step-by-step approach (maximum one 

user input at each application screen) and makes wide use of graphical representations 

instead of text. When a driver and passengers are matched their compatibility is 

shown, represented with stars (0 to 5) and categorized as friendliness, reliability, 

driving skills and car. After the ride, the feedback system lets the user set the points 

for the aspects listed above. The application also lets the users plan rides using a static 

carpooling approach [http://www.piggybackmobile.com/]. 

 Ridegrid is another under-development proprietary application that uses mobile 

Internet and location technology to enable individuals to obtain rides to and from any 

location, spontaneously. RideGrid works by dynamically combining routes and 

evaluates the change required in a driver's route such that it passes through the 

desired source and destination of a compatible rider, and brokers the agreement 

[http://www.highregardsoftware.com/ridegrid-dynamic-ridesharing.html]. 

 RideNow is a Web and cell-phone ("Interactive Voice Response") interface system 

with parking space incentives for instant ridesharing where each ride-match request is 
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the basis for potentially new carpool arrangements. The system can give users a ride-

match within 10 minutes [http://www.ridenow.org/]. 

 RidePro is an integrated desktop and web based rideshare information solution. It is a 

client-server, menu-driven, Windows®-based application with integrated GIS 

mapping that sends rideshare match report directly to an e-mail message. The web 

interface allows the public to create their own registrations and run their own match 

reports in a secure, confidential environment. The web component uses the same 

database as the local area network interface. Both interfaces support matching to 

carpools, vanpools, park-and-ride lots, public transit, telecommute centers, day care 

centers, bike partners, and bike routes [http://www.ridepro.net/]. 

 RideshareOnline.com is a Seattle-based online ride-matching system. Registered 

users enter their work location and the starting point of their commute that is either a 

home address or a nearby intersection and they enter their weekly work schedule and 

any daily variations. They can instantly see a list of rideshare matches to whom they 

may email a rideshare request [http:// www.rideshareonline.com/]. 

 RideShark is an online map-based rideshare solution that enables registrants to find 

rideshare partners based on customized search criteria that includes ride-

matching based on a regional, TMA or secure cluster or  private organization.  

RideShark utilizes Geographic Information System (GIS) technology from Microsoft 

MapPoint [http://www.RideShark.com]. 

 RM 21 is the proprietary route-based carpool /vanpool ride-matching software system 

to power the Chicago Area Transportation Study in northeastern Illinois. This system 

http://www.rideshareonline.com/
http://www.rideshark.com/


36 
 

departs from typical “mile-radius” searching by allowing users to chart their travel 

path. This path is then used to find matches of varying quality as determined by 

sameness of route, closeness of schedule, and matching of individual preferences 

[http://www.ShareTheDrive.org/]. 

 Visual BACSCAP 2007 is a user-friendly transportation program designed by the 

Marketing Institute at Florida State University College of Business for use by 

commuter assistance programs. The primary function of the program is to provide 

commuters with information regarding pools. An online demo of the program, 

EzRide, can be viewed at http://nctr.cob.fsu.edu/ezridedemo 

[http://www.tmi.cob.fsu.edu/vbacscap/download07.htm]. 

 VivaCommute is a web-based commuter rideshare services for all geographical 

locations in Canada and the United States. This web-based application matches 

people who travel the same route and share the same driving schedule. The system 

uses nearest neighbor logic [http://www.vivacommute.com/]. 

 Zimride.com combines Google Maps and optional social network integration and a 

proprietary route-matching algorithm. Zimride has partnered with 50 U.S. colleges, 

universities, and companies that each has its own network of members. In addition to 

each network’s website, Zimride also uses the Facebook platform to attract public 

users [http://www.zimride.com/]. 

 

 

 

http://nctr.cob.fsu.edu/ezridedemo
http://www.zimride.com/
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2.12. Behavioral Analysis studies 

2.12.1. Gender 

Results from rideshare and carpool formation analysis in the literature suggest that 

there is evidence for differences between men and women in participating in shared rides 

and socio-demographics are one of the influencing factors that affect trip choices. For 

example, Nazem et. al. (2011) suggests that women are more sensitive than are men to 

transfer of all types, especially transfers between two different modes and women are 

more sensitive to walking time in transfers whereas men are more sensitive to access and 

egress times in public transit [Nazem et al., 2011]. Another study suggests that one of the 

strongest characteristics affecting the willingness to use a toll road is being female. [Yan 

et al., 2002]. In a gender-based analysis of work trip mode choice of commuters in 

suburban Montreal, Canada, the authors conclude that women and men should be 

modeled separately for trip mode choice analysis and they suggest that women are less 

likely to choose public transit and more likely to choose to rideshare than men; and 

women are less time-sensitive in commuting than men are due to the fact that women 

commute shorter distances and make more trips owing to their pivotal household 

responsibilities [Patterson et al., 2005].   

In the literature, three are two dominant hypotheses: household responsibility and 

entrapment. The household responsibility theory advises that females tend to commute 

less than males because of their larger share of child care and domestic responsibilities 

[Sermons et al., 2001]. Entrapment hypothesis suggests that females tend to be 

constrained to a smaller travel area due to household responsibility and the sort of 

employment available to females [Cristaldi et al., 2005]. However, another study, 



38 
 

suggests that females are more likely to form carpools [Bulinug et al., 2009]. The other 

studies suggest that females are more likely to carpool because they face greater mobility 

constraints than males [washbrook et al., 2006], [Fergusen 1995]. Furthermore, an 

investigation on the nature and motivation of public response to Yorkshare ridesharing 

schemes in Britain, suggest that males tend more to participate as drivers while females 

tend more to participate as passengers and female passengers are more preferred by male 

and by female drivers as well. [Bonswall et al., 1984]. 

2.12.2. Age 

One of the other socio-demographic factors that influences rideshare participation is 

difference between age cohorts on trip choices.  Nazem et al. (2011) suggests that 

compared to adults, elderly people are less sensitive to the number of transfers and 

elderly people tolerate the commute and waiting times much better than the young and 

adult commuters [Nazem et al., 2011]. Yan et al. (2002) suggests that middle age 

commuters are more likely to use a toll road [Yan et al., 2002]. Although, the literature 

suggests that while participation in carpooling increases across the age profile up to 54 

years of age [Winn, 2005] and the likelihood of achieving a successful outcome increases 

with age [Bulinug et al., 2009], the elderly commuters are less likely than others to 

participate in carpool formation through the deployment of a web-based carpool 

formation application [Ferguson, 1997], [Baldassare et al., 1998].  

2.12.3. Age and Gender 

The literature suggests different trip choices for combination of age and gender. For 

example, elderly men commuters are more sensitive than women are to transit access and 

egress times [Nazem et al., 2011]. Bonswall (1984) suggests that people in carpooling 
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arrangements prefer to travel with people of their own age cohort and that females are 

particularly reluctant to give lifts to, or to pool with, men over 50. The study also 

revealed that drivers are likely to be males aged 30-50 and riders are likely to be female 

under 30 [Bonswall et al., 1984].  

2.12.4. Trip distance  

Deakin et al. (2010) in a recent research conducted to assess the potential for dynamic 

ridesharing for travel to downtown Berkeley, California, and the University of California,  

Berkeley, campus, suggests that most commuters tend to go slightly out of their way or 

wait a short time to obtain or offer a ride. The commuters who travel less than a mile or 

two are less interested in dynamic ridesharing than those who travel farther because of 

the excessive time required to make the connection and accommodate a pickup and drop 

off [Deakin et al., 2010]. Bonswall, et al. (1984) suggests that there is a positive 

correlation between journey length and likelihood of rideshare requests and proposes that 

the longer one's journey is, the more attractive will ridesharing appear due to the smaller 

contact costs (diversions to pick up a passenger, waiting for one's partner, etc.) relative to 

the cost savings as well as the greater absolute cost savings of ridesharing [Bonswall et 

al., 1984]. 

2.12.5. Time to match up 

In a research conducted to assess the potential for dynamic ridesharing for travel to 

downtown Berkeley, California, and the University of California,  Berkeley, campus, it is 

concluded that the 10 min added time for a match was too high for many of the users and  

a shorter time, 3 to 5 min maximum, cuts matches down considerably. [Deakin et al., 

2010]. 
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2.12.6. Occupancy preferences 

Although effective usage of empty car seats that leads to increased occupancy rates is 

the primary objective for dynamic rideshare systems, there are influencing factors to have 

preferences on the number of people sharing a ride including the safety issues, seating 

space of the participating car as well as the personal preferences of riders and drivers 

such as convenience. Besides, the transportation demand management (TDM) policy 

strategies and promotions such as minimum requirement of HOV lanes and free or 

reduced-price access to high-occupancy toll (HOT) influence the occupancy. In HOV 

lanes in Interstate 84 Westbound, the average occupancy is 2.11 persons per automobile 

and in Interstate 91 Southbound, the average occupancy is 2.10 persons per automobile in 

HOV lanes [High Occupancy Vehicle Lane Report 2010].  

2.12.7. Other preferences 

One of the advantages of dynamic ridesharing is that a user can also find trips that fit 

his/her unique needs. For example, if a rider has a pet, he should find a pet-friendly 

driver. If he does not smoke, he should find a non-smoking driver. Kowshik et al. (1993) 

suggest that rideshare users are quite demanding of what they desire and system 

functionality of rideshare needs to address the user needs [Kowshik et al., 1993]. For the 

purposes of this research, smoking habits or preferences and pet friendliness have been 

considered as unique user needs. It is reasonable to assume that people are less likely to 

share a ride with a smoker or with a person who is commuting with a pet. 

2.13. Summary of Reviews 

 Before 2004, almost all pilot test projects shared a number of common 

characteristics.  All but the Seattle project were abandoned for low usage. They all 
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suffered from a small number of requests for rides and a smaller number of matches 

made. This failure could be attributed to how each was designed. Commuter behavior is 

important to understanding what happened. 

 There were many reasons for low dynamic ridesharing before 2004. The 

deficiencies in the number of users’ participation in the programs was mainly because of 

the lack of awareness of the ridesharing programs, insufficient incentives to encourage 

people to rideshare, safety concerns about sharing rides with strangers, and inflexibility 

of the existing rideshare programs. Other contributors in the low dynamic ridesharing 

included lack of funding for the systems’ operation, lack of institutional support and 

incentives, time consuming process to receive a match list, and then burdensome attempts 

to make contact with possible drivers with no guarantee that a match would be made. 

After 2004 technological and computing advances help to overcome many of the 

potential obstacles. Internet-enabled technologies such as World Wide Web, Smart 

phones, Global Positioning System (GPS), Data Repository, Automated Financial 

Transactions, social networks, and automated ride-matching software are enabling 

technologies for ridesharing to organize rides in real time either a few minutes before the 

trip takes place or while the trip is occurring with passengers picked up and dropped off 

along the way.  

Moreover, there has been significant growth and overall success with the strategy 

of partnerships between ride-matching software companies and the large-scale clients. 

This partnership strategy has gained more users and is most suited for commuters with 

regular schedules. Many public agencies and companies have started promoting 

ridesharing by providing incentives. The rise of social networks has enabled ridesharing 
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companies to better address the security concerns of sharing a ride between potential 

riders and drivers and their friends [Chan and Shaheen, 2011].  

There are many applications and software platforms that offer dynamic 

ridesharing services. However, the systems typically serve only as platforms that bring 

users together, rather than as active mechanisms that generate rideshare plans. All of the 

underlying systems use some form of algorithm to match riders and passengers. Some of 

the algorithms do so based only on origin and destination, while some of the newer 

algorithms match drivers and passengers based on the commonality of their travel route. 

The review of the literature revealed that development of optimization algorithms for 

real-time matching of participants has been largely ignored by transportation research 

community that has recently started pondering the value of optimization for tackling the 

problem. For example, Agatz et al. (2010) considered the problem of matching drivers 

and riders in the dynamic setting. In their research a simulation study based on 2008 

travel demand data from metropolitan Atlanta was presented. The simulation results 

indicated that the use of sophisticated optimization methods instead of simple greedy 

matching rules substantially increases the likelihood that rideshare matches can be found 

for users, and improves the performance of ridesharing systems through larger overall 

system travel cost savings.  

 In another research carried out earlier Teodorovic and Dell’Orco (2005) explored 

the possible applications of collective bee intelligence in solving non-deterministic 

combinatorial problems. In that respect, they introduced Fuzzy Bee System (FBS) where 

the agents used fuzzy logic rules in their approximate reasoning. Bee System is an 

improved genetic algorithm depending on the behavior of bees proposed by Sato and 
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Hagiwara (1997). Teodorovic and Dell’Orco (2005, 2008) tested the performance of FBS 

on a ride-matching problem which aimed to constitute routing and scheduling of the 

vehicles and passengers by minimizing the total distance travelled by all participants, 

minimizing the total delay, or making relatively equal utilization of vehicles. They 

defined the problem as making “…routing and scheduling of the vehicles and passengers 

for the whole week in the best possible way”. It was assumed that at the beginning of 

each week the following information for all participants in the program was available: 

vehicle capacity, origin and destination locations as well as the fixed desired departure 

and/or arrival time information for every day in a week that person was ready to 

participate in ridesharing. They collected data for 97 rideshare demands in a small city in 

southeastern Italy. Although, there were no theoretical results that could support the 

proposed approach, they indicated that preliminary results were very promising.  

Amey et al. (2011) studied real-time ridesharing to identify, highlight, and discuss 

the potential benefits of, and challenges to, real-time ridesharing. They suggested that to 

have a successful ridesharing, a series of economic, behavioral, institutional, and 

technological challenges needs to be overcome [Amey, 2011]. 

The Avego’s iPhone app is one example of real-time services that combines GPS-

enabled real-time ride-matching with payment transactions to match a driver with riders 

searching for a ride along the same route. (http://www.avego.com). 

Deakin (2010) conducted a research to assess the opportunities and challenges for 

dynamic ridesharing for travel to downtown Berkeley, California, and the University of 

California, Berkeley, campus.  The study suggests that about one-fifth of commuters who 

drive alone to the campus are willing to use dynamic ridesharing at least occasionally. 

http://www.avego.com/
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The study also suggests that financial incentives and carpool parking subsidies greatly 

increase willingness to dynamic ridesharing [Deakin et al., 2010]. 

Xing et al., (2009) introduces a spontaneous ridesharing concept for short distance 

travel within metropolitan areas and presented a multi-agent-based simulation system, 

Smize ridesharing system. The Smize ridesharing system comprises two classes of 

software agents:user agents and supportive agents. User agents include Driver agents 

(DriverAgent) which advertises and manages new ridesharing opportunities from drivers 

and passenger agents (PassengerAgent) which searches and negotiates ride-sharing 

agreements for passengers looking for a transport opportunity. The community of user 

agents relies on service of an appropriate number of routing agents (RoutingAgent) for 

the calculation of drive and walk routes and a single administrative agent (NodeAgent) 

which maintains and provides access to a database of drive route information of active 

vehicles as well as ridesharing preferences of their drivers [Xing et al., 2009]. 
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Chapter 3: Problem Definition 

This research considers a Dynamic Rideshare Optimized Matching Problem (DROM) 

which attempts to spontaneously identify suitable matches between passengers requesting 

rideshare services with relevant drivers available to carpool for credits and HOV lane 

privileges. DROM receives registered passengers and drivers information and preferences 

continuously over time. At any time  the set of passengers in the system  is partitioned 

as  where  is the set of onboard passengers already started their service 

and have not left the system at  and  is the set of passengers in the system waiting for 

a ride. The set of drivers is further partitioned as    where 

 is the set of drivers in the system with j seats available for passengers to be assigned. 

For those drivers belonging to the subset , it means that there is no more seat available 

for passengers to be assigned. As time  elapses, new request for rideshare from 

passengers and drivers arrive and also some passengers and drivers depart the system. 

This addition and deletion needs to be incorporated into the existing carpool paths or new 

carpool created to handle them. Thus, at any time ,  = -  where  

 is the set of newly arrived passengers and are the passengers left or gave up 

the system in the time slot (t, t ).  is further partitioned as 

. Likewise, = - , where  and 

are the set of newly added drivers and the drivers who left the system in time slot 

(t,t ).  

For each passenger  there are origin and destination points  and . At 

first, DROM looks into the passenger’s origin and destination points and examines the 

latest status of the system attempting to find an available driver who will visit the 
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passenger’s origin and destination points or will pass by nearby points. As soon as the 

system matches the passenger with an available driver, pickup and drop off points of 

passenger  will be set as the interest points that will be visited by the driver denoted 

by  and . Associated with each passenger  is a requested time to start the 

service at the origin point denoted by The system may assign a different time for 

pickup that is denoted by . Likewise, for each driver  there is an origin-

destination pair point denoted by . Associated with each driver  is a 

departing time from origin, the number  of places available on the vehicle, the 

origin to destination route in the form of successive nodes as well as personal information 

and ridesharing preferences. In additions, for each pick up and drop off route per 

passenger there would be a credit  assigned to the driver .  

Along with the aforementioned information, DROM takes in other personal 

information and ridesharing preferences for each passenger  and driver j  and 

attempts to match passengers with the available drivers. Table 5 shows the most relevant 

information and preferences. Multiple competing or non-competing objectives can be 

defined for DROM including minimizing the total vehicle Miles traveled, minimizing the 

total delay time and minimizing the total travel time to name a few.  For the interests of 

this research, maximizing the total number of matches in a given period of time is 

considered as the objective function that accounts for the ultimate goal of maximizing the 

rate of participating in the rideshare program. DROM asks to assign passengers to drivers 

and to identify the feasible routes to be driven by the drivers in order to:  

 Maximize the overall system performance  

Such that:  
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 Seating capacity is satisfied. 

 The number of connections for each passenger is less than a predetermined 

parameter. 

 Passenger time widows are met.  

 Detour distance for each driver is less than a predetermined parameter.  

 Relocating distances for riders are less than a predetermined parameter.  

 Ridesharing preferences are secured. 

o Age matching preferences are satisfied. 

o Gender matching preferences are met. 

o Smoking matching preferences are secured. 

o Pet restrictions are met.  

o Preferences on maximum number of people sharing a ride are met. 

Table 5: Personal information and ridesharing preferences 

Information/preferences Passenger  Driver  Type of input 

Gender   Male or Female 

Age   Young, Middle, Elderly 

Smoker   Yes or No 

Number of passengers  - 1,2,… 

Number of seats -  1,2,…,  

Pet friendly   Yes or No 

Pet restriction   Yes or No 

Smoke restriction   Yes or No 

Flexible with relocating to a 

nearby walking distance point 

  Yes or No 

Flexible with detour   Yes or No 

Flexible with reconnection   Yes or No 
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Chapter 4: Problem Formulation 

This section presents the MIP mathematical formulation for DROM. First, some 

notations used through the formulation are presented and followed with the definition of 

internal decision variables and decision variables used in the model and then the model 

considered in this research is stated. 

4.1. Notation 

At each time :   

: the set of passengers in the system at time ;    

: the set of passengers on board at time  ;  

: the set of passengers on board the vehicle belonging to driver  

set of passengers at time  

For passenger :  

: origin point of passenger  ;  

: Destination point of passenger i  ;  

requested time to start the service by passenger  at the origin point 

: the set of nodes to be visited by passenger  en route from origin to 

destination in the form of successive nodes 

For driver : 

 origin/current point of driver ;  

departing time of driver from his/her origin,  

: the number of seats available on the vehicle belonging to driver  



49 
 

: the set of nodes to be visited by driver  en route from origin to 

destination in the form of successive nodes 

For point of interest ;  : 

: distance matrix  

distance of travel between two successive points   

 the travel time between origin point of the rider,  and point of interest 

for driver   

 : walking time for passenger  . 

Personal information and ridesharing preferences for each passenger  and driver : 

, : the favorable car occupancy defined by passenger , and driver . 

numerical value for the age class of passenger defined as 1 for Young, 2 for 

Middle age, or 3 for Elderly. 

 set of age preferences for passenger which would be specified by selecting 

one of the 7 possible combinations: {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} 

 : the th element of the age preference set of passenger  

numerical value for the age class of driver defined as 1 for Young, 2 for 

Middle age, or 3 for ElderlyElderly. 

 set of age preferences for driver which would be specified by selecting one 

of the 7 possible combinations: {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} 

 : the th element of the age preference set of passenger  

numerical value for the gender of the passenger defined as 1 for Male and 2 

for Female. 
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numerical value for the gender of driver  defined as 1 for Male and 2 for 

Female. 

 set of gender preferences for passenger which would be specified by 

selecting one of the 3 possible combinations: {1}, {2}, {1,2} 

 : the th element of the gender preference set of passenger . 

 set of gender preferences for driver which would be specified by selecting 

one of the 3 possible combinations: {1}, {2}, {1,2} 

 : the th element of the gender preference set of driver .  

: numerical value for the smoking class of passenger defined as 1 for smoker 

and 2 for non-smoker. 

set of smoking preferences for passenger which would be specified by 

selecting one of the 3 possible combinations: {1}, {2}, {1,2} 

: the th element of the smoking preference set of passenger  

: numerical value for the smoking class of driver defined as 1 for Smoker and 

2 for Non-smoker. 

set of smoking preferences for driver which would be specified by selecting 

one of the 3 possible combinations: {1}, {2}, {1,2} 

 : the th element of the smoking preference set of driver  

numerical value for the pet tendency class of passenger defined as 1 for Pet 

friendly and 2 for Non- pet friendly. 

: set of pet tendency preferences for passenger which would be specified by 

selecting one of the 3 possible combinations: {1}, {2}, {1,2} 

: the th element of the pet preference set of passenger  
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numerical value for the pet tendency class of driver defined as 1 for Pet 

friendly and 2 for Non- pet friendly. 

: set of pet tendency preferences of driver  which would be specified by 

selecting one of the 3 possible combinations: {1}, {2}, {1,2} 

: the th element of the pet preference set of driver  

Other input parameters: 

 : a predetermined parameter for maximum number of connections per passenger  

 : a predetermined time parameter for maximum waiting time of a rider  

 : a predefined distance parameter for maximum detour distance of a driver 

 : a predefined distance parameter for maximum relocation distance of riders 

: a large positive numerical value. 

4.1.1 Internal Decision variables 
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 and : travel time for rider  and total travel time for driver 

and driver , respectively to share a one-connection ride for the rider with 

pickup point , connection point  and drop-off point  
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 and : travel time for rider  and total travel time 

for driver driver , and driver  respectively to share a two-connection 

ride for the rider with pickup point , the first connection point  

and the second connection point  and drop-off point  

4.1.2 Decision variables 
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 the time at which driver  meets point of interest  
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: added time to travel time of driver   between points of interest  and  due 

to making a detour to pick up passenger   at his/her point of origin. 

: added time to travel time of driver   between points of interest  and  due 

to making a detour to drop off passenger   at his/her destination. 

: added time to travel time of driver   between points of interest  and  due 

to making a detour to pick up and drop off passenger   at his/her destination. 

: added time to travel time of driver   between points of interest  and  

due to making a detour to pick up passenger   at connection point belonging to driver 

. 

: added time to travel time of driver   between points of interest  and  

due to making a detour to pick up passenger  at connection point belonging to driver 

and then drop off the passenger at his/her destination. 
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4.2. Constraints  

4.2.1. Proximity in time and space 

Once an event such as receiving a request for rideshare from a driver or 

passenger, or establishing a rideshare after making a match between a driver and 

passenger, or even a drop-off or pickup triggers the system, a set of successive points,  

 will be defined for each driver . The set of points includes the unmet points 

before the trigger and every updates resulting from the trigger such as adding pickup and 

drop off points for passengers assigned to driver  or deleting the pickup or drop off 

points of passengers who are picked up or dropped off at the corresponding points. 

DROM is not responsible to find the best path to meet the points as it is assumed that 

drivers have the relevant technologies or experiences to find their own best path. . The 

origin and destination points for each passenger  requesting a rideshare in the system are 

denoted by and .  

When the point of origin for passenger   is one of the points to be visited by 

driver   or it is within an acceptable walking distance,  from a point to be visited by 

driver , or the point of origin for passenger  is within the acceptable detour distance, , 

from the current location of driver  , driver  could be a promising driver to pick up 

passenger  for passenger ’s first leg of journey with respect to proximity in space 

assuming all other conditions satisfied.  
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(3) 

Where   is the point of origin for passenger i.   and are respectively the 

relocating distance for passenger  and the distance of travel independent of time between 

two successive nodes   and +1 to be visited by driver . 

A driver could be a promising driver to pick up a passenger for his first leg of 

journey with respect to proximity in time assuming all other conditions satisfied.  

 

 

 

(4) 

When the point of destination for passenger   is one of the points to be visited by driver   

or it is within an acceptable walking distance,  from a point to be visited by driver , or 

the point of destination for passenger  is within an acceptable detour distance, , from 

the location points of driver   driver j could be a promising driver to drop off passenger 

i for last leg of passenger i’s journey with respect to proximity in distance assuming all 

other conditions satisfied.  

 

(5) 

Where  and  are the original point of destination and the relocating distance for 

passenger , respectively. is the distance of travel independent of time between 

two successive points   
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4.2.2. Origin-Destination route related constraints 

When the first and last leg of journey for passenger  are shared with driver , it 

means that driver  could be assigned to give a ride to passenger  for the entire trip from 

his or her origin to his or her destination without a need for reconnection. i.e.: 

 

(6) 

When the first and last leg of journey for passenger  are not shared with driver , 

it means that we need a feasible connection between the origin and destination of 

passenger . Let’s suppose that the first leg of journey for passenger i is shared with 

driver  and the last leg is shared with driver . At time t, the successive visiting points 

for driver  after he picks up passenger  are:   and the remaining 

successive points for driver  before he drops off passenger  are , , . 

From the viewpoint of proximity in space, passenger  would like to change the ride from 

driver  to driver  when there is a node en route for driver  within   Miles walking 

distance of a node to be visited by driver . Alternatively, passenger  can change ride 

when driver  makes a detour with no more than  Miles to drop off the passenger at a 

point to be visited by driver .   or else when driver  can make a detour with no more 

than  Miles to pick up the passenger who already left driver  at a point visited by 

driver , i.e.,  . When a rider is picked up and dropped off by the 

same driver, then there is a zero-connection or direct route for the rider. i.e.   

 

 (7) 
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Each zero-connection route is characterized with rider and driver travel times 

denoted by and  respectively and calculated in terms of non-zero pick up 

and drop off variables.    

If a rider is picked up by a driver and is dropped off by another driver, and there is a 

connection point to be visited by the either of the drivers, then there is a one-connection 

route for the rider who is flexible with one connection along the route. i.e.,   

 

 (8) 

Each one-connection route  is characterized with rider and total driver travel 

times denoted respectively by and  and calculated in terms of 

non-zero pick up and drop off variables.   

Finally, if a rider is flexible with more than one connection and can be picked up by a 

driver and would be dropped off by another driver, and there is a connection point 

between the second driver and a third driver who will meet the second driver in a 

connection point to be visited, then there is a two-connection route for the rider. i.e.,   

 

                                                                               

(9) 
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For simplicity and without loss of generality, it is assumed that riders are not interested in 

more than two connections before they reach to their destination.  

4.2.3. Continuity constraints 

When a passenger is matched with a driver and the passengers on board with 

respect to the matching preferences, the original route of driver and arrival times may 

change. There are a few possibilities:  

1) when there is a detour to pick up and/or drop off the passenger without 

connection,  and 

 

2) when there is a connection,  , and  

3) when none of the above situations happens,  

 
(10) 

4.2.4. Ridesharing preferences constraints 

The rideshare system considers matching between drivers and passengers when their 

age, gender, smoking, and pet preferences match. 

4.2.4.1. Age preferences matching formulation 

The rideshare system considers matching between drivers and passengers when their 

age preferences matches. That is, 

 

(11) 
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To formulate the constraints, it is assumed that age attitude of all individuals 

denoted by is decomposed into 3 classes: Young, Middle age and Elderly. Numerical 

values 1, 2, 3 are defined for the classes as 1 for Young, 2 for Middle age, and 3 for Old. 

Each person defines the age preferences for the individuals with whom he/she will share 

the trip. The preferences which are denoted by would be specified by selecting one of 

the 7 possible combinations. Table 6 and Figure 4 show the classification for age attribute 

and preferences. 

Table 6: Age attitude and preferences classification 

Individual A (passenger /passenger on board/driver) 

Age Attitude Age Preference 

1, 2,  or 3 {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3} 

 

 
Figure 4: Age attitude and preferences classification 
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In order to have a better understanding of how the age preferences matching 

constraints should respond to the rideshare request from a passenger within a specific age 

category, following cases are defined with examples and the accuracy of the results are 

examined.    

Case 1: There is a Young rider  ( ) requesting a rideshare and is willing to share 

ride only with Young individuals (i.e., ). Driver  is a Young person ( ) 

willing to give a ride to Young and Middle age individuals (i.e., ), and there 

are two passenger on boards, one is a Young passenger  ( ) whose age preference 

is Young ), and another one is a Young passenger ( ) with no age 

preferences (i.e., ). In this case, rider   can share the ride with passenger  

, passenger  and driver .   

Case 2: There is a Young rider  ( ) requesting a rideshare and is willing to share 

ride only with Young individuals (i.e., ). Driver  is a Young person ( ) 

willing to give a ride to Young and Middle age individuals (i.e., ), and there is 

one Middle age passenger on board ( ) with no age preference(i.e.,  

). In this case passenger  is not willing to share the ride with passenger   

and driver .  

Case 3: There is a Young passenger   ( ) requesting a rideshare and is willing to 

share the ride only with Young individuals (i.e., ). Driver  is a Middle age 

person ( ) willing to give a ride to Young and Middle age individuals (i.e., 

). There is one Middle age passenger on board  ( ) who prefers 
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sharing the ride with Middle and Elderly ages individual, i.e., ).  In this case, 

passenger  will not share the ride with passenger   and driver .  

For each passenger  pending to be assigned to driver , there are four decision checks: 

1) Passenger - Driver age matching check: does the age preference of passenger 

match with the age of driver . That is,  

 
(12) 

2) Driver - Passenger age matching check: does the age preferences of the driver 

match with the age of the passenger. That is, 

 

(13) 

3) Passenger - Passenger onboard age matching check: does the age preference of 

passenger match with the age of the passengers on board .  

 
(14) 

4) Passenger onboard - Passenger age matching check: do the age preferences of 

the passengers on board match with the age of passenger .  

 
(15) 

If the answers to all four above mentioned questions are positive, then passenger 

is considered to be assigned to driver with respect to the age and age 

preferences criterion.  Figure 5 shows age matching relations.  
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Figure 5: Age matching relations 

In other words,   

 
 (16) 

4.2.4.2. Gender preferences matching formulation 

The rideshare system considers matching between drivers and passengers when their 

gender preferences matches. That is, 

 
(17) 

To formulate the constraints, it is assumed that gender denoted by is 

decomposed into 2 classes: Male and Female. Numerical values 1 and 2 are assigned to 

each class as 1 for Male and 2 for Female. Each person defines the gender preferences for 

the individuals whom he/she will share the trip. The preferences which are denoted by 

would be specified by selecting one of the 3 possible combinations. Table 7 and Figure 

6 show the classification for gender attribute and preferences. 

 

Passenger 

(Age and age 

preferences)  

Passengers on board 

(Age and age 

preferences)  

 

Driver 

(Age and age 

preferences)  
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Table 7: Gender attitude and preferences classification 

Individual A (passenger /passenger on board/driver) 

Gender Gender Preference 

1 or 2 {1}, {2}, {1,2} 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: Gender attitude and preferences classification 

 

In order to have a better understanding of how the gender preferences matching 

constraints should respond to the rideshare request from a passenger within a specific 

gender category, following cases are defined with examples and the accuracy of the 

results are examined.    

Case 1: There is a Male rider   ( ) requesting a rideshare and willing to share the 

ride only with Male individuals (i.e., ). Driver  is a Male person ( ) with 

no gender preferences (i.e., ). There are two Male passengers on board   and 

 ( ) with no gender preferences ). In this case, 

individual  can share the ride with passengers  and  and driver .   

Case 2: There is a Female individual  ( ) requesting a rideshare and willing to 

share the ride only with Female individuals (i.e., ). Driver  is a Female person 

( ) with no gender preferences (i.e., ), and there is one Male passenger 
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on board  ( ) who has no gender preference ). In this case individual  

is not willing to share the ride with passenger  and driver .  

For each passenger pending to be assigned to driver , there are four 

decision checks: 

1) Passenger - Driver gender matching check: does the gender preference of 

passenger  match with the gender of driver . That is, 

 
(18) 

2) Driver - Passenger gender matching check: does the gender preferences of 

driver match with the age of passenger . That is, 

  

(19) 

3) Passenger - Passenger onboard gender matching check: does the gender 

preference of passenger match with the gender of passengers on board 

 .  

 
(20) 

4) Passenger onboard - Passenger gender matching check: do the gender 

preferences of the passengers on board match with the gender of 

passenger .  

 
(21) 
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If answers to all four above mentioned questions are positive, then the passenger is 

considered to be assigned to driver with respect to the gender and gender 

preferences criterion. Figure 7 shows gender matching relations.  

