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Genetic architecture refers to the number and locations of genes that affect a trait, as well 

as the magnitude and the relative contributions of their effects. A better understanding of the 

genetic architecture of complex traits and diseases will be beneficial for analyzing genetic 

contributions to disease risk and for estimating genetic values of agricultural importance. In 

particular, genetic and genomic selection in dairy cattle populations has been well established 

and exploited through genome-wide association studies, sequencing studies, and functional 

studies. The objective of this dissertation is to understand the genetic architecture of complex 

traits and apply the understanding to investigate the biological relationship between genetics and 

diseases in dairy cattle. First, we performed GWAS and fine-mapping analyses on livability and 

six health traits in Holstein-Friesian cattle. From our analyses, we reported significant 

associations and candidate genes relevant to cattle health. Second, we evaluated genome-wide 

diversity in cattle over a period of time by running GWAS and proposed a gene dropping 

simulation program. From this study, we identified candidate variants under selection that are 



associated with biological and economically important traits in cattle. Also, we demonstrated that 

gene dropping is an applicable method to investigate changes in the cattle genome over time. 

Third, we investigated the effect of maternal age and temperature on recombination rate in cattle. 

We provided novel results regarding the plasticity of meiotic recombination in cattle. 

Additionally, we found a positive correlation between environmental temperature at conception 

and recombination rate in Holstein-Friesian cows. Collectively, these studies advance our 

understanding of the genetic architecture and the biological relationship between complex traits 

and diseases in dairy cattle. 
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Chapter 1: Literature Review 

In this chapter, I review recent developments in statistical methods for genetic analysis, 

insights into the biological basis underlying complex traits, and current studies on 

complex traits from genomic data. Lastly, I bring together these concepts to propose the 

study objectives for this dissertation. 

 

Recent Developments in Statistical Methods for Genetic Analysis 

 

Genome-wide association studies 

In recent years, genome-wide association studies (GWAS) have been a successful 

methodology for identifying single nucleotide polymorphisms (SNPs) associated with 

common traits and diseases. SNPs are single base pair changes in the DNA sequence, and 

they are classified into functional/non-synonymous types and neutral/synonymous types, 

which are used as genetic markers in GWAS (Collins et al, 1998). More than 3,600 SNP-

trait associations have been identified and summarized in The National Human Genome 

Institute GWAS catalogue (Hindorff et al, 2009). 

 The statistical power of GWAS to detect associations between variants and traits 

depends on factors such as the population sample size, the allele frequency and 

distribution of effect sizes of causal genetic variants in the population, and the linkage 

disequilibrium (LD) that exists between observed genotyped variants and the unknown 

causal variants. Once genetic associations have been identified, researchers can use that 

information to develop better strategies to treat and prevent diseases. 
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 Although GWAS has been successful in explaining the variance in complex 

diseases and traits, a substantial amount of heritability remains unexplained. Also known 

as missing heritability, one explanation is that complex traits are highly polygenic and are 

affected by rare variants (Eichler et al, 2010). The minor allele frequency (MAF) of rare 

variants falls below 0.5%, which makes it more difficult to capture these variants by 

current GWAS genotyping arrays. Thus, much larger sample sizes are necessary to 

ensure sufficient power for GWAS to detect these associations. Other explanations for 

missing heritability include overestimation of SNP effects and unaccounted epistatic 

effects (Makowsky et al, 2011). Several approaches have been developed to account for 

missing heritability, including the integration of copy number variants (CNVs) into 

GWAS (Manolio et al, 2010). It is important to examine potential sources of missing 

heritability and address such limitations when conducting GWAS. 

 

Single-variant association tests and meta-analysis 

A frequent method that is used when working with multiple GWAS is meta-analysis, 

which combines the results from each independent study. This approach increases the 

power to detect SNPs that have small effects on the phenotype, as well as reduces false 

positive findings. Meta-analysis is particularly useful to synthesize results from previous 

studies with the aim of drawing conclusions about a collection of research (Haidich, 

2010). 

Prior to conducting a meta-analysis, certain factors should be considered, 

including the sample size, definition of the trait or disorder being studied, as well as the 

statistics used to summarize the association result. In an ideal situation, the GWAS 
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studies in a meta-analysis will be conducted under the same criteria and study design. 

However, this may be difficult in practice, such as for a cumulative meta-analysis that 

may be limited by the availability of data from prior studies. 

Additionally, tests for heterogeneity and genomic inflation factors can be applied 

to correct for the presence of false positives. There exists a tradeoff between power and 

sample size, which arises when research studies that examine different hypotheses 

become combined. In this case, an excess of heterogeneity could obscure detection of 

associations. Thus, careful examination of possible biases is needed prior to interpreting 

results. 

 As discussed above, to conduct accurate meta-analysis, the studies must make use 

of the same research study design and hypothesis. In practice, meta-analysis can also 

make use of imputed SNP results. However, such results may contain uncertainty due to 

imputation uncertainty for each SNP. To account for this uncertainty, several approaches 

have been developed. One approach is to remove SNPs that are identified to have poor 

imputation quality based on the ratio of the empirical observed variance of the allele 

dosage to the expected binomial variance held at Hardy-Weinberg equilibrium, p(1-p). 

Alternatively, the SNPTEST software package utilizes a Bayesian approach to evaluate 

imputation uncertainty (de Bakker et al, 2008). This approach first samples genotypes 

based on the estimated imputation probabilities, and then takes the average of the 

resulting Bayes Factors. Although this approach is more computationally involved than 

classical association tests, an advantage is the inclusion of covariates and its wide 

availability in standard computing platforms. Additionally, Bayesian hierarchical models 

allow the incorporation of results from various sources to establish informative priors on 
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the current meta-analysis study. This allows for the generalization of meta-analysis 

studies, but it can be computationally complex if there are multiple hypothesis in the 

GWAS to test. Thus, an empirical Bayesian approach can be applied, which uses the 

marginal likelihood of the GWAS data and covariates to calculate the probability of 

association (Lewinger et al, 2007). 

 

Imputation 

A standard process used in GWAS analysis is imputation, which refers to the statistical 

inference of unobserved genotypes from a reference population. For instance, imputation 

can make use of LD information from a population reference panel to estimate missing 

genotypes. This process can increase the number of testable single nucleotide variants 

(SNVs) in a genome, which facilitates a greater overall genome coverage of an array. 

Additionally, imputation has been widely used to detect SNPs, and thus effectively 

increase the association power in GWAS (Marchini et al, 2010). 

 A key consideration when performing imputation is the availability of reference 

panels that provide comprehensive information regarding allele frequencies and LD 

patterns. The importance of this arises when imputing low-frequency and rare variants. 

These variants are often population-specific and may be influenced by demographic 

events, which can reduce imputation accuracy (Wojcik et al, 2018). Thus, increasing the 

size of reference panels allows for more reference haplotypes to be captured and error 

rates to be minimized. 

A dense reference panel that has been commonly used is the 1000 Genomes 

Project in humans. This resource characterizes the common and low-frequency variants 
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in individuals from diverse populations to analyze genetic contribution to disease (The 

1000 Genomes Project Consortium, 2012). More recently, the Haplotype Reference 

Consortium has been constructed using whole-genome sequence data of individuals from 

predominantly European descent (The Haplotype Reference Consortium, 2016). The 

development of dense reference panels such as these will facilitate comprehensive 

imputation studies on individuals from different populations. 

For cattle studies, a routinely used reference panel is the 1000 Bull Genomes 

Project, which is a database containing whole-genome sequence data from ancestors of 

current cattle breeds. As of 2018, there have been 84 million SNPs identified by this 

database (Hayes and Daetwyler, 2018). By capturing a significant proportion of diverse 

cattle, this project aims to better understand and predict cattle traits that are important for 

milk and meat production. Additionally, it serves as a resource that contains the 

annotated sequence variants and genotypes of ancestor bulls. A study conducted in 2017 

used whole-genome sequence data from the 1000 Bulls Genomes Project to evaluate the 

accuracy of imputation in Brown Swiss cattle (Frischknecht et al, 2017). The authors 

selected four different imputation programs in their evaluation: Beagle, FImpute, 

Impute2, and Minimac. While all methods were adequate, they found that Minimac 

resulted in the highest imputation accuracy in terms of dosage correlation and genotype 

concordance. Thus, the authors demonstrated that high accuracy of imputation is possible 

using the 1000 Bull Genomes reference population. 

As discussed above, software selection will influence the performance of 

genotype imputation. Accurate imputation is necessary to reduce computational costs and 

provides a better ratio of output to input data. A study in 2015 implemented those 
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considerations, which lead to the development of a new algorithm for findhap (version 4) 

software (VanRaden et al, 2015). One advantage of this software is its speed, which is 

derived from the fast imputation algorithm. For instance, findhap can process genotypes 

from multiple low-density arrays to impute more than 60,000 markers for more than 

500,000 dairy cattle in national genomic evaluation systems. The efficiency of findhap is 

compounded by its low computing costs to sequence data. Efforts to improve accuracy of 

fast imputation are ongoing, such as the inclusion of high-density (HD) genotypes with 

low-coverage sequence data. Altogether, these results provide guidance for future 

imputation studies to consider the effects of software as well as reference selection on 

imputation performance. 

 

Fine-mapping 

GWAS has been widely used to identify loci associated with complex traits, yet the 

process becomes difficult when LD exists among neighboring SNPs. This poses an issue 

because the presence of LD often obscures the causal variants driving a GWAS 

association signal. For instance, a study on udder health in dairy cattle in 2014 aimed to 

identify SNPs relevant to clinical mastitis (Sahana et al, 2014). However, only target 

regions were detected due to high levels of LD that were present between SNPs. 

In this situation, fine-mapping can be applied to determine which of the 

associated variants are causal. One approach to fine-mapping is known as ranking p-

value, where variants are ordered based on the strength of marginal association statistics 

(Faye et al, 2013). A limitation of this method is that p-values are not necessarily a 

comparable measure for variants to be causal across loci. For instance, a low p-value 
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associated with a noncausal variant may be due to LD with multiple causal SNPs 

(Stephens and Balding, 2009). An alternative approach, used when multiple causal 

variants are present, is the computation of posterior probabilities of causality per SNP in 

a region. This approach makes use of the likelihoods of observed z-scores that are 

conditional on each potential set of causal variant(s). The resulting posterior probabilities 

are used to create the smallest set of SNPs that contain the true causal variant(s) from a 

given probability. More recently, other fine-mapping methods have been proposed, 

including CAVIAR, which is a software that has the advantage of only using the 

marginal test statistics and correlation coefficients among SNPs (Chen et al, 2015). 

