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Nuclear power plants (NPPs) generated about 10% of the world’s electricity in 2020 and about 

1/3 of the world’s low-carbon electricity production. Probabilistic risk assessments (PRAs) are 

used to estimate the risk posed by NPPs, generate insights related to strengths and vulnerabilities, 

and support risk-informed decisionmaking related to safety and reliability. While PRAs are 

typically carried out on a reactor-by-reactor basis, the Fukushima Dai-ichi accident highlighted 

the need to also consider multi-unit accidents. To properly characterize the risks of reactor core 

damage and subsequent radiation release at a multi-unit site, it is necessary to account for 

dependencies among reactors arising from the possibility that adverse conditions affect multiple 

units concurrently. For instance, the seismic hazard is one of the most critical threats to NPP 



 

structures, systems, and components (SSCs) because it affects their redundancy. Seismic PRAs 

are comprised of three elements: seismic hazard analysis, fragility evaluation, and systems 

analysis. 

This dissertation presents a Bayesian network (BN) perspective on the elements of a multi-unit 

seismic PRA (MUSPRA) by outlining a MUSPRA approach that accounts for the dependencies 

across NPP reactor units. BNs offer the following advantages: graphical representation that 

enables transparency and facilitates communicating modeling assumptions; efficiency in 

modeling complex dependencies; ability to accommodate differing probability distribution 

assumptions; and facilitating multi-directional inference, which allows for the efficient 

calculation of joint and conditional probability distributions for all random variables in the BN. 

The proposed MUSPRA approach considers the spatial variability of the ground motions (hazard 

analysis), dependent seismic performance of SSCs (fragility evaluation), and efficient BN 

modeling of systems (systems analysis). Considering the spatial variability of ground motions 

represents an improvement over the typical assumption that ground motions across a NPP site 

are perfectly correlated. The method to model dependent seismic performance of SSCs presented 

is an improvement over the current “perfectly dependent or independent” approach for dependent 

seismic performance and provides system failure probability results that comply with theoretical 

bounds. Accounting for these dependencies in a systematic manner makes the MUSPRA more 

realistic and, therefore, should provide confidence in its results (calculated metrics) and risk 

insights.  
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Chapter 1 Introduction 

1.1 Motivation 

In 2020, nuclear power plants (NPPs) generated 2,553.2 terawatt-hours of emission-free, low-

carbon baseload electricity, which accounted for about 10% of total global electricity generation 

and nearly a third of the world’s low-carbon electricity production [1]. As shown in Figure 1-1, 

electricity generation using NPPs in the U.S. has the highest capacity factor2 of all fuel sources, 

which makes nuclear power an attractive carbon-free and sustainable baseload source of 

electricity. It is typical for a NPP site to contain multiple reactor units and other sources of 

radioactive material (e.g., spent-fuel pool and independent spent fuel storage installation). For 

instance, as of June 2021, there are 181 NPP sites worldwide with 440 nuclear reactor units in 

operation [3], [4]. About 89.1 percent of the nuclear reactor units are located on multi-unit NPP 

sites. Table 1-1 summarizes the NPP site information by country. 

 

2  Capacity factor is the ratio of the electrical energy produced by a generating unit for the period of time 

considered to the electrical energy that could have been produced at continuous full power operation during the 

same period [2]. 



2 

 
Figure 1-1 Capacity factors of electricity generation by fuel source in the U.S. in 2020 [5], 

[6]. The green and orange bars indicate non-fossil and fossil fuel sources, 
respectively. 

Probabilistic risk assessments (PRAs) (also referred to as probabilistic safety assessments) are 

widely used to estimate the risk posed by nuclear power facilities and generate insights related to 

the strengths and potential vulnerabilities of NPP designs [7]. A PRA answers a set of questions 

known as the risk triplet: “What can go wrong?” “How likely it is?” and “What are the 

consequences?” [8]. Despite the presence of multiple reactor units at most NPP sites, the safety 

and risk analyses are typically performed on a reactor-by-reactor basis. Under such analyses, 

when one reactor is being analyzed, the other(s) is (are) assumed to be in a safe, stable condition 

or otherwise unaffected. The Fukushima Dai-ichi accident [9]–[11] highlighted the need to 

reconsider this assumption and address multi-unit accidents in NPP PRAs. The accident at the 

1.3%

1.8%

11.6%

13.4%

14.0%

14.3%

40.2%

56.6%

20.5%

24.9%

35.4%

41.5%

58.4%

63.2%

66.1%

74.3%

92.5%

0.0% 10.0% 20.0% 30.0% 40.0% 50.0% 60.0% 70.0% 80.0% 90.0% 100.0%

Petroleum - Gas Turbine

Petroleum - Internal Combustion

Natural Gas - Gas Turbine

Petroleum - Steam Turbine

Natural Gas - Internal Combustion

Natural Gas - Steam Turbine

Coal

Natural Gas - Combined Cycle

Solar - Thermal

Solar - Photovoltaic

Wind

Hydroelectric

Wood

Other Biomass

Other Gas

Geothermal

Nuclear

Capacity Factor



3 

Fukushima Dai-ichi NPP initiated as an earthquake followed by a tsunami that resulted in three 

of the six units at the site experiencing core damage and subsequent release of radioactive 

material to the environment. The focus of this dissertation is on the performance of multi-unit 

PRA (MUPRA) to assess risks from seismic events because “[i]t has long been recognized that 

external events, particularly seismic and external flooding events, could be substantial 

contributors to risk because of the potential for multiple common-cause failures” [10]. An 

earthquake may result in a core damage event, and radiation release. The seismic PRA is 

intended to estimate the frequency of those adverse events. 

Seismic PRAs are comprised of three key elements: (1) seismic hazard analysis, (2) seismic 

fragility evaluation, and (3) systems (plant response) analysis [12]. The seismic hazard analysis 

is typically performed using the probabilistic seismic hazard analysis (PSHA) process, which 

estimates the frequency (per year) of exceeding a certain value of a ground motion parameter 

(e.g., peak ground acceleration (PGA) or spectral acceleration). The results of a PSHA are 

typically presented as a seismic hazard curve for a location of interest. The fragility evaluation is 

used to estimate the seismic capacity and conditional probability of failure of structures, systems, 

and components (SSCs) as a function of the level (intensity) of a ground motion parameter. The 

system (plant response) analysis includes the modeling of the NPP’s response to the ground 

motion caused by an earthquake using event trees and fault trees. The plant response also 

includes the quantification of the appropriate risk metrics (e.g., core damage frequency). To 

realistically model seismic events in a MUPRA, advancements are needed in each of the key 

elements of a seismic PRA. 
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Despite the importance of MUPRA, the current state of practice is relatively limited and existing 

analyses have typically used a number of simplifying assumptions. These simplifying 

assumptions are the result of limited knowledge, resource constraints, and the limitations of 

existing PRA tools used in the nuclear industry. For example, current multi-unit seismic PRAs 

(MUSPRA) (e.g., [13]) assume that all units at the NPP site experience the same ground motion, 

that is, the ground motions at all units are perfectly correlated. At the NPP site scale, there is 

expected to be spatial variability in the ground motion at different locations around the site for a 

given earthquake due to incoherence, wave-passage, attenuation, and site-response effects [14]. 

Thus, the perfect ground motion correlation assumption is not realistic. Lack of realism in a 

MUSPRA may lead to distorted risk insights, may mask some risk contributors, and can 

adversely affect risk-informed decisionmaking. Therefore, an advancement is needed to include 

the spatial variability of ground motion in a MUSPRA and understand the potential effects of the 

simplifying assumptions. 

Given that ground motions due to an earthquake affect all units at a NPP site (seismic demand) 

and the redundant SSCs are designed, manufactured, installed, maintained, and analyzed in 

similar ways (seismic capacity), there is dependency (correlation) between the seismic 

performance of SSCs. The current approach in seismic PRAs is to assume that the seismic 

performance of redundant SSCs is either perfectly correlated or independent [15]. These two 

assumptions are extreme and the truth is likely somewhere in the middle. Therefore, an 

advancement is needed to consider partial correlation in the seismic performance of redundant 

SSCs while at the same time incorporating the spatial variability of ground motions in a 

MUSPRA. 
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The systems (plant response) analysis in seismic PRAs are typically developed using event trees 

and fault trees, where the underlying assumption is that the pivotal events in event trees and 

basic events in fault trees are independent [16]. A complementary approach to the event 

tree/fault tree approach (advancement) is needed to properly account for the spatial variability of 

ground motion and dependent seismic performance of SSCs in the estimation of NPP site-based 

risk metrics and development of risk insights in a MUSPRA. 

1.2 Research Objectives 

This dissertation has three objectives (listed below) which are related to the key elements of a 

seismic PRA and the needed advancements discussed in Section 1.1. 

Objective 1: Develop a method that models the spatial variability of ground motion in a 

MUSPRA. 

Objective 2: Develop a method to model the dependent seismic performance of SSCs that 

integrates with the method that models the spatial variability of ground motion, 

while leveraging the existing conceptual approaches used in seismic PRAs 

performed in the nuclear industry. 

Objective 3: Integrate the works performed to accomplish Objectives 1 and 2 into a MUSPRA 

approach to explore the relative importance of different types of correlation on the 

NPP site-based risk metrics. 

The research performed to address Objectives 1, 2, and 3 is described in Chapter 3, Chapter 4, 

and Chapter 5, respectively. 
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1.3 Methods 

This dissertation uses Bayesian networks (BNs) as the communication, modeling, and 

quantification approach to accomplish the research objectives described in Section 1.2. An 

introduction to BNs is provided in Chapter 2. For a hypothetical dual unit NPP site, Figure 1-2 

shows a BN that illustrates an overview of the three methods that are integrated to form the 

MUSPRA approach proposed by this dissertation. 

 
Figure 1-2 Illustration of the methods overview in the MUSPRA approach 

First is the method for capturing the effects of spatial variability of ground motion at an NPP site 

in the MUSPRA, which is discussed in detail in Chapter 3. The proposed method uses the results 

from an existing PSHA performed for a reference location at the site (e.g., the site seismic hazard 

curve), which is reflected by the node 1-GM in Figure 1-2 and represents the seismic demand for 

the SSCs in Unit 1. Then, the method estimates the conditional probability distribution of the 

ground motion at a non-reference location represented by the node 2-GM in Figure 1-2 and 

reflects the seismic demand of the SSCs in Unit 2. The method accounts for the spatial 

Spatial Variability of Ground Motion
(Chapter 3)

EES 1-GM

2-GM

Unit 1

Unit 2

Site

Dependent Seismic Performance
(Chapter 4)

Multi-Unit Seismic Probabilistic Risk Assessment Approach
(Chapter 5)

EES: earthquake of engineering significance
GM: ground motion
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variability in ground motion using the node 𝑃𝑃1,2
′  in Figure 1-2. The node EES represents an 

earthquake of engineering significance (EES) event. An EES event occurs when the ground 

motion exceeds a minimum threshold. In the context of a seismic PRA, the minimum threshold 

is the starting value of the first ground motion bin in the discretized seismic hazard curve. 

Next is the method for modeling the dependent seismic performance of SSCs, which is discussed 

in detail in Chapter 4. The proposed method relies on a systematic search of the common sources 

of uncertainties among the SSCs of interest. In Figure 1-2, the nodes Unit 1 and Unit 2 represent 

the seismic performance of each unit and at a high level these are the SSCs of interest. The 

systematic search for the common sources of uncertainty results in the node 𝜀𝜀𝑈𝑈1,𝑈𝑈2
∗ , which is a 

common parent to the seismic performance of each unit and accounts for the dependency 

between the units. 

Finally, the methods for modeling spatial variability of ground motion and dependent seismic 

performance are integrated in a MUSPRA approach, whose details are discussed in Chapter 5. 

The proposed MUSPRA approach creates the MUPRA model based on the single-unit PRA 

model, maps the event trees and fault trees in the seismic PRA into an equivalent BN, and uses 

the nodes related to the spatial variability of ground motion and dependent seismic performance 

to explicitly address the dependencies between the units and estimate the NPP site-based risk 

metrics (i.e., the node Site in Figure 1-2). The MUSPRA approach also uses efficient BN 

modeling of systems to complement the typically used event trees and fault trees. 

1.4 Dissertation Outline 

The remaining of this dissertation is organized as follows. Chapter 2 presents a brief introduction 

to Bayesian networks and provides an example to illustrate the general concepts behind how the 
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calculations in subsequent chapters of this dissertation are performed. Chapter 3 presents the 

method for obtaining the conditional probability distribution of ground motion at a non-reference 

location(s) on a site given the ground motion at a reference location on the same site. Chapter 4 

discusses the method to model dependent seismic performance of SSCs. Chapter 5 presents the 

MUSPRA approach that integrates the spatial variability of ground motion and dependent 

seismic performance. Finally, Chapter 6 provides conclusions, summarizes the contributions of 

this dissertation, and discusses potential future research. 

Table 1-1 Summary of NPP Sites by Country (as of June 2021) [3], [4] 

Country 
# of  

Units in 
Operation 

# of 
Operational 

Units in 
Multi-Unit 

Sites 

# of 
Sites 

# of 
Single- 

Unit 
Sites 

# of 
Multi- 
Unit 
Sites 

# of 
Sites 
with 

2 
Units 

# of 
Sites 
with 

3 
Units 

# of 
Sites 
with 

4 
Units 

# of 
Sites 
with 

5 
Units 

# of 
Sites 
with 

6 
Units 

# of 
Sites 
with 

7 
Units 

# of 
Sites 
with 

8 
Units 

Argentina 3 2 2 1 1 1 0 0 0 0 0 0 
Armenia 1 0 1 1 0 0 0 0 0 0 0 0 
Belarus 1 0 1 1 0 0 0 0 0 0 0 0 
Belgium 7 7 2 0 2 0 1 1 0 0 0 0 

Brazil 2 2 1 0 1 1 0 0 0 0 0 0 
Bulgaria 2 2 1 0 1 1 0 0 0 0 0 0 
Canada 19 18 3 1 3 0 0 1 0 1 0 1 
China 51 50 14 1 14 7 0 3 1 2 1 0 
Czech 

Republic 6 6 2 0 2 1 0 1 0 0 0 0 

Finland 4 4 2 0 2 2 0 0 0 0 0 0 
France 56 56 18 0 18 9 0 8 0 1 0 0 

Germany 6 0 0 6 0 0 0 0 0 0 0 0 
Hungary 4 4 1 0 1 0 0 1 0 0 0 0 

India 23 23 7 0 7 3 1 2 0 1 0 0 
Iran 1 0 0 1 0 0 0 0 0 0 0 0 

Japan 33 27 9 6 9 5 2 1 0 0 1 0 
Mexico 2 2 1 0 1 1 0 0 0 0 0 0 

Netherlands 1 0 0 1 0 0 0 0 0 0 0 0 
Pakistan 6 6 2 0 2 1 0 1 0 0 0 0 
Romania 2 2 1 0 1 1 0 0 0 0 0 0 
Russia 38 38 11 0 11 2 2 7 0 0 0 0 

Slovakia 4 4 2 0 2 2 0 0 0 0 0 0 
Slovenia 1 0 0 1 0 0 0 0 0 0 0 0 

South 
Africa 2 2 1 0 1 1 0 0 0 0 0 0 

South 
Korea 24 24 4 0 4 0 0 0 1 2 1 0 

Spain 7 4 2 3 2 2 0 0 0 0 0 0 
Sweden 6 5 2 1 2 1 1 0 0 0 0 0 

Switzerland 4 2 1 2 1 1 0 0 0 0 0 0 
Ukraine 15 15 4 0 4 1 1 1 0 1 0 0 



9 

Table 1-1 Summary of NPP Sites by Country (as of June 2021) [3], [4] 

Country 
# of  

Units in 
Operation 

# of 
Operational 

Units in 
Multi-Unit 

Sites 

# of 
Sites 

# of 
Single- 

Unit 
Sites 

# of 
Multi- 
Unit 
Sites 

# of 
Sites 
with 

2 
Units 

# of 
Sites 
with 

3 
Units 

# of 
Sites 
with 

4 
Units 

# of 
Sites 
with 

5 
Units 

# of 
Sites 
with 

6 
Units 

# of 
Sites 
with 

7 
Units 

# of 
Sites 
with 

8 
Units 

United 
Arab 

Emirates 
1 0 0 1 0 0 0 0 0 0 0 0 

United 
States 93 73 35 20 35 32 3 0 0 0 0 0 

United 
Kingdom 15 14 6 1 6 5 0 1 0 0 0 0 

TOTAL 440 392 181 48 133 80 11 28 2 8 3 1 
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Chapter 2 A Brief Introduction to Bayesian Networks 

The purpose of this chapter is to introduce the reader to Bayesian networks (BNs) and provide an 

example, using a relatively simple BN, to illustrate the concepts behind how the calculations in 

subsequent chapters of this dissertation are performed. The information in this chapter is mainly 

based on the works by Kjærulff and Madsen [17] and Bensi et al. [18]. 

Bayesian networks are a type of probabilistic graphical model (also known as probabilistic 

network). The graphical nature of a BN is a powerful tool for expressing the dependence and 

independence relationships among the random variables in a problem domain. Typically, BNs 

are used to represent causal relationships between random variables; however, this is not a 

requirement. The inference in BNs is based on the well-established theory of probability 

calculus; therefore, BNs provide a rigorous mathematical framework for “deriving conclusions 

under uncertainty, where multiple sources of information and complex interaction patterns are 

involved” [17]. 

The work in this dissertation focuses on discrete BNs to remain consistent with the discretization 

typically used in the modeling and quantification of a seismic PRA and to avoid some of the 

limitations associated with using continuous BNs. In the following section, an introduction to the 

terminology of BNs (which will be used throughout this dissertation) is provided, along with a 

brief overview of quantitative inference using BNs. 

2.1 Bayesian Networks 

A BN is a directed acyclic graph (DAG) consisting of nodes that represent random variables and 

directed links (also referred to as arcs or edges) that represent the probabilistic dependence 
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among the random variables. The BN defines a factorization of the joint probability distribution 

over the random variables [17]. A BN has a qualitative part, that is, the DAG and a quantitative 

part, a set of conditional probability functions. An example of a BN’s qualitative part is shown in 

Figure 2-1. 

 
Figure 2-1 Example of the qualitative part of a BN: the DAG 

In Figure 2-1, the circles labeled 𝑋𝑋𝑖𝑖, 𝑖𝑖 = 1, … , 4, are the nodes and the arrows between pairs of 

nodes are the directed links. In BN terminology, the 𝑋𝑋1 and 𝑋𝑋2 nodes in Figure 2-1 are root 

nodes and there is a marginal probability distribution associated with each of them. BN 

terminology uses “family terminology” to describe the relationship between nodes. For example, 

node 𝑋𝑋3 is a child of 𝑋𝑋1 as indicated by the arrow going from 𝑋𝑋1 to 𝑋𝑋3. Conversely, 𝑋𝑋1 is 

referred to as a parent of 𝑋𝑋3. Similarly, the parents of node 𝑋𝑋4 are nodes 𝑋𝑋1 and 𝑋𝑋2. There is a 

conditional probability distribution associated with each child node that specifies the probability 

that the child node is in a particular start given the states of the parent node(s). 

The quantitative part of the BN is the representation of the joint probability distribution of all 

nodes whose general continuous representation is [17]: 

 𝑓𝑓𝑋𝑋1,𝑋𝑋2,…,𝑋𝑋𝑛𝑛(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = �𝑓𝑓𝑋𝑋𝑖𝑖|𝑝𝑝𝑝𝑝(𝑋𝑋𝑖𝑖)�𝑥𝑥𝑖𝑖|𝑝𝑝𝑝𝑝(𝑥𝑥𝑖𝑖)�
𝑛𝑛

𝑖𝑖=1

 (2.1) 
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where 𝑓𝑓𝑋𝑋1,𝑋𝑋2,…,𝑋𝑋𝑛𝑛(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) is the joint probability density function of random variables 

𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛; 𝑓𝑓𝑋𝑋𝑖𝑖|𝑝𝑝𝑝𝑝(𝑋𝑋𝑖𝑖)�𝑥𝑥𝑖𝑖|𝑝𝑝𝑝𝑝(𝑥𝑥𝑖𝑖)� is the conditional probability density function of random 

variable 𝑋𝑋𝑖𝑖 given its parents, which are denoted by 𝑝𝑝𝑝𝑝(𝑋𝑋𝑖𝑖); and 𝑛𝑛 is the number of random 

variables in the BN. The general discrete representation of the joint probability distribution is: 

 𝑝𝑝𝑋𝑋1,𝑋𝑋2,…,𝑋𝑋𝑛𝑛(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) = �𝑝𝑝𝑋𝑋𝑖𝑖|𝑝𝑝𝑝𝑝(𝑋𝑋𝑖𝑖)
�𝑥𝑥𝑖𝑖|𝑝𝑝𝑝𝑝(𝑥𝑥𝑖𝑖)�

𝑛𝑛

𝑖𝑖=1

 (2.2) 

where 𝑝𝑝𝑋𝑋1,𝑋𝑋2,…,𝑋𝑋𝑛𝑛(𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛) is the joint probability mass function of random variables 

𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛; 𝑝𝑝𝑋𝑋𝑖𝑖|𝑝𝑝𝑝𝑝(𝑋𝑋𝑖𝑖)�𝑥𝑥𝑖𝑖|𝑝𝑝𝑝𝑝(𝑥𝑥𝑖𝑖)� is the conditional probability mass function of random 

variable 𝑋𝑋𝑖𝑖 given its parents, which are denoted by 𝑝𝑝𝑝𝑝(𝑋𝑋𝑖𝑖); and 𝑛𝑛 is the number of random 

variables in the BN. 

Applying Equation (2.1) to the BN shown in Figure 2-1 leads to the following joint probability 

density function: 

 
𝑓𝑓𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4) = 𝑓𝑓𝑋𝑋4|𝑋𝑋1,𝑋𝑋2(𝑥𝑥4|𝑥𝑥1, 𝑥𝑥2) ∙ 𝑓𝑓𝑋𝑋3|𝑋𝑋1(𝑥𝑥3|𝑥𝑥1) ∙ 𝑓𝑓𝑋𝑋1(𝑥𝑥1) ∙ 𝑓𝑓𝑋𝑋2(𝑥𝑥2) 

 (2.3) 

In discrete form, the application of Equation (2.2) to the BN in Figure 2-1 leads to the joint 

probability mass function and can be written as: 

 𝑝𝑝𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4) = 𝑝𝑝𝑋𝑋4|𝑋𝑋1,𝑋𝑋2(𝑥𝑥4|𝑥𝑥1,𝑥𝑥2) ∙ 𝑝𝑝𝑋𝑋3|𝑋𝑋1(𝑥𝑥3|𝑥𝑥1) ∙ 𝑝𝑝𝑋𝑋1(𝑥𝑥1) ∙ 𝑝𝑝𝑋𝑋2(𝑥𝑥2) (2.4) 

where 𝑝𝑝𝑋𝑋1,𝑋𝑋2,𝑋𝑋3,𝑋𝑋4(𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3, 𝑥𝑥4) = 𝑃𝑃(𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2,𝑋𝑋3 = 𝑥𝑥3,𝑋𝑋4 = 𝑥𝑥4) refers to the probability 

that the random variables 𝑋𝑋1 through 𝑋𝑋4 take on values (states) 𝑥𝑥1 through 𝑥𝑥4, respectively. 
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𝑝𝑝𝑋𝑋4|𝑋𝑋1,𝑋𝑋2(𝑥𝑥4|𝑥𝑥1, 𝑥𝑥2) = 𝑃𝑃(𝑋𝑋4 = 𝑥𝑥4|𝑋𝑋1 = 𝑥𝑥1,𝑋𝑋2 = 𝑥𝑥2) is the conditional probability that 𝑋𝑋4 = 𝑥𝑥4 

given that 𝑋𝑋1 = 𝑥𝑥1 and 𝑋𝑋2 = 𝑥𝑥2. 𝑝𝑝𝑋𝑋1(𝑥𝑥1) = 𝑃𝑃(𝑋𝑋1 = 𝑥𝑥1) and 𝑝𝑝𝑋𝑋2(𝑥𝑥2) = 𝑃𝑃(𝑋𝑋2 = 𝑥𝑥2) are the 

marginal probabilities that 𝑋𝑋1 = 𝑥𝑥1 and 𝑋𝑋2 = 𝑥𝑥2, respectively. 

In principle, any joint (e.g., 𝑓𝑓𝑋𝑋3,𝑋𝑋4(𝑥𝑥3, 𝑥𝑥4) or 𝑝𝑝𝑋𝑋3,𝑋𝑋4(𝑥𝑥3, 𝑥𝑥4)), marginal (e.g., 𝑓𝑓𝑋𝑋4(𝑥𝑥4) or 𝑝𝑝𝑋𝑋4(𝑥𝑥4)), 

or conditional probability distribution (e.g., 𝑓𝑓𝑋𝑋4|𝑋𝑋1,𝑋𝑋2(𝑥𝑥4|𝑥𝑥1, 𝑥𝑥2) or 𝑝𝑝𝑋𝑋4|𝑋𝑋1,𝑋𝑋2(𝑥𝑥4|𝑥𝑥1, 𝑥𝑥2)) can be 

calculated after establishing the joint probability distribution over all nodes in the BN. 

Conceptually, inference in BNs consists of the efficient application of Bayes’ rule: 

 𝑃𝑃(𝐴𝐴|𝐵𝐵) =
𝑃𝑃(𝐵𝐵|𝐴𝐴) ∙ 𝑃𝑃(𝐴𝐴)

𝑃𝑃(𝐵𝐵)  (2.5) 

where 𝑃𝑃(𝐵𝐵|𝐴𝐴) is the conditional probability of event 𝐵𝐵 given the occurrence of event 𝐴𝐴, which is 

also known as the likelihood function3 of the observed event 𝐵𝐵. 𝑃𝑃(𝐴𝐴) is the marginal probability 

of event 𝐴𝐴, which is also known as the prior probability of event A and represents the belief 

about the probability of event 𝐴𝐴 prior to getting any information about event 𝐵𝐵. 𝑃𝑃(𝐵𝐵) is a 

normalization constant obtained using the Theorem of Total Probability. 𝑃𝑃(𝐴𝐴|𝐵𝐵) is the posterior 

probability of event 𝐴𝐴 because it represents a belief about the probability of event 𝐴𝐴 after 

observing the occurrence of event 𝐵𝐵 [18]. Bayes’ rule plays a central role in inference using BNs 

because “the probability of a cause can be inferred when its effect has been observed” [17]. 

 

3  In PRA, the likelihood function may be synonymously referred to as “aleatory model,” stochastic model,” or 

“probabilistic model” and “is used to model the process that gives rise to the data [or event 𝐵𝐵 in the context of 

this discussion]” [19]. 
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Specifically, inference in BNs is typically carried out using algorithms that efficiently apply 

Bayes’ rule. The clustering algorithm, which was first proposed by Lauritzen and Spiegelhalter 

[20] and improved by Jensen et al. [21], is the prevailing inference algorithm in software 

packages, such as GeNIe [22], and it is based on message passing in a tree structure (junction 

tree) derived from the structure of the Bayesian network [17]. An explanation about the 

clustering algorithm and other inference algorithms is beyond the scope of this dissertation, but 

can be found in the aforementioned references. 

2.2 Example Bayesian Network Calculations 

The example BN presented in this section was adapted from the work by Kjærulff and Madsen 

[17] to make it more relevant to NPP applications. Consider an emergency diesel generator 

(EDG) in a hypothetical NPP. In NPP PRAs, one of the typically modeled failure modes of an 

EDG is the “failure to start” (i.e., the failure of the EDG to start on demand). In this example, 

assume that the failure to start of an EDG can be caused by a defective air start motor or a 

malfunctioning speed switch circuit. The BN for this problem is shown in Figure 2-2, where the 

nodes “Air Start Motor,” “Speed Switch Circuit,” and “EDG” represent the possible states of the 

air start motor, speed switch circuit, and EDG, respectively. For simplicity, each node in Figure 

2-2 is assumed to have two possible states, which are labeled in the tables next to each node. 

Further, assume that one in every 1,000 air start motors is defective and that five out of 100 

speed switch circuits malfunction.4 This information is used to derive the (marginal) probability 

 

4  These values are consistent with the example by Kjærulff and Madsen [17] and, therefore, do not represent 

actual EDG data from NPPs. 
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tables for the root nodes “Air Start Motor” (ASM) and “Speed Switch Circuit” (SwC); these are 

shown in Figure 2-2. In the case of the “EDG” (EDG) node, four conditional probability 

distributions need to be specified to account for the combination of the states of its parent nodes. 

Assume that if the air start motor is defective (Def), the EDG will fail to start. This is reflected 

by the probability of 1 assigned to state “Fails to Start” (FTS) whenever the air start motor is 

defective. If the air start motor is not defective (ND) and the speed switch circuit is 

malfunctioning (Mal), the EDG will fail to start in 10 out of 100 EDG demands. If the air start 

motor is not defective and the speed switch circuit is not malfunctioning (NM), then the EDG 

will fail to start in one out of 100 EDG demands; this 0.01 EDG failure-to-start probability 

captures other causes not explicitly considered in this problem. This is information results in the 

conditional probability table (CPT) for the “EDG” node, which is also shown in Figure 2-2. 

 
Figure 2-2 BN and CPTs for the EDG failure-to-start problem 

EDG

Air 
Start 

Motor

Speed 
Switch 
Circuit

CPT for EDG

Air Start Motor
(ASM)

Defective
(Def)

Not Defective
(ND)

Speed Switch Circuit
(SwC)

Malfunctioning
(Mal)

Not Malfunctioning
(Not Mal)

Malfunctioning
(Mal)

Not Malfunctioning
(Not Mal)

Fails to Start (FTS) 1 1 0.1 0.01

Does Not Fail to Start 0 0 0.9 0.99

CPT for Air Start Motor (ASM)

Defective (Def) 0.001

Not Defective (ND) 0.999

CPT for Speed Switch Circuit (SwC)

Malfunctioning (Mal) 0.05

Not Malfunctioning (NM) 0.95
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2.2.1 Forward Inference 

Suppose that we are interested in estimating the (marginal) probability that the EDG will fail to 

start (i.e., the state “Fails to Start” in the CPT for EDG in Figure 2-2) or 𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆). In BN 

terminology, this is known as forward (predictive) inference because the information is 

propagating in the direction of the arrows. First, by applying Equation (2.2) to the BN shown in 

Figure 2-2, the discrete joint probability distribution of the EDG failure-to-start problem is as 

follows: 

 𝑝𝑝(𝐸𝐸𝐸𝐸𝐺𝐺,𝐴𝐴𝑆𝑆𝑀𝑀, 𝑆𝑆𝑆𝑆𝐶𝐶) = 𝑝𝑝(𝐸𝐸𝐸𝐸𝐺𝐺|𝐴𝐴𝑆𝑆𝑀𝑀, 𝑆𝑆𝑆𝑆𝐶𝐶) ∙ 𝑝𝑝(𝐴𝐴𝑆𝑆𝑀𝑀) ∙ 𝑝𝑝(𝑆𝑆𝑆𝑆𝐶𝐶) (2.6) 

In Equation (2.6) and the subsequent discussion, we are omitting the subscripts EDG, ASM, and 

SwC for brevity. To obtain the marginal probability distribution of EDG, we need to “eliminate” 

the nodes ASM and SwC from the BN by summing (integrating) over all states of these nodes 

using the joint probability distribution. Mathematically, this operation is shown as Equation 

(2.7). 

 𝑝𝑝(𝐸𝐸𝐸𝐸𝐺𝐺) = ��𝑝𝑝(𝐸𝐸𝐸𝐸𝐺𝐺|𝐴𝐴𝑆𝑆𝑀𝑀, 𝑆𝑆𝑆𝑆𝐶𝐶) ∙ 𝑝𝑝(𝐴𝐴𝑆𝑆𝑀𝑀) ∙ 𝑝𝑝(𝑆𝑆𝑆𝑆𝐶𝐶)
𝑆𝑆𝑆𝑆𝐴𝐴𝐴𝐴𝑆𝑆𝐴𝐴

 (2.7) 

Applying Equation (2.7) to estimate the (marginal) probability that the EDG will fail to start (one 

possible state of the random variable EDG) is shown in Equation (2.8). 

 
𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆) = 𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆|𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓, 𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀) ∙ 𝑃𝑃(𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓) ∙ 𝑃𝑃(𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀)

+ 𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆|𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓, 𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑁𝑁𝑀𝑀) ∙ 𝑃𝑃(𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓) ∙ 𝑃𝑃(𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑁𝑁𝑀𝑀)
+ 𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆|𝐴𝐴𝑆𝑆𝑀𝑀 = 𝑁𝑁𝐸𝐸, 𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀) ∙ 𝑃𝑃(𝐴𝐴𝑆𝑆𝑀𝑀 = 𝑁𝑁𝐸𝐸) ∙ 𝑃𝑃(𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀)
+ 𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆|𝐴𝐴𝑆𝑆𝑀𝑀 = 𝑁𝑁𝐸𝐸, 𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑁𝑁𝑀𝑀) ∙ 𝑃𝑃(𝐴𝐴𝑆𝑆𝑀𝑀 = 𝑁𝑁𝐸𝐸) ∙ 𝑃𝑃(𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑁𝑁𝑀𝑀) 

(2.8) 
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All the required quantities to calculate Equation (2.8) can be found in the CPTs shown in Figure 

2-2 and its application is as follows: 

 
𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆) = 1 ∙ 0.001 ∙ 0.05 + 1 ∙ 0.001 ∙ 0.95 + 0.1 ∙ 0.999 ∙ 0.05 + 0.01 ∙ 0.999 ∙ 0.95 

= 0.00005 + 0.00095 + 0.004995 + 0.0094905 = 0.0154855 ≈ 0.0155 (2.9) 

The result of Equation (2.9) means that the EDG is estimated to fail to start about 15 times in 

1000 demands. 

2.2.2 Backward Inference 

Next, assume that we have observed that the EDG failed to start, which fixes the state of the 

node EDG to “Fail to Start.” We enter this information as “evidence” in the BN; i.e., we specify 

the state of a node in the BN as a fixed value. We would like to know what might be causing this 

observation (evidence), that is, we will estimate 𝑃𝑃(𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓|𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆) and 

𝑃𝑃(𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀|𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆), which corresponds to backward (diagnostic) inference because the 

information is propagating in the direction opposite of the direction of the arrows. The estimation 

of these conditional probabilities starts by applying Bayes’ rule: 

 𝑃𝑃(𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓|𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆) =
𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆|𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓) ∙ 𝑃𝑃(𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓)

𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆)  (2.10) 

 𝑃𝑃(𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀|𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆) =
𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆|𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀) ∙ 𝑃𝑃(𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀)

𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆)  (2.11) 

The denominator of Equations (2.10) and (2.11) was estimated using Equations (2.8) and (2.9). 

The numerator of Equations (2.10) and (2.11) is estimated using the joint probability distribution 

based on the application of Equation (2.2) to the BN shown in Figure 2-2 and by summing over 
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the states of nodes SwC and ASM, respectively. The application of this process is shown as 

Equations (2.12) and (2.13). 