    

 

 

 

 

 

 

Figure 7: Gender matching relations 

 

In other words,   

 
(22) 

4.2.4.3. Smoking preferences matching formulation   

The rideshare system considers matching between drivers and passengers when their 

smoking preferences match. That is, 

 
(23) 

To formulate the constraints, it is assumed that smoking tendency denoted by is 

decomposed into 2 classes: Smoker and Nonsmoker. Numerical values 1 and 2 are 

assigned to each class as 1 for Smoker and 2 for Nonsmoker. Each person defines the 

Passenger 

(Gender and Gender 

preferences)  

Passengers on board 

(Gender and Gender 

preferences)  

 

Driver 

(Gender and Gender 

preferences)  
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smoking preferences for the individuals with whom he/she will share the trip. The 

preferences which are denoted by would be specified by selecting one of the 3 possible 

combinations. Table 8 and Figure 8 show the classification for smoking attribute and 

preferences. 

Table 8: Smoking attitude and preferences classification 

Individual A (passenger /passenger on board/driver) 

Smoker Smoking Preference 

1 or 2 {1}, {2}, {1,2} 

 

 

 

 

 

 

 

 

Figure 8: Smoking attitude and preferences classification 

In order to have a better understanding of how the smoking preferences matching 

constraints should respond to the rideshare request from a passenger within a specific 

smoking category, following cases with examples are defined and the accuracy of the 

results are examined.    

 

Case 1: There is a Smoker passenger  ( ) requesting a rideshare and prefers 

sharing the ride with Smoker individuals or individuals who have no preference on 

smoking (i.e., ). Nonsmoker driver  ( ) has no disagreement with 

sharing a ride with Smokers (i.e., ). There is one Nonsmoker passenger on 
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board  ( ) who has no preferences on smoking (i.e., ). In this case, 

individual  can share the ride with passenger  and driver .   

Case 2: There is a Smoker passenger  ( ) with no smoking preference (i.e., 

). Driver  is a Nonsmoker ( ) and disagrees with smoking in the car 

(i.e., ). There is one nonsmoker passenger on board    ( ) who prefers 

sharing the ride with Nonsmokers (i.e., ). In this case, individual  will not 

share the ride with passenger  and driver .   

For each passenger  pending to be assigned to driver , there are four decision checks: 

1) Passenger - Driver smoking matching check: does the smoking preferences of 

the passenger match with the smoking of the driver. That is, 

  

(24) 

2) Driver - Passenger smoking matching check: does the smoking preferences of 

the driver match with the passenger. That is, 

 

(25) 

3) Passenger - Passenger onboard smoking matching check: does the smoking 

preference of the passenger match with the passengers on board.  

 

(26) 

4) Passenger onboard - Passenger smoking matching check: do the smoking 

preferences of the passengers on board match with the passenger.  
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(27) 

If the answers to all four above mentioned questions are positive, then the passenger is 

considered to be assigned to the driver with respect to the smoking and smoking 

preferences criterion. Figure 9 shows smoking matching relations.  

 

 

 

 

 

 

 

Figure 9: Smoking matching relations 

 

In other words,   

 
(28) 

4.2.4.4. Pet restrictions preferences matching formulation 

The rideshare system considers matching between drivers and passengers when their 

pet restriction preferences match. That is, 

 
(29) 

Passenger 

(Smoking habits 

and preferences)  

Passengers on board 

(Smoking habits and 

preferences)  

 

Driver (Smoking 

habits and 

preferences)  

 



72 
 

To formulate the constraints, it is assumed that pet policy is decomposed into 2 

classes: Friendly and Unfriendly. Numerical values 1 and 2 are assigned to each class as 

1 for Friendly and 2 for Unfriendly. Each person defines his/her own pet policy 

preferences for the individuals with whom he/she will share the trip. The preferences 

which are denoted by would be specified by selecting one of the 3 possible 

combinations. Table 9 and Figure 10 show the classification for pet attribute and 

preferences. 

Table 9: Pet attitude and preferences classification 

Individual A (passenger /passenger on board/driver) 

Pet Friendly Pet policy preferences 

1 or 2 {1}, {2}, {1,2} 

 

 

 

 

 

 

 

Figure 10: Pet attitude and preferences classification 

In order to have a better understanding of how the pet preferences matching 

constraints should respond to the rideshare request from a passenger within a specific pet 

category, following cases are defined with examples and the accuracy of the results are 

examined.    

Case 1: There is a Pet friendly passenger  ( ) who prefers sharing the ride with pet 

friendly individuals (i.e., ) or individuals who have no restriction on sharing the 
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ride with a pet(i.e., ). Driver  is a Pet friendly individual ( ) with no 

disagreement with pets in the car (i.e., ). There is one Pet friendly passenger 

on board  ( ) with no preferences for sharing a ride with a pet (i.e., ). 

In this case, individual  can share the ride with passenger  and driver .   

Case 2: There is a Pet friendly passenger  ( ) with no preference on pet (i.e., 

). Driver  ( ) disagrees with pets on car (i.e., ), then the 

individual  will not share the ride with driver .   

For each passenger  pending to be assigned to driver , there are four decision checks: 

1) Passenger - Driver pet friendliness matching check: does the pet preferences of 

the passenger match with the pet policy of the driver. That is, 

           (30) 

2) Driver - Passenger pet friendliness matching check: does the pet preferences of 

the driver match with the passenger. That is, 

  

(31) 

3) Passenger - Passenger onboard pet friendliness matching check: does the pet 

preference of the passenger match with the passengers on board.  

 
(32) 

4) Passenger onboard - Passenger pet friendliness matching check: do the pet 

preferences of the passengers on board match with the passenger.  
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(33) 

If the answers to all four above mentioned questions are positive, then the 

passenger is considered to be assigned to the driver with respect to the pet preferences 

criterion. Figure 11 shows age matching relations. In other words,   

             (34) 

 

 

 

 

 

 

 

 

Figure 11: Pet matching relations 

4.2.4.5. Maximum occupancy preferences constraints  

The rideshare system considers matching between drivers and passengers when the 

maximum number of passengers on board policy defined by the driver and passengers are 

not violated. By definition, passengers are individuals traveling alone or a person 

traveling with his/her pet. In the latter case, a pet is considered to be a passenger.  

 

Passenger (Pet 

preferences)  

Passengers on board 

(Pet preferences) 
Driver 

(Pet preferences) 
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As earlier defined,   is the available space on vehicle  at time  at point of interest  

and  is the available seat on vehicle defined by the driver that is equal to the seat 

capacity of the vehicle at its origin point of departure. Each passenger defines his/her 

favorable maximum number of people with whom to share the ride. Let ,  and  be 

the favorable maximum number of people sharing the ride defined by passenger  ,  

driver , and passenger on board  respectively. That is,  

 

(35) 

equivalently: 

 

(36) 

If all five above mentioned preferences are met, then the passenger is considered to be 

assigned to the driver, i.e.,  

 for          (37) 

4.3. Formulation of the objective function 

As mentioned earlier, DROM assigns passengers to drivers and identifies feasible routes 

for drivers to maximize the total number of matching in a given planning horizon while 

the total passenger and driver travel times are minimized. The objective function for the 

model is:  
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(38) 

where M is a large positive value and  are weighting factors. The first, second 

and third terms in the objective function maximize the number of all possible zero, one, 

and two connection routes respectively with minimum total rider and driver travel times. 

The mathematical model for DROM is summarized as follows:  

  

  

 

(39) 

   
(40) 

  
 

(41) 

  
 

(42) 

  
(43) 

  
 

(44) 
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  (55) 

  (56) 

  
(57) 

  
 

(58) 

 
 

(59) 

 
 

(60) 

 
 

(61) 

 
 

(62) 

  
(63) 

  
(64) 

  
(65) 

 

 

  

(66) 



78 
 

 

  (67) 

  
 

(68) 

  
 

(69) 

  (70) 

  
 (71) 

  
 (72) 

  
 (73) 
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  (75) 

  (76) 

  
(77) 

  
(78) 

  
(79) 

  
(80) 

  
(81) 

 and    ;  (82) 

 and   ;  (83) 

and   ;  (84) 

 and   ;  (85) 

  
 
(86) 

 

where Eq. 39 is the objective function for DROM that maximizes the total number of 

matching in a given planning horizon while the total passenger and driver travel times are 

minimized. Constraints 40-49 secure that a pickup is feasible. While constraints 40-42 

deal with pickup type 1 (riders walks to the point of pickup), constraints 43-45 are 

dedicated to pick up type 2 (driver makes a detour to pick up the rider at his/her point of 

origin). Constrains 46-47 secures that both of time and space feasibilities for pickup are 
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met and constraints 48-49 secures that a rider is not picked up by either type 1 and type 2. 

Constraints 50-53 secure that a drop off is feasible. Constraint 50 deals with drop-off type 

1, i.e., riders walks to his/her point of destination after he/she leaves a driver. Constrain 

51 deals with drop-off type 2, i.e., driver detours to drop-off the rider at his/her point of 

destination. Constraints 52-53 secures that a rider is not dropped off by either type 1 and 

type 2. Constraints 54-56 identify zero connection routes. Constraints 57-65 secure that a 

connection is feasible. Constrain 57 deals with feasibility of a connection type 1, i.e., the 

rider walks to the connection point, in terms of proximity in space and Constraint 58 

corresponds to feasibility check of space for connection type 2, i.e., the driver detours to 

make possible a connection for the rider. Constraints 59-60 and constraints 61-62 secure 

proximity in time for connection type 1 and type 2, respectively. Constraints 63-64 secure 

proximity in time and space for a connection and Constraint 65 secures that a rider 

connects to his/her next ride by either type or type 2. Constraint 66 updates the arrival 

times. Constraints 67-70 and constraints 71-74 identify one connection routes and to 

connections routes for a rider, respectively. Constraints 75-81 identify details of a 

matched route for a rider, i.e., the types of pickup, connection and drop off which are 

determined to update the arrival times. Constraints 82-86 identify preference matches for 

riders, drivers and riders on board. Constraint 82 and Constraint 83 checks the match 

between the rider and the driver, and between the driver and the rider, respectively. 

Constraint 84 and Constraint 85 checks the match between the rider and the rider on 

board, and between the rider on board and the rider, respectively. Constraint 86 secures 

that all the preferences match for a perfect match between the rider, the driver and every 

rider on the board.  
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Chapter 5: Model Testing and Validation 

In this section numerical examples are given to test the model and check for the 

validity of solutions. Through the first numerical example, the problem is elaborated and 

feasibility checks for pickup, drop off and connections are illustrated and negotiating 

policies are extracted to make the assignment possible.  This numerical example includes 

one rideshare request from a rider and there are two available drivers in the system. One 

of the drivers has already started his journey and has one passenger on board while the 

other one has not yet started his journey. The second numerical example which is a 

medium size problem includes requests from 14 riders in an area of 400 square Miles 

where 14 drivers are available. This numerical example is designed to check for quality 

of solutions and efficiency of the mathematical model.   

5.1. Numerical Example 1: 

In time interval 9:30 AM to 9:45 AM, there is a request for rideshare from an individual. 

The time requested for service is 9:45 with maximum 10 minutes waiting time. This 

person is Young, Male, Smoker and Pet friendly. He is willing to share the ride with 

Young and male individuals. He has no disagreement with sharing a ride with smokers 

and prefers sharing the ride with pet friendly individuals. The maximum occupancy for 

sharing the ride defined by this passenger is 3  The (x, y) coordinates for the passenger’s 

origin and destination points are (10, 15) and (15, 15), respectively. He is flexible with 

maximum relocating distance of 0.5 Miles.  

There are two drivers available in the system: Driver  has already started his 

journey and has one passenger on board. Driver   is a Young, Male, Nonsmoker, and Pet 

friendly person who is willing to give a ride to Young and Middle age, Male or Female 
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riders. He has no disagreement with smoking in the car or giving a ride to a pet. The 

maximum occupancy defined by this driver is 4  At 9:30 a.m. he is at point (5, 8) and his 

path en route is (7, 9), (10, 14), (12, 12), (15, 16). He is flexible with maximum detour 

distance of 1.5 Miles.  The passenger on board is Young, Male, Nonsmoker and Pet 

friendly who has no age, gender, smoking or pet preferences. The maximum occupancy 

defined by this passenger is  

 Driver  is a Young, Male, Nonsmoker, and Pet friendly person who is willing to 

give a ride to young and middle age Male or Female individuals. He has no disagreement 

with giving a ride to Smokers or pets in the car. The maximum number of people sharing 

the ride defined by the driver is 4  He will start his journey at 9:40 and has defined his 

path as (9, 9.5), (10.1, 15.2), (14, 16).  Maximum acceptable detour distance for this 

driver is 1.5 Miles. Figures 12 and 13 show the map and all the rideshare preference 

matching relationships that need to be checked for this numerical example.   

 

 

 

 

 

 

 

 

Figure 12:  The map for the numerical example. 

 

 

 

  Origin point of passenger 
  Destination point of passenger 

Driver 1 

 Driver 2 
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Figure 13: Rideshare preference matching relationships 

 

Table 10 and 11 show the results for preferences match examination between the 

rider, drivers and riders on boards. 

Table 10:  Characteristics-Preferences check results 

 Rider’s Characteristics 

Preferences Age Gender Smoking Pet Occupancy 

Driver  1 1 1 1 1 

rider on board 1 1 1 1 1 

Driver  1 1 1 1 1 

 

Table 11:  Preferences-Characteristics check results 

 Rider’s Preferences 

Characteristics Age Gender Smoking Pet Occupancy 

Driver  1 1 1 1 1 

rider on board 1 1 1 1 1 

Driver  1 1 1 1 1 

 

Figure 14 shows the feasibility check for pickup and droop off. It reveals that 

driver j’ can pick up the rider with respect to proximity in space if the rider walks to the 

second point to be visited by this driver, or when driver j’ makes a detour from his 

current location to the origin point of rider. Alternatively he can pick up the rider when 

he makes a detour from his second point to be visited to the origin point of the rider. With 

respect to proximity in time, driver j’ can pick up the rider when he makes a detour from 

his first or second point to be visited by the driver to the origin point of the rider. 

Age, Gender, 

Smoking, Pet, 

Occupancy 

Age, Gender, 

Smoking, Pet, 

Occupancy 

Passenger 

Driver j’ 

 

Age, Gender, 

Smoking, Pet, 

Occupancy 
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Feasibility check for proximities shows that driver j’ can pick up the rider if he makes a 

detour from his current point or the second point to be visited by the driver. Likewise, 

Driver j can pick up the rider with respect to proximity in time if he makes a detour from 

one of his second, third or fourth nodes to be visited to the point of origin of the rider 

though there is no way to pick up the rider with respect to proximity in space. Although 

Driver j cannot pick up the rider, he can drop him off at his fifth node to be visited and he 

will later walks to his destination.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14:  Proximity in time and space relationships for pick up/ drop off the passenger 

 

According to what has been discussed so far, driver j’ can pick up the rider and 

driver j can drop him off. To have a feasible solution, there should be a feasible 

connection between two drivers. Figure 15 shows the feasibility check for connections. It 

reveals that there is no feasible connection between the two drivers. 

 
Figure 15: Proximity in time and space relationships for connects 

Therefore, the passenger may start his first leg of journey with driver j’ and ends 

his last leg with driver j, but since there is no feasible connection between drivers, it is 
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concluded that there is no rideshare possible for the passenger. Now, if the passenger 

accepts walking for .91 Miles more, the model will result in a feasible solution. Likewise, 

if driver j accepts to detour for .36 Miles more to pick up the passenger, he can pick up 

the passenger at his point of origin and drop him off at his destination after a detour. 

Alternatively, if driver j’ accepts to detour for .5 Miles more, he can connect the 

passenger to driver j who will drop the passenger at his destination after making a detour.  

Figure 16 shows the compromise solutions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 16: Compromise solutions. 

 

  Origin point of passenger 
  Destination point of passenger 

Driver 1 

 Driver 2 

 
The rider accepts to walk for .91 miles more. 

 
Driver 1 accepts to detour for .36 miles more. 

 

Driver 2 accepts to detour for .5 miles more. 
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5.2.  Numerical Example 2 

This is a medium size problem including requests from 14 riders at the same time in 

an area of 400 square Miles where 14 drivers are available and the path for each driver 

consists of 5 nodes. All the input parameters of the model are generated randomly 

including coordinates, requested time for service, waiting times, connection flexibilities, 

relocating distances, detour distances, seat capacities and preferences and characteristics.  

Figure 17 shows the screenshot for the input generator of the problem.   

 

Figure 17: Screenshot for the input generator of the rideshare problem. 

The problem is coded and solved using Xpress-IVE Version 1.21.02. The problem 

is expressed in a matrix with 484,134 rows (constraints) and 433,006 columns 
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(variables). It took more than 6 hours for an Intel Core i7 CPU at 2.93 GHz speed to 

solve the problem. Following is a brief description of some of the matching results. 

 Figure 18 shows a zero connection route for passenger 13 and driver 12.  Driver 

12 makes a detour at node 1 at time 9:45 to pick up passenger 13 at time 10:09. Waiting 

time for the passenger is 4 minutes. Additional driving distance to pick up is 0 Miles. 

Driver 12 makes a detour at origin point of passenger 13 at time 10:09 to drop-off the 

passenger at his destination at time 10:25. Additional driving distance to drop off is 0 

Miles. 

 
Figure 18: A zero connection route for rider 13 and driver 12 

Figure 19 shows one connection routes for passenger 7 through drivers 8 and 1. The 

model resulted in 3 routes. Here are the details for those three routes: 

1- Driver 8 makes a detour at node 2 at time 09:57 to pick up passenger 7 at time 

10:13. Waiting time for the passenger is 6 minutes. Additional driving distance to pick 

up is 0 Miles. Driver 8 makes a detour at origin point of passenger 7 at time 613 to 

connect the passenger to driver 1 at node 3 at time 10:29. Additional driving distance 

for driver 8 to make a connection is 3 Miles. Driver 1 drops off the passenger at node 5 

at time 10:57. The passenger walks for 2 Miles to reach to his destination at time 11:21. 

2- Route_1 Connection(7,8,2,2,1,4,5) ===> Driver 8 makes a detour at node 2 at 

time 09:57 to pick-up passenger 7 at time 10:13. Waiting time for the passenger is 6 

minutes. Additional driving distance to pick up is 0 Miles. Driver 8 makes a detour at 
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origin point of passenger 7 at time 10:13 to connect the passenger to driver 1 at node 4 

at time 10:25. Additional driving distance for driver 8 to make a connection is 0 Miles. 

Driver 1 drops off the passenger at node 5 at time 10:57. The passenger walks for 2 

Miles to reach to his destination at time 11:21. 

3- Route_1 Connection(7,8,2,3,1,4,5) ===> Driver 8 makes a detour at node 2 at 

time 10:57 to pick up passenger 7 at time 10:13. Waiting time for the passenger is 6 

minutes. Additional driving distance to pick up is 0 Miles. Driver 8 makes a detour at 

node 3 at time 10:33 to connect passenger 7 at time 10:45 to driver 1 at node 4. 

Additional driving distance for driver 8 to make a connection is 0 Miles. Driver 1 drops 

off the passenger at node 5 at time 10:57. The passenger walks for 2 Miles to reach to 

his destination at time 11:21. 

 

 

 

 

 

 

 

 

 

 

 

Figure 19: One connection routes for passenger 7 through drivers 8 and 1 
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Figure 20 shows a one connection route for passenger 10 through drivers 5 and 

11. Driver 5 makes a detour at node 4 at time 10:25 to pick up passenger 10 at time 

10:53. Waiting time for the passenger is 23 minutes. Additional driving distance to pick 

up is 1 Miles. Driver 5 makes a detour at origin point of passenger 10 at time 10:53 to 

connect the passenger to driver 11 at node 3 at time 11:33. Additional driving distance for 

driver 5 to make a connection is 6 Miles. Driver 11 makes a detour at node 4 at time 

11:33 to drop off the passenger at time 11:53. Additional driving distance to drop off is 0 

Miles. 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20:   A one connection route for passenger 10 through drivers 5 and 11 
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Figure 21 shows a two connection route for passenger 11 through drivers 3, 1 and 

5. Driver 3 makes a detour at node 2 at time 09:57 to pick up passenger 11 at time 10:13. 

Waiting time for the passenger is 11 minutes. Additional driving distance to pick up is 5 

Miles.  Driver 3 drops off the passenger at node 3 at time 10:33. The passenger walks for 

2 Miles to connect to driver 1 at node 3 at time 10:57. Waiting time for the passenger is 0 

minutes. Driver 1 makes a detour at node 3 at time 10:57 to connect the passenger to 

driver 5 at node 4 at time 11:01. Additional driving distance for driver 1 to make a 

connection is 0 Miles. Driver 5 drops off the passenger at node 5 at time 677. The 

passenger walks for 2 Miles to reach to his destination at time 701. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21:   A two connection route for passenger 11 through drivers 3, 1 and 5 
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The two connection model is infeasible with respect to the personal preferences 

and characteristics of the rider and drivers. The Model is able to generate negotiating 

policies. Figure 22 show the recommendation for negotiations to make the rideshare 

generated by DROM possible:   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 22: Recommendation for negotiations generated by DROM 

Age Preferences of passenger 11 and driver 3 doesn't match. 
To have a feasible route, driver 3 needs to be flexible sharing a ride with age class of passenger 

11 which is 1 
To have a feasible route, passenger 11 needs to be flexible sharing a ride with age class of 

passenger on board which is 2 and passenger on board needs to be flexible sharing a ride with 

age class of passenger 11 which is 1 
Gender preferences of passenger 11 and driver 3 doesn't match. 
To have a feasible route, passenger 11 needs to be flexible sharing a ride with gender class of 

driver 3 which is 2 
To have a feasible route, passenger 11 needs to be flexible sharing a ride with gender class of 

passenger on board which is 2 
Pet preferences of passenger 11 and driver 3 doesn't match. 
To have a feasible route, driver 3 needs to be flexible sharing a ride with pet class of passenger 

11 which is 2 
To have a feasible route, passenger on board needs to be flexible sharing a ride with pet class 

of passenger 11 which is 2 
Smoking preferences of passenger 11 and driver 3 doesn't match. 
To have a feasible route, passenger 11 needs to be flexible sharing a ride with smoking class of 

driver 3 which is 2 
To have a feasible route, passenger on board needs to be flexible sharing a ride with smoking 

class of passenger 11 which is 2 
Age Preferences of passenger 11 and driver 1 doesn't match. 
To have a feasible route, driver 1 needs to be flexible sharing a ride with age class of passenger 

11 which is 1 
Gender preferences of passenger 11 and driver 1 doesn't match. 

To have a feasible route, driver 1 needs to be flexible sharing a ride with gender class of 

passenger 11 which is 2 
Pet preferences of passenger 11 and driver 1 doesn't match. 
To have a feasible route, driver 1 needs to be flexible sharing a ride with pet class of passenger 

11 which is 2 
Age Preferences of passenger 11 and driver 5 doesn't match. 
To have a feasible route, driver 5 needs to be flexible sharing a ride with age class of passenger 

11 which is 1 
Gender preferences of passenger 11 and driver 5 doesn't match. 
To have a feasible route, driver 5 needs to be flexible sharing a ride with gender class of 

passenger 11 which is 2 
Pet preferences of passenger 11 and driver 5 doesn't match. 
To have a feasible route, driver 5 needs to be flexible sharing a ride with pet class of passenger 

11 which is 2 
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Chapter 6: Three-Spherical Heuristic Decomposition Model 

 The preliminary results of the optimization model suggest that the computational 

burden associated with the increasing size of the participants and visiting points of 

interests makes it impossible to rely on commercial solvers for obtaining optimal 

solutions in a reasonable computing time. This section develops an efficient solution 

algorithm for solving the optimization model. To develop an efficient heuristic solution 

method for the DROM problem, a comprehensive understanding of the structure of the 

problem is essential. The structure of rideshare problem can be viewed in two 

dimensions, i.e. the decisions involved and the constraints under which the decisions 

must be made. Major decisions involved in the DROM problem are as follows.  

 Pickup: which rider should be picked up by a driver and how and at what time and 

location. 

 Drop-off: which rider and how should be dropped off by a driver and how and at what 

time and location. 

 Connection: which drivers should be connected and how and at what time and 

location to change the ride for a rider. 

 Arrival time: what time each driver meets the points to be visited.  

As mentioned in section 4, these decisions are interrelated. Constraints mainly come from 

two sources, the ridesharing to be done and matching preferences of the riders and 

drivers. Rideshare-related constraints require that rideshare must be properly performed. 

The following rideshare-related constraints are identified: 
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 Space proximity: ensures that pickup, drop off and connection points are within an 

acceptable walking distance for riders or within an acceptable detour distance for 

drivers. 

 Time proximity: ensures that pickup is not earlier than the time requested by riders, 

waiting time for pickup, drop off and connections are not violating the predefined 

waiting times and connections are feasible with respect to proximity of arrival times 

for the drivers involved in the connection. 

 Route: ensures that there is a route connecting pickup point and drop off point for 

each rider. The route can be a direct link which means rider receives a ride from only 

one driver who picks up the rider at the requested pickup point or at a convenient 

point close enough for walking from the requested pickup point and drops the rider 

off at the requested drop-off point or at a convenient walking distance from the 

destination point. The route also can be a multiple-link route which means rider 

receives multiple rides from multiple drivers who collaborate to connect pickup and 

drop-off points for the rider. In this research, multiple-link routes are called n-

connection routes and n is selected to be 0, 1 or 2 for simplicity without loss of 

generality. 

 Continuity: ensures that changes are made in original routes and arrival times after 

any changes in routes established by drivers. 

 Rideshare preference – related constraints ensure that riders, riders on board, and 

drivers’ preferences match before any rideshare is made.  

Now we can start to derive a decomposition solution method by carefully considering 

the relationships between the decisions and constraints. This decomposition strategy 
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leads to the heuristic solution procedure, Three-Spherical Heuristic Decomposition 

Model (TSHDM). The four types of decisions are interrelated and ideally need to be 

considered simultaneously. It is also reasonable to assume that most riders have a higher 

priority for less number of connections along their routes. To account for that widely 

accepted fact, TSHDM decomposes the problem to a three-level hierarchical problem. 

The first level is assigned to direct links as the riders have more preference on the zero 

connection routes compared to the routes with one or two connections. The solution 

strategy is searching at level one for all possible direct links connecting the pickup and 

drop off points for riders. The next step would be chasing at level two for one connection 

routes and after that for the routes with two connections at level three. When a route in 

lower priority level is established, arrival times updated, and points to be visited along the 

new route updated, the iterative solution strategy starts over to search for new rideshares 

to be established in the higher priority levels. The other considerations of the structure of 

rideshare problem suggest an attractive way of further decomposition. At each level, 

decisions can be made sequentially. At level one, problem decomposes into five 

subsequent sub-problems corresponding each to a decision in mind, i.e., pickup and drop-

off with respect to proximities in time and space, route finding, establishing a route and 

updating of arrival times. At level two, problem decomposes into six subsequent sub-

problems corresponding each to a decision in mind, i.e., pickup, drop-off and connection 

with respect to proximities in time and space, route finding, establishing a route and 

updating of arrival times. Finally, at level three, the problem would be decomposed into 

seven sub-problems namely pickup, drop-off, first and second connections with respect to 

proximities in time and space, route finding, establishing a route and updating of arrival 
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times. To address the objective of minimizing the total travel time as well as maximizing 

the number of matched routes, THSDM considers a combined objective function that 

maximizes the number of matched routes and at the same time minimizes the combined 

total travel time of riders and drivers. For all the zero-connection iterations of the 

algorithm, the objective function is:  

 

(87) 

where  and  are the travel time for rider  and driver  respectively 

when and  are the pickup and drop-off points for driver .  is 

the binary variable that equals 1 when there is an established matched route with zero 

connection for rider  and driver  when and  are the pickup and drop-off 

points for driver .  and  are the set of riders and drivers with feasible pickup and 

drop-off which are not previously matched with the established routes respectively .  

For all the one-connection iterations of the algorithm, the objective function is:  

 

(88) 

where  and  are the travel time for rider  and driver 

 respectively when is the pickup point for driver  ,  and are the 

connection points for driver  and driver  and  is the drop-off point for 

driver .  is the binary variable that equals 1 when there is 

an established matched route with one-connection for rider  and driver  when 
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is the pickup point for driver  ,  and are the connection points for driver 

 and driver  and  is the drop-off point for driver .  and  are 

respectively the set of riders and drivers with feasible pickup and drop-off who are not 

previously matched with the established routes.  

For all the two-connection iterations of the algorithm, the objective function is:  

 

(89) 

where and  are the travel time for rider 

 and driver  respectively when is the pickup point for driver  ,  

and are the first connection points for driver  and driver ;  and are 

the second connection points for driver  and driver  and  is the drop-off 

point for driver . is the binary variable that 

equals 1 when there is an established matched route with two-connection for rider  

and driver  when is the pickup point for driver  ,  and are the first 

connection points for driver  and driver ;  and are the second 

connection points for driver  and driver  and  is the drop-off point for 

driver .  and  are respectively the set of riders and drivers with feasible pickup 

and drop-off who are not previously matched with the established routes.  Figure 23 

shows the solution strategy of TSHDM followed by the step by step description for the 

algorithm.  
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Figure 23: The solution strategy for TSHDM
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6.1. TSHDM Algorithm 

The following provides the step by step TSHDM algorithm which is entirely coded and 

solved in Xpress-IVE version 1.21.02 64 bit on a system with Intel® Core™ i7 CPU 

870@ 2.93 GHZ processor:  

0. Beginning of TSHDM algorithm:  

1. List the participating riders and drivers. 

2. I=1 

3. Zero-connection step: 

a. Iteration I:  

4. Pickup sub-problem:  

4-1.  identify promising pick up drivers for each rider (type 1 and type 2 are 

illustrated in Figure 24) 

4-1.1. space feasibility check for pickup: 

 

 

(90) 

4-1.2. time feasibility check for pickup: 

 

 

(91) 

  

 

 

 

 

 

 

 

 

 

Figure 24: Feasibility check for pickup 

4-2.  make a short list of the rider candidates whose feasibility checks for pickup are 

positive. 

4-3.  make a short list of the driver candidates for each rider in the short list whose 

feasibility checks for pickup are positive. 

5. Drop-off sub-problem: 

5-1. identify promising drop-off drivers for each rider (type 1 and type 2 are 

illustrated in Figure 25) 

5-1.1. feasibility check for pickup: 

Type 2: driver makes a detour to 

pick up the rider 

Type 1: rider walks to the point to be 

visited by the driver to be picked up 
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(92) 

 

 

 

 

 

 

 

 

 

Figure 25: Feasibility check for drop-off 

 

5-2. make a short list of the rider candidates with positive drop-off feasibility checks 

5-3. make a short list of the driver candidates for each rider in the short list whose 

feasibility checks for drop-off are positive. 

6. Route finding sub-problem:  

6-1. for every rider in the short list, check whether there is a same driver in his/her 

short lists of pickup and drop off drivers. 

 
(93) 

 6-2. for riders whose pickup-drop off feasibility checks is positive, make a list of 

zero connection routes.   

6-3. for every route in the zero connection routes pool, calculate the associated 

characteristics including travel time for the rider and driver involved.   

7. Decision sub-problem:  

7-1. for the zero connection routes pool, solve the following assignment decision 

problem:  

 

 

(94) 

 

(95) 

 

(96) 

 
(97) 

  

Eq. 94 is the objective function that maximizes the number of matched routes and 

minimizes the combined total travel time of riders and drivers simultaneously. Constraint 

95 secures that there is only one route for every rider in the short list and constraint 96 

secures that the driver has the enough seating capacity to offer a ride. Constraint 97 

indicates that zero connection route decisions are binary variables.  

Type 2: driver makes a detour to 

drop-off the rider at the destination 

point 

Type 1: rider leaves the driver at a 

point to be visited by the driver and 

walks to the destination point 
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7-2. make a list of assigned riders and drivers  

8. Preference match sub-problem:  

8-1. for every rider, driver and riders on the board who has contributed in building a 

rideshare solution, do the following five decision checks.   

8-1.1. rider-driver matching check:  

 and   for                                 (98) 

      8-1.2. driver-rider matching check: 

 and  for                                  (99) 

8-1.3. rider-rider onboard matching check: 

and  for                             (100) 

8-1.4. rider onboard-rider matching check: 

 and  for                            (101) 

8-1.5. perfectly matched solution check: 

 

         (102) 

8-2. make a list of perfectly matched solutions and negotiating policies for 

imperfectly matched solutions based on the results for steps 8-1.1. to 8-1.4. 

9. Arrival times updating sub-problem:  

Update the arrival times according to the following patterns: 

a. there is no detour to pick up and/or drop off the rider   

b. there is detour to pick up the rider 

c. there is a detour to drop-off the rider 

d. there is a detour to pickup and drop-off the rider 

(103) 

 

10. update the list of riders and drivers 

10-1. remove the assigned riders from the list.  

10-2. update seating capacity of drivers from the list. 

11. I=I+1 and go back to step 3.  

12. Repeat steps 3 to 11 until there is no more zero connection routes. Go to step 13.  

13. One-connection step: 

a. Iteration I:  

14. Pickup sub-problem:  

14-1. identify promising pick up drivers for each rider (type 1 and type 2) 

14-1.1. space feasibility check for pickup. 