Moreover, if the correlation coefficients among SNPs are not present, they can be 

approximately computed from available reference panels, such as the 1000 Genomes 

Project for humans. 

 As stated above, there are multiple fine-mapping strategies available for use. 

When selecting a strategy, some factors that influence fine-mapping performance should 

be considered. The factors include the number of causal SNPs in a region, local LD 

structure, and SNP density. For instance, high SNP density is needed to capture a greater 

number of causal variants. It may not be feasible to increase SNP density due to 

sequencing costs for large sample sizes. Alternatively, genotyping using specialized 

arrays may be used to evaluate SNPs associations, which has the advantage of being cost-

efficient and increasing SNP density in known genetic regions. Depending on array 

design and content, this method may be preferable. 

Once a fine-mapping strategy has been selected, the associated SNPs are 

evaluated for their likely function. This information can be derived using genome 
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annotation from publicly available databases, including Gene Ontology, ENCODE, 

FAANG-cattle, and cattle GTEx. Integrating annotation provides functional context to 

GWAS findings and can be utilized to improve fine-mapping resolution. Generally, 

genome annotations are categorized as protein-coding and non-protein coding. For 

protein-coding annotations, existing studies (e.g. CADD) have found improved prediction 

accuracy when diverse genome annotations are combined to a single quantitative score 

(Kircher et al, 2014). Non-protein coding annotations can be analyzed by annotation tools 

such as FIRE (Ioannidis et al, 2017) and RegulomeDB (Boyle et al, 2012), which assigns 

scores to non-coding variants based on their potential to regulate the expression levels of 

nearby genes. 

After integrating genome annotation into fine-mapping, functional variants can be 

identified and used in follow-up studies. A limitation to this method is that fine-mapping 

studies depend on the status of genome annotation, which may impact its detection of 

causal variants with low MAF. Efforts to improve fine-mapping resolution and genomic 

annotation are ongoing, including a fast Bayesian Fine-MAPping method (BFMAP) that 

has been shown to address the issue of high LD present in the cattle genome (Jiang et al, 

2019). This method efficiently integrates fine-mapping with functional annotations in 

dairy cattle to identify candidate genes of complex traits. Collectively, the insight 

garnered from fine-mapping studies provides us with a better understanding of the 

genetic basis of complex traits that will be useful for future genomic prediction studies.  
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Biological Basis Underlying Complex Traits 

 

The path from GWAS to biology 

GWAS has been shown to be a useful experimental design in assessing the contribution 

of common variants to disease susceptibility and the associations between genetic 

variants and traits (Price et al, 2015). Yet, the path that links GWAS to biology is not 

straightforward since the associations detected by GWASs are not directly informative of 

the target gene or mechanism. Additionally, the effects of gene regulation are often 

tissue-specific, but the tissues corresponding to diseases may be inaccessible or difficult 

to precisely study. New analytical methods offer a way to decipher this link, and thus 

provide biological insights into diseases. 

 Initiatives, such as the ENCODE project, have supplemented the interpretation of 

associations of non-coding variants from GWAS. In particular, ENCODE has generated 

maps of regulatory annotation in disease-relevant tissues, which enhances our 

understanding of the biological basis of gene expression and regulation in the genome 

(The ENCODE Project Consortium, 2012). New analytical methods have made use of 

epigenetic marks and 3D maps of chromatin contacts to elucidate regulatory relationships 

relevant to complex genetic disorders (Won et al, 2016). Additionally, data from GWASs 

can be integrated with expression quantitative trait locus (eQTL) studies to predict gene 

targets of complex traits. For instance, a method named summary data-based Mendelian 

randomization (SMR) utilizes summary data from GWAS and data from eQTL studies to 

identify pleiotropic associations between gene expression and complex traits (Zhu et al, 

2016). 
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Biological mechanisms  

GWAS generally aims to detect SNPs in the genome that are relevant to traits or diseases. 

These SNPs may be located in the coding sequence of a gene, a non-coding region, or an 

intergenic region. Depending on their location in the functional regions of the genome, 

SNPs will have a different effect on biological function. In coding regions, synonymous 

SNPs will not affect an amino acid while nonsynonymous SNPs, including missense 

mutations and nonsense mutations, will change the resulting protein. Specifically, over 

90% of GWAS variants are located in non-coding regions (Maurano et al, 2012). 

Deciphering the mechanism of these mutations will facilitate a greater understanding of 

how SNPs affect biology. We will review the aforementioned mutations and findings 

from relevant studies.  

Missense mutations result in an incorrect amino acid to be incorporated into a 

protein. For instance, a study using data from a Holstein-Friesian dairy cattle population 

identified a missense mutation in the DGAT1 gene (Grisart et al, 2002). This gene is 

known to encode the enzyme diglyceride acyltransferase (DGAT). The authors identified 

a K232A substitution in DGAT1, which was found to have a major effect on milk fat 

content (Grisart et al, 2002). 

Nonsense mutations cause a premature stop codon that leads to the shortening of a 

protein. This mutation can be deleterious since a truncated protein generally will lose its 

function. For example, a study identified a nonsense mutation in CWC15 of Jersey cattle 

(Sonstegard et al, 2013). This gene is the bovine protein CWC15 homolog of a 

spliceosome-associated protein. The nonsense mutation reduces the size of the CWC15 
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protein product by 177 amino acids to a length of 54 amino acids (Sonstegard et al, 

2013). Effects of this mutation include reduced fertility and reproductive efficiency in 

Jersey cattle, which may have an economic impact on producers as well. 

Synonymous mutations do not alter the amino acid sequence of proteins, but 

recent studies have determined that they can contribute to changes in protein function 

(Sauna and Kimchi-Sarfaty, 2011). A study in 2004 found a synonymous SNP located in 

the corneodesmosin (CDSN*TTC) gene, which carries psoriasis-associated SNPs (Capon 

et al, 2004). Using site-directed mutagenesis, the authors determined that the 

synonymous mutation confers increased mRNA stability. Thus, it is possible for 

synonymous SNPs to influence protein expression level by modifications to protein 

expression. Additionally, Wang et al (2014) identified two synonymous mutations in the 

histidine ammonia-lyse gene (HAL). This gene functions to encode histidine ammonia-

lysate, which is an enzyme used in histidine catabolism. The HAL gene is located within 

reported QTLs for milk production traits, so the authors wanted to investigate relevant 

genetic variants in Chinese Holstein cows. They found that the synonymous mutations 

lead to alterations in codon usage frequency, with SNP (ss974768523) having AAT 

changed to AAC from 14.7 to 21.4 per thousand, and with SNP (ss974768525) having 

ATC changed to ATT from 23.3 to 14.6 per thousand (Wang et al, 2014). These results 

highlight the potential of these two synonymous mutations to influence gene expression 

in HAL. 
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Biological insights from GWAS 

Biologically causal genes will typically be located close to the most associated SNP from 

GWAS. Thus, it is likely that the set of genes near an association will be highly enriched 

for causal genes. Often times, these genes may not have been expected to be candidate 

genes, which highlights the novel insights that GWAS findings can provide. Jostins et al 

(2012) conducted an imputed-based association analysis using GWAS data and 

discovered the previously unsuspected importance of autophagy in Crohn’s disease. 

Given this finding, the study successfully expanded on prior understanding of the 

pathogenesis of inflammatory bowel disease (IBD) and raised awareness of the 

fundamental biology of this immune-mediated disorder. 

 Analyses of GWAS data can also provide insight about functional mechanisms. 

This has been mediated by studies that seek to identify the functional annotations 

enriched for the association with diseases. For example, Trynka et al (2013) conducted a 

study that demonstrated GWAS loci exhibit specific cell type enrichments. Their study 

utilized GWAS data to examine 15 chromatin marks and observed statistically significant 

phenotypic cell type specificity for H3K4me3 marks, which are known to highlight active 

gene promoters. Additionally, the authors found that chromatin marks not corresponding 

to active gene regulation were not phenotypically cell type-specific. Their GWAS 

analyses showed that complex disease and trait alleles can influence gene regulation in a 

cell type-specific manner and may also be used to identify plausible causal variants with 

functional importance. 

 

 



13 
 

Elucidating the genetic architecture of complex traits 

GWAS findings have been used to help clarify the genomic basis of complex traits and 

provide insight into the complexity of genetic architecture. Yet, the set of associated 

variants identified from GWAS often accounts for only a small proportion of the genetic 

variation in the trait. For instance, SNP chips have been used to detect fertility-related 

variants in dairy cattle, but are limited by their low coverage of genes and the genome 

(Ma et al, 2019). Research methods have been proposed to better understand the genetic 

architecture of complex traits. 

 An important consideration that methods in recent years have accounted for was 

to assess the contribution of SNPs with effect sizes too small to be detected in GWAS. 

Raphaka et al (2017) applied a relevant approach in a study conducted on a British 

Holstein-Friesian cattle population. The authors used GWAS and regional heritability 

mapping (RHM) to assess cattle susceptibility to bovine tuberculosis (bTB). The RHM 

analyses revealed new genomic regions on bovine chromosome 18 (BTA18) and BTA3 

for infected phenotypes that GWAS did not previously identify. In addition, RHM 

identified regions on BTA23, which supported a previous finding of genomic regions on 

BTA23 associated with paratuberculosis in Jersey cattle (Zare et al, 2014). This approach 

provides a framework that may be used for future studies on biological pathways that are 

critical to cattle susceptibility to disease. 

Additionally, it has been found that highly associated SNPs typically cluster in 

biological pathways (Lango et al, 2010). Current methods can utilize this information to 

analyze complex trait phenotypes. For instance, a genomic feature best linear unbiased 
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prediction model (GFBLUP) has been applied to study mastitis and milk production traits 

in Holstein and Jersey cattle (Fang et al, 2017). This model assumes that all genomic 

markers have equal contribution to the variability of a particular trait. In this study, 

GFBLUP improved the accuracy of genomic prediction for mastitis and milk production 

traits by the inclusion of gene expression data in the analysis. Thus, integrating 

knowledge of functional genomic regions will facilitate a better understanding of the 

genetic architecture of complex traits. 
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Current Studies on Complex Traits from Genomic Data 

 

There has been increasing interest in developing novel analytic methods to study complex 

traits. Recent studies have made use of publicly available databases, such as the 1000 

Genomes Project, to analyze associations between complex traits and rare variants (Auer 

and Lettre, 2015). Additionally, GWAS has provided promising findings regarding the 

genetics of complex diseases, and it remains an effective method for investigating 

genomic data. Current initiatives taken to enhance GWAS analyses include expanding 

studies to account for more diverse diseases (Gurdasani et al, 2019), incorporating more 

precise phenotypes (Höglund et al, 2019), further investigation of the X chromosome 

(Zhang et al, 2020), and capturing a larger proportion of variation in genes of interest 

(Wang et al, 2020). Moreover, the use of updated reference panels of genomic variation 

has the potential to expand GWAS coverage and improve the detection of associations 

between disease and common SNPs (Witte, 2010). 