 
𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆|𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓) ∙ 𝑃𝑃(𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓)

= �𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆|𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓, 𝑆𝑆𝑆𝑆𝐶𝐶) ∙ 𝑃𝑃(𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓) ∙ 𝑃𝑃(𝑆𝑆𝑆𝑆𝐶𝐶)
𝑆𝑆𝑆𝑆𝐴𝐴

 (2.12) 

 𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆|𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀) ∙ 𝑃𝑃(𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀)

= �𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆|𝐴𝐴𝑆𝑆𝑀𝑀, 𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀) ∙ 𝑃𝑃(𝐴𝐴𝑆𝑆𝑀𝑀) ∙ 𝑃𝑃(𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀)
𝐴𝐴𝑆𝑆𝐴𝐴

 

(2.13) 

Next, the expansion of Equations (2.12) and (2.13) and numerical substitution of the values in 

the CPTs of Figure 2-2 is as follows: 

 

𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆|𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓) ∙ 𝑃𝑃(𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓)

= 𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆|𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓, 𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑁𝑁𝑀𝑀) ∙ 𝑃𝑃(𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓) ∙ 𝑃𝑃(𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑁𝑁𝑀𝑀)

+ 𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆|𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓, 𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀) ∙ 𝑃𝑃(𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓) ∙ 𝑃𝑃(𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀)

= 1 ∙ 0.001 ∙ 0.95 + 1 ∙ 0.001 ∙ 0.05 = 0.00095 + 0.00005 = 0.001 

(2.14) 

 𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆|𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀) ∙ 𝑃𝑃(𝐴𝐴𝑆𝑆𝑀𝑀 = 𝑀𝑀𝑝𝑝𝑀𝑀)

= 𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆|𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓, 𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀) ∙ 𝑃𝑃(𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓) ∙ 𝑃𝑃(𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀)

+ 𝑃𝑃(𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆|𝐴𝐴𝑆𝑆𝑀𝑀 = 𝑁𝑁𝐸𝐸, 𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀) ∙ 𝑃𝑃(𝐴𝐴𝑆𝑆𝑀𝑀 = 𝑁𝑁𝐸𝐸) ∙ 𝑃𝑃(𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀)

= 1 ∙ 0.001 ∙ 0.05 + 0.1 ∙ 0.999 ∙ 0.05 = 0.00005 + 0.004995 = 0.005045 

(2.15) 

Finally, we substitute the results from Equations (2.14) and (2.9) into Equation (2.10), and 

Equations (2.15) and (2.9) into Equation (2.11) to obtain the conditional probabilities of interest. 

 𝑃𝑃(𝐴𝐴𝑆𝑆𝑀𝑀 = 𝐸𝐸𝑆𝑆𝑓𝑓|𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆) =
0.001

0.0155
= 0.065 (2.16) 

 𝑃𝑃(𝑆𝑆𝑆𝑆𝐶𝐶 = 𝑀𝑀𝑝𝑝𝑀𝑀|𝐸𝐸𝐸𝐸𝐺𝐺 = 𝐹𝐹𝐹𝐹𝑆𝑆) =
0.005045

0.0155
= 0.325 (2.17) 

These results mean that a malfunctioning speed switch circuit is more likely to be the cause of 

the EDG failure to start than a defective air start motor. 
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Chapter 3 Extension of Probabilistic Seismic Hazard Analysis to 

Account for the Spatial Variability of Ground Motions at a 

Multi-Unit Nuclear Power Plant Hard-Rock Site5 

3.1 Introduction 

Nuclear power plant (NPP) sites typically consist of multiple reactors (units). However, the 

safety and risk analyses (e.g., probabilistic risk assessment (PRA)) at these sites are typically 

performed on a reactor-by-reactor basis. Under such analyses, when one reactor is being 

analyzed, the other(s) is (are) assumed to be in a safe, stable condition or otherwise unaffected. 

In limited cases, when multi-unit effects are considered, the assessment typically makes 

simplifying assumptions that may affect the resulting safety or risk insights. 

The Fukushima Daiichi accident in March 2011 demonstrated the importance of accidents 

involving multiple units and highlighted the need for considering multi-unit accidents as part of 

PRAs. To properly characterize the risks at a multi-unit NPP site, it is necessary to account for 

the dependencies among the reactor units arising from the possibility that adverse conditions 

may affect multiple units concurrently. Moreover, these dependencies must be addressed in a 

realistic manner that does not alter important risk insights arising from the assessment. 

 

5  This chapter was published in the journal Structural Safety, Vol. 85, p. 101958, Jul. 2020, 

https://doi.org/10.1016/j.strusafe.2020.101958. 

https://doi.org/10.1016/j.strusafe.2020.101958
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Schroer and Modarres [23] proposed a classification schema for these dependencies to facilitate 

consideration of multi-unit accidents in a comprehensive manner. One of the dependencies in the 

classification schema pertains to the initiating events that may affect NPP sites. An earthquake is 

an example of an initiating event that will affect all units at the site. However, existing seismic 

PRAs typically neglect multi-unit effects or make the simplifying assumption that all units at the 

site experience the same ground motion. This assumption of perfect correlation in ground motion 

is inconsistent with data from dense seismic arrays, which show that there is spatial variability in 

the ground motion between closely-spaced locations during the same earthquake [24]–[27]. 

For the purposes of this study, we classify the separation distances between closely-spaced 

locations using the following scales: structural scale (i.e., up to about 150 meters (m)) [28], 

local/site scale (i.e., 150 m up to about 1 kilometer (km)) [29], and regional scale (i.e., above 1 

km) [30], [31]. The structural, local/site, and regional scales can be viewed as relevant to a 

single-unit seismic PRA, multi-unit seismic PRA, and multi-site seismic PRA, respectively. In 

the United States, the separation distance between the units at the same NPP site ranges from 45 

m to over 700 m [32]. In this study, we focus on spatial variability of ground motions at the 

structural and local/site scales, which can be modeled using similar methods and techniques. 

Conversely, ground motion spatial variability (or correlation) at the regional scale requires 

alternate conceptual formulations (e.g., [30], [31]). 

To pragmatically reflect spatial variability of ground motion at the structure- and site-scales in a 

multi-unit seismic PRA (MUSPRA), this study proposes a practical method for obtaining the 

conditional probability distribution of ground motion at a non-reference location(s) on a site 

given the ground motion at a reference location on the same site. In particular, the method uses 
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the results of an existing probabilistic seismic hazard analysis (PSHA) of the ground motion at 

the reference location for a site (i.e., the site seismic hazard curve) in developing this conditional 

probability distribution. For a hard-rock site (e.g., see Enclosure 1 of [33] and [34]), we first 

develop a general framework for building the probabilistic model of spatial variability of ground 

motion, then we provide the implementation details for using the method, including an example 

case study. 

3.2 Background 

In this section, we introduce key background concepts of relevance to the seismic PRA. In 

particular, in Section 3.2.1, we first provide a summary of PSHA and how it is used to generate 

seismic hazard curves.  Then, in Section 3.2.2, we provide a brief discussion of how seismic 

hazard curves are used in the seismic PRA to define the frequency of seismic initiating events. In 

Section 3.2.3, we shift focus and describe a process related to the PSHA referred to as 

disaggregation, which will be used in subsequent sections of this paper. Section 3.2.4 provides an 

introduction to the concept of spatial variability of ground motion. 

3.2.1 Seismic Hazard Curve 

One of the inputs to a seismic PRA is the site seismic hazard curve, which represents the annual 

exceedance frequency (AEF) of a particular ground motion parameter at a specific location for a 

specific spectral (or oscillator) frequency and damping (usually assumed as 5% of critical 

damping). PSHA is the process used to develop the seismic hazard curve. At its most basic level, 

the PSHA is composed of the five steps discussed by Baker [35]. 

In this study, we use spectral acceleration (SA) as the ground motion parameter of interest, and 

thus all subsequent mathematical expressions will use the notation 𝑆𝑆𝐴𝐴 to represent ground 
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motion intensity. However, unless otherwise noted, all expressions defined herein remain 

generally valid for other ground motion parameters. In practical PSHA applications, the 

probability distributions of the earthquake magnitude, source-to-site distance, and ground motion 

parameter of interest are discretized to facilitate computations; therefore, using the standard 

PSHA formulation, each point in the seismic hazard curve is obtained as [35]: 

 𝜆𝜆(𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝) = � 𝜆𝜆𝑚𝑚,𝑖𝑖

𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑖𝑖=1

��𝑃𝑃�𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝|𝑆𝑆𝑗𝑗 , 𝑟𝑟𝑘𝑘� 𝑃𝑃�𝑀𝑀𝑖𝑖 = 𝑆𝑆𝑗𝑗 ,𝑅𝑅𝑖𝑖 = 𝑟𝑟𝑘𝑘�
𝑛𝑛𝑅𝑅

𝑘𝑘=1

𝑛𝑛𝑀𝑀

𝑗𝑗=1

 (3.1) 

In Equation (3.1), 𝜆𝜆(𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝) is the rate of exceeding a specific value of spectral acceleration 

(𝑆𝑆𝑝𝑝); 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 is the total number of earthquake sources (e.g., faults or areal sources) considered 

in the PSHA; 𝜆𝜆𝑚𝑚,𝑖𝑖 is the rate of exceeding a minimum earthquake magnitude on source 𝑖𝑖, which 

can be obtained through the application of various earthquake recurrence relationships (e.g., the 

bounded Gutenberg-Richter recurrence relationship); 𝑛𝑛𝐴𝐴 and 𝑛𝑛𝑅𝑅 are the number of magnitude 

bins into which the magnitude probability distribution is discretized and the number of source-to-

site distance bins into which the source-to-site distance probability distribution is discretized, 

respectively; 𝑃𝑃�𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝|𝑆𝑆𝑗𝑗 , 𝑟𝑟𝑘𝑘� is the conditional probability of exceeding 𝑆𝑆𝑝𝑝 given specific 

values of earthquake magnitude (𝑆𝑆) and source-to-site distance (𝑟𝑟) and it is obtained using a 

ground motion model (GMM); and 𝑃𝑃�𝑀𝑀𝑖𝑖 = 𝑆𝑆𝑗𝑗 ,𝑅𝑅𝑖𝑖 = 𝑟𝑟𝑘𝑘� is the joint probability mass function of 

the earthquake magnitude (𝑀𝑀) and source-to-site distance (𝑅𝑅) for earthquake source 𝑖𝑖, which is 

obtained through the discretization of the joint probability density function of 𝑀𝑀𝑖𝑖 and 𝑅𝑅𝑖𝑖. 

Equation (3.1) is calculated multiple times, each time for a different value of spectral 

acceleration to be exceeded (i.e., 𝑆𝑆𝑝𝑝 in Equation (3.1)), to obtain the site seismic hazard curve. 



25 

Typically, for NPPs, the PSHA results are provided for a “control point” elevation at a particular 

site reference location (e.g., at the reactor building foundation, at bedrock) [12]. 

The GMMs used in PSHAs have the following general form [27], [30]: 

 ln�𝑆𝑆𝐴𝐴(𝑓𝑓)� = 𝑔𝑔(𝑀𝑀,𝑅𝑅, 𝜃𝜃,𝑓𝑓) + 𝜂𝜂(𝑓𝑓) + 𝜖𝜖(𝑓𝑓) 
(3.2) 

where 𝑔𝑔(𝑀𝑀,𝑅𝑅,𝜃𝜃,𝑓𝑓) is the estimated natural logarithm of the ground motion parameter as a 

function of 𝑀𝑀, 𝑅𝑅, other explanatory variables 𝜃𝜃 (e.g., style-of-faulting), and oscillator frequency 

𝑓𝑓; 𝜂𝜂(𝑓𝑓) is the inter-event variability (or residual); and 𝜖𝜖(𝑓𝑓) is the intra-event variability (or 

residual). The inter- and intra-event variabilities are typically assumed to be independent and 

normally distributed with zero mean and standard deviations 𝜎𝜎𝜂𝜂(𝑓𝑓) and 𝜎𝜎𝜖𝜖(𝑓𝑓), respectively.  

Therefore, the total standard deviation 𝜎𝜎𝑇𝑇(𝑓𝑓), which is a measure of aleatory variability [36], 

[37], is equal to �𝜎𝜎𝜂𝜂2(𝑓𝑓) + 𝜎𝜎𝜖𝜖2(𝑓𝑓)�
0.5

. To account for the aleatory variability of the ground 

motion parameter, the general form of the GMM assumes that the natural logarithm of the 

ground motion parameter is normally distributed with mean equal to the value predicted by the 

GMM (i.e., 𝑔𝑔(𝑀𝑀,𝑅𝑅,𝜃𝜃, 𝑓𝑓)) and standard deviation 𝜎𝜎𝑇𝑇(𝑓𝑓). This aleatory variability comes from 

modeling a complex phenomenon (i.e., ground motion due to an earthquake) using relatively 

simple (compared to the phenomenon) GMMs [37]. In PSHAs for NPPs, it is typical to include 

several GMMs (each with its own measure of aleatory variability), among other aspects of 

ground motion modeling, to account for epistemic uncertainty arising from different technically 

defensible models. Conventionally, the epistemic uncertainty is systematically considered using 

logic trees [12] whereby each branch of the logic tree has a weight associated with it and the 

weights are assigned using the Senior Seismic Hazard Analysis Committee process [38]. Based 
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on the combination of branches in the PSHA logic tree, the mean seismic hazard curve, as well 

as the percentiles are estimated. The mean seismic hazard curve is then used in the quantification 

of the seismic PRA and the percentiles are used to quantify the uncertainty in the seismic PRA 

results. 

3.2.2 Use of the Seismic Hazard Curve in the Quantification of a Seismic PRA 

The seismic hazard curve provides information regarding the frequency and severity of ground 

motion and serves as a key input to the seismic PRA. Additional key inputs to the seismic PRA 

include the seismic equipment list; seismic fragilities of the structures, systems, and components 

(SSCs); and system models (i.e., event trees and fault trees). A discussion about the technical 

details of these other seismic PRA elements is beyond the scope of this paper; EPRI report 

3002000709 [12] provides detailed information on these topics. 

The combination of information about the seismic hazard, seismic performance of SSCs and 

plant system performance provides the seismic risk estimates for the NPP (e.g., core damage 

frequency). In a typical seismic PRA using conventional PRA tools, the seismic hazard curve is 

discretized into several bins (e.g., see Table 3-3) defined by an upper and lower bound ground 

motion. The representative ground motion parameter value of a bin is generally taken as the 

geometric mean of the ground motion parameter values at the start and end of the bin; 

alternatively, it could be taken as the ground motion parameter value at the end of the bin [39], 

[40]. The occurrence frequency assigned to the bin is taken as the difference between the AEF at 

the start and end of the bin. The bin frequency is used as the initiating event frequency in the 

seismic event trees and the representative ground motion parameter value of a bin is used to 

determine the seismic fragilities (i.e., conditional failure probabilities) of the SSCs in the fault 
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trees. Under the limited current practice in multi-unit seismic PRA, all units at the NPP site 

experience the same ground motion parameter value; i.e., it is assumed that, in any given 

earthquake, the ground motion experienced at both units is in the same bin. In contrast to the 

current practice, our intent with this paper is to provide a method that allow risk analysts to 

consider different ground motion parameter values on other units at the NPP site; i.e., the ground 

motion at the different units may fall into different bins in a given earthquake. Consistent with 

current practice in seismic PRA, the discussion that follows uses discretized model formulations. 

3.2.3 Disaggregation of the Seismic Hazard 

In generating the seismic hazard curve, the PSHA aggregates over all combinations of 

earthquake characteristics on regional earthquake sources as well as their relative likelihoods of 

occurrence. However, this means that, when reviewing the results of a PSHA, it can be difficult 

to understand the earthquake scenarios that are dominant contributors to the seismic hazard at a 

site [41], [42]. Disaggregation (also referred to as deaggregation) provides a means of retrieving 

this earthquake scenario information. Because the method proposed in this study will use 

disaggregation, we briefly introduce the concept here. More comprehensive discussions about 

the disaggregation of the seismic hazard are provided by McGuire [41], Bazzuro and Cornell 

[42], and Baker [35]. 

Disaggregation is used to identify the conditional probability distribution of earthquake scenarios 

that can cause a ground motion that exceeds a particular level 𝑆𝑆𝑝𝑝. These “scenarios” can be 

defined rather simply (e.g., as the occurrence of an earthquake of a particular magnitude) or in 

more complicated ways. For the method proposed in this study, we will use disaggregation to 

identify the conditional probability distribution of earthquake magnitude given the occurrence of 
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an earthquake with a ground motion that exceeds a particular level 𝑆𝑆𝑝𝑝. This is commonly known 

as the magnitude disaggregation. 

Bazzurro and Cornell [42] state that the magnitude disaggregation of the combined seismic 

hazard from all 𝑛𝑛𝑠𝑠𝑠𝑠𝑠𝑠𝑟𝑟𝑠𝑠𝑠𝑠𝑠𝑠 is usually obtained by accumulating the contribution of each earthquake 

magnitude to the total hazard (i.e., 𝜆𝜆(𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝)) during the calculation of Equation (3.1). Then, 

at the end of the calculations, the accumulated contribution of each earthquake magnitude is 

divided by the value of the total hazard. This ratio is shown in Equation (3.3) and represents the 

conditional probability of experiencing an earthquake of magnitude 𝑆𝑆 (or more specifically, an 

earthquake with magnitude in a particular discrete magnitude “bin”) given the event that the 

spectral acceleration exceeds a certain level 𝑆𝑆𝑝𝑝. 

 𝑃𝑃(𝑀𝑀 = 𝑆𝑆|𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝) =
𝜆𝜆(𝑀𝑀 = 𝑆𝑆, 𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝)

𝜆𝜆(𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝)  (3.3) 

The denominator of Equation (3.3) is the AEF value calculated using Equation (3.1). The 

numerator of Equation (3.3) is obtained by omitting the summation over 𝑀𝑀 in Equation (3.1) 

[35]. 

3.2.4 Spatial Variability of Ground Motions 

Fundamental in this work is the concept of spatial variability of ground motions. Zerva [26] 

defines the phrase “spatial variability of ground motions” as “the differences in the amplitude 

and phase of seismic ground motions recorded over extended areas.” For the present application, 

we are interested in the amplitude spatial variability in terms of the spectral acceleration. We 

focus on the spatial variability of spectral acceleration because the GMMs used in nuclear 
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industry PSHAs provide estimates in terms of 𝑆𝑆𝐴𝐴 (and other response spectrum ordinates) and 

PSHA results are typically represented with respect to this quantity. While the spatial variability 

of ground motions has been explored with respect to measures in the frequency domain (e.g., 

[26], [43], [44]), such studies are not directly applicable to use in a seismic PRA that leverages 

the results of an existing PSHA providing seismic hazard curves on  amplitude ground motion 

parameters. The works by Abrahamson and Sykora [24], Kawakami and Mogi [25], and Goda 

and Atkinson [27] are a few of the limited number of works related to the amplitude spatial 

variability using 𝑆𝑆𝐴𝐴 and peak ground acceleration (PGA), which we summarize in the following 

paragraphs and will leverage in the remainder of this paper. 

Abrahamson and Sykora [24] analyzed the variability of 𝑆𝑆𝐴𝐴 over short distances (less than 100 

m) using empirical recordings of seismic ground motions at dense arrays in California, Japan, 

and Taiwan. They defined the spatial variability of 𝑆𝑆𝐴𝐴 using an expression for the difference in 

the logarithm of spectral accelerations at closely-spaced locations during a single earthquake. 

Kawakami and Mogi [25] examined the spatial variability of PGAs (recorded at about the same 

epicentral distance) as function of separation distance. They analyzed data from the Chiba array, 

SMART-1 array, and the SIGNAL database. Kawakami and Mogi [25] state that the dispersion 

(spatial variability) of PGAs can be represented by either the mean of the PGA ratio (𝜇𝜇𝑅𝑅′) or 

standard deviation of the difference of the logarithm of the two PGAs (𝜎𝜎𝑃𝑃′). 

The work by Goda and Atkinson [27] focuses on the correlation of the ground motion residuals. 

The use of residuals implies that a specific GMM is used to estimate the seismic hazard.  

However, consistent with the goals of this study, our proposed method starts with the results of 

an existing PSHA, which aggregates over a number of GMMs. Disaggregating the results to 
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obtain specific GMMs is possible [45], but not practical. Also, Goda and Atkinson [27] noted 

that they achieved “reliable data coverage only for separation distances greater than 1 km” and 

advised careful consideration of using their proposed model for distances less than 1 km, which 

is the separation distance range of interest in our work. 

Based on the review of these models of spatial variability of ground motion amplitudes, we will 

leverage the works by Abrahamson and Sykora [24] and Kawakami and Mogi [25] in the 

remainder of this paper, which we will abbreviate as A&S and K&M, respectively.  We note that 

these models are conceptually similar. To emphasize this conceptual similarity, Table 3-1 

compares and summarizes these model formulations and provides the associated measure of 

spatial variability of ground motion and its distribution. 

Table 3-1 Comparison and Explanation of the Spatial Variability of Ground Motion 
Models Used in this Study 

Authors Abrahamson and Sykora [24] Kawakami and Mogi [25] 

Spatial 
variability of 
ground 
motion 
measure 

ΔSA𝑖𝑖𝑗𝑗𝑘𝑘(𝑓𝑓) = ln�SA𝑖𝑖𝑗𝑗(𝑓𝑓)� − ln[SA𝑖𝑖𝑘𝑘(𝑓𝑓)] 
where: 
• 𝑆𝑆𝐴𝐴𝑖𝑖𝑗𝑗(𝑓𝑓) and 𝑆𝑆𝐴𝐴𝑖𝑖𝑘𝑘(𝑓𝑓) are the average 

horizontal component of the acceleration 
response spectrum for the 𝑗𝑗th and 𝑘𝑘th 
stations, respectively, during the 𝑖𝑖th 
earthquake at the oscillator frequency 𝑓𝑓 

• Δ𝑆𝑆𝐴𝐴𝑖𝑖𝑗𝑗𝑘𝑘(𝑓𝑓) is the difference between the 
logarithms of the spectral acceleration 
values of the 𝑗𝑗th and 𝑘𝑘th stations (which are 
separated by a distance 𝜉𝜉) from the 𝑖𝑖th 
earthquake 

𝑃𝑃′ = ln(𝑃𝑃𝐺𝐺𝐴𝐴2) − ln(𝑃𝑃𝐺𝐺𝐴𝐴1) 
where: 
• 𝑃𝑃𝐺𝐺𝐴𝐴1 and 𝑃𝑃𝐺𝐺𝐴𝐴2 are the peak ground 

accelerations at two closely-spaced locations 
during the same earthquake, respectively 

• 𝑃𝑃′ is the difference between the logarithms of 
the peak ground acceleration values at two-
closely spaced locations during the same 
earthquake 

Distribution 
of the spatial 
variability of 
ground 
motion 
measure 

ΔSA𝑖𝑖𝑗𝑗𝑘𝑘(𝑓𝑓)~𝑁𝑁 �𝜇𝜇ΔSA𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓),𝜎𝜎ΔSA𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓)� 
where: 
• 𝜇𝜇ΔSA𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) is the mean of ΔSA𝑖𝑖𝑗𝑗𝑘𝑘(𝑓𝑓) and 

assumed to be zero 
• 𝜎𝜎ΔSA𝑖𝑖𝑖𝑖𝑖𝑖(𝑓𝑓) is the standard deviation of 
ΔSA𝑖𝑖𝑗𝑗𝑘𝑘(𝑓𝑓) and given by the expression 
below 

𝑃𝑃′~𝑁𝑁(𝜇𝜇P′ ,𝜎𝜎P′) 
where: 
• 𝜇𝜇𝑃𝑃′ is the mean of 𝑃𝑃′ and, by definition, is 

zero 
• 𝜎𝜎𝑃𝑃′ is the standard deviation of 𝑃𝑃′ and given 

by the expression below2 

Standard 
deviation of 
the 

𝜎𝜎ΔSA𝑖𝑖𝑖𝑖𝑖𝑖(𝑀𝑀, 𝜉𝜉, 𝑓𝑓) = 𝑐𝑐1(𝑓𝑓,𝑀𝑀)(1 − exp{−𝜉𝜉 𝑐𝑐2(𝑓𝑓)}) 
where: 

𝜎𝜎𝑃𝑃′(𝜉𝜉) = �2 × 10−4 ∙ 𝜉𝜉 + 0.17, 15 𝑆𝑆 ≤ 𝜉𝜉 ≤ 230 𝑆𝑆
5 × 10−5 ∙ 𝜉𝜉 + 0.36, 300 𝑆𝑆 ≤ 𝜉𝜉 ≤ 2000 𝑆𝑆

 

where: 
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Table 3-1 Comparison and Explanation of the Spatial Variability of Ground Motion 
Models Used in this Study 

Authors Abrahamson and Sykora [24] Kawakami and Mogi [25] 
distribution 
of the spatial 
variability of 
ground 
motion 
measure 

• 𝜉𝜉 is the separation distance between 
stations 𝑗𝑗 and 𝑘𝑘 in meters 

• 𝑓𝑓 is the oscillator frequency in hertz (Hz) 
• 𝑀𝑀 is the earthquake magnitude1 
• 𝑐𝑐1(𝑓𝑓,𝑀𝑀) and 𝑐𝑐2(𝑓𝑓) are coefficients 

estimated by A&S [24] using regression 
and a maximum likelihood approach 

• 𝜉𝜉 is the separation distance between the two 
closely-spaced locations in meters3 

 

1 The method proposed in this study will address the magnitude dependence through the use of the magnitude 
disaggregation, as described in Sections 3.3.3 and 3.4.2. 
2 Kawakami and Mogi found an “almost linear relationship” between 𝜎𝜎𝑃𝑃′ and the logarithm of the separation 
distance; however, they did not provide an expression of such relationship. The expression shown in this table 
was derived by using Figure 7 in K&M [25] and taking the geometric mean of the  𝜎𝜎𝑃𝑃′ values in the East-West 
and North-South directions. 
3 The linear relationships in the expression above do not comply with the theoretical insight that at 𝜉𝜉 = 0 there is 
no spatial variability (i.e., 𝜎𝜎𝑃𝑃′ = 0) because of the limitations of the approach used to define the relationship. 
Therefore, we do not use the expression above outside the stated separation distance ranges.  

 

3.3 Framework for Modeling Ground Motion Spatial Variability 

In this section, the proposed framework for modeling spatial variability of ground motion to 

support MUSPRA is presented using probabilistic graphical models; specifically, Bayesian 

networks. As discussed in our previous work [46], Bayesian networks (BNs) are used because of 

their graphical structure and transparency, as well as the manner in which they facilitate 

modeling probabilistic dependencies. While we have elected to use BNs as a mechanism for 

representing the mathematical formulation developed in this paper, the overall formulation is 

general in its application and does not require the use of BNs for performing probabilistic 

calculations. 

Figure 3-1 shows an example of a BN. In a BN, nodes (ovals) represent random variables (RVs), 

and arrows indicate a probabilistic dependence between the connected nodes. The direction of 

the arrow typically represents a causal relationship, though is not a requirement of the BN 
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modeling framework. In Figure 3-1, 𝑋𝑋1 and 𝑋𝑋2 are referred to as the parents of node 𝑌𝑌. 

Conversely, node 𝑌𝑌 is referred to as the child of nodes 𝑋𝑋1 and 𝑋𝑋2. Each node is associated with a 

conditional probability table (probability mass function) that provides the probability of the 

respective RV being in a particular state given the state of its parents. Nodes without parents are 

described by a marginal probability mass function and are referred to as root nodes. The reader is 

referred to the works by Kjærulff and Madsen [17] for a comprehensive introduction to BNs and 

Bensi et al. [18] for a basic introduction to the use of BNs in the context of seismic risk 

assessment applications. 

 
Figure 3-1 Example Bayesian network 

3.3.1 General Bayesian Network to Model Ground Motion Spatial Variability at Hard-Rock 

Sites 

Figure 3-2(a) shows the proposed BN for modeling spatial variability in ground motion. The 

RVs in Figure 3-2(a) are defined in Table 3-2. In addition, Figure 3-2(b) and (c) provide a 

companion graphic illustrating the physical meaning of most of the variables (nodes) shown in 

the BN under a conceptual model of ground motion propagation in which seismic energy radiates 

from the earthquake source to the hypothetical site (i.e., seismic waves), traveling mostly 

through rock [47]. 

The illustration of the variables provided in Figure 3-2(b) is an “overhead (top) view” and shows 

a hypothetical site with two units along with an earthquake source, which is associated with the 
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RVs representing the magnitude and location, and the associated source-to-site distance. These 

RVs are reflected by the nodes 𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑐𝑐𝑆𝑆, 𝑀𝑀, 𝐿𝐿𝑆𝑆𝑐𝑐, and 𝑅𝑅, respectively, in Figure 3-2(a). The node 

𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑐𝑐𝑆𝑆 is a parent of nodes 𝑀𝑀 and 𝐿𝐿𝑆𝑆𝑐𝑐, which represents the source-specific nature of their 

respective probability distributions. The node 𝑅𝑅 is a child of the node 𝐿𝐿𝑆𝑆𝑐𝑐 indicating that the 

probability distribution of source-to-site distance is dependent on the location of the earthquake. 

While not shown in this BN, we could also include a link between node 𝑀𝑀 and 𝑅𝑅 to capture any 

dependence between those two quantities (e.g., to capture finite fault rupture effects). 

Next, as we progress along the BN in Figure 3-2(a), we make use of Figure 3-2(c), which shows 

the rest of the variables defined in Table 3-2 along with the same hypothetical site shown in 

Figure 3-2(b). Once the seismic waves arrive to the site, the waves first travel through rock up to 

the bedrock control point. The resulting ground motion is known as the bedrock ground motion 

[47] and is denoted with the superscript 𝑟𝑟 (e.g., 𝑆𝑆𝐴𝐴𝐴𝐴𝑃𝑃𝑟𝑟 ) in Figure 3-2(a) and Figure 3-2(c). Under 

the framework proposed in this paper, the probability distribution of the bedrock ground motion 

at the control point, 𝑆𝑆𝐴𝐴𝐴𝐴𝑃𝑃𝑟𝑟 , is estimated as a function of earthquake characteristics using a GMM. 

That is, 𝑆𝑆𝐴𝐴𝐴𝐴𝑃𝑃𝑟𝑟  is defined as a function of a GMM-predicted value 𝑆𝑆𝐴𝐴𝐴𝐴𝑃𝑃𝑟𝑟������� and the associated inter- 

and intra-event variabilities (𝜂𝜂 and 𝜖𝜖). We note that, when considering regional-scale 

assessments, there is variability in 𝜂𝜂 and 𝜖𝜖 across the spatial domain (e.g., [30], [31]); however, 

this effect is not significant at the site scale and thus, in this framework, 𝜂𝜂 and 𝜖𝜖 are treated as 

common to both units. 
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Figure 3-2 (a) Ground motion amplitude spatial variability BN for a single rock site with two 

units. Illustration of the variables in the BN shown in Figure 3-2(a): (b) Top view 
(c) Elevation view 

Table 3-2 Definition of the RVs in Figure 3-2(a) 
RV Definition 

𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑐𝑐𝑆𝑆 Earthquake source. 
𝑀𝑀 Earthquake magnitude (taken as the moment magnitude in this study). 
𝐿𝐿𝑆𝑆𝑐𝑐 Earthquake location. 
𝑅𝑅 Distance from the earthquake source to the site (i.e., source-to-site distance). 
𝑆𝑆𝐴𝐴𝐴𝐴𝑃𝑃𝑟𝑟������� Ground motion at the bedrock control point predicted using a GMM. 

𝜂𝜂 and 𝜖𝜖 Inter-event and intra-event variabilities, respectively. 

𝑆𝑆𝐴𝐴𝐴𝐴𝑃𝑃𝑟𝑟  Ground motion at the bedrock control point after incorporating the inter- and 
intra-event variabilities (see Equation (3.2)). 

𝜉𝜉1,𝐴𝐴𝑃𝑃 and 𝜉𝜉2,𝐴𝐴𝑃𝑃 Separation distances (in meters) between Unit 1 and the control point, and Unit 2 
and the control point, respectively. 

∆𝑆𝑆𝐴𝐴1,𝐴𝐴𝑃𝑃 and 
∆𝑆𝑆𝐴𝐴2,𝐴𝐴𝑃𝑃 

Ground motion amplitude spatial variability model for Units 1 and 2, 
respectively, each with respect to the site control point using the A&S [24] 
formulation. These two nodes would be 𝑃𝑃1,𝐴𝐴𝑃𝑃

′  and 𝑃𝑃2,𝐴𝐴𝑃𝑃
′  using the K&M [25] 

formulation. 
𝑆𝑆𝐴𝐴1𝑟𝑟 and 𝑆𝑆𝐴𝐴2𝑟𝑟  Ground motion at bedrock underneath Units 1 and 2, respectively, after 

considering the ground motion amplitude spatial variability model. 

The portion of the BN (Figure 3-2(a)) that includes the node 𝑆𝑆𝐴𝐴𝐴𝐴𝑃𝑃𝑟𝑟  and its “ancestors” (i.e., its 

parents, their parents, and so on) represents the variables contained in a conventional PSHA. In 

subsequent portions of the paper, we will describe how we will use the results of an existing 

PSHA rather than explicitly including in the BN the nodes representing the earthquake 

characteristics and GMM outputs. 

Rock

2

Earthquake source
M, Loc

1

Control 
hazard point

Top view

Rock

Unit 2 Unit 1

Control hazard point

Elevation view
(i.e., looking through Earth)

(b) (c)(a)
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As discussed previously, during any earthquake, the ground motion at the locations of the reactor 

units will generally differ from the ground motion at the control point. The model proposed 

herein for hard-rock sites considers a primary source of variability in ground motion between the 

control point and the individual units: amplitude spatial variability. In this study, the models 

proposed by A&S [24] and K&M [25] (see Section 3.2.4) will be used to model ground motion 

amplitude spatial variability; however, the framework proposed herein can be adapted as other 

models become available. 

In particular, the BN captures the ground motion amplitude spatial variability via the nodes 

∆𝑆𝑆𝐴𝐴1,𝐴𝐴𝑃𝑃 and ∆𝑆𝑆𝐴𝐴2,𝐴𝐴𝑃𝑃 with the A&S [24] formulation, which are a function of the separation 

distances 𝜉𝜉1,𝐴𝐴𝑃𝑃 and 𝜉𝜉2,𝐴𝐴𝑃𝑃 and earthquake magnitude 𝑀𝑀. If the K&M [25] formulation is used, the 

amplitude spatial variability is captured by nodes 𝑃𝑃1,𝐴𝐴𝑃𝑃
′  and 𝑃𝑃2,𝐴𝐴𝑃𝑃

′ , which are also a function of the 

separation distances 𝜉𝜉1,𝐴𝐴𝑃𝑃 and 𝜉𝜉2,𝐴𝐴𝑃𝑃, but not a function of the earthquake magnitude 𝑀𝑀; this is the 

reason why the link (arrow) between nodes 𝑀𝑀 and ∆𝑆𝑆𝐴𝐴1,𝐴𝐴𝑃𝑃 (and ∆𝑆𝑆𝐴𝐴2,𝐴𝐴𝑃𝑃) in Figure 3-2(a) is a 

dashed line. The bedrock ground motion underneath each unit (i.e., 𝑆𝑆𝐴𝐴1𝑟𝑟 and 𝑆𝑆𝐴𝐴2𝑟𝑟) is then defined 

as a function of the bedrock ground motion at the control point (𝑆𝑆𝐴𝐴𝐴𝐴𝑃𝑃𝑟𝑟 ) and the amplitude spatial 

variability (∆𝑆𝑆𝐴𝐴1,𝐴𝐴𝑃𝑃 and ∆𝑆𝑆𝐴𝐴2,𝐴𝐴𝑃𝑃 or 𝑃𝑃1,𝐴𝐴𝑃𝑃
′  and 𝑃𝑃2,𝐴𝐴𝑃𝑃

′ ). 