14-1.2 time feasibility check for pickup. 
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14-2. make a short list of the rider candidates with positive pickup checks 

14-3. make a short list of the driver candidates for each rider in the short list whose 

feasibility checks for pickup are positive. 

15. Drop-off sub-problem: 

15-1. identify promising drop-off drivers for each rider (type 1 and type 2) 

15-1.1. feasibility check for drop-off. 

15-2. make a short list of the rider candidates with positive drop-off checks. 

15-3. make a short list of the driver candidates for each rider in the short list whose 

feasibility checks for pickup are positive. 

16. Connection sub-problem: 

16-1. identify promising connection drivers for each rider (type 1 and type 2 are 

illustrated in Figure 26) 

16-1.1. space feasibility check for connection:  

 
(104) 

16-1.2. time feasibility check for connection:  

 
(105) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Feasibility checks for a connection 

(a) driver makes a detour to pick up the 

rider at the point to be visited by the next 

driver 

(b) driver makes a detour to drop off the 

rider at the point to be visited by the next 

driver 

(c) rider leaves the driver at a point to be visited by the 

driver and walks to the point to be visited by the next 

driver 
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16-2. make a short list of the rider candidates with positive connection feasibility 

checks. 

16-3. make a short list of the driver candidates for each rider in the short list whose 

feasibility checks for connection are positive. 

17. Route finding sub-problem:  

17-1. for every rider in the short list, check whether there is a same driver in his/her 

short lists of pickup, connection and drop off drivers. 

 
(106) 

17-2. for riders whose pickup-connection-drop off feasibility checks are positive, 

make a list of one connection routes.   

17-3. for every route in the one connection routes pool, calculate the associated 

characteristics including travel time for the rider and drivers involved.   

18. Decision sub-problem:  

18-1. for the one connection routes pool, solve the following assignment decision 

problem:  

 

(107) 

 

(108) 

 

(109) 

 

(110) 

 
(111) 

Eq. 107 is the objective function that maximizes the number of matched routes and 

minimizes the combined total travel time of riders and drivers simultaneously. Constraint 

108 secures that there is only one route for every rider in the short list and constraints 109 

and 110 secure that the two drivers contributing in the rideshare have the enough seating 

capacity to offer  rides. Constraint 111 indicates that one connection route decisions are 

binary variables.  

18-2. make a list of assigned riders and drivers  
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19. Preference match sub-problem:  

19-1. for every rider, driver and riders on the board who has contributed in building a 

rideshare solution, do the following five decision checks.   

19-1.1. rider-driver matching check.  

19-1.2. driver-rider matching check. 

19-1.3. rider-rider onboard matching check. 

19-1.4. rider onboard-rider matching check. 

19-1.5. perfectly matched solution check. 

19-2. make a list of perfectly matched solutions and negotiating policies for 

imperfectly matched solutions based on the results for steps 19-1.1. to 19-1.5. 

20. Arrival times updating sub-problem:  

Update the arrival times according to the following patterns: 

a. there is detour to pick up the rider 

b. there is a detour to drop-off the rider 

c. there is a detour to pickup and drop-off the rider 

d. there is a detour connection to pick up or drop-off the rider 

e. there is a detour connection to pick up and a detour to drop-off the rider 

  
(112) 

21. update the list of riders and drivers 

10-1. remove the assigned riders from the list.  

10-2. update seating capacity of drivers from the list. 

22. I=I+1 and go back to step 3.  

23. Repeat steps 3 to 22 until there are no more assignments for zero and one connection 

routes. Go to step 24. 

24. Two-connections step: 

a. Iteration I:  

25. Pickup sub-problem:  

25-1. identify promising pick up drivers for each rider (type 1 and type 2) 

25-1.1. space feasibility check for pickup. 

25-1.2. time feasibility check for pickup. 

25-2. make a short list of the rider candidates with positive pickup checks. 

25-3. make a short list of the driver candidates for each rider in the short list whose 

feasibility checks for pickup are positive. 
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26. Drop-off sub-problem: 

26-1. identify promising drop-off drivers for each rider (type 1 and type 2) 

26-1.1. feasibility check for drop-off. 

26-2. make a short list of the rider candidates whose feasibility checks for drop-off 

are positive. 

26-3. make a short list of the driver candidates for each rider in the short list whose 

feasibility checks for pickup are positive. 

27. First-leg connection sub-problem: 

27-1. identify promising first-leg drivers for each rider (type 1 and type 2) 

27-1.1. space feasibility check for first leg connection:  

27-1.2. time feasibility check for first leg connection:  

27-2. make a short list of the rider candidates whose feasibility checks for the first leg 

connection are positive. 

27-3. make a short list of the driver candidates for each rider in the short list whose 

feasibility checks for the first connection are positive. 

28. Second-leg connection sub-problem: 

28-1. identify promising second-leg drivers for each rider (type 1 and type 2) 

28-1.1. space feasibility check for second leg connection:  

28-1.2. time feasibility check for second leg connection:  

28-2. make a short list of the rider candidates whose feasibility checks for the second 

leg connection are positive. 

28-3. make a short list of the driver candidates for each rider in the short list whose 

feasibility checks for the second connection are positive. 

29. Route finding sub-problem:  

29-1. for every rider in the short list, check whether there is a same driver in his/her 

short lists of pickup, first leg connection, second leg connection and drop off drivers. 

 
 (113) 

29-2. for riders whose pickup-first connection-second connection-drop off feasibility 

checks are positive, make a list of two connection routes.   

29-3. for every route in the two connection routes pool, calculate the associated 

characteristics including travel time for the rider and drivers involved.   

30. Decision sub-problem:  

30-1. for the two connection routes pool, solve the following decision problem:  
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Eq. 114 is the objective function that maximizes the number of matched routes and 

minimizes the combined total travel time of riders and drivers simultaneously. 

Constraint 115 secures that there is only one route for every rider in the short list and 

constraints 116 to 119 secure that the three drivers contributing in the rideshare have 

enough seating capacity to offer the rides. Constraint 119 indicates that two 

connection route decisions are binary variables.  

30-2. make a list of assigned riders and drivers  

31. Preference match sub-problem:  

31-1. for every rider, driver and riders on the board who has contributed in building a 

rideshare solution, do the following five decision checks.   

31-1.1. rider-driver matching check. 

31-1.2. driver-rider matching check. 

31-1.3. rider-rider onboard matching check. 

31-1.4. rider onboard-rider matching check. 

31-1.5. perfectly matched solution check. 

31-2. make a list of perfectly matched solutions and negotiating policies for 

imperfectly matched solutions based on the results for steps 31-1.1. to 31-1.5. 

32. Arrival times updating sub-problem:  

Update the arrival times according to the following patterns: 

a. there is detour to pick up the rider 

b. there is a detour to drop-off the rider 

c. there is a detour to pickup and drop-off the rider 

d. there is a detour connection to pick up or drop-off the rider 

e. there is a detour connection to pick up and a detour to drop-off the rider 

 

(114) 

 

(115) 

 

(116) 

 

(117) 

 

(118) 

 
(119) 
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33. Update the list of riders and drivers 

33-1. remove the assigned riders from the list.  

33-2. update seating capacity of drivers from the list. 

34. I=I+1 and go back to step 3.  

35. Repeat steps 3 to 34 until there are no more zero, one and two connection routes.  

36. End of TSHDM algorithm. 

 

6.2. Illustrative examples:  

6.2.1. Numerical Example 60*40*360  

This numerical example is included to illustrate concepts presented in the heuristic 

solution strategy of TSHDM. It includes sixty passengers, forty drivers and there are a set 

of six points to be visited for each driver in an area size of 100 square Miles. Figure 27 

shows the map for this problem. For each driver there is an original route which connects 

the eight points to be visited by the driver and it is shown in red line in the map. The 

numbers next to the first node of each red line show the drivers’ Identification numbers 

as well as the direction of their move and their current location in the system.  Riders are 

shown in the map with black lines that connect the origin and destination points for each 

of the riders. The numbers next to the black line show the origin points and identification 

number for riders. 
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Figure 27: Map of the 60.40.360 test problem 

Other input parameters are all generated randomly using a test problem generator. 

It is assumed that maximum waiting time for each rider to be picked up at the origin point 

or connection points is 20 minutes. Moreover, it is assumed that each driver is flexible 

with maximum diversion of 5 Miles from its original route to pick up or drop off a rider 

or to make a connection with other drivers to transfer a rider. In additions, the maximum 

relocation distance for riders is assumed to be 5 Miles. For the research purposes of this 

study, maximum waiting time, maximum detour and relocation distances are exaggerated 

to increase the chance of rideshare matches. Current time of the system is assumed to be 

10:00 a.m. and all the rideshare service requests are within half an hour from 10:00 to 
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10:30. Seat capacity for each car is assumed to be 5 and it is assumed that only one seat 

of each car is occupied at the current time of the system. In addition, it is assumed that 

there is no restriction on the rideshare preferences of the entire participants to allow the 

system to have the maximize likelihood of the rideshare matches. Table 12 shows the 

summary of results for this problem.  

Table 12: The summary of results for illustrated example 60.40.360 

Iter Matched established routes Acc. 

Time 

(sec.) 

# 

route

s 

1 0_Connection : 

(1,19,1,3); (2,1,1,6); (3,3,1,1); (6,35,1,1); (9,23,2,2); (12,31,2,4); 

(14,25,1,1); (15,28,2,6); (16,4,1,5); (18,24,1,2); (24,27,1,3); 

(26,36,1,2); (28,11,2,2); (31,7,1,2); (32,34,1,2); (34,33,2,3); 

(35,21,1,1); (39,2,2,6); (40,26,4,5); (45,12,1,1); (48,18,1,2); 

(53,6,2,4); (55,39,2,2); (57,29,1,2); (58,30,1,6); (59,9,1,2) 

.054 26 

2 0_Connection : 

(17,33,3,3); (21,12,1,1); (49,23,1,2); (52,35,4,5) 

.073 4 

3 0_Connection :  

(54,12,2,3) 

.089 1 

4 0_Connection :  

(4,12,5,5) 

1.061 1 

5 1_Connection :  

 (38,26,1,3,13,4,5); (43,4,2,3,28,3,5); (60,20,3,6,31,2,5) 

10.02 3 

6 0_Connection :  

not found 

12.65 0 

 1_Connection :  

not found 

14.86 0 

8 2_Connection :  

(56,23,1,2,26,3,4,13,5,6) 

29.32 1 

9 0_Connection :  

not found 

32.11 0 

10 1_Connection :  

not found 

37.29 0 

11 2_Connection :  

not found 

43.15 0 

 

In Table 12, 
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: passenger  (  

: first-link driver  

: second-link driver  

: third-link driver  

: pickup node,  

, drop off node,   

: first-connection node for driver  ( , 

: second-connection node for driver  ( , 

: third-connection node for driver  ( .  

As the table shows, the heuristic algorithm established 32 zero-connection 

matched routes in 1.061 seconds, 3 one-connection matched routes in 14.867 seconds and 

1 two-connection route in 43.15 seconds. 28 drivers (70% of the drivers) contributed to 

the solution and the system was successful to find rideshare solutions for 36 passengers, 

i.e., rate of successful matches for the system was 53%. The share of zero-connection 

routes in the 36 rideshare matches was 88% while the share for one-connection and two-

connection routes were 8.3% and 2.7%, respectively.  

The system has resulted in 32 zero-connection routes. Further we discuss some of 

the solutions that might be of interest to present capabilities of the algorithm. For 

example, rideshare routes (45,12,1,1), (21,12,1,1), and (54,12,2,3) are sharing the same 

driver, i.e. Driver 12 has contributed in the establishment of 3 rideshares for three 

passengers 45, 21, and 54. Figure (28-a) shows the origin and destination points for the 

three passengers and the current location of the driver and his original route and the 6 

points to be visited along the route. Details show that Driver 12 has to make a detour at 
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his current location to pick up Passenger 45 at his point of origin and drop him off at his 

destination (Figure 28-b). This driver goes to the origin point of Passenger 21 to pick him 

up at his origin and takes him to his destination (Figure 28-c) and then heads to his 2
nd

 

point to be visited on his original route and makes a detour at that point to pick up 

Passenger 54 at his point of origin and drops him off at his point of destination (Figure 

28-d). Driver 12 heads up toward his 3
rd

 point to be visited on the original route and 

continues along the route to meet his 4
th

, 5
th

, and 6
th 

points to be visited (Figure 28-e). 

Figure (28-f) shows the updated route for Driver 12 as well as the routes of journey for 

Passenger 45, Passenger 21, and Passenger 54. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Course of events for Driver 12, Passenger 45, Passenger 21, and Passenger 54 

(a) (b) 

(c) (d) 

(e) (f) 
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The system has resulted in 3 one-connection route. For example, rideshare route 

(43, 4, 2, 3, 28, 3, 5) is established when Driver 43 and Driver 28 have contributed to 

make a rideshare connecting the origin and destination points of Passengers 4. Figure 

(29-a) shows the origin and destination of the passenger and the current locations of the 

two drivers along with their original routes and the 6 points to be visited along the routes. 

Details reveal that Driver 43 makes a detour at his current location to pick up Passenger 4 

at his point of origin and then heads to his second point to be visited. At the same time 

Driver 28 is on way to his 2
nd

 point to be visited (Figure 29-b). Driver 43 meets Driver 28 

at the 3
rd

 point to be visited for both drivers (connection point) where Passenger 4 

changes his drive (Figure 29-c). Driver 43 heads toward the next points along his original 

route and Driver 28 visits his 4
th

 and 5
th

 original points and makes a detour at the 5
th

 point 

to drop off the passenger at his destination (Figure 29-d) and then heads toward his 6
th

 

point to be visited (Figure 29-e). Figure 29-f shows the updated routes for Driver 43 and 

Driver 28 as well as the route of journey for Passenger 4. 
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Figure 29: Course of events for Driver 43, Driver 28 and Passenger 4 

The system has generated a two-connection route (56, 23, 1, 2, 26, 3, 4, 13, 5, 6). 

For this route, Driver 23, Driver 26 and Driver 13 have contributed in the establishment 

of rideshare for Passenger 56. Figure (30-a) shows the origin and destination points for 

the passenger and the current locations of the three drivers along with their original routes 

(f) 

(a

) 
(b

) 

(e

) 

(c

) 

(d

) 
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and the 6 points to be visited along the routes. Details reveal that Driver 23 makes a 

detour at his current location to pick up Passenger 56 at his point of origin and then heads 

to his second point to be visited. At the same time Driver 26 and Driver 13 are on their 

way to the 2
nd

 points to be visited (Figure 30-b). Driver 23 makes a detour at his second 

point to be visited to meet with Driver 26 at his 3
rd

 point to be visited (the first connection 

point) where Passenger 56 changes his ride. At this time Driver 13 is driving along his 

original route (Figure 30-c). Driver 23 heads toward his 3
rd

 point to be visited and Driver 

26 heads toward his 4
th

 point and makes a detour at that point to meet Driver 13 at his 5
th

 

point to be visited (the second connection point).  At this location passenger 56 changes 

his ride for the second time (Figure 30-d). Driver 26 goes to his 5
th

 point and continues 

along the original route to reach to his 6
th

 point to be visited. Driver 13 Continues along 

his original to his 6
th

 point to be visited and drops the Passenger at that point and at the 

same time Driver 23 continues along his original point to meet his 5
th

 and 6
th

 points to be 

visited. Passenger 56 starts walking toward his destination after he leaves Driver 13 at his 

6
th

 point to be visited (Figure 30-e). Figure (30-f) shows the updated routes for Driver 23, 

Driver 26 and Driver 13 as well as the route of journey for Passenger 56. 
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Figure 30: Course of events for Driver 23, Driver 26, Driver 13, and Passenger 56 

(a) (b) 

(e) 

(c) (d) 

(f) 
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6.2.2. Numerical Example 50*60*460  

This numerical example is included to further illustrate concepts presented in the 

TSHDM heuristic solution strategy and to compare some of its results with those of 

Numerical Example 60*40*360. It includes fifty passengers (16% less than the number 

of passenger in Numerical Example 60*40*360), sixty drivers (50% more than the 

number of drivers in Numerical Example 60*40*360) and there are a set of six points to 

be visited for each driver in an area with the size of 100 square Miles. Figure 31 shows 

the map for this problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 31: Map of the 50*60*460 test problem 
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Other input parameters are all generated randomly using a test problem generator. 

It is assumed that maximum waiting time for each rider to be picked up at the origin 

point or connection points is 15  minutes (25% less than the waiting time in 

Numerical Example 60*40*360). Moreover, it is assumed that each driver is flexible 

with maximum diversion of 4 Miles from its original route to pick up or drop-off a 

rider or to make a connection with other drivers to transfer a rider (20% less than the 

detour distance in Numerical Example 60*40*360). In additions, the maximum 

relocation distance for riders is assumed to be 4 Miles (20% less than the detour 

distance in Numerical Example 60*40*360) which is large enough to increase the 

chance of rideshare match. Current time of the system is assumed to be 10:00 a.m. 

and all the rideshare service requests are within half an hour from 10:00 to 10:30. 

Seat capacity for each car is assumed to be 5 and it is assumed that only one seat of 

each car is occupied at the current time of the system. In addition, it is assumed that 

there is no restriction on the rideshare preferences of the entire participants to allow 

the system to have the maximum likelihood of rideshare matches. Table 13 shows the 

summary of results for the illustrated example.  
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Table 13: The summary of results for illustrated example 50*60*460 

Iter Matched established routes Acc. 

Time 

(sec.) 

# 

route

s 

1 0_Connection : 

(4,60,1,1); (5,52,1,4); (6,51,1,2); (7,42,1,1); (9,34,1,3); (10,21,1,3); 

(15,50,1,1); (19,4,1,4); (21,23,1,2); (25,1,1,1); (26,36,3,5); (29,26,2,2);  

(33,7,1,1); (34,10,1,2); (35,24,3,3); (36,2,1,1); (41,45,1,2); (42,57,1,3); 

(44,25,4,5); (46,15,1,2); (48,49,2,2); (49,54,1,2); (50,55,2,4) 

.062 23 

2 0_Connection : 

         (16,15,4,4); (18,57,4,4) 

.087 2 

3 0_Connection :  

Not found 

.092 0 

5 1_Connection :  

(38,27,2,4,57,2,3) 

12.31 1 

6 0_Connection :  

             (2,57,5,5) 

14.11 1 

7 0_Connection :  

Not found 

15.93 0 

8 1_Connection :  

not found 

18.86 0 

9 2_Connection :  

Not found 

45.79 0 

 

In Table 13, 

: passenger ( , 

:First-link driver , 

: Second-link driver , 

: Third-link driver , 

: pickup node, 

, drop off node,   

: First-connection node for driver , ( , 
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: Second-connection node for driver  ( , 

: Third-connection node for driver  ( .  

As the table shows, the heuristic algorithm established 25 zero-connection 

matched routes in 0.092 seconds, 1 one-connection matched routes in 12.31 seconds, an 

additional zero-connection route in 14.11seconds and it was not successful to find two-

connection route and the solution was completed in 45.79 seconds. 24 drivers (40% of the 

drivers) contributed to the solution and the system was successful to find rideshare 

solutions for 27 passengers, i.e., rate of successful matches for the system was 54%. The 

share of zero-connection routes in the 27 rideshare matches was 96% while the share for 

one-connection and two-connection routes were 4% and 0%, respectively. In comparison 

with Numerical Example 60*40*360, running time for the algorithm increased to 45.79 

from 43.15 (6.1% increase) and number of rideshare matched routes decreased to 27 from 

36 (25% decrease) while the rate of successful matches for the system slightly improved 

to 54% from 53% (1.8% increase). Although all parameters were generated randomly, 

there were 16% less riders, 50% more drivers, 25% less maximum waiting time, 20% less 

detour distance, and 20% less relocation distance compared with Numerical Example 

60*40*360. It was expected to have a less rate of successful matches with tightening the 

problem (tighter waiting time, relocation and detour distances) and decreasing the 

number of riders but the system slightly improved the Success rate which seems to be the 

result of increasing the number of drivers. The sensitivity analysis of parameters in the 

model will be discussed in more details in the next section.  

The system has resulted in 26 zero-connection routes. For example, rideshare 

routes (46, 15, 1, 2), (16, 15, 4, 4) that implies Driver 15 has contributed in the 
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establishment of 2 rideshares for two passengers 46 and 15. Figure (32-a) shows the 

origin and destination of the two passengers and the current location for the driver and his 

original route with the 6 points to be visited along the route. Details reveal that Driver 15 

has to make a detour at his current location to pick up Passenger 46 at his point of origin, 

continues to his second original point to be visited and makes a detour at that point to 

drop the passenger at his destination and continues to reach to his 3
rd

 point to be visited 

(Figure 32-b). This driver heads toward his 4
th

 point to be visited and at the same time 

Passenger 16 walks to that point to meet the driver (Figure 32-c).  Driver 15 makes a 

detour at that point to drop-off Passenger 16 at his point of destination and proceeds his 

5
th

 and 6
th

 points to be visited (Figure 32-d). Figure (32-e) shows the updated route for 

Driver 12 as well as the routes of journey for Passenger 46 and 16. 
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Figure 32: Course of events for Driver 15, Passenger 46, and Passenger 16 

The system has generated a one-connection route (38, 27, 2, 4, 57, 2, 3). For this 

route, Driver 27 and Driver 57 have contributed in the establishment of rideshare for 

Passengers 38. Figure (33-a) shows the origin and destination points for the passenger 

and the current locations of the two drivers along with their original routes and the 6 

points to be visited along the routes. Details reveal that Driver 27 makes a detour at his 

2
nd

 point to be visited to pick up Passenger 38 at his point of origin and then heads toward 

his third point to be visited. The interesting thing that happens here is neither this driver 

(a) (b) 

(e) (d) 

(c) 
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makes an additional short detour of about 0.15 mile before arriving to his 3
rd

 point to 

drop off the passenger at his destination, nor the passenger walks for a about 0.3 from 

that point (third point to be visited by Driver 27) to his destination. A deeper look at the 

problem shows that this passenger has shown no flexibility with relocation distance (his 

randomly generated input for maximum relocation distance is 0) and the randomly 

generated maximum detour distance for the driver is 2.5 Miles which already 2.37 Miles 

of that has been used to pick up the passenger (Figure 33-b). Driver 27 makes a detour at 

his third point to be visited to meet with Driver 57 at his 2
nd

 point to be visited (the 

connection point) where Passenger 38 changes his ride (Figure 33-c). Driver 27 proceeds 

toward his next points to be visited along the original route and Driver 57 heads toward 

his 3rd point and makes a detour at that point to drop-off the passenger at his destination 

and continues toward his 4
th

 and 5
th

 point along the original route (Figure 33-d). At the 

point, Driver 57 contributes in a zero-connection route. He makes a detour to pick up 

Passenger 2 at his origin and drops him off before heading to his 6
th

 point to be visited 

(Figure 33-e). Figure (33-f) shows the updated routes for Driver 27 and Driver 57 as well 

as the routes of journey for Passenger 38 and passenger 2. 
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Figure 33: Course of events for Driver 27, Driver 57, Passenger 38, and Passenger 2 

 

(a) (b) 

(c) (d) 

(e) (f) 
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6.3. Model Validation 

There are varieties of validation techniques that have been used by researchers in 

the literature of computational models. One of the validation techniques is verification 

which is about the determination of validity of a computational model relative to a set of 

real data using graphical or statistical methods [Carley, 1996]. For the purposes of this 

study, verification is a necessary step in moving the model to the next levels which are a 

thorough analysis of the sensitivity of the model with respect to its parameters as well as 

dealing with real world problems such as the one that will be later provided in the case 

study.  

To verify the results of TSHDM for the rideshare optimization model, a set of 20 

randomly-generated problems are solved using the heuristic approach and external and 

internal results are compared with the exact solutions. The exact solutions are generated 

using Xpress-IVE version 1.21.02. The size of problems are ranging from toy size 

problems with 2 passengers, 2 drivers and 3 points to be visited for each driver to 

medium size problem with 20 passengers, 20 drivers and 7 points to be visited for each 

driver.  

Table 14 shows the verification results. As shown in the table, TSHDM generates 

very good quality solutions with little loss of total number of matched routes and 

provides enormous computational time savings.  
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Table 14: Model verification results 
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1 2 2 3 516 517 0.0 0 0 0 0 0 0 0.1 0 0 0 0 0 0 0.000  0 0 

2 3 2 4 1344 1400 0.3 0 0 0 0 0 0 0.1 0 0 0 0 0 0 66.66 0 0 

3 2 3 4 1824 1816 0.4 1 0 0 1 0 1 0.1 1 0 0 1 0 1 75.00 0 0 

4 3 3 4 2748 2718 227.1 1 0 0 1 0 1 0.1 1 0 0 1 0 1 99.95 0 0 

5 3 4 4 3642 4918 541.7 1 1 0 2 1 1 0.1 1 1 0 2 1 1 99.98 0 0 

6 4 3 4 3634 3620 885.6 1 1 0 2 0 2 0.1 1 1 0 2 0 2 99.98 0 0 

7 4 4 4 6192 5960 1202.4 2 0 0 2 1 1 0.1 2 0 0 2 1 1 99.99 0 0 

8 5 4 5 12880 12150 5042.8 2 1 0 3 1 2 0.2 2 1 0 3 1 2 99.99 0 0 

9 10 10 3 42340 39490 7706.3 3 1 0 4 1 3 0.4 3 1 0 4 1 3 99.99 0 0 

10 10 10 5 150870 137710 16331 3 1 1 5 2 3 1.1 3 1 1 5 2 3 99.99 0.5 0 

11 10 10 6 271810 239320 19140 4 1 0 5 1 4 1.2 4 1 0 5 1 4 99.99 0 0 

12 10 10 10 573920 743048 74593 5 1 1 7 3 4 2.3 5 1 0 6 3 3 99.99 2.4 1 

13 11 11 7 512083 443828 54238 4 2 1 7 3 4 2.1 4 2 1 7 3 4 99.99 0 0 

14 12 12 6 467724 410784 22079 4 3 0 7 4 3 1.8 4 3 0 7 4 3 99.99 0 0 

15 13 13 6 593710 520936 76562 6 2 0 8 3 5 2.3 6 2 0 8 3 5 99.99 1.82 0 

16 14 14 5 484134 433006 23277 4 2 1 7 3 4 1.9 4 2 1 7 3 4 99.99 0 0 

17 14 14 6 740502 649208 85953 6 2 1 9 4 5 3.1 6 2 1 9 4 5 99.99 0 0 

18 15 15 5 502650 454740 51980 6 1 0 7 3 4 2.0 6 0 0 6 2 4 99.99 1.3 1 

19 20 20 5 1183280 1066220 * * * * * * * 6.5 8 1 1 9 4 6 100.00 n/a n/a 

20 20 20 7 * * * * * * * * * 6.9 9 2 0 11 5 6 100.00 n/a n/a 
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The results indicate that TSHDM is validated at the pattern as well as the value 

levels for total number of routes, number of zero-connection routes, number of one-

connection and two-connection routes, number of perfectly matched routes and 

compromised route solutions. For example, using exact algorithm, test problem 4 with 3 

riders, 3 drivers and 4 points to be visited resulted in 1 compromised zero-connection 

matched route which is the global optimal solution for the problem and is exactly the 

same result gained for the problem solved by THSDM. While the exact algorithm took 

227.1 second to solve the 2748 constraints by 2718 variables problem, THSDM solved 

the problem in 3 iterations and .1 seconds. Figure 34 shows the convergence behavior for 

the test problem 4 using the exact algorithm.  

 

Figure 34: MIP search graph for Test problem 4 (Problem 3*3*4) 

 

Considering the solution gained for test problem 4, one rider is added to the 

problem and results for the 4 riders, 3 drivers and 4 points to be visited (problem 6) are 

compared using the global optimal method and THSDM. As expected, the increase in 

number of riders resulted in 1 more compromised matched route which is a one-

connection route. Results for both methods are the same except for the computational 

running time that THSDM shows more than 99.98% computational time saving. Figure 

35 shows the convergence behavior for the test problem 6 using the exact algorithm. 
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Figure 35: MIP search graph for Problem Test problem 6 (4*3*4) 

Table 14 also shows that although the exact algorithm is unable to solve Test 

Problem 19 with 20 riders, 20 drivers and 5 points to be visited for each driver within 24 

hours running of the algorithm, TSHDM solves the problem in 6.5 seconds. Xpress-IVE 

is also unable to determine the number of constraints and variables for Test Problem 20 

with 20 riders, 20 drivers and 7 points to be visited for each driver. The results also 

support the accuracy of preference matching module of the heuristic algorithm. For all 20 

test problems, the comparison between exact algorithm and THSDM indicates that 

solutions are completely consistent in terms of completely matched solutions and 

compromise matched solutions.  

The only two inconsistencies observed for the 20 test problems are the number of 

routes generated by THSDM for Test Problem 12 and Test Problem 18. The maximum 

number of matched routes generated by the exact algorithm for Test Problem 12 with 10 

riders, 10 drivers and 10 points to be visited for each driver is 7 and THSDM has lost 1 

two-connection route for the problem. Likewise, THSDM has lost 1 one-connection route 

for test Problem 18 with 15 riders, 15 drivers and 5 points to be visited for each driver.  
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Chapter 7: Sensitivity Analysis 

In this section, model parameters with the most influence on results are identified 

through a 'sensitivity analysis' that serves to guide future research efforts. There are also 

other reasons to conduct sensitivity analyses for TSHDM including the need to determine 

which inputs contribute most to output variability, and once the model is in use, what 

consequences are to be expected from changing given input parameters. There are more 

than a dozen sensitivity analysis methods available in the literature. For the purpose of 

this research, the technique of Regression Analysis is used. Regression analysis appears 

to be the most comprehensive technique which is commonly utilized to build response 

surfaces to approximate complex models and is relatively easy to perform with 

commercially available software [Hamby, 1994]. Regression analysis allows the 

sensitivity ranking to be determined based on the relative magnitude of the regression 

coefficient. This technique has been used for sensitivity analysis in several investigations 

(Iman et al., 1981a; Iman et al., 1981b). The value of regression coefficient is indicative 

of the amount of influence the parameter has on the results of model. As the parameters 

have different units and relative magnitudes, a standardization process is warranted. 

To conduct regression analysis, a substantial computational effort is undertaken 

which comprises of 224 numerical examples with different combinations  of area sizes, 

points to be visited, number of riders, and number of drivers. Due to stochastic behavior 

of the problem, for a given combination of area size, number of points to be visited, 

number of riders, and number of drivers each numerical example is run for three times 

and the best solution with the greatest total number of matched routes is presented.  

Tables A-1 through A-22 in Appendix A show the computational results. Each table 
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includes number of riders (#Pt), number of drivers (#Dt), number of points to be visited 

(#Stops), number of matched routes with zero connection (#0-con.), cumulative running 

time to find all routes with zero connection (CPU Time (sec.)), percentage of matched 

routes with zero connection (0-con. perc.), number of matched routes with one 

connection (#1-con.), cumulative running time to find all routes with one connection 

(CPU Time (sec.)), percentage of matched routes with one connection (1-con. perc.), 

number of matched routes with two connection (#2-con.), cumulative running time to 

find all routes with two connection (CPU Time (sec.)), percentage of matched routes with 

two connections (2-con. perc.), total number of matched routes (Total Routes), and rate 

of successful matches (Success Rate). Each table also presents the median, mode and 

Mean of all statistics for a given combination of area size, number of riders and number 

of drivers participating in the rideshare program. 

For each area size, aggregated computational results are presented (Tables A-17 and 

A-18 in Appendix A). As the tables for aggregated computational results show that a 

large number of combinations have no mode, Mode has been excluded from the further 

investigation. Tables A-19 and A-20 in Appendix A show the aggregated computational 

results of median and mean for area size 25 square Miles respectively. Likewise, Tables 

A-21 and A-22 show the aggregated computational results of median and mean for area 

size 100 square Miles respectively. Furthermore, examination of the relationship between 

mean and median of the data sets show that two statistics of mean and median are highly 

correlated. Pearson’s correlation coefficient for mean and median of area size of 25 

square Miles is 0.996 and the coefficient for the area size of 100 square Miles is 0.867. 

Considering the high correlation between the mean and median, the statistic of interest 
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for discrete variables such as the number of matched routes would be median while for 

the continuous variables such as running time the mean would be the appropriate statistic 

for further consideration. Figure 36 shows the median number of matched routes versus 

the number of stops. Each curve represent the median of matched routes for a given 

combination of number of riders (#P), number of drivers (#D) and the area size (Area).     

 

Figure 36: Median number of matched routes versus number of stops 

To have a better understanding of the relationships between the median of the number 

of matched routes and the number of stops, Figure 36 is split into two separate figures in 

terms of area size. Figure 37 shows the relationships for area size of 25 square Miles. 

Given a combination of the number of riders and drivers, it appears that increasing the 

number of stops results in increase of the median number of matched routes for a small 

area size of 25 square Miles. It also shows that the number of riders and drivers 

participating in the program has a significant impact on the relationship. The greatest 
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impact is in the crowded network where the density of participating riders and drivers are 

high. The impact decreases with any reduction in the density of participating riders and 

drivers.  