 Given the knowledge acquired from current studies, initiatives have been taken to 

better uncover the genetic basis of complex traits. For instance, a review of GWAS of 

dairy fertility traits found that many cattle GWAS tend to have low power, which 

underscores the need to increase data collection to enable more powerful studies in dairy 

cattle (Ma et al, 2019). This concept was addressed in a related study that utilized a 

combination of GWAS and comparative epigenomic analyses to detect large-scale 

genotype-phenotype associations in Holstein cattle (Liu et al, 2020). Using this approach, 

the authors identified novel tissues and cell types for 45 economically important traits 

and artificial selection in cattle, as well as tissues for 58 complex traits and diseases in 
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humans that were correlated in cattle. These findings can provide insight to the 

underlying molecular mechanisms of complex traits in cattle and support the potential for 

cattle to be a model for human complex traits. 

 Another research initiative that is currently underway has studies that are 

predicting complex trait phenotypes from genotype data. Knowledge from the phenotypic 

prediction of complex traits may facilitate more targeted disease screening programs 

based on genetic makeup as well as the understanding of disease mechanisms (Schrodi et 

al, 2014). Generally, predictions are made by selecting genomic variants and using their 

estimated effect sizes as a predictor. This step can be followed-up by validation using a 

sample of known phenotypes and then application to samples with unknown phenotypes. 

One study applied this strategy to a cohort of genotyped individuals from the U.K. 

Biobank (Canela-Xandri et al, 2016). The authors obtained prediction accuracies for four 

obesity-related traits and for height, which is a trait of particular interest due to its unclear 

genetic basis (Kaiser, 2020). The prediction accuracies of the traits were reported to be 

significantly improved compared to prior GWAS meta-analyses of similar size (Canela-

Xandri et al, 2016). Another study made genomic predictions using three dairy cow traits 

(coat color, milk-fat percentage, and overall type) to investigate their genetic basis in 

Holstein cattle (Hayes et al, 2010). This work showed that many small effect loci are 

required to capture the genetic variance of the traits, which suggests that large differences 

exist in their genetic architecture. Looking forward, the genetic insights that current 

studies provide offer a promising future for the analysis of complex traits from genomic 

data. 
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Study Objectives 

The overall objective of this study is to understand the genetic architecture of complex 

traits and apply the understanding to investigate the biological relationship between 

genetics and disease in dairy cattle. 

This dissertation is organized as follows. Chapter 2 discusses a GWAS analysis 

of livability and six health traits in Holstein cattle. We then describe a fine-mapping 

procedure for those traits, and findings from both analyses are summarized. Chapter 3 

describes an evaluation of genome-wide diversity in cattle over a period of time. We then 

introduce the application of a gene dropping software to visualize systematic changes 

from the evaluation. Chapter 4 introduces a study of meiotic recombination and 

demonstrates the effect of maternal age and temperature on the recombination rate in 

cattle. Chapter 5 summarizes the conclusions of those three projects and discusses future 

perspectives in these areas, especially in relation to complex traits. 
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Chapter 2: Genomic Fine-Mapping of Livability and Six Health 

Traits in Holstein Cattle 

Abstract 

Background: Health traits are of significant economic importance to the dairy industry 

due to their effects on milk production and associated treatment costs. Genome-wide 

association studies (GWAS) provide a means to identify associated genomic variants and 

thus reveal insights into the genetic architecture of complex traits and diseases. The 

objective of this study is to investigate the genetic basis of seven health traits in dairy 

cattle and to identify potential candidate genes associated with cattle health using GWAS, 

fine mapping, and analyses of multi-tissue transcriptome data. 

Results: We studied cow livability and six direct disease traits, mastitis, ketosis, 

hypocalcemia, displaced abomasum, metritis, and retained placenta, using de-regressed 

breeding values and more than three million imputed DNA sequence variants. After data 

edits and filtering on reliability, the number of bulls included in the analyses ranged from 

11,880 (hypocalcemia) to 24,699 (livability). GWAS was performed using a mixed-

model association test, and a Bayesian fine-mapping procedure was conducted to 

calculate a posterior probability of causality to each variant and gene in the candidate 

regions. The GWAS detected a total of eight genome-wide significant associations for 

three traits, cow livability, ketosis, and hypocalcemia, including the bovine Major 

Histocompatibility Complex (MHC) region associated with livability. Our fine-mapping 

of associated regions reported 20 candidate genes with the highest posterior probabilities 

of causality for cattle health. Combined with transcriptome data across multiple tissues in 
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cattle, we further exploited these candidate genes to identify specific expression patterns 

in disease-related tissues and relevant biological explanations such as the expression of 

Group-specific Component (GC) in the liver and association with mastitis as well as the 

Coiled-Coil Domain Containing 88C (CCDC88C) expression in CD8 cells and 

association with cow livability. 

Conclusions: Collectively, our analyses report six significant associations and 20 

candidate genes of cattle health. With the integration of multi-tissue transcriptome data, 

our results provide useful information for future functional studies and better 

understanding of the biological relationship between genetics and disease susceptibility in 

cattle. 

 

Keywords: GWAS, Fine mapping, Health trait, Gene expression, Dairy cattle 

Note: This chapter was previously published by BMC Genomics. Ellen Freebern made 

the main contribution and is the first author. The original citation is as follows: 

GWAS and fine-mapping of livability and six disease traits in Holstein cattle. Freebern E, 

Santos DJA, Fang L, Jiang J, Parker Gaddis KL, Liu GE, VanRaden PM, Maltecca C, 

Cole JB, Ma L. BMC Genomics. 2020 Jan 13;21(1):41. 
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Introduction 

One of the fundamental goals of animal production is to profitably produce nutritious 

food for humans from healthy animals. Profitability of the dairy industry is influenced by 

many factors, including production, reproduction, and animal health (Liang et al, 2017). 

Cattle diseases can cause substantial financial losses to producers as the result of 

decreased productivity, including milk that must be dumped, and increased costs for labor 

and veterinary care. Indirect costs associated with reduced fertility, reduced production 

after recovery, and increased risk of culling also can be substantial. For example, ketosis 

is a metabolic disease that occurs in cows during early lactation and hinders the cow’s 

energy intake, thus subsequently reduces milk yield and increases the risk of displaced 

abomasum, which is very costly (Duffield et al, 2000). Mastitis is a major endemic 

disease of dairy cattle that can lead to losses to dairy farmers due to contamination, 

veterinary care, and decreased milk production (Seegers et al, 2003). In addition, cows 

may develop milk fever, a metabolic disease that is related to a low blood calcium level 

known as hypocalcemia (Reinhardt et al, 2011). Another common disease in cattle is 

metritis, which is inflammation of the uterus and commonly seen following calving when 

cows have a suppressed immune system and are vulnerable to bacterial infection (Bartlett 

et al, 1986). Complications during delivery can also result in a retained placenta (Laven 

et al, 1996). Many of the postpartum diseases are caused by the energy imbalance due to 

onset of lactation, especially in high producing cows. These complex diseases are jointly 

affected by management, nutrition, and genetics. A better understanding of the 

underlying genetic components can help the management and genetic improvements of 

cattle health. 
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Genome-wide association studies (GWAS) have been successful at interrogating 

the genetic basis of complex traits and diseases in cattle (Cole et al, 2011; Gaddis et al, 

2018; Jiang et al, 2019; Ma et al, 2019). Pinpointing the causal variants of complex traits 

has been challenging because complex traits are influenced by many genes, their 

interactions, and the environment, and also because of the high level of linkage 

disequilibrium (LD) between genomic variants (Schaid et al, 2018). Fine-mapping is a 

common post-GWAS analysis, where posterior probabilities of causality are assigned to 

candidate variants and genes. In humans, fine-mapping of complex traits is currently 

performed along with or following GWAS studies. The utility of fine-mapping in cattle 

studies, however, has been limited by data availability and the high levels of LD present 

in cattle populations (Khatkar et al, 2008; McKay et al, 2007; Sargolzaei et al, 2008). To 

circumvent this challenge, a recent study developed a fast Bayesian Fine-MAPping 

method (BFMAP), which performs fine-mapping by integrating various functional 

annotation data (Jiang et al, 2019). Additionally, this method can be exploited to identify 

biologically meaningful information from candidate genes to enhance the understanding 

of complex traits (Fang et al, 2019). 

 The U.S. dairy industry has been collecting and evaluating economically 

important traits in dairy cattle since the late 1800s, when the first dairy improvement 

programs were formed. Since then, a series of dairy traits have been evaluated, including 

production, body conformation, reproduction, and health traits. Cow livability was 

included in the national genomic evaluation system by the Council on Dairy Cattle 

Breeding (CDCB) in 2016 (Wright et al, 2016). This trait reflects a cow’s overall ability 

to stay alive in a milking herd by measuring the percentage of on-farm deaths per 
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lactation. Cow livability is partially attributable to health and can be selected to provide 

more milk revenue and less replacement of cows. In 2018, six direct health traits were 

introduced into the U.S. genomic evaluation, including ketosis, mastitis, hypocalcemia or 

milk fever, metritis, retained placenta, and displaced abomasum (Garrick et al, 2009). 

These phenotypic records along with genotype data collected from the U.S. dairy industry 

provide a unique opportunity to investigate the genetic basis of cattle health. The aim of 

our study is, therefore, to provide a powerful genetic investigation of seven health traits 

in cattle, to identify candidate disease genes and variants with relevant tissue-specific 

expression, and to provide insights into the biological relationship between candidate 

genes and the disease risk they may present on a broad scale. 

 

Results 

Genome-wide association study of livability and six direct health traits 

We conducted genome-wide association analyses of seven health related traits using 

imputed sequence data and de-regressed breeding values for 27,214 Holstein bulls that 

have many daughter records and thus accurate phenotypes. After editing and filtering on 

reliability, we included 11,880 to 24,699 Holstein bulls across the seven traits (Table 1). 

Compared to the analysis using predicted transmitting ability (PTA) as phenotype 

(Additional file 1), GWAS on de-regressed PTA values produced more consistent and 

reliable results (Garrick et al, 2009). While different results between analyses of raw and 

de-regressed PTAs were obtained for the six health traits, little difference was observed 

for cow livability, which had more records and higher reliability (Table 1 and Additional 
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file 2). Therefore, we only considered association results obtained with de-regressed 

PTAs in all subsequent analyses. 