Using the probabilistic framework shown in Figure 3-2(a), we can determine the conditional 

probability distribution of the ground motion hazard at a specific unit (i.e., non-reference ground 

motion hazard) given the ground motion hazard at the control point (i.e., reference ground 

motion hazard). As described in our previous work [32], these conditional probability 

distributions provide input to the MUSPRA and facilitate the consideration of spatial variability 

of ground motion at a NPP site. Further details are provided below. 
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3.3.2 Streamlined Bayesian Network to Model Ground Motion Spatial Variability at a 

Hard-Rock Site 

The BN in Figure 3-2(a) is a general case for a two-unit hard-rock site assuming that a PSHA 

was performed for a control point that is located somewhere on the site. In some instances, the 

control point may coincide with one of the units at the site. If this is the case, the BN contains 

less variables (nodes) and the structure of the model becomes more streamlined than the general 

BN presented in Section 3.3.1. This facilitates the explanation on how the BN in Figure 3-2(a) 

can be used in a MUSPRA. Therefore, without loss of generality, we assume that the control 

point coincides with Unit 1. That is, in subsequent descriptions, we treat Unit 1 as the location 

where the ground motion hazard has been characterized using an existing PSHA. We will refer to 

the unit where the PSHA has been performed as the “reference unit” and the other unit as the 

“non-reference unit.” 

Also, for simplicity in the presentation of the derivation that follows, we consider a single 

earthquake source in the subsequent discussion; however, the framework is equally applicable to 

multiple earthquake sources. Finally, for clarity in the BN, we note that some parent nodes can 

be integrated into their children and eliminated from the BN. Specifically in Figure 3-2(a), 𝜂𝜂, 𝜖𝜖, 

and 𝑆𝑆𝐴𝐴𝐴𝐴𝑃𝑃𝑟𝑟������� can be integrated into 𝑆𝑆𝐴𝐴𝐴𝐴𝑃𝑃𝑟𝑟 , and 𝜉𝜉1,𝐴𝐴𝑃𝑃 and 𝜉𝜉2,𝐴𝐴𝑃𝑃 can be integrated into ∆𝑆𝑆𝐴𝐴1,𝐴𝐴𝑃𝑃 and 

∆𝑆𝑆𝐴𝐴2,𝐴𝐴𝑃𝑃 (or 𝑃𝑃1,𝐴𝐴𝑃𝑃
′  and 𝑃𝑃2,𝐴𝐴𝑃𝑃

′ ), respectively, and thus eliminated from the BN. This leads to a 

streamlined BNs, which are shown in Figure 3-3(a) and (b) for the A&S [24] and K&M [25] 

formulations, respectively, along with an illustration of the variables in Figure 3-3(c). 
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Figure 3-3 Streamlined BNs to model ground motion spatial variability using the (a) A&S 

[24] and (b) K&M [25] formulations. (c) Illustration of the variables in the 
streamlined BNs (𝑀𝑀 and 𝑅𝑅 are not shown in the illustration of the variables). 

Similar to the illustration of variables in Figure 3-2(c) and described in Section 3.3.1, the 

illustration of variables in Figure 3-3 includes a node representing the ground motion hazard at 

the reference unit 𝑆𝑆𝐴𝐴1𝑟𝑟, with a probability distribution defined as a function of 𝑀𝑀 and 𝑅𝑅 based on 

a GMM. The RV representing the bedrock ground motion at the non-reference unit (𝑆𝑆𝐴𝐴2𝑟𝑟) is 

defined as a function of the bedrock ground motion hazard underneath the reference unit (𝑆𝑆𝐴𝐴1𝑟𝑟) 

and the amplitude spatial variability factor (∆𝑆𝑆𝐴𝐴1,2 or 𝑃𝑃1,2
′ ). We will use these “streamlined” BNs 

in all subsequent descriptions. 

3.3.3 MUSPRA Input for a Hard-Rock Site 

In this section, we describe the development of the MUSPRA input that reflects the spatial 

variability of ground motions across an NPP hard-rock site. In general, we are interested in 

estimating the conditional probability distribution of a non-reference ground motion hazard (i.e., 

Unit 2) given the reference ground motion hazard (i.e., Unit 1) as: 

 𝑝𝑝𝑆𝑆𝐴𝐴2𝑠𝑠|𝑆𝑆𝐴𝐴1𝑠𝑠(𝑆𝑆𝑝𝑝2𝑟𝑟|𝑆𝑆𝑝𝑝1𝑟𝑟) =
𝑝𝑝𝑆𝑆𝐴𝐴1𝑠𝑠 ,𝑆𝑆𝐴𝐴2𝑠𝑠(𝑆𝑆𝑝𝑝1𝑟𝑟 , 𝑆𝑆𝑝𝑝2𝑟𝑟)

𝑝𝑝𝑆𝑆𝐴𝐴1𝑠𝑠(𝑆𝑆𝑝𝑝1𝑟𝑟)  (3.4) 

Rock

Unit 2 Unit 1

Control hazard point

or 

(a) (c)(b)
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In the above expression, 𝑝𝑝𝑆𝑆𝐴𝐴1𝑠𝑠 ,𝑆𝑆𝐴𝐴2𝑠𝑠(𝑆𝑆𝑝𝑝1𝑟𝑟 , 𝑆𝑆𝑝𝑝2𝑟𝑟) represents the joint probability mass functions of the 

reference and non-reference ground motion hazards for rock sites. The quantity 𝑝𝑝𝑆𝑆𝐴𝐴1𝑠𝑠(𝑆𝑆𝑝𝑝1𝑟𝑟) is the 

marginal probability mass functions of the reference ground motion hazard for rock sites. In 

particular, we describe how the conditional probability distribution of the ground motion at Unit 

2 given the ground motion at Unit 1 is developed for a rock site using two different models for 

ground motion spatial variability [24], [25]. The process for developing the conditional 

probability distribution for a rock site is reflected by the BNs and accompanying graphic in 

Figure 3-3. In the subsequent figures in this section, we omit the separation distance between the 

units, 𝜉𝜉1,2, because for a site-specific analysis, this variable would be known (i.e., it is not a RV). 

For the ease of notation in the subsequent discussion, we will write 𝑝𝑝𝑆𝑆𝐴𝐴2𝑠𝑠|𝑆𝑆𝐴𝐴1𝑠𝑠(𝑆𝑆𝑝𝑝2𝑟𝑟|𝑆𝑆𝑝𝑝1𝑟𝑟) as 

𝑃𝑃(𝑆𝑆𝐴𝐴2𝑟𝑟|𝑆𝑆𝐴𝐴1𝑟𝑟) for a conditional probability mass function, 𝑝𝑝𝑆𝑆𝐴𝐴1𝑠𝑠 ,𝑆𝑆𝐴𝐴2𝑠𝑠(𝑆𝑆𝑝𝑝1𝑟𝑟 , 𝑆𝑆𝑝𝑝2𝑟𝑟) as 𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟 , 𝑆𝑆𝐴𝐴2𝑟𝑟) for a 

joint probability mass function, and 𝑝𝑝𝑆𝑆𝐴𝐴1𝑠𝑠(𝑆𝑆𝑝𝑝1𝑟𝑟) as 𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟) for a marginal probability mass 

function. 

The joint probability mass functions of the variables in the BNs shown in Figure 3-3 (a) and 

Figure 3-3(b) are 

 𝑃𝑃�𝑀𝑀,𝑅𝑅,∆𝑆𝑆𝐴𝐴1,2, 𝑆𝑆𝐴𝐴1𝑟𝑟 , 𝑆𝑆𝐴𝐴2𝑟𝑟� = 𝑃𝑃�𝑆𝑆𝐴𝐴2𝑟𝑟|∆𝑆𝑆𝐴𝐴1,2, 𝑆𝑆𝐴𝐴1𝑟𝑟�𝑃𝑃�∆𝑆𝑆𝐴𝐴1,2|𝑀𝑀�𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟|𝑀𝑀,𝑅𝑅)𝑃𝑃(𝑀𝑀)𝑃𝑃(𝑅𝑅) (3.5) 

 𝑃𝑃�𝑀𝑀,𝑅𝑅,𝑃𝑃1,2
′ , 𝑆𝑆𝐴𝐴1𝑟𝑟 , 𝑆𝑆𝐴𝐴2𝑟𝑟� = 𝑃𝑃�𝑆𝑆𝐴𝐴2

𝑟𝑟 |𝑃𝑃1,2
′ , 𝑆𝑆𝐴𝐴1

𝑟𝑟�𝑃𝑃�𝑃𝑃1,2
′ �𝑃𝑃(𝑆𝑆𝐴𝐴1

𝑟𝑟 |𝑀𝑀,𝑅𝑅)𝑃𝑃(𝑀𝑀)𝑃𝑃(𝑅𝑅) (3.6) 

Next, we sum over the variable 𝑅𝑅 from Equation (3.5) and over the variables 𝑀𝑀 and 𝑅𝑅 from 

Equation (3.6), which corresponds to the elimination of the node(s) from the respective BNs. 

This leads to the following expressions and the BNs shown in Figure 3-4(a) and (c): 
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𝑃𝑃�𝑀𝑀,∆𝑆𝑆𝐴𝐴1,2, 𝑆𝑆𝐴𝐴1𝑟𝑟 , 𝑆𝑆𝐴𝐴2𝑟𝑟� = 𝑃𝑃�𝑆𝑆𝐴𝐴2𝑟𝑟|∆𝑆𝑆𝐴𝐴1,2, 𝑆𝑆𝐴𝐴1𝑟𝑟�𝑃𝑃�∆𝑆𝑆𝐴𝐴1,2|𝑀𝑀�𝑃𝑃(𝑀𝑀)�𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟|𝑀𝑀,𝑅𝑅)𝑃𝑃(𝑅𝑅)

𝑅𝑅

 

 = 𝑃𝑃�𝑆𝑆𝐴𝐴2𝑟𝑟|∆𝑆𝑆𝐴𝐴1,2, 𝑆𝑆𝐴𝐴1𝑟𝑟�𝑃𝑃�∆𝑆𝑆𝐴𝐴1,2|𝑀𝑀�𝑃𝑃(𝑀𝑀)𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟|𝑀𝑀) 
(3.7) 

 
𝑃𝑃�𝑃𝑃1,2

′ , 𝑆𝑆𝐴𝐴1𝑟𝑟 , 𝑆𝑆𝐴𝐴2𝑟𝑟� = 𝑃𝑃�𝑆𝑆𝐴𝐴2𝑟𝑟|𝑃𝑃1,2
′ , 𝑆𝑆𝐴𝐴1𝑟𝑟�𝑃𝑃�𝑃𝑃1,2

′ ���𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟|𝑀𝑀,𝑅𝑅)𝑃𝑃(𝑀𝑀)𝑃𝑃(𝑅𝑅)
𝑅𝑅𝐴𝐴

 

= 𝑃𝑃�𝑆𝑆𝐴𝐴2𝑟𝑟|𝑃𝑃1,2
′ , 𝑆𝑆𝐴𝐴1𝑟𝑟�𝑃𝑃�𝑃𝑃1,2

′ �𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟) 
(3.8) 

 
Figure 3-4 (a) BN corresponding to Equation (3.7). (b) BN corresponding to Equation (3.9). 

(c) BN corresponding to Equation (3.8). 

In the case of the BN using the K&M [25] formulation, Figure 3-4(c) and Equation (3.8), we 

have the variables we need to obtain the conditional probability distribution of the ground motion 

hazard at the non-reference unit.  In the case of the BN using the A&S [24] formulation, we use 

Bayes’ rule on the term 𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟|𝑀𝑀) of Equation (3.7), and obtain Equation (3.9) and the BN 

shown in Figure 3-4(b). The effect of using Bayes’ rule is reversing the link between 𝑀𝑀 and 𝑆𝑆𝐴𝐴1𝑟𝑟 

in Figure 3-4(a), which then becomes Figure 3-4(b). The joint probability distribution over the 

resulting BN is then given as: 

 𝑃𝑃�𝑀𝑀,∆𝑆𝑆𝐴𝐴1,2, 𝑆𝑆𝐴𝐴1𝑟𝑟 , 𝑆𝑆𝐴𝐴2𝑟𝑟� = 𝑃𝑃�𝑆𝑆𝐴𝐴2𝑟𝑟|∆𝑆𝑆𝐴𝐴1,2, 𝑆𝑆𝐴𝐴1𝑟𝑟�𝑃𝑃�∆𝑆𝑆𝐴𝐴1,2|𝑀𝑀�𝑃𝑃(𝑀𝑀|𝑆𝑆𝐴𝐴1𝑟𝑟)𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟) (3.9) 

Equations (3.8) and (3.9) provide all the necessary information to compute the probability 

distributions in which we are interested. Moreover, as outlined below, all required quantities can 

be developed using existing PSHA results. In particular: 

(a) (c)(b)
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• 𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟) is obtained through discretization of the reference rock seismic hazard curve. 

• 𝑃𝑃(𝑀𝑀|𝑆𝑆𝐴𝐴1𝑟𝑟) is obtained from the magnitude disaggregation at the reference unit. 

• 𝑃𝑃�∆𝑆𝑆𝐴𝐴1,2|𝑀𝑀� is obtained from the A&S [24] ground motion amplitude spatial variability 

model for a rock site. 

• 𝑃𝑃�𝑆𝑆𝐴𝐴2𝑟𝑟|∆𝑆𝑆𝐴𝐴1,2, 𝑆𝑆𝐴𝐴1𝑟𝑟� is an indicator function based on the definition of ΔSA1,2 (see Table 

3-1, i.e., 𝑆𝑆𝐴𝐴2𝑟𝑟 = 𝑆𝑆𝐴𝐴1𝑟𝑟 exp�ΔSA1,2�). 𝑃𝑃�𝑆𝑆𝐴𝐴2𝑟𝑟|∆𝑆𝑆𝐴𝐴1,2, 𝑆𝑆𝐴𝐴1𝑟𝑟� is equal to one when the value of 

𝑆𝑆𝐴𝐴2𝑟𝑟 , given the values of ∆𝑆𝑆𝐴𝐴1,2 and 𝑆𝑆𝐴𝐴1𝑟𝑟, falls within the interval (bin) of 𝑆𝑆𝐴𝐴2𝑟𝑟  being 

considered and zero otherwise, that is, 

 𝑃𝑃�𝑆𝑆𝐴𝐴2𝑟𝑟|∆𝑆𝑆𝐴𝐴1,2, 𝑆𝑆𝐴𝐴1𝑟𝑟� = �1, (𝑆𝑆𝐴𝐴2𝑟𝑟)𝑙𝑙𝑠𝑠𝑆𝑆 ≤ 𝑆𝑆𝐴𝐴1𝑟𝑟 exp�Δ𝑆𝑆𝐴𝐴1,2� < (𝑆𝑆𝐴𝐴2𝑟𝑟)ℎ𝑖𝑖𝑖𝑖ℎ
0, 𝑆𝑆𝑆𝑆ℎ𝑆𝑆𝑟𝑟𝑆𝑆𝑖𝑖𝑆𝑆𝑆𝑆

 (3.10) 

• 𝑃𝑃�𝑃𝑃1,2
′ � is obtained from the K&M [25] ground motion amplitude spatial variability 

model. 

• 𝑃𝑃�𝑆𝑆𝐴𝐴2𝑟𝑟|𝑃𝑃1,2
′ , 𝑆𝑆𝐴𝐴1𝑟𝑟� is similar to 𝑃𝑃�𝑆𝑆𝐴𝐴2𝑟𝑟|∆𝑆𝑆𝐴𝐴1,2, 𝑆𝑆𝐴𝐴1𝑟𝑟�, where 𝑃𝑃1,2

′  substitutes ∆𝑆𝑆𝐴𝐴1,2 in 

Equation (3.10). 

To estimate the conditional probability distribution of a non-reference ground motion hazard 

(i.e., Unit 2) given the reference ground motion hazard (i.e., Unit 1) using Equation (3.4), we 

first compute the joint probability mass function of the reference and non-reference ground 

motion hazards from the joint probability mass function of all the variables contained in the BNs 

shown in Figure 3-4(b) and (c), respectively, that is, 

 𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟 , 𝑆𝑆𝐴𝐴2𝑟𝑟) = � � 𝑃𝑃�𝑆𝑆𝐴𝐴2𝑟𝑟|∆𝑆𝑆𝐴𝐴1,2, 𝑆𝑆𝐴𝐴1𝑟𝑟�𝑃𝑃�∆𝑆𝑆𝐴𝐴1,2|𝑀𝑀�𝑃𝑃(𝑀𝑀|𝑆𝑆𝐴𝐴1𝑟𝑟)𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟)
Δ𝑆𝑆𝐴𝐴1,2𝐴𝐴

 (3.11) 
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 𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟 , 𝑆𝑆𝐴𝐴2𝑟𝑟) = �𝑃𝑃�𝑆𝑆𝐴𝐴2𝑟𝑟|𝑃𝑃1,2
′ , 𝑆𝑆𝐴𝐴1𝑟𝑟�𝑃𝑃�𝑃𝑃1,2

′ �𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟)
𝑃𝑃1,2
′

 (3.12) 

Next, the results from Equations (3.11) and (3.12) are divided by the marginal probability mass 

function of the reference ground motion hazard. This leads to Equations (3.13) and (3.14), which 

use the A&S [24] and K&M [25] formulations, respectively, and establish our proposed models 

for specifying the conditional probability distribution of the ground motion hazard at a non-

reference location on an NPP hard-rock site given the ground motion hazard at the reference 

location on the same NPP hard-rock site. 

 𝑃𝑃(𝑆𝑆𝐴𝐴2𝑟𝑟|𝑆𝑆𝐴𝐴1𝑟𝑟) =
∑ ∑ 𝑃𝑃�𝑆𝑆𝐴𝐴2𝑟𝑟|∆𝑆𝑆𝐴𝐴1,2, 𝑆𝑆𝐴𝐴1𝑟𝑟�𝑃𝑃�∆𝑆𝑆𝐴𝐴1,2|𝑀𝑀�𝑃𝑃(𝑀𝑀|𝑆𝑆𝐴𝐴1𝑟𝑟)𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟)Δ𝑆𝑆𝐴𝐴1,2𝐴𝐴

𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟)  (3.13) 

 𝑃𝑃(𝑆𝑆𝐴𝐴2𝑟𝑟|𝑆𝑆𝐴𝐴1𝑟𝑟) =
∑ 𝑃𝑃�𝑆𝑆𝐴𝐴2𝑟𝑟|𝑃𝑃1,2

′ , 𝑆𝑆𝐴𝐴1𝑟𝑟�𝑃𝑃�𝑃𝑃1,2
′ �𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟)𝑃𝑃1,2

′

𝑃𝑃(𝑆𝑆𝐴𝐴1𝑟𝑟)  (3.14) 

The implementation of Equations (3.13) and (3.14) in the BNs is illustrated in Section 3.4.2 

using a case study. 

3.4 Example Application of the Proposed Method 

In this section, we apply the method described in Section 3.3.3 to a hypothetical rock site and 

assume a separation distance between units of 100 m. The seismic hazard curve and 

disaggregation results are calculated using software that is available to the U.S. Nuclear 

Regulatory Commission (NRC) staff. The site used in this example corresponds to the Central 

Illinois site used in the demonstration hazard calculations in NUREG-2115 [48] and the Electric 

Power Research Institute (EPRI) GMM Review Project [49]. These two projects selected the 

Central Illinois site (latitude 40.0, longitude -90.0) because of the “[h]azard from [the] New 

Madrid seismic zone and paleo-earthquake zones in central Illinois” [48], [49]. The seismic 
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hazard shown here is not reflective of the hazard at any nuclear facility, and results are presented 

here solely to illustrate the implementation of the proposed framework. 

3.4.1 PSHA Results for the Central Illinois Site 

The mean seismic hazard curve at bedrock for the reference location at the Central Illinois site is 

shown in Figure 3-5. The ground motion parameter used is PGA, which we assume corresponds 

to 𝑆𝑆𝐴𝐴 at 100 Hz. We elect to use this ground motion parameter because PGA is the typical 

ground motion parameter used in seismic PRAs to describe the seismic demand to the NPP 

SSCs. In the subsequent discussion, we will use 𝑃𝑃𝐺𝐺𝐴𝐴 and 𝑆𝑆𝐴𝐴 interchangeably. 

 
Figure 3-5 Mean rock hazard curve at the Central Illinois Site 

Results for the magnitude disaggregation were obtained for the following return periods in years: 

2,500; 10,000; 50,000; 100,000; 250,000; 1x106; and 1x107. These return periods correspond to 

the probability of exceeding the following PGA values: 0.08g, 0.18g, 0.4g, 0.56g, 0.86g, 1.5g, 

and 3.32g, respectively. The return periods and corresponding PGA values were selected to 

coincide with the start and end of the PGA bins used in the seismic PRA. Specifically, the 

seismic hazard curve shown in Figure 3-5 was discretized as shown in columns 1–5 in Table 3-3. 
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To ensure consistency with general practice, the PGA discretization bins used in this case study 

were adapted from a representative seismic PRA summary report for a NPP [50]. The bin 

frequency values were calculated using the seismic hazard curve in Figure 3-5. 

Table 3-3 Discretization of Seismic Hazard Curve 
Seismic 
Initiator 

Bin 

Bin 
Start 

PGA (g) 

Bin 
End 

PGA (g) 

Bin 
Representative 

PGA (g) 

Bin 
Frequency 

(yr-1) 

Magnitude 
Disaggregation 

Used in Bin 
BIN-1 0.08 0.18 0.12 3.67E-4 𝑃𝑃(𝑀𝑀 = 𝑆𝑆|0.08𝑔𝑔 < 𝑃𝑃𝐺𝐺𝐴𝐴 ≤ 0.18𝑔𝑔) 
BIN-2 0.18 0.4 0.27 7.6E-5 𝑃𝑃(𝑀𝑀 = 𝑆𝑆|0.18𝑔𝑔 < 𝑃𝑃𝐺𝐺𝐴𝐴 ≤ 0.4𝑔𝑔) 
BIN-3 0.4 0.56 0.47 9.58E-6 𝑃𝑃(𝑀𝑀 = 𝑆𝑆|0.4𝑔𝑔 < 𝑃𝑃𝐺𝐺𝐴𝐴 ≤ 0.56𝑔𝑔) 
BIN-4 0.56 0.86 0.69 5.92E-6 𝑃𝑃(𝑀𝑀 = 𝑆𝑆|0.56𝑔𝑔 < 𝑃𝑃𝐺𝐺𝐴𝐴 ≤ 0.86𝑔𝑔) 
BIN-5 0.86 1.5 1.14 2.89E-6 𝑃𝑃(𝑀𝑀 = 𝑆𝑆|0.86𝑔𝑔 < 𝑃𝑃𝐺𝐺𝐴𝐴 ≤ 1.5𝑔𝑔) 
BIN-6 1.5 3.32 2.23 9.19E-7 𝑃𝑃(𝑀𝑀 = 𝑆𝑆|1.5𝑔𝑔 < 𝑃𝑃𝐺𝐺𝐴𝐴 ≤ 3.32𝑔𝑔) 
BIN-7 3.32  3.32 1.01E-7 𝑃𝑃(𝑀𝑀 = 𝑆𝑆|𝑃𝑃𝐺𝐺𝐴𝐴 > 3.32𝑔𝑔) 

3.4.2 Implementation of the Ground Motion Spatial Variability Model 

BNs are used to implement the ground motion spatial variability model. In this section, we 

discuss how to obtain the conditional probability tables (CPTs) for each of the nodes in the BNs 

shown in Figure 3-4(b) and (c). As noted previously, while we use BNs as a preferred 

communication and calculation mechanism in this paper, the approach can be implemented more 

generally without using BNs as the calculation framework (i.e., by performing calculations 

directly using the equations presented in previous sections of this report and any general-purpose 

computing software). 

3.4.2.1 𝑆𝑆𝐴𝐴1𝑟𝑟 

To generate the conditional probability table (conditional probability mass function (PMF)) 

assigned to node 𝑆𝑆𝐴𝐴1𝑟𝑟, the domain of 𝑆𝑆𝐴𝐴1𝑟𝑟 is discretized into a set of contiguous bins consistent 
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with the discretization of the seismic hazard curve used in the seismic PRA, as described in 

Section 3.2.2.6 This is reflected in columns 1–5 in Table 3-3. 

The binning in Table 3-3 reflects typical seismic PRA practice in which the seismic PRA does 

not consider all possible ground motion values. Particularly, ground motion values at or below a 

certain threshold of engineering significance are excluded because they are not expected to cause 

damage to the NPP SSCs of relevance to the seismic PRA. In this example, that threshold is 

0.08g and is the ground motion value that defines the start of the first PGA bin. However, for 

probabilistic consistency, the columns of the CPTs in a BN are required to sum up to 1.0. 

Consequently, for implementing our proposed method, we condition the node 𝑆𝑆𝐴𝐴1𝑟𝑟 and all the 

calculations on the occurrence of an earthquake of engineering significance (EES). The 

probability of the EES is numerically equivalent to the AEF of the PGA at the start of the first 

bin; i.e., 𝑃𝑃(𝐸𝐸𝐸𝐸𝑆𝑆) = 𝑃𝑃(𝑃𝑃𝐺𝐺𝐴𝐴 > 0.08𝑔𝑔) ≈ 𝜆𝜆(𝑃𝑃𝐺𝐺𝐴𝐴 > 0.08𝑔𝑔). The conditional probability that the 

PGA value is in BIN-1 given an EES is then:7 

 

6  We note that, in the context of seismic PRA, the Poisson distribution is typically assumed to describe the 

number of occurrences of earthquakes of interest in a given time interval; therefore, the probability of at least 

one event (earthquake) in time 𝑆𝑆 is 𝑃𝑃(𝑝𝑝𝑆𝑆 𝑀𝑀𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆 1 𝑆𝑆𝑒𝑒𝑆𝑆𝑛𝑛𝑆𝑆) = 1 − exp(−𝜆𝜆𝑆𝑆). Using 𝑆𝑆 = 1𝑆𝑆𝑟𝑟, and the typical 

values of 𝜆𝜆(𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝) in a seismic PRA, which range from 10-7 per year to 10-3 per year, the resulting 

𝑃𝑃(𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝) is numerically equivalent to 𝜆𝜆(𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝). 

7  The change from probability to frequency is done because in seismic PRA these quantities are numerically 

equivalent. 
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𝑃𝑃(0.08𝑔𝑔 < 𝑃𝑃𝐺𝐺𝐴𝐴 ≤ 0.18𝑔𝑔|𝑃𝑃𝐺𝐺𝐴𝐴 > 0.08𝑔𝑔) =
𝑃𝑃(0.08𝑔𝑔 < 𝑃𝑃𝐺𝐺𝐴𝐴 ≤ 0.18𝑔𝑔⋂𝑃𝑃𝐺𝐺𝐴𝐴 > 0.08𝑔𝑔)

𝑃𝑃(𝑃𝑃𝐺𝐺𝐴𝐴 > 0.08𝑔𝑔)  

  =
𝑃𝑃(0.08𝑔𝑔 < 𝑃𝑃𝐺𝐺𝐴𝐴 ≤ 0.18𝑔𝑔)

𝑃𝑃(𝑃𝑃𝐺𝐺𝐴𝐴 > 0.08𝑔𝑔)  

  =
𝜆𝜆(𝑃𝑃𝐺𝐺𝐴𝐴 > 0.08𝑔𝑔) − 𝜆𝜆(𝑃𝑃𝐺𝐺𝐴𝐴 > 0.18𝑔𝑔)

𝜆𝜆(𝑃𝑃𝐺𝐺𝐴𝐴 > 0.08𝑔𝑔)  

(3.15) 

Repeating this calculation for the remaining PGA bins and using 𝜆𝜆(𝑃𝑃𝐺𝐺𝐴𝐴 > 0.08𝑔𝑔) =

4.62 × 10−4 /yr results in the CPT for 𝑆𝑆𝐴𝐴1𝑟𝑟, which is shown in Table 3-4. 

Table 3-4 CPT for Node 𝑺𝑺𝑨𝑨𝟏𝟏𝒓𝒓  
Seismic 
Initiator 

Bin 

𝒑𝒑𝒑𝒑𝒂𝒂𝒔𝒔𝒔𝒔𝒂𝒂𝒓𝒓𝒔𝒔 
(g) 

𝒑𝒑𝒑𝒑𝒂𝒂𝒆𝒆𝒆𝒆𝒆𝒆 
(g) 𝑷𝑷(𝒑𝒑𝒑𝒑𝒂𝒂𝒔𝒔𝒔𝒔𝒂𝒂𝒓𝒓𝒔𝒔 < 𝑷𝑷𝑷𝑷𝑨𝑨 ≤ 𝒑𝒑𝒑𝒑𝒂𝒂𝒆𝒆𝒆𝒆𝒆𝒆|𝑷𝑷𝑷𝑷𝑨𝑨 > 𝟎𝟎.𝟎𝟎𝟎𝟎𝒑𝒑) 

BIN-0 0 0.08 0 
BIN-1 0.08 0.18 7.94 × 10−1 
BIN-2 0.18 0.4 1.64 × 10−1 
BIN-3 0.4 0.56 2.07 × 10−2 
BIN-4 0.56 0.86 1.28 × 10−2 
BIN-5 0.86 1.5 6.26 × 10−3 
BIN-6 1.5 3.32 1.99 × 10−3 
BIN-7 3.32  2.19 × 10−4 

We note that any numerical results obtained from calculations under the condition that an 

earthquake of engineering significance has occurred must be multiplied by 𝜆𝜆(𝑃𝑃𝐺𝐺𝐴𝐴 > 0.08𝑔𝑔) =

4.62 × 10−4 /yr (i.e., the frequency of occurrence of the EES) to obtain the “unconditional 

rates” that would be used as input to the seismic PRA. Further, we note that we have opted to 

include a “BIN-0” in Table 3-4 even though this corresponds to an earthquake of non-

engineering significance and is not included in the seismic PRA. The rationale for introducing 

the first row of Table 3-4 (BIN-0) is provided in Section 3.4.2.4. 
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3.4.2.2 𝑀𝑀|𝑆𝑆𝐴𝐴1𝑟𝑟 

The CPT (conditional PMF) for node 𝑀𝑀 is generated through the use of the magnitude 

disaggregation results, which provide the conditional distribution of 𝑀𝑀 for each value of 𝑆𝑆𝐴𝐴1𝑟𝑟 and 

are a standard output of the PSHA performed for the control point (reference location). In  

Table 3-3, the quantities in the column labeled “Magnitude Disaggregation Used in Bin” are not 

directly obtained from the PSHA results—except the last quantity, 𝑃𝑃(𝑀𝑀 = 𝑆𝑆|𝑃𝑃𝐺𝐺𝐴𝐴 > 3.32𝑔𝑔). 

However, these quantities can be calculated using the PSHA results as follows: 

 
𝑃𝑃(𝑀𝑀 = 𝑆𝑆𝑖𝑖|𝑆𝑆𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠 < 𝑆𝑆𝐴𝐴 ≤ 𝑆𝑆𝑝𝑝𝑠𝑠𝑛𝑛𝑒𝑒)

=
𝑃𝑃(𝑀𝑀 = 𝑆𝑆𝑖𝑖|𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠)𝜆𝜆(𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠) − 𝑃𝑃(𝑀𝑀 = 𝑆𝑆𝑖𝑖|𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝𝑠𝑠𝑛𝑛𝑒𝑒)𝜆𝜆(𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝𝑠𝑠𝑛𝑛𝑒𝑒)

𝜆𝜆(𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠) − 𝜆𝜆(𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝𝑠𝑠𝑛𝑛𝑒𝑒)  
(3.16) 

where 𝑃𝑃(𝑀𝑀 = 𝑆𝑆𝑖𝑖|𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠) and 𝑃𝑃(𝑀𝑀 = 𝑆𝑆𝑖𝑖|𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝𝑠𝑠𝑛𝑛𝑒𝑒) are the magnitude disaggregation 

results that correspond to exceeding the values of 𝑆𝑆𝐴𝐴 at the start and end of the bin, respectively; 

and 𝜆𝜆(𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠) and 𝜆𝜆(𝑆𝑆𝐴𝐴 > 𝑆𝑆𝑝𝑝𝑠𝑠𝑛𝑛𝑒𝑒) are the AEF of the values of 𝑆𝑆𝐴𝐴 at the start and end of 

the bin, respectively. For this case study, implementing Equation (3.16) results in the CPT 

(conditional PMF) for 𝑀𝑀|𝑆𝑆𝐴𝐴1𝑟𝑟, which is shown in Table 3-5. The conditional probability 

increases for 𝑆𝑆𝑖𝑖 = 7.75 in BIN-1, BIN-2, and BIN-3 due to the New Madrid seismic source and 

it is characteristic for the Central Illinois site. 

Table 3-5 CPT for Node 𝑴𝑴|𝑺𝑺𝑨𝑨𝟏𝟏𝒓𝒓  

𝑀𝑀 
bins 𝑆𝑆𝑖𝑖 

𝑃𝑃𝐺𝐺𝐴𝐴 (or 𝑆𝑆𝐴𝐴1𝑟𝑟) bins (g) 
BIN-1 BIN-2 BIN-3 BIN-4 BIN-5 BIN-6 BIN-7 

0.08–0.18  0.18–0.4 0.4–0.56 0.56–0.86 0.86–1.5 1.5–3.32 > 3.32 
5–5.5 5.25 0.1809 0.2773 0.3543 0.3631 0.3463 0.3238 0.3672 
5.5–6 5.75 0.1532 0.2194 0.2738 0.2891 0.2910 0.2699 0.2187 
6–6.5 6.25 0.1038 0.1431 0.1722 0.1841 0.1974 0.2074 0.1871 
6.5–7 6.75 0.0604 0.0747 0.0878 0.0944 0.1052 0.1231 0.1297 
7–7.5 7.25 0.0859 0.0526 0.0389 0.0391 0.0446 0.0569 0.0685 
7.5–8 7.75 0.3180 0.1697 0.0510 0.0225 0.0139 0.0184 0.0279 
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Table 3-5 CPT for Node 𝑴𝑴|𝑺𝑺𝑨𝑨𝟏𝟏𝒓𝒓  

𝑀𝑀 
bins 𝑆𝑆𝑖𝑖 

𝑃𝑃𝐺𝐺𝐴𝐴 (or 𝑆𝑆𝐴𝐴1𝑟𝑟) bins (g) 
BIN-1 BIN-2 BIN-3 BIN-4 BIN-5 BIN-6 BIN-7 

0.08–0.18  0.18–0.4 0.4–0.56 0.56–0.86 0.86–1.5 1.5–3.32 > 3.32 
8–8.5 8.25 0.0978 0.0632 0.0221 0.0077 0.0017 0.0005 0.0009 

3.4.2.3 𝛥𝛥𝑆𝑆𝐴𝐴1,2|𝑀𝑀 and 𝑃𝑃1,2
′  

The CPT (conditional PMF) of Δ𝑆𝑆𝐴𝐴1,2 is generated by first defining a discrete number of bins 

representing contiguous intervals within the domain of Δ𝑆𝑆𝐴𝐴1,2. The selected discretization may 

vary by application, desired tolerance for discretization errors, and available computing 

capabilities. Then, a probability mass is assigned to each bin by discretizing a normal distribution 

with zero mean and standard deviation that depends on the state (i.e., value) of parent node 𝑀𝑀, in 

accordance with the equation for 𝜎𝜎∆𝑆𝑆𝐴𝐴𝑖𝑖𝑖𝑖𝑖𝑖(𝑀𝑀, 𝜉𝜉, 𝑓𝑓) shown in Table 3-1. Implementing this process 

results in the CPT for ∆𝑆𝑆𝐴𝐴1,2|𝑀𝑀, which is shown in Table 3-6. 