 

Figure 37: Median number of matched routes versus number of stops (Area size: 25) 

Figure 38 shows the relationships for the area size of 100 square Miles. Given a 

combination of the number of riders and drivers, it appears that increasing the number of 

stops results in a insignificant increase in the median number of matched routes for a 

large area size of 100 square Miles where the density of participating riders and drivers 

are low. It also shows that the number of riders and drivers participating in the program 

have a meaningful impact on the relationship. The impact decreases significantly with 

reduction in the density of participating riders and drivers. 
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Figure 38: Median number of matched routes versus number of stops (Area size: 100) 

TSHDM is to be run repeatedly and its efficiency becomes important. Generally, 

we associate efficiency with the time it takes the algorithm to run, although there are 

other resources to conserve, such as the amount of storage space taken, the amount of 

traffic generated on a network, and the amount of data transaction. For TSHDM, 

however, it is the running time that determines its suitability for practical purposes. To 

examine the running time behavior of the algorithm, its behavior on the computational 

effort for the 224 numerical examples is depicted on two separate figures in terms of the 

area size. Figures 39 and 36 show the mean CPU running time in seconds versus the 

number of stops respectively for area size 25 square Miles and 100 square Miles. Each 

curve represent the mean CPU running time for a given combination of the number of 

riders (#P), the number of drivers (#D) and the area size (Area). 

Figure 39 shows the relationships for the area size of 25 square Miles. Given a 

combination of the number of riders and drivers, it appears that increasing the number of 
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stops results in an increase in the mean running time for a small area size of 25 square 

Miles where the density of participating riders and drivers are high. It also shows that the 

number of riders and drivers participating in the program has a significant impact on the 

relationship. The greatest impact is in the crowded network where the density of 

participating riders and drivers is high. The impact increases with the increase in the 

density of participating riders and drivers.  

 

Figure 39: Mean CPU running time versus number of stops (Area size: 25) 

Likewise, Figure 40 shows the relationships between Mean CPU running time in 

seconds versus the number of stops for the area size of 100 square Miles. The behavior 

for the area size of 100 square Miles resembles the behavior for the area size of 25 square 

Miles which accordingly increasing the number of stops results in an increase in the mean 

CPU running time. It also shows that area size is an important factor in terms of running 

time for the algorithm. The range of running time for the area size of 100 square Miles is 
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0 to 306 seconds which is wider than the range of 0 to 193 seconds for the area size of 25 

square Miles.  

 

Figure 40: Mean CPU running time versus Number of stops (Area size: 100) 

To have a deeper and closer understanding of the relationships between the 

parameters involved in the problem as well as finding the most influencing factors in the 

rate of success and running time of the algorithm, the following regression analyses have 

been conducted using SPSS Statistics ver. 17.0 software package: 

1- Regression analysis (Dependent Variable: Rate of Success vs. Independent 

Variables: #D) 

2- Regression analysis (Dependent Variable: Rate of Success vs. Independent 

Variables: #P) 

3- Multiple Regression analysis (Dependent Variable: #0-connection routes vs. 

Independent variables: #P, #D ; Dense network , Area size: 25 square Miles  
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4- Multiple Regression analysis (Dependent Variable: Rate of Success vs. 

Independent Variables: #P, #D, #Stops while Area size is a fixed value, 25 sqM) 

5- Multiple Regression analysis (Dependent Variable: CPU Running Time vs. 

Independent Variables: #0-connection routes, #1-connection routes, #2-

connection routes while Area size is a fixed value, 25 sqM) 

6- Multiple Regression analysis (Dependent Variable: Rate of Success vs. 

Independent Variables: #P, #D, #Stops, Area size) 

7- Multiple Regression analysis (Dependent Variable: CPU Running Time vs. 

Independent Variables: #P, #D, #Stops, Area size) 

8- Multiple Regression analysis (Dependent Variable: Rate of Success vs. 

Independent Variables: #0-connection routes, #1-connection routes, #2-

connection routes) 

The following presents details of regression analysis for two of the aforementioned 

analyses conducted in this research and results for the other six analyses are presented in 

Appendix B.  

7.1. Multiple Regression Analysis for Rate of success 

To examine the relationship between the mean Rate of Success and the number of 

points to be visited by each driver, the area size, the number of drivers and the number of 

riders participating in the rideshare program, a multiple linear regression analysis is 

conducted where the mean Rate of Success is the dependent variables and the number of 

points to be visited by each driver (#Stops), the area size (Area), the number of drivers 

(#D) and the number of riders (#P) participating in the rideshare program are independent 

variables. The data set includes all the 224 observations in the set of numerical examples.  
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Summary output for the multiple linear regression model is presented in Table 15. 

The high value of R square (R Square: 0.919, Adjusted R Square: 0.918) and the low 

value of Standard Error (.08280) suggest that the regression model explains the variation 

in the Rate of Success. 

Table 15: Summary output for the multiple linear regression analysis of Rate of Success 

versus #Stops, Area, #D, #P 

Model R R Square Adjusted R Square Std. Error of the Estimate 

dimension0 1 .959 .919 .918 .08280 

 

The high values of t-statistics as well as the low value of p-value for the 

coefficients of the model also suggest that variable coefficients are statistically significant 

for the multiple linear regression model. Table 16 shows the summary ANOVA analysis 

for the multiple linear regression analysis. Considering the unstandardized coefficients 

(B’s) of dependent variables, the regression analysis results in the following multiple 

linear regression model: 

Y= .518 + (-7.350E-5) X1 + (-7.350E-5) X2+ (-.007) X3 + (.015) X4           (120) 

where #Rate of Success is denoted by Y, and X1, X2, X3, and X4 are representing #P, 

#D, Area, and #Stops in the model. The standardized coefficients (Beta) for the 

independent variables suggest that: 

 A one S.D. change in #P produces a predicted change of -.008 S.D.’s in the mean 

Rate of Success, net of other variables, i.e., increase of #P does not have a significant 

impact on rate of success. 

 A one S.D. change in #D produces a predicted change of .297 S.D.’s in the mean Rate 

of Success, net of other variables, i.e., the rate of success increases as the number of 

participating drivers increases. 
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 A one S.D. change in Area Size produces a predicted change of -.908 S.D.’s in the 

mean Rate of Success, net of other variables, i.e., the rate of success decreases as the 

area size increases. 

 A one S.D. change in #Stops produces a predicted change of (.101) S.D.’s in the rate 

of success, net of other variables, i.e., the rate of success increases as the number of 

stop points increases.. 

 #D is substantially more important than #Stops, and Area size and those are more 

important than #P in determining level of mean Rate of Success. 

 More than 90 percent of the variation in mean Rate of Success is explained in order of 

importance by #D, #Stops, Area, #P. 

Table 16: Summary ANOVA analysis for the regression analysis of Rate of Success 

versus #Stops, Area, #D, #P 

Sum of 

Squares 

df Mean Square 

F 

Sig. 

Regression 17.143 4 4.286 625.078 .000 

Residual 1.502 219 .007   

Total 18.645 223    

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% Confidence 

Interval for B 

B Std. Error Beta 

Lower 

Bound 

Upper 

Bound 

1 (Constant) .518 .021  25.277 .000 .478 .559 

#P -7.350E-5 .000 -.008 -.167 .867 -.001 .001 

#D .003 .000 .297 6.443 .000 .002 .004 

Area -.007 .000 -.908 -47.366 .000 -.007 -.007 

#Stops .015 .003 .101 5.261 .000 .009 .020 

 

To assess the normality of the residuals, the P-P plot and histogram of residuals 

are examined. Figure (41-a) is a histogram of the residuals with a normal curve 

superimposed.  The residuals look close to normal. Figure (41-b) is also a plot of the 

residuals versus predicted mean Rate of Success. The pattern shown here indicates no 
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problems with the assumption that the residuals are normally distributed at each level of 

mean Rate of Success and constant in variance across levels of mean rate of Success. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 41: Residual analysis for Rate of Success versus #Stops, Area, #D, #P 

 

7.2. Multiple Regression Analysis of CPU Time (sec)) 

To examine the relationship between the mean CPU running time and the number 

of points to be visited by each driver, the area size, the number of drivers and the number 

of riders participating in the rideshare program, a multiple linear regression analysis is 

conducted where the mean CPU running time is the dependent variables and the number 

of points to be visited by each driver (#Stops), the area size (Area), the number of drivers 

(#D) and the number of riders (#P) participating in the rideshare program are independent 

variables. The data set includes all the observations extracted from the 224 numerical 

examples. Summary output for the multiple linear regression model is presented in Table 

17. The relatively high value of R square (R Square: 0.512, Adjusted R Square: 0.504) 

(a) Histogram of Regression 

Standardized Residual 

(b) Normal P-P Plot of 

Regression Standardized 

Residual 
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and the relatively low value of Standard Error (37.84213) suggest that the regression 

model explains the variation in mean CPU running time. 

Table 17: Summary output for the multiple linear regression analysis of CPU running 

time versus #Stops, Area, #D, #P 

Model R R Square Adjusted R Square Std. Error of the Estimate 

dimension0 1 .716 .513 .504 37.84213 

 

The high values of t-statistics as well as the low value of p-value for the 

coefficients of the model also suggest that variable coefficients are statistically significant 

for the multiple linear regression model. Table 18 shows the summary ANOVA analysis 

for the multiple linear regression analysis. Considering the unstandardized coefficients 

(B’s) of dependent variables, the regression analysis results in the following multiple 

linear regression model: 

Y= -101.408 + (.436) X1 + (.556) X2+ (.164) X3 + (12.002) X4                (121) 

where CPU Running Time is denoted by Y, and X1, X2, X3, and X4 are representing #P, 

#D, Area, and #Stops in the model. The standardized coefficients (Beta) for the 

independent variables suggest that: 

 A one S.D. change in #P produces a predicted change of .246 S.D.’s in the mean CPU 

Running Time, net of other variables, i.e., running time increases as the number of 

participating riders increases.  

 A one S.D. change in #D produces a predicted change of .314 S.D.’s in the mean 

CPU Running Time, net of other variables, i.e., running time significantly increases 

as the number of participating drivers increases. 
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 A one S.D. change in Area Size produces a predicted change of .115 S.D.’s in the 

mean CPU Running Time, net of other variables, i.e., running time increases as the 

area size increases. 

 A one S.D. change in #Stops produces a predicted change of .448 S.D.’s in the CPU 

Running Time, net of other variables, i.e., running time significantly increases as the 

number of stop points increases. 

  #Stops and #D are substantially more important than #P and Area size in determining 

level of CPU Running Time. 

 More than 50 percent of the variation in mean CPU running time is explained in order 

of importance by #Stops, #D, #P and Area size. 

Table 18: Summary ANOVA analysis for the regression analysis of CPU running time 

versus #Stops, Area, #D, #P 

Sum of 

Squares 

df Mean Square 

F 

Sig. 

Regressio

n 

330272.560 4 82568.140 57.658 .000 

Residual 313613.884 219 1432.027   

Total 643886.444 223    

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% Confidence 

Interval for B 

B 

Std. 

Error Beta 

Lower 

Bound 

Upper 

Bound 

1 (Constant) -101.408 9.36  -10.824 .000 -119.872 -82.943 

#P .436 .201 .246 2.167 .031 .039 .832 

#D .556 .201 .314 2.766 .006 .160 .952 

Area .164 .067 .115 2.431 .016 .031 .297 

#Stops 12.002 1.26 .448 9.494 .000 9.511 14.494 

 

To assess the normality of the residuals, the P-P plot and histogram of residuals 

are examined. Figure (42-a) is a histogram of the residuals with a normal curve 

superimposed.  The residuals look relatively close to normal. Figure (42-b) is also a plot 
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of the residuals versus predicted mean CPU running time. The pattern shown here 

indicates no problems with the assumption that the residuals are normally distributed at 

each level of mean CPU running time and constant in variance across levels of mean 

CPU running time. 

 

 

 

 

 

 

 

 

Figure 42: Residual analysis for CPU running time versus #Stops, Area, #D, #P 

Table 19 presents the summary of results for sensitivity analysis using technique of 

regression analysis. 

(a) Histogram of Regression 

Standardized Residual 
(b) Normal P-P Plot of 

Regression Standardized 

Residual 
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Table 19: Summary of results for sensitivity analysis using regression analysis 

Technique 
Dependent 

Variable 

Independent 

Variables 
Results 

Regression 

Analysis 

Rate of 

Success 

#D 
Rate of success significantly increases as the number of participating drivers increases. 

Regression 

Analysis 

Rate of 

Success 

#P 
Rate of success significantly increases as the number of participating riders increases. 

Multiple 

Regression 

Analysis 

#0-

connection 

routes 

#P, #D 1- Number of zero connection routes significantly increases as the number of 

participating riders increases when other input parameters remain unchanged. 

2- Number of zero connection routes significantly increases as the number of 

participating drivers increases. 

3- #P is more important than #D in determining level of number of zero connection 

routes. 

Multiple 

Regression 

Analysis 

Rate of 

Success 

#P, #D, 

#Stops 

1- Rate of success slightly decreases as the number of participating riders increases 

when other input parameters remain unchanged. 

2- Rate of Success significantly increases as the number of participating drivers 

increases. 

3- Rate of success significantly increases as the number of stop points increases. 

4- #D is substantially more important than #Stops and #P in determining Rate of 

Success. 

5- More than 80 percent of the variation in Rate of Success is explained in order of 

importance by #D, #Stops, #P. 

Multiple 

Regression 

Analysis 

CPU 

Running 

Time 

#0-

connection 

routes, 

#1-

connection 

routes, 

#2-

connection 

routes 

1- CPU running time increases as the number of zero connection routes increases. 

2- CPU running time significantly increases as the number of one connection routes 

increases. 

3- CPU running time increases as the number of two connection routes increases. 

4- #1-connection routes is substantially more important than #0-connection routes and 

#2-connection routes in determining level of mean CPU Running. 

5- More than 60 percent of the variation in mean CPU Running Time is explained in 

order of importance by #1-connection routes, #2-connection routes, and #0- connection 

routes. 

Multiple 

Regression 

Rate of 

Success 

#P, #D, 

#Stops, Area 

1- Increase in #P does not have a significant impact on rate of success when other 

parameters remain unchanged. 
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Technique 
Dependent 

Variable 

Independent 

Variables 
Results 

Analysis size 2- The rate of success increases as the number of participating drivers increases. 

3- The rate of success decreases as the area size increases. 

4- The rate of success increases as the number of stop points increases. 

5- #D is substantially more important than #Stops, and Area size and those are more 

important than #P in determining level of mean Rate of Success. 

6- More than 90 percent of the variation in mean Rate of Success is explained in order 

of importance by #D, #Stops, Area, #P. 

Multiple 

Regression 

Analysis 

CPU 

Running 

Time 

#P, #D, 

#Stops, Area 

size 

1- Running time increases as the number of participating riders increases. 

2- Running time significantly increases as the number of participating drivers increases. 

3- Running time increases as the area size increases. 

4- Running time significantly increases as the number of stop points increases. 

5- #Stops and #D are substantially more important than #P and Area size in determining 

level of CPU Running Time. 

6- More than 50 percent of the variation in mean CPU running time is explained in order 

of importance by #Stops, #D, #P and Area size. 

Multiple 

Regression 

Analysis 

Rate of 

Success 

#0-

connection 

routes, 

#1-

connection 

routes, 

#2-

connection 

routes 

1- Rate of success significantly increases as the number of zero connection routes 

increases. 

2- Rate of success increases as the number of one connection routes increases. 

3- Rate of success slightly increases as the number of two connections routes increases. 

4- #0-connection routes and #1-connection routes are substantially more important than 

#2-connection routes in determining Rate of Success. 

5- Around 75 percent of the variation in Rate of Success is explained in order of 

importance by #0-connection routes, #1-connection routes, and #2-connection routes. 

6- #2-connection routes have the least effect on the rate of success while it makes up 

more than .25 of mean total running time of the algorithm. 

7- #1-connection routes and #2-connection routes decreases as the #0-connection routes 

increases. 
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Chapter 8: Case Study 

This section presents a case to illustrate the DROM as well as an evaluation for the 

efficient solution approach, TSHDM on a real non-virtual road network. The road 

network of Baltimore city is chosen for the case study. There are different ways to travel 

into and throughout Baltimore. Maryland Transit Administration (MTA) manages public 

transit in the greater Baltimore region and has a range of options for commuting in the 

city including Light Rail which operates from Hunt Valley through downtown and ends 

at BWI or Glen Burnie, Metro Subway which runs between Owings Mills and John 

Hopkins Hospital, with a number of stops in the downtown area, local buses which serve 

the city and Baltimore County, commuter buses which are express lines to run from 

Laurel, Columbia, Bel Air, and Havre de Grace to downtown Baltimore, the MARC 

which is a commuter rail system with three lines to service West Virginia, Frederick, 

Washington DC, Baltimore, and Perryville, with stops in between. For ridesharing, the 

Baltimore City Rideshare program promotes commuter alternatives that reduce 

congestion, such as ride matching and priority parking for carpoolers. A key component 

of the Rideshare program is Commuter Choice Maryland which is an incentive program 

to encourage Marylanders who normally drive to work to switch to transit or vanpools. 

[http://www.baltimorecity.gov]. To benefit from the incentives, an employer must have at 

least 20 employees signed up to be part of Commuter Choice Maryland program 

[www.commuterchoicemaryland.com/ridesharing.htm]. Although the Baltimore 

metropolitan area is only No. 17 in population but it ranks fifth in the nation in the 

average number of hours automobile commuters are delayed during peak periods. On 

average, Commuters endure 50 hours of delay each year which places Baltimore behind 

http://www.mtamaryland.com/services/lightrail/
http://www.mtamaryland.com/services/subway/
http://www.mtamaryland.com/services/bus/
http://www.mtamaryland.com/services/commuterbus/
http://www.mtamaryland.com/services/marc/sitemap/
http://www.commuterchoicemaryland.com/
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only Chicago, Washington DC, Los Angeles and Houston, according to the Texas 

Transportation Institute's Urban Mobility Report [Schrank and Lomax, 2009].  According 

to the report’s Commuter Stress Index, for the city size, the commuting traffic is not as 

bad as other cities of comparable size. In Baltimore metropolitan area, it takes 25 percent 

longer to commute at peak times than at non-peak hours, compared with 54 percent in the 

worst metro region, Los Angeles. That earned Baltimore a 25th-place ranking, but it's 

still a deterioration from 2008 [Dresser, 2011]. According to the 2010 Census, the city 

has a total area of 92.052 square Miles (238.41 km
2
), of which 80.944 square Miles 

(209.64 km
2
) is land and 11.108 square Miles (28.77 km

2
) is water. The total area is 

12.07 percent water [2010 census]. Figure 43 shows the geographical area of Baltimore 

city.  

Figure 43: Geographical area of Baltimore city 
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The area of study is located northwest of metropolitan Baltimore city and has a 

total area of 27.960 square Miles (5.540 Miles by 5.047 Miles). Some of the major 

roadways in Maryland including MD45, MD139, MD129, MD26, MD140, MD126, 

MD122 and U.S. Route 1 and Interstate 83 (Jones Falls Expressway) cross the area of 

study. The southeast of the area is Downtown Baltimore which is the densest business, 

residential, tourist, and cultural destination in the region and the northwest of the region 

is mostly a residential area. Figure 44 shows the geographical metropolitan area boundary 

for the case study.  
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Figure 44: Geographical metropolitan area boundary for the case study 
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In order to simulate the rideshare system the area is represented by a road network 

which comprises of 9433 links and 11875 nodes. Figure 45 shows the road network of the 

area of study and Figure 46 shows the nodes on the network. Each node is an intersection 

of at least 2 links and could be a point of demand for rideshare service.   

 
Figure 45: Road network of the area for the case study 
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Figure 46: The node spots for the area road network 

 

At the beginning of the simulation, it is assumed that there are twenty drivers in 

the system. For each driver there is an original route connecting the initial points to be 

visited defined by the driver. The points to be visited for each driver are assumed to be 

three random points in the area size of 27.960 square Miles. As it was already mentioned, 

it is assumed that each driver defines a set of initial successive points to be visited when 

he/she signs in the system. For example, the first driver may have defined three initial 

points to be visited. Figure 47 shows the three initial points to be visited defined by the 

first driver.  
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Figure 47: The initial points and route for the first driver in the system 

 

The system assigns the shortest route in the network that connects the initial 

points. The Network Analyst functions of ArcGIS 10.1 are used to find the shortest path 

connecting the nodes for the driver. Figure 48 shows the route connecting the initial 

points to be visited by the first driver. The route is labeled with Driver 1. The numbers on 

the route indicate the three initial points to be visited successively by the driver.  
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Figure 48: The shortest route for the first driver in the system 

Likewise, the other drivers have inputted their initial points to be visited and the 

Network Analyst functions of ArcGIS 10.1 have returned the shortest paths connecting 

the nodes for drivers. Without loss of generality, it is assumed that every driver inputs 2 

to 6 initial points to be visited.  

Considering the fact that increasing the number of points to be visited for each 

driver yields improvement in the likelihood of ride matches, the .2 Miles buffer along the 

route for each driver is formed using the ArcMap Buffer Wizard functions of ArcGIS 

10.1 to add a number of more appropriate points along the initial route within the buffer 

to the initial set of points to be visited by each driver. Figure 49 shows the .2 buffer along 

the route for the first driver. 
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Figure 49: The buffer along the route and the set of points to be visited by the first driver 

For simplicity and without loss of generality, it is assumed that the number of 

points to be visited for each driver adds up to eight points including the initial points 

defined by the driver and nearby appropriate points within the .2 Miles buffer along the 

route. These points could be popular spots with stopping facilities to pick up, drop off or 

making connection with other drivers. Figure 50 shows the set of eight points to be 

visited within .2 mile buffer along the route for the first driver.  
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Figure 50: The set of points to be visited within buffer along the route for the first driver 

The procedure has been undertaken for all twenty drivers in the system. Figure 

51shows the .2 mile buffer along the routes and the set of points to be visited for each 

driver. The routes are labeled with Driver and an identification number for each driver.  
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Figure 51: The .2 buffer along the routes and the set of points to be visited for each driver 

The new set of points to be visited may result in a slight change of the initial route 

for each driver. The modified shortest path connecting the new set of nodes for each 

driver is found using the Network Analyst functions of ArcGIS 10.1. The modified routes 

assigned for each driver in the system is shown in Figure 52. Although, these routes 

would be used in the system as the basis to find ride matches, they are not necessarily the 

final routes for the drivers. While initial points defined by the drivers have to be visited, 

the other auxiliary points added by the system may or may not be visited at the final route 

solution for each driver.  
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Figure 52: The modified routes and the set of points to be visited for each driver 

The other input for the drivers include the drivers’ characteristics, preferences and 

driving input parameters.  To generate input information for the drivers and riders, the 

following behavioral facts and results from the study of the literature are considered:  

Gender 

1. There are differences between men and women in participating in rideshare trips. 

2. Females are more sensitive than are males to transfer of all types, especially the 

transfers between two different modes. 

3. Females are more sensitive to walking time in transfers. 

4. Males are more sensitive to access and egress times in public transit. 

5. Females are more willing to use toll roads. 

6. Females and males should be modeled separately for trip mode choice analysis. 
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7. Females are less likely to choose public transit and more likely to choose to rideshare 

than males. 

8. Females are less time-sensitive in commuting than are males. 

9. Females commute shorter distances and make more trips. 

10. Females tend to commute less than males. 

11. Females tend to be constrained to a smaller travel area. 

12. Females are more likely to form carpools. 

13. Males tend more to participate as drivers. 

14. Females tend more to participate as passengers. 

15. Female passengers are more preferred by male and by female drivers. 

Age 

16. Compared to the adults, elderly people are less sensitive to the number of transfers. 

17. Elderly people tolerate the commute and waiting times much better than the young 

and adult commuters. 

18. Middle age commuters are more likely to use a toll road.  

19. Participation in carpooling increases across the age profile, up to 54 years of age.  

20. Likelihood of achieving a successful outcome increases with age. 

21. Elderly commuters are less likely than others to participate in carpool formation 

through the deployment of a web-based carpool formation application. 

Age and Gender 

22. Elderly men commuters are more sensitive than women to access and egress times.  

23. People in carpooling arrangements prefer to travel with people of their own age 

cohort. 
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24. Females are particularly reluctant to give lifts to, or to pool with, men over 50. 

25. Drivers are likely to be males aged 30-50. 

26. Riders are likely to be female under 30.  

Trip distance  

27. Most commuters tend to go slightly out of their way or wait a short time to obtain or 

offer a ride. 

28. The commuters who travel less than a mile or two are less interested in dynamic 

ridesharing. 

29. There is a positive correlation between journey length and likelihood of rideshare 

requests. 

30. The longer one's journey the more attractive is ridesharing. 

Time to match up 

31. The 10 min added time for a match was too high for many of the users and a shorter 

time, 3 to 5 min maximum, cuts matches down considerably. 

Occupancy preferences 

32. The average occupancy is about 2.10 persons per automobile 

Other preferences 

33. People are less likely to share a ride with a smoker or with a person who is 

commuting with a pet.  

    Considering the aforementioned behavioral facts and results, 60% of drivers are 

assumed to be male (1) and 40% are assumed to be female drivers (2). The age 

distribution of drivers is assumed to be 35% for young drivers (1), 55% for middle age 

drivers, and 10% for elderly drivers (3). It is assumed that 10% of drivers are smoker (1) 



156 
 

and 90% of the driver pool is made up of nonsmoker drivers (2). Moreover, it is 

presumed that only 5% of drivers offer a ride when they have a pet onboard (1) and 95% 

have no pet in the automobile (2). Figure 53 shows the distribution of the drivers in terms 

of age, gender, smoking habits and pet friendliness combinations and Table 20 shows the 

distribution of drivers in the driver pool size of 20 for this case study.  

 
Figure 53: The characteristics distribution of driver pool 

 

Table 20: The distribution of drivers in the pool for the case study. 
 

 

 

 

 

 

M/F Y/M/E S/NS P/NP # D 

M Y S NP 1 

M Y NS NP 3 

M M S NP 1 

M M NS P 1 

M M NS NP 6 

M E NS NP 1 

F Y NS NP 2 

F M NS NP 5 
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The literature also suggests that most commuters tend to go slightly out of their 

way or wait a short time to offer a ride and a diversion more than a mile or two from the 

original route makes the participant less interested in dynamic ridesharing. The input for 

maximum flexibility for detouring to pick up or drop-off a rider as well as the maximum 

flexibility for detouring to make a connection for drivers are generated randomly and 

assumed to be less than 2 Miles. Table 21 shows the input parameters including 

maximum flexibility for detouring to pick up or drop off a rider (beta1D), maximum 

flexibility for detouring to make a connection (beta2D), maximum seat capacity (Qdrive), 

available seat capacity (Qavail) as well as the drivers’ characteristics including age 

characteristic (Agechar), gender characteristic (Genchar), smoking habit (Smochar), and 

pet friendliness (Petchar).  

For rideshare preferences input, due to the triple behavioral facts that female 

passengers are more preferred by male and by female drivers, people in carpooling 

arrangements prefer to travel with people of their own age cohort, and females are 

particularly reluctant to give lifts to, or to pool with, men over 50, it is assumed that 50% 

of female drivers are reluctant to give lift to elderly people and 20% of females drivers 

are reluctant to give lift to male riders. It’s also assumed that non-smoker drivers are 

reluctant to give lift to smoker ride and not pet friendly drivers are reluctant to give lift to 

riders who travel with pet. Table 22 also shows the drivers’ rideshare preferences 

including age, gender, smoking, and pet preferences. 
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Table 21: The drivers’ input parameters 
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Table 22: The drivers’ rideshare preferences 

 Age Preferences Gen. Preferences Smo. Preferences Pet Preferences 

D1 1 2 3 0 2 0 2 0 2 

D2 1 2 0 1 2 0 0 0 2 

D3 1 2 3 1 2 0 0 0 2 

D4 1 2 0 0 2 0 2 0 2 

D5 1 2 3 1 2 0 0 0 2 

D6 1 2 0 1 2 0 2 0 2 

D7 1 2 3 1 2 1 2 0 2 

D8 1 2 3 1 2 0 2 0 2 

D9 1 2 3 1 2 0 2 0 2 

D10 1 2 3 1 2 0 2 0 2 

D11 1 2 3 1 2 0 2 0 2 

D12 1 2 3 1 2 0 2 0 2 

D13 1 2 3 1 2 0 2 1 2 

D14 1 2 0 1 2 0 2 0 2 

D15 1 2 3 1 2 0 2 0 2 

D16 1 2 3 1 2 0 2 0 2 

D17 1 2 3 1 2 0 2 0 2 

D18 1 2 3 1 2 0 2 0 2 

D19 1 2 3 1 2 0 2 0 2 

D20 1 2 3 1 2 0 2 0 2 

 

It is also assumed that at the beginning of the simulation, there are fifty riders who 

have requested the rideshare service. Figure 54 shows the point of pickup demands for 

the riders. The numbers beginning with letter “O” indicate the origin points and 

identification number for riders. Although the points of origin are all generated randomly, 

they are mostly allocated in the residential northwest area of study. 
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Figure 54: The point of pickup demands for the riders 

Figure 55 also shows the point of drop-off demands for the riders. The numbers 

beginning with letter “D” indicate the destination points and identification number for 

riders. Although the points of destination are all generated randomly, they are mostly 

allocated in the Downtown Baltimore at the southeast area.  
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Figure 55: The point of drop-off demands for the riders 

Considering the aforementioned behavioral facts and results, 40% of riders are 

assumed to be male (1) and 60% are assumed to be female riders (2). The age distribution 

of riders is assumed to be 50% for young riders (1), 40% for middle age riders, and 10% 

for elderly riders (3). It is assumed that 10% of the riders are smoker (1) and 90% of the 

rider pool is made up of nonsmoker riders (2). Moreover, it is presumed that only 5% of 

riders request a ride while they are traveling with a pet (1) and 95% have no pet to bring 

in the automobile (2). Figure 56 shows the distribution of the riders in terms of age, 

gender, smoking habits and pet friendliness combinations and Table 23 shows the 

distribution of riders in the rider pool size of 50 for this case study.  
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Figure 56: The characteristics distribution of rider pool 

 

Table 23: The distribution of riders in the pool for the case study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The literature also suggests that most commuters tend to go slightly out of their 

way or wait a short time to catch a ride and a diversion more than a mile or two walking 

distance makes the participant less interested in dynamic ridesharing. The literature also 

M/F Y/M/E S/NS P/NP P(P) # P 

M Y S NP 0.019 1 

M Y NS NP 0.171 9 

M M S NP 0.0152 1 

M M NS NP 0.1368 7 

M E NS NP 0.0342 2 

F Y S NP 0.0285 2 

F Y NS P 0.0135 1 

F Y NS NP 0.2565 13 

F M S NP 0.0228 1 

F M NS NP 0.2052 10 

F E NS NP 0.0513 3 
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suggests that elderly people tolerate the commute and waiting times much better than the 

young and adult commuters and females are more sensitive to walking time in transfers 

as well. It is assumed that maximum waiting time for riders to be picked up at the origin 

point or connection points is 25 minutes for elderly people and 20 minutes for young and 

middle age riders. In additions, the input for maximum flexibility for relocation to be 

picked up or dropped-off as well as the maximum flexibility for relocating to make a 

connection for riders are generated randomly and assumed to be less than 2 Miles for 

male riders and 1.5 Miles for female riders. For the research purposes of this study, 

maximum relocation distances are exaggerated to increase the chance of rideshare 

matches. Current time of the system is assumed to be 10:00 a.m. and all the rideshare 

service requests are within half an hour from 10:00 to 10:30. Table 24 shows the input 

parameters including maximum flexibility for relocating to be picked up or dropped off 

(Gamma1P), maximum flexibility for relocating to make a connection (Gamma2P), time 

of rideshare request (TOP), maximum flexibility for waiting time (PhiP) as well as the 

riders’ characteristics including age characteristic (AgecharP), gender characteristic 

(GencharP), smoking habit (SmocharP), and pet friendliness (PetcharP). For rideshare 

preferences input, due to the behavioral facts that people in carpooling arrangements 

prefer to travel with people of their own age cohort, and females are particularly reluctant 

to pool with men over 50, it is assumed that 25% of female riders are reluctant to pool 

with elderly people and 20% of females riders are reluctant to catch a ride from male 

drivers. It’s also assumed that non-smoker riders are reluctant to pool with a smoker 

driver and riders who are not pet friendly are reluctant to pool with pets. Table 25 also 

shows the riders’ rideshare preferences.
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Table 24:  The riders’ input parameters 
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Table 25: The riders’ rideshare preferences 

 Age Preferences Gen. Preferences Smo. Preferences Pet Preferences 

P1 1 2 3 1 2 1 2 0 2 

P2 1 2 3 1 2 0 2 0 2 

P3 1 2 3 1 2 0 2 0 2 

P4 1 2 3 1 2 0 2 0 2 

P5 1 2 3 1 2 0 2 0 2 

P6 1 2 3 1 2 0 2 0 2 

P7 1 2 3 1 2 0 2 0 2 

P8 1 2 3 1 2 0 2 0 2 

P9 1 2 3 1 2 0 2 0 2 

P10 1 2 3 1 2 0 2 0 2 

P11 1 2 3 1 2 1 2 0 2 

P12 1 2 3 1 2 0 2 0 2 

P13 1 2 3 1 2 0 2 0 2 

P14 1 2 3 1 2 0 2 0 2 

P15 1 2 3 1 2 0 2 0 2 

P16 1 2 3 1 2 0 2 0 2 

P17 1 2 3 1 2 0 2 0 2 

P18 1 2 3 1 2 0 2 0 2 

P19 1 2 3 1 2 0 2 0 2 

P20 1 2 3 1 2 0 2 0 2 

P21 1 2 3 1 2 0 2 0 2 

P22 1 2 0 0 2 1 2 0 2 

P23 1 2 3 0 2 1 2 1 2 

P24 1 2 3 1 2 0 2 0 2 

P25 1 2 0 1 2 0 2 0 2 

P26 1 2 0 1 2 0 2 0 2 

P27 1 2 3 1 2 0 2 0 2 

P28 1 2 3 1 2 0 2 0 2 

P29 1 2 3 1 2 0 2 0 2 

P30 1 2 0 1 2 0 2 0 2 

P31 1 2 3 0 2 0 2 0 2 

P32 1 2 3 1 2 0 2 0 2 

P33 1 2 3 1 2 0 2 0 2 

P34 1 2 3 1 2 0 2 0 2 

P35 1 2 0 0 2 0 2 0 2 

P36 1 2 3 1 2 0 2 0 2 

P37 1 2 3 1 2 1 2 0 2 

P38 1 2 3 1 2 0 2 0 2 

P39 1 2 3 1 2 0 2 0 2 

P40 1 2 3 1 2 0 2 0 2 

P41 1 2 3 0 2 0 2 0 2 

P42 1 2 3 1 2 0 2 0 2 

P43 1 2 3 1 2 0 2 0 2 

P44 1 2 3 1 2 0 2 0 2 

P45 1 2 3 1 2 0 2 0 2 

P46 1 2 0 1 2 0 2 0 2 

P47 1 2 3 1 2 0 2 0 2 

P48 1 2 3 1 2 0 2 0 2 

P49 1 2 0 1 2 0 2 0 2 

P50 1 2 3 1 2 0 2 0 2 
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Other input in the model include:  

1. the distance matrix (Distance) which is a  matrix with the 

distance between two successive nodes to be visited for each driver; 

2. the driving time matrix (DrivingTime) which is a  matrix with 

the driving time between two successive nodes to be visited for each driver; 

3. the distance matrix (DistanceOP) which is a  matrix with the 

distance between the origin point of each rider from each point to be visited for each 

driver; 

4. the driving time matrix (DrivingTimeOP) which is a  matrix 

with the driving time between the origin point of each rider from each point to be 

visited for each driver; 

5. the walking time matrix (WalkingTimeOP) which is a  matrix 

with the driving time between the origin point of each rider from each point to be 

visited for each driver; 

6. the distance matrix (DistanceDP) which is a  matrix with the 

distance between the destination point of each rider from each point to be visited for 

each driver; 

7. the driving time matrix (DrivingTimeDP) which is a  matrix 

with the driving time between the destination point of each rider from each point to 

be visited for each driver; 

8. the walking time matrix (WalkingTimeDP) which is a  matrix 

with the driving time between the destination point of each rider from each point to 

be visited for each driver; 
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9. the driving time matrix (DrivingTimeODP) which is a  matrix with 

the driving time between the origin and destination points of each rider for each 

driver; 

10. the distance matrix (DistanceDD) which is a  matrix 

with the distance between every point to be visited for each driver and every point to 

be visited for the other drivers.  