Out of the seven health traits, we detected significantly associated genomic 

regions for only three traits after Bonferroni correction: hypocalcemia, ketosis, and 

livability (Fig. 1). In total, we had one associated region on BTA 6 for hypocalcemia, one 

region on BTA 14 for ketosis, and six regions for cow livability on BTA 5, 6, 14, 18, 21, 

and 23, respectively (Table 2). Notably, the bovine Major Histocompatibility Complex 

(MHC) region on BTA 23 (Takeshima et al, 2006) is associated with cow livability. 

Additionally, association signals on BTA 16 for ketosis (P-value = 1.9 × 10− 8) and BTA 

6 for mastitis (P-value = 4.2 × 10− 8) almost reached the Bonferroni significance level. 

Other traits had prominent signals, but their top associations were below the Bonferroni 

threshold. Since sequence data have the highest coverage of functional variants in our 

study, we included all these regions to query the Cattle QTLdb for a comparative 

analysis. 

When compared to existing studies, many of these health-related regions have 

been previously associated with milk production or disease related traits in cattle (Table 

2) (Hu et al, 2012). The top associated region for hypocalcemia is around 10,521,824 bp 

on BTA 6, where QTLs were reported for body/carcass weight and reproduction traits 

with nearby genes being Translocation Associated Membrane Protein 1 Like (TRAM1L1) 

and N-Deacetylase And N-Sulfotransferase (NDST4). The region around 2,762,595 bp on 

BTA 14 for ketosis is involved with milk and fat metabolism and contains the well-

known Diacylglycerol O-Acyltransferase 1 (DGAT1) gene. The region around 7,048,452 

bp on BTA 16 for ketosis was also previously associated with fat metabolism. The region 



28 
 

around 88,868,886 bp on BTA 6 associated with mastitis is close to the GC gene with 

many reported QTLs associated with mastitis (Jiang et al, 2019; Olsen et al, 2016; 

Sahana et al, 2013; Wu et al, 2015). This region was also associated with cow livability 

in this study, with QTLs involved with the length of productive life (Nayeri et al, 2017). 

For the six regions associated with cow livability (Table 2), we found reported QTLs 

related to productive life, somatic cell count, immune response, reproduction, and body 

conformation traits (Nayeri et al, 2017). The top associated regions for displaced 

abomasum on BTA 4 and BTA 8 have been previously associated with cattle 

reproduction and body conformation traits (Nalaila et al, 2012; Pryce et al, 2011; 

Snelling et al, 2010). For metritis, the top associated variant, 3,662,486 bp on BTA4, is 

close to small nucleolar RNA MBI161 (SNORA31), and around ±1 Mb upstream and 

downstream were QTLs associated with production, reproduction, and dystocia (Olsen et 

al, 2010). Genes RUN Domain Containing 3B (RUNDC3B; BTA 4), Quinoid 

Dihydropteridine Reductase (QDPR; BTA 6), Transmembrane Protein 182 (TMEM182; 

BTA 11), and Zinc Finger Protein (ZFP28; BTA 18) are the closest genes to the retained 

placenta signals with previous associations related to milk production, productive life, 

health and reproduction traits, including calving ease and stillbirth (Cole et al, 2011). 

Association of livability QTL with other disease traits 

Cow livability is a health-related trait that measures the overall robustness of a cow. As 

the GWAS of cow livability was the most powerful among the seven traits and detected 

six QTL regions, we evaluated whether these livability QTLs were also associated with 

other disease traits. Out of the six livability QTLs, four of them were related to at least 

one disease trait at the nominal significance level (Table 3). All these overlapping 
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associations exhibited consistent directions of effect: alleles related to longer productive 

life were more resistant to diseases. The most significant QTL of livability on BTA 18 is 

associated with displaced abomasum and metritis, both of which can occur after 

abnormal birth. This QTL has been associated with gestation length, calving traits, and 

other gestation and birth related traits (Fang et al, 2019). The QTL on BTA 6 is 

associated with hypocalcemia, ketosis, and mastitis. The BTA 21 QTL is associated with 

hypocalcemia and mastitis. The BTA 5 QTL is related to displaced abomasum and 

ketosis. Interestingly, the bovine MHC region on BTA 23 is not associated with the 

immune-related disease traits, which suggests that those genes do not explain substantial 

variation for the presence or absence of a disease during a lactation or that we do not 

have enough power to detect the association. 

Fine-mapping analyses and validation from tissue-specific expression 

Focusing on the candidate QTL regions in Table 2, the fine-mapping analysis calculated 

posterior probabilities of causalities (PPC) for individual variants and genes to identify 

candidates (Table 4), which were largely consistent with the GWAS results. A total of 

eight genes detected in GWAS signals were also successfully fine-mapped, including 

Plexin A4 (PLXNA4), FA Complementation Group C (FANCC), Neurotrimin (NTM) for 

displaced abomasum, GC for mastitis and livability, ATP Binding Cassette Subfamily C 

Member 9 (ABCC9) for livability, QDPR for retained placenta, Zinc Finger And AT-

Hook Domain Containing (ZFAT) and CCDC88C for livability. In addition, fine-mapping 

identified new candidate genes, including Cordon-Bleu WH2 Repeat Protein (COBL) on 

BTA 4 for metritis, LOC783947 on BTA 16 for ketosis, LOC783493 on BTA 18 for 

retained placenta, and LOC618463 on BTA 18 and LOC101908667 on BTA 23 for 
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livability. The genes LOC107133096 on BTA 14 and LOC100296627 on BTA 4 detected 

respectively for ketosis and retained placenta by fine mapping were close to two genes 

(DGAT1 and ABCB1 or ATP Binding Cassette Subfamily B Member 1) that have known 

biological association with milk production and other traits. In addition to the detected 

genes in these two cases, we further investigated genes with a potential biological link 

with disease, and genes with the highest PPC (PARP10 or PolyADP-ribose polymerase 

10 and MALSU1 or Mitochondrial Assembly Of Ribosomal Large Subunit 1) that were 

located between these two references (Table 4). No genes were detected by fine-mapping 

in the signal on BTA 6 for hypocalcemia (Fig. 1), given that the nearest genes were 

beyond a 1 Mb window boundary. 

In addition, we investigated the expression levels of fine-mapped candidate genes 

across cattle tissues using existing RNA-Seq data from public databases. While many 

genes are ubiquitously expressed in multiple tissues, several fine-mapped genes were 

specifically expressed in a few tissues relevant to cattle health (Table 4). Interesting 

examples of tissue-specific expression and candidate genes included liver with mastitis 

and livability (GC), and CD8 cells with livability (CCDC88C). Although this analysis is 

preliminary, these results provide additional support for these candidate genes of cattle 

health and help the understanding of how and where their expression is related with dairy 

disease resistance. 
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Discussion 

In this study, we performed powerful GWAS analyses of seven health and related traits in 

Holstein bulls. The resulting GWAS signals were further investigated by a Bayesian fine-

mapping approach to identify candidate genes and variants. Additionally, we included 

tissue-specific expression data for candidate genes to reveal a potential biological 

relationship between genes, tissues and cattle diseases. Finally, we provide a list of 

candidate genes of cattle health with associated tissue-specific expression that can be 

readily tested in future functional validation studies. 

In our GWAS analysis, we used de-regressed PTA as phenotype and incorporated 

the reliabilities of the deregressed PTAs of livability and six disease traits. Three traits 

were found to have significant association signals, hypocalcemia, ketosis, and livability, 

which demonstrated the power of our GWAS study. For example, we also observed 

regions associated with livability, in particular, with the region around 58,194,319 on 

BTA 18 to possess a large effect on dairy and body traits. Our finding was corroborated 

by a BLAST analysis that identified a related molecule, Siglec-6, which is expressed in 

tissues such as the human placenta (Cole et al, 2009). Further analyses can be performed 

to characterize the functional implications of these association regions for the seven 

health and related traits in cattle. 

When using PTA values as phenotype in GWAS, we observed different regions to 

be associated, compared to the GWAS with de-regressed PTA (Fig. 1 and Additional file 

2). For example, a genomic region larger than 4 Mb on BTA 12 was associated with most 

of the health traits (Additional file 2). Although these generally appeared as clear 
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association signals, we observed only a few HD SNP markers to be associated, which 

may be due to poor imputation. Additionally, this region was reported by VanRaden et al. 

(2017) as having low imputation accuracy. The lower imputation accuracy on BTA 12 

was determined to be caused by a gap between the 72.4 and 75.2 Mb region where no 

SNPs were present on the HD SNP array (VanRaden et al, 2017). Additional studies are 

needed to address this imputation issue in order to improve the accuracy and power of 

future analysis on this region. Since different family relationship will affect the GWAS 

results when using direct versus deregressed PTAs, these differences in relatedness can 

lead to false positive GWAS results, especially for low-quality imputed data. In sum, this 

comparison of GWAS using PTA and de-regressed PTA supports the use of de-regressed 

PTA values with reliabilities accounted for in future GWAS studies in cattle. 

Application of BFMAP for fine-mapping allowed us to identify 20 promising 

candidate genes (Table 4) and a list of candidate variants (Additional file 3) for health 

traits in dairy cattle. We found that most of the genes possess tissue-specific expression, 

notably the detected gene LOC107133096 on BTA 14 for ketosis. This gene is located 

close to the DGAT1 gene that affects milk fat composition. A previous candidate gene 

association study by Tetens et al. (2013) proposed DGAT1 to be an indicator of ketosis. 

In that study, the DGAT1 gene was determined to be involved in cholesterol metabolism, 

which is known to be an indicator of a ketogenic diet in humans (Tetens et al, 2013). This 

result highlights a potential pathway in the pathogenesis of ketosis that may be an area 

for future research. Additionally, ketosis is a multifactorial disease that is likely 

influenced by multiple loci. Therefore, implementation of a functional genomics 

approach would allow identification of more genetic markers, and in doing so, improve 
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resistance to this disease. For displaced abomasum, the gene PLXNA4 was observed to 

have an association with the variant 97,101,981 bp on BTA 4 (Table 4 and Additional file 

3). Our analysis also detected tissue-specific expression for PLXNA4 in the aorta. A 

previous study on atherosclerosis found that Plexin-A4 knockout mice exhibited 

incomplete aortic septation (Toyofuku et al, 2008). These findings provide some support 

for the potential association of PLXNA4 with cattle health. 