Table 3-6 CPT for Node ∆𝑺𝑺𝑨𝑨𝟏𝟏,𝟐𝟐|𝑴𝑴 
∆𝑆𝑆𝐴𝐴1,2 

bins 
𝑀𝑀 bins 

5–5.5 5.5–6 6–6.5 6.5–7 7–7.5 7.5–8  8–8.5 
-0.46 – -0.35 0.0013 0 0 0 0 0 0 
-0.35 – -0.23 0.0212 0 0 0 0 0 0 
-0.23 – -0.12 0.1357 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 

-0.12 – 0 0.3418 0.4899 0.4899 0.4899 0.4899 0.4899 0.4899 
0 – 0.12 0.3418 0.4899 0.4899 0.4899 0.4899 0.4899 0.4899 

0.12 – 0.23 0.1357 0.0101 0.0101 0.0101 0.0101 0.0101 0.0101 
0.23 – 0.35 0.0212 0 0 0 0 0 0 
0.35 – 0.46 0.0013 0 0 0 0 0 0 

We note that the conditional distribution of ∆𝑆𝑆𝐴𝐴1,2 for the 𝑀𝑀 bins from 5.5–6 to 8–8.5 are the 

same because, for rock sites, there is no data for these ranges of the earthquake magnitude and 

Abrahamson and Sykora [24] provided the values for 𝑐𝑐1(𝑓𝑓,𝑀𝑀) only up to 25 Hz. Due to this, we 

applied a single coefficient 𝑐𝑐1(𝑓𝑓,𝑀𝑀) to all magnitude ranges in excess of 5.5. That is, based on a 

review of the functional shape of the models developed by Abrahamson and Sykora [24], it was 
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judged to be reasonable to estimate the value of 𝑐𝑐1(𝑓𝑓,𝑀𝑀) applied above magnitude 5.5 by linear 

extrapolation in two dimensions (magnitude and frequency) and application of a “lower cap” 

such that the coefficient was not less than 0.05. 

In the case of 𝑃𝑃1,2
′ , we followed the same process as we have just described, except that 𝑃𝑃1,2

′  does 

not have a dependency on 𝑀𝑀 and we use the equation for 𝜎𝜎𝑃𝑃′(𝜉𝜉) shown in Table 3-1 to define 

the standard deviation. We decided to not show the CPT for 𝑃𝑃1,2
′  because it has a similar structure 

to that of 𝑆𝑆𝐴𝐴1𝑟𝑟. 

3.4.2.4 𝑆𝑆𝐴𝐴2𝑟𝑟|𝑆𝑆𝐴𝐴1𝑟𝑟 ,𝛥𝛥𝑆𝑆𝐴𝐴1,2 and 𝑆𝑆𝐴𝐴2𝑟𝑟|𝑆𝑆𝐴𝐴1𝑟𝑟 ,𝑃𝑃1,2
′  

The CPT (conditional PMF) of node 𝑆𝑆𝐴𝐴2𝑟𝑟  is generated by first defining a set of contiguous bins 

that discretize the domain of 𝑆𝑆𝐴𝐴2𝑟𝑟  and then determining the probability associated with each 

discrete bin of 𝑆𝑆𝐴𝐴2𝑟𝑟  given the states of its parents. We defined the 𝑆𝑆𝐴𝐴2𝑟𝑟  bins to be the same as 

those of 𝑆𝑆𝐴𝐴1𝑟𝑟. In the simplest form, this conditional probability can be achieved by considering 

the representative values for each state of Δ𝑆𝑆𝐴𝐴1,2 (or 𝑃𝑃1,2
′ ) and 𝑆𝑆𝐴𝐴1𝑟𝑟 and then using calculations 

that identify into which bin of 𝑆𝑆𝐴𝐴2𝑟𝑟  the resulting value falls. However, this introduces (potentially 

significant) discretization error. Instead, we propose to use Monte Carlo simulation to determine 

the conditional distribution of 𝑆𝑆𝐴𝐴2𝑟𝑟  for each combination of the states of its parent nodes. 

Specifically, we uniformly sampled from the range associated with each parent nodes’ state to 

account for the uncertainty within the bin and discretized the resulting synthetic distribution. The 

“snippet” of the resulting CPT is presented in Table 3-7 for the BN using the A&S [24] 

formulation. Given that 𝑆𝑆𝐴𝐴1𝑟𝑟, ∆𝑆𝑆𝐴𝐴1,2, and 𝑆𝑆𝐴𝐴2𝑟𝑟  has eight bins each, the CPT for 𝑆𝑆𝐴𝐴2𝑟𝑟|𝑆𝑆𝐴𝐴1𝑟𝑟 ,∆𝑆𝑆𝐴𝐴1,2 

has 512 entries, which makes presentation of the complete table impractical (and unnecessary 



49 

given the purposes of this example). The CPT for 𝑆𝑆𝐴𝐴2𝑟𝑟|𝑆𝑆𝐴𝐴1𝑟𝑟 ,𝑃𝑃1,2
′  has a similar structure; therefore, 

it is not presented. 

We now draw attention to the reason we opted to include BIN-0 in Table 3-4. Under a 

combination of the low PGA values for the reference unit (𝑆𝑆𝐴𝐴1𝑟𝑟) and small values of ∆𝑆𝑆𝐴𝐴1,2 (or 

𝑃𝑃1,2
′ ), it is possible that the ground motion at the non-reference unit (𝑆𝑆𝐴𝐴2𝑟𝑟) falls in the range of an 

earthquake of non-engineering significance. Therefore, we include a PGA bin in the range of 

0𝑔𝑔 < 𝑃𝑃𝐺𝐺𝐴𝐴 ≤ 0.08𝑔𝑔 (i.e., BIN-0 in Table 3-4) to allow for the assignment of probability to these 

cases. At the other extreme, we note that high 𝑆𝑆𝐴𝐴1𝑟𝑟 values combined with high ∆𝑆𝑆𝐴𝐴1,2 (or 𝑃𝑃1,2
′ ) 

values can result in extremely high 𝑆𝑆𝐴𝐴2𝑟𝑟  values. These are assigned to the last PGA bin (BIN-7 in 

our example). In a seismic PRA, a bin such as BIN-7 is usually assumed to result in core damage 

directly. 

Table 3-7 Partial CPT for 𝑺𝑺𝑨𝑨𝟐𝟐𝒓𝒓|𝑺𝑺𝑨𝑨𝟏𝟏𝒓𝒓 ,∆𝑺𝑺𝑨𝑨𝟏𝟏,𝟐𝟐 
𝑆𝑆𝐴𝐴2𝑟𝑟  
bins 
(g) 

∆𝑆𝑆𝐴𝐴1,2 bins 
-0.46 – -0.35 -0.35 – -0.23 -0.23 – -0.12 -0.12 – 0 0 – 0.12 0.12 – 0.23 0.23 – 0.35 0.35 – 0.46 

𝑆𝑆𝐴𝐴1𝑟𝑟 = 0.4𝑔𝑔 − 0.56𝑔𝑔 
0–0.08 0 0 0 0 0 0 0 0 

0.08–0.18 0 0 0 0 0 0 0 0 
0.18–0.4 1 0.8436 0.4774 0.1432 0 0 0 0 
0.4–0.56 0 0.1564 0.5226 0.8568 0.8041 0.4311 0.1194 0 

0.56–0.86 0 0 0 0 0.1959 0.5689 0.8806 0.9808 
0.86–1.5 0 0 0 0 0 0 0 0.0192 
1.5–3.32 0 0 0 0 0 0 0 0 
> 3.32 0 0 0 0 0 0 0 0 

 

3.4.3 Ground Motion Probability Distributions 

We perform probabilistic calculations using the BNs shown in Figure 3-4(b) and (c) and the 

GeNIe software [22] with CPTs populated as described in Section 3.4.2. As mentioned in 
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Section 3.4.2, we conditioned the BNs on the occurrence of an EES. The ground motion 

probability distributions in this section are shown as discrete because the seismic hazard curve is 

discretized when quantifying a seismic PRA. 

Figure 3-6(a) shows the probability distributions of the ground motion at the reference and non-

reference units given the occurrence of an EES. It can be observed from the A&S [24] and K&M 

[25] formulations in Figure 3-6(a) that the probability mass of the ground motion at the non-

reference unit is more disperse than the probability mass at the reference unit, reflecting the 

additional variability. This includes the possibility of the non-reference unit experiencing an 

earthquake of non-engineering significance when the reference unit is experiencing such an 

event. Nonetheless, most of the probability mass of the ground motion at the non-reference unit 

is at BIN-1, as expected, because the distributions of ∆𝑆𝑆𝐴𝐴1,2 and 𝑃𝑃1,2
′  have a mean of zero. As the 

ground motion increases, we observe that the probability mass of the ground motion at the non-

reference unit is slightly higher than the probability mass of the ground motion at the reference 

unit. 

To determine the conditional probability distribution of ground motion at the non-reference unit 

given the ground motion at the reference unit (as would be required to support the performance 

of the MUSPRA), we use the updating aspects of the BNs by sequentially setting the 𝑆𝑆𝐴𝐴 for the 

reference unit to each of the possible ground motion bins as an “evidence case” in the BNs and 

perform the inference for each case. Figure 3-6(b) shows an example of the conditional 

probability distributions of 𝑆𝑆𝐴𝐴 at the non-reference unit using both formulations [24], [25] for the 

case when the 𝑆𝑆𝐴𝐴 at the reference unit is in BIN-3. Similar to the distributions in Figure 3-6(a), 

most of the probability mass of the ground motion at the non-reference unit is in the same bin as 
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the ground motion at the reference unit. However, because of the spatial variability of ground 

motion models we have included, the probability distribution of ground motion at the non-

reference unit is dispersed around the ground motion at the reference unit. 

 
Figure 3-6 (a) Probability distributions of the ground motion at the reference and non-

reference units given an earthquake of engineering significance (EES). (b) 
Probability distribution of the ground motion at the reference unit and conditional 
probability distribution at the non-reference unit given that 𝑆𝑆𝐴𝐴1𝑟𝑟 is in the range 
0.4g – 0.56g (BIN-3) and an EES. 

The calculations provided above were done using the BN as the computational platform. 

However, the calculations of the example distributions shown in this case study can also be 

performed using other computational methods.  To demonstrate this, we also performed the 

calculations shown in Figure 3-6(b) using Monte Carlo (MC) simulation and, as expected, 

obtained similar results as those from using the BN framework. For example, Figure 3-7 

compares the calculated conditional distributions using the BN and MC (with one million 

simulations) for the distribution obtained from the A&S [24] and K&M [25] formulations. Both 

the MC and BN estimates begin with a hazard discretization that is defined by the PRA-defined 

ground motion bins. The MC simulation then takes random draws from the specified 
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distributions, while the BN framework uses the discretized form of the distributions. However, to 

minimize the effects of discretization in the BN, the CPTs in the BN framework are developed 

by sampling uniformly within the bin (rather than using a representative value) or, when 

possible, account for the shape of the underlying distribution as described in Bensi et al. [18]. 

Under the MC simulation approach, simulations must be performed separately to generate results 

for each evidence case, while the simulations to generate the BN CPTs need only be performed 

initially and information updating is performed using the BN inference algorithms.  While MC 

simulation and the BN framework yield similar results, the BN framework offers the following 

advantages: (1) BNs provide a graphical representation that facilitates communication of 

modeling assumptions, (2) they are effective at modeling dependencies, and (3) they easily 

facilitate information updating, which allows for the efficient calculation of conditional 

distributions for all variables shown in the BN.  While MC simulation is not subject to the 

discretization limitations associated with the BN, this advantage is reduced, in part, by the 

discretization of the ground motion used as input to the MUSPRA as well as the discrete nature 

of other PSHA output (e.g., magnitude disaggregation). Moreover, the effects of discretization in 

the BN can be minimized through integration of MC techniques in the CPT development as in 

Bensi et al. [18]. 

The BN framework can be readily extended to model the spatial variability of ground motion at 

more than two locations by including additional nodes in the BN and making inferences for the 

additional locations based on the reference ground motion hazard estimated at the NPP site. For 

example, the BN model formulation linking the ground motion at multiple locations to a single 

reference location (𝑆𝑆𝐴𝐴𝑟𝑟𝑠𝑠𝑓𝑓) and assuming conditional independence of the variability terms 

(∆𝑆𝑆𝐴𝐴𝑛𝑛 and 𝑃𝑃𝑛𝑛′) from location to location would take the form shown in Figure 3-8(a) and (b) 
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(such a formulation can be likewise implemented via MC simulation).  More sophisticated 

formulations that account for the dependency in the variability terms from location to location 

would require the development of alternate formulations that require an extension of the existing 

spatial variability of ground motion models, which compare two locations at a time. BNs have 

been developed for modeling spatial ground motion correlation (variability) at multiple locations 

across regional scales as described in Bensi et al. [51]. 

 
Figure 3-7 Probability distribution of the ground motion at the reference unit and comparison 

of the conditional probability distributions at the non-reference unit given that 
𝑆𝑆𝐴𝐴1𝑟𝑟 is in the range 0.4g – 0.56g (BIN-3) and an EES using the A&S [24] and 
K&M [25] formulations estimated using MC simulation and the BN framework 
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Figure 3-8 Conceptual extensions of the BN frameworks based on (a) the A&S [24] and (b) 

K&M [25] formulations to multiple locations on a site 

3.5 Summary and Conclusions 

We proposed a method for modeling ground motion spatial variability across an NPP hard-rock 

site to support MUSPRA. We present this method as a more realistic alternative to the 

conventional assumption that ground motions across an NPP site are perfectly correlated. In 

particular, we propose a pragmatically-motivated approach to developing the conditional 

probability distribution(s) of ground motion at a non-reference unit(s) at an NPP hard-rock site 

given the ground motion at a reference unit for which an existing PSHA has been performed. 

The proposed method is presented using a BN framework because of their graphical structure 

and capacity to facilitate probabilistic modeling of dependencies; however, the proposed 

approach is not limited to implementation via the BN framework. 

An example application using a PSHA for a hypothetical rock site illustrated the development of 

the requisite quantities and the means by which they can be obtained using existing resources 

and a site-specific PSHA. The two model formulations of spatial variability of ground motion 

used in the case study [24], [25] should be viewed as a representation of the type of models that 

(a) (b)

…

…

…
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are available in the literature (i.e., model functional forms and input variables), rather than an 

assessment of the validity of these specific models for the target locations.  Nonetheless, if a site-

specific analysis is carried out using different models of spatial variability of ground motion and 

these models remain a function of the separation distance alone or a function of the separation 

distance and the earthquake magnitude, then the formulations presented in this paper remain 

applicable under differing numerical assumptions (e.g., different distribution parameter values). 

Based on the models of spatial variability of ground motion we used in the case study [24], [25], 

we observed that the probability distribution of the ground motion at the non-reference unit is 

more dispersed and slightly shifted to the right relative to the distribution of the ground motion at 

the reference unit, allowing for the possibility of higher levels of ground motion at the non-

reference location. Consequently, this can change the seismic failure probability of the associated 

SSCs due to the possibility of different ground motions. In particular, depending on the shape of 

the fragility curve, the probability assigned to higher ground motion values can result in an 

increase in the estimated failure probability of SSCs. Further, inclusion of variability can have 

impacts on estimated system risk metrics, as described in Ferson et al. [52] and our previous 

work [46]. Because of this, we note that the perfect correlation assumption with respect to the 

ground motion at multiple locations/units at an NPP site may not necessarily be conservative. 

This observation should remain valid regardless of the model of spatial variability of ground 

motion that is used because any model should estimate that there is a non-negligible probability 

that the ground motion hazard at the non-reference unit may be different than that of the 

reference unit. 
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Future studies will address the development of the implementation details and case studies for 

the MUSPRA input for a soil site. Similar to the implementation for a rock site, the focus for a 

soil site will be on ensuring that the implementation is based on practical considerations and that 

the model formulations address the range of existing information that is available about the 

seismic hazard for the site, soil properties, and site response. 
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Chapter 4 A Bayesian Network Approach for Modeling Dependent 

Seismic Failures in a Nuclear Power Plant Probabilistic Risk 

Assessment8 

4.1 Introduction 

4.1.1 Overview 

The safety and reliability assurances of nuclear power plant (NPP) structures and components are 

critical during the engineering design and operation. Safety analyses of NPPs are typically 

complemented using probabilistic risk assessments (PRA), and the nuclear industry heavily relies 

on PRAs to address such assurances. Seismic PRA is an integral part of PRA because the seismic 

hazard is one of the most critical threats to the safety and reliability of NPP structures and 

components. Seismic PRAs are performed to support risk-informed decisionmaking related to 

earthquake safety and reliability at NPPs. Seismic PRAs are comprised of three key elements: (1) 

seismic hazard analysis, (2) seismic fragility evaluation, and (3) plant response model. In this 

paper, we focus on the seismic fragility evaluation, which estimates the conditional probability 

of failure of structures, systems, and components (SSCs) whose failure may lead to unacceptable 

effects on the NPP (e.g., core damage) [12]. Since the ground motion produced by earthquakes 

 

8  This chapter was published in the journal Reliability Engineering & System Safety, Vol. 213, p. 107678, Sep. 

2021, https://doi.org/10.1016/j.ress.2021.107678. 

https://doi.org/10.1016/j.ress.2021.107678
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affects all SSCs at the NPP, it raises the dependency between the seismic failures of SSCs in 

earthquake scenarios. 

Dependency between seismic failures can arise due to correlation in the seismic response and 

correlation in the seismic capacity9 of the SSCs [53]. Seismic response refers to the load 

(demand) experienced by an SSC at its location due to the ground motion that results from an 

earthquake (e.g., the floor response spectra for a component, which considers the free-field 

ground motion (i.e., the seismic hazard curve) and the soil-structure interaction). The seismic 

response correlation between SSCs is due to a single earthquake ground motion affecting all the 

buildings in the NPP as well as the foundation medium (i.e., rock or soil) that may be similar for 

some or all the buildings across the site and the layout and design of different buildings that may 

be similar [15]. Dependency between seismic capacities generally arises because the SSCs have 

common materials and fabrication and have their fragilities calculated for the same failure modes 

and using the same models [15]. 

In this work, we propose a method to model “fragility correlation” using Bayesian networks 

(BNs), while leveraging the existing conceptual approaches used in seismic PRAs performed in 

the nuclear industry. The proposed approach intends to leverage modern tools for modeling 

dependencies and quantifying system failure probabilities (i.e., BNs), which are not subject to 

the quantitative limitations of existing quantification tools. We seek to leverage these advances 

while maintaining the conceptual knowledge associated with existing practices in the modeling 

 

9  Bohn and Lambright [53] used the term “fragility” to refer to the capacity of an SSC (see Section 2.1.3.4 of Budnitz et al. [15]). 
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of seismic fragility for NPP SSCs. In this paper, we outline the proposed approach to 

constructing the BN model and provide practical implementation guidance for developing the 

requisite components. We use an established case study to compare the results of the proposed 

BN-based approach against existing quantification methods used in practice as well as theoretical 

bounds. We show that the proposed BN approach offers several modeling advantages, is more 

generalizable, and performs more consistently relative to theoretical bounds than the existing 

standard of practice. 

4.1.2 Context and Motivation 

The issue of dependent seismic failures and its quantification has been discussed since the 1980s, 

starting with the Seismic Safety Margins Research Program (SSMRP) [54], [55]. Based on the 

SSMRP, Bohn and Lambright [53] developed a set of thumb rules for the response correlation 

and capacity correlation (see Section 3.7.2.2 of NUREG/CR-4840 [53]). As noted by Budnitz et 

al. [15], in practice, seismic PRAs have applied a correlation coefficient of 1 “to the situation of 

similar SSCs exposed to the same earthquake load (typically, SSCs located near each other), and 

zero everywhere else.” Both of these cases are extremes and the truth is likely to be somewhere 

in the middle; however, the approach of using 0 or 1 as the correlation coefficient may be due to 

the lack of a practical method for analyzing dependent seismic failures as well as the limitations 

of modeling tools. In Section 1.4 of NUREG/CR-7237 [15], Budnitz et al. state that the 

fundamental question addressed by the method for modeling dependent seismic failures is: 

“what is the joint probability of two or more seismic caused failures, conditional on the 

occurrence of an earthquake of a given ‘size,’ and how and why the joint probability may 

be different from the situation in which those failures are essentially independent.” 
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If the failures are essentially independent, the joint probability of failure is calculated as the 

product of the failure probabilities of the individual SSCs. After considering several methods for 

analyzing dependent seismic failures of SSCs, Budnitz et al. [15] found the method proposed by 

Reed et al. [56] (also known as the “Reed-McCann method”) to be the most promising method to 

answer their above stated fundamental question. The Reed-McCann method is further described 

in Section 4.2.3. 

It should be noted that Zhou et al. [57] found issues with the Reed-McCann method’s 

quantification of the seismic failure probability of a series system (i.e., OR failure logic). Due to 

this issue, Zhou et al. [40] proposed another method to account for the dependency of seismic 

failures using copulas. They applied it in the context of a multi-unit seismic PRA. Specifically, 

Zhou et al. [40] used the Gaussian copula to remain consistent with the conventions of the 

current state of practice of seismic fragility modeling; that is, the assumption that seismic 

capacities are lognormally distributed. The Gaussian copula requires the estimation of the 

correlation coefficient and, in their application to a multi-unit seismic PRA, Zhou et al. [40] used 

the “equi-correlated” model [58], [59] as a reasonable characterization of the correlation. The 

“equi-correlated” model means that only one correlation coefficient needs to be specified 

between similar or identical SSCs [40]. They assumed that the “correlation would be provided by 

the seismic fragility analysts through separating the common sources of uncertainties among the 

interested SSCs” (see the notes in Figures 3 and 6 of Zhou et al. [40]) and performed sensitivity 

analyses for the correlation coefficient. Another method that relies on the estimation of 

correlation coefficients is the work by Watanabe et al. [60], where the effect of 

correlation/dependency between components (i.e., correlation in seismic responses and 

correlation in seismic capacities) in the system failure probability is taken into account using 
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direct quantification of fault tree using Monte Carlo simulation (DQFM) method. Kwag et al. 

[61] proposed to enhance the efficiency of the DQFM method by strategically reusing samples 

and changing the sampling technique from Monte Carlo simulation to Latin Hypercube 

sampling. The proposed enhancements by Kwag et al. [61] feature a way of transforming the 

output from Electric Power Research Institute (EPRI) seismic fragility evaluation [62], which we 

briefly explain in Sections 4.2.1 and 4.2.2, to the output from the Japan Atomic Energy Research 

Institute seismic fragility evaluation [63] for use as input to the systems analysis. 

In addition to the issues with the Reed-McCann method’s quantification identified by Zhou et al. 

[57], we also found issues with the Reed-McCann method’s quantification of the seismic failure 

probability of a parallel system (i.e., AND failure logic) (see Section 4.4 for more details). 

Specifically, we found that the Reed-McCann method’s quantification can provide system failure 

probability results outside theoretical bounds. Based on the quantification issues identified for 

the Reed-McCann method [56] and the need to estimate a correlation coefficient in order to use 

the methods proposed by Zhou et al. [40], Watanabe et al. [60], and Kwag et al. [61], we propose 

an alternate approach for analyzing dependent seismic failures based on BNs, which provides a 

general structure (independent of probability distribution form) for constructing the joint 

probability distribution of involved random variables using conditional relationships. 

As noted previously, a seismic PRA is comprised of three key elements: (1) seismic hazard 

analysis, (2) seismic fragility evaluation, and (3) plant response model. In our previous work 

[64], we focused on item (1), proposing a method that uses BNs to account for the spatial 

variability of ground motions in an NPP multi-unit seismic PRA at a hard-rock site. Our 

proposed method is a more realistic alternative to the conventional assumption that ground 
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motions across an NPP site are perfectly correlated. In this work, we focus on the modeling of 

dependencies under the second element of the seismic PRA. The proposal herein is to use BNs to 

calculate the fragility of a system. The use of BNs is offered as an alternative to the Reed-

McCann method, which has been proposed for use in multi-unit seismic PRA as evidenced by its 

discussion in Annex II of the International Atomic Energy Agency (IAEA) Safety Report Series 

No. 96 [65] and in EPRI 3002018229 [13]. 

We propose the BN approach as an alternative to calculate the system fragility of multiple 

components because of the ease of the proposed integration with other BN-based PRA realism 

enhancements (e.g., modeling of the spatial variability of ground motion), the overall 

quantitative robustness relative to theoretical bounds (as demonstrated in Section 4.4), and the 

inherent characteristics of BNs. Specifically, (1) BNs provide a graphical representation that 

enables transparency and facilitates communication of modeling assumptions, (2) they are 

effective at modeling complex dependencies, and (3) they facilitate information updating, which 

allows for the efficient calculation of joint and conditional probability distributions for all 

random variables in the BN. 

4.1.3 Outline 

This paper is organized as follows. Section 4.2 provides background related to the fragility 

model used in the nuclear industry (Section 4.2.1); evaluation of fragility parameters (Section 

4.2.2); the Reed-McCann method, which is expected to be used in the nuclear industry (Section 

4.2.3); and estimation of the lower and upper bounds of a system failure probability (Section 

4.2.4). Section 4.3 discusses the development of the Bayesian network for modeling dependent 

seismic failures. Section 4.4 compares the fragility results of a three-component system assuming 
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parallel and series configurations using the Reed-McCann method, the proposed BN approach, 

the First-Order Reliability Method, and Monte Carlo simulation. The selected three-component 

system is the illustrative example presented in Sections 8.2.4 and 8.2.5 of NUREG/CR-7237 

[15], which analyzed the correlation of seismic performance in similar SSCs. The example 

system is described as “different components on different floors” [15]. Finally, Section 4.5 

summarizes our work and provides conclusions. 

4.2 Background 

4.2.1 Overview of the Seismic Fragility Modeling Used in the Nuclear Industry 

Seismic fragility (hereafter referred to as “fragility”) is the conditional failure probability of an 

SSC given a value of a ground motion parameter [12]. It is the probability that the seismic 

capacity (Θ) of the SSC is less than the ground motion parameter (or demand).10 The ground 

motion parameter in the fragility must be consistent with the ground motion parameter used in 

the probabilistic seismic hazard analysis (PSHA) performed at the site of interest [12]. The 

seismic capacity for the failure mode of interest of an SSC is typically modeled as the product of 

a “best estimate” seismic capacity (usually the median, Θ𝑚𝑚) and two random variables Ε𝑅𝑅 and Ε𝑈𝑈 

[66]: 

 Θ = Θm ∙ Ε𝑅𝑅 ∙ Ε𝑈𝑈 . 
(4.1) 

 

10  In the literature related to NPP seismic fragilities (e.g., [66]), the letter “A” is typically used to represent the seismic capacity of an SSC. 

However, we are using the Greek letter “Θ” for the same purpose in an attempt to avoid confusion with component A, which we use in the 

description of the proposed BN approach in Section 3. 
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The random variable Ε𝑅𝑅 represents the inherent randomness (aleatory variability) about the 

median and Ε𝑈𝑈 represents the epistemic uncertainty in the median value. These two random 

variables are assumed to be lognormally distributed with medians equal to 1 and logarithmic 

standard deviations 𝛽𝛽𝑅𝑅 and 𝛽𝛽𝑈𝑈, respectively. Consequently, the seismic capacity Θ is a 

lognormally distributed random variable with median (scale parameter) Θ𝑚𝑚 and logarithmic 

standard deviation (shape parameter) (𝛽𝛽𝑅𝑅2 + 𝛽𝛽𝑈𝑈2)0.5. If a point estimate of the fragility is desired 

for a given set of parameters Θ𝑚𝑚, 𝛽𝛽𝑅𝑅, and 𝛽𝛽𝑈𝑈, it is obtained by using the composite variability, 

𝛽𝛽𝐴𝐴 = (𝛽𝛽𝑅𝑅2 + 𝛽𝛽𝑈𝑈2)0.5, as shown in Equation (4.2). By varying the value of 𝜃𝜃 in Equation (4.2), the 

composite (or mean [67]) fragility curve is obtained. 

 𝑃𝑃(Θ < 𝜃𝜃) = 𝑃𝑃(𝑆𝑆𝑆𝑆𝐶𝐶 𝑓𝑓𝑝𝑝𝑖𝑖𝑀𝑀𝑆𝑆𝑟𝑟𝑆𝑆|𝜃𝜃) = Φ�
ln � 𝜃𝜃Θ𝑚𝑚

�

𝛽𝛽𝐴𝐴
� 

(4.2) 

In Equation (4.2), Φ[∙] is the standard normal cumulative distribution function of the term in the 

brackets; 𝜃𝜃 is the ground motion parameter from the PSHA, which is typically related to the 

acceleration experienced by the SSC due to the earthquake; Θ𝑚𝑚 is the median seismic capacity of 

the SSC; and 𝛽𝛽𝐴𝐴 is the composite variability. 

4.2.2 Estimation of the Fragility Parameters (Fragility Evaluation) 

The objective of the fragility evaluation is to estimate realistic parameters related to the 

probability distribution of seismic capacity for the failure mode of interest of an SSC (i.e., the 

parameters Θ𝑚𝑚, 𝛽𝛽𝑈𝑈, and 𝛽𝛽𝑅𝑅 to use in Equation (4.2)). There are two methods for developing 

fragilities used in the nuclear industry [68]: the Conservative Deterministic Failure Margin 

(CDFM) approach [69] and the separation of variables approach (also known as the fragility 
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analysis method) [62]. The CDFM approach first calculates the high-confidence-of-low-

probability-of-failure (HCLPF) seismic capacity, that is, the acceleration value at which the SSC 

has a probability of failure of less than 1 percent [70]. Then, it calculates the median seismic 

capacity using the HCLPF seismic capacity and an assumed composite variability (𝛽𝛽𝐴𝐴) [68]. The 

equation to calculate the median seismic capacity is shown in Equation (4.3) [70]. 

 Θ𝑚𝑚 =
𝐻𝐻𝐶𝐶𝐿𝐿𝑃𝑃𝐹𝐹

exp(−2.33𝛽𝛽𝐴𝐴) (4.3) 

The separation of variables approach calculates the seismic capacity (Θ) as the product of a 

reference seismic capacity (Θ𝑅𝑅𝑅𝑅𝑅𝑅) (i.e., a reference value of a ground motion parameter) and a 

factor of safety (𝐹𝐹) [62]: 

 Θ = 𝐹𝐹 ∙ Θ𝑅𝑅𝑅𝑅𝑅𝑅 (4.4) 

The value of Θ𝑅𝑅𝑅𝑅𝑅𝑅 is often taken as the peak ground acceleration (PGA) from either the site-

specific uniform hazard response spectrum11 calculated at 10−4/𝑆𝑆𝑟𝑟 or the ground motion 

response spectrum.12 The factor of safety is assumed to be lognormally distributed with median 

𝐹𝐹𝑚𝑚 and logarithmic standard deviations 𝛽𝛽𝑅𝑅 and 𝛽𝛽𝑈𝑈, which are identical to the aleatory and 

epistemic uncertainties of the seismic capacity [66]. The factor of safety is estimated as the 

product of a series of factors. The factors used differ based on whether the fragility evaluation is 

 

11 The work by Baker [71] explains how to calculate the uniform hazard response spectrum. 

12  The U.S. Nuclear Regulatory Commission’s Regulatory Guide 1.208 [72] explains how the ground motion 

response spectrum is calculated. 
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being performed on a structure or equipment. For a structure, the factor of safety is estimated as 

the product of a capacity factor (𝐹𝐹𝐴𝐴𝑝𝑝𝑝𝑝) and structure response factor (𝐹𝐹𝑅𝑅𝑆𝑆): 𝐹𝐹 = 𝐹𝐹𝐴𝐴𝑝𝑝𝑝𝑝 ∙ 𝐹𝐹𝑅𝑅𝑆𝑆. The 

capacity factor (𝐹𝐹𝐴𝐴𝑝𝑝𝑝𝑝) is calculated as a product of strength and ductility factors. The structure 

response factor (𝐹𝐹𝑅𝑅𝑆𝑆) is calculated as the product of series of factors accounting for structural 

response variability. 

For equipment qualified by analysis, the factor of safety 𝐹𝐹 includes an additional factor (𝐹𝐹𝑅𝑅𝑅𝑅) to 

account for differences in equipment response relative to the structural response; that is, 

F = 𝐹𝐹𝐴𝐴𝑝𝑝𝑝𝑝 ∙ 𝐹𝐹𝑅𝑅𝑆𝑆 ∙ 𝐹𝐹𝑅𝑅𝑅𝑅. The equipment response factor (𝐹𝐹𝑅𝑅𝑅𝑅) is, in turn, estimated as the product of 

factor associated with dynamic response [62]. Futher details about the factors discussed above 

and the method to obtain the seismic capacity of equipment qualified by testing are discussed in 

EPRI 3002012994 [62]. 

Based on the assumptions that the factor of safety (𝐹𝐹) is lognormally distributed and that all the 

constituent factors are independent, the median factor of safety 𝐹𝐹𝑚𝑚 and the logarithmic standard 

deviation 𝛽𝛽𝑅𝑅 can, in general, be estimated as 

 𝐹𝐹𝑚𝑚 = 𝐹𝐹𝐴𝐴𝑝𝑝𝑝𝑝𝑚𝑚 ∙ 𝐹𝐹𝑅𝑅𝑆𝑆𝑚𝑚 ∙ 𝐹𝐹𝑅𝑅𝑅𝑅𝑚𝑚 
(4.5) 

and 

 𝛽𝛽𝑅𝑅 = �𝛽𝛽𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶
2 + 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅

2 + 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅
2 �

0.5
, (4.6) 

respectively. In Equation (4.5), 𝐹𝐹𝐴𝐴𝑝𝑝𝑝𝑝𝑚𝑚, 𝐹𝐹𝑅𝑅𝑆𝑆𝑚𝑚, and 𝐹𝐹𝑅𝑅𝑅𝑅𝑚𝑚 are the median values of the capacity, 

structure response, and equipment response factors, respectively, which are obtained by the 

product of the medians of their constituent factors. In Equation (4.6), 𝛽𝛽𝑅𝑅𝐶𝐶𝐶𝐶𝐶𝐶, 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅, and 𝛽𝛽𝑅𝑅𝑅𝑅𝑅𝑅 are 
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the variabilities of the capacity, structure response, and equipment response factors, respectively, 

which are in turn obtained from the variabilities of the constituent factors. The individual 𝛽𝛽-

values in Equation (4.6) are further divided into randomness (𝛽𝛽𝑅𝑅) and uncertainty (𝛽𝛽𝑈𝑈) [62] from 

which the overall 𝛽𝛽𝑅𝑅 and 𝛽𝛽𝑈𝑈 values are derived and then the composite variability is calculated 

as 𝛽𝛽𝐴𝐴 = (𝛽𝛽𝑅𝑅2 + 𝛽𝛽𝑈𝑈2)0.5. The median seismic capacity used in the fragility calculation (see 

Equation (4.2)) is calculated as shown in Equation (4.7) [62]. 

 Θ𝑚𝑚 = 𝐹𝐹𝑚𝑚 ∙ Θ𝑅𝑅𝑅𝑅𝑅𝑅 
(4.7) 

4.2.3 The Reed-McCann Method 

As noted in Section 4.1, the current state of practice of modeling dependent seismic failures is to 

use a correlation coefficient equal to one for similar SSCs located next to each other and zero 

otherwise. The method by Reed et al. [56] (i.e., the Reed-McCann method), which was adopted 

by Budnitz et al. [15] as the most promising method to model dependent seismic failures, starts 

by examining the process in which the factors of safety in the fragility evaluation (see Section 

4.2.2) are developed. In turn, the examination allows the quantification of the dependency in the 

structural parameters. Dependency relationships are established by systematically identifying the 

common 𝛽𝛽𝑈𝑈 and 𝛽𝛽𝑅𝑅 values among the SSCs of interest [56]. 