11. the driving time matrix (DrivingTimeDD) which is a  

matrix with the driving time between every point to be visited for each driver and 

every point to be visited for the other drivers.  

12. the walking time matrix (WalkingTimeDD) which is a                                          

matrix with the walking time between every point to be visited for each driver and 

every point to be visited for the other drivers.  

where is the cardinality of the set of drivers;  is the maximum cardinality of the set 

of points to be visited for the drivers; and  is the cardinality of the set of riders. For the 

case study, ,  and are 20, 8, and 50 respectively.  

Although walking speeds can vary greatly depending on factors such as height, weight, 

age, terrain, surface, load, culture, effort, and fitness, the average human walking speed is 

about 3.1 Miles per hour. Specific studies have found pedestrian walking speeds ranging 

from 2.8 mph to 2.95 mph for older individuals to 3.2 mph to 3.3 mph for younger 

individuals [TranSafety, 2009], [Asspelin, 2005]. 
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For the purposes of the case study and without loss of generality, the walking 

speed is assumed to be a random number in the range of 2.8 mph to 2.95 mph for older 

pedestrian and 3.2 mph to 3.3 mph for younger pedestrians. All the other distances and 

driving times input matrices are generated using Network Analyst extension tools and 

Hawth's Analysis Tools which are extensions for ArcGIS and work based on the shortest 

routes connecting the nodes.  

The case study is solved using TSHDM approach. Table 26 shows the summary 

of results for the case study. As shown, it took 6 iterations and 8.237 second to generate 

10 ride matches of which nine are matches with zero connection routes and the other one 

is a match with a one connection route. 

Table 26: The summary of results for the case study 

Iter Matched established routes Acc. Time 

(sec.) 

# 

routes 

1 0_Connection :  

(1,18,6,6); (3,20,7,7); (21,1,7,7); (23,13,6,7); (29,12,5,6); 

(40,17,7,8); (41,3,6,6) 

.0191 7 

2 0_Connection : 

        (24,3,7,7); (27,13,7,8) 

.0226 2 

3 0_Connection :  

not found 

.0265 0 

4 
1_Connection :  

(9,20,2,3,19,3,7) 

6.302 1 

5 0_Connection :  

             not found 

6.951 0 

6 2_Connection :  

Not found 

8.237 0 
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Table 27 shows the summary of computational results with more details. Eight of 

the drivers and 10 riders contributed in the rideshare matches. While seven of the routes 

are perfectly matched, 3 matches are not perfect and need to be negotiated with the 

potential drivers and riders to form a carpool.  
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Table 27: The summary of computational results for the case study 
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1 22:16 8.2 6:28   06:28 1.7 21 04:37 03:47 2  2   •   

3 47:49 16.8 10:0 06:16  16:18 1.8 
41 08:14 14:44 2  2 ✓     

24 03:40 11:08 2  2 ✓     

12 35:21 10.7 3:51   03:51 1.5 29 28:08 02:21 2  1 ✓     

13 33:25 9.3 11:1 03:50  14:59 2 
23 18:08 10:40 2  2    •  

27 04:19 03:46 2  2     • 

17 28:54 8.5 8:11   08:11 1.6 40 03:55 02:48 2  2 ✓     

18 25:48 8.7 6:55   06:55 1.2 1 04:15 03:47 2  2    •  

19 33:20 13.2   02:56 02:56 1 9 17:58 02:22  1 2 ✓     

20 31:08 11.6 1:13  04:13 05:26 2 
3 00:03 02:02 2  2 ✓     

9 05:27 01:42 2 1  ✓     
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Following discussion is presented to provide more insight into the solution approach:  

1. Driver 18 and Rider 1:  

The system resulted in a compromise zero-connection route for imperfect match 

between Driver 18 and Rider 1.The original points to be visited by the driver are points 

number 1, 2 and 8 and earlier the system has come up with a set of 5 additional points 

within the .2 Miles buffer to be added to the set of points to be visited by Driver 18, 

namely points number 3, 4, 5, 6, and 7. Figure 57 shows the three initial points as well as 

the additional five points for Driver 18. The origin (O1) and destination point (D1) for 

Rider 1 are also shown in the figure.            

 

 

 

 

 

 

 

 

 

Figure 57: The initial route for Driver 18 and the O-D points for Rider 1. 

According to the solution, Driver 18 makes a detour at his 6
th

 point to be visited to 

pick up (type 2) Rider 1 at his point of origin and takes him directly to his destination 

(type 2) and then changes his route toward his 8
th

 point to be visited. Figure 58 shows the 

course of actions and updated route for Driver 18 compared with his original route.  
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Figure 58: The updated (maroon) route compared with the original (purple) one for 

Driver 18 matched with Rider 1. 

The system also shows that the match between Driver 18 and Rider 1 is not 

complete. While Driver 18 is a male, middle age and nonsmoker driver that doesn’t allow 

pet in his car, Rider 1 is a male, middle age, and smoker who is reluctant to pool with 

pets. The input information for rideshare preferences show that Driver 18 is reluctant to 

offer a lift to a smoker rider. The system has generated a negotiating policy to make the 

pool possible. Accordingly, either Rider 1 has to agree that he will not smoke in the car 

or Driver 18 has to accept the smoker rider. Either of the agreement results into a perfect 

matched route between Driver 18 and Rider 1 and subsequently Driver 18 adopts an 

updated route. The updated route includes the origin point of Rider 1, O1, and his 

destination point, D1. Figure 59 shows the updated route for Driver 18. For the next run, 

the updated route includes the origin point of Rider 1, O1, and the destination point for 

Rider 1, D1. Figure 63 shows the updated route with 5 initial points to be visited for the 

next run. At the next trigger of the system, besides to the 5 initial points to be visited for 

the next run, the .2 mile buffer gives the additional points to be added to the set of points 
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to be visited by driver 18 and the points already met by the driver would be removed for 

the set.    

 

 

 

 

 

 

 

 

Figure 59: The updated route for Driver 18 

The other input parameters that would be updated for the nexr run includes:  

i. The maximum detour distance for Driver 18 changes to .1 Miles because 1.2 

Miles of the 1.3 Miles maximum flexibility to pick up or drop off for this driver 

has already been used in this run.  

ii. The maximum waiting time for Rider 1 changes to 04:33 because 03:47 minutes 

of the the 07:80 minutes maximum waiting time for this rider has been already 

used in this run. i.e., any future changes in the route of Driver 18 that results in 

more than 04:33 minutes change in arrival time of Rider 1 would be discarded. 

For the next run, the system will add an arrival time window with width 04:33 for 

Driver 18 to his arrival in the origin point of Rider 1, O1.   

iii. The seating capacity for Driver 18 is updated.  

iv. All travel time and distance matrices are updated accordingly. 
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2. Driver 13, Rider 23 and Rider 27:  

The system resulted in a two compromise zero-connection routes for imperfect 

matches between Driver 13, Rider 23 and Rider 27. The original points to be visited by 

the driver were points 1, 2 and 8 and earlier the system came up with a set of 5 additional 

points within the .2 Miles buffer to be added to the set of points to be visited by Driver 

13, namely points 3, 4, 5, 6, and 7. Figure 60 shows the three initial points as well as the 

five additional points for Driver 13. Origins (O23, O27) and destination points (D23, 

D27) for Rider 23 and Rider 7 are also shown in the figure.            

 

 

 

 

 

 

 

 

 

Figure 60: The initial route for Driver 13 and O-D points for Rider 23 and Rider 27. 

According to the solution, Driver 13 makes a detour at his 2
nd

 point to be visited 

to pick up (type 2) Rider 23 and then changes his route toward the origin point of Rider 

27 to pick her up at her point of origin (type 2) and continues directly toward the 

destination point of Rider 27 to drop her off at her point of destination (type 2) and then 

continues toward the destination point of Rider 3 to drop her off at her point of 
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destination (type 2) and then goes to his 8
th

 point to be visited. Figure 61 shows the 

updated course of actions Driver 13 compared with his original one.  

 

Figure 61: The updated (maroon) route compared with the original (yellowish-green) 

route for Driver 13 matched with Rider 23 and Rider 24. 

 

The system also shows that the match between Driver 13, Rider 23 and Rider 27 

is not complete. While Driver 13 is a male, middle age and nonsmoker driver that 

welcomes pet in his car, Rider 23 is a female, young, and smoker who has requested a 

ride with her pet and Rider 27 is a female, young and nonsmoker who is reluctant to pool 

with a pet. The input information for rideshare preferences show that Driver 13 is 

reluctant to offer a lift to a smoker rider which makes it an imperfect match with Rider 23 

who is a smoker rider. In additions, Rider 27 is reluctant to pool with a pet. The system 

has generated a negotiating policy to make the pool possible. Accordingly, either Rider 

23 has to agree that she will not smoke in the car and either Rider 23 has to agree not to 

bring her pet in the car or Rider 27 agrees to pool with a pet. Either of the agreement 

results into a perfect matched route for Driver 13, Rider 23 and Rider 27 and 
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subsequently Driver 13 adopts an updated route. The updated route includes the O-D 

points for Rider 23 (O3, and D23) and Rider 27 (O27, and D27). Figure 62 shows the 

updated route for Driver 13. For the next run of the system, the updated route includes the 

origin point of Rider 23, O23, the destination point for Rider 23, D23 as well as the origin 

point of Rider 27, O27, the destination point for Rider 27, D27. Figure 62 shows the 

updated route with 7 initial points to be visited for the next run. At the next trigger of the 

system, besides the 7 initial points to be visited for the next run, the .2 mile buffer gives 

the additional points to be added to the set of points to be visited by driver 13 and the 

points already met by the driver would be removed from the set.    

 
Figure 62: The updated route for Driver 13 

The other input parameters that would be updated for the nexr run include:  

i. The maximum detour distance for Driver 13 changes to 0 mile because all of his 

flexibility to pick up or drop off for this driver has already been used.  
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ii. The maximum waiting time for Rider 23 changes to 08:21 because 10:40 minutes 

of the the 19.1 minutes of maximum waiting time for this rider has been already 

used in this run. i.e., any future changes in the route of Driver 13 that results in 

more than 08:21 minutes change in arrival time of Rider 23 would be discarded. 

For the next run, the system will add an arrival time window with width 08:21 for 

Driver 13 to his arrival in the origin point of Rider 23, O23. Likewise, The 

maximum waiting time for Rider 27 changes to 01:34 because 03:46 minutes of 

the the 05:20 minutes maximum waiting time for this rider has been already used 

in this run. That means  any future changes in the route of Driver 13 that results in 

more than 01:34 minutes change in arrival time of Rider 27 would be discarded. 

For the next run, the system will add an arrival time window with width 01:34 for 

Driver 13 to his arrival in the origin point of Rider 23, O23.  

iii. The seating capacity for Driver 13 is updated.  

iv. All travel time and distance matrices are updated accordingly. 

3. Driver 17 and Rider 40:  

The system resulted in a perfectly matched zero-connection route for Driver 17 

and Rider 40.The original points to be visited by the driver are points 1, 2 and 8 and 

earlier the system has come up with a set of 5 additional points within the .2 Miles 

buffer to be added to the set of points to be visited by Driver 17, namely points 1, 2, 

6, 7, and 8. Figure 63 shows the five initial points as well as the additional three 

points for Driver 17. The origin (O40) and destination point (D40) for Rider 1 are 

also shown in the figure.            
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Figure 63: The initial route for Driver 17 and the O-D points for Rider 40. 

According to the solution, Driver 17 makes a detour at his 7
th

 point to be visited to 

pick up (type 2) Rider 40 at his point of origin and takes him directly to his destination 

(type 2) and then changes his route toward his 8
th

 point to be visited. Figure 64 shows the 

course of actions and updated route for Driver 17 compared with his original route.  

 

 

 

 

 

 

 

Figure 64: The updated (yellowish-green) route compared with the original (blue) route 

for Driver 17 matched with Rider 40. 

The system also shows that match between Driver 17 and Rider 40 is complete 

and subsequently Driver 17 adopts an updated route. The updated route includes the 

origin point of Rider 40, O40, and the destination point for Rider 40, D40. Figure 65 
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shows the updated route for Driver 17. For the next run of the system, the updated route 

includes the O-D points for Rider 40. Figure 65 shows the updated route with 7 initial 

points to be visited for the next run. At the next trigger of the system, besides the 7 initial 

points to be visited for the next run, the .2 mile buffer gives the additional points to be 

added to the set of points to be visited by driver 17 and the points already met by the 

driver would be removed from the set.    

 

Figure 65: The updated route for Driver 17 

The other input parameters that would be updated for the nexr run includes:  

i. The maximum detour distance for Driver 17 changes to 0.1 mile because 1.6 mile 

of his 1.7 Miles flexibility to pick up or drop off for this driver has already been 

used.  

ii. The maximum waiting time for Rider 40 changes to 02:02 because 02:48 minutes 

of the the 4:50 minutes of maximum waiting time for this rider has been already 

used. That means any future changes in the route of Driver 17 that results in more 

than 02:02 minutes change in arrival time of Rider 40 would be discarded. For the 

next run, the system will add an arrival time window with width 02:02 for Driver 

17 to his arrival in the origin point of Rider 40, O40.  
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iii. The seating capacity for Driver 17 is updated.  

iv. All travel time and distance matrices are updated accordingly. 

4. Driver 19, Driver 20, Rider 9, Rider 3 

The system resulted in a perfectly matched one-connection route for Driver 19, 

Driver 20 and Rider 9 as well as one perfectly matched zero-connection route for Driver 

19, Driver 20 and Rider 3. The original points to be visited by Driver 19 are points 1, 2, 

3, 7 and 8 and earlier the system has come up with a set of 3 additional points within the 

.2 Miles buffer to be added to the set of points to be visited by Driver 19, namely points 

4, 5, and 6. The original points to be visited by Driver 20 are points 1, 2, 4, and 8 and 

earlier the system has come up with a set of 4 additional points within the .2 Miles buffer 

to be added to the set of points to be visited by Driver 20, namely points 3, 5, 6 and 8. 

Figure 66 shows the five original points and the additional three points for Driver 19 as 

well as the 4 original points and the additional 4 points to be visited by Driver 20. The 

origin (O9) and destination point (D9) for Rider 9 as well as the origin (O3) and 

destination point (D3) for Rider 3 are also shown in the figure. 
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Figure 66: The initial routes for Driver 19, Driver 20 and the O-D points for Rider 9 and 

Rider 3. 

According to the solution, Driver 20 makes a detour at his 2
nd

 point to be visited 

to pick up (type 2) Rider 9 at his point of origin and then makes a detour to drop him off 

at the3rd point to be visited by Driver 19 (connection type 2) and then changes his route 

toward his own 4
th

 point to be visited. Driver 20 continues his way toward his 7
th

 point to 

be visited and then makes a detour to pick up (type 2) and drop off (type 2) Rider 3 

before he arrives in his 8
th

 point to be visited. At the same time, Driver 19 picks up Rider 

9 at his 3
rd

 point to be visited and continues to his 7
th

 point to be visited. At that point, he 

makes a change in his route to drop off Rider 9 at his destination (type 2) and then goes 

toward his 8
th

 point to be visited. Figure 67 shows the course of actions and updated 

routes for Driver 19 and Driver 20 compared with their original routes.  



182 

 

 

 

Figure 67: The updated (orange) route compared with the original (blue) route for Driver 

20 matched with Rider 9 and Rider 3; the updated (dark green) route compared with the 

original (light green) route for Driver 19 matched with Rider 9. 

The courses of actions are shown step by step in Figure 68.  
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Figure 68: The course of events for Driver 19, Driver 20, Rider 9 and Rider 3. 

Driver 20 picks up Rider 9 at his origin 

point. 

Driver 20 drops off Rider 9 at the 3
rd

 

point to be visited by Driver 19. 

Rider 9 idles for 01:42 to be picked up by 

Driver 19 

Driver 19 picks up Rider 9 

Driver 19 detours to drop off Rider 9; 

Driver 20 detours to pick up Rider 3 and 

later will drop him off 

Driver 19 and Driver 20 head toward their 

destination. 
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Figure 69 provides a closed look at the matched route for Rider3 and Driver 20. Driver 

20 picks up Rider 3 at his origin point and drops him off at his destination after 0.1 mile 

ride and then Driver 20 continues to reach to his destination at 10:33. The results also 

show that arrival time for Driver 19 at his destination is 10:31. 

 

 

 

 

 

 

 

Figure 69: Bird view map for connection route between Driver 19 and Rider 3 

The other input parameters that would be updated for the next run include:  

i. The maximum detour distance for pick up for Driver 19 changes to 0 Miles 

because 2 Miles of the 2 Miles maximum flexibility to pick up or drop-off for this 

driver has already been used in this run.   

ii. The maximum detour distance for connection for Driver 19 changes to .2 mile 

because 1 Miles of the 1.2 Miles maximum flexibility for connection for this 

driver has already been used in this run.  

iii. The maximum detour distance for for pick up and drop- off for Driver 20 changes 

to .3 Miles because 1.6 Miles of the 1.9 Miles maximum flexibility to pick up or 

drop-off for this driver has already been used in this run.  
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iv. The maximum waiting time for pick up for Rider 9 changes to 07:00 minutes 

because 01:42 minutes of the the 08:42 minutes maximum waiting time for this 

rider has been already used in this run.  

v. The maximum waiting time for connection for Rider 9 changes to 12:58 minutes 

because 02:22 minutes of the the 15:2 minutes maximum waiting time for 

connection for this rider has been already used in this run. That means for any 

future changes in the route of Driver 19 the time window width of 12:58 minutes 

should be considered.   

vi. The maximum waiting time for Rider 3 changes to 01:08 because 02:02 minutes 

of the the 03:10 minutes maximum waiting time for this rider has been already 

used in this run.  

vii. The seating capacity for Driver 19 and Driver 20 are updated.  

viii. All travel time and distance matrices are updated accordingly. 

The rideshares characteristics distribution for the case study is also analysed and its 

result is shown in Table 28.  
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Table 28: Rideshares characteristics distribution for results of the case study 

Carpool 

Characteristic 

Gender Age 
Smoking 

Habit 

Pet 

Friendliness 

M
ale 

F
em

ale 

Y
o

u
n

g
 

M
id

d
le ag

e 

E
ld

erly
 

S
m

o
k

er 

N
o

n
sm

o
k
er 

w
elco

m
e 

N
o

 p
et 

1 
Driver 1  ✓ ✓    ✓  ✓ 

Rider 21 ✓    ✓  ✓  ✓ 

2 

Driver 3  ✓  ✓   ✓  ✓ 

Rider 41  ✓  ✓   ✓  ✓ 

Rider 24  ✓ ✓    ✓  ✓ 

3 
Driver 12 ✓   ✓   ✓  ✓ 

Rider 29  ✓ ✓    ✓  ✓ 

4 

Driver 13 ✓   ✓   ✓ ✓  

Rider 23  ✓ ✓   ✓  ✓  

Rider 27  ✓ ✓      ✓ 

5 
Driver 17 ✓   ✓   ✓  ✓ 

Rider 40  ✓  ✓   ✓  ✓ 

6 
Driver 18 ✓   ✓   ✓  ✓ 

Rider 1 ✓   ✓  ✓   ✓ 

7 
Driver 19 ✓   ✓   ✓  ✓ 

Rider 9 ✓   ✓   ✓  ✓ 

20 
Driver 20 ✓    ✓  ✓  ✓ 

Rider 9 ✓   ✓   ✓  ✓ 

20 
Driver 20 ✓    ✓  ✓  ✓ 

Rider 3 ✓   ✓   ✓  ✓ 

distribution 60% 40% 25% 60% 15% 10% 90% 10% 90% 
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Chapter 9: Summary, Conclusions and Directions for Future Research  

This dissertation developed a Dynamic Rideshare Optimized Matching (DROM) 

model and solution that was aimed at identifying suitable matches between passengers 

requesting rideshare services with appropriate drivers available to carpool for credits and 

HOV lane privileges. For the purposes of the study presented in this research, real-time 

ridesharing was defined as a non-recurring multipurpose rideshare trip which is 

prearranged on a per trip basis on a short-notice to establish shared trips close to the 

desired departure times and locations of the participants to gain HOV lanes privileges or 

share the cost of the trip. DROM received passengers and drivers’ information and 

preferences continuously over time and assigned passengers to drivers with respect to 

proximity in time and space and compatibility of characteristics and preferences among 

the passengers, drivers and passengers onboard. The optimization model maximized the 

overall system performance subject to ride availability, capacity, rider and driver time 

window constraints, and detour and relocation distances while considering users’ 

preferences. The ridesharing preferences considered in the model are: age, gender, 

smoking as well as the maximum number of people sharing a ride. Computational burden 

associated with the increasing size of the participants and visiting points of interests 

showed that it was impossible to rely on commercial solvers for obtaining optimal 

solutions. The research developed an efficient solution algorithm for solving practical 

size problems. The idea was to develop a decomposition approach that decomposed the 

problem into a series of smaller solvable sub-problems. The decomposition was spatial, 

temporal, and hierarchical by carefully considering the relationships between the 

decisions and constraints. The decomposition strategy led to the heuristic solution 
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procedure, Three-Spherical Heuristic Decomposition Model (TSHDM). Quality and 

validity tests for the TSHDM algorithm were done by comparison of results between the 

exact and implemented algorithm solutions. A major sensitivity analysis on all of the 

related parameters in the model was conducted to thoroughly investigate the properties of 

the proposed model and solution algorithm. To conduct regression analysis, a substantial 

computational effort was undertaken which comprised of 224 numerical examples with 

different combinations  of area sizes, points to be visited, number of riders, and number 

of drivers. Due to stochastic behavior of the problem, for a given combination of area 

size, number of points to be visited, number of riders, and number of drivers each 

numerical example was run for three times and the best solutions with the greatest total 

number of matched routes were presented.  The most influencing parameters of the model 

were identified through a sensitivity analysis using the technique of Regression Analysis.  

A case study was constructed to analyze the model behavior in the practical and real size 

scale operations as well as an evaluation for the efficient solution approach, TSHDM on a 

real non-virtual road network. The road network of Baltimore city was chosen for the 

case study.  

  This study showed that using appropriate technical tools and social networking 

media, it is possible to implement a dynamic rideshare system. The study showed that 

DROM is a very complicated and challenging problem from both mathematical 

formulation and solution algorithm perspectives. The review of the literature revealed 

that while technological advances have greatly eased the communication and reputation 

systems and social network tools have tackled the fear of sharing a ride with strangers, 

the development of optimization algorithms for real-time matching of the participant and 
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ultimately increasing the rate of participation in the ridesharing system has been largely 

ignored by transportation research community. This research was the first of its kind to 

develop an optimization algorithm for real-time rideshare matching problem. Another 

main contribution of this research was that it develops an optimization algorithm with 

negotiating policies for rideshare preference matches. This study has successfully 

developed and implemented a decomposition solution approach that solves the problem 

in a very reasonable time which is suitable for solving large scale problems. While there 

could be other ways to define success rate in a dynamic rideshare system, for the purpose 

of this research, it was defined as the fraction or percentage of successful rideshare 

matches, i.e., the ratio of the number of matched riders to the ideal number of possible 

matches. The ideal number of matches is defined as the minimum of the number of riders 

and the total available seats. Major sensitivity analysis conducted on several parameters 

and variables affecting the model showed that most influencing factors for the rate of 

success in the rideshare system are, in order of importance: number of participating 

drivers, number of stops, area size, and number of participating riders. The study also 

showed rate of success for the rideshare system is highly dependent to the matched routes 

that directly connect points of origin and destination for the participating riders with no 

transfer and connection and also the study showed that increasing the number of 

connections from one to two which requires two consecutive change of rides for a rider 

has the least impact on the rate of success.  

One of the drawbacks of dynamic ridesharing is the fear of sharing a ride with 

strangers. To deal with safety and security concerns of participating users, it is proposed 

that all users should be registered and there should be a registration and screening system 
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in place to reduce the concerns and ultimately increase the likelihood of the success of 

the rideshare system by increasing the number of participants.  

It is also notable that there is a positive correlation between journey length and 

likelihood of dynamic rideshare requests, i.e. the longer is one's journey, the more 

attractive is dynamic ridesharing. While carpooling targets commuters, the demand for 

dynamic ridesharing tends to be prearranged, long-distance and nonrecurring trips with 

more flexible travel schedules. Long-distance rideshare trips have the privilege of lower 

marginal cost and lower participants’ out of pocket costs.  

 Future research directions include conducting a simulation study using TSHDM 

and based on a real travel demand data to identify and highlight the benefits and effects 

of, as well as the economic, behavioral, institutional, and technological challenges to, 

real-time ridesharing. Another area for further research is linking between travel demand 

management strategies and main results for the sensitivity analysis of this research that 

identified the most influencing factors to increase the rate of success for a dynamic 

rideshare system. Creating and field testing a smart phone app that combines GPS 

technologies with TSHDM algorithm to real-time ride-matching drivers and riders is 

another direction for further research. 

 Another area for further research is investigating the challenges and opportunities 

of centralized rideshare matching service compared to distributed rideshare matching 

mechanism. If the rideshare information and communication technologies are reliable 

enough that secure an effective mechanism to communicate between the users, 

distributed real-time rideshare matching system could also be a reliable alternative. 

 The review of the literature suggests that land use and trip purposes play a 
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significant role in rideshare formation and the journey’s distance and time have a stronger 

influence on inter-household ridesharing, Another direction for future research could be 

analyzing the likelihood of  inter-household rideshare formation compared with intra-

household ridesharing.  
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Appendix A: Computational Results  

 

Table A-1: Computational results- #P: 20, #D:20  

#Pt #Dt Area #Stops 

#0-

con. 

CPU 

Time 

(sec) 

0-con. 

perc 

CPU-

time 

(perc) 

#1-

con. 

CPU 

Time 

(sec) 

1-con. 

Perc. 

CPU-

time 

(perc) 

#2-

con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

Perc. 

CPU-

time 

perc. 

Success 

Rate 

20 20 25 2 7 0.040 100.00 0.65 0 0.059 0.00 0.30 0 0.061 7 0.00 0.04 0.35 

   

3 6 0.039 85.71 0.28 1 0.117 0.14 0.55 0 0.142 7 0.00 0.17 0.35 

   

4 6 0.040 100.00 0.21 0 0.140 0.00 0.52 0 0.192 6 0.00 0.27 0.30 

   

5 6 0.054 100.00 0.14 0 0.281 0.00 0.61 0 0.376 6 0.00 0.25 0.30 

   

6 8 0.079 88.89 0.12 1 0.515 0.11 0.65 0 0.669 9 0.00 0.23 0.45 

   

7 6 0.080 85.71 0.07 1 0.983 0.14 0.74 0 1.227 7 0.00 0.20 0.35 

   
8 8 0.160 100.00 0.09 0 1.451 0.00 0.71 0 1.815 8 0.00 0.20 0.40 

        

Median 6.000 0.054 100.000 0.143 0.000 0.281 0.000 0.606 0.000 0.376 7.000 0.000 0.201 0.350 

Mode 6.000 0.040 100.000 #N/A 0.000 #N/A 0.000 #N/A 0.000 #N/A 7.000 0.000 #N/A 0.350 

Mean 6.714 0.070 94.331 0.222 0.429 0.507 0.057 0.583 0.000 0.640 7.143 0.000 0.196 0.357 

20 20 100 2 0 0.013 #DIV/0! 0.25 0 0.047 #DIV/0! 0.67 0 0.051 0 #DIV/0! 0.08 0.00 

      3 1 0.026 100.00 0.24 0 0.082 0.00 0.50 0 0.112 1 0.00 0.27 0.05 

      4 0 0.026 #DIV/0! 0.12 0 0.164 #DIV/0! 0.65 0 0.213 0 #DIV/0! 0.23 0.00 

      5 0 0.026 #DIV/0! 0.06 0 0.351 #DIV/0! 0.76 0 0.426 0 #DIV/0! 0.18 0.00 

      6 0 0.026 #DIV/0! 0.03 0 0.691 #DIV/0! 0.84 0 0.791 0 #DIV/0! 0.13 0.00 

      7 0 0.054 #DIV/0! 0.04 0 1.276 #DIV/0! 0.86 0 1.420 0 #DIV/0! 0.10 0.00 

      8 0 0.039 #DIV/0! 0.02 0 2.141 #DIV/0! 0.91 0 2.322 0 #DIV/0! 0.08 0.00 

        

Median 0.000 0.026 #DIV/0! 0.062 0.000 0.351 #DIV/0! 0.763 0.000 0.426 0.000 #DIV/0! 0.127 0.000 

Mode 0.000 0.026 #DIV/0! #N/A 0.000 #N/A #DIV/0! #N/A 0.000 #N/A 0.000 #DIV/0! #N/A 0.000 

Mean 0.143 0.030 #DIV/0! 0.109 0.000 0.679 #DIV/0! 0.739 0.000 0.762 0.143 #DIV/0! 0.152 0.007 
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Table A-2: Computational results - #P: 20, #D: 25  

#Pt #Dt Area #Stops #0-con. 

CPU 

Time 

(sec) 

0-con. 

perc 

CPU-

time 

(perc) #1-con. 

CPU 

Time 

(sec) 

1-con. 

Perc. 

CPU-

time 

(perc) #2-con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

Perc. 

CPU-

time 

perc. 