Six signals were observed as clear association peaks for livability (Fig. 1). The 

associated variant at 8,144,774 – 8,305,775 bp on BTA 14 was close to the gene ZFAT, 

which is known to be expressed in the human placenta (Barbaux et al, 2012). In 

particular, the expression of this gene is downregulated in placentas from complicated 

pregnancies. Additionally, a GWAS study performed in three French dairy cattle 

populations found the ZFAT gene to be the top variant associated with fertility (Marete et 

al, 2018). Since calving and other fertility issues could be risk factors to cause animal 

death, these results lend support of this candidate gene with the livability. On BTA18, the 

associated variant at 57,587,990 – 57,594,549 bp was near the gene LOC618463, which 

has been previously identified as a candidate gene associated with calving difficulty in 

three different dairy populations (Gowane et al, 2015). The associated variant at 

56,645,629 – 56,773,438 bp on BTA21 is located close to the CCDC88C gene (Table 4). 

In addition to our detection of tissue-specific expression with the CD8 cell, this gene has 

been associated with traits such as dairy form and days to first breeding in cattle (Jiang et 

al, 2019). 

It is notable that our GWAS signal for livability at 25,904,084 – 25,909,461 bp on 

BTA 23 is located in the bovine MHC region (Table 4). The gene we detected was 
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LOC101908667, which is one of the immune genes of the MHC. This is of considerable 

interest because MHC genes have a role in immune regulation. The MHC complex of 

cattle located on BTA 23 is called the bovine leukocyte antigen (BoLA) region. This 

complex of genes has been extensively studied in research investigating the 

polymorphism of genes in BoLA and their association with disease resistance (Gowane et 

al, 2013). Therefore, our research highlights a gene of considerable interest that should be 

further explored to understand its importance in breeding programs and its potential role 

in resistance to infectious diseases. 

Additionally, we identified an associated variant for livability at 88,687,845 - 

88,739,292 bp on BTA6 close to the gene GC, which was specifically expressed in 

tissues such as the liver (Table 4). This gene has been previously studied in an association 

analysis that investigated the role of GC on milk production (Olsen et al, 2016). It found 

that the gene expression of GC in cattle is predominantly expressed in the liver. 

Moreover, affected animals displayed decreased levels of the vitamin D binding protein 

(DBP) encoded by GC, highlighting the importance of GC for a cow’s production. 

Additionally, liver-specific GC expression has been identified in humans, specifically 

regulated through binding sites for the liver-specific factor HNF1 (Huroki et al, 2007). 

Collectively, these results offer evidence for GC expression in the liver, which may be an 

important factor for determining cow livability. 

Interestingly, the GC gene was also detected to have tissue-specific expression in 

the liver for mastitis (Table 4). This is corroborated by a study on cattle infected with 

mastitis to possess limited DBP concentration (Olsen et al, 2016). Vitamin D plays a key 

part in maintaining serum levels of calcium when it is secreted into the milk (Horst et al, 
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2003). Since GC encodes DBP, it was suggested that the GC gene has a role in regulating 

milk production and the incidence of mastitis infection in dairy cattle. It is important to 

note that bovine mastitis pathogens, such as Staphylococcus aureus and Escherichia coli, 

also commonly occur as pathogens of humans. Therefore, development of molecular 

methods to contain these pathogens is of considerable interest for use in human medicine 

to prevent the spread of illness and disease. For instance, the use of enterobacterial 

repetitive intergenic consensus typing enables trace back of clinical episodes of E. coli 

mastitis, thus allowing for an evaluation of antimicrobial products for the prevention of 

mastitis (Zadoks et al, 2011). Continued investigation using molecular methods are 

needed to understand the pathogenesis of mastitis and its comparative relevance to human 

medicine. Based on the fine mapping for metritis, the new gene assigned was COBL on 

BTA 6 (Table 4). However, this candidate gene was found to have variants only passing 

the nominal significance level for causality and for GWAS. Further exploration of this 

candidate gene is needed to contribute to our understanding of its function and potential 

tissue-specific expression. 

For retained placenta, the gene TMEM182 was observed to have an association 

with a variant between 7,449,519 – 7,492,871 bp on BTA11 (Table 4). Our tissue-

specific analysis identified TMEM182 to have an association in muscle tissues. A study 

performed in Canchim beef cattle investigated genes for male and female reproductive 

traits and identified TMEM182 on BTA 11 as a candidate gene that could act on fertility 

(Buzanskas et al, 2017). Additionally, the gene TMEM182 has been found to be 

upregulated in brown adipose tissue in mice during adipogenesis, which suggests a role in 

the development of muscle tissue (Wu et al, 2008). One important factor that causes 
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retention of fetal membranes in cattle is the impaired muscular tone of organs such as the 

uterus and abdomen (Schlafer et al, 2000). This suggests the importance of the 

TMEM182 gene and the need for future studies to better understand its role in the cattle 

breeding program. 
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Conclusions 

In this study, we reported eight significant associations for seven health and related traits 

in dairy cattle. In total, we identified 20 candidate genes of cattle health with the highest 

posterior probability, which are readily testable in future functional studies. Several 

candidate genes exhibited tissue-specific expression related to immune function, muscle 

growth and development, and neurological pathways. The identification of a novel 

association for cow livability in the bovine MHC region also represents an insight into 

the biology of disease resistance. Overall, our study offers a promising resource of 

candidate genes associated with complex diseases in cattle that can be applied to breeding 

programs and future studies of disease genes for clinical utility. 
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Methods 

Ethics statement 

This study did not require the approval of the ethics committee, as no biological materials 

were collected. 

Genotype data 

Using 444 ancestor Holstein bulls from the 1000 Bull Genomes Project as reference, we 

previously imputed sequence variants for 27,214 progeny-tested Holstein bulls that have 

highly reliable phenotypes via FindHap version 3 (VanRaden et al, 2014). We applied 

stringent quality-control procedures before and after imputation to ensure the data 

quality. The original 777,962 HD SNPs were reduced to 312,614 by removing highly 

correlated SNP markers with a |r| value higher than 0.95 and by prior editing. Variants 

with a minor allelic frequency (MAF) lower than 0.01, incorrect map locations (UMD3.1 

bovine reference assembly), an excess of heterozygotes, or low correlations (|r| < 0.95) 

between sequence and HD genotypes for the same variant were removed. The final 

imputed data was composed of 3,148,506 sequence variants for 27,214 Holstein bulls. 

Details about the genomic data and imputation procedure are described by VanRaden et 

al. (VanRaden et al, 2017). After imputation, we only retained autosomal variants with 

MAF ≥0.01 and P-value of Hardy-Weinberg equilibrium test > 10− 6. 

Phenotype data 

The data used were part of the 2018 U.S. genomic evaluations from the Council on Dairy 

Cattle Breeding (CDCB), consisting of 1,922,996 Holstein cattle from the national dairy 
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cattle database. Genomic predicted transmitting ability (PTA) values were routinely 

calculated for these animals and were included in this study. Deregressed PTA values 

according to Garrick et al. (2009) were analyzed in GWAS for livability, hypocalcemia, 

displaced abomasum, ketosis, mastitis, metritis, and retained placenta. We restricted the 

de-regression procedure to those bulls with PTA reliability greater than parent average 

reliability, thus reducing the total number of animals from 27,214 to 11,880, 13,229, 

12,468, 14,382, 13,653, 13,541, and 24,699 for the seven traits, respectively (Table 1). 

Genome-wide association study (GWAS) 

A mixed-model GWAS was performed using MMAP, a comprehensive mixed model 

program for analysis of pedigree and population data (O’Connell et al, 2015). The 

additive effect was divided into a random polygenic effect and a fixed effect of the 

candidate SNP. The variance components for the polygenic effect and random residuals 

were estimated using the restricted maximum likelihood (REML) approach. MMAP has 

been widely used in human and cattle GWAS studies (Backman et al, 2017; Ma et al, 

2015; Santos et al, 2018). The model can be generally presented as: 

𝒚 = 𝜇 + 𝒎𝑏 + 𝒂 + 𝒆 

where y is a vector with de-regressed PTAs; µ is the global mean; m is the candidate SNP 

genotype (allelic dosage coded as 0, 1 or 2) for each animal; b is the solution effect of the 

candidate SNP; a is a solution vector of polygenic effect accounting for the population 

structure assuming 𝒂~𝑁(0, 𝑮𝜎𝑎
2), where G is a relationship matrix; and e is a vector of 

residuals assuming 𝒆~𝑁(0, 𝑹𝜎𝑒
2), where R is a diagonal matrix with diagonal elements 

weighted by the individual de-regressed reliability (𝑅𝑖𝑖=1/(𝑟𝑖
2 − 1)). For each candidate 
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variant, a Wald test was applied to evaluate the alternative hypothesis, H1: b ≠ 0, against 

the null hypothesis H0: b = 0. Bonferroni correction for multiple comparisons was applied 

to control the type-I error rate. Gene coordinates in the UMD v3.1 assembly were 

obtained from the Ensembl Genes 90 database using the BioMart tool (Zimin et al, 2009). 

The cattle QTLdb database was examined to check if any associated genomic region was 

previously reported as a cattle quantitative trait locus (QTL) (Hu et al, 2012). 

Fine-mapping association study 

In order to identify potential candidate genes and their causal variants, GWAS signals 

were investigated through a fine-mapping procedure using a Bayesian approach with the 

software BFMAP v.1 (https://github.com/jiang18/bfmap) (Jiang et al, 2019). BFMAP is a 

software tool for genomic analysis of quantitative traits, with a focus on fine-mapping, 

SNP-set association, and functional enrichment. It can handle samples with population 

structure and relatedness and calculate posterior probability of causality (PPC) to each 

variant and its causality p-value for independent association signals within candidate 

QTL regions. The minimal region covered by each lead variant was determined as ±1 Mb 

upstream and downstream (candidate region ≥2 Mb). This extension allowed the region 

to cover most variants that have an LD r2 of > 0.3 with the lead variants. The employed 

fine-mapping approach included three steps: forward selection to add independent signals 

in the additive Bayesian model, repositioning signals, and generating credible variant sets 

for each signal. Details about the BFMAP algorithm and its procedure are described by 

Jiang et al. (2019). 
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Tissue-specific expression of candidate genes 

From publicly available resources including the NCBI GEO database, we have assembled 

RNA-seq data of 723 samples that involves 91 tissues and cell types in Holstein cattle. 