The Reed-McCann method quantifies the system failure probability considering dependence in 

the capacities of the constituent components and consists of two stages, which are summarized in 

Figure 4-1. Figure 4-1 includes detailed quantification steps based on the Mathcad files used by 

Budnitz et al. [15] to implement the Reed-McCann method [56] using Latin Hypercube 

sampling. Both stages of the Reed-McCann method begin with input from the fragility analyst, 
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who is expected to provide the median seismic capacities and associated logarithmic standard 

deviations for all system components, 𝑖𝑖 = 1, … ,𝑁𝑁𝐴𝐴, where 𝑁𝑁𝐴𝐴 is the number of components, 

which will be typically obtained using the procedures summarized in Section 4.2.2. The Reed-

McCann method is based on the premise that, for any pair of system components, both the 

aleatory variability and epistemic uncertainty can be partitioned into a “common” element and a 

component-specific (“reduced”) element. In Figure 4-1, 𝛽𝛽𝑈𝑈∗ 𝑖𝑖𝑗𝑗 and 𝛽𝛽𝑅𝑅∗𝑖𝑖𝑗𝑗 are parameters that 

represent the common epistemic and aleatory uncertainties, respectively, that exist between the 

component under consideration (i.e., component 𝑖𝑖) and other components (𝑖𝑖 ≠ 𝑗𝑗). The 𝛽𝛽𝑈𝑈′ 𝑖𝑖 and 

𝛽𝛽𝑅𝑅′ 𝑖𝑖 parameters represent the reduced epistemic and aleatory uncertainties, respectively, of the 

seismic capacity of component 𝑖𝑖 and are calculated using the equations shown in Steps 1 and 4 of 

Figure 4-1, respectively. In general, several 𝛽𝛽𝑈𝑈∗ 𝑖𝑖𝑗𝑗 and 𝛽𝛽𝑅𝑅∗𝑖𝑖𝑗𝑗 values are required to represent the 

different dependency groups among components within a system. 

 
Figure 4-1 Summary of the Reed-McCann method. 

1. Simulate and randomly order at least 10 samples of the 
capacity of each component using LHS* and 

as the sampling distribution, where  

.
Input from 
fragility 
analyst: 

, , 2. Simulate and randomly order at least 10 samples of a 
correction factor that accounts for the dependency of each 
dependency group using LHS* and as the 
sampling distribution.

3. Multiply the capacity of each component 
by the correction factors that have the 
component of interest to obtain the 
“combined” capacity: .

4. Calculate the system fragility consistent with the failure logic. For example, the equations for a two-component 
system, which has one dependency group (there is one integration level for each dependency group), are as follows:

Parallel system: 

Series system: 

In these equations, is the peak ground acceleration (i.e., the seismic demand); is a dummy variable that 
represents the dependent part of the aleatory uncertainty of each dependency group, which is assumed to be 

distributed as ; is the probability density function of ; and .

Input from 
fragility 
analyst: 

, 

STAGE 1

STAGE 2

*LHS = Latin Hypercube sampling
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4.2.4 Lower and Upper Bounds of a System Failure Probability 

When modeling dependent seismic failures in seismic PRA, the main interest is when there is 

positive dependence because it affects the redundancy incorporated in NPP systems. The lower 

and upper bounds of the failure probability for parallel (i.e., AND failure logic) and series (i.e., 

OR failure logic) systems with positive dependence can be expressed as follows (generalized 

from the work by Ferson et al. [52]): 

• Parallel System 

 𝑃𝑃(𝐴𝐴) ∙ 𝑃𝑃(𝐵𝐵) ∙ 𝑃𝑃(𝐶𝐶) ≤ 𝑃𝑃(𝐴𝐴⋂𝐵𝐵⋂𝐶𝐶) ≤ min�𝑃𝑃(𝐴𝐴),𝑃𝑃(𝐵𝐵),𝑃𝑃(𝐶𝐶)� 
(4.8) 

• Series System 
 max�𝑃𝑃(𝐴𝐴),𝑃𝑃(𝐵𝐵),𝑃𝑃(𝐶𝐶)� ≤ 𝑃𝑃(𝐴𝐴⋃𝐵𝐵⋃𝐶𝐶) ≤ 1 − �1 − 𝑃𝑃(𝐴𝐴)��1 − 𝑃𝑃(𝐵𝐵)��1 − 𝑃𝑃(𝐶𝐶)� 

(4.9) 

where 𝑃𝑃(𝐴𝐴⋂𝐵𝐵⋂𝐶𝐶) is the parallel system failure probability, 𝑃𝑃(𝐴𝐴⋃𝐵𝐵⋃𝐶𝐶) is the series system 

failure probability, and 𝑃𝑃(𝐴𝐴), 𝑃𝑃(𝐵𝐵), and 𝑃𝑃(𝐶𝐶) refer to the failure probability of components 𝐴𝐴, 

𝐵𝐵, and 𝐶𝐶, respectively. In the context of seismic fragilities, the failure probabilities of the 

components (see Equation (4.2)) and systems are a function of the ground motion. The lower and 

upper bounds of the system failure probability whose components are positively dependent 

correspond to the dependency assumptions summarized in Table 4-1. 

Table 4-1 Summary of Dependency Assumptions 
System Configuration Lower Bound Upper Bound 
Parallel Independent Perfect dependence 
Series Perfect dependence Independent 

As shown in Table 4-1, a dependency assumption can give either the lower or upper bound of the 

system failure probability depending on the system configuration. For example, the 
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independence assumption gives the lower bound of the failure probability for a parallel system, 

but it gives the upper bound of the failure probability for a series system. 

4.3 Bayesian Network Approach for Modeling Dependent Seismic Failures 

The proposed BN approach for modeling dependent seismic failures relies on separating 

common sources of uncertainties among the SSCs of interest, consistent with the conceptual 

approaches used in existing practice. We propose the use of BNs to model dependent seismic 

failures because of the transparency offered by their graphical nature, as well as the ease and 

completeness with which they facilitate modeling probabilistic dependencies and quantification 

of system failure probabilities. Also, BNs facilitate information updating, which allows for the 

efficient calculation of joint and conditional probability distributions for all random variables in 

the BN. Section 3 of our previous work [64] provides a brief introduction to BNs. 

Figure 4-2 shows the BN used to analyze the system-level seismic fragility of three components 

(A, B, and C). The node 𝐸𝐸𝐸𝐸𝑆𝑆 represents an earthquake of engineering significance (EES) event 

(i.e., an event in which the ground motion exceeds a specific minimum value of relevance to the 

nuclear facility) and all inferences using the BN are conditioned on such an event. The node 𝐺𝐺𝑀𝑀 

represents the event that a ground motion (GM) is in a range of values (referred to in practice as 

a “ground motion bin”), where each range of GM values is a state. The ground motion parameter 

of interest in our work is PGA because it is typically used in the quantification of seismic PRAs; 

however, the proposed approach is equally applicable to other response spectrum ground motion 

parameters. For the remainder of this paper, the terms “PGA value(s)” and “GM value(s),” and 

“𝑃𝑃𝐺𝐺𝐴𝐴” and “𝐺𝐺𝑀𝑀” are synonymous. 
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The nodes 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 represent the state (i.e., failure or survival) of components A, B, and C, 

respectively. The state of components A, B, and C depends on the ground motion experienced at 

the component’s location and the capacity of the component. In this work, we assume all 

components experience the same ground motion, as reflected by the common parent 𝐺𝐺𝑀𝑀 node to 

nodes 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶. The BN proposed in our previous work relaxes this assumption, that is, it 

accounts for the spatial variability of ground motion experienced by multiple components at 

multiple locations [64]. 

The capacity of a component is defined as in Equation (4.1). Here, we use the log-transformation 

and then separate both the aleatory variability (Ε𝑅𝑅) and epistemic uncertainty (Ε𝑈𝑈) into the 

common parts (i.e., Ε𝑅𝑅𝑖𝑖𝑖𝑖
∗  and Ε𝑈𝑈𝑖𝑖𝑖𝑖

∗ ) and component-specific parts (i.e., Ε𝑅𝑅𝑖𝑖
′  and Ε𝑈𝑈𝑖𝑖

′ ) . We define 

the capacity of component 𝑖𝑖, 𝑖𝑖 = 𝐴𝐴,𝐵𝐵,𝐶𝐶, as: 

 
ln(Θ𝑖𝑖) = ln�Θ𝑚𝑚𝑖𝑖� + ln�Ε𝑅𝑅𝑖𝑖� + ln�Ε𝑈𝑈𝑖𝑖� 

= ln�Θ𝑚𝑚𝑖𝑖� + ln�Ε𝑅𝑅𝑖𝑖
′ � + ln�Ε𝑈𝑈𝑖𝑖

′ � + ��ln �Ε𝑅𝑅𝑖𝑖𝑖𝑖
∗ � + ln �Ε𝑈𝑈𝑖𝑖𝑖𝑖

∗ ��
𝑖𝑖≠𝑗𝑗

 (4.10) 

where all the terms are defined in Section 4.2.1 and above. Then, we set 

 ln(Ε𝑖𝑖′) = ln�Ε𝑅𝑅𝑖𝑖
′ � + ln�Ε𝑈𝑈𝑖𝑖

′ � 
(4.11) 

 ln�Ε𝑖𝑖𝑗𝑗∗ � = ln �Ε𝑅𝑅𝑖𝑖𝑖𝑖
∗ � + ln �Ε𝑈𝑈𝑖𝑖𝑖𝑖

∗ � 
(4.12) 

where Ε𝑖𝑖′ is the component-specific uncertainty for component 𝑖𝑖 and Ε𝑖𝑖𝑗𝑗∗  is the common 

uncertainty between components 𝑖𝑖 and 𝑗𝑗 (𝑖𝑖 ≠ 𝑗𝑗). Then, we define the following: 
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 𝜀𝜀𝑖𝑖′ = ln(Ε𝑖𝑖′) 
(4.13) 

 𝜀𝜀𝑖𝑖𝑗𝑗∗ = ln�Ε𝑖𝑖𝑗𝑗∗ � (4.14) 

Next, we substitute Equations (4.11) and (4.12) into Equation (4.10) and use the definitions in 

Equations (4.13) and (4.14) to obtain: 

 

ln(Θ𝑖𝑖) = ln�Θ𝑚𝑚𝑖𝑖� + ln(Ε𝑖𝑖′) + ��ln�Ε𝑖𝑖𝑗𝑗∗ ��
𝑖𝑖≠𝑗𝑗

 

= ln�Θ𝑚𝑚𝑖𝑖� + 𝜀𝜀𝑖𝑖′ + ��𝜀𝜀𝑖𝑖𝑗𝑗∗ �
𝑖𝑖≠𝑗𝑗

 
(4.15) 

In Figure 4-2, the component-specific capacity uncertainty for components A, B, and C is 

reflected in nodes 𝜀𝜀𝐴𝐴′ , 𝜀𝜀𝐴𝐴′ , and 𝜀𝜀𝐴𝐴′ , respectively. The common sources of uncertainty among the 

components are captured by nodes 𝜀𝜀𝐴𝐴𝐴𝐴∗ , 𝜀𝜀𝐴𝐴𝐴𝐴∗ , and 𝜀𝜀𝐴𝐴𝐴𝐴∗ , which introduces the dependency between 

the components. The median seismic capacity of each component (Θ𝑚𝑚𝑖𝑖) is not explicitly shown 

as a node in the BN due to its deterministic nature. Finally, the node 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 represents the 

system state (i.e., “Failure” or “Success”) given the states of components A, B, and C. The BN in 

Figure 4-2 does not explicitly distinguish between the aleatory and epistemic parts of 

uncertainty. Instead, the 𝜀𝜀-nodes include both the aleatory and epistemic parts of uncertainty 

because the ultimate quantification is theoretically invariant to whether they are combined or 

treated separately; however, inclusion of additional nodes increases the computational demand 

and may increase the effect of discretization error. 

The BN structure in Figure 4-2 is based on the relatively low number of components and our 

desire to explicitly model all random variables that affect the system fragility. However, a BN 
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for the same system may have a different structure. In general, the nodes in a BN that represent 

the dependency between components should be explicitly modeled (e.g., nodes 𝜀𝜀𝐴𝐴𝐴𝐴∗ , 𝜀𝜀𝐴𝐴𝐴𝐴∗ , and 𝜀𝜀𝐴𝐴𝐴𝐴∗  

in Figure 4-2) while nodes that only affect one component may be integrated into the node that 

represents the component (e.g., node 𝜀𝜀𝐴𝐴′  may be integrated into node 𝐴𝐴 in Figure 4-2) [18], [73]. 

In addition, if a system has a relatively large number of components, Bensi et al. [73] proposed 

to model the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 node using a chain-like BN structure instead of a converging BN structure 

(e.g., nodes 𝐴𝐴, 𝐵𝐵, and 𝐶𝐶 converge into the node 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 in Figure 4-2) to make the inferences in 

the BN more efficient. 

We illustrate the application of the BN in Figure 4-2 using an established case study example 

system in separate parallel and series configurations. The example system is described as 

“different components on different floors” and has been previously used to demonstrate the 

modeling of dependent fragilities [15]. In the next subsections, we will explain how the 

conditional probability table (CPT) for each node in Figure 4-2 is generated. The parameters 

used to characterize the capacity of the components are provided in Table 4-2. They correspond 

to the parameters used in the examples in Sections 8.2.4 and 8.2.5 of NUREG/CR-7237 [15] and 

uses the notation introduced in Section 4.2.13 

 

13  These parameters are assumed to be provided by the fragility analyst after the fragility evaluation (Section 

4.2.2) and the systematic identification of the common sources of uncertainty among the SSCs of interest. 

According to Budnitz et al. [15], “the fragility analyst is well equipped to make this judgement [i.e., the 

identification of common sources of uncertainty among the SSCs of interest] because he/she has in intimate 

knowledge (acquired through the review of design documents and from the plant walkdown) of how the 

components are designed, qualified and installed.” 
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Figure 4-2 Bayesian network for modeling the fragility of a three-component system. 

Table 4-2 Fragility Parameters and Group Dependencies 
Component Properties 

Component (𝑖𝑖) Θ𝑚𝑚𝑖𝑖 𝛽𝛽𝑈𝑈𝑖𝑖 𝛽𝛽𝑅𝑅𝑖𝑖  
A 0.7g 0.35 0.20 
B 1.3g 0.30 0.25 
C 0.9g 0.40 0.20 

Group Dependencies 

Group Components (𝑖𝑖𝑗𝑗) 
Common Variability 
𝛽𝛽𝑈𝑈𝑖𝑖𝑖𝑖
∗  𝛽𝛽𝑅𝑅𝑖𝑖𝑖𝑖

∗  
1 AB 0.10 0.10 
2 AC 0.15 0.05 
3 BC 0.20 0.10 

4.3.1 Generation of the CPT for the 𝐸𝐸𝐸𝐸𝑆𝑆 Node 

The CPT for the 𝐸𝐸𝐸𝐸𝑆𝑆 node is based on the ground motion value that has the potential to 

meaningfully affect the site’s SSCs. In general, this ground motion value is the starting ground 

motion value in the first bin of the discretized seismic hazard curve used in the quantification of 

the seismic PRA. In our example, an EES occurs when the PGA exceeds 0.1g. Based on the 

PSHA results from the Central Illinois site we used in our previous work [64], we obtained a 

function for the annual exceedance frequency (AEF) of the seismic hazard [74]; it is shown in 

Equation (4.16) and is valid from 0.02g through 1.7g. 
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 𝐴𝐴𝐸𝐸𝐹𝐹 = 𝜆𝜆(𝑃𝑃𝐺𝐺𝐴𝐴 > 𝑝𝑝𝑔𝑔𝑝𝑝) = 2.67 × 10−6 ∙ 𝑃𝑃𝐺𝐺𝐴𝐴−2.05 (4.16) 

Using Equation (4.16) with 𝑃𝑃𝐺𝐺𝐴𝐴 =  0.1𝑔𝑔 and based on the Poisson assumption,14 the (annual) 

probability of an EES is 3 × 10−4. The CPT for the 𝐸𝐸𝐸𝐸𝑆𝑆 node is shown as Table 4-3, in which 

“EES no” and “EES yes” represent the states of the 𝐸𝐸𝐸𝐸𝑆𝑆 node. The (annual) probability of the 

“EES no” state is 1 − 𝑃𝑃(𝐸𝐸𝐸𝐸𝑆𝑆 𝑆𝑆𝑆𝑆𝑆𝑆) = 1 − 3 × 10−4 = 0.9997. 

Table 4-3 CPT for the 𝐸𝐸𝐸𝐸𝑆𝑆 Node 
State P(State) 

ESS no 0.9997 
ESS yes 0.0003 

4.3.2 Generation of the CPT for the 𝐺𝐺𝑀𝑀|𝐸𝐸𝐸𝐸𝑆𝑆 Node 

The method for generating the CPT for the 𝐺𝐺𝑀𝑀 node is explained in our previous work [64], 

which we summarize as follows. The domain of 𝐺𝐺𝑀𝑀 is divided into several bins consistent with 

the discretization of the seismic hazard curve used in the quantification of the seismic PRA. 

Typically, six to eight ground motion bins are used in the seismic PRA (e.g., [50]). In this 

example, the start and end PGA values for each of the 𝐺𝐺𝑀𝑀 bins were selected so that their 

geometric mean, which is the typical representative PGA value used in the quantification of a 

seismic PRA, is similar to the PGA values used by Budnitz et al. in their implementation of the 

Reed-McCann method [15] (see the GMrep values in the first column of Table 4-10 and Table 

4-11). To ensure probabilistic consistency (i.e., ensure that the CPT columns for the 𝐺𝐺𝑀𝑀 node 

sum up to 1.0), we conditioned the 𝐺𝐺𝑀𝑀 node on the occurrence of an EES. The expressions of 

 

14  Under the Poisson assumption, the AEF of a PGA value is numerically equivalent to the probability of 

exceeding the same PGA value (i.e., 𝜆𝜆(𝑃𝑃𝐺𝐺𝐴𝐴 > 𝑝𝑝𝑔𝑔𝑝𝑝) ≈ 𝑃𝑃(𝑃𝑃𝐺𝐺𝐴𝐴 > 𝑝𝑝𝑔𝑔𝑝𝑝)). 
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the conditional probability for bins 𝐺𝐺𝑀𝑀1 through 𝐺𝐺𝑀𝑀7 and 𝐺𝐺𝑀𝑀8 given an EES are shown as 

Equations (4.17) and (4.18), respectively. The 𝜆𝜆(𝑃𝑃𝐺𝐺𝐴𝐴 > 𝑝𝑝𝑔𝑔𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠) and 𝜆𝜆(𝑃𝑃𝐺𝐺𝐴𝐴 > 𝑝𝑝𝑔𝑔𝑝𝑝𝑠𝑠𝑛𝑛𝑒𝑒) 

values in Equations (4.17) and (4.18) are calculated using Equation (4.16). The denominator in 

Equations (4.17) and (4.18) is based on the ground motion value to be exceeded that would result 

in an EES, which in our example is 0.1g. 

𝑃𝑃(𝑝𝑝𝑔𝑔𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠 < 𝑃𝑃𝐺𝐺𝐴𝐴 ≤ 𝑝𝑝𝑔𝑔𝑝𝑝𝑠𝑠𝑛𝑛𝑒𝑒|𝑃𝑃𝐺𝐺𝐴𝐴 > 0.1𝑔𝑔) =
𝜆𝜆(𝑃𝑃𝐺𝐺𝐴𝐴 > 𝑝𝑝𝑔𝑔𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠) − 𝜆𝜆(𝑃𝑃𝐺𝐺𝐴𝐴 > 𝑝𝑝𝑔𝑔𝑝𝑝𝑠𝑠𝑛𝑛𝑒𝑒)

𝜆𝜆(𝑃𝑃𝐺𝐺𝐴𝐴 > 0.1𝑔𝑔)  (4.17) 

𝑃𝑃(𝑃𝑃𝐺𝐺𝐴𝐴 > 𝑝𝑝𝑔𝑔𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠|𝑃𝑃𝐺𝐺𝐴𝐴 > 0.1𝑔𝑔) =
𝜆𝜆(𝑃𝑃𝐺𝐺𝐴𝐴 > 𝑝𝑝𝑔𝑔𝑝𝑝𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠)
𝜆𝜆(𝑃𝑃𝐺𝐺𝐴𝐴 > 0.1𝑔𝑔)  (4.18) 

Applying Equations (4.17) and (4.18) yields the conditional probabilities for bins (states) 𝐺𝐺𝑀𝑀1 

through 𝐺𝐺𝑀𝑀8, which are shown in the last column of Table 4-4 (i.e., “P(State|EES yes)”). The 

probability of an EES in state 𝐺𝐺𝑀𝑀0 is zero because the PGA values in state 𝐺𝐺𝑀𝑀0 are less than or 

equal to the PGA value we selected as the EES. The probabilities in the “P(State|EES no)” 

column of Table 4-4 are determined based on the fact that when the event is not an EES, the 

PGA values must be less than or equal to 0.1g. Therefore, the probability of 𝐺𝐺𝑀𝑀0 given that the 

node EES is in its “EES no” state is 1, which leads to the conclusion that the probabilities for the 

remaining GM bins (i.e., states 𝐺𝐺𝑀𝑀1 through 𝐺𝐺𝑀𝑀8) are zero. 

Table 4-4 Bins and CPT for the 𝐺𝐺𝑀𝑀|𝐸𝐸𝐸𝐸𝑆𝑆 Node 
GM Bins 

GMstart – GMend (g) 
GM Bins 
GMrep (g) 

EES EES no EES yes 
State P(State|EES no) P(State|EES yes) 

0 – 0.10 - 𝐺𝐺𝑀𝑀0 1 0 
0.10 – 0.15 0.122 𝐺𝐺𝑀𝑀1 0 5.65 x 10-1 
0.15 – 0.20 0.173 𝐺𝐺𝑀𝑀2 0 1.94 x 10-1 
0.20 – 0.30 0.245 𝐺𝐺𝑀𝑀3 0 1.36 x 10-1 
0.30 – 0.48 0.379 𝐺𝐺𝑀𝑀4 0 6.50 x 10-2 
0.48 – 0.71 0.584 𝐺𝐺𝑀𝑀5 0 2.21 x 10-2 
0.71 – 0.95 0.821 𝐺𝐺𝑀𝑀6 0 8.08 x 10-3 
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Table 4-4 Bins and CPT for the 𝐺𝐺𝑀𝑀|𝐸𝐸𝐸𝐸𝑆𝑆 Node 
GM Bins 

GMstart – GMend (g) 
GM Bins 
GMrep (g) 

EES EES no EES yes 
State P(State|EES no) P(State|EES yes) 

0.95 – 1.50 1.194 𝐺𝐺𝑀𝑀7 0 6.02 x 10-3 
1.50 – 1.94 1.706 𝐺𝐺𝑀𝑀8 0 3.88 x 10-3 

4.3.3 Generation of the CPTs for the 𝜀𝜀𝐴𝐴𝐴𝐴∗ , 𝜀𝜀𝐴𝐴𝐴𝐴∗ , and 𝜀𝜀𝐴𝐴𝐴𝐴∗  Nodes 

As noted in Section 4.2.1, the typical seismic PRA practice assumes that Ε𝑅𝑅 and Ε𝑈𝑈 are 

lognormally distributed with medians equal to 1 and logarithmic standard deviations 𝛽𝛽𝑅𝑅 and 𝛽𝛽𝑈𝑈, 

respectively. Using the partitioning introduced in Equations (4.11) and (4.12), the common 

uncertainty between component 𝑖𝑖 and other components (𝑖𝑖 ≠ 𝑗𝑗) is comprised of both aleatory 

and epistemic components: 𝜀𝜀𝑖𝑖𝑗𝑗∗ = ln �Ε𝑅𝑅𝑖𝑖𝑖𝑖
∗ � + ln �Ε𝑈𝑈𝑖𝑖𝑖𝑖

∗ �. It follows that 𝜀𝜀𝑖𝑖𝑗𝑗∗  is normally 

distributed15 with zero mean and standard deviation 𝛽𝛽𝐴𝐴𝑖𝑖𝑖𝑖
∗ , which represents the common 

composite variability of components 𝑖𝑖 and 𝑗𝑗 and is calculated using Equation (4.19). 

 𝛽𝛽𝐴𝐴𝑖𝑖𝑖𝑖
∗ = ��𝛽𝛽𝑈𝑈𝑖𝑖𝑖𝑖

∗ �
2

+ �𝛽𝛽𝑅𝑅𝑖𝑖𝑖𝑖
∗ �

2
�
0.5

 
(4.19) 

 

15  Since Ε𝑅𝑅𝑖𝑖𝑖𝑖
∗  and Ε𝑈𝑈𝑖𝑖𝑖𝑖

∗  are lognormally distributed with medians equal to 1 and logarithmic standard deviations, 

𝛽𝛽𝑅𝑅𝑖𝑖𝑖𝑖
∗  and 𝛽𝛽𝑈𝑈𝑖𝑖𝑖𝑖

∗ , respectively, their respective logarithms are normally distributed with means equal to zero (= 

ln(𝑆𝑆𝑆𝑆𝑚𝑚𝑖𝑖𝑝𝑝𝑛𝑛) = ln(1)) and standard deviations 𝛽𝛽𝑅𝑅𝑖𝑖𝑖𝑖
∗  and 𝛽𝛽𝑈𝑈𝑖𝑖𝑖𝑖

∗ , respectively. Then, the sum of two independent, 

normally distributed random variables is also normally distributed with mean equal to the sum of the means of 

the two random variables and standard deviation equal to the square root of the sum of the variances of the two 

random variables (see Equation (4.19)). 
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In Equation (4.19), 𝛽𝛽𝑈𝑈∗ 𝑖𝑖𝑗𝑗 and 𝛽𝛽𝑅𝑅∗𝑖𝑖𝑗𝑗 are parameters that represent the common epistemic and 

aleatory uncertainties, respectively, that exist between the component under consideration (i.e., 

component 𝑖𝑖) and other components (𝑖𝑖 ≠ 𝑗𝑗). The parameters 𝛽𝛽𝑈𝑈∗ 𝑖𝑖𝑗𝑗 and 𝛽𝛽𝑅𝑅∗𝑖𝑖𝑗𝑗 would be provided by 

the fragility analysts as the result of the separation of common sources of uncertainties among 

the SSCs of interest; the values used in this paper are shown in Table 4-2. 

The CPTs of the “common uncertainty” nodes 𝜀𝜀𝐴𝐴𝐴𝐴∗ , 𝜀𝜀𝐴𝐴𝐴𝐴∗ , and 𝜀𝜀𝐴𝐴𝐴𝐴∗  are generated by first 

discretizing their respective continuous domains. The selected discretization may vary by 

application, desired tolerance for discretization errors, and available computing capabilities [64]. 

The probability mass of each bin is developed by discretizing a normal distribution with zero 

mean and standard deviation 𝛽𝛽𝐴𝐴𝑖𝑖𝑖𝑖
∗ . 

To generate the CPT for node 𝜀𝜀𝐴𝐴𝐴𝐴∗ , we assign probability to each state of 𝜀𝜀𝐴𝐴𝐴𝐴∗  by “discretizing” 

the distribution of 𝜀𝜀𝐴𝐴𝐴𝐴∗ . That is, the domain of 𝜀𝜀𝐴𝐴𝐴𝐴∗  is first linearly discretized into 𝑛𝑛 contiguous 

bins centered between approximately ± 3 standard deviations. Each discrete bin corresponds to 

one state in the CPT for node 𝜀𝜀𝐴𝐴𝐴𝐴∗ .  It is generally preferred for 𝑛𝑛 to be equal to an odd number to 

ensure one of the bins is centered at zero, which is the mean of the normal distribution being 

discretized in this case. The upper edge of bin 𝑛𝑛 and lower edge of bin 1 are replaced by ∞ and 

−∞, respectively, to ensure all probability is included in the CPT for 𝜀𝜀𝐴𝐴𝐴𝐴∗ . The probability 

assigned to bin (state) 𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛, with lower and upper bin edges equal 𝜀𝜀𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(𝑖𝑖)
 ∗  and 

𝜀𝜀𝐴𝐴𝐴𝐴𝑠𝑠𝑛𝑛𝑒𝑒(𝑖𝑖)
 ∗ , is the probability that 𝜀𝜀𝐴𝐴𝐴𝐴∗  falls within the bin edges. This is computed as: 
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 𝑃𝑃 �𝜀𝜀𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(𝑖𝑖)
 ∗ ≤ 𝜀𝜀𝐴𝐴𝐴𝐴∗ ≤ 𝜀𝜀𝐴𝐴𝐴𝐴𝑠𝑠𝑛𝑛𝑒𝑒(𝑖𝑖)

 ∗ � = Φ�
𝜀𝜀𝐴𝐴𝐴𝐴𝑠𝑠𝑛𝑛𝑒𝑒(𝑖𝑖)

 ∗

𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴
∗ � − Φ�

𝜀𝜀𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠(𝑖𝑖)
 ∗

𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴
∗ � 

(4.20) 

where Φ(∙) is the standard normal cumulative distribution function of the term inside the 

parenthesis. While the above approach was used in this case study, alternate strategies for 

discretization may readily be employed for the development of CPTs. 

Using the values in Table 4-2 and Equation (4.19), the values of the parameters 𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴
∗ , 𝛽𝛽𝐴𝐴𝐴𝐴𝐶𝐶

∗ , and 

𝛽𝛽𝐴𝐴𝐴𝐴𝐶𝐶
∗  in our example are 0.14, 0.16, and 0.22, respectively. The CPT for 𝜀𝜀𝐴𝐴𝐴𝐴∗  is shown as Table 

4-5. We note that the CPTs for 𝜀𝜀𝐴𝐴𝐴𝐴∗  and 𝜀𝜀𝐴𝐴𝐴𝐴∗  have a similar structure as the CPT of 𝜀𝜀𝐴𝐴𝐴𝐴∗  and are 

thus not repeated here. 

Table 4-5 Bins and CPT for the 𝜀𝜀𝐴𝐴𝐴𝐴∗  Node 
𝜀𝜀𝐴𝐴𝐴𝐴∗  Bins 

𝜀𝜀𝐴𝐴𝐴𝐴𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠
∗  – 𝜀𝜀𝐴𝐴𝐴𝐴𝑠𝑠𝑛𝑛𝑒𝑒

∗  State P(State) 

-0.42 to -0.34 𝜀𝜀𝐴𝐴𝐴𝐴∗ 1 7.05E-3 
-0.34 to -0.27 𝜀𝜀𝐴𝐴𝐴𝐴∗ 2 2.11E-2 
-0.27 to -0.19 𝜀𝜀𝐴𝐴𝐴𝐴∗ 3 5.82E-2 
-0.19 to -0.11 𝜀𝜀𝐴𝐴𝐴𝐴∗ 4 1.20E-1 
-0.11 to -0.04 𝜀𝜀𝐴𝐴𝐴𝐴∗ 5 1.86E-1 
-0.04 to 0.04 𝜀𝜀𝐴𝐴𝐴𝐴∗ 6 2.15E-1 
0.04 to 0.11 𝜀𝜀𝐴𝐴𝐴𝐴∗ 7 1.86E-1 
0.11 to 0.19 𝜀𝜀𝐴𝐴𝐴𝐴∗ 8 1.20E-1 
0.19 to 0.27 𝜀𝜀𝐴𝐴𝐴𝐴∗ 9 5.82E-2 
0.27 to 0.34 𝜀𝜀𝐴𝐴𝐴𝐴∗ 10 2.11E-2 
0.34 to 0.42 𝜀𝜀𝐴𝐴𝐴𝐴∗ 11 7.05E-3 

4.3.4 Generation of the CPTs for the 𝜀𝜀𝐴𝐴′ , 𝜀𝜀𝐴𝐴′ , and 𝜀𝜀𝐴𝐴′  Nodes 

The process for generating the CPTs of the “component-specific uncertainty” nodes 𝜀𝜀𝐴𝐴′ , 𝜀𝜀𝐴𝐴′ , and 

𝜀𝜀𝐴𝐴′  is similar to the process described in Section 4.3.3. The only difference is that the standard 

deviation of the zero mean normal distribution used to generate the probability mass of each bin 
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is 𝛽𝛽𝐴𝐴𝑖𝑖
′ . The parameter 𝛽𝛽𝐴𝐴𝑖𝑖

′  is the component-specific (reduced) composite variability of 

component 𝑖𝑖, which is calculated using Equation (4.21). 

 𝛽𝛽𝐴𝐴𝑖𝑖
′ = ��𝛽𝛽𝑈𝑈𝑖𝑖

′ �2 + �𝛽𝛽𝑅𝑅𝑖𝑖
′ �2�

0.5
 

(4.21) 

The parameters 𝛽𝛽𝑈𝑈𝑖𝑖
′  and 𝛽𝛽𝑅𝑅𝑖𝑖

′  are the component-specific (reduced) epistemic uncertainty and 

aleatory variability of the seismic capacity of component 𝑖𝑖, and are calculated using the 

equations shown in Steps 1 and 4 of Figure 4-1, respectively. Using the values in Table 4-2, the 

equations in Steps 1 and 4 of Figure 4-1, and Equation (4.21), the values of the parameters 𝛽𝛽𝐴𝐴𝐴𝐴
′ , 

𝛽𝛽𝐴𝐴𝐴𝐴
′ , and 𝛽𝛽𝐴𝐴𝐶𝐶

′  in our example are 0.34, 0.29, and 0.35, respectively. The CPT for 𝜀𝜀𝐴𝐴′  is shown as 

Table 4-6. We note that the CPTs for 𝜀𝜀𝐴𝐴′  and 𝜀𝜀𝐴𝐴′  have a similar structure as the CPT of 𝜀𝜀𝐴𝐴′  and are 

thus not shown. 

Table 4-6 Bins and CPT for the 𝜀𝜀𝐴𝐴′  Node 
𝜀𝜀𝐴𝐴′  Bins 

𝜀𝜀𝐴𝐴𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠
′  – 𝜀𝜀𝐴𝐴𝑠𝑠𝑛𝑛𝑒𝑒

′  State P(State) 

-1.02 to -0.83 𝜀𝜀𝐴𝐴′ 1 7.05E-3 
-0.83 to -0.65 𝜀𝜀𝐴𝐴′ 2 2.11E-2 
-0.65 to -0.46 𝜀𝜀𝐴𝐴′ 3 5.82E-2 
-0.46 to -0.28 𝜀𝜀𝐴𝐴′ 4 1.20E-1 
-0.28 to -0.09 𝜀𝜀𝐴𝐴′ 5 1.86E-1 
-0.09 to 0.09 𝜀𝜀𝐴𝐴′ 6 2.15E-1 
0.09 to 0.28 𝜀𝜀𝐴𝐴′ 7 1.86E-1 
0.28 to 0.46 𝜀𝜀𝐴𝐴′ 8 1.20E-1 
0.46 to 0.65 𝜀𝜀𝐴𝐴′ 9 5.82E-2 
0.65 to 0.83 𝜀𝜀𝐴𝐴′ 10 2.11E-2 
0.83 to 1.02 𝜀𝜀𝐴𝐴′ 11 7.05E-3 
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An astute reader may notice that the probability mass of each bin is the same for 𝜀𝜀𝐴𝐴𝐴𝐴∗  and 𝜀𝜀𝐴𝐴′ . This 

is because the respective normal distributions are discretized using the same number of bins; 

however, the values for each of the variables in the bins are different. 