Success 

Rate 

20 25 25 2 2 0.026 100.00 0.32 0 0.059 0.00 0.40 0 0.081 2 0.00 0.28 0.10 

   

3 7 0.054 100.00 0.35 0 0.117 0.00 0.42 0 0.152 7 0.00 0.23 0.35 

   

4 11 0.079 100.00 0.30 0 0.176 0.00 0.37 0 0.263 11 0.00 0.33 0.55 

   

5 12 0.398 92.31 0.55 1 0.620 0.08 0.31 0 0.720 13 0.00 0.14 0.65 

   

6 7 0.079 100.00 0.07 0 0.761 0.00 0.62 0 1.095 7 0.00 0.31 0.35 

   

7 6 0.106 66.67 0.05 3 1.592 0.33 0.71 0 2.099 9 0.00 0.24 0.45 

   

8 5 0.133 71.43 0.04 1 2.702 0.14 0.69 1 3.721 7 0.14 0.27 0.35 

        

Median 7.000 0.079 100.000 0.300 0.000 0.620 0.000 0.417 0.000 0.720 7.000 0.000 0.274 0.350 

Mode 7.000 0.079 100.000 #N/A 0.000 #N/A 0.000 #N/A 0.000 #N/A 7.000 0.000 #N/A 0.350 

Mean 7.143 0.125 90.058 0.241 0.714 0.861 0.079 0.501 0.143 1.162 8.000 0.020 0.258 0.400 

20 25 100 2 0 0.026 #DIV/0! 0.37 0 0.059 #DIV/0! 0.45 0 0.071 0 #DIV/0! 0.17 0.00 

      3 0 0.026 #DIV/0! 0.19 0 0.105 #DIV/0! 0.56 0 0.142 0 #DIV/0! 0.26 0.00 

      4 0 0.026 #DIV/0! 0.08 0 0.257 #DIV/0! 0.74 0 0.314 0 #DIV/0! 0.18 0.00 

      5 0 0.040 #DIV/0! 0.06 0 0.539 #DIV/0! 0.77 0 0.649 0 #DIV/0! 0.17 0.00 

      6 0 0.040 #DIV/0! 0.03 0 1.065 #DIV/0! 0.83 0 1.237 0 #DIV/0! 0.14 0.00 

      7 1 0.093 100.00 0.04 0 1.931 0.00 0.85 0 2.160 1 0.00 0.11 0.05 

      8 0 0.076 #DIV/0! 0.02 0 3.567 #DIV/0! 0.91 0 3.840 0 #DIV/0! 0.07 0.00 

 

      

Median 0.000 0.040 #DIV/0! 0.062 0.000 0.539 #DIV/0! 0.769 0.000 0.649 0.000 #DIV/0! 0.170 0.000 

Mode 0.000 0.026 #DIV/0! #N/A 0.000 #N/A #DIV/0! #N/A 0.000 #N/A 0.000 #DIV/0! #N/A 0.000 

Mean 0.143 0.047 #DIV/0! 0.114 0.000 1.075 #DIV/0! 0.729 0.000 1.202 0.143 #DIV/0! 0.157 0.007 
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Table A-3: Computational results - #P: 25, #D: 20  

#Pt #Dt Area #Stops #0-con. 

CPU 

Time 

(sec) 

0-con. 

perc 

CPU-

time 

(perc) #1-con. 

CPU 

Time 

(sec) 

1-con. 

Perc. 

CPU-

time 

(perc) #2-con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

Perc. 

CPU-

time 

perc. 

Success 

Rate 

25 20 25 2 6 0.040 100.00 0.52 0 0.065 0.00 0.32 0 0.077 6 0.00 0.17 0.24 

   

3 8 0.043 100.00 0.33 0 0.095 0.00 0.41 0 0.127 8 0.00 0.25 0.32 

   

4 8 0.053 100.00 0.20 0 0.188 0.00 0.51 0 0.266 8 0.00 0.29 0.32 

   

5 12 0.090 92.31 0.19 1 0.354 0.08 0.54 0 0.487 13 0.00 0.27 0.52 

   

6 11 0.105 100.00 0.13 0 0.596 0.00 0.60 0 0.816 11 0.00 0.27 0.44 

   

7 9 0.116 100.00 0.08 0 1.195 0.00 0.70 0 1.534 9 0.00 0.22 0.36 

   

8 9 0.201 100.00 0.08 0 2.080 0.00 0.72 0 2.621 9 0.00 0.21 0.36 

        

Median 9.000 0.090 100.000 0.185 0.000 0.354 0.000 0.542 0.000 0.487 9.000 0.000 0.252 0.360 

Mode 8.000 #N/A 100.000 #N/A 0.000 #N/A 0.000 #N/A 0.000 #N/A 8.000 0.000 #N/A 0.320 

Mean 9.000 0.093 98.901 0.216 0.143 0.653 0.011 0.543 0.000 0.847 9.143 0.000 0.240 0.366 

25 20 100 2 0 0.013 #DIV/0! 0.21 0 0.047 #DIV/0! 0.56 0 0.060 0 #DIV/0! 0.23 0.00 

      3 1 0.040 100.00 0.30 0 0.117 0.00 0.58 0 0.132 1 0.00 0.11 0.04 

      4 0 0.014 #DIV/0! 0.05 0 0.199 #DIV/0! 0.73 0 0.254 0 #DIV/0! 0.22 0.00 

      5 0 0.026 #DIV/0! 0.05 0 0.433 #DIV/0! 0.76 0 0.537 0 #DIV/0! 0.19 0.00 

      6 0 0.040 #DIV/0! 0.04 0 0.878 #DIV/0! 0.83 0 1.014 0 #DIV/0! 0.13 0.00 

      7 1 0.079 100.00 0.04 0 1.649 0.00 0.86 0 1.835 1 0.00 0.10 0.04 

      8 0 0.066 #DIV/0! 0.02 0 2.714 #DIV/0! 0.89 0 2.961 0 #DIV/0! 0.08 0.00 

        

Median 0.000 0.040 #DIV/0! 0.049 0.000 0.433 #DIV/0! 0.757 0.000 0.537 0.000 #DIV/0! 0.135 0.000 

Mode 0.000 0.040 #DIV/0! #N/A 0.000 #N/A #DIV/0! #N/A 0.000 #N/A 0.000 #DIV/0! #N/A 0.000 

Mean 0.286 0.040 #DIV/0! 0.103 0.000 0.862 #DIV/0! 0.744 0.000 0.970 0.286 #DIV/0! 0.153 0.011 
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Table A-4: Computational results - #P: 25, #D: 25  

#Pt #Dt Area #Stops #0-con. 

CPU 

Time 

(sec) 

0-con. 

perc 

CPU-

time 

(perc) #1-con. 

CPU 

Time 

(sec) 

1-con. 

Perc. 

CPU-

time 

(perc) #2-con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

Perc. 

CPU-

time 

perc. 

Success 

Rate 

25 25 25 2 7 0.054 100.00 0.52 0 0.088 0.00 0.32 0 0.105 7 0.00 0.16 0.28 

   

3 7 0.048 87.50 0.24 1 0.147 0.13 0.51 0 0.195 8 0.00 0.25 0.32 

   

4 9 0.087 100.00 0.23 0 0.271 0.00 0.49 0 0.376 9 0.00 0.28 0.36 

   

5 12 0.124 92.31 0.18 1 0.503 0.08 0.56 0 0.681 13 0.00 0.26 0.52 

   

6 7 0.159 100.00 0.11 0 1.139 0.00 0.67 0 1.462 7 0.00 0.22 0.28 

   

7 12 0.159 92.31 0.08 1 1.463 0.08 0.67 0 1.957 13 0.00 0.25 0.52 

   
8 10 0.199 100.00 0.06 0 2.656 0.00 0.74 0 3.326 10 0.00 0.20 0.40 

        

Median 9.000 0.124 100.000 0.182 0.000 0.503 0.000 0.557 0.000 0.681 9.000 0.000 0.246 0.360 

Mode 7.000 0.159 100.000 #N/A 0.000 #N/A 0.000 #N/A 0.000 #N/A 7.000 0.000 #N/A 0.280 

Mean 9.143 0.119 96.016 0.204 0.429 0.895 0.040 0.564 0.000 1.157 9.571 0.000 0.232 0.383 

25 25 100 2 0 0.013 #DIV/0! 0.16 0 0.059 #DIV/0! 0.57 0 0.081 0 #DIV/0! 0.27 0.00 

      3 0 0.026 #DIV/0! 0.15 0 0.128 #DIV/0! 0.59 0 0.172 0 #DIV/0! 0.26 0.00 

      4 1 0.053 100.00 0.13 0 0.328 0.00 0.66 0 0.415 1 0.00 0.21 0.04 

      5 1 0.066 100.00 0.08 0 0.656 0.00 0.74 0 0.801 1 0.00 0.18 0.04 

      6 1 0.079 100.00 0.05 0 1.298 0.00 0.80 0 1.521 1 0.00 0.15 0.04 

      7 0 0.066 #DIV/0! 0.02 0 2.445 #DIV/0! 0.87 0 2.727 0 #DIV/0! 0.10 0.00 

      8 0 0.093 #DIV/0! 0.02 0 4.177 #DIV/0! 0.90 0 4.563 0 #DIV/0! 0.08 0.00 

        

Median 0.000 0.066 #DIV/0! 0.083 0.000 0.656 #DIV/0! 0.735 0.000 0.801 0.000 #DIV/0! 0.182 0.000 

Mode 0.000 0.066 #DIV/0! #N/A 0.000 #N/A #DIV/0! #N/A 0.000 #N/A 0.000 #DIV/0! #N/A 0.000 

Mean 0.429 0.057 #DIV/0! 0.088 0.000 1.299 #DIV/0! 0.732 0.000 1.469 0.429 #DIV/0! 0.180 0.017 
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Table A-5: Computational results - #P: 50, #D: 50  

#Pt #Dt Area #Stops #0-con. 

CPU 

Time 

(sec) 

0-con. 

perc 

CPU-

time 

(perc) #1-con. 

CPU 

Time 

(sec) 

1-con. 

Perc. 

CPU-

time 

(perc) #2-con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

Perc. 

CPU-

time 

perc. 

Success 

Rate 

50 50 25 2 21 0.160 100.00 0.36 0 0.340 0.00 0.40 0 0.447 21 0.00 0.24 0.42 

   

3 27 0.235 96.43 0.22 1 0.686 0.04 0.43 0 1.054 28 0.00 0.35 0.56 

   

4 29 0.371 96.67 0.16 0 1.263 0.00 0.38 1 2.352 30 0.03 0.46 0.60 

   

5 26 0.411 81.25 0.07 3 2.925 0.09 0.44 3 5.668 32 0.09 0.48 0.64 

   

6 28 0.623 90.32 0.07 1 5.265 0.03 0.52 2 8.943 31 0.06 0.41 0.62 

   

7 35 0.978 94.59 0.08 1 7.227 0.03 0.51 1 12.342 37 0.03 0.41 0.74 

   
8 27 1.008 81.82 0.04 6 17.691 0.18 0.71 0 23.647 33 0.00 0.25 0.66 

        

Median 27.000 0.411 94.595 0.079 1.000 2.925 0.032 0.443 1.000 5.668 31.000 0.027 0.411 0.620 

Mode 27.000 #N/A #N/A #N/A 1.000 #N/A 0.000 #N/A 0.000 #N/A #N/A 0.000 #N/A #N/A 

Mean 27.571 0.541 91.583 0.143 1.714 5.057 0.053 0.483 1.000 7.779 30.286 0.031 0.373 0.606 

50 50 100 2 2 0.093 100.00 0.20 0 0.398 0.00 0.67 0 0.456 2 0.00 0.13 0.04 

      3 4 0.159 100.00 0.14 0 0.901 0.00 0.65 0 1.146 4 0.00 0.21 0.08 

      4 3 0.247 100.00 0.08 0 2.406 0.00 0.71 0 3.049 3 0.00 0.21 0.06 

      5 2 0.319 66.67 0.05 1 5.195 0.33 0.77 0 6.307 3 0.00 0.18 0.06 

      6 4 0.517 100.00 0.04 0 10.109 0.00 0.81 0 11.915 4 0.00 0.15 0.08 

      7 2 0.557 100.00 0.03 0 18.697 0.00 0.86 0 21.132 2 0.00 0.12 0.04 

      8 4 0.742 100.00 0.02 0 30.876 0.00 0.88 0 34.202 4 0.00 0.10 0.08 

        

Median 3.000 0.319 100.000 0.051 0.000 5.195 0.000 0.773 0.000 6.307 3.000 0.000 0.152 0.060 

Mode 2.000 #N/A 100.000 #N/A 0.000 #N/A 0.000 #N/A 0.000 #N/A 4.000 0.000 #N/A 0.080 

Mean 3.000 0.376 95.238 0.081 0.143 9.797 0.048 0.763 0.000 11.172 3.143 0.000 0.156 0.063 
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Table A-6: Computational results - #P: 50, #D: 55  

#Pt #Dt Area #Stops #0-con. 

CPU 

Time 

(sec) 

0-con. 

perc 

CPU-

time 

(perc) #1-con. 

CPU 

Time 

(sec) 

1-con. 

Perc. 

CPU-

time 

(perc) #2-con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

Perc. 

CPU-

time 

perc. 

Success 

Rate 

50 55 25 2 27 0.161 100.00 0.34 0 0.344 0.00 0.39 0 0.473 27 0.00 0.27 0.54 

   

3 23 0.259 85.19 0.17 3 0.875 0.11 0.40 1 1.538 27 0.04 0.43 0.54 

   

4 30 0.413 93.75 0.16 2 1.578 0.06 0.45 0 2.612 32 0.00 0.40 0.64 

   

5 31 0.544 96.88 0.11 1 2.948 0.03 0.49 0 4.928 32 0.00 0.40 0.64 

   

6 26 0.796 83.87 0.07 3 7.020 0.10 0.51 2 12.178 31 0.06 0.42 0.62 

   

7 29 0.928 85.29 0.05 4 11.232 0.12 0.61 1 16.883 34 0.03 0.33 0.68 

   
8 31 1.340 83.78 0.04 3 17.188 0.08 0.50 3 31.830 37 0.08 0.46 0.74 

        

Median 29.000 0.544 85.294 0.110 3.000 2.948 0.081 0.488 1.000 4.928 32.000 0.029 0.402 0.640 

Mode 31.000 #N/A #N/A #N/A 3.000 #N/A #N/A #N/A 0.000 #N/A 27.000 0.000 #N/A 0.540 

Mean 28.143 0.634 89.823 0.134 2.286 5.883 0.071 0.477 1.000 10.063 31.429 0.030 0.389 0.629 

50 55 100 2 3 0.123 100.00 0.22 0 0.488 0.00 0.64 0 0.570 3 0.00 0.14 0.06 

      3 2 0.183 100.00 0.12 0 1.172 0.00 0.66 0 1.494 2 0.00 0.22 0.04 

      4 2 0.265 100.00 0.08 0 2.714 0.00 0.71 0 3.448 2 0.00 0.21 0.04 

      5 2 0.405 100.00 0.05 0 6.302 0.00 0.76 0 7.710 2 0.00 0.18 0.04 

      6 4 0.572 100.00 0.04 0 12.431 0.00 0.81 0 14.646 4 0.00 0.15 0.08 

      7 2 0.704 100.00 0.03 0 23.463 0.00 0.86 0 26.449 2 0.00 0.11 0.04 

      8 2 0.862 100.00 0.02 0 38.786 0.00 0.89 0 42.517 2 0.00 0.09 0.04 

        

Median 2.000 0.405 100.000 0.052 0.000 6.302 0.000 0.765 0.000 7.710 2.000 0.000 0.151 0.040 

Mode 2.000 #N/A 100.000 #N/A 0.000 #N/A 0.000 #N/A 0.000 #N/A 2.000 0.000 #N/A 0.040 

Mean 2.429 0.445 100.000 0.079 0.000 12.194 0.000 0.763 0.000 13.833 2.429 0.000 0.158 0.049 
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Table A-7: Computational results - #P: 55, #D: 50 

#Pt #Dt Area #Stops #0-con. 

CPU 

Time 

(sec) 

0-con. 

perc 

CPU-

time 

(perc) #1-con. 

CPU 

Time 

(sec) 

1-con. 

Perc. 

CPU-

time 

(perc) #2-con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

Perc. 

CPU-

time 

perc. 

Success 

Rate 

55 50 25 2 31 0.145 100.00 0.35 0 0.293 0.00 0.35 0 0.415 31 0.00 0.30 0.56 

   

3 30 0.239 100.00 0.22 0 0.656 0.00 0.39 0 1.065 30 0.00 0.38 0.55 

   

4 29 0.358 96.67 0.15 1 1.521 0.03 0.49 0 2.393 30 0.00 0.36 0.55 

   

5 31 0.518 88.57 0.10 2 3.008 0.06 0.46 2 5.435 35 0.06 0.45 0.64 

   

6 26 0.677 81.25 0.06 5 6.997 0.16 0.58 1 10.962 32 0.03 0.36 0.58 

   

7 30 0.928 88.24 0.05 3 11.045 0.09 0.59 1 17.055 34 0.03 0.35 0.62 

   
8 29 1.101 87.88 0.04 3 18.826 0.09 0.66 1 26.688 33 0.03 0.29 0.60 

        

Median 30.000 0.518 88.571 0.095 2.000 3.008 0.057 0.486 1.000 5.435 32.000 0.029 0.362 0.582 

Mode 31.000 #N/A 100.000 #N/A 0.000 #N/A 0.000 #N/A 0.000 #N/A 30.000 0.000 #N/A 0.545 

Mean 29.429 0.566 91.800 0.139 2.000 6.049 0.061 0.503 0.714 9.145 32.143 0.021 0.357 0.584 

55 50 100 2 3 0.139 100.00 0.25 0 0.486 0.00 0.62 0 0.556 3 0.00 0.13 0.05 

      3 3 0.199 100.00 0.15 0 1.042 0.00 0.64 0 1.318 3 0.00 0.21 0.05 

      4 4 0.292 100.00 0.10 0 2.434 0.00 0.70 0 3.063 4 0.00 0.21 0.07 

      5 4 0.358 100.00 0.05 0 5.371 0.00 0.76 0 6.601 4 0.00 0.19 0.07 

      6 3 0.477 75.00 0.04 1 11.337 0.25 0.81 0 13.348 4 0.00 0.15 0.07 

      7 3 0.655 100.00 0.03 0 21.057 0.00 0.85 0 23.924 3 0.00 0.12 0.05 

      8 2 0.819 66.67 0.02 0 37.328 0.00 0.89 1 40.936 3 0.33 0.09 0.05 

        

Median 3.000 0.358 100.000 0.054 0.000 5.371 0.000 0.759 0.000 6.601 3.000 0.000 0.151 0.055 

Mode 3.000 #N/A 100.000 #N/A 0.000 #N/A 0.000 #N/A 0.000 #N/A 3.000 0.000 #N/A 0.055 

Mean 3.143 0.420 91.667 0.091 0.143 11.294 0.036 0.754 0.143 12.821 3.429 0.048 0.155 0.062 
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Table A-8: Computational results - #P: 55, #D: 55 

#Pt #Dt Area #Stops #0-con. 

CPU 

Time 

(sec) 

0-con. 

perc 

CPU-

time 

(perc) #1-con. 

CPU 

Time 

(sec) 

1-con. 

Perc. 

CPU-

time 

(perc) #2-con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

Perc. 

CPU-

time 

perc. 

Success 

Rate 

55 55 25 2 25 0.173 100.00 0.32 0 0.386 0.00 0.40 0 0.538 25 0.00 0.28 0.45 

   

3 25 0.243 96.15 0.17 1 0.920 0.04 0.48 0 1.417 26 0.00 0.35 0.47 

   

4 24 0.428 80.00 0.11 4 2.254 0.13 0.47 2 3.923 30 0.07 0.43 0.55 

   

5 26 0.649 83.87 0.09 3 4.294 0.10 0.52 2 7.067 31 0.06 0.39 0.56 

   

6 29 0.913 80.56 0.08 7 8.409 0.19 0.63 0 11.875 36 0.00 0.29 0.65 

   

7 32 1.097 84.21 0.04 3 12.977 0.08 0.46 3 25.657 38 0.08 0.49 0.69 

   
8 28 1.300 75.68 0.03 6 24.301 0.16 0.55 3 41.615 37 0.08 0.42 0.67 

        

Median 26.000 0.649 83.871 0.092 3.000 4.294 0.097 0.478 2.000 7.067 31.000 0.065 0.392 0.564 

Mode 25.000 #N/A #N/A #N/A 3.000 #N/A #N/A #N/A 0.000 #N/A #N/A 0.000 #N/A #N/A 

Mean 27.000 0.686 85.781 0.121 3.429 7.649 0.101 0.501 1.429 13.156 31.857 0.042 0.379 0.579 

55 55 100 2 3 0.105 100.00 0.18 0 0.491 0.00 0.67 0 0.578 3 0.00 0.15 0.05 

      3 2 0.185 100.00 0.11 0 1.252 0.00 0.64 0 1.673 2 0.00 0.25 0.04 

      4 4 0.305 100.00 0.08 0 2.960 0.00 0.70 0 3.782 4 0.00 0.22 0.07 

      5 3 0.424 100.00 0.05 0 7.488 0.00 0.80 0 8.822 3 0.00 0.15 0.05 

      6 4 0.570 100.00 0.04 0 13.069 0.00 0.82 0 15.241 4 0.00 0.14 0.07 

      7 2 0.729 100.00 0.03 0 25.121 0.00 0.86 0 28.504 2 0.00 0.12 0.04 

      8 2 0.915 100.00 0.02 0 42.892 0.00 0.90 0 46.847 2 0.00 0.08 0.04 

        

Median 3.000 0.424 100.000 0.048 0.000 7.488 0.000 0.801 0.000 8.822 3.000 0.000 0.150 0.055 

Mode 2.000 #N/A 100.000 #N/A 0.000 #N/A 0.000 #N/A 0.000 #N/A 2.000 0.000 #N/A 0.036 

Mean 2.857 0.462 100.000 0.072 0.000 13.325 0.000 0.769 0.000 15.064 2.857 0.000 0.159 0.052 
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Table A-9: Computational results - #P: 100, #D: 100 

#Pt #Dt Area #Stops #0-con. 

CPU 

Time 

(sec) 

0-con. 

perc 

CPU-

time 

(perc) #1-con. 

CPU 

Time 

(sec) 

1-con. 

Perc. 

CPU-

time 

(perc) #2-con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

Perc. 

CPU-

time 

perc. 

Success 

Rate 

100 100 25 2 66 0.689 100.00 0.30 0 1.475 0.00 0.35 0 2.272 66 0.00 0.35 0.66 

   

3 64 1.352 91.43 0.19 5 3.803 0.07 0.34 1 7.138 70 0.01 0.47 0.70 

   

4 65 2.665 87.84 0.16 6 8.869 0.08 0.37 3 16.903 74 0.04 0.48 0.74 

   

5 71 3.216 93.42 0.11 3 15.629 0.04 0.41 2 30.468 76 0.03 0.49 0.76 

   

6 76 4.266 92.68 0.08 4 26.639 0.05 0.41 2 55.001 82 0.02 0.52 0.82 

   

7 72 5.874 86.75 0.06 4 53.166 0.05 0.52 7 91.129 83 0.08 0.42 0.83 

   
8 65 7.333 78.31 0.05 13 122.967 0.16 0.75 5 154.066 83 0.06 0.20 0.83 

        

Median 66.000 3.216 91.429 0.106 4.000 15.629 0.049 0.407 2.000 30.468 76.000 0.026 0.467 0.760 

Mode 65.000 #N/A #N/A #N/A 4.000 #N/A #N/A #N/A 2.000 #N/A 83.000 #N/A #N/A 0.830 

Mean 68.429 3.628 90.062 0.135 5.000 33.221 0.064 0.449 2.857 50.997 76.286 0.036 0.416 0.763 

100 100 100 2 9 0.597 100.00 0.17 0 2.958 0.00 0.68 0 3.463 9 0.00 0.15 0.09 

      3 9 1.008 100.00 0.11 0 6.857 0.00 0.65 0 9.025 9 0.00 0.24 0.09 

      4 7 1.686 87.50 0.07 1 18.777 0.13 0.71 0 24.002 8 0.00 0.22 0.08 

      5 7 2.148 100.00 0.04 0 38.879 0.00 0.76 0 48.225 7 0.00 0.19 0.07 

      6 7 2.997 100.00 0.03 0 79.174 0.00 0.81 0 94.078 7 0.00 0.16 0.07 

      7 8 4.629 88.89 0.03 0 147.503 0.00 0.80 1 179.538 9 0.11 0.18 0.09 

      8 8 5.583 88.89 0.02 0 259.179 0.00 0.85 1 299.698 9 0.11 0.14 0.09 

        

Median 8.000 2.148 100.000 0.045 0.000 38.879 0.000 0.762 0.000 48.225 9.000 0.000 0.178 0.090 

Mode 7.000 #N/A 100.000 #N/A 0.000 #N/A 0.000 #N/A 0.000 #N/A 9.000 0.000 #N/A 0.090 

Mean 7.857 2.664 95.040 0.068 0.143 79.047 0.018 0.751 0.286 94.004 8.286 0.032 0.181 0.083 
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Table A-10: Computational results - #P: 100, #D: 105 

#Pt #Dt Area #Stops #0-con. 

CPU 

Time 

(sec) 

0-con. 

perc 

CPU-

time 

(perc) #1-con. 

CPU 

Time 

(sec) 

1-con. 

Perc. 

CPU-

time 

(perc) #2-con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

Perc. 

CPU-

time 

perc. 

Success 

Rate 

100 105 25 2 65 0.702 100.00 0.29 0 1.614 0.00 0.37 0 2.434 65 0.00 0.34 0.65 

   

3 69 1.419 92.00 0.19 5 3.755 0.07 0.31 1 7.595 75 0.01 0.51 0.75 

   

4 69 2.109 89.61 0.13 6 8.202 0.08 0.37 2 16.275 77 0.03 0.50 0.77 

   

5 75 3.481 90.36 0.12 4 12.599 0.05 0.31 4 29.417 83 0.05 0.57 0.83 

   

6 77 4.495 95.06 0.09 3 25.916 0.04 0.42 1 50.933 81 0.01 0.49 0.81 

   

7 77 6.803 95.06 0.08 1 40.482 0.01 0.41 3 82.185 81 0.04 0.51 0.81 

   
8 72 8.713 87.80 0.06 8 95.285 0.10 0.56 2 155.974 82 0.02 0.39 0.82 

        

Median 72.000 3.481 92.000 0.118 4.000 12.599 0.048 0.375 2.000 29.417 81.000 0.024 0.496 0.810 

Mode 69.000 #N/A 95.062 #N/A #N/A #N/A #N/A #N/A 1.000 #N/A 81.000 #N/A #N/A 0.810 

Mean 72.000 3.960 92.843 0.136 3.857 26.836 0.049 0.393 1.857 49.259 77.714 0.023 0.471 0.777 

100 105 100 2 7 0.530 100.00 0.15 0 2.960 0.00 0.69 0 3.518 7 0.00 0.16 0.07 

      3 8 1.163 100.00 0.11 0 8.095 0.00 0.66 0 10.539 8 0.00 0.23 0.08 

      4 8 1.591 100.00 0.06 0 19.025 0.00 0.71 0 24.701 8 0.00 0.23 0.08 

      5 7 2.477 100.00 0.04 0 45.008 0.00 0.77 0 55.585 7 0.00 0.19 0.07 

      6 9 3.885 90.00 0.04 1 87.048 0.10 0.80 0 103.631 10 0.00 0.16 0.10 

      7 9 4.429 100.00 0.02 0 165.114 0.00 0.84 0 190.586 9 0.00 0.13 0.09 

      8 9 5.729 90.00 0.02 0 267.802 0.00 0.84 1 312.191 10 0.10 0.14 0.10 

        

Median 8.000 2.477 100.000 0.045 0.000 45.008 0.000 0.765 0.000 55.585 8.000 0.000 0.160 0.080 

Mode 9.000 #N/A 100.000 #N/A 0.000 #N/A 0.000 #N/A 0.000 #N/A 7.000 0.000 #N/A 0.070 

Mean 8.143 2.829 97.143 0.064 0.143 85.007 0.014 0.758 0.143 100.107 8.429 0.014 0.178 0.084 
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Table A-11: Computational results - #P: 105, #D: 100 

#Pt #Dt Area #Stops #0-con. 

CPU 

Time 

(sec) 

0-con. 

perc 

CPU-

time 

(perc) #1-con. 

CPU 

Time 

(sec) 

1-con. 

Perc. 

CPU-

time 

(perc) #2-con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

Perc. 

CPU-

time 

perc. 

Success 

Rate 

105 100 25 2 72 0.783 100.00 0.36 0 1.533 0.00 0.34 0 2.191 72 0.00 0.30 0.69 

   

3 71 1.286 97.26 0.17 1 3.569 0.01 0.31 1 7.443 73 0.01 0.52 0.70 

   

4 73 2.174 93.59 0.14 3 7.769 0.04 0.36 2 15.575 78 0.03 0.50 0.74 

   

5 71 2.996 87.65 0.09 6 17.480 0.07 0.42 4 34.283 81 0.05 0.49 0.77 

   

6 71 5.052 88.75 0.06 5 34.141 0.06 0.37 4 78.970 80 0.05 0.57 0.76 

   

7 72 5.743 83.72 0.05 10 64.226 0.12 0.49 4 119.420 86 0.05 0.46 0.82 

   
8 71 7.957 84.52 0.04 10 116.079 0.12 0.61 3 177.676 84 0.04 0.35 0.80 

        

Median 71.000 2.996 88.750 0.087 5.000 17.480 0.063 0.368 3.000 34.283 80.000 0.036 0.490 0.762 

Mode 71.000 #N/A #N/A #N/A 10.000 #N/A #N/A #N/A 4.000 #N/A #N/A #N/A #N/A #N/A 

Mean 71.571 3.713 90.786 0.131 5.000 34.971 0.061 0.414 2.571 62.223 79.143 0.032 0.456 0.754 

105 100 100 2 6 0.517 100.00 0.15 0 2.890 0.00 0.69 0 3.437 6 0.00 0.16 0.06 

      3 9 1.061 100.00 0.11 0 7.430 0.00 0.67 0 9.502 9 0.00 0.22 0.09 

      4 8 1.845 88.89 0.07 1 19.482 0.11 0.71 0 24.887 9 0.00 0.22 0.09 

      5 9 2.492 100.00 0.05 0 41.418 0.00 0.76 0 51.197 9 0.00 0.19 0.09 

      6 7 3.647 77.78 0.03 0 86.882 0.00 0.74 2 113.010 9 0.22 0.23 0.09 

      7 9 4.769 100.00 0.03 0 158.795 0.00 0.85 0 180.900 9 0.00 0.12 0.09 

      8 8 5.383 88.89 0.02 1 266.936 0.11 0.88 0 296.220 9 0.00 0.10 0.09 

        

Median 8.000 2.492 100.000 0.049 0.000 41.418 0.000 0.737 0.000 51.197 9.000 0.000 0.191 0.086 

Mode 9.000 #N/A 100.000 #N/A 0.000 #N/A 0.000 #N/A 0.000 #N/A 9.000 0.000 #N/A 0.086 

Mean 8.000 2.816 93.651 0.066 0.286 83.404 0.032 0.757 0.286 97.022 8.571 0.032 0.177 0.082 
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Table A-12: Computational results - #P: 105, #D: 105 

#Pt #Dt Area #Stops #0-con. 

CPU 

Time 

(sec) 

0-con. 

perc 

CPU-

time 

(perc) #1-con. 

CPU 

Time 

(sec) 

1-con. 

Perc. 

CPU-

time 

(perc) #2-con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

Perc. 

CPU-

time 

perc. 

Success 

Rate 

105 105 25 2 64 0.768 100.00 0.29 0 1.814 0.00 0.39 0 2.657 64 0.00 0.32 0.61 

   

3 68 1.366 98.55 0.17 0 3.990 0.00 0.32 1 8.122 69 0.01 0.51 0.66 

   

4 74 2.933 94.87 0.17 3 9.215 0.04 0.36 1 17.220 78 0.01 0.46 0.74 

   

5 69 3.736 84.15 0.09 9 22.130 0.11 0.46 4 39.737 82 0.05 0.44 0.78 

   

6 73 5.237 90.12 0.08 5 36.508 0.06 0.46 3 68.170 81 0.04 0.46 0.77 

   

7 76 6.789 89.41 0.07 8 59.752 0.09 0.51 1 103.093 85 0.01 0.42 0.81 

   
8 71 8.129 84.52 0.04 7 126.980 0.08 0.61 6 193.686 84 0.07 0.34 0.80 

        

Median 71.000 3.736 90.123 0.094 5.000 22.130 0.062 0.459 1.000 39.737 81.000 0.014 0.443 0.771 

Mode #N/A #N/A #N/A #N/A 0.000 #N/A 0.000 #N/A 1.000 #N/A #N/A #N/A #N/A #N/A 

Mean 70.714 4.137 91.661 0.129 4.571 37.198 0.055 0.447 2.286 61.812 77.571 0.028 0.423 0.739 

105 105 100 2 10 0.597 100.00 0.16 0 3.161 0.00 0.68 0 3.790 10 0.00 0.17 0.10 

      3 11 1.161 100.00 0.11 0 8.227 0.00 0.66 0 10.784 11 0.00 0.24 0.10 

      4 12 1.764 100.00 0.07 0 19.282 0.00 0.70 0 25.127 12 0.00 0.23 0.11 

      5 8 2.532 80.00 0.04 2 50.603 0.20 0.78 0 61.306 10 0.00 0.17 0.10 

      6 9 4.003 90.00 0.03 0 94.427 0.00 0.75 1 119.974 10 0.10 0.21 0.10 

      7 10 5.874 90.91 0.03 0 166.058 0.00 0.80 1 200.853 11 0.09 0.17 0.10 

      8 10 7.028 90.91 0.02 1 272.096 0.09 0.86 0 307.166 11 0.00 0.11 0.10 

        

Median 10.000 2.532 90.909 0.041 0.000 50.603 0.000 0.754 0.000 61.306 11.000 0.000 0.175 0.105 

Mode 10.000 #N/A 100.000 #N/A 0.000 #N/A 0.000 #N/A 0.000 #N/A 10.000 0.000 #N/A 0.095 

Mean 10.000 3.280 93.117 0.066 0.429 87.693 0.042 0.747 0.286 104.143 10.714 0.027 0.187 0.102 
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Table A-13: Computational results - #P: 50, #D: 25 

#Pt #Dt Area #Stops #0-con. 