We processed all the 732 RNA-seq data uniformly using a rigorous bioinformatics 

pipeline with stringent quality control procedures. After data cleaning and processing, we 

fit all data into one model to estimate the tissue specificity of gene expression. We then 

calculated the t-statistics for differential expression for each gene in a tissue using a 

previous method (Finucane et al, 2018). Specifically, the log2-transformed expression 

(i.e., log2FPKM) of genes was standardized with mean of 0 and variance of 1 within each 

tissue or cell type, 

𝑦𝑖 = µ𝑖 + 𝑥𝑖𝑠 + 𝑥𝑖𝑎𝑔𝑒 + 𝑥𝑖𝑠𝑒𝑥 +  𝑥𝑖𝑠𝑡𝑢𝑑𝑦 + 𝑒𝑖 

where yi is the standardized log2-transformed expression level (i.e., log2FPKM) of ith 

gene; μi is the overall mean of the ith gene; xis is the tissue effect, where samples of the 

tested tissue were denoted as ‘1’, while other samples as ‘-1’; xiage, xisex, xistudy were age, 

sex, and study effects for the ith gene, respectively; ei is residual effect. We fit this model 

for each gene in each tissue using the ordinary least-square approach and then obtained 

the t-statistics for the tissue effect to measure the expression specificity of this gene in the 

corresponding tissue. Using this approach, we evaluated the expression levels for each of 

the candidate genes that were fine-mapped in this study across the 91 tissues and cell 

types and identified the most relevant tissue or cell type for a disease trait of interest. 
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Tables 

 

Table 1. Number of Holstein bulls, reliability of PTA, and heritability (h2) for six health 

traits and cow livability. 

Trait N h2 Average Reliability 

Hypocalcemia 11,880 0.006 0.228 

Displaced Abomasum 13,229 0.011 0.269 

Ketosis 12,468 0.012 0.260 

Mastitis 14,382 0.031 0.338 

Metritis 13,653 0.014 0.281 

Retained Placenta 13,541 0.001 0.266 

Livability 14,699 0.040 0.397 
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Table 2. Top SNPs and candidate genes associated with hypocalcemia (CALC), 

displaced abomasum (DSAB), ketosis (KETO), mastitis (MAST), metritis (METR), 

retained placenta (RETP) and cow livability. 

Trait Chr Position MAF P-value Genes Nearby 
Traits Previously 

Associatedb 

CALC 6 10,521,824 0.014 8.3×10-10a 
TRAM1L1, 

NDST4 
Subcutaneous fat 

DSAB 4 97,101,981 0.021 4.4×10-7 
PLXNA4, 

CHCHD3 
Milk protein yield 

DSAB 8 83,052,202 0.109 1.3×10-7 FANCC Stature 

DSAB 29 35,977,236 0.073 1.3×10-7 NTM 
Milk kappa-casein 

percentage 

KETO 14 2,762,595 0.033 1.8×10-9a LY6K 
Milk protein 

percentage 

KETO 16 7,048,452 0.019 1.9×10-8 KCNT2 Milk fat percentage 

MAST 6 88,868,886 0.460 4.2×10-8 GC Clinical mastitis 

METR 4 3,662,486 0.011 2.7×10-7 RF00322 Milk protein yield 

RETP 4 32,578,298 0.218 7.4×10-7 RUNDC3B Calving ease 

RETP 6 117,620,548 0.026 7.2×10-7 QDPR 
Milk kappa-casein 

percentage 

RETP 11 7,465,110 0.060 9.1×10-8 TMEM182 
Abomasum 

displacement 

RETP 18 64,492,219 0.012 1.6×10-7 ZFP28 Still birth 

Livability 5 88,823,164 0.472 1.5×10-10a ABCC9 Productive life 

Livability 6 88,801,999 0.454 1.7×10-18a GC Clinical mastitis 

Livability 14 8,536,538 0.020 5.3×10-10a ZFAT Productive life 

Livability 18 58,194,319 0.075 1.1×10-20a ZNF614 
Bovine respiratory 

disease 

Livability 21 56,700,449 0.013 8.6×10-11a CCDC88C Type 

Livability 23 26,131,593 0.017 3.8×10-9a BLA-DQB 
Antibody-mediated 

immune response 
aGenome-wide significance after Bonferroni correction 
bInformation obtained from the Animal QTLdb for cattle [19] 
  



49 
 

Table 3. Association results of the top SNPs associated with cow livability for 

hypocalcemia, displaced abomasum, ketosis, mastitis, and metritis. P-values larger than 

0.05 and their Beta coefficients were excluded. 

Chr Position 

Livability Hypocalcemia 
Displaced 

Abomasum 
Ketosis Mastitis Metritis 

P-

value 
Beta 

P-

value 
Beta 

P-

value 
Beta 

P-

value 
Beta 

P-

value 
Beta 

P-

value 
Beta 

5 88,823,164 
1.5×10-

10 

-

0.43 
- - 0.04 

-

0.14 
0.04 

-

0.21 
- - - - 

6 88,801,999 
1.7×10-

18 
-

0.66 
5.0×10-

3 
-0.2 - - 

2.1×10-

3 
-

0.35 
4.2×10-

7 
-

0.75 
- - 

14 8,536,538 
5.3×10-

10 
-1.1 - - - - - - - - - - 

18 58,194,319 
1.1×10-

20 
-1.0 - - 

1.1×10-

4 

-

0.47 
- - - - 0.01 

-

0.51 

21 56,700,449 
8.6×10-

11 
-1.5 0.03 

-
0.58 

- - - - 
9.1×10-

3 
-

1.43 
- - 

23 26,131,593 
3.8×10-

9 
0.71 - - - - - - - - - - 
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Table 4. List of candidate genes with highest posterior probability of causality (PPC) and 

their minimum P-values for causality (M_causality) and GWAS (M_GWAS) associated 

with hypocalcemia (CALC), displaced abomasum (DSAB), ketosis (KETO), mastitis 

(MAST), metritis (METR), retained placenta (RETP) and cow livability and their tissue 

specific expression. 

Trait Gene Chr Start End 
M_GWAS 

P-value 

M_Causality 

P-value 
PPC Type Tissue-Specific Expression 

DSAB PLXNA4 4 96,574,369 97,120,718 4.5×10-7 6.5×10-7 0.49 protein_coding Aorta, Liver, Trachea 

DSAB FANCC 8 83,022,522 83,228,696 1.3×10-7 2.1×10-9 0.79 protein_coding Thyroid 

DSAB NTM 29 35,153,012 36,117,726 1.3×10-7 1.7×10-7 0.99 protein_coding Central Nervous System 

 LOC107133096 14 2,760,093 2,762,878 2.0×10-9 5.9×10-8 0.92 IncRNA - 

KETO PARP10 14 2,024,509 2,031,477 7.0×10-7 1.7×10-5 0.16 protein_coding - 

 DGAT1 14 1,795,425 1,804,838 1.0×10-6 1.7×10-5 0.08 protein_coding Bone Marrow 

KETO LOC783947 16 7,050,445 7,055,021 1.9×10-8 1.3×10-8 1.00 lncRNA - 

MAST GC 6 88,687,845 88,739,292 2.0×10-7 1.2×10-7 0.15 protein_coding Kidney, Cortex, Liver 

METR COBL 4 4,494,925 4,795,904 4.3×10-3 7.7×10-4 1.00 protein_coding - 

 LOC100296627 4 32,573,079 32,613,237 7.6×10-7 4.0×10-13 1.00 protein_coding - 

REPT MALSU1 4 32,051,590 32,077,036 7.5×10-4 1,1×10-13 0.98 protein_coding - 

 ABCB1 4 33,013,208 33,095,708 6.3×10-1 8.4×10-3 0.28 protein_coding - 

REPT TMEM182 11 7,449,519 7,492,871 9.0×10-8 9.9×10-8 0.96 protein_coding Heart, Muscle, Tongue 

REPT LOC783493 18 63,799,608 63,803,213 8.3×10-3 1.2×10-5 0.94 Pseudogene - 

Livability ABCC9 5 8,867,2047 88,834,491 1.5×10-10 1.5×10-10 1.00 protein_coding 
Aorta, Atrium, Lung, Muscle 

Uterine myometrium, Ventricle 

Livability GC 6 88,687,845 88,739,292 1.9×10-17 1.4×10-19 0.03 protein_coding Kidney, Cortex, Liver 

Livability ZFAT 14 8,144,774 8,305,775 2.1×10-5 3.2×10-5 0.23 protein_coding - 

Livability LOC618463 18 57,587,990 57,594,549 1.7×10-20 3.1×10-20 0.20 protein_coding - 

Livability CCDC88C 21 56,645,629 56,773,438 8.6×10-11 8.9×10-11 0.95 protein_coding CD8_cell 

Livability LOC101908667 23 25,904,084 25,909,461 2.1×10-8 7.9×10-9 0.31 lncRNA - 
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Figures 
 

Figure 1. Manhattan plot for hypocalcemia (CALC), displaced abomasum (DSAB), 

ketosis (KETO), mastitis (MAST), metritis (METR), retained placenta (RETP) and cow 

livability. The genome-wide threshold (red line) corresponds to the Bonferroni 

correction. 
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Additional Files 
 

Additional File 1: Boxplot with PTA reliability for hypocalcemia (CALC), displaced 

abomasum (DSAB), ketosis (KETO), mastitis (MAST), metritis (METR), retained 

placenta (RETP) and cow livability.  
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Additional File 2: Manhattan plot using the PTA as phenotype for hypocalcemia 

(CALC), displaced abomasum (DSAB), ketosis (KETO), mastitis (MAST), metritis 

(METR), retained placenta (RETP) and cow livability. The genome-wide threshold (red 

line) corresponds to the Bonferroni correction for a nominal P-value = 0.05. 
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Additional File 3: List of variants into genes with highest posterior probability of 

causality that are mostly associated with displaced abomasum (DSAB), ketosis (KETO), 

mastitis (MAST), metritis (METR), retained placenta (RETP) and cow livability. 