4.3.5 Generation of the CPTs for the (𝐴𝐴|𝐺𝐺𝑀𝑀, 𝜀𝜀𝐴𝐴𝐴𝐴∗ , 𝜀𝜀𝐴𝐴𝐴𝐴∗ , 𝜀𝜀𝐴𝐴′ ), 𝐵𝐵|𝐺𝐺𝑀𝑀, 𝜀𝜀𝐴𝐴𝐴𝐴∗ , 𝜀𝜀𝐴𝐴𝐴𝐴∗ , 𝜀𝜀𝐴𝐴′ , and 

𝐶𝐶|𝐺𝐺𝑀𝑀, 𝜀𝜀𝐴𝐴𝐴𝐴∗ , 𝜀𝜀𝐴𝐴𝐴𝐴∗ , 𝜀𝜀𝐴𝐴′  Nodes 

The limit state function 𝑔𝑔𝑖𝑖 = ln(Θ𝑖𝑖) − ln(𝐺𝐺𝑀𝑀), 𝑖𝑖 = 𝐴𝐴,𝐵𝐵,𝐶𝐶, is used to compute the failure 

probability associated with each component. For example, using Equation (4.15) for component 

A the limit state function takes the following form: 

 𝑔𝑔𝐴𝐴 = ln�Θ𝑚𝑚𝐴𝐴� + 𝜀𝜀𝐴𝐴′ + 𝜀𝜀𝐴𝐴𝐴𝐴∗ + 𝜀𝜀𝐴𝐴𝐴𝐴∗ − ln(𝐺𝐺𝑀𝑀) 
(4.22) 

The limit-state function is in its failure state when 𝑔𝑔𝐴𝐴 ≤ 0. Therefore, the failure probability of 

component A is: 

 

𝑃𝑃(𝑔𝑔𝐴𝐴 ≤ 0) = 𝑃𝑃�ln�Θ𝑚𝑚𝐴𝐴� + 𝜀𝜀𝐴𝐴′ + 𝜀𝜀𝐴𝐴𝐴𝐴∗ + 𝜀𝜀𝐴𝐴𝐴𝐴∗ − ln(𝐺𝐺𝑀𝑀) ≤ 0� 

= 𝑃𝑃�ln�Θ𝑚𝑚𝐴𝐴� + 𝜀𝜀𝐴𝐴′ + 𝜀𝜀𝐴𝐴𝐴𝐴∗ + 𝜀𝜀𝐴𝐴𝐴𝐴∗ ≤ ln(𝐺𝐺𝑀𝑀)� 

= 𝑃𝑃�exp�ln�Θ𝑚𝑚𝐴𝐴� + 𝜀𝜀𝐴𝐴′ + 𝜀𝜀𝐴𝐴𝐴𝐴∗ + 𝜀𝜀𝐴𝐴𝐴𝐴∗ � ≤ 𝐺𝐺𝑀𝑀� 
(4.23) 

In Equation (4.23), Θ𝑚𝑚𝐴𝐴 is the median seismic capacity of component A and 𝐺𝐺𝑀𝑀 is the seismic 

demand (ground motion) due to an earthquake, and all other terms are as defined above. The 

values of the median seismic capacity for components A, B, and C are given in Table 4-2. To 

develop the CPT for the node 𝐴𝐴 using the above expressions, we apply Monte Carlo simulation. 

Monte Carlo simulation is used to reduce the effect of the discretization of the parent nodes on 

the computed failure probabilities assigned to node 𝐴𝐴. 
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To illustrate this process, let 𝑛𝑛𝜀𝜀𝐴𝐴′ , 𝑛𝑛𝜀𝜀𝐴𝐴𝐴𝐴∗  , 𝑛𝑛𝜀𝜀𝐴𝐴𝐶𝐶∗ , and 𝑛𝑛𝐺𝐺𝐴𝐴 denote the number of bins (states) 

associated with nodes 𝜀𝜀𝐴𝐴′  𝜀𝜀𝐴𝐴𝐴𝐴∗ , 𝜀𝜀𝐴𝐴𝐴𝐴∗ , and 𝐺𝐺𝑀𝑀, respectively. Recall that each state of 𝜀𝜀𝐴𝐴′  𝜀𝜀𝐴𝐴𝐴𝐴∗ , 𝜀𝜀𝐴𝐴𝐴𝐴∗ , 

and 𝐺𝐺𝑀𝑀 is associated with a discretized range of the associated random variable. For each 

combination of the states of 𝜀𝜀𝐴𝐴′  𝜀𝜀𝐴𝐴𝐴𝐴∗ , 𝜀𝜀𝐴𝐴𝐴𝐴∗ , and 𝐺𝐺𝑀𝑀, we draw 𝑁𝑁𝑆𝑆𝑖𝑖𝑚𝑚 (independent) simulations from 

the distributions of 𝜀𝜀𝐴𝐴′  𝜀𝜀𝐴𝐴𝐴𝐴∗ , 𝜀𝜀𝐴𝐴𝐴𝐴∗ , and 𝐺𝐺𝑀𝑀 truncated and renormalized to the discretized range 

associated with the relevant states. For each simulation, we then compute the value of the limit 

state function 𝑔𝑔𝐴𝐴 = ln(Θ𝐴𝐴) − ln(𝐺𝐺𝑀𝑀). We estimate the failure probability for each combination 

of parent node states as the fraction of 𝑁𝑁𝑠𝑠𝑖𝑖𝑚𝑚 simulations for which 𝑔𝑔𝐴𝐴 ≤ 0. 

For example, consider one combination of the states of the parents to node (component) A: 

�𝑖𝑖𝜀𝜀𝐴𝐴′ , 𝑖𝑖𝜀𝜀𝐴𝐴𝐴𝐴∗ , 𝑖𝑖𝜀𝜀𝐴𝐴𝐶𝐶∗ , 𝑖𝑖𝐺𝐺𝐴𝐴� , 𝑖𝑖𝜀𝜀𝐴𝐴′ = 1, … ,𝑛𝑛𝜀𝜀𝐴𝐴′ ;  𝑖𝑖𝜀𝜀𝐴𝐴𝐴𝐴∗ = 1, … ,𝑛𝑛𝜀𝜀𝐴𝐴𝐴𝐴∗ ;  𝑖𝑖𝜀𝜀𝐴𝐴𝐶𝐶∗ = 1, … ,𝑛𝑛𝜀𝜀𝐴𝐴𝐶𝐶∗ ; 𝑖𝑖𝐺𝐺𝐴𝐴 = 1, … ,𝑛𝑛𝐺𝐺𝐴𝐴 

We generate 𝑁𝑁𝑠𝑠𝑖𝑖𝑚𝑚 (independent) simulations of each quantity using the following distributions: 

• the truncated normal distribution: 𝑓𝑓𝜀𝜀𝐴𝐴′ �𝜀𝜀𝐴𝐴
′ �𝜀𝜀𝐴𝐴

𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠�𝑖𝑖𝜀𝜀𝐴𝐴
′ �

′ ≤ 𝜀𝜀𝐴𝐴′ < 𝜀𝜀𝐴𝐴
𝑠𝑠𝑛𝑛𝑒𝑒�𝑖𝑖𝜀𝜀𝐴𝐴

′ �

′ � 

• the truncated normal distribution: 𝑓𝑓𝜀𝜀𝐴𝐴𝐴𝐴∗ �𝜀𝜀𝐴𝐴𝐴𝐴∗ �𝜀𝜀𝐴𝐴𝐴𝐴
𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠�𝑖𝑖𝜀𝜀𝐴𝐴𝐴𝐴

∗ �

∗ ≤ 𝜀𝜀𝐴𝐴𝐴𝐴∗ < 𝜀𝜀𝐴𝐴𝐴𝐴
𝑠𝑠𝑛𝑛𝑒𝑒�𝑖𝑖𝜀𝜀𝐴𝐴𝐴𝐴

∗ �

∗ � 

• the truncated normal distribution: 𝑓𝑓𝜀𝜀𝐴𝐴𝐶𝐶∗ �𝜀𝜀𝐴𝐴𝐴𝐴∗ �𝜀𝜀𝐴𝐴𝐴𝐴
𝑠𝑠𝑠𝑠𝐶𝐶𝑠𝑠𝑠𝑠�𝑖𝑖𝜀𝜀𝐴𝐴𝐶𝐶

∗ �

∗ ≤ 𝜀𝜀𝐴𝐴𝐴𝐴∗ < 𝜀𝜀𝐴𝐴𝐴𝐴
𝑠𝑠𝑛𝑛𝑒𝑒�𝑖𝑖𝜀𝜀𝐴𝐴𝐶𝐶

∗ �

∗ � 
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• the truncated uniform distribution16: 𝑓𝑓𝐺𝐺𝐴𝐴�𝑔𝑔𝑆𝑆�𝐺𝐺𝑀𝑀𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠(𝑖𝑖𝐺𝐺𝑀𝑀) ≤ 𝐺𝐺𝑀𝑀 < 𝐺𝐺𝑀𝑀𝑠𝑠𝑛𝑛𝑒𝑒(𝑖𝑖𝐺𝐺𝑀𝑀)�  

where the notation 𝑓𝑓𝑋𝑋(𝑥𝑥|𝑥𝑥1 ≤ 𝑋𝑋 < 𝑥𝑥2) denotes the probability density function of the random 

variable 𝑋𝑋, truncated and renormalized to the interval [𝑥𝑥1, 𝑥𝑥2). The mean of the normal 

distributions being truncated is zero and the respective standard deviations are 𝛽𝛽𝐴𝐴𝐴𝐴
′ , 𝛽𝛽𝐴𝐴𝐴𝐴𝐴𝐴

∗ , and 

𝛽𝛽𝐴𝐴𝐴𝐴𝐶𝐶
∗ . For each combination of simulations for the parent nodes, we estimate the probability of 

failure as the fraction of 𝑁𝑁𝑠𝑠𝑖𝑖𝑚𝑚 simulations for which exp�ln�Θ𝑚𝑚𝐴𝐴� + 𝜀𝜀𝐴𝐴′ + 𝜀𝜀𝐴𝐴𝐴𝐴∗ + 𝜀𝜀𝐴𝐴𝐴𝐴∗ � ≤ 𝐺𝐺𝑀𝑀. 

Then, the success probability for component A is just the complement of its probability of 

failure. The process is repeated for each combination of the states of the parents of node 𝐴𝐴 to 

generate the CPT for node (component) A.  Similar calculations are performed for nodes 

(components) B and C. 

Based on the number of states of the parent nodes (i.e., 9 𝐺𝐺𝑀𝑀 states and 11 states for 𝜀𝜀𝐴𝐴𝐴𝐴∗ , 𝜀𝜀𝐴𝐴𝐴𝐴∗ , 

and 𝜀𝜀𝐴𝐴′  each) and node 𝐴𝐴 (i.e., 2 states), the CPT for the seismic performance of component A has 

23,958 entries (= 9 ∙ 11 ∙ 11 ∙ 11 ∙ 2), which makes the presentation of the CPT of node 𝐴𝐴 

impractical. However, a “snippet” of the CPT of node 𝐴𝐴 is shown as Table 4-7. In Table 4-7, the 

“F” and “S” represent the failure state and success state of component A, respectively, and, for 

example, “𝜀𝜀𝐴𝐴′ 6 – 𝜀𝜀𝐴𝐴′ 11” means that the state probabilities of component A are the same for states 6 

 

16  As will be described in Section 4.4, we also implemented an alternative approach in which the GM is 

represented by a single representative value for each bin. This is necessary to enable an “apples-to-apples” 

comparison between the Reed-McCann method and the BN approach. 
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through 11 of the node 𝜀𝜀𝐴𝐴′  given 𝜀𝜀𝐴𝐴𝐴𝐴∗ 1, 𝜀𝜀𝐴𝐴𝐴𝐴∗ 1, and 𝐺𝐺𝑀𝑀1. This is not general and it will vary 

depending on the states of the random variables. 

Table 4-7 “Snippet” of the CPT for Component 𝐴𝐴 given 𝐺𝐺𝑀𝑀, 𝜀𝜀𝐴𝐴𝐴𝐴∗ , 𝜀𝜀𝐴𝐴𝐴𝐴∗ , and 𝜀𝜀𝐴𝐴′  

 

𝐺𝐺𝑀𝑀1 
𝜀𝜀𝐴𝐴𝐴𝐴∗ 1 

𝜀𝜀𝐴𝐴𝐴𝐴∗ 1 𝜀𝜀𝐴𝐴𝐴𝐴∗ 2 𝜀𝜀𝐴𝐴𝐴𝐴∗ 3 

𝜀𝜀𝐴𝐴′ 1 𝜀𝜀𝐴𝐴′ 2 𝜀𝜀𝐴𝐴′ 3 𝜀𝜀𝐴𝐴′ 4 𝜀𝜀𝐴𝐴′ 5 
𝜀𝜀𝐴𝐴′ 6 – 
𝜀𝜀𝐴𝐴′ 11 

𝜀𝜀𝐴𝐴′ 1 𝜀𝜀𝐴𝐴′ 2 𝜀𝜀𝐴𝐴′ 3 𝜀𝜀𝐴𝐴′ 4 
𝜀𝜀𝐴𝐴′ 5 – 
𝜀𝜀𝐴𝐴′ 11 

𝜀𝜀𝐴𝐴′ 1 𝜀𝜀𝐴𝐴′ 2 𝜀𝜀𝐴𝐴′ 3 𝜀𝜀𝐴𝐴′ 4 – 
𝜀𝜀𝐴𝐴′ 11 

F 0.45 0.25 0.09 0.02 0.0007 0 0.22 0.08 0.013 0.0003 0 0.06 0.009 0.0002 0 
S 0.55 0.75 0.91 0.98 0.9993 1 0.78 0.92 0.987 0.9997 1 0.94 0.991 0.9998 1 

Lastly, the CPT of component A has a dependency on state 𝐺𝐺𝑀𝑀0; however, the 𝐺𝐺𝑀𝑀0 state has no 

effect on the system fragility results because all inferences using the BN are conditioned on the 

occurrence of an EES, which set the conditional probability of 𝐺𝐺𝑀𝑀0 given the state “EES yes” to 

zero (as shown in Table 4-4). 

4.3.6 Generation of CPT for the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|𝐴𝐴,𝐵𝐵,𝐶𝐶 Node 

The CPT for the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 node is based on Boolean failure logic. For the parallel (AND failure 

logic) and series (OR failure logic) systems, the CPTs are shown as Table 4-8 and Table 4-9, 

respectively. An example of how these CPTs should be interpreted is as follows. In the parallel 

system, the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 node is in its “Failure” state with probability of 1 only if components A, B, 

and C are each in the “Failure” state; otherwise, the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 node is in its “Success” state with 

probability of 1. 

Table 4-8 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|𝐴𝐴,𝐵𝐵,𝐶𝐶 Node CPT for the Parallel System 
𝐴𝐴 Failure Success 
𝐵𝐵 Failure Success Failure Success 
𝐶𝐶 Failure Success Failure Success Failure Success Failure Success 

Failure 1 0 0 0 0 0 0 0 
Success 0 1 1 1 1 1 1 1 
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Table 4-9 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆|𝐴𝐴,𝐵𝐵,𝐶𝐶 Node CPT for the Series System 
𝐴𝐴 Failure Success 
𝐵𝐵 Failure Success Failure Success 
𝐶𝐶 Failure Success Failure Success Failure Success Failure Success 

Failure 1 1 1 1 1 1 1 0 
Success 0 0 0 0 0 0 0 1 

4.4 Results Comparison 

In this section, we compare the results of the system fragility analysis for two system 

configurations, parallel and series, using the Reed-McCann method, the proposed BN approach, 

the First-Order Reliability Method (FORM), and Monte Carlo simulation (MCS). The reader is 

referred to the work by Der Kiureghian [75] for an explanation of FORM. 

We implemented the Reed-McCann method [56] using the Mathcad [76] files developed by 

Budnitz et al. in NUREG/CR-7237 [15]. We performed inferences using the BN in Figure 4-2 

and the GeNIe software [22]. We implemented FORM using the Matrix-based System 

Reliability analysis method (MSR) within the Finite Element Reliability Using Matlab (FERUM) 

software [77]. MCS was implemented using Matlab [78] with 1 × 108 samples. Since the 

logarithms of the seismic capacities are joint-normally distributed, direct MCS under varying 

assumptions of correlation (i.e., independence, perfect dependence, and using a specified 

correlation matrix) is relatively straightforward. Moreover, the limited size of the system makes 

direct MCS computationally tractable. Zhou et al. [40] provided strategies for simulation under 

more general joint probability distributions using copulas. They further proposed the use of 

importance sampling to increase the efficiency of simulations, which may be needed for more 

complex system configurations. 
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The specification of limit-state functions and correlation coefficients between the involved 

random variables are required to implement FORM and MCS. The limit-state function we used 

for each component 𝑖𝑖 is shown in Equation (4.24). The correlation coefficient of the logarithm of 

the seismic capacities of each pair of components is based on Equation (5) in the work by Reed 

et al. [56] and is shown in Equation (4.25). 

 𝑔𝑔𝑖𝑖 = exp(Θ𝑖𝑖) − 𝐺𝐺𝑀𝑀 
(4.24) 

 𝜌𝜌ln(Θ𝑖𝑖),ln�Θ𝑖𝑖� =
�𝛽𝛽𝐴𝐴𝑖𝑖𝑖𝑖

∗ �
2

𝛽𝛽𝐴𝐴𝑖𝑖𝛽𝛽𝐴𝐴𝑖𝑖
 (4.25) 

In Equation (4.24), Θ𝑖𝑖 is the seismic capacity of component 𝑖𝑖 and 𝐺𝐺𝑀𝑀 is the ground motion 

value. The seismic capacity of component 𝑖𝑖, Θ𝑖𝑖, is assumed to be normally distributed with mean 

ln�Θ𝑚𝑚𝑖𝑖� and standard deviation 𝛽𝛽𝐴𝐴𝑖𝑖,
17 where Θ𝑚𝑚𝑖𝑖 is the median seismic capacity of component 𝑖𝑖 

and 𝛽𝛽𝐴𝐴𝑖𝑖 is a parameter that represents the composite variability of component 𝑖𝑖 and is equal to 

�𝛽𝛽𝑈𝑈𝑖𝑖
2 + 𝛽𝛽𝑅𝑅𝑖𝑖

2 �0.5
. The terms of Equation (4.25) have been previously defined. The values for Θ𝑚𝑚𝑖𝑖, 

𝛽𝛽𝑈𝑈𝑖𝑖, and 𝛽𝛽𝑅𝑅𝑖𝑖  for components A, B, and C and their respective group dependency parameters, 𝛽𝛽𝑈𝑈𝑖𝑖𝑖𝑖
∗  

and 𝛽𝛽𝑅𝑅𝑖𝑖𝑖𝑖
∗ , are provided in Table 4-2. 

For the ground motion value, 𝐺𝐺𝑀𝑀, we developed two sets of calculations. The first set of 

calculations assumes that 𝐺𝐺𝑀𝑀 is fixed at the geometric mean of 𝐺𝐺𝑀𝑀𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠 and 𝐺𝐺𝑀𝑀𝑠𝑠𝑛𝑛𝑒𝑒 for each 𝐺𝐺𝑀𝑀 

 

17  This is equivalent to the formulation that the seismic capacity of component 𝑖𝑖 is lognormally distributed with 

median Θ𝑚𝑚𝑖𝑖 and logarithmic standard deviation 𝛽𝛽𝐴𝐴𝑖𝑖. 
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bin. We refer to this as the representative GM value (𝐺𝐺𝑀𝑀𝑟𝑟𝑠𝑠𝑝𝑝) of the bin. The second set of 

calculations assumes that 𝐺𝐺𝑀𝑀 is uniformly distributed between 𝐺𝐺𝑀𝑀𝑠𝑠𝑠𝑠𝑝𝑝𝑟𝑟𝑠𝑠 and 𝐺𝐺𝑀𝑀𝑠𝑠𝑛𝑛𝑒𝑒 for each bin 

and is used to account for the uncertainty within the bin. The calculations with the fixed 𝐺𝐺𝑀𝑀 

value were performed to compare the system fragility results obtained using the BN, FORM, and 

MCS to those from the Reed-McCann method [56], which uses a fixed 𝐺𝐺𝑀𝑀 value, as 

implemented by Budnitz et al. [15] (i.e., the typical practice used in the nuclear industry). The 

calculations with the uniformly distributed 𝐺𝐺𝑀𝑀 values were performed to compare the system 

fragility results obtained using FORM and MCS to those from the proposed BN approach. 

In the BN shown in Figure 4-2, all inferences are conditioned on the occurrence of an EES, that 

is, the “EES yes” state of the 𝐸𝐸𝐸𝐸𝑆𝑆 node is set as evidence. Next, we used the updating aspects of 

the BN by setting each of the states of the 𝐺𝐺𝑀𝑀 node (i.e., 𝐺𝐺𝑀𝑀1 through 𝐺𝐺𝑀𝑀8) as evidence and 

performed the (forward) inference for each case. 

In terms of the computational times, once the problem is set up (i.e., all computer modeling 

components “coded”), the Reed-McCann method takes several minutes to calculate the system 

fragility for all GM bins in each system. FORM and MCS take several minutes to calculate the 

system fragility for each ground motion bin. The generation of the CPTs for the BN (using MCS) 

also takes several minutes. But once the CPTs are created (which only needs to be performed 

once), the inference for each ground motion bin to calculate the system fragility takes less than 

one second. These computational times were obtained using a personal computer (Intel® CoreTM 

i7-6500U processor with 16 GB of RAM). 

The results from the four approaches/methods along with the theoretical lower and upper bounds 

of the system fragility for parallel and series configurations are shown in Table 4-10 and Table 
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4-11, respectively. In Table 4-10 and Table 4-11, the results from the calculations where the GM 

value was fixed are shown in parenthesis and the results where the GM value is uniformly 

distributed within the bin are not in parenthesis. The shaded values indicate cases where the 

results are outside the theoretical lower and upper bounds of the system fragility. The lower and 

upper bounds of the system fragility for the calculations where the GM value was fixed were 

obtained by calculating the fragility of each component using Equation (4.2) and then using 

Equation (4.8) for the parallel system and Equation (4.9) for the series system. For the 

calculations where the GM is uniformly distributed within the bin, the lower and upper bounds 

were obtained using MCS to account for the uncertainty within the ground motion bin and 

calculate the fragility of each component. Then, the system fragilities were calculated under the 

assumptions of independent seismic capacities and perfect dependence in seismic capacities. 

These results are also plotted in Figure 4-3 (parallel system) and Figure 4-4 (series system) for 

the case where the GM value is fixed. We did not plot the case where the GM value is uniformly 

distributed because, currently, the Reed-McCann method cannot be implemented using a 

randomly distributed GM value. 
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Table 4-10 System Fragility of the Parallel Configuration in Section 8.2.4 of  
NUREG/CR-7237 [15] 

GM Bin 
GMstart - GMend 

(GMrep) 

Lower 
Bound1 

[independence] 

Upper 
Bound1 

[perfect 

dependence] 

Reed-McCann 
Quantification2,5 

Bayesian 
Network3,4,5 FORM3 MCS1,3,5 

BIN-1 
0.10g – 0.15g 

(0.122g) 

~0 
(2.0E-20) 

~0 
(6.9E-10) 

N/A 
(0) 

~0 
(~0) 

Note 6 
(1.0E-15) 

~0 
(~0) 

BIN-2 
0.15g – 0.20g 

(0.172g) 

~0 
(3.0E-15) 

2.7E-7 
(1.1E-7) 

N/A 
(0) 

2.5E-13 
(~0) 

6.9E-11 
(8.6E-12) 

~0 
(~0) 

BIN-3 
0.20g – 0.30g 

(0.242g) 

~0 
(5.8E-11) 

2.3E-5 
(8.4E-6) 

N/A 
(5.1E-14) 

1.5E-7 
(3.0E-8) 

1.9E-7 
(1.5E-8) 

7.0E-8 
(3.0E-8) 

BIN-4 
0.30g – 0.48g 

(0.377g) 

1.2E-5 
(1.2E-6) 

1.6E-3 
(7.6E-4) 

N/A 
(1.5E-7) 

1.6E-4 
(7.7E-5) 

1.6E-4 
(2.1E-5) 

9.5E-5 
(2.4E-5) 

BIN-5 
0.48g – 0.71g 

(0.582g) 

2.5E-3 
(1.1E-3) 

2.6E-2 
(2.0E-2) 

N/A 
(3.9E-4) 

8.5E-3 
(6.8E-3) 

8.4E-3 
(3.8E-3) 

6.5E-3 
(3.8E-3) 

BIN-6 
0.71g – 0.95g 

(0.819g) 

4.0E-2 
(3.2E-2) 

1.3E-1 
(1.2E-1) 

N/A 
(2.5E-2) 

7.4E-2 
(7.0E-2) 

6.9E-2 
(5.5E-2) 

6.3E-2 
(5.5E-2) 

BIN-7 
0.95g – 1.50g 

(1.19g) 

3.1E-1 
(2.7E-1) 

4.4E-1 
(4.1E-1) 

N/A 
(2.7E-1) 

3.5E-1 
(3.4E-1) 

3.6E-1 
(3.2E-1) 

3.5E-1 
(3.2E-1) 

BIN-8 
1.50g – 1.94g 

(1.7g) 

6.9E-1 
(6.9E-1) 

7.6E-1 
(7.5E-1) 

N/A 
(7.1E-1) 

7.1E-1 
(7.1E-1) 

7.1E-1 
(7.1E-1) 

7.1E-1 
(7.1E-1) 

Notes 
1. Since we used 108 samples with MCS, we use “approximately zero” (~0) for the case when the simulation 

contains no failures. 
2. The Reed-McCann method uses the fixed GM value shown as “GMrep” in the first column of this table. The 

Reed-McCann method cannot be implemented using a randomly distributed GM value. Therefore, we use 
“N/A” for the results of the calculation where the GM values are uniformly distributed within the bin. 

3. The fixed GM value used with the BN, FORM, and MCS is the geometric mean of GMstart and GMend, which 
varies from GMrep at the 3rd decimal place (compare with the GMrep values in the second column of Table 
4-4). 

4. The BN results shown as “approximately zero” (~0) are because the inference in GeNIe showed the 
guaranteed success of component B and this guarantees the success of the parallel system. This is due to the 
amount of simulations used in the generation of the CPT for component B. 

5. The shaded cells indicate that the calculated system fragility is outside the lower and upper bounds. 
6. We were unable to obtain a result because FORM did not converge when estimating the fragility of 

component B. 
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Table 4-11 System Fragility of the Series Configuration in Section 8.2.5 of  
NUREG/CR-7237 [15] 

GM Bin 
GMstart - GMend 

(GMrep) 

Lower 
Bound 

[perfect 

dependence] 

Upper 
Bound 

[independence] 

Reed-McCann 
Quantification1,3 

Bayesian 
Network2,3 FORM2,3 MCS2,3 

BIN-1 
0.10g – 0.15g 

(0.122g) 

1.7E-5 
(7.3E-6) 

2.7E-5 
(1.1E-5) 

N/A 
(9.7E-8) 

2.7E-6 
(2.7E-7) 

Note 4 
(1.2E-5) 

2.5E-5 
(1.2E-5) 

BIN-2 
0.15g – 0.20g 

(0.172g) 

3.6E-4 
(2.5E-4) 

5.1E-4 
(3.6E-4) 

N/A 
(1.2E-4) 

2.4E-4 
(1.4E-4) 

6.0E-4 
(3.8E-4) 

5.2E-4 
(3.8E-4) 

BIN-3 
0.20g – 0.30g 

(0.242g) 

6.7E-3 
(4.2E-3) 

9.3E-3 
(5.9E-3) 

N/A 
(9.1E-3) 

7.9E-3 
(5.1E-3) 

1.1E-2 
(6.4E-3) 

9.3E-3 
(6.4E-3) 

BIN-4 
0.30g – 0.48g 

(0.377g) 

8.1E-2 
(6.2E-2) 

1.1E-1 
(8.7E-2) 

N/A 
(1.0E-1) 

1.1E-1 
(8.4E-2) 

1.2E-1 
(8.9E-2) 

1.1E-1 
(8.9E-2) 

BIN-5 
0.48g – 0.71g 

(0.582g) 

3.4E-1 
(3.2E-1) 

4.7E-1 
(4.5E-1) 

N/A 
(5.2E-1) 

4.3E-1 
(4.1E-1) 

4.6E-1 
(4.3E-1) 

4.5E-1 
(4.3E-1) 

BIN-6 
0.71g – 0.95g 

(0.819g) 

6.6E-1 
(6.5E-1) 

8.2E-1 
(8.2E-1) 

N/A 
(8.7E-1) 

7.7E-1 
(7.6E-1) 

7.9E-1 
(7.9E-1) 

7.9E-1 
(7.9E-1) 

BIN-7 
0.95g – 1.50g 

(1.19g) 

9.0E-1 
(9.1E-1) 

9.8E-1 
(9.9E-1) 

N/A 
(9.5E-1) 

9.6E-1 
(9.6E-1) 

9.6E-1 
(9.8E-1) 

9.7E-1 
(9.8E-1) 

BIN-8 
1.50g – 1.94g 

(1.7g) 

9.9E-1 
(9.9E-1) 

1 
(1) 

N/A 
(1) 

1 
(1) 

1 
(1) 

1 
(1) 

Notes 
1. The Reed-McCann method uses the fixed GM value shown as “GMrep” in the first column of this table. The 

Reed-McCann method cannot be implemented using a randomly distributed GM value. Therefore, we use 
“N/A” for the results of the calculation where the GM values are uniformly distributed within the bin. 

2. The fixed GM value used with the BN, FORM, and MCS is the geometric mean of GMstart and GMend, which 
varies from GMrep at the 3rd decimal place (compare with the GMrep values in the second column of Table 
4-4). 

3. The shaded cells indicate that the calculated system fragility is outside the lower and upper bounds. 
4. We were unable to obtain a result because FORM did not converge when estimating the fragility of 

component B. 
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Figure 4-3 System fragility of the parallel configuration in Section 8.2.4 of  

NUREG/CR-7237 [15] for the case where the GM value is fixed. The shaded area 
represents the lower and upper bounds of the system fragility for the parallel 
configuration. 
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Figure 4-4 System fragility of the series configuration in Section 8.2.5 of  

NUREG/CR-7237 [15] for the case where the GM value is fixed. The shaded area 
represents the lower and upper bounds of the system fragility for the series 
configuration. 

For the parallel system (Table 4-10 and Figure 4-3), we observed that the results from the BN 

approach remained inside the lower and upper bounds of the system fragility in six out of eight 

GM values. The BN approach results outside the bounds are associated with the “low end” of the 

fragility curve (i.e., BIN-1 and BIN-2) in which the MCS used to generate the CPTs and the 

discretization in the BN impacted the results, and the estimated system fragility bounds are very 

small. Refinement of the discretization and modification of the MCS approach used in generating 

CPTs can help to improve the BN performance in estimating these small probabilities. However, 

from the perspective of the seismic PRA quantification, these small system fragility results at the 
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truncation limits that are used in the seismic PRA quantification and the truncation limits vary 

from application to application.18 In other words, if the value of the cut set, which includes the 

contribution from the AEF of the seismic hazard, is less than the truncation limit, that cut set is 

not considered in the seismic PRA quantification. The Reed-McCann method likewise generated 

system fragility results outside the bounds in the “low end” of the fragility curve. However, in 

the “middle” of the fragility curve (i.e., BIN-3 through BIN-6), the Reed-McCann method also 

failed to give results that stay within the lower and upper bounds of the system fragility. In 

contrast, the other three approaches yielded results within the lower and upper bounds of the 

system fragility in the “middle” of the fragility curve. The BN, FORM, and MCS approaches 

provided similar results (i.e., in the same order of magnitude) in the “middle” of the fragility 

curve. All four approaches/methods provided similar results that stay within the lower and upper 

bounds of the system fragility at the “high end” of the fragility curve (i.e., BIN-7 and BIN-8). 

For the case where the GM value is uniformly distributed within each bin, the BN approach 

results remained within the lower and upper bounds of the system fragility for all GM bins. Also, 

the BN approach provided similar results as those from FORM and MCS. This provides 

confidence that the BN approach appropriately captures the dependencies between the seismic 

capacities of multiple components in a parallel system. 

 

18  Truncation limits may be in the range of 1 × 10−13 to 1 × 10−10; however, the truncation limit for a specific 

application is selected in accordance with the supporting requirements QU-B2 and QU-B3 of the American 

Society of Mechanical Engineers (ASME)/American Nuclear Society (ANS) PRA standard [79]. 
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For the series system (Table 4-11 and Figure 4-4), we also observed that the results from the BN 

approach remained inside the lower and upper bounds of the system fragility in six out of eight 

GM values, with similar trends observed in the “low end” of the fragility curve (i.e., BIN-1 and 

BIN-2) as in the parallel system case. In the “middle” of the fragility curve (i.e., BIN-3 through 

BIN-6), the BN approach results fell between the lower and upper bounds of the system fragility. 

In contrast, the Reed-McCann method results fell outside the lower and upper bounds of the 

system fragility with all the results being greater than the upper bound of the system fragility, 

that is, the Reed-McCann method results are overly conservative. The BN, FORM, and MCS 

provided similar results, but in the case of BIN-3 and BIN-4, FORM and MCS gave a system 

fragility slightly greater than the upper bound of the system fragility. Similar to the parallel 

system, all four approaches/methods provided similar results that remained within the lower and 

upper bounds of the system fragility at the “high end” of the fragility curve (i.e., BIN-7 and BIN-

8). For the case where the GM value is uniformly distributed within each bin, MCS has better 

performance than the BN and FORM at the “low end” of the fragility curve as judged by the 

performance within the theoretical bounds. In the “middle” and “high end” of the fragility curve, 

the BN and MCS had similar performance and provided results that fell between the lower and 

upper bounds of the system fragility. FORM produced results that were slightly greater than the 

upper bounds of the system fragility for BIN-3 and BIN-4 and for the remaining bins (i.e., BIN-5 

through BIN-8), FORM has similar performance to the BN and MCS. For the series system, the 

BN appropriately captures the dependency between multiple components in BIN-3 through BIN-

8. For BIN-1 and BIN-2 (i.e., low ground motion values), it may be appropriate to use the 

independence assumption for the series system. 
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The system fragility results for the parallel and series systems tend to be higher for the case 

where the GM value within each bin is uniformly distributed than those where the representative 

GM value within each bin is fixed. This is expected because the case where the GM value within 

each bin is uniformly distributed considers the possibility of GM values that are greater than 

GMrep when estimating the fragilities of each component and that of the system within that bin.   

This tendency for higher system fragility results is balanced by the fact that the case where the 

GM value within each bin is uniformly distributed also considers GM values that are less than 

GMrep. Thus, the system fragility estimated when considering the ground motion uncertainty 

within the GM bin will differ from the value estimated when considering a fixed GM value at the 

representative GM value of the bin. The magnitude of the difference depends on the shape of the 

fragility curve over the range of GM values covered by the bin. This observation may support 

arguments made by Zhou et al. [40] and the IAEA [39] against the use of the geometric mean as 

the representative GM value of a GM bin. Specifically, Zhou et al. [40] and the IAEA [39] 

support using GMend as the representative GM value of a GM bin. We did not explore using 

GMend as the representative GM value of a GM bin because of the relative ease with which the 

BN facilitates consideration of “within bin uncertainty.” Therefore, we do not offer commentary 

on the use of alternate representative GM values. 