CPU 

Time 

(sec) 

0-con. 

perc 

CPU-

time 

(perc) #1-con. 

CPU 

Time 

(sec) 

1-con. 

Perc. 

CPU-

time 

(perc) #2-con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

Perc. 

CPU-

time 

perc. 

Success 

Rate 

50 25 25 2 12 0.080 100.00 0.46 0 0.152 0.00 0.42 0 0.173 12 0.00 0.12 0.24 

   

3 17 0.133 100.00 0.35 0 0.281 0.00 0.39 0 0.375 17 0.00 0.25 0.34 

   

4 27 0.225 100.00 0.34 0 0.468 0.00 0.37 0 0.659 27 0.00 0.29 0.54 

   

5 20 0.225 95.24 1.00 1 1.041 0.05 0.57 0 1.429 21 0.00 0.27 0.42 

   

6 19 0.305 79.17 0.10 4 2.094 0.17 0.59 1 3.022 24 0.04 0.31 0.48 

   

7 24 0.358 96.00 0.09 1 3.077 0.04 0.68 0 4.005 25 0.00 0.23 0.50 

   
8 19 0.371 90.48 0.05 2 5.944 0.10 0.73 0 7.625 21 0.00 0.22 0.42 

        

Median 19.000 0.225 96.000 0.342 1.000 1.041 0.040 0.571 0.000 1.429 21.000 0.000 0.252 0.420 

Mode 19.000 0.225 100.000 #N/A 0.000 #N/A 0.000 #N/A 0.000 #N/A 21.000 0.000 #N/A 0.420 

Mean 19.714 0.242 94.412 0.342 1.143 1.865 0.050 0.536 0.143 2.470 21.000 0.006 0.242 0.420 

50 25 100 2 1 0.048 100.00 0.30 0 0.137 0.00 0.54 0 0.163 1 0.00 0.16 0.02 

      3 1 0.065 100.00 0.18 0 0.282 0.00 0.62 0 0.353 1 0.00 0.20 0.02 

      4 0 0.060 #DIV/0! 0.08 0 0.639 #DIV/0! 0.72 0 0.804 0 #DIV/0! 0.21 0.00 

      5 0 0.083 #DIV/0! 1.00 0 1.412 #DIV/0! 0.79 0 1.687 0 #DIV/0! 0.16 0.00 

      6 0 0.111 #DIV/0! 0.03 0 2.843 #DIV/0! 0.83 0 3.307 0 #DIV/0! 0.14 0.00 

      7 1 0.190 100.00 0.03 0 5.149 0.00 0.86 0 5.751 1 0.00 0.10 0.02 

      8 0 0.175 #DIV/0! 0.02 0 8.935 #DIV/0! 0.91 0 9.639 0 #DIV/0! 0.07 0.00 

        

Median 0.000 0.083 #DIV/0! 0.075 0.000 1.412 #DIV/0! 0.787 0.000 1.687 0.000 #DIV/0! 0.159 0.000 

Mode 0.000 #N/A #DIV/0! #N/A 0.000 #N/A #DIV/0! #N/A 0.000 #N/A 0.000 #DIV/0! #N/A 0.000 

Mean 0.429 0.105 #DIV/0! 0.234 0.000 2.771 #DIV/0! 0.752 0.000 3.101 0.429 #DIV/0! 0.150 0.009 
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Table A-14: Computational results - #P: 25, #D: 50 

#Pt #Dt Area #Stops #0-con. 

CPU 

Time 

(sec) 

0-con. 

perc 

CPU-

time 

(perc) #1-con. 

CPU 

Time 

(sec) 

1-con. 

Perc. 

CPU-

time 

(perc) #2-con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

Perc. 

CPU-

time 

perc. 

Success 

Rate 

25 50 25 2 8 0.071 100.00 0.28 0 0.199 0.00 0.49 0 0.257 8 0.00 0.23 0.32 

   
3 11 0.108 100.00 0.20 0 0.370 0.00 0.48 0 0.548 11 0.00 0.33 0.44 

   
4 12 0.191 92.31 0.15 1 0.854 0.08 0.53 0 1.242 13 0.00 0.31 0.52 

   
5 14 0.217 100.00 0.09 0 1.385 0.00 0.51 0 2.289 14 0.00 0.39 0.56 

   
6 16 0.367 94.12 0.10 1 2.427 0.06 0.54 0 3.819 17 0.00 0.36 0.68 

   
7 14 0.502 82.35 0.06 1 5.457 0.06 0.56 2 8.803 17 0.12 0.38 0.68 

   
8 11 0.626 68.75 0.04 3 11.711 0.19 0.63 2 17.505 16 0.13 0.33 0.64 

        

Median 12.000 0.217 94.118 0.096 1.000 1.385 0.059 0.534 0.000 2.289 14.000 0.000 0.331 0.560 

Mode 11.000 #N/A 100.000 #N/A 0.000 #N/A 0.000 #N/A 0.000 #N/A 17.000 0.000 #N/A 0.680 

Mean 12.286 0.297 91.075 0.130 0.857 3.200 0.055 0.536 0.571 4.923 13.714 0.035 0.334 0.549 

25 50 100 2 2 0.065 100.00 0.25 0 0.224 0.00 0.61 0 0.262 2 0.00 0.15 0.08 

      3 1 0.095 100.00 0.15 0 0.511 0.00 0.64 0 0.651 1 0.00 0.22 0.04 

      4 0 0.099 0.00 0.05 0 1.229 0.00 0.60 1 1.886 1 1.00 0.35 0.04 

      5 1 0.192 100.00 0.06 0 2.757 0.00 0.76 0 3.366 1 0.00 0.18 0.04 

      6 2 0.269 100.00 0.04 0 5.286 0.00 0.80 0 6.245 2 0.00 0.15 0.08 

      7 2 0.362 100.00 0.03 0 9.768 0.00 0.84 0 11.142 2 0.00 0.12 0.08 

      8 2 0.435 66.67 0.02 1 16.781 0.33 0.88 0 18.512 3 0.00 0.09 0.12 

        

Median 2.000 0.192 100.000 0.052 0.000 2.757 0.000 0.762 0.000 3.366 2.000 0.000 0.154 0.080 

Mode 2.000 #N/A 100.000 #N/A 0.000 #N/A 0.000 #N/A 0.000 #N/A 2.000 0.000 #N/A 0.080 

Mean 1.429 0.217 80.952 0.086 0.143 5.222 0.048 0.734 0.143 6.009 1.714 0.143 0.180 0.069 
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Table A-15: Computational results - #P: 75, #D: 50 

#Pt #Dt Area #Stops #0-con. 

CPU 

Time 

(sec) 

0-con. 

perc 

CPU-

time 

(perc) #1-con. 

CPU 

Time 

(sec) 

1-con. 

Perc. 

CPU-

time 

(perc) #2-con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

Perc. 

CPU-

time 

perc. 

Success 

Rate 

75 50 25 2 36 0.217 100.00 0.33 0 0.471 0.00 0.39 0 0.650 36 0.00 0.28 0.48 

   

3 41 0.410 95.35 0.25 2 1.052 0.05 0.40 0 1.611 43 0.00 0.35 0.57 

   

4 36 0.543 85.71 0.13 5 2.492 0.12 0.45 1 4.307 42 0.02 0.42 0.56 

   

5 36 0.740 83.72 0.08 5 5.482 0.12 0.53 2 8.954 43 0.05 0.39 0.57 

   

6 36 1.193 81.82 0.06 4 10.210 0.09 0.47 4 19.308 44 0.09 0.47 0.59 

   

7 45 1.590 93.75 0.07 2 14.201 0.04 0.56 1 22.558 48 0.02 0.37 0.64 

   
8 46 2.172 92.00 0.07 4 22.967 0.08 0.62 0 33.320 50 0.00 0.31 0.67 

        

Median 36.000 0.740 92.000 0.083 4.000 5.482 0.080 0.467 1.000 8.954 43.000 0.021 0.370 0.573 

Mode 36.000 #N/A #N/A #N/A 2.000 #N/A #N/A #N/A 0.000 #N/A 43.000 0.000 #N/A 0.573 

Mean 39.429 0.981 90.336 0.142 3.143 8.125 0.071 0.489 1.143 12.958 43.714 0.026 0.369 0.583 

75 50 100 2 2 0.135 100.00 0.19 0 0.608 0.00 0.67 0 0.707 2 0.00 0.14 0.03 

      3 2 0.231 100.00 0.12 0 1.500 0.00 0.67 0 1.895 2 0.00 0.21 0.03 

      4 6 0.377 100.00 0.08 0 3.539 0.00 0.70 0 4.505 6 0.00 0.21 0.08 

      5 4 0.517 100.00 0.05 0 8.413 0.00 0.78 0 10.126 4 0.00 0.17 0.05 

      6 5 0.695 83.33 0.04 1 16.330 0.17 0.82 0 19.124 6 0.00 0.15 0.08 

      7 3 0.874 100.00 0.03 0 29.869 0.00 0.86 0 33.740 3 0.00 0.11 0.04 

      8 1 1.063 100.00 0.02 0 52.398 0.00 0.90 0 57.264 1 0.00 0.08 0.01 

        

Median 3.000 0.517 100.000 0.051 0.000 8.413 0.000 0.780 0.000 10.126 3.000 0.000 0.146 0.040 

Mode 2.000 #N/A 100.000 #N/A 0.000 #N/A 0.000 #N/A 0.000 #N/A 2.000 0.000 #N/A 0.027 

Mean 3.286 0.556 97.619 0.076 0.143 16.094 0.024 0.770 0.000 18.194 3.429 0.000 0.154 0.046 
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Table A-16: Computational results - #P: 50, #D: 75 

#Pt #Dt Area #Stops #0-con. 

CPU 

Time 

(sec) 

0-con. 

perc 

CPU-

time 

(perc) #1-con. 

CPU 

Time 

(sec) 

1-con. 

Perc. 

CPU-

time 

(perc) #2-con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

Perc. 

CPU-

time 

perc. 

Success 

Rate 

50 75 25 2 29 0.245 100.00 0.28 0 0.555 0.00 0.35 0 0.878 29 0.00 0.37 0.58 

   
3 30 0.373 93.75 0.15 1 1.233 0.03 0.34 1 2.493 32 0.03 0.51 0.64 

   
4 30 0.651 88.24 0.12 2 2.838 0.06 0.39 2 5.623 34 0.06 0.50 0.68 

   

5 29 1.085 85.29 0.10 4 6.391 0.12 0.48 1 10.962 34 0.03 0.42 0.68 

   
6 26 1.272 74.29 0.05 6 15.344 0.17 0.55 3 25.759 35 0.09 0.40 0.70 

   
7 33 1.669 89.19 0.05 1 17.733 0.03 0.47 3 33.850 37 0.08 0.48 0.74 

   

8 36 2.143 92.31 0.05 2 25.108 0.05 0.55 1 41.590 39 0.03 0.40 0.78 

        

Median 30.000 1.085 89.189 0.099 2.000 6.391 0.051 0.475 1.000 10.962 34.000 0.031 0.417 0.680 

Mode 29.000 #N/A #N/A #N/A 1.000 #N/A #N/A #N/A 1.000 #N/A 34.000 #N/A #N/A 0.680 

Mean 30.429 1.063 89.009 0.113 2.286 9.886 0.065 0.449 1.571 17.308 34.286 0.045 0.437 0.686 

50 75 100 2 2 0.176 100.00 0.17 0 0.883 0.00 0.69 0 1.030 2 0.00 0.14 0.04 

      3 2 0.300 100.00 0.11 0 2.160 0.00 0.67 0 2.774 2 0.00 0.22 0.04 

      4 4 0.488 100.00 0.07 0 5.157 0.00 0.70 0 6.646 4 0.00 0.22 0.08 

      5 1 0.723 100.00 0.05 0 12.158 0.00 0.77 0 14.869 1 0.00 0.18 0.02 

      6 1 0.938 33.33 0.03 1 25.598 0.33 0.77 1 32.037 3 0.33 0.20 0.06 

      7 2 1.248 100.00 0.02 0 44.987 0.00 0.86 0 50.872 2 0.00 0.12 0.04 

      8 2 1.248 100.00 0.02 0 44.987 0.00 0.86 0 50.872 2 0.00 0.12 0.04 

        

Median 2.000 0.723 100.000 0.049 0.000 12.158 0.000 0.769 0.000 14.869 2.000 0.000 0.182 0.040 

Mode 2.000 1.248 100.000 0.025 0.000 44.987 0.000 0.860 0.000 50.872 2.000 0.000 0.116 0.040 

Mean 2.000 0.731 90.476 0.068 0.143 19.419 0.048 0.760 0.143 22.729 2.286 0.048 0.172 0.046 
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Table A-17: Aggregated computational results - Area size: 25 sqM 

#P #D Stat. #0-co. 
CPU 

Time(sec) 

0-con. 

Perc. 

CPU 

-time 

perc 

#1-

con. 

CPU 

Time(sec) 
#1-con. 

CPU 

-time 

perc 

#2-

con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

perc 

CPU 

-time 

perc. 

Success 

Rate 

20 20 Med 6.00 0.05 100.00 0.14 0.00 0.28 0.00 0.61 0.00 0.38 7.00 0.00 0.20 0.35 
20 20 Mod 6.00 0.04 100.00 #N/A 0.00 #N/A 0.00 #N/A 0.00 #N/A 7.00 0.00 #N/A 0.35 
20 20 Mea 6.71 0.07 94.33 0.22 0.43 0.51 0.06 0.58 0.00 0.64 7.14 0.00 0.20 0.36 
20 25 Med 7.00 0.08 100.00 0.30 0.00 0.62 0.00 0.42 0.00 0.72 7.00 0.00 0.27 0.35 
20 25 Mod 7.00 0.08 100.00 #N/A 0.00 #N/A 0.00 #N/A 0.00 #N/A 7.00 0.00 #N/A 0.35 
20 25 Mea 7.14 0.12 90.06 0.24 0.71 0.86 0.08 0.50 0.14 1.16 8.00 0.02 0.26 0.40 
25 20 Med 0.00 0.04 #DIV/0! 0.05 0.00 0.43 #DIV/0! 0.76 0.00 0.54 0.00 #DIV/0! 0.13 0.00 
25 20 Mod 0.00 0.04 #DIV/0! #N/A 0.00 #N/A #DIV/0! #N/A 0.00 #N/A 0.00 #DIV/0! #N/A 0.00 
25 20 Avg 0.29 0.04 #DIV/0! 0.10 0.00 0.86 #DIV/0! 0.74 0.00 0.97 0.29 #DIV/0! 0.15 0.01 
25 25 Med 9.00 0.12 100.00 0.18 0.00 0.50 0.00 0.56 0.00 0.68 9.00 0.00 0.25 0.36 
25 25 Mod 7.00 0.16 100.00 #N/A 0.00 #N/A 0.00 #N/A 0.00 #N/A 7.00 0.00 #N/A 0.28 
25 25 Mea 9.14 0.12 96.02 0.20 0.43 0.90 0.04 0.56 0.00 1.16 9.57 0.00 0.23 0.38 
50 50 Med 27.00 0.41 94.59 0.08 1.00 2.93 0.03 0.44 1.00 5.67 31.00 0.03 0.41 0.62 
50 50 Mod 27.00 #N/A #N/A #N/A 1.00 #N/A 0.00 #N/A 0.00 #N/A #N/A 0.00 #N/A #N/A 
50 50 Mea 27.57 0.54 91.58 0.14 1.71 5.06 0.05 0.48 1.00 7.78 30.29 0.03 0.37 0.61 
50 55 Med 29.00 0.54 85.29 0.11 3.00 2.95 0.08 0.49 1.00 4.93 32.00 0.03 0.40 0.64 
50 55 Mod 31.00 #N/A #N/A #N/A 3.00 #N/A #N/A #N/A 0.00 #N/A 27.00 0.00 #N/A 0.54 
50 55 Mea 28.14 0.63 89.82 0.13 2.29 5.88 0.07 0.48 1.00 10.06 31.43 0.03 0.39 0.63 
55 50 Med 30.00 0.52 88.57 0.10 2.00 3.01 0.06 0.49 1.00 5.44 32.00 0.03 0.36 0.58 
55 50 Mod 31.00 #N/A 100.00 #N/A 0.00 #N/A 0.00 #N/A 0.00 #N/A 30.00 0.00 #N/A 0.55 
55 50 Mea 29.43 0.57 91.80 0.14 2.00 6.05 0.06 0.50 0.71 9.14 32.14 0.02 0.36 0.58 
55 55 Med 26.00 0.65 83.87 0.09 3.00 4.29 0.10 0.48 2.00 7.07 31.00 0.06 0.39 0.56 
55 55 Mod 25.00 #N/A #N/A #N/A 3.00 #N/A #N/A #N/A 0.00 #N/A #N/A 0.00 #N/A #N/A 
55 55 Mea 27.00 0.69 85.78 0.12 3.43 7.65 0.10 0.50 1.43 13.16 31.86 0.04 0.38 0.58 
100 100 Med 66.00 3.22 91.43 0.11 4.00 15.63 0.05 0.41 2.00 30.47 76.00 0.03 0.47 0.76 
100 100 Mod 65.00 #N/A #N/A #N/A 4.00 #N/A #N/A #N/A 2.00 #N/A 83.00 #N/A #N/A 0.83 
100 100 Mea 68.43 3.63 90.06 0.14 5.00 33.22 0.06 0.45 2.86 51.00 76.29 0.04 0.42 0.76 
100 105 Med 72.00 3.48 92.00 0.12 4.00 12.60 0.05 0.37 2.00 29.42 81.00 0.02 0.50 0.81 
100 105 Mod 69.00 #N/A 95.06 #N/A #N/A #N/A #N/A #N/A 1.00 #N/A 81.00 #N/A #N/A 0.81 
100 105 Mea 72.00 3.96 92.84 0.14 3.86 26.84 0.05 0.39 1.86 49.26 77.71 0.02 0.47 0.78 
105 100 Med 71.00 3.00 88.75 0.09 5.00 17.48 0.06 0.37 3.00 34.28 80.00 0.04 0.49 0.76 
105 100 Mod 71.00 #N/A #N/A #N/A 10.00 #N/A #N/A #N/A 4.00 #N/A #N/A #N/A #N/A #N/A 
105 100 Mea 71.57 3.71 90.79 0.13 5.00 34.97 0.06 0.41 2.57 62.22 79.14 0.03 0.46 0.75 
105 105 Med 71.00 3.74 90.12 0.09 5.00 22.13 0.06 0.46 1.00 39.74 81.00 0.01 0.44 0.77 
105 105 Mod #N/A #N/A #N/A #N/A 0.00 #N/A 0.00 #N/A 1.00 #N/A #N/A #N/A #N/A #N/A 
105 105 Mea 70.71 4.14 91.66 0.13 4.57 37.20 0.06 0.45 2.29 61.81 77.57 0.03 0.42 0.74 
50 25 Med 19.00 0.23 96.00 0.34 1.00 1.04 0.04 0.57 0.00 1.43 21.00 0.00 0.25 0.42 
50 25 Mod 19.00 0.23 100.00 #N/A 0.00 #N/A 0.00 #N/A 0.00 #N/A 21.00 0.00 #N/A 0.42 
50 25 Mea 19.71 0.24 94.41 0.34 1.14 1.87 0.05 0.54 0.14 2.47 21.00 0.01 0.24 0.42 
25 50 Med 12.00 0.22 94.12 0.10 1.00 1.39 0.06 0.53 0.00 2.29 14.00 0.00 0.33 0.56 
25 50 Mod 11.00 #N/A 100.00 #N/A 0.00 #N/A 0.00 #N/A 0.00 #N/A 17.00 0.00 #N/A 0.68 
25 50 Mea 12.29 0.30 91.08 0.13 0.86 3.20 0.05 0.54 0.57 4.92 13.71 0.03 0.33 0.55 
75 50 Med 36.00 0.74 92.00 0.08 4.00 5.48 0.08 0.47 1.00 8.95 43.00 0.02 0.37 0.57 
75 50 Mod 36.00 #N/A #N/A #N/A 2.00 #N/A #N/A #N/A 0.00 #N/A 43.00 0.00 #N/A 0.57 
75 50 Mea 39.43 0.98 90.34 0.14 3.14 8.12 0.07 0.49 1.14 12.96 43.71 0.03 0.37 0.58 
50 75 Med 30.00 1.09 89.19 0.10 2.00 6.39 0.05 0.47 1.00 10.96 34.00 0.03 0.42 0.68 
50 75 Mod 29.00 #N/A #N/A #N/A 1.00 #N/A #N/A #N/A 1.00 #N/A 34.00 #N/A #N/A 0.68 
50 75 Mea 30.43 1.06 89.01 0.11 2.29 9.89 0.07 0.45 1.57 17.31 34.29 0.04 0.44 0.69 
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Table A-18: Aggregated computational results - Area size: 100 sqM 

#P #D Stat. #0-co. 
CPU 

Time(sec) 

0-con. 

Perc. 

CPU 

-time 

perc 

#1-

con. 

CPU 

Time(sec) 
#1-con. 

CPU 

-time 

perc 

#2-

con. 

CPU 

Time 

(sec) 

Total 

Routes 

2-con. 

perc 

CPU 

-time 

perc. 

Success 

Rate 

20 20 Median 0.00 0.03 #DIV/0! 0.06 0.00 0.35 #DIV/0! 0.76 0.00 0.43 0.00 #DIV/0! 0.13 0.00 
20 20 Mode 0.00 0.03 #DIV/0! #N/A 0.00 #N/A #DIV/0! #N/A 0.00 #N/A 0.00 #DIV/0! #N/A 0.00 
20 20 Mean 0.14 0.03 #DIV/0! 0.11 0.00 0.68 #DIV/0! 0.74 0.00 0.76 0.14 #DIV/0! 0.15 0.01 
20 25 Median 0.00 0.04 #DIV/0! 0.06 0.00 0.54 #DIV/0! 0.77 0.00 0.65 0.00 #DIV/0! 0.17 0.00 
20 25 Mode 0.00 0.03 #DIV/0! #N/A 0.00 #N/A #DIV/0! #N/A 0.00 #N/A 0.00 #DIV/0! #N/A 0.00 
20 25 Average 0.14 0.05 #DIV/0! 0.11 0.00 1.07 #DIV/0! 0.73 0.00 1.20 0.14 #DIV/0! 0.16 0.01 
25 20 Median 9.00 0.09 100.00 0.19 0.00 0.35 0.00 0.54 0.00 0.49 9.00 0.00 0.25 0.36 
25 20 Mode 8.00 #N/A 100.00 #N/A 0.00 #N/A 0.00 #N/A 0.00 #N/A 8.00 0.00 #N/A 0.32 
25 20 Mean 9.00 0.09 98.90 0.22 0.14 0.65 0.01 0.54 0.00 0.85 9.14 0.00 0.24 0.37 
25 25 Median 0.00 0.07 #DIV/0! 0.08 0.00 0.66 #DIV/0! 0.74 0.00 0.80 0.00 #DIV/0! 0.18 0.00 
25 25 Mode 0.00 0.07 #DIV/0! #N/A 0.00 #N/A #DIV/0! #N/A 0.00 #N/A 0.00 #DIV/0! #N/A 0.00 
25 25 Mean 0.43 0.06 #DIV/0! 0.09 0.00 1.30 #DIV/0! 0.73 0.00 1.47 0.43 #DIV/0! 0.18 0.02 
50 50 Median 3.00 0.32 100.00 0.05 0.00 5.20 0.00 0.77 0.00 6.31 3.00 0.00 0.15 0.06 
50 50 Mode 2.00 #N/A 100.00 #N/A 0.00 #N/A 0.00 #N/A 0.00 #N/A 4.00 0.00 #N/A 0.08 
50 50 Mean 3.00 0.38 95.24 0.08 0.14 9.80 0.05 0.76 0.00 11.17 3.14 0.00 0.16 0.06 
50 55 Median 29.00 0.54 85.29 0.11 3.00 2.95 0.08 0.49 1.00 4.93 32.00 0.03 0.40 0.64 
50 55 Mode 2.00 0.40 100.00 0.05 0.00 6.30 0.00 0.76 0.00 7.71 2.00 0.00 0.15 0.04 
50 55 Mean 2.00 #N/A 100.00 #N/A 0.00 #N/A 0.00 #N/A 0.00 #N/A 2.00 0.00 #N/A 0.04 
55 50 Median 3.00 0.36 100.00 0.05 0.00 5.37 0.00 0.76 0.00 6.60 3.00 0.00 0.15 0.05 
55 50 Mode 3.00 #N/A 100.00 #N/A 0.00 #N/A 0.00 #N/A 0.00 #N/A 3.00 0.00 #N/A 0.05 
55 50 Mean 3.14 0.42 91.67 0.09 0.14 11.29 0.04 0.75 0.14 12.82 3.43 0.05 0.16 0.06 
55 55 Median 3.00 0.42 100.00 0.05 0.00 7.49 0.00 0.80 0.00 8.82 3.00 0.00 0.15 0.05 
55 55 Mode 2.00 #N/A 100.00 #N/A 0.00 #N/A 0.00 #N/A 0.00 #N/A 2.00 0.00 #N/A 0.04 
55 55 Mean 2.86 0.46 100.00 0.07 0.00 13.32 0.00 0.77 0.00 15.06 2.86 0.00 0.16 0.05 
100 100 Median 8.00 2.15 100.00 0.04 0.00 38.88 0.00 0.76 0.00 48.23 9.00 0.00 0.18 0.09 
100 100 Mode 7.00 #N/A 100.00 #N/A 0.00 #N/A 0.00 #N/A 0.00 #N/A 9.00 0.00 #N/A 0.09 
100 100 Mean 7.86 2.66 95.04 0.07 0.14 79.05 0.02 0.75 0.29 94.00 8.29 0.03 0.18 0.08 
100 105 Median 8.00 2.48 100.00 0.04 0.00 45.01 0.00 0.77 0.00 55.59 8.00 0.00 0.16 0.08 
100 105 Mode 9.00 #N/A 100.00 #N/A 0.00 #N/A 0.00 #N/A 0.00 #N/A 7.00 0.00 #N/A 0.07 
100 105 Mean 8.14 2.83 97.14 0.06 0.14 85.01 0.01 0.76 0.14 100.11 8.43 0.01 0.18 0.08 
105 100 Median 8.00 2.49 100.00 0.05 0.00 41.42 0.00 0.74 0.00 51.20 9.00 0.00 0.19 0.09 
105 100 Mode 9.00 #N/A 100.00 #N/A 0.00 #N/A 0.00 #N/A 0.00 #N/A 9.00 0.00 #N/A 0.09 
105 100 Mean 8.00 2.82 93.65 0.07 0.29 83.40 0.03 0.76 0.29 97.02 8.57 0.03 0.18 0.08 
105 105 Median 10.00 2.53 90.91 0.04 0.00 50.60 0.00 0.75 0.00 61.31 11.00 0.00 0.17 0.10 
105 105 Mode 10.00 #N/A 100.00 #N/A 0.00 #N/A 0.00 #N/A 0.00 #N/A 10.00 0.00 #N/A 0.10 
105 105 Mean 10.00 3.28 93.12 0.07 0.43 87.69 0.04 0.75 0.29 104.14 10.71 0.03 0.19 0.10 
50 25 Median 0.00 0.10 #DIV/0! 0.06 0.00 1.88 #DIV/0! 0.69 0.00 2.60 0.00 #DIV/0! 0.27 0.00 
50 25 Mode 0.00 #N/A #DIV/0! #N/A 0.00 #N/A #DIV/0! #N/A 0.00 #N/A 0.00 #DIV/0! #N/A 0.00 
50 25 Mean 0.43 0.12 #DIV/0! 0.21 0.00 3.69 #DIV/0! 0.66 0.00 4.77 0.43 #DIV/0! 0.26 0.01 
25 50 Median 2.00 0.23 100.00 0.04 0.00 3.68 0.00 0.67 0.00 5.18 2.00 0.00 0.27 0.08 
25 50 Mode 2.00 #N/A 100.00 #N/A 0.00 #N/A 0.00 #N/A 0.00 #N/A 2.00 0.00 #N/A 0.08 
25 50 Mean 1.43 0.25 80.95 0.07 0.14 6.96 0.05 0.64 0.14 9.24 1.71 0.14 0.29 0.07 
75 50 Median 3.00 0.61 100.00 0.04 0.00 11.22 0.00 0.68 0.00 15.58 3.00 0.00 0.26 0.04 
75 50 Mode 2.00 #N/A 100.00 #N/A 0.00 #N/A 0.00 #N/A 0.00 #N/A 2.00 0.00 #N/A 0.03 
75 50 Mean 3.29 0.65 97.62 0.06 0.14 21.46 0.02 0.68 0.00 27.99 3.43 0.00 0.27 0.05 
50 75 Median 2.00 0.85 100.00 0.04 0.00 16.21 0.00 0.67 0.00 22.88 2.00 0.00 0.29 0.04 
50 75 Mode 2.00 1.47 100.00 0.02 0.00 59.98 0.00 0.75 0.00 78.26 2.00 0.00 0.23 0.04 
50 75 Mean 2.00 0.86 90.48 0.05 0.14 25.89 0.05 0.67 0.14 34.97 2.29 0.05 0.28 0.05 
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Table A-19: Aggregated computational results - Area size: 25 sqM (Median) 

#P #D 
#0-
con. 

CPU 

Time 

(sec) 

0-con. 
Perc. 

CPU 

Time 

perc 

#1-
con. 

CPU 

Time 

(sec) 

#1-

con. 

Perc 

CPU 

time 

perc 

#2-
con. 

CPU 

Time 

(sec) 

Total 
routes 

2-

con. 

perc 

CPU

time 

perc. 

Succes
s Rate 

20 20 6 0.05 100.0 0.14 0.00 0.28 0.00 0.61 0.00 0.38 6.00 0.00 0.20 0.35 

20 25 7 0.08 100.0 0.30 0.00 0.62 0.00 0.42 0.00 0.72 7.00 0.00 0.27 0.35 

25 20 9 0.09 100.0 0.19 0.00 0.35 0.00 0.54 0.00 0.49 9.00 0.00 0.25 0.36 

25 25 9 0.12 100.0 0.18 0.00 0.50 0.00 0.56 0.00 0.68 9.00 0.00 0.25 0.36 

50 50 27 0.41 94.59 0.08 1.00 2.93 0.03 0.44 1.00 5.67 31.00 0.03 0.41 0.62 

50 55 29 0.54 85.29 0.11 3.00 2.95 0.08 0.49 1.00 4.93 32.00 0.03 0.40 0.64 

55 50 30 0.52 88.57 0.10 2.00 3.01 0.06 0.49 1.00 5.44 32.00 0.03 0.36 0.58 

55 55 26 0.65 83.87 0.09 3.00 4.29 0.10 0.48 2.00 7.07 31.00 0.06 0.39 0.56 

100 100 66 3.22 91.43 0.11 4.00 15.63 0.05 0.41 2.00 30.47 76.00 0.03 0.47 0.76 

100 105 72 3.48 92.00 0.12 4.00 12.60 0.05 0.37 2.00 29.42 81.00 0.02 0.50 0.81 

105 100 71 3.00 88.75 0.09 5.00 17.48 0.06 0.37 3.00 34.28 80.00 0.04 0.49 0.76 

105 105 71 3.74 90.12 0.09 5.00 22.13 0.06 0.46 1.00 39.74 81.00 0.01 0.44 0.77 

50 25 19 0.23 96.00 0.34 1.00 1.04 0.04 0.57 0.00 1.43 21.00 0.00 0.25 0.42 

25 50 12 0.22 94.12 0.10 1.00 1.39 0.06 0.53 0.00 2.29 14.00 0.00 0.33 0.56 

75 50 36 0.74 92.00 0.08 4.00 5.48 0.08 0.47 1.00 8.95 43.00 0.02 0.37 0.57 

50 75 30 1.09 89.19 0.10 2.00 6.39 0.05 0.47 1.00 10.96 34.00 0.03 0.42 0.68 

 

 

 

Table A-20: Aggregated computational results - Area size: 25 sqM (Mean) 

#P #D 
#0-

con. 

CPU 

Time 
(sec) 

0-con. 

Perc. 

CPU 

Time 
perc 

#1-

con. 