Trait Gene Variant MAF 
GWAS 

P-value 

Casualty 

P-value 

N_PP

C 
Annotation 

DSAB PLXNA4 4:97101981 0.02 4.5×10-7 6.5×10-7 0.26 Intergenic 

DSAB FANCC 8:83052202 0.11 1.3×10-7 2.1×10-9 0.19 Intron 

DSAB FANCC 8:83083934 0.11 1.3×10-7 2.1×10-9 0.19 Intron 

DSAB FANCC 8:83123780 0.11 1.3×10-7 2.1×10-9 0.19 Intron 

DSAB NTM 29:35977236 0.07 1.3×10-7 1.7×10-7 0.91 Intergenic 

 
LOC10713

3096 
14:2762595 0.03 2.0×10-9 5.9×10-8 0.89 

Upstream/ 

Intergenic 

 
PARP10 

14:2025096 0.23 7.0×10-7 1.7×10-5 0.02 
Missense/ 

Downstream 

KETO 14:2026646 0.23 7.0×10-7 1.7×10-5 0.02 Upstream/Intron 

 
DGAT1 

14:1802266 0.22 1.0×10-6 2.1×10-5 0.02 
Missense/ 

Downstream 

 14:1804647 0.22 1.0×10-6 2.1×10-5 0.02 Downstream 

MAST GC 6:88718227 0.45 2.0×10-7 1.2×10-7 0.13 Intron 

METR COBL 4:4643092 0.13 4.3×10-3 7.7×10-4 0.04 Intron 

 
LOC10029

6627 
4:32578298 0.22 7.6×10-7 4.0×10-13 1 Intron 

REPT MALSU1 4:32057434 0.17 7.5×10-4 1,1×10-13 0 
Upstream/ 

Intergenic 

 ABCB1 4:33063807 0.12 6.3×10-1 8.4×10-3 0 Intron 

REPT QDPR 6:117727506 0.024 2.2×10-4 2.3×10-5 0 
3_prime_UTR_ 

variant 

REPT QDPR 6:117727635 0.024 2.2×10-4 2.3×10-5 0 
3_prime_UTR_ 

variant 

REPT QDPR 6:117727851 0.024 2,2×10-4 2.3×10-5 0 
3_prime_UTR_ 

variant 

REPT QDPR 6:117728023 0.024 2.2×10-4 2.3×10-5 0 Missense 

REPT QDPR 6:117743248 0.024 2.2×10-4 2.3×10-5 0 Missense 

REPT TMEM182 11:7465110 0.06 9.0×10-8 9.9×10-8 0.95 Intron 

REPT 
LOC78349

3 
18:63802274 0.24 8.3×10-3 2.3×10-3 0 Intron 

Livability ABCC9 5:88823164 0.47 1.5×10-10 1.5×10-10 0.51 Splice/Intron 

Livability GC 6:88718227 0.45 1.9×10-17 1.4×10-19 0.03 Intergenic 

Livability ZFAT 14:8249314 0.04 2.1×10-5 3.0×10-5 0 Intron 

Livability 
LOC61846

3 
18:57589121 0.07 1.7×10-20 3.1×10-20 0.19 Intron 

Livability CCDC88C 21:56700449 0.01 8.6×10-11 8.9×10-11 0.46 Intron 

Livability 
LOC10190

8667 
23:25905667 0.02 2.1×10-8 7.9×10-9 0.08 Intergenic 

N_PPC = Normalized posterior probability of causality 
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Chapter 3: Genome changes due to selection in U.S. dairy cattle 

Abstract 

Genetic and genomic selection in the U.S. dairy population has achieved successful 

phenotypic improvement across a comprehensive set of economically important traits that 

involve production, reproduction, health, and body conformation. While contemporary 

cows differ phenotypically from their ancestors hundreds of years ago, the changes in the 

genome, especially those due to selection, remain to be discovered. The aim of this study 

was to investigate genome-wide and region-specific changes in the U.S. Holstein-Friesian 

(HF) cattle population between the years of 1950 to 2015. Using the U.S. dairy 

cooperator’s phenotypic and genomic databases hosted at CDCB, we first extracted 

genotype and phenotype (PTA) data of 27,000 reference bulls and performed GWAS 

analyses to identify candidate QTLs. We then divided the 27,000 Holstein bulls into nine 

bins based on birth year, before 1980, 1980-1990, 1990-1995, 1995-2000, 2000-2002, 

2002-2005, 2005-2007, 2007-2010, and after 2010. The allele frequency changes 

between the two extreme time periods were calculated to capture the difference between 

the earliest and most recent populations. Finally, the genomic regions with the largest 

allele frequency changes were compared against the QTL regions identified in GWAS 

analyses. 

To identify true genome changes due to selection from those due to random 

genetic drift, we implemented a gene dropping simulation approach with real pedigree 

and calculated thresholds of allele frequency change. The process was executed by 

running a simulation program in R software, which visualizes systemic changes over 
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individual SNPs and compares them to a distribution under pure genetic drift. 

Observation of changes above the 99.9% threshold on the distribution may be indicative 

of selection and affecting dairy traits. From this evaluation of genome-wide and region-

specific changes due to selection, we identified candidate QTL regions under selection 

and that are associated with economically important traits in the U.S. dairy population. 
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Introduction 

Genome selection is a method of marker-assisted selection for quantitative traits that is 

widely used in breeding programs. This approach offers the opportunity to estimate 

breeding values without reliance on pedigree and phenotype information, which has been 

necessary in traditional breeding methods (Doekes et al, 2018). 

 While marker-assisted selection has the potential to predict the genetics of 

quantitative traits more accurately, and thus increase genetic gain, the implementation of 

this method has been limited. An alternative method is genetic selection (GS), which uses 

all of the possible markers simultaneously. This method estimates the marker effects 

across the whole genome, and in doing so, also provides a reliable estimate of the 

genomic breeding value (GEBV) (Heidaritabar et al, 2014). The use of GEBVs can 

alleviate the requirement to phenotype an entire population per generation, which will 

reduce the time, effort, and costs typically needed by breeding programs (Spindel et al, 

2016). 

 The current availability of the bovine reference sequence allowed for the 

systematic assessment of many single nucleotide polymorphisms (SNPs) by whole 

genome re-sequencing of animals (Nguyen et al, 2015). Due to the accessibility of SNP 

data, it is now possible to monitor and analyze the influence of selection within a 

population. Thus, studying the genetic diversity of dairy cattle may contribute to future 

selection responses as well as increase the frequency of beneficial alleles in the 

population. 



58 
 

 The aim of this study was to evaluate genome-wide diversity in Holstein-Friesian 

(HF) bulls from 1950 to 2015. Using a USDA dairy cattle dataset, we first investigated 

whether allele frequency changes are attributed to selection. To identify potential regions 

under selection, we compared observed allele frequency changes to those expected under 

pure genetic drift. Additionally, we wanted to evaluate whether the regions under 

selection were linked to known quantitative trait loci (QTL). To compare the allele 

frequency differences, we applied a Wilcoxon rank-sum test to the SNP and QTL data. 

From this evaluation, we will have demonstrated the genome changes due to selection 

that are present in U.S. dairy cattle. 
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Results and Discussion 

Using a USDA dairy cattle dataset, we extracted genotype and phenotype (PTA) data of 

27,214 Holstein-Friesian bulls. The sequence data we imputed from the dataset contains a 

total of 3 million sequence variants. This large dataset allowed us to run our GWAS and 

gene simulation program with high power and precision. 

Mixed model GWAS 

We applied the software MMAP (O’Connell, 2013) to run a mixed model GWAS on our 

dataset. Association signals were detected from GWAS, and we selected the variants with 

the smallest P-value. Four plots with clear trends are shown in Figure 1. In these plots, 

the frequency of the sequence variant was observed to change consistently over time. 

We identified 16 candidate variants to be under selection in a U.S. Holstein-

Friesian cattle population. One of the candidate variants was found on chromosome 1 

(Chr1:82024433), which corresponds to rump angle from a single-trait cattle GWAS. Its 

nearby gene of interest is IGF2BP2, which is the insulin-like growth factor 2 mRNA 

binding protein 2. This protein coding gene is a tumor promoter that drives cancer 

proliferation (Xu et al, 2019). Another candidate variant identified to have a consistent 

trend was on chromosome 4 (Chr4:113758201) that corresponds to sire stillbirth. A 

reported gene in this region is GIMAP7, which is a member of the GTPase of an 

immunity-associated protein family. It functions to regulate lymphocyte survival and 

homeostasis (Schwefel et al, 2013). A candidate variant observed on chromosome 5 

(Chr5:112474824) has QTLs involved in milk and protein traits. The fourth plot is of the 

variant located on chromosome 29 (Chr29:41819469) that corresponds to daughter 
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stillbirth trait from a single-trait GWAS. In addition, the region around this variant has 

the gene STX5, which encodes a syntaxin or target-SNAP receptor. The encoded protein 

serves to regulate endoplasmic reticulum (ER) to Golgi transport and has a critical role in 

autophagy (Linders et al, 2019). 

Gene dropping simulation program 

We applied a gene dropping simulation program to verify if the candidate variants we 

detected from GWAS were consistent with selection. As shown in Figure 2, the red 

points represent the percentile of each MAF in a bin. The individual blue points denote a 

single gene drop. We observed a large cluster of gene drops below the 99% threshold (P 

< 0.001), which helped us distinguish the gene drops above the line of the empirical gene 

drop distribution. These blue dots were indicative of selection and were further analyzed 

in the following procedures. 

Manhattan plot 

As shown in Figure 3, we created a Manhattan plot of the absolute allele frequency 

differences of the variants. We overlapped the top 288 QTLs that were previously 

identified on the plot as green points. These points were included to visualize if there 

were regions with allele frequency differences that overlapped with QTLs in the GWAS. 

We observed a few significant peaks in the Manhattan plot, which we then compared to 

previously reported regions. For instance, there appeared to be a correspondence between 

the peak on chromosome 11 with the QTL data. A prior study by Lund et al (2007) 

identified a QTL on bovine chromosome 11 (BTA11) for somatic cell score (SCS). 

Breeding schemes have used SCS as an indicator trait for clinical mastitis (CM) due to 
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the moderate to high genetic correlation that exists between CM and SCS (Heringstad et 

al, 2006). Thus, this overlap may be of interest for further research. 

Wilcoxon rank-sum test 

We conducted the Wilcoxon rank-sum test to compare the MAF with the 3 million SNPs 

data and to detect if there is a statistically significant difference between the two 

distributions. The mean of the difference in allele frequency for the SNP and QTL bins 

and the p-values per bin are shown in Table 1. The Wilcoxon rank-sum test shows 

statistical significance with a p-value of 1.236 x 10-5 and 1.017 x 10-5 for bins 2 and 3, 

respectively. This finding indicates there is a difference between the two distributions at 

the P-value threshold of 0.05 for significance. Further analysis of the SNPs and QTLs in 

those bins may provide insight to this study. 
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Conclusions and Future Directions 

Using a USDA dairy cattle dataset, we identified candidate variants that are under 

selection by monitoring their allele frequency change over time. These candidate variants 

are associated with biological traits and economically important traits in cattle, and we 

found their nearby gene of interest. Additionally, we demonstrated that gene dropping is 

an applicable method to investigate genome-wide and region-specific changes in the 

cattle genome through time. 

For future research directions, we propose the development of a gene dropping 

simulation program written in Python. The resulting Δp-distribution under pure genetic 

drift can be compared for consistency to our current gene dropping plot that was run in R 

software. 

After running the proposed gene dropping simulation, genes in the distribution 

can be identified for significance. We expect those genes to be observed above the 99.9% 

threshold line (P < 0.001) that is shown in our simulation plot. The genes above the 

threshold line will be indicative of selection and can be further studied for their effects on 

genomic selection in dairy cattle. 
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Methods 

Genotype and phenotype data 

This study used U.S. dairy cattle data hosted in the National Cattle Genomics database at 

the Council on Dairy Cattle Breeding (CDCB). Specifically, we studied a U.S. Holstein-

Friesian (HF) cattle population between the years of 1950 to 2015. The genotype and 

phenotype (PTA) data of 27,214 Holstein bulls were extracted by imputation. The 

extracted sequence data contains a total of 3 million variants. 