4.5 Summary and Conclusions 

We proposed an alternative approach to the Reed-McCann method based on BNs for modeling 

dependent seismic failures. Based on the results (Section 4.4), the BN approach we proposed in 

this paper is better suited than the Reed-McCann method (as implemented in NUREG/CR-7237 

[15]) for modeling dependent seismic failures as judged by the comparison against the 

theoretical lower and upper bounds of the system fragility. Also, as demonstrated by the 
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illustrative example, the BN approach does not need an explicit estimate of the correlation 

coefficient as is the case for the methods proposed by Zhou et al. [40], Watanabe et al. [60], and 

Kwag et al. [61], but instead only requires information regarding the relative “split” between 

common and component-specific uncertainties. We also compared the performance of the BN to 

results based on FORM and MCS. The BN, FORM, and MCS provided similar results. In 

addition, the BN offers the following advantages over the Reed-McCann method, FORM, and 

MCS: (1) BNs provide a graphical representation that enables transparency and facilitates 

communication of modeling assumptions; (2) they are effective at modeling complex 

dependencies and can accommodate differing probability distribution assumptions; and (3) they 

facilitate information updating, which allows for the efficient calculation of joint and conditional 

probability distributions for all random variables in the BN. In this paper, we demonstrated 

advantage (1) by using Figure 4-2 to provide a graphical representation of the system, advantage 

(2) by computing the system fragility which includes complex dependencies represented by the 

𝜀𝜀𝑖𝑖𝑗𝑗∗  nodes, and advantage (3) by calculating the parallel and series system fragilities for each 

ground motion bin using the updating aspects of the BN. As an additional example of advantage 

(3), the parallel system fragility in ground motion BIN-5 changes from 6.8 × 10−3 to 2.1 × 10−2 

when the failure of component A is entered as evidence; obtaining this result did not require 

recalculating the CPTs. In combination with the extension to PSHA to account for the spatial 

variability of ground motion we previously proposed [64], the BN approach presented in this 

paper can be used to simultaneously and realistically account for dependent seismic failures and 

spatial variability of ground motion in both single-unit and multi-unit seismic PRAs. 
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Chapter 5 Multi-Unit Seismic Probabilistic Risk Assessment: A 

Bayesian Network Perspective19 

5.1 Introduction 

5.1.1 Motivation and Objective 

The Fukushima Dai-ichi accident [9]–[11] highlighted the need to consider multi-unit accidents 

in probabilistic risk assessments (PRA) of nuclear power plants (NPP). The accident at the 

Fukushima Dai-ichi NPP initiated as an earthquake followed by a tsunami that resulted in three 

of the six units at the site experiencing core damage and subsequent release of radioactive 

material to the environment. In response to the accident, the nuclear industry has developed 

additional strategies to address risks from natural hazards (e.g., use of diverse and flexible 

coping strategies equipment [81]). In parallel, there has been an increased interest in multi-unit 

probabilistic risk assessment (MUPRA) (e.g., [13], [65]). Modarres et al. [82] note that 

“MUPRA refers broadly to an extension of the traditional PRA techniques to assess the risks of 

multi-unit sites. This includes single-unit PRAs that consider the accident sequences that may 

propagate from one unit to another, fully integrated PRA models that address accident sequences 

that may involve any combination of reactor units and radiological sources, and hybrids of these 

models.” 

 

19  This chapter was submitted to the journal Reliability Engineering & System Safety on May 18, 2021 

(Manuscript number: JRESS-D-21-00695) and as of May 22, 2021, it is “Under Review.” 
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In the context of this paper, we focus on the application of MUPRA to seismic events because 

“[i]t has long been recognized that external events, particularly seismic and external flooding 

events, could be substantial contributors to risk because of the potential for multiple common-

cause failures” [10]. This motivates the use of seismic PRAs to characterize the risk contribution 

of earthquakes to the NPP site, rather than the risk contribution on a unit-by-unit basis. 

The elements of a seismic PRA (SPRA) are probabilistic seismic hazard analysis (PSHA), 

fragility evaluation, and systems (plant response) analysis [12]. The PSHA is used to estimate the 

frequency (per year) of exceeding a certain value of a ground motion parameter (e.g., peak 

ground acceleration (PGA) or spectral acceleration), which is represented as a seismic hazard 

curve. The fragility evaluation is used to estimate the seismic capacity and conditional 

probability of failure of structures, systems, and components (SSCs). The system (plant 

response) analysis includes the modeling of the NPP’s response to the ground motion caused by 

an earthquake using event trees and fault trees, which may result in a core damage event and 

radiation release, and quantification of the appropriate risk metrics (e.g., core damage 

frequency). 

The objective of this paper is to integrate our previous works of extending a PSHA to account for 

the spatial variability of ground motion [64] and estimating the correlated (dependent) seismic 

failures (i.e., fragilities) of SSCs [83] into a multi-unit seismic probabilistic risk assessment 

(MUSPRA) approach to explore the relative importance of different types of correlation. The 

approach is demonstrated by modeling a pair of nuclear reactors at a hypothetical NPP site. 
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5.1.2 Context 

Schroer and Modarres [23] proposed an event classification schema to account for dependencies 

among multiple units at an NPP site. The event classification schema is composed of seven 

categories, where six of them have the potential to affect multiple units and one does not affect 

multiple units (i.e., independent events). The six categories that have the potential to affect 

multiple units are (1) initiating events, (2) shared connections, (3) identical components, (4) 

proximity dependencies, (5) human dependencies, and (6) organizational dependencies. 

Subsequently, there was an international workshop on multi-unit probabilistic safety assessment 

(MUPSA) [84], where one of the technical challenges identified was site-based accident 

sequence quantification and risk metrics, including the “need to address variations in site 

response to the same earthquake and correlation among component fragilities in the MUPSA 

context.” 

Several works have been published about MUSPRA, with some pre-dating the Fukushima Dai-

chi accident. The works by Hataka [85] and Ebisawa et al. [86]  use the Seismic Safety Margins 

Research Program (SSMRP) fragility method [53], [54], [87]. Therefore, these works consider 

the correlation in response and correlation in capacity (fragility), which are later combined into a 

failure correlation using the following equation [53]: 

 𝜌𝜌1,2 =
𝛽𝛽𝑅𝑅1 ∙ 𝛽𝛽𝑅𝑅2

�𝛽𝛽𝑅𝑅12 + 𝛽𝛽𝑅𝑅12 ∙ �𝛽𝛽𝑅𝑅22 + 𝛽𝛽𝑅𝑅22
∙ 𝜌𝜌𝑅𝑅1,𝑅𝑅2 +

𝛽𝛽𝑅𝑅1 ∙ 𝛽𝛽𝑅𝑅2
�𝛽𝛽𝑅𝑅12 + 𝛽𝛽𝑅𝑅12 ∙ �𝛽𝛽𝑅𝑅22 + 𝛽𝛽𝑅𝑅22

∙ 𝜌𝜌𝑅𝑅1,𝑅𝑅2 (5.1) 

In Equation (5.1), 𝜌𝜌1,2 is the correlation coefficient between the failure of components 1 and 2; 

𝛽𝛽𝑅𝑅1 and 𝛽𝛽𝑅𝑅2 are the standard deviations of the logarithms of the responses of components 1 and 

2, respectively; 𝛽𝛽𝑅𝑅1 and 𝛽𝛽𝑅𝑅2 are the standard deviations of the logarithms of the capacities 
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(fragilities) of components 1 and 2, respectively, 𝜌𝜌𝑅𝑅1,𝑅𝑅2 is the correlation coefficient between the 

responses of components 1 and 2; and 𝜌𝜌𝑅𝑅1,𝑅𝑅2 is the correlation coefficient between the capacities 

(fragilities) of components 1 and 2. Typically, under the SSMRP fragility method, it is assumed 

that there is not enough information to determine the capacity (fragility) correlation coefficient 

between components 1 and 2 (𝜌𝜌𝑅𝑅1,𝑅𝑅2) or that capacity (fragility) components 1 and 2 are 

independent; therefore, 𝜌𝜌𝑅𝑅1,𝑅𝑅2 = 0 (e.g., [86]). Alternatively, the effect of 𝜌𝜌𝑅𝑅1,𝑅𝑅2 in the results of 

the seismic PRA may be determined through sensitivity analysis. Hakata [85] proposed rules for 

assigning the response correlation coefficient across units and these rules are assigned by 

detailed response analysis or expert judgment. Ebisawa et al. [86] implemented the failure 

correlation coefficient across units using a large fault tree composed of the core damage 

sequences from each unit. 

Other works in MUSPRA, such as those by Zhou et al. [40] and Jung et al. [88], are carried out 

in the context of the Electric Power Research Institute (EPRI) fragility methodology, which is 

documented in EPRI 3002012994 [62]. The EPRI fragility methodology expresses the fragility 

of an SSC as a function of a global ground motion parameter (e.g., PGA), and assumes that the 

seismic capacity is lognormally distributed with median seismic capacity Θ𝑚𝑚 and logarithmic 

standard deviations reflecting the epistemic uncertainty (𝛽𝛽𝑈𝑈) and randomness (𝛽𝛽𝑅𝑅) in the seismic 

capacity [62], [66]. Zhou et al. [40] used the Gaussian copula with a judged correlation 

coefficient between the seismic capacities of SSCs to model the correlated (dependent) seismic 

failures. Then, they calculated the equivalent 𝛽𝛽-factor common cause failure (CCF) parametric 

model used in the traditional single-unit PRAs as the ratio of the number of correlated failures to 

the number of all failures. Subsequently, the 𝛽𝛽-factor is used to define a seismic CCF model, 

which was also implemented as part of a large fault tree representing the entire MUSPRA. Jung 
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et al. [88] converted correlated seismic failures into seismic CCF basic events by solving a 

system of simultaneous equations, where the number of simultaneous equations and 

corresponding basic events depends on the number of SSCs in the correlated group (i.e., the 

number of basic events is equal to 2(# 𝑠𝑠𝑓𝑓 𝑆𝑆𝑆𝑆𝐴𝐴𝑠𝑠 𝑖𝑖𝑛𝑛 𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑠𝑠𝑙𝑙𝑝𝑝𝑠𝑠𝑠𝑠𝑒𝑒 𝑖𝑖𝑟𝑟𝑠𝑠𝑠𝑠𝑝𝑝) − 1). 

This paper proposes a different approach to perform MUSPRA. It relies on Bayesian networks 

(BNs) to represent the entire MUSPRA. This is because, based on its graphical nature and 

rigorous probabilistic calculations, BNs offer a systematic, easy-to-follow approach to model 

MUSPRA where modeling dependencies are critical. Bayesian networks have been used in 

PRAs to model correlated (basic) events under multiple hazards [89], validate PRA models [90], 

and estimate multi-unit seismic core damage probability [91]. Previously, we proposed using 

BNs to model the spatial variability of ground motion in a MUSPRA [64] and dependent seismic 

failures [83]. The proposed approach for modeling dependent seismic failures using BNs [83] is 

performed in the context of the EPRI fragility methodology [62]. In contrast with the other works 

that use the EPRI fragility methodology, the proposed approach to model MUSPRA using BNs 

explicitly considers the spatial variability of ground motion for the global ground motion 

parameter when estimating NPP site-based risk metrics. In this paper, we estimate the NPP site-

based risk metrics listed below [40]. 

• Site core damage frequency (CDF): the frequency of one or more core damage events; 

this definition corresponds to the union (logic OR) of core damage events in multiple 

units. 
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• Concurrent CDF: the frequency of multiple core damage events nearly simultaneously; 

this definition corresponds to the intersection (logic AND) of core damage events in 

multiple units. 

5.1.3 Background 

There are many published works that describe the elements of a seismic PRA and provide an 

information about BNs. In our previous works [64], [83], we provided a background on these 

topics in the context of a MUSPRA and will not repeat them here. For a more comprehensive 

background on these topics, an interested reader may consult EPRI 3002000709 [12] for a 

description of the elements of a seismic PRA and the works by Kjærulff and Madsen [17] and 

Koller and Friedman [92] for information about BNs. 

5.1.4 Outline 

This paper is organized as follows. Section 5.2 explains the approach to model a MUSPRA using 

BNs by describing the single-unit seismic PRA used as the basis for the MUSPRA (Section 

5.2.1), the mapping of the event tree and fault tree logic into a BN (Section 5.2.2), and the 

modeling of the MUSPRA as a BN (Section 5.2.3). Section 5.3 presents the NPP site-based risk 

metric results and discusses the rationale (insights) for the observed result trends. Finally, 

Section 5.4 summarizes our work and provides conclusions. 

5.2 Approach to MUSPRA using Bayesian Networks 

The approach used in this paper to model a MUSPRA using BNs is summarized as follows: 
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1. Adopt the Modarres et al. [82] methodology, that is, create the MUPRA model based on 

the single-unit PRA model (i.e., the event trees and fault trees). The single-unit seismic 

PRA is described in 5.2.1. 

2. Map the event trees and fault trees into an equivalent Bayesian network; the event tree 

pivotal events (fault trees) are modeled based on the minimal cut sets. The mapping is 

described in Section 5.2.2. 

3. Create nodes in the BN that explicitly address the dependencies between the SSCs across 

the units and estimate the NPP site-based risk metrics. In terms of a seismic PRA, the 

explicit nodes that address dependencies are the ones used to model the spatial variability 

of ground motion and dependent seismic failures. This process is described in Section 

5.2.3. 

5.2.1 Single-Unit Seismic PRA Description 

The single-unit seismic PRA used in this paper is a simplified version of the PRA-based seismic 

margin analysis (SMA) documented in Section 19.1.5.1 of the Design Control Document (DCD) 

for the design certification of the Advanced Power Reactor 1400 (APR1400) NPP [93], [94]. The 

at-power seismic initiating event tree is shown in Figure 5-1, and it models the pivotal events 

leading directly to core damage: 

• seismic-induced failures leading to direct core damage in Unit 1 (1-01-S-DMG), 

• seismic-induced station blackout (SBO) in Unit 1 (1-02-S-SBO), 

• seismic-induced anticipated transient without scram (ATWS) in Unit 1 (1-06-S-ATWS), 

• seismic-induced large loss-of-coolant accident (LOCA) in Unit 1 (1-07-S-LLOCA), and 
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• seismic-induced medium LOCA (1-08-S-MLOCA) in Unit 1.20 

Seismic-induced small LOCA in Unit 1 (1-09-S-SLOCA) and loss of offsite power (LOOP) in 

all units (10-S-LOOP) are also included in the seismic initiating event tree, but the modeling is 

terminated at the small LOCA, LOOP, and transient (TRANS) end states to keep this problem as 

a relatively simple seismic PRA. The LOOP pivotal event was assumed to affect all units based 

on the Schroer and Modarres event classification schema [23], which categorizes LOOP events 

as “definite” initiating events. 

 
Figure 5-1 At-power seismic initiating event tree 

The pivotal events shown in Figure 5-1 are each associated with a top event of the following 

fault trees: 

 

20  Some simplifications to the PRA-based SMA involve not modeling the loss of all instrumentation and control 

(1-03-S-IC), seismic-induced main steam line break (1-04-S-MSLB), and seismic-induced total loss of 

component cooling water (1-05-S-TLOCCW), which result in core damage, and reducing the number of trains 

in the 1-02-S-SBO fault tree from four to two. 

Seismic Event Seismic event leading to 
direct core damage in Unit 1

Seismic-induced 
SBO in Unit 1

Seismic-induced 
ATWS in Unit 1

Seismic-induced 
large LOCA in Unit 1

Seismic-induced 
medium LOCA in Unit 1

Seismic-induced 
small LOCA in Unit 1

Seismic-induced 
LOOP in all units

00-S-IE 1-01-S-DMG 1-02-S-SBO 1-06-S-ATWS 1-07-S-LLOCA 1-08-S-MLOCA 1-09-S-SLOCA 10-S-LOOP

Sequence 
# End State

8 Core Damage

7 Core Damage

6 Core Damage

5 Core Damage

1 @TRANS

4 Core Damage

3 @S-SLOCA

2 @S-LOOP



107 

• The “Seismic event leading to direct core damage in Unit 1” pivotal event (top event in 

Figure 5-2) models the seismic-induced failure of major NPP structures and reactor 

coolant system (RCS) components. The RCS of the APR1400 is arranged as two closed 

loops connected in parallel to the reactor vessel. Each loop consists of one outlet hot leg, 

one steam generator (SG), two cold legs, and two reactor coolant pumps (RCPs) [95]. 

• The “Seismic-induced SBO in Unit 1” pivotal event (top event in Figure 5-3) models the 

failure of the major components of the onsite electrical power system (EPS), including 

two redundant onsite EPS trains and the emergency diesel generator (EDG) building. 

• The “Seismic-induced ATWS in Unit 1” pivotal event (top event in Figure 5-4(a)) 

models the failure due to the binding of the control element drive mechanism extension 

shaft. 

• The different size seismic-induced LOCA pivotal events are due to the seismic-induced 

failure of the pressurizer surge line (top event in Figure 5-4(b)), pressurizer spray nozzle 

(top event in Figure 5-4(c)), and RCS small piping (top event in Figure 5-4(d)). 

• The “Seismic-induced LOOP in all units” pivotal event (top event in Figure 5-4(e)) is due 

to the failure of the ceramic insulators. 

The fragility parameters for the basic events shown in Figure 5-2 through Figure 5-4 are 

provided in Table 5-1. 
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Figure 5-2 Fault tree for the seismic event leading to direct core damage (1-01-S-DMG) 

pivotal event 

 
Figure 5-3 Fault tree for the seismic-induced SBO (1-02-S-SBO) pivotal event 

Seismic event leading 
to direct core damage

1-01-S-DMG

Seismic-induced structural 
failure of AUXB in Unit 1

1-01-AUXB
Seismic-induced sliding of 

nuclear island in Unit 1
1-01-NI

Seismic-induced structural 
failure of TB in Unit 1

1-01-TB
Seismic-induced structural 
failure of CTMT in Unit 1

1-01-CTMT

Seismic-induced failure of 
RPV in Unit 1

1-01-RPV
Seismic-induced failure of 
PZR skirt support in Unit 1

1-01-PZR

Seismic-induced failure of 
RCP1A in Unit 1

1-01-RCP1A

Seismic-induced failure of SG1 
economizer nozzle in Unit 1

1-01-SG1

Seismic-induced failure of SG2 
economizer nozzle in Unit 1

1-01-SG2

Seismic-induced failure of any 
steam generator in Unit 1

Seismic-induced failure of any 
reactor coolant pump in Unit 1

Seismic-induced failure of 
RCP1B in Unit 1

1-01-RCP1B

Seismic-induced failure of 
RCP2A in Unit 1

1-01-RCP2A

Seismic-induced failure of 
RCP2B in Unit 1

1-01-RCP2B

AUXB – auxiliary building
NI – nuclear island (common basemat of CTMT and AUXB)
TB – turbine building
CTMT – containment building
RPV – reactor pressure vessel
PZR – pressurizer
SG – steam generator
RCP – reactor coolant pump

+

+ +

Seismic-induced SBO 
in Unit 1

1-02-S-SBO

Seismic-induced structural 
failure of EDGB in Unit 1

1-02-EDGB

Seismic-induced failure of 
EDG1A in Unit 1

1-02-EDG1A

Seismic-induced failure of 
onsite EPS in Unit 1

Seismic-induced failure of 
onsite EPS Train A in Unit 1

Seismic-induced failure of 
4.16 kV SWGR 1A in Unit 1

1-02-SWGR1A

Seismic-induced failure of 
125 V DCCC 1A in Unit 1

1-02-DCCC1A

Seismic-induced failure of 
125 V battery 1A in Unit 1

1-02-BATT1A

SBO – station blackout
EDG – emergency diesel generator
EDGB – EDG building
EPS – electrical power system
BATT - battery
DCCC – direct current control center
SWGR – main control switchgear

Seismic-induced failure of 
onsite EPS Train B in Unit 1

Seismic-induced failure of 
EDG1B in Unit 1

1-02-EDG1B

Seismic-induced failure of 
4.16 kV SWGR 1B in Unit 1

1-02-SWGR1B

Seismic-induced failure of 
125 V DCCC 1B in Unit 1

1-02-DCCC1B

Seismic-induced failure of 
125 V battery 1B in Unit 1

1-02-BATT1B

+

+

+
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Figure 5-4 Fault trees for the seismic-induced (a) ATWS (1-06-S-ATWS), (b) large LOCA 

(1-07-S-LLOCA), (c) medium LOCA (1-08-S-MLOCA), (d) small LOCA (1-09-
S-SLOCA), and (e) LOOP (10-S-LOOP) pivotal events 

Table 5-1 Fragility Parameters for basic events 
Basic Event(s) Failure Mode 𝚯𝚯𝒎𝒎 (g) 𝜷𝜷𝑹𝑹 𝜷𝜷𝑼𝑼 Reference 
1-01-AUXB Shear wall 1.48 0.31 0.26 Record # 1212 of [96] 
1-01-NI Sliding 1.3 0.23 0.42 Record # 1243 of [96] 
1-01-TB NS braced frame 1.48 0.33 0.3 Record # 1297 of [96] 
1-01-CTMT Shear 2.46 0.26 0.29 Record # 173 of [96] 
1-01-RPV Structural failure 1.8 0.3 0.4 Table 6-1 of [70] 
1-01-PZR Structural failure of support 2.5 0.3 0.4 Table 6-1 of [70] 
1-01-SG1 
1-01-SG2 Nozzle 2.46 0.4 0.5 Record # 302 of [96] (See Note 1) 

1-01-RCP1A 
1-01-RCP1B 
1-01-RCP2A 
1-01-RCP2B 

Structural failure of support 2.5 0.3 0.4 Table 6-1 of [70] 

1-02-EDGB Shear wall 2.09 0.31 0.26 Record # 1214 of [96] 
1-02-EDG1A 
1-02-EDG1B Structural 0.92 0.12 0.23 Record # 277 of [96] 

1-02-SWGR1A 
1-02-SWGR1B Structural 3.26 0.26 0.25 Record # 1183 of [96] 

1-02-DCCC1A 
1-02-DCCC1B Structural 1.48 0.23 0.28 Record # 1181 of [96] 

1-02-BATT1A 
1-02-BATT1B Functional 1.94 0.24 0.48 Record # 10 of [96] 

1-06-CEDM Excess bending 2 0.3 0.4 Record # 214 of [96] 

1-07-PZR-SLN Structural failure of pressurizer 
surge line nozzle 1.73 0.3 0.4 (See Note 2) 

1-08-PZR-SPN Structural failure of pressurizer 
spray nozzle 1.61 0.3 0.4 (See Note 2) 

1-09-RCS-SPI Generic 0.95 0.3 0.4 (See Note 2) 
10-CERINS Failure of ceramic insulators 0.3 0.3 0.45 Table 6-1 of [70] 
Notes 
1. The 𝛽𝛽𝑅𝑅 and 𝛽𝛽𝑈𝑈 values were selected such that the resulting high confidence of low probability of failure (HCLPF) capacity is 

approximately the HCLPF capacity provided in the APR1400 DCD [93] using the following equation: 𝐻𝐻𝐶𝐶𝐿𝐿𝑃𝑃𝐹𝐹 = Θ𝑚𝑚 ∙
exp[−1.65 ∗ (𝛽𝛽𝑅𝑅 + 𝛽𝛽𝑈𝑈)]. 

2. The 𝛽𝛽𝑅𝑅 and 𝛽𝛽𝑈𝑈 values are generic and the Θ𝑚𝑚 values were calculated from the HCLPF capacity provided in the APR1400 DCD [93] 
using the following equation: Θ𝑚𝑚 = 𝐻𝐻𝐶𝐶𝐿𝐿𝑃𝑃𝐹𝐹 exp[−1.65 ∗ (𝛽𝛽𝑅𝑅 + 𝛽𝛽𝑈𝑈)]⁄ . 

ATWS – anticipated transient without scram
CEDM – control element drive mechanism
LOCA – loss of coolant accident
LLOCA – large LOCA
MLOCA – medium LOCA
SLOCA – small LOCA
PZR-SLN – pressurizer surge line nozzle
PZR-SPN – pressurizer spray nozzle
RCS-SPI – reactor coolant system small piping
CERINS – ceramic insulators

Seismic-induced 
ATWS in Unit 1
1-06-S-ATWS

Seismic-induced binding of 
CEDM extension shaft in Unit 1

1-06-CEDM

Seismic-induced large 
LOCA in Unit 1
1-07-S-LLOCA

Seismic-induced failure of PZR 
surge line nozzle in Unit 1

1-07-PZR-SLN

Seismic-induced 
medium LOCA in Unit 1

1-08-S-MLOCA

Seismic-induced failure of PZR 
spray nozzle in Unit 1

1-08-PZR-SPN

Seismic-induced 
LOOP in all units

10-S-LOOP

Seismic-induced failure of 
ceramic insulators

10-CERINS

Seismic-induced 
small LOCA in Unit 1

1-09-S-SLOCA

Seismic-induced failure of RCS 
small piping in Unit 1

1-09-RCS-SPI

(a) (b) (c)

(d) (e)

+

+ + +

+
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5.2.2 Mapping of the Single-Unit Seismic PRA into a Bayesian Network 

Because seismic PRAs are typically carried out using event trees and fault trees, in the BN-based 

MUSPRA, we need to convert the event tree and fault tree logic into a BN. Bobbio et al. [97] 

proposed an approach to map fault trees into BNs, which we initially adopt in this study. The 

resulting BN from a fault tree with a large number of minimal cut sets (MCS) may be inefficient 

(and potentially intractable) to quantify because of a converging structure, as shown in Figure 

5-5 along with the corresponding conditional probability table (CPT) for the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 node. 

 
Figure 5-5 Example of a converging BN structure for a series system with four MCS with its 

CPT 

To overcome this potential inefficiency, we use the method proposed by Bensi et al. [73], where 

the converging BN structure shown in Figure 5-5 can be modeled as a chain-like BN structure as 

shown in Figure 5-6. In Figure 5-6, the nodes 𝐹𝐹𝑃𝑃𝐸𝐸𝑖𝑖, 𝑖𝑖 = 1, 2, 3, 4, represent a failure path 

sequence, which Bensi et al. [73] define as “a chain of events, corresponding to a MCS, in which 

the terminal event in the sequence indicates whether or not all components in the MCS are in the 

fail state” and each node in the failure path sequence (i.e., 𝐹𝐹𝑃𝑃𝐸𝐸1, 𝐹𝐹𝑃𝑃𝐸𝐸2, 𝐹𝐹𝑃𝑃𝐸𝐸3, and 𝐹𝐹𝑃𝑃𝐸𝐸4) is a 

failure path event (FPE). In the case of Figure 5-6, the chain of events corresponds to the system 

with the terminal event (i.e., 𝐹𝐹𝑃𝑃𝐸𝐸4) indicating whether any MCS is in the fail state. 

CPT for 

Fail (F) Safe (S)

Fail Safe Fail Safe

Fail Safe Fail Safe Fail Safe Fail Safe

F S F S F S F S F S F S F S F S

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



111 

 
Figure 5-6 Example of a chain-like BN structure for a series system with four MCS with its 

CPT and the CPTs of the chain-like nodes 

The efficiency gains are realized by the size of the CPT (or the number of entries) for the 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 (child) node. In general, the size of the CPT for the child node in a converging structure 

where the parent nodes have binary states is 2(#𝑠𝑠𝑓𝑓 𝑝𝑝𝑝𝑝𝑟𝑟𝑠𝑠𝑛𝑛𝑠𝑠 𝑛𝑛𝑠𝑠𝑒𝑒𝑠𝑠𝑠𝑠) ∙ (#𝑆𝑆𝑓𝑓 𝑆𝑆𝑆𝑆𝑝𝑝𝑆𝑆𝑆𝑆𝑆𝑆 𝑆𝑆𝑓𝑓 𝑐𝑐ℎ𝑖𝑖𝑀𝑀𝑚𝑚 𝑛𝑛𝑆𝑆𝑚𝑚𝑆𝑆). In 

Figure 5-5, the size of the CPT for the 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 node is 32, whereas the size of the CPT for the 

𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 node in Figure 5-6 is 4. 

The event tree in Figure 5-1 also needs to be mapped into a BN. We also use a chain-like BN 

structure to limit the size of the CPT of the node representing the state of the unit, which has four 

states (i.e., core damage, S-SLOCA, S-SLOOP, and TRANS). Since the event tree in Figure 5-1 

has seven binary-state pivotal events, the node representing the state of the unit would have 512 

(= 27 ∙ 4) entries as a converging BN structure. The chain-like BN structure is shown in Figure 

5-7, where the size of the CPT for the node representing the state of the unit is reduced to 16. 
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Figure 5-7 Event tree in Figure 5-1 mapped as a chain-like BN structure with the CPTs for 

the failure path events and Unit 1 

5.2.3 Modeling MUSPRA as a Bayesian Network 

At a high level, the BN that models a MUSPRA can be represented by three successive modules 

that are related to the elements of a seismic PRA. The modules are shown in Figure 5-8 as an 

object-oriented BN. The objects are described in Sections 5.2.3.1, 5.2.3.2, and 5.2.3.3. 

 
Figure 5-8 BN modules to model a MUSPRA 

5.2.3.1 Seismic Demand Module – Spatial Variability of Ground Motion 

The hypothetical NPP site is located at a representative Central Illinois site used in the 

demonstration seismic hazard calculations in NUREG-2115 [48] and the EPRI Ground Motion 

Model review project [49], which was used in our previous work [64]. The site is assumed to 

have two identical units separated by 100 m. 
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The seismic hazard curve obtained from the PSHA process is typically generated for a reference 

location on the site. However, the ground motion experienced across the site during an 

earthquake will differ from the ground motion experienced at the reference location [24]–[26], 

[28], [29]. In this work, the representative location is assumed to be at Unit 1. Consistent with 

the procedure outlined in [64], the ground motion affecting Unit 2 is then modeled as a function 

of the ground motion at Unit 1 using a model for spatial variability of ground motion in which 

variability is a function of the separation distance between units. 

The BN that models the ground motion affecting each unit is shown in Figure 5-9, where the 

nodes 1-GM and 2-GM represent the ground motion events affecting Unit 1 and Unit 2, 

respectively; node 𝑃𝑃1,2
′  represents the spatial variability of ground motion model; and node EES 

represents an earthquake of engineering significance (EES) event. An EES event occurs when 

the ground motion exceeds a minimum threshold. In the context of a seismic PRA, the minimum 

threshold value is the starting value of the first ground motion bin in the discretized seismic 

hazard curve. All inferences performed using the BN in this study are conditioned on the 

occurrence of an EES event, which is the reason why the node EES in Figure 5-9 is shaded. 

Thus, to estimate the “unconditional” risk, the results provided by the BN must be multiplied by 

the frequency of an EES event, which is 𝜆𝜆(𝑃𝑃𝐺𝐺𝐴𝐴 > 0.08𝑔𝑔) = 4.62 × 10−4/𝑆𝑆𝑟𝑟 in this study. 

Figure 5-9 also provides the CPTs for all the nodes. The details about generating the CPTs are 

provided in our previous work [64]. We note that the CPT for 𝑃𝑃1,2
′  has 31 entries and, 

consequently, the CPT for 2-GM has 1984 (= 8 ∙ 31 ∙ 8) entries.  This makes it impractical to 

present the entire CPTs for those nodes and we only show a “snippet” of the CPTs in Figure 5-9. 
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Figure 5-9 BN and CPTs used to model the spatial variability of ground motion 

5.2.3.2 System Performance Module – Dependent Seismic Failures 

The seismic capacity for the failure mode of interest of an SSC is typically modeled as the 

product of a “best estimate” seismic capacity (usually the median, Θ𝑚𝑚) and two random variables 

Ε𝑅𝑅 and Ε𝑈𝑈 [66]: 

 Θ = Θm ∙ Ε𝑅𝑅 ∙ Ε𝑈𝑈 
(5.2) 

The random variable Ε𝑅𝑅 represents the aleatory variability about the median and Ε𝑈𝑈 represents 

the epistemic uncertainty in the median value. These two random variables are assumed 

lognormally distributed with medians of 1 and logarithmic standard deviations 𝛽𝛽𝑅𝑅 and 𝛽𝛽𝑈𝑈, 

respectively. Consequently, the seismic capacity Θ is a lognormally distributed random variable 

with median Θ𝑚𝑚 and logarithmic standard deviation (𝛽𝛽𝑅𝑅2 + 𝛽𝛽𝑈𝑈2)0.5. 

When a system consists of multiple SSC, there is correlation in the fragility across the SSCs 

because of correlation in seismic response and correlation in seismic capacity [53]. This is 
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modeled in the fragility analysis by separating the components of uncertainty that are common or 

SSC-specific [15], [56]. Specifically, by taking the natural logarithm of both sides of Equation 

(5.2), separating the aleatory variability (Ε𝑈𝑈) and epistemic uncertainty (Ε𝑅𝑅) into their common 

(Ε𝑅𝑅𝑖𝑖𝑖𝑖
∗  and Ε𝑈𝑈𝑖𝑖𝑖𝑖

∗ ) and SSC-specific (Ε𝑅𝑅𝑖𝑖
′  and Ε𝑈𝑈𝑖𝑖

′ ) parts, and using the following definitions 𝜀𝜀𝑖𝑖𝑗𝑗∗ =

ln�Ε𝑖𝑖𝑗𝑗∗ � = ln �Ε𝑅𝑅𝑖𝑖𝑖𝑖
∗ � + ln �Ε𝑈𝑈𝑖𝑖𝑖𝑖

∗ � and 𝜀𝜀𝑖𝑖′ = ln(Ε𝑖𝑖′) = ln�Ε𝑅𝑅𝑖𝑖
′ � + ln�Ε𝑈𝑈𝑖𝑖

′ �, the logarithm of the 

capacity of SSC 𝑖𝑖 is expressed as [83]: 

 ln(Θ𝑖𝑖) = ln�Θ𝑚𝑚𝑖𝑖� + 𝜀𝜀𝑖𝑖′ + ��𝜀𝜀𝑖𝑖𝑗𝑗∗ �
𝑖𝑖≠𝑗𝑗

 
(5.3) 

In Equation (5.3), Θ𝑖𝑖 is the seismic capacity of SSC 𝑖𝑖, Θ𝑚𝑚𝑖𝑖 is the median seismic capacity of SSC 

𝑖𝑖, 𝜀𝜀𝑖𝑖′ represents the SSC-specific capacity uncertainty of SSC 𝑖𝑖, and 𝜀𝜀𝑖𝑖𝑗𝑗∗  represents the common 

sources of uncertainty between SSCs 𝑖𝑖 and 𝑗𝑗 (𝑖𝑖 ≠ 𝑗𝑗). Given the definitions of 𝜀𝜀𝑖𝑖𝑗𝑗∗  and 𝜀𝜀𝑖𝑖′ in the 

paragraph above, 𝜀𝜀𝑖𝑖𝑗𝑗∗  and 𝜀𝜀𝑖𝑖′ are normally distributed random variables with zero mean and 

standard deviations 𝛽𝛽𝐴𝐴𝑖𝑖𝑖𝑖
∗ = ��𝛽𝛽𝑅𝑅𝑖𝑖𝑖𝑖

∗ �
2

+ �𝛽𝛽𝑈𝑈𝑖𝑖𝑖𝑖
∗ �

2
�
0.5

 and 𝛽𝛽𝐴𝐴𝑖𝑖
′ = ��𝛽𝛽𝑅𝑅𝑖𝑖

′ �2 + �𝛽𝛽𝑈𝑈𝑖𝑖
′ �2�

0.5
, respectively. 