CPU 

Time 
(sec) 

#1-

con. 
Perc 

CPU 

time 
perc 

#2-

con. 

CPU 

Time 
(sec) 

Total 

routes 

2-

con. 
perc 

CPU

time 
perc. 

Succes

s Rate 

20 20 6.71 0.07 94.33 0.22 0.43 0.51 0.06 0.58 0.00 0.64 7.14 0.00 0.20 0.36 

20 25 7.14 0.12 90.06 0.24 0.71 0.86 0.08 0.50 0.14 1.16 8.00 0.02 0.26 0.40 

25 20 9.00 0.09 98.90 0.22 0.14 0.65 0.01 0.54 0.00 0.85 9.14 0.00 0.24 0.37 

25 25 9.14 0.12 96.02 0.20 0.43 0.90 0.04 0.56 0.00 1.16 9.57 0.00 0.23 0.38 

50 50 27.5 0.54 91.58 0.14 1.71 5.06 0.05 0.48 1.00 7.78 30.29 0.03 0.37 0.61 

50 55 28.1 0.63 89.82 0.13 2.29 5.88 0.07 0.48 1.00 10.06 31.43 0.03 0.39 0.63 

55 50 29.4 0.57 91.80 0.14 2.00 6.05 0.06 0.50 0.71 9.14 32.14 0.02 0.36 0.58 

55 55 27.0 0.69 85.78 0.12 3.43 7.65 0.10 0.50 1.43 13.16 31.86 0.04 0.38 0.58 

100 100 68.4 3.63 90.06 0.14 5.00 33.22 0.06 0.45 2.86 51.00 76.29 0.04 0.42 0.76 

100 105 72.0 3.96 92.84 0.14 3.86 26.84 0.05 0.39 1.86 49.26 77.71 0.02 0.47 0.78 

105 100 71.5 3.71 90.79 0.13 5.00 34.97 0.06 0.41 2.57 62.22 79.14 0.03 0.46 0.75 

105 105 70.7 4.14 91.66 0.13 4.57 37.20 0.06 0.45 2.29 61.81 77.57 0.03 0.42 0.74 

50 25 19.7 0.24 94.41 0.34 1.14 1.87 0.05 0.54 0.14 2.47 21.00 0.01 0.24 0.42 

25 50 12.0 0.22 94.12 0.10 1.00 1.39 0.06 0.53 0.00 2.29 14.00 0.00 0.33 0.56 

75 50 36.0 0.74 92.00 0.08 4.00 5.48 0.08 0.47 1.00 8.95 43.00 0.02 0.37 0.57 

50 75 30.0 1.09 89.19 0.10 2.00 6.39 0.05 0.47 1.00 10.96 34.00 0.03 0.42 0.68 
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Table A-21: Aggregated computational results - Area size: 100 sqM (Median) 

#P #D 
#0-
con. 

CPU 

Time 

(sec) 

0-con. 
Perc. 

CPU 

Time 

perc 

#1-
con. 

CPU 

Time 

(sec) 

#1-

con. 

Perc 

CPU 

time 

perc 

#2-
con 

CPU 

Time 

(sec) 

Total 
routes 

2-con. 
perc 

CPU

time 

perc. 

Succ

ess 

Rate 

20 20 0 0.03 #DIV/ 0.06 0.00 0.35 #DIV 0.76 0.0 0.43 0.00 #DIV/ 0.13 0.00 

20 25 0 0.04 #DIV/ 0.06 0.00 0.54 #DIV 0.77 0.0 0.65 0.00 #DIV/ 0.17 0.00 

25 20 9 0.09 100.0 0.19 0.00 0.35 0.00 0.54 0.0 0.49 9.00 0.00 0.25 0.36 

25 25 0 0.07 #DIV/ 0.08 0.00 0.66 #DIV 0.74 0.0 0.80 0.00 #DIV/ 0.18 0.00 

50 50 3 0.32 100.0 0.05 0.00 5.20 0.00 0.77 0.0 6.31 3.00 0.00 0.15 0.06 

50 55 29 0.54 85.29 0.11 3.00 2.95 0.08 0.49 1.0 4.93 32.00 0.03 0.40 0.64 

55 50 3 0.36 100.0 0.05 0.00 5.37 0.00 0.76 0.0 6.60 3.00 0.00 0.15 0.05 

55 55 3 0.42 100.0 0.05 0.00 7.49 0.00 0.80 0.0 8.82 3.00 0.00 0.15 0.05 

100 100 8 2.15 100.0 0.04 0.00 38.88 0.00 0.76 0.0 48.23 9.00 0.00 0.18 0.09 

100 105 8 2.48 100.0 0.04 0.00 45.01 0.00 0.77 0.0 55.59 8.00 0.00 0.16 0.08 

105 100 8 2.49 100.0 0.05 0.00 41.42 0.00 0.74 0.0 51.20 9.00 0.00 0.19 0.09 

105 105 10 2.53 90.91 0.04 0.00 50.60 0.00 0.75 0.0 61.31 11.00 0.00 0.17 0.10 

50 25 0 0.08 #DIV/ 0.08 0.00 1.41 #DIV 0.79 0.0 1.69 0.00 #DIV/ 0.16 0.00 

25 50 2 0.19 100.0 0.05 0.00 2.76 0.00 0.76 0.0 3.37 2.00 0.00 0.15 0.08 

75 50 3 0.52 100.0 0.05 0.00 8.41 0.00 0.78 0.0 10.13 3.00 0.00 0.15 0.04 

50 75 2 0.72 100.0 0.05 0.00 12.16 0.00 0.77 0.0 14.87 2.00 0.00 0.18 0.04 

 

 

Table A-22: Aggregated computational results - Area size: 100 sqM (Mean) 

#P #D 
#0-

con. 

CPU 
Time 

(sec) 

0-con. 

Perc. 

CPU 
Time 

perc 

#1-

con. 

CPU 
Time 

(sec) 

#1-
con. 

Perc 

CPU 
time 

perc 

#2-

con 

CPU 
Time 

(sec) 

Tota

l 

rout
es 

2-con. 

perc 

CPU
time 

perc. 

Succ
ess 

Rate 

20 20 0.14 0.03 #DIV/ 0.11 0.00 0.68 #DIV 0.74 0.0 0.76 0.14 #DIV/ 0.15 0.01 

20 25 0.14 0.05 #DIV/ 0.11 0.00 1.07 #DIV 0.73 0.0 1.20 0.14 #DIV/ 0.16 0.01 

25 20 9.00 0.09 98.90 0.22 0.14 0.65 0.01 0.54 0.0 0.85 9.14 0.00 0.24 0.37 

25 25 0.43 0.06 #DIV/ 0.09 0.00 1.30 #DIV 0.73 0.0 1.47 0.43 #DIV/ 0.18 0.02 

50 50 3.00 0.38 95.24 0.08 0.14 9.80 0.05 0.76 0.0 11.17 3.14 0.00 0.16 0.06 

50 55 2.00 #N/A 100.0 #N/A 0.00 #N/A 0.00 #N/ 0.0 #N/A 2.00 0.00 #N/ 0.04 

55 50 3.14 0.42 91.67 0.09 0.14 11.29 0.04 0.75 0.14 12.82 3.43 0.05 0.16 0.06 

55 55 2.86 0.46 100.0 0.07 0.00 13.32 0.00 0.77 0.0 15.06 2.86 0.00 0.16 0.05 

100 100 7.86 2.66 95.04 0.07 0.14 79.05 0.02 0.75 0.29 94.00 8.29 0.03 0.18 0.08 

100 105 8.14 2.83 97.14 0.06 0.14 85.01 0.01 0.76 0.1 100.1 8.43 0.01 0.18 0.08 

105 100 8.00 2.82 93.65 0.07 0.29 83.40 0.03 0.76 0.29 97.02 8.57 0.03 0.18 0.08 

105 105 10.0 3.28 93.12 0.07 0.43 87.69 0.04 0.75 0.29 104.1 10.7 0.03 0.19 0.10 

50 25 0.43 0.10 #DIV/ 0.23 0.00 2.77 #DIV 0.75 0.0 3.10 0.43 #DIV/ 0.15 0.01 

25 50 1.43 0.22 80.95 0.09 0.14 5.22 0.05 0.73 0.14 6.01 1.71 0.14 0.18 0.07 

75 50 3.29 0.56 97.62 0.08 0.14 16.09 0.02 0.77 0.0 18.19 3.43 0.00 0.15 0.05 

50 75 2.00 0.73 90.48 0.07 0.14 19.42 0.05 0.76 0.1 22.73 2.29 0.05 0.17 0.05 
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Appendix B: Regression Analysis Results 

 B.1. Regression analysis (Rate of Success vs #D) 

 

To examine the relationship between the rate of success for the rideshare system 

and the number of drivers participating in the program, a linear regression analysis is 

conducted where the rate of success is the dependent variable and the number of drivers 

is the independent variable. The data set includes 16 observations extracted from the 224 

numerical examples. To obtain the 16 observations, the mean Rate of Success for each 

given #D is calculated by averaging over #P, #Stops and Area Size. Table B-1 shows the 

summary output for the regression analysis. R square statistic is a measure of the extent 

to which the total variation of the dependent variable is explained by the regression. It is 

obviously important if one wishes to use the model for predictive or forecasting purposes. 

The high value of R square (R Square: 0.928, Adjusted R Square: 0.922) and the low 

value of Standard Error (0.045) suggest that the regression model explains the variation 

in the Rate of Success well. 

Table B-1: Summary output for the regression analysis of Rate of Success versus #D 

Regression Statistics 

Multiple R 0.963 
R Square 0.928 
Adjusted R Square 0.922 

Standard Error 0.045 

Observations 16.00 

 

The high value of t-statistics as well as the low value of p-value for the 

coefficients of the model also suggest that Intercept, i.e., 0.287 and coefficient of number 

of drivers’ variable (#D), i.e., 0.005, are statistically significant for the linear model. 

Table B-2 shows the summary ANOVA analysis for the regression analysis. 
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Table B-2: Summary ANOVA analysis for the regression analysis of Rate of Success 

versus #D 

 
Df SS MS F Significance F 

Regression 1.000 0.369 0.369 179.31 0.000 
Residual 14.000 0.029 0.002 

  Total 15.000 0.398 
   

 
Coefficients 

Standard 
Error t Stat 

P-
value 

Lower 
95% 

Upper 
95% 

Intercept 0.287 0.024 11.87 0.000 0.235 0.339 

#D 0.005 0.000 13.39 0.000 0.004 0.006 

 

Therefore, it is concluded that rate of success in rideshare program significantly 

increases as the number of participating drivers increases.  

B.2. Regression analysis (Rate of Success vs. #P) 

 

To examine the relationship between the rate of success for the rideshare system 

and the number of riders participating in the program, a linear regression analysis is 

conducted where the rate of success is the dependent variable and the number of riders is 

the independent variable. The data set includes 16 observations extracted from the 224 

numerical examples. To obtain the 16 observations, the mean Rate of Success for each 

given #P is calculated by averaging over #D, #Stops and Area Size. Table B-3 shows the 

summary output for the regression analysis. The high value of R Square (R Square: 0.767 

and Adjusted R Square: 0.751) and the low value of Standard Error (0.081) suggest that 

the regression model explains the variation in the Rate of Success well. 

Table B-3: Summary output for the regression analysis of Rate of Success versus #P 

Regression Statistics 

Multiple R 0.876 
R Square 0.767 
Adjusted R Square 0.751 
Standard Error 0.081 

Observations 16.00 
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The high value of t-statistics as well as the low value of p-value for the 

coefficients of the model also suggest that Intercept, i.e., 0.313 and coefficient of number 

of riders’ variable (#P), i.e., 0.005, are statistically significant for the linear model. Table 

B-4 shows the summary ANOVA analysis for the regression analysis. 

Table B-4: Summary ANOVA analysis for the regression analysis of Rate of Success 

versus #P 

  df SS MS F Significance F 

Regression 1.000 0.306 0.306 46.210 0.000 
Residual 14.000 0.093 0.007 

  Total 15.000 0.398 
   

  Coefficients 
Standard 
Error t Stat 

P-
value 

Lower 
95.0% 

Upper 
95.0% 

Intercept 0.313 0.043 7.224 0.000 0.220 0.406 

#P 0.005 0.001 6.798 0.000 0.003 0.006 

 

Therefore, it is concluded that rate of success in rideshare program significantly 

increases as the number of participating riders increases.  

B.3. Multiple Regression Analysis (Predictors: Constant, #D, #P and Dependent 

Variable: #0-connection routes; Dense network, Area size: 25 sqM)  

 

To examine the relationship between the median number of zero connection routes 

and number of drivers and number of riders participating in the program in a dense 

network with area size 25 square Miles, a multiple linear regression analysis is conducted 

where the median number of zero connection routes is the dependent variable and 

number of drivers (#D) and number of riders (#P) are the independent variables. The data 

set includes 16 observations extracted from the 224 numerical examples. To obtain the 16 

observations, the median #0-connection routes for each given combination of #P and #D 

at the area size of 25 Square Miles is calculated by averaging over #Stops. Table B-5 

shows the descriptive statistics for the multiple linear regression analysis.  
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Table B-5: Descriptive statistics for the multiple linear regression analysis of #0-

connection routes versus #P, #D; Dense network, area size: 25 sqM 

Variable Mean Std. Deviation N 

#0-connection routes 32.5000 24.24321 16 

#P 56.8750 31.24500 16 

#D 56.8750 31.24500 16 

 

The correlation analysis of the model suggests there are high correlations between the 

Median number of Zero connection routes and number of drivers and riders. Pearson 

correlation coefficient between #0-connection routes and #P is .984 and the correlation 

coefficient between #0-connection routes and #D is 0.954. Summary output for the 

multiple linear regression model is presented in Table B-6. The high value of R square (R 

Square: 0.988, Adjusted R Square: 0.986) and the low value of Standard Error (2.875) 

suggest that the regression model explains the variation in the Rate of Success well. 

Table B-6: Summary output for the multiple linear regression analysis of #0-

connection routes versus #P, #D; Dense network, area size: 25 sqM 

Model 

R R Square Adjusted R Square Std. Error of the Estimate 

dimension0 1 .994 .988 .986 2.87426 

 

The high values of t-statistics as well as the low value of p-value for the 

coefficients of the model also suggest that variable coefficients are statistically significant 

for the multiple linear regression model. Table B-7 shows the summary ANOVA analysis 

for the regression analysis. Considering the unstandardized coefficients (B’s) of 

dependent variables, the regression analysis results in the following multiple linear 

regression model: 

Y= -12.278 + 0.520 X1 + .267 X2                                                         (B-1) 

where median #0-connection routes is denoted by Y, and X1 and X2 are representing #P 

and #D in model. The standardized coefficients (Beta) for the independent variables 

suggest that: 
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 A one S.D. change in #P produces a predicted change of 0.67 S.D.’s in the median 

number of zero connection routes in the dense and small network of area size 25 

square Miles, i.e., number of zero connection routes significantly increases as the 

number of participating riders increases when other input parameters remain 

unchanged.  

 a one S.D. change in #D produces a predicted change of .344 S.D.’s the median 

number of zero connection routes in the dense and small network of area size 25 

square Miles, i.e., number of zero connection routes significantly increases as the 

number of participating drivers increases when other input parameters remain 

unchanged. 

 #P (number of participating riders) is more important than #D (number of 

participating drivers) in determining level of median number of zero connection 

routes in the dense and small network of area size 25 square Miles. 

 

Table B-7: Summary ANOVA analysis for the regression analysis of #0-connection 

routes versus #P, #D; Dense network, area size: 25 sqM 

Sum of Squares Df 

Mean 

Square F Sig. 

Regression 8708.603 2 4354.301 527.069 .000
a
 

Residual 107.397 13 8.261   

Total 8816.000 15    

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

Correlations 

B 

Std. 

Error Beta Zero-order Partial Part 

1 (Constant) -12.278 1.558  7.880 .000    

#P .520 .057 .670 9.101 .000 .984 .930 .279 

#D .267 .057 .344 4.677 .000 .954 .792 .143 

 

To assess the normality of the residuals, the P-P plot and histogram of residuals 

are examined. Figure (B1-a) is a histogram of the residuals with a normal curve 
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superimposed.  The residuals look close to normal. Figure (B1-b) is also a plot of the 

residuals versus predicted median number of zero connection routes.  The pattern shown 

here indicates no problems with the assumption that the residuals are normally distributed 

at each level of median number of zero connection routes and constant in variance across 

levels of median number of zero connection routes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B1: Residual analysis for number of zero connection routes versus #P, #D at the 

area size 25 sqM. 

 

B.4. Multiple Regression Analysis (Predictors: (Constant), #Stops, #D, #P and 

Dependent Variable: Rate of success; area size 25 sqM) 

 

To examine the relationship between the mean rate of success and the number of 

drivers, the number of riders and the number of points to be visited by each driver in a 

small dense network with the area size of 25 square Miles, a multiple linear regression 

analysis is conducted where the mean rate of success (Rate of Success) is the dependent 

variable and the number of drivers (#D), the number of riders (#P), and the number of 

points to be visited by each driver (#Stops) are the independent variables. The data set 

(b) Normal P-P Plot of 

Regression Standardized 

Residual 

(a) Histogram of 

Regression Standardized 

Residual 
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includes 112 observations extracted from the 224 numerical examples. The 112 

observations are associated with the Rate of Success for each given combination of #P, 

#D and #Stops at the area size of 25 Square Miles. Table B-8 shows the descriptive 

statistics for the multiple linear regression analysis.  

Table B-8: Descriptive statistics for the multiple linear regression analysis of Rate of 

Success versus #P, #D, #Stops; area size: 25 sqM 

Variable Mean Std. Deviation N 

Rate of success .5733 .16791 112 

#P 56.8750 30.38881 112 

#D 56.8750 30.38881 112 

Area 25.0000 .00000 112 

#Stops 5.0000 2.00899 112 

 

The correlation analysis of the model suggests there are high correlations between the 

mean rate of success and the number of drivers and riders and a relatively important 

correlation between the mean rate of success and the number of points to be visited by 

each driver. Pearson correlation coefficient between Rate of success and #P is .757, the 

correlation coefficient between Rate of success and #D is 0.835, and the correlation 

coefficient between Rate of success and #Stops is .339. Summary output for the multiple 

linear regression model is presented in Table B-9 The high value of R square (R Square: 

0.813, Adjusted R Square: 0.807) and the low value of Standard Error (.07368) suggest 

that the regression model explains the variation in the Rate of Success well. 

Table B-9: Summary output for the multiple linear regression analysis of Rate of 

Success versus #P, #D, #Stops; area size: 25 sqM 

Model 

R R Square Adjusted R Square Std. Error of the Estimate 

dimension0 1 .901 .813 .807 .07368 

 

The high values of t-statistics as well as the low value of p-value for the 

coefficients of the model also suggest that variable coefficients are statistically significant 

for the multiple linear regression model. Table B-10 shows the summary ANOVA 
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analysis for the multiple linear regression analysis. Considering the unstandardized 

coefficients (B’s) of dependent variables, the regression analysis results in the following 

multiple linear regression model: 

Y= .169 + (-6.783E-5) X1 + (0.005) X2 + (0.028) X3                     (B-2) 

where Rate of Success is denoted by Y, and X1, X2, and X3 are representing #P, #D, and 

#Stops in the model. The standardized coefficients (Beta) for the independent variables 

suggest that: 

 Interpretation 1: A one S.D. change in #P produces a predicted change of -.012 S.D.’s in the 

mean of Rate of Success in the dense and small network of area size 25 square Miles, net of 

other variables, i.e., rate of success slightly decreases as the number of participating riders 

increases when other input parameters remain unchanged. 

 Interpretation 2: a one S.D. change in #D produces a predicted change of .846 S.D.’s in the 

mean of Rate of Success in the dense and small network of area size 25 square Miles, net of 

other variables, i.e., rate of success significantly increases as the number of participating 

drivers increases when other input parameters remain unchanged.. 

 Interpretation 3: A one S.D. change in in #Stops produces a predicted change of 0.339 S.D.’s 

in the mean of Rate of Success in the dense and small network of area size 25 square Miles, 

net of other variables, i.e., rate of success significantly increases as the number of stop points 

increases when the other input parameters remain unchanged.. 

 Interpretation 4: #D is substantially more important than #Stops and #P in determining the 

level of Rate of Success in the small network of area size 25 square Miles. 

 Interpretation 5: More than 80 percent of the variation in Rate of Success is explained in 

order of importance by #D, #Stops, #P.  
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Table B-10: Summary ANOVA analysis for the regression analysis of Rate of Success 

versus #P, #D, #Stops; area size: 25 sqM 

Sum of 

Squares Df 

Mean 

Square F Sig. 

Regression 2.543 3 .848 156.149 .000 

Residual .586 108 .005   

Total 3.130 111    

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% 

Confidence 

Interval for B Correlations 

B 

Std. 

Error Beta 

Lower 

Bound 

Upper 

Bound 

Zero-

order Partial Part 

1 (Constant) .169 .023  7.30 .000 .124 .215 .124 .215  

#P -

6.783E-

5 

.001 -.012 -

.123 

.903 -.001 .001 -.001 .001 .75 

#D .005 .001 .846 8.46 .000 .004 .006 .004 .006 .85 

#Stops .028 .003 .339 8.10 .000 .021 .035 .021 .035 .39 

 

To assess the normality of the residuals, the P-P plot and histogram of residuals 

are examined. Figure (B2-a) is a histogram of the residuals with a normal curve 

superimposed.  The residuals look close to normal. Figure (B2-b) is also a plot of the 

residuals versus predicted mean rate of success. The pattern shown here indicates no 

problems with the assumption that the residuals are normally distributed at each level of 

median number of zero connection routes and constant in variance across levels of mean 

rate of success. 
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Figure B2: Residual analysis for rate of success versus #P, #D, #Stops at the area size 25 

sqM. 

 

B.5. Regression (Predictors: (Constant), #2-connection routes, #0-connection routes, 

#1-connection routes and Dependent Variable: CPU Time(sec); area size: 25 sqM) 

 

To examine the relationship between the mean CPU running time and the median 

number of zero connection routes, the median number of one connection routes, and the 

median number of two connection routes, a multiple linear regression analysis is 

conducted where the mean CPU running time (CPU Time(sec)) is the dependent variable 

and the median number of zero connection routes (#0-connection routes), the median 

number of one connection routes (#1-connection routes), and the median number of two 

connection routes (#2-connection routes) are independent variables. The data set includes 

112 observations extracted from the 224 numerical examples. The 112 observations are 

(b) Normal P-P Plot of 

Regression Standardized 

Residual 

(a) Histogram of Regression 

Standardized Residual 
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associated with the CPU running time for each given combination of #0 connection 

routes, #1 connection route and #2 connection route at the area size of 25 Square Miles. 

Summary output for the multiple linear regression model is presented in Table B-11. 

The high value of R square (R Square: 0.620, Adjusted R Square: 0.609) and the 

relatively low value of Standard Error (23.049) suggest that the regression model 

explains the variation in the CPU running time. 

Table B-11: Summary output for the multiple linear regression analysis of CPU Time 

(sec) versus #0-connection routes, #1-connection routes, #2-connection routes; area 

size: 25 sqM 

Model R R Square Adjusted R Square Std. Error of the Estimate 

dimension0 1 .787
a
 .620 .609 23.04977 

 

The high values of t-statistics as well as the low value of p-value for the 

coefficients of the model also suggest that variable coefficients are statistically significant 

for the multiple linear regression model. Table B-12 shows the summary ANOVA 

analysis for the multiple linear regression analysis. Considering the unstandardized 

coefficients (B’s) of dependent variables, the regression analysis results in the following 

multiple linear regression model: 

Y= -11.724+ (.285) X1 + (5.928) X2 + (7.139) X3                            (B-3) 

where CPU Running Time is denoted by Y, and X1, X2, and X3 are representing #0-

connection routes, #1-connection routes, and #2-connection routes in the model. The 

standardized coefficients (Beta) for the independent variables suggest that: 

 Interpretation 1: A one S.D. change in #0-connection routes produces a predicted 

change of .185 S.D.’s in the mean of CPU running time in the dense and small 

network of area size 25 square Miles, net of other variables, i.e., CPU running time 

increases as the number of zero connection routes increases. 
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 Interpretation 2: A one S.D. change in #1-connection routes produces a predicted 

change of .429 S.D.’s in the mean of CPU running time in the dense and small 

network of area size 25 square Miles, net of other variables, i.e., CPU running time 

significantly increases as the number of one connection routes increases. 

 Interpretation 3: A one S.D. change in #2-connection routes produces a predicted 

change of .286 S.D.’s in the mean of CPU running time in the dense and small 

network of area size 25 square Miles, net of other variables, i.e., CPU running time 

increases as the number of two connection routes increases. 

 Interpretation 4: #1-connection routes is substantially more important than #0-

connection routes and #2-connection routes in determining level of mean CPU 

Running Time in the small network of area size 25 square Miles. 

 Interpretation 5: More than 60 percent of the variation in mean CPU Running Time is 

explained in order of importance by #1-connection routes, #2-connection routes, and 

#0- connection routes.  

Table B-12: Summary ANOVA analysis for the regression analysis of CPU Time (sec) 

versus #0-connection routes, #1-connection routes, #2-connection routes; area size: 25 

sqM 

Sum of 

Squares Df Mean Square 

Regression 93576.395 3 31192.13 

Residual 57379.509 108 531.292 

Total 150955.905 111  

Model Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. B Std. Error Beta 

1 (Constant) -11.724 3.745  -3.131 .002 

#0-connection 

routes 

.285 .118 .185 2.424 .017 

#1-connection 

routes 

5.928 1.172 .429 5.058 .000 

#2-connection 

routes 

7.139 2.138 .286 3.339 .001 
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To assess the normality of the residuals, the P-P plot and histogram of residuals 

are examined. Figure (B3-a) is a histogram of the residuals with a normal curve 

superimposed.  The residuals look close to normal. Figure (B3-b) is also a plot of the 

residuals versus predicted mean CPU running time. The pattern shown here indicates no 

problems with the assumption that the residuals are normally distributed at each level of 

mean CPU running time and constant in variance across mean CPU running time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure B3: Residual analysis for CPU Time (sec) versus #0-connection routes, #1-

connection routes, #2-connection routes at the area size 25 sqM. 

 

B.6. Multiple Regression Analysis (Predictors: (Constant), #2-connection routes, #0-

connection routes, #1-connection routes and Dependent Variable: Rate of success) 

 

To examine the relationship between the mean Rate of Success and the median 

number of zero connection routes, the median number of one connection routes, and the 

median number of two connection routes, a multiple linear regression analysis is 
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Regression Standardized 
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Regression Standardized 

Residual 
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conducted where the mean Rate of Success is the dependent variable and the median 

number of zero connection routes (#0-connection routes), the median number of one 

connection routes (#1-connection routes), and the median number of two connection 

routes (#2-connection routes) are independent variables. The data set includes all the 

observations extracted from the 224 numerical examples. Table B-13 shows the 

descriptive statistics for the multiple linear regression analysis.  

Table B-13: Descriptive statistics for the multiple linear regression analysis of Rate of 

Success versus #0-connection routes, #1-connection routes, #2-connection routes 

Variable Mean Std. Deviation N 

Rate of success .3113 .28915 224 

#0-connection routes 18.1964 22.64023 224 

#1-connection routes 1.2098 2.19573 224 

#2-connection routes .5848 1.17597 224 

 

The correlation analysis of the model suggests there are high correlations between the 

mean rate of success and the median number of zero connection routes, the median 

number of one connection routes, and the median number of two connection routes. 

Pearson correlation coefficient between rate of Success and #0-connection routes is .856, 

the correlation coefficient between Rate of Success and #1-connection routes is .687, and 

the correlation coefficient between Rate of Success and #2-connection routes is .626. 

Summary output for multiple linear regression is presented in Table B-14. The high value 

of R square (R Square: 0.748, Adjusted R Square: 0.744) and the low value of Standard 

Error (.146) suggest the regression model explains the variation well. 

Table B-14: Summary output for the multiple linear regression analysis of Rate of 

Success versus #0-connection routes, #1-connection routes, #2-connection routes 

Model R R Square Adjusted R Square Std. Error of the Estimate 

dimension0 1 .865 .748 .744 .14617 
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The high values of t-statistics as well as the low value of p-value for the 

coefficients of the model also suggest that variable coefficients are statistically significant 

for the multiple linear regression model. Table B-15 shows the summary ANOVA 

analysis for the multiple linear regression analysis. Considering the unstandardized 

coefficients (B’s) of dependent variables, the regression analysis results in the following 

multiple linear regression model: 

Y= .113+ (.009) X1 + (.021) X2+ (.005) X3                                       (B-4) 

where mean rate of success is denoted by Y, and X1, X2, X3, and X4 are representing 

#0-connection routes, #1-connection routes, and #2-connection routes in the model.  

Table B-15: Summary ANOVA analysis for the regression analysis of Rate of Success 

versus #0-connection routes, #1-connection routes, #2-connection routes 

Sum of 

Squares 

df Mean 

Square F 

Sig. 

Regression 13.944 3 4.648 217.537 .000 

Residual 4.701 220 .021   

Total 18.645 223    

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% 

Confidence 

Interval for B 

B 

Std. 

Error Beta 

Lower 

Bound 

Upper 

Bound 

1 (Constant) .113 .013  9.011 .000 .088 .138 

#0-connection 

routes 

.009 .001 .729 14.560 .000 .008 .011 

#1-connection 

routes 

.021 .007 .161 2.953 .003 .007 .035 

#2-connection 

routes 

.005 .013 .022 .416 .678 -.020 .031 

 

The standardized coefficients (Beta) for the independent variables suggest that: 

 A one S.D. change in #0-connection routes produces a predicted change of .729 

S.D.’s in the mean Rate of Success, net of other variables, i.e., rate of success 

significantly increases as the number of zero connection routes increases. 
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 A one S.D. change in #1-connection routes produces a predicted change of .161 

S.D.’s in the mean Rate of Success, net of other variables, i.e., rate of success 

increases as the number of one connection routes increases.  

 A one S.D. change in #2-connection routes produces a predicted change of .022 

S.D.’s in the mean Rate of Success, net of other variables, i.e., rate of success slightly 

increases as the number of two connections routes increases. 

  #0-connection routes and #1-connection routes are substantially more important than 

#2-connection routes in determining Rate of Success. 

 Around 75 percent of the variation in Rate of Success is explained in order of 

importance by #0-connection routes, #1-connection routes, and #2-connection routes.  

 #2-connection routes with very low standardized coefficient of .022 and high 

significant level of .678 has the least effect on the model. It also makes up more than 

.25 of mean total running time of the algorithm. Table B-16 shows the CPU-time 

percentage for #0-connection routes, #1-connection routes, and #2-connection routes. 

 

Table B-16: CPU-time percentage for #0-connection routes, #1-connection routes, and 

#2-connection routes 

 N Mean Std. Deviation Variance 

0-connection routes  224 .1294 .13754 .019 

1-connection routes  224 .6218 .17106 .029 

2-connection routes  224 .2567 .12543 .016 

Valid N (listwise) 224    

 

To examine how the removal of #2-connection routes affects the model, a 

regression analysis has been conducted. By the removal of #2-connection routes in 

model, R square remains almost the same and the coefficients for remaining variables 
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slightly change.  Table B-17 shows the summary output after removal of #2-connection 

from the model.  

Table B-17: Summary output for the multiple linear regression analysis of Rate of 

Success versus #0-connection routes and #1-connection routes 

Model R R Square Adjusted R Square Std. Error of the Estimate 

dimension0 1 .865 .748 .745 .14590 

 

Table B-18 shows the summary output for the ANOVA analysis for the multiple 

linear regression analysis after removing #2-connection from the model.  

Table B-18: Summary ANOVA analysis for the regression analysis of Rate of Success 

versus #0-connection routes, #1-connection routes 

Model 

Unstandardized 

Coefficients 

Standardized 

Coefficients 

t Sig. 

95.0% 

Confidence 

Interval for B 

B 

Std. 

Error Beta 

Lower 

Bound 

Upper 

Bound 

1 (Constant) .113 .013  9.019 .000 .088 .138 

#0-connection 

routes 

.009 .001 .735 15.553 .000 .008 .011 

#1-connection 

routes 

.023 .006 .172 3.640 .003 .010 .035 

 

 There should be complementary relationships between #0-connection routes, #1-

connection routes and #2-connection routes. To check the relationship between #0-

connection routes, #1-connection routes, and #2-connection routes a correlation 

analysis is conducted. Table B-19 shows the Summary output for the correlation 

analysis. As the table shows by the increase of #0-connection routes, #1-connection 

routes and #2-connection routes decreases.   

Table B-19: Summary output for the correlation analysis of #0-connection routes, #1-

connection routes, and #2-connection routes 

Model #2-connection 

routes 

#0-connection 

routes 

#1-connection 

routes 

1 Correlations #2-connection routes 1.000 -.323 -.494 

#0-connection routes -.323 1.000 -.416 

#1-connection routes -.494 -.416 1.000 
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Covariances #2-connection routes .000 -2.654E-6 -4.566E-5 

#0-connection routes -2.654E-6 4.087E-7 -1.910E-6 

#1-connection routes -4.566E-5 -1.910E-6 5.151E-5 
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