From the BN perspective, the dependent seismic failures are addressed by explicitly modeling 

nodes that represent the common sources of uncertainties between the SSCs of interest, that is, 

the 𝜀𝜀𝑖𝑖𝑗𝑗∗  nodes [83]. The approach to modeling dependent seismic failures relies upon a systematic 

search for the common sources of uncertainty in the individual factors of safety that result in the 

seismic capacities of the SSCs of interest [15], [56]. The systematic search is performed by the 

fragility analyst and (when combined with detailed knowledge about SSCs and expert 

judgement) results in parameters (logarithmic standard deviations) that represent the common 

aleatory variability (𝛽𝛽𝑅𝑅𝑖𝑖𝑖𝑖
∗ ) and epistemic uncertainty (𝛽𝛽𝑈𝑈𝑖𝑖𝑖𝑖

∗ ) between each pair of SSCs 𝑖𝑖 and 𝑗𝑗. 
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The works by Campbell et al. [96] and Budnitz et al. [70] provide 𝛽𝛽𝑈𝑈 and 𝛽𝛽𝑅𝑅 parameters for the 

SSCs within the event and fault trees presented in Section 5.2.1, which are presented in Table 

5-1. For simplicity and due to lack of detailed information about the process used to derive the 

𝛽𝛽𝑅𝑅 and 𝛽𝛽𝑈𝑈 parameters shown in Table 5-1, in this study, we use an approach adapted from the 

EPRI MUPRA framework [13] to estimate the 𝛽𝛽𝑅𝑅𝑖𝑖𝑖𝑖
∗  and 𝛽𝛽𝑈𝑈𝑖𝑖𝑖𝑖

∗  parameters. The process and results 

of the simplified approach to estimate the 𝛽𝛽𝑅𝑅𝑖𝑖𝑖𝑖
∗  and 𝛽𝛽𝑈𝑈𝑖𝑖𝑖𝑖

∗  parameters are shown in Table 5-2. Once 

the 𝛽𝛽𝑅𝑅𝑖𝑖𝑖𝑖
∗  and 𝛽𝛽𝑈𝑈𝑖𝑖𝑖𝑖

∗  parameters are estimated, the 𝛽𝛽𝑅𝑅𝑖𝑖
′  and 𝛽𝛽𝑈𝑈𝑖𝑖

′  parameters are calculated as 𝛽𝛽𝑅𝑅𝑖𝑖
′ =

��𝛽𝛽𝑅𝑅𝑖𝑖�
2 − ∑�𝛽𝛽𝑅𝑅𝑖𝑖𝑖𝑖

∗ �
2
�
0.5

 and 𝛽𝛽𝑈𝑈𝑖𝑖
′ = ��𝛽𝛽𝑈𝑈𝑖𝑖�

2 − ∑�𝛽𝛽𝑈𝑈𝑖𝑖𝑖𝑖
∗ �

2
�
0.5

, respectively [15], [56]. 

Table 5-2 Common Aleatory and Epistemic Uncertainties 

SSC Group Judged 
𝝆𝝆𝑹𝑹𝒊𝒊𝒊𝒊 = 𝝆𝝆𝑼𝑼𝒊𝒊𝒊𝒊 𝜷𝜷𝑹𝑹𝒊𝒊𝒊𝒊

∗ = �𝝆𝝆𝑹𝑹𝒊𝒊𝒊𝒊 ∙ �𝜷𝜷𝑹𝑹𝒊𝒊�
𝟐𝟐
 𝜷𝜷𝑼𝑼𝒊𝒊𝒊𝒊

∗ = �𝝆𝝆𝑼𝑼𝒊𝒊𝒊𝒊 ∙ �𝜷𝜷𝑼𝑼𝒊𝒊�
𝟐𝟐
 

1-01-AUXB, 2-01-AUXB 0.5 0.22 0.18 
1-01-NI, 2-01-NI 0.5 0.16 0.30 
1-01-TB, 2-01-TB 0.5 0.23 0.21 
1-01-CTMT, 2-01-CTMT 0.5 0.18 0.21 
1-01-RPV, 2-01-RPV 0.5 0.21 0.28 
1-01-PZR, 2-01-PZR 0.5 0.21 0.21 
1-01-SG1, 1-01-SG1, 
2-01-SG1, 2-01-SG2 0.8 0.36 0.45 

1-01-RCP1A, 1-01-RCP1B, 
1-01-RCP2A, 1-01-RCP2B, 
2-01-RCP1A, 2-01-RCP1B, 
2-01-RCP2A, 2-01-RCP2B 

0.5 0.21 0.28 

1-02-EDGB, 2-02-EDGB 0.5 0.22 0.18 
1-02-EDG1A, 1-02-EDG1B, 
2-02-EDG1A, 2-02-EDG1B 0.5 0.08 0.16 

1-02-SWGR1A, 1-02-SWGR1B, 
2-02-SWGR1A, 2-02-SWGR1B 0.5 0.18 0.18 

1-02-DCCC1A, 1-02-DCCC1B, 
2-02-DCCC1A, 2-02-DCCC1B 0.5 0.16 0.20 

1-02-BATT1A, 1-02-BATT1B, 
2-02-BATT1A, 2-02-BATT2B 0.8 0.21 0.43 

1-06-CEDM, 2-06-CEDM 0.5 0.21 0.28 
1-07-PZRSLN, 2-07-PZRSLN 0.5 0.21 0.28 
1-08-PZRSPN, 2-08-PZRSPN 0.5 0.21 0.28 
1-09-RCSSPI, 2-09-RCSSPI 0.5 0.21 0.28 

Using the fragility model framework described above, we create BNs for modeling the correlated 

performance of components contained within each fault tree. We then generate the CPTs for the 
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seismic performance of each SSC as described in our previous work [83], where the only 

difference is that the random variable 𝜀𝜀𝑖𝑖′ was integrated into the node representing the seismic 

performance of the SSC to reduce the number of nodes in the BN and, therefore, reduce the 

discretization error. 

An example BN representing the 1-02-S-SBO fault tree is shown in Figure 5-10. In the BN, all 

SSCs within Unit 1 (nodes 1-02-EDG1A, 1-02-EDG1B, 1-02-DCCC1A, 1-02-DCCC1B, 1-02-

BATT1A, 1-02-BATT1B, 1-02-SWGR1A, 1-02-SWGR1B, 1-02-EDGB) are subject to the same 

ground motion, as reflected by their common parent node 1-GM. Pairs of SSCs for which the 

fragility may be correlated have a common “𝜀𝜀∗-node.” For example, the nodes representing the 

states of the emergency diesel generators (1-02-EDG1A and 1-02-EDG1B) have a common 

parent node 𝜀𝜀𝑅𝑅𝐸𝐸𝐺𝐺∗ . The nodes representing the MCSs have parents containing their constituent 

SSCs. The nodes labeled FPE are used to model system performance using the approach 

described in Section 5.2.2. 

Figure 5-11 shows a “snippet” of the CPT for (1) the node representing the state of SSC 1-02-

EDG1A, (2) the 𝜀𝜀𝑅𝑅𝐸𝐸𝐺𝐺∗  random variable; (3) a few MCS and FPEs; and (4) the fault tree top event 

(1-02-S-SBO). The CPTs for MCS11-02-S-SBO through MCS161-02-S-SBO have identical structures 

representing the AND failure logic of the parent nodes, and the differences are the SSCs that are 

the parent nodes to the particular MCS node. For the remaining top events in Figure 5-1, we 

followed the same approach as described above for the 1-02-S-SBO event. 
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Figure 5-10 BN representation of the 1-02-S-SBO fault tree 

 
Figure 5-11 CPTs for various nodes in the BN representing the 1-02-S-SBO fault tree 

5.2.3.3 Site-Based Risk Metrics Module 

The seismic PRA model for Unit 2 is the same as that of Unit 1 because we assumed that both 

units are identical. Therefore, we created a BN model for Unit 2 that is identical to the BN model 

for Unit 1. We then integrated the “unit-specific” BNs into a single multi-unit BN model that 

accounts for the spatial variability of ground motion between units, the correlation in SSC 

fragility across units, and includes a node to calculate site-level risk metrics. This process results 
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in the BN shown in Figure 5-12, which includes the spatial variability of ground motion nodes 

(i.e., nodes EES, 1-GM, 𝑃𝑃1,2
′ , and 2-GM), nodes capturing the dependent seismic failures (e.g., 

nodes 𝜀𝜀𝐴𝐴𝑈𝑈𝑋𝑋𝐴𝐴∗ , 𝜀𝜀𝑅𝑅𝐸𝐸𝐺𝐺∗ , 𝜀𝜀𝐴𝐴𝑅𝑅𝐸𝐸𝐴𝐴∗ , etc.) and the site state (i.e., node “Site”). 

Given the four end states for each unit (i.e., core damage (CD), S-SLOCA, S-SLOOP, and 

TRANS), the node Site has 16 states, and its CPT is shown in Figure 5-13.21 After performing 

the inference with the BN, the concurrent core damage probability is the probability of the state 

labeled  “U1CD_U2CD” state in Figure 5-13. The site core damage probability is estimated by 

summing the probabilities for states in which any unit is in a core damage state (i.e., the states 

“U1CD_U2CD,” “U1CD_U2SLOCA,” “U1CD_U2LOOP,” “U1CD_U2TRANS,” 

“U1SLOCA_U2CD,” “U1LOOP_U2CD,” and “U1TRANS_U2CD”). 

 

21  If the analysis of each unit had been carried out so that the end states are CD and OK, then the CPT for the Site node would be much simpler 

than the CPT for the Site node shown in Figure 5-13. 



120 

 
Figure 5-12 BN model of MUSPRA 

 
Figure 5-13 CPT for the Site node 

5.3 Results and Discussion 

To assess the impact of considering the spatial variability of ground motion and dependent 

seismic failures in the NPP site-based risk metrics, we developed several cases. The case studies 
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Site

EES

1-GM 2-GM

1-01-S-DMG-FT 2-01-S-DMG-FT

1-02-S-SBO-FT 2-02-S-SBO-FT

1-06-S-ATWS-FT 2-06-S-ATWS-FT

1-07-S-LLOCA-FT 2-07-S-LLOCA-FT

1-08-S-MLOCA-FT 2-08-S-MLOCA-FT

1-09-S-SLOCA-FT 2-09-S-SLOCA-FT

10-S-LOOP-FT

CPT for Site

Unit 1 (U1) Core Damage (CD) SLOCA LOOP TRANS

Unit 2 (U2) CD SLOCA LOOP TRANS CD SLOCA LOOP TRANS CD SLOCA LOOP TRANS CD SLOCA LOOP TRANS

U1CD_U2CD 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

U1CD_U2SLOCA 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

U1CD_U2LOOP 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

U1CD_U2TRANS 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

U1SLOCA_U2CD 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

U1SLOCA_U2SLOCA 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

U1SLOCA_U2LOOP 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

U1SLOCA_U2TRANS 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

U1LOOP_U2CD 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

U1LOOP_U2SLOCA 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

U1LOOP_U2LOOP 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

U1LOOP_U2TRANS 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

U1TRANS_U2CD 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

U1TRANS_U2SLOCA 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

U1TRANS_U2LOOP 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

U1TRANS_U2TRANS 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1



121 

vary the degree of correlation (dependency) and calculate the site CDF and concurrent CDF risk 

metrics using BNs. For the ground motion (GM) correlation, we considered three assumptions: 

I. No GM correlation– The ground motion experienced at each unit is assumed to be 

independent of the other. The BN for this alternative is shown in Figure 5-14(a). The CPTs 

for nodes EES and 1-GM are the same as those shown in Figure 5-9 and, in this case, the 

CPT for node 2-GM is identical to the CPT for node 1-GM. Given that the EES event is 

observed, the d-separation property of a common cause applies [92], that is, 1-GM is 

conditionally independent of 2-GM given an EES. From a site-scale perspective [64], this 

“no GM correlation assumption” is not realistic and it only serves as a bounding case. 

II. Partial GM correlation – This uses the partial correlation formulation described in Section 

5.2.3.1. 

III. Perfect GM correlation – This is the typical assumption used in current MUSPRAs (e.g., 

[13]).We implement it as shown in Figure 5-14(b), which includes the CPT for node 2-GM. 

The CPTs for nodes EES and 1-GM are the same as those shown in Figure 5-9. 

 
Figure 5-14 (a) BN for the no ground motion correlation assumption. (b) BN for the perfect 

ground motion correlation assumption and CPT for node 2-GM 

With respect to the dependent (correlated) seismic failures, we considered five “fragility 

correlation” case assumptions and describe them below: 

EES

1-GM 2-GM

(a)

System Performance Module

EES

1-GM 2-GM

(b)

System Performance Module

CPT for 2-GM [in (b)]

1-GM 1-BIN-0 1-BIN-1 1-BIN-2 1-BIN-3 1-BIN-4 1-BIN-5 1-BIN-6 1-BIN-7

2-BIN-0; 0g – 0.08g 1 0 0 0 0 0 0 0

2-BIN-1; 0.08g – 0.18g 0 1 0 0 0 0 0 0

2-BIN-2; 0.18g – 0.40g 0 0 1 0 0 0 0 0

2-BIN-3; 0.40g – 0.56g 0 0 0 1 0 0 0 0

2-BIN-4; 0.56g – 0.86g 0 0 0 0 1 0 0 0

2-BIN-5; 0.86g – 1.50g 0 0 0 0 0 1 0 0

2-BIN-6; 1.50g – 3.32g 0 0 0 0 0 0 1 0

2-BIN-7; > 3.32g 0 0 0 0 0 0 0 1



122 

i. No SSC correlation – The seismic performance of each SSC across the hypothetical site 

is based on the ground motion affecting the particular unit where the SSC is located and 

its uncertainty; however, there is no correlation in the performance of SSCs given a GM. 

From a BN perspective, this assumption means that the only common parent nodes are 

associated with the seismic demands. This formulation is illustrated in Figure 5-15(a) for 

an example involving two EDGs. 

ii. Partial-within unit SSC correlation, and no between units SSC correlation – Under this 

assumption, the seismic performance of each SSC depends on the ground motion 

affecting the particular unit where the SSC is located.  In addition, there is partial 

correlation between the performance of the SSCs within a unit and no correlation 

between the SSCs across units. The BN representing this assumption is shown as Figure 

5-15(b), where the EDGs within a unit share a common parent node (i.e., 𝜀𝜀𝑅𝑅𝐸𝐸𝐺𝐺∗ ). 

iii. Partial within unit and partial between units SSC correlation – This assumption uses 

the formulation described Section 5.2.3.2, where there is partial correlation for similar 

SSCs within and across units. 

iv. Perfect within unit SSC correlation and partial between units SSC correlation – Under 

this assumption, the ground motion affects a specific SSC in a particular unit, and the 

seismic performance of the remaining SSCs in the unit are perfectly correlated with it. 

This is illustrated in Figure 5-15(c) with EDG1B shown as a perfectly correlated child of 

EDG1A.   The performance of the SSCs across the units that are directly affected by the 

ground motion are partially correlated and this is shown in Figure 5-15(c) with a common 

parent node 𝜀𝜀𝑅𝑅𝐸𝐸𝐺𝐺∗ . Figure 5-15(c) also shows the CPT for modeling the perfect correlation 

within a unit. 
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v. Perfect SSC correlation – Under this assumption, a single SSC is affected by the ground 

motion, and the remaining SSCs within the unit and across the site are perfectly 

correlated with this single SSC. The BN for this assumption is shown in Figure 5-15(d) 

with the CPT that implements the perfect correlation for the example SSC. This 

assumption is unrealistic and trivial; however, we consider it as a bounding case. 

 
Figure 5-15 BN models for the (a) none; (b) partial-intra, none-inter; (c) perfect-intra, partial-

inter; and (d) perfect SSC fragility correlation assumptions 

The combination of the three ground motion correlation assumptions with the five correlated 

seismic fragility assumptions results in 15 risk assessment cases, whose NPP site-based risk 

metrics are presented in Table 5-3. The results in Table 5-3 were calculated using the GeNIe 

software [22] and the Roman numerals in the “Fragility” column under “Correlation 

Assumptions” refer to the items above where these assumptions were described. Results are 

presented for the case when an EES has occurred as well as under a sensitivity case involving the 

survival of certain non-redundant SSCs. 
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Table 5-3 Comparison of Results for NPP Site-Based Risk Metrics from 15 Cases 

Case 
# 

Correlation 
Assumptions 

Risk Metrics1 given EES 
P( ____ | EES) 

Risk Metrics1 given EES and Survival of 
1-01-S-DMG and 2-01-S-DMG 

P( ___ | EES, /1-01-S-DMG, /2-01-S-DMG) 
GM Fragility U1 CD U2 CD Site CD Conc CD U1 CD U2 CD Site CD Conc CD 

1 None i 1.54E-2 1.54E-2 3.06E-2 2.38E-4 2.63E-3 2.63E-3 5.24E-3 6.9E-6 
2 None ii 1.56E-2 1.56E-2 3.10E-2 2.45E-4 3.09E-3 3.09E-3 6.18E-3 9.56E-6 
3 None iii 1.56E-2 1.56E-2 3.10E-2 2.76E-4 3.1E-3 3.1E-3 6.18E-3 1.8E-5 
4 None iv 1.67E-2 1.67E-2 3.30E-2 3.04E-4 4.87E-3 4.87E-3 9.69E-3 3.71E-5 
5 None v 1.67E-2 1.67E-2 1.67E-2 1.67E-2 4.86E-3 4.86E-3 4.86E-3 4.86E-3 
6 Partial i 1.54E-2 1.89E-2 2.4E-2 1.04E-2 1.53E-3 2.31E-3 3.62E-3 2.13E-4 
7 Partial ii 1.56E-2 1.92E-2 2.42E-2 1.06E-2 1.81E-3 2.72E-3 4.23E-3 3.06E-4 
8 Partial iii 1.56E-2 1.92E-2 2.37E-2 1.11E-2 1.98E-3 2.92E-3 4.33E-3 5.76E-4 
9 Partial iv 1.67E-2 2.04E-2 2.51E-2 1.19E-2 3.26E-3 4.73E-3 6.82E-3 1.17E-3 
10 Partial v 1.67E-2 1.67E-2 1.67E-2 1.67E-2 4.86E-3 4.86E-3 4.86E-3 4.86E-3 
11 Perfect i 1.54E-2 1.54E-2 2.04E-2 1.04E-2 1.62E-3 1.62E-3 3E-3 2.43E-4 
12 Perfect ii 1.56E-2 1.56E-2 2.07E-2 1.06E-2 1.93E-3 1.93E-3 3.51E-3 3.53E-4 
13 Perfect iii 1.56E-2 1.56E-2 2.0E-2 1.13E-2 2.14E-3 2.14E-3 3.58E-3 7E-4 
14 Perfect iv 1.67E-2 1.67E-2 2.12E-2 1.21E-2 3.53E-3 3.53E-3 5.64E-3 1.42E-3 
15 Perfect v 1.67E-2 1.67E-2 1.67E-2 1.67E-2 4.86E-3 4.86E-3 4.86E-3 4.86E-3 

1 The risk metrics in this table must be multiplied by 4.62 × 10−4/𝑆𝑆𝑟𝑟 to obtain the appropriate frequencies. 

Comparing (a) Cases 6 and 11, (b) Cases 7 and 12, and (c) Cases 8 and 13, we observe that 

assuming a perfect correlation in ground motions (typical assumption) leads to an 

underestimation of the site CD probability [P(Site CD | EES)] while having a negligible effect on 

the concurrent CD probability [P(Concurrent CD | EES)] results. The underestimation of P(Site 

CD | EES) when using a perfect GM correlation assumption (relative to the more realistic partial 

GM correlation) is about 16%.22 Physically, the perfect GM correlation assumption neglects the 

possibility that Unit 2 experiences a higher ground motion than Unit 1 given the occurrence of an 

EES event. Mathematically, as the correlation increases, the failure probability of a series system 

(akin to the site CD probability) decreases. The negligible effect on the P(Concurrent CD | EES) 

results is due to the existence of single SSC failures (i.e., single SSC MCSs), such as those in the 

 

22  The percent differences mentioned in this discussion were calculated using the following equation: |𝑥𝑥1 − 𝑥𝑥2| [(𝑥𝑥1 + 𝑥𝑥2) 2⁄ ]⁄ . 
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1-01-S-DMG and 2-01-S-DMG fault trees, dominating the CD probability contribution from 

each unit to the P(Concurrent CD | EES) results. 

To further investigate the impact of “single failures” on results, we ran another set of calculations 

assuming that the 1-01-S-DMG and 2-01-S-DMG fault trees (fault trees where any SSC failure 

results in the occurrence of the fault tree top event) are in their safe state to test whether there 

would be appreciable differences in the results. We note that to run these calculations, the CPTs 

did not need to be recalculated; rather, the “information updating” capabilities of BNs were 

leveraged. 

For the same cases that were compared above and assuming the survival of the identified fault 

trees, we observe that, under the perfect GM correlation assumption, the site CD probability 

[P(Site CD | EES, /1-01-S-DMG, /2-01-S-DMG)] is being underestimated by a slightly greater 

amount (about 19%), suggesting the presence of single SSC MCSs may reduce the magnitude of 

underestimation associated with the perfect GM correlation assumption. Using the perfect GM 

correlation assumption overestimates the concurrent CD probability [P(Concurrent CD | EES, /1-

01-S-DMG, /2-01-S-DMG)] by about 13% to 19%. This overestimation is expected because the 

computed failure probability of a parallel system (akin to the concurrent CD probability) 

increases as the correlation increases. However, this sensitivity case shows how single failure 

MCSs may “quantitatively mask” this effect. 

Next, we explore the impact of the fragility correlation assumptions by looking within each GM 

correlation group; i.e., comparing Cases 1 through 5 (No GM correlation), Cases 6 through 10 

(Partial GM correlation), and Cases 10 through 15 (Perfect GM correlation). As expected, the 
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concurrent CD probability increases as the fragility correlation increases within each GM 

correlation group. 

There is no clear overall trend in the P(Site CD | EES) results because of the complex interplay 

between the site-level risk metric (series system) and the within unit properties (redundant SSCs 

behaving as a parallel system). However, when breaking down the cases, we see some trends. 

For example, there is an increase in P(Site CD | EES) for the following set of cases in which the 

within unit SSC correlation increases and the between units SSC correlation remains the same: 

(a) 1 to 2, (b) 3 to 4, (c) 6 to 7, (d) 8 to 9, (e) 11 to 12, and (f) 13 to 14. In each set of cases, the 

higher within unit correlation causes an increase in the CD probability of each unit, which is 

composed of redundant SSCs. In turn, this leads to the observed increase in the P(Site CD | EES) 

results. Also, there is an expected decrease in P(Site CD | EES) in the following set of cases 

where the within unit SSC correlation stays the same and the between units SSC correlation 

increases: (a) 4 to 5, (b) 7 to 8, (c) 9 to 10, (d) 12 to 13, and (e) 14 to 15. There is a numerically 

negligible difference when moving from Case 2 to 3. 

There is an increasing trend in P(Site CD | EES, /1-01-S-DMG, /2-01-S-DMG), which may 

appear counterintuitive to the knowledge that a series system’s failure probability decreases as 

the correlation increases. This trend in P(Site CD | EES, /1-01-S-DMG, /2-01-S-DMG) is 

because, as the fragility correlation increases, the minimal cut sets with multiple SSCs (i.e., 

redundant SSCs) contribute to the increase in the CD probability of each unit. Also, in the cases 

where the within unit SSC correlation remains the same and the between units SSC correlation 

increases (i.e., Cases 2 to 3, 7 to 8, and 12 to 13), the individual unit CD probabilities increase 
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because there is a slight increase in the probability of the mid GM value bins (e.g., 1-BIN-3, 1-

BIN-4, and 1-BIN-5). 

Finally, we compare Case 8 (which reflects the approach outlined in this study), to the spectrum 

of cases that capture the state of practice, that is, Cases 11, 12, and 13. Comparing Cases 8 and 

11, we observe that Case 11 underestimates all risk metrics, which can be attributed to the 

decrease in assumed correlation within unit and between units SSC fragility correlation, leading 

to a decrease in CD probability in each unit. Another contributing factor is the assumed perfect 

GM correlation under Case 11 neglecting the potential for higher GM values in Unit 2 compared 

to Unit 1. Comparing Cases 8 and 12, we observe that Case 12 also underestimates all risk 

metrics mainly due to neglecting the potential for higher GM values in Unit 2 than in Unit 1 (due 

to the perfect GM assumption) and, to a lesser degree, the decrease in the between units SSC 

fragility correlation. The comparison of risk metrics from Cases 8 and 13 follows the expected 

trends. That is, given that Case 13 has a higher degree of GM correlation than Case 8, Case 13 

underestimates the site CD probability results and overestimates the concurrent CD probability 

results. Case 8 provides more realistic results than Cases 11, 12, and 13 because it appropriately 

considers the GM correlation between units (consistent with the spatial variability of ground 

motion [24]–[26], [28], [29]) and the fragility correlation within a unit and between units. 

5.4 Summary and Conclusions 

We proposed a BN-based approach to model a MUSPRA that integrates our previous works on 

the spatial variability of ground motion and modeling dependent seismic failures. The approach 

proposed herein is complementary to the typical event tree/fault tree approach used in the current 

SPRAs. The proposed BN approach to model a MUSPRA integrates all elements of a seismic 
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PRA into a coherent and probabilistically rigorous framework. Similar to our previous work 

[83], BNs offer the following advantages: (1) graphical representation that enables transparency 

and facilitates communication of modeling assumptions; (2) they are effective at modeling 

complex dependencies and can accommodate differing probability distribution assumptions; and 

(3) they facilitate information updating, which allows for the efficient calculation of joint and 

conditional probability distributions for all random variables in the BN. In this paper, we 

demonstrated advantages of the proposed approach that include: (1) the BNs shown in multiple 

figures provide a graphical representation of the MUSPRA and the underlying event trees and 

fault trees, (2) allowing computation of the NPP site-based risk metrics which include complex 

dependencies represented by the spatial variability of ground motion nodes and the 𝜀𝜀𝑖𝑖𝑗𝑗∗  nodes, 

and (3) ability to calculate the NPP site-based risk metric conditioned on the success of most of 

the major structures at the hypothetical NPP site by using the updating aspects of the BN without 

recalculating the CPTs. We implemented the proposed approach for a realistic NPP subsystem. 

Based on the results from our case study, we provide the insights listed below. 

• The computed site CDF (“series system logic” assuming either unit experiences core 

damage) decreases as the assumed correlation in ground motion between units is 

increased.  As a result, the site CDF is underestimated by using the perfect ground motion 

correlation assumption. This supports our previous work’s conclusion that the perfect 

ground motion correlation assumption may not necessarily be conservative [64]. 

• The concurrent CDF (“parallel system logic” assuming both units experience core 

damage) may not show appreciable differences between the partial and perfect ground 

motion correlation assumptions where single SSC failures dominate the core damage 

probability contribution from each unit to the concurrent CDF results. However, in cases 
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where the single SSC failures are “removed” (assumed to not fail), the concurrent CDF 

shows appreciable differences, with the perfect ground motion correlation overestimating 

concurrent CDF relative to the partial GM correlation assumption. 

• When holding ground motion correlation assumptions constant, the site CDF shows a 

counterintuitive trend, that is, the site CDF increases as the fragility correlation increases. 

• Case 8, which reflects the approach outlined in this study, provides more realistic results 

in all considered NPP site-based risk metrics compared to Cases 11, 12, and 13 (i.e., the 

spectrum of cases that capture the state of practice). 
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Chapter 6 Conclusion, Summary of Contributions, and Future 

Research 

6.1 Conclusion 

The conclusions specific to each research objective identified in Section 1.2 are presented in 

Sections 3.5, 4.5, and 5.4, respectively. These conclusions are summarized as follows: 

• Conclusion for Objective 1: The method for modeling spatial variability of ground 

motion presented in this dissertation is a more realistic alternative to the conventional 

assumption that ground motions across an NPP site are perfectly correlated. For the 

example case, the probability distribution of the ground motion at the non-reference unit 

is more dispersed and slightly shifted to the right relative to the distribution of the ground 

motion at the reference unit, allowing for the possibility of higher levels of ground 

motion at the non-reference location. This observation should remain valid regardless of 

the model of spatial variability of ground motion that is used because any model should 

estimate that there is a non-negligible probability that the ground motion hazard at the 

non-reference unit may be different than that of the reference unit. 

• Conclusion for Objective 2: The method for modeling dependent seismic performance of 

SSCs presented in this dissertation improves upon the Reed-McCann method (as 

implemented in NUREG/CR-7237 [15]) as judged by the comparison against the 

theoretical lower and upper bounds of the system fragility. Also, the method can be used 

in both single-unit and multi-unit seismic PRAs. 

• Conclusion for Objective 3: The MUSPRA approach presented in this dissertation 

integrates all elements of a seismic PRA into a coherent and probabilistically rigorous 



132 

framework. Based on the results from the case study in Chapter 5, this dissertation 

provides the following insights: 

o The computed site CDF (“series system logic” assuming either unit experiences core 

damage) decreases as the assumed correlation in ground motion between units is 

increased.  As a result, the site CDF is underestimated by using the perfect ground 

motion correlation assumption. This supports the conclusion that using the perfect 

ground motion correlation assumption in a MUSPRA is not conservative when the 

site CDF is the risk metric of interest. 

o The concurrent CDF (“parallel system logic” assuming both units experience core 

damage) may not show appreciable differences between the partial and perfect 

ground motion correlation assumptions where single SSC failures dominate the core 

damage probability contribution from each unit to the concurrent CDF results. 

However, in cases where the single SSC failures are “removed” (i.e., assumed to not 

fail), the concurrent CDF shows appreciable differences, with the perfect ground 

motion correlation overestimating concurrent CDF relative to the partial GM 

correlation assumption. 

o When holding ground motion correlation assumptions constant, the site CDF shows a 

counterintuitive trend, that is, the site CDF increases as the fragility correlation 

increases. This is because the core damage probability of each unit (where each unit 

is akin to a parallel system) increases as the fragility correlation increases. 

o The proposed approach (labeled Case 8 in Chapter 5), which accounts for the spatial 

variability of ground motion and assumes that the seismic performance of SSCs 

within a unit and between units is partially correlated, provides more realistic results 
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when considering multiple NPP site-based risk metrics compared to the spectrum of 

cases that capture the state of practice. 

Overall, this dissertation presents a BN perspective on the elements of a MUSPRA by outlining a 

MUSPRA approach that explicitly accounts for the dependencies across NPP reactor units. BNs 

are used because they offer the following advantages: (1) graphical representation that enables 

transparency and facilitates communication of modeling assumptions; (2) they are effective at 

modeling complex dependencies and can accommodate differing probability distribution 

assumptions; and (3) they facilitate information updating, which allows for the efficient 

calculation of joint and conditional probability distributions for all random variables in the BN. 

Specifically, the MUSPRA approach considers the spatial variability of the ground motions 

(seismic hazard), dependent seismic performance of SSCs (fragility evaluation), and efficient BN 

modeling of systems (systems (plant response) analysis). Accounting for these dependencies in a 

systematic manner makes the MUSPRA more realistic and, therefore, should provide confidence 

in its results and risk insights. 

6.2 Summary of Contributions 

This dissertation makes the contributions that are listed below. 

• This dissertation introduced a method with two model formulations for modeling the 

spatial variability of ground motion within a single unit and across multiple units. The 

method allows for a practical extension of an existing PSHA at a hard-rock site. These 

model formulations represent an improvement over the typical assumption that the 

ground motions across a NPP site are perfectly correlated while not requiring that the 

PSHA be repeated for the site. 
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• This dissertation developed a method for modeling dependent seismic performance of 

SSCs. The method can be used in single-unit seismic PRA and MUSPRA. This method is 

an improvement over the current “perfectly dependent or independent” approach for 

dependent seismic performance and provides system failure probability results that better 

comply with theoretical bounds than the Reed-McCann method. Also, because of its 

graphical nature, the proposed method for modeling the dependent seismic performance 

of SSC is easier to understand and communicate than the Reed-McCann method. 

• This dissertation described a new approach to integrate the models of spatial variability 

of ground motion and dependent seismic performance of SSCs into a MUSPRA. The 

MUSPRA approach uses efficient BN modeling to complement the typically used event 

trees and fault trees by explicitly considering the dependencies that play an important role 

in the estimation of NPP site-based risk metrics. The proposed approach allows for the 

assessment of site-based risk metric considering more realistic models of dependencies. 

6.3 Future Research 

This dissertation considered seismic PRA for NPPs located on hard-rock sites. However, the 

majority of NPP sites in the United States are soil sites. While the methods outlined for modeling 

dependent seismic performance of SSCs and estimating NPP site-based risk metrics remain valid 

for all site types, an approach is needed to consider the spatial variability of ground motions at 

soil sites. Expanding the proposed hard-rock spatial variability of ground motion model to 

practically model the spatial variability of ground motion at soil sites requires different model 

formulations, depending on the information available from the existing PSHA. While reserved as 

an area requiring further research, several potential modeling formulations are briefly outlined 

below. 
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The first proposed model formulation would be used if the soil seismic hazard is developed using 

Approach 4 in NUREG/CR-6728 [98], which estimates the soil seismic hazard using ground 

motion models that are a function of the earthquake magnitude, source-to-site distance, other 

explanatory variables, and the specific soil conditions at the site of interest. The model 

formulation would be similar to that of the model formulation for hard-rock sites discussed in 

Chapter 3. The Abrahamsom and Sykora Δ𝑆𝑆𝐴𝐴1,2 model for soil sites [24] may be used if the 

magnitude deaggregation information is available. Alternatively, data from dense accelerograph 

arrays at soil sites may be used to develop a spatial variability of ground motion model similar to 

that from Kawakami and Mogi [25] (which was reflected by the node 𝑃𝑃1,2
′  throughout the BNs 

presented in this dissertation). 

Another proposed model formulation would be used if the soil seismic hazard is developed using 

Approach 3B in NUREG/CR-6728 [98], which estimates the soil seismic hazard as a function of 

the bedrock ground motion and a site-specific amplification factor. In this case, the method for 

soil sites can use the method for hard-rock sites as a first step because the seismic hazard at soil 

sites is typically estimated in three high-level steps [99]: 

1. Estimate the seismic hazard at the top of bedrock, that is, the hard-rock seismic hazard 

curve. 
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2. From the site-response analysis, develop an amplification factor23 that considers the 

different layers of the soil column (and their uncertain properties) between the top of 

bedrock and the foundation of the structure of interest. The amplification factor is 

represented as a probability distribution. 

3. Convolve the hard-rock seismic hazard curve with the probability distribution of the 

amplificatory factor. 

Then, based on the soil column underneath the reference unit, a horizontal correlation of shear-

wave velocities model [100], and models of spatial variability of soil properties [101]–[104], a 

correlated soil column underneath non-reference unit would be developed. Subsequently, the soil 

hazard at the non-reference unit would be estimated using the bedrock ground motion and the 

correlated soil column. The bedrock ground motion may or may not consider the spatial 

variability of ground motion depending on the available information. 

Finally, the spatial variability of ground motion model for soil sites would be used in the same 

manner as described in Chapter 5 to estimate the NPP site-based risk metrics and develop risk 

insights. 

This dissertation focused on the seismic fragility methodology that is currently used in the 

nuclear industry and expanded it to explicitly consider dependencies between SSCs using BNs. 

In the BN implementation of the dependent seismic performance of SSCs, it was assumed that 

 

23  The amplification factor is defined as the ratio of the spectral acceleration at the soil surface to the spectral 

acceleration at the top of bedrock [99]. 
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only two SSCs formed the SSC group. However, in some cases there were more than two SSCs 

in the SSC group. Research is needed to explore the expansion of SSC groups to more than two 

SSCs and its effect on the calculated risk metrics and risk insights. 

This dissertation focused on seismic failures that may lead to adverse events (e.g., core damage). 

In the PRAs developed by the nuclear industry, the seismic failures of SSCs are added to the full 

power, internal events PRAs by making logic adjustments in the fault trees (e.g., using flag sets). 

Given the significant investment throughout several decades in the event tree/fault tree PRA 

approach, research and development of hybrid risk tools is needed to integrate the BN approach 

and other modeling approaches into existing PRA software tools, such as the Systems Analysis 

Programs for Hands-on Integrated Reliability Evaluations software [105]. These hybrid risk tools 

would be useful to assess the risk of NPPs from external hazards (e.g., seismic and external 

flooding). 
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