Mixed model GWAS 

We used the mixed model approach that is implemented in the software MMAP 

(O’Connell, 2015) to run GWAS on our dataset. The mixed model used in our GWAS 

allowed us to identify sequence variants with consistent allele frequency changes over 

time. In our model, time is the response variable and variant genotypes is the independent 

variable. An association signal was detected if the frequency of the sequence variant 

changes consistently over time. After running GWAS, the sequence variants with the 

smallest p-value were selected. Four plots of those variants are shown in Figure 1. 

Specifically, the 27,000 Holstein bulls were divided into nine time bins according to birth 

year. The time ranged from before 1980 to after 2010. In each of the plots, genotype 

means were plotted over this time range. 

Gene dropping simulation program 

We implemented a gene dropping simulation approach in R software to identify the 

genome changes due to selection from those due to random genetic drift. Gene dropping 
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is a simulation program that visualizes systemic changes over individual SNPs. Figure 2 

shows the resulting plot from this simulation. We divided the data into two time bins, 

from 1985-1990 to 2009-2015, each containing 3,000 animals. Changes in allele 

frequency over time were computed as: Δp = pt – p0, with pt and p0 being the frequency 

in the first (1985-1990) and last (2010 to 2015) 5-year periods, respectively. Observed 

Δp-values were compared to those expected from a distribution under pure genetic drift 

obtained by the gene dropping simulation. The allele frequency differences were plotted 

on this graph and compared to a 99.9% threshold (P <0.001), which is shown in red. This 

represented an expected distribution from pure genetic drift. Thus, the absolute Δp-values 

observed above the red threshold line were indicative of selection. 

Manhattan plot 

To visualize where these variants were in the genome, we made a Manhattan plot, which 

is shown in Figure 3. The absolute allele frequency differences were plotted across 29 

chromosomes and overlapped with GWAS results, which were highlighted in green. The 

overlapping points allowed us to detect whether any SNPs were related to milk 

production or disease. Additionally, the analysis allowed us to investigate whether 

regions under selection were linked to the top 288 QTLs. 

Wilcoxon rank-sum test 

We extracted the top 288s QTLs from the 3 million SNPs data and compared the allele 

frequency differences to the remaining SNPs using the Wilcoxon rank-sum test. The 

results are shown in Table 1, where we divided the data into 20 MAF bins based off a 

numerical cutoff. We performed the Wilcoxon rank-sum test within each bin to verify if 
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the two distributions were different. Additionally, we computed the mean of the 

difference in allele frequency for the SNP and QTL bins. The p-value per bin was 

calculated to identify significance (P < 0.05). 
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Table 

Table 1. Mean difference in allele frequency in QTL and control bins. The top 288 QTLs 

were extracted from the 3 million SNPs data and compared to the remaining SNPs using 

the Wilcoxon Rank Sum Test. Each dataset was separated into 20 distinct bins using a 

numerical cutoff. The mean of the difference in allele frequency was calculated per bin. 

The Wilcoxon test was run within each bin based on allele frequency difference. P-values 

were calculated using a significance level of 0.05. 
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Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Sequence variants with consistent allele frequency changes over time. 27,000 

Holstein bulls were divided into nine timebins based on birth year. Genotype means were 

plotted over time, which began before 1980 to after 2010. 
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Figure 2. Plot of absolute frequency changes from 1985-1990 to 2009-2015 observed in 

data and gene dropping. Changes for different minor allele frequencies (MAF) are shown 

in the 1985-1990 period using MAF classes of 0.5%. The red line is the 99.9% threshold 

of the gene drop distribution per MAF class. 
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Figure 3. A Manhattan plot of the absolute allele frequency differences across 29 

chromosomes. Green points are the top 288 QTLs identified previously.  
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Chapter 4: Effect of temperature and maternal age on 

recombination rate 

Abstract 

Meiotic recombination is a fundamental biological process that facilitates meiotic 

division and promotes genetic diversity. Recombination is phenotypically plastic and 

affected by both intrinsic and extrinsic factors. The effect of maternal age on 

recombination rates has been characterized in a wide range of species, but the effect’s 

direction remains inconclusive. Additionally, the characterization of temperature effects 

on recombination has been limited to model organisms. Here we seek to comprehensively 

determine the impact of genetic and environmental factors on recombination rate in dairy 

cattle. Using a large cattle pedigree, we identified maternal recombination events within 

305,545 three-generation families. By comparing recombination rate between parents of 

different ages, we found a quadratic trend between maternal age and recombination rate 

in cattle. In contrast to either an increasing or decreasing trend in humans, cattle 

recombination rate decreased with maternal age until 65 months and then increased 

afterward. Combining recombination data with temperature information from public 

databases, we found a positive correlation between environmental temperature during 

fetal development of offspring and recombination rate in female parents. Finally, we 

fitted a full recombination rate model on all related factors, including genetics, maternal 

age, and environmental temperatures. Based on the final model, we confirmed the effect 

of maternal age and environmental temperature during fetal development of offspring on 

recombination rate with an estimated heritability of 10% (SE = 0.03) in cattle. 
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Collectively, we characterized the maternal age and temperature effects on recombination 

rate and suggested the adaptation of meiotic recombination to environmental stimuli in 

cattle. Our results provided first-hand information regarding the plastic nature of meiotic 

recombination in a mammalian species. 

Keywords: Recombination, Maternal age, Temperature, Cattle, Genetics 

Note: This chapter was previously published by Frontiers in Genetics. Ellen Freebern is a 

co-first author and made a significant contribution to the analysis and writing of this 

paper. The original citation is as follows: 

 

Shen B, Freebern E, Jiang J, Maltecca C, Cole JB, Liu GE, Ma L. Effect of Temperature 

and Maternal Age on Recombination Rate in Cattle. Front Genet. 2021 Jul 20;12:682718. 
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Introduction  

Meiotic recombination is an essential process that occurs in all sexually reproducing 

organisms. This process facilitates the pairing and alignment of homologous 

chromosomes during prophase, which leads to the formation of crossovers. These 

crossover events transfer genetic information between the maternal and paternal 

homologs, and in doing so, ensures that each offspring will receive a unique combination 

of parental genomes. The extent and pattern of genetic reshuffling has important 

implications for evolution and population genetics, as well as breeding. However, errors 

in meiotic recombination can lead to aneuploidy, chromosomal abnormalities, and other 

deleterious outcomes (Hassold and Hunt, 2001; Lipkin et al., 2002). Thus, meiotic 

recombination must be well-regulated by cellular processes to prevent disturbances in the 

recombination pathway. It has been found that various factors influence meiotic 

recombination patterns in human and animal genomes. For instance, genome-wide 

association studies (GWAS) have identified genes and genetic variants associated with 

recombination features in humans (Kong et al., 2008; Chowdhury et al., 2009), mice 

(Baudat et al., 2010), cattle (Sandor et al., 2012; Ma et al., 2015; Shen et al., 2018), and 

sheep (Johnston et al., 2016). Some of the genes from those studies, including RNF212, 

CPLX1, and PRDM9, have been reported to be associated with individual-level 

recombination rates across multiple mammalian species. 

A variety of intrinsic and external factors affect recombination rates across 

individuals and populations. These factors can be derived from environmental conditions, 

such as temperature, or physiological and stressful conditions, such as starvation. The 

resulting changes in recombination rates pose benefits or consequences to the health and 
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evolution of a species. Many studies have suggested that maternal age’s intrinsic factor 

has a significant effect on recombination rate, but the direction of the effect is still 

debatable (Polani and Jagiello, 1976; Hussin et al., 2011; Martin et al., 2015). A recent 

multicohort analysis in humans reported a small but significant positive effect of maternal 

age on recombination rate, which contradicted previous studies in other human 

population (Martin et al., 2015). In mice and hamsters, a negative effect of maternal age 

was observed (Polani and Jagiello, 1976). However, no effect of maternal age was found 

for recombination rate in wild sheep (Johnston et al., 2016), but an increase was reported 

in swine (LozadaSoto et al., 2021). Also, extensive studies of the maternal age effect 

have been conducted in Drosophila, worms, plants, and yeast, but no consistent 

conclusion have been reached (Hunter et al., 2016; Modliszewski and Copenhaver, 

2017). As for the paternal side, many studies reported no effect of paternal age on meiotic 

recombination (Griffin et al., 1995; Hussin et al., 2011). Although the biological reason 

remains unclear for the effect of maternal age on recombination, there are some proposed 

explanations for both directions of the effect. The positive effect can be explained by a 

selection hypothesis: the factors related to aneuploidies increase with maternal age, so 

eggs with more crossovers are more likely to overcome these and give a live birth in 

older mothers (Kong et al., 2004). The negative effect can be explained by another 

hypothesis that specific meiotic configurations are less likely to be properly processed 

with increasing maternal age, so recombination rate decreases with maternal age (Hassold 

et al., 1995). 

Extrinsic factors, such as temperature and nutrient conditions, have also been 

found to influence meiotic recombination rates. In Drosophila, environmental stressors 
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such as exposure to Ethylenediaminetetraacetic acid (EDTA) or nutritional deficiency 

were observed to increase the recombination rate (Levine, 1955). Similarly, in the 

budding yeast, Saccharomyces cerevisiae, a lack of nutritional resources resulted in an 

increased recombination rate (Abdullah and Borts, 2001). However, the effect of 

temperature on meiotic recombination rates is more complicated. Some studies reported a 

positive correlation in Arabidopsis thaliana, Caenorhabditis elegans, and Melanoplus 

femurrubrum (Church and Wimber, 1969; Rose and Baillie, 1979; Francis et al., 2007), 

while other studies found a negative correlation in Allium ursinum (Loidl, 1989). 

Additionally, both positive and negative correlations were detected in Drosophila 

(Stern, 1926). For instance, a recent study in Drosophila melanogaster reported a non-

linear increase in meiotic recombination frequency in response to increased exposure to 

heat shock conditions (Jackson et al., 2015). This finding suggests that Drosophila can 

plastically modulate their recombination rate in response to environmental conditions, 

thus conferring greater adaptive potential to their offspring. In cattle, decreases in fertility 

rate have occurred due to the major factor of heat stress. In fact, Holstein cattle’s 

conception rate in the summer season is 20–30% less than in the winter season 

(Cavestany et al., 1985). 

The formation of the Animal Genomics and Improvement Laboratory (AGIL) has 

facilitated the development of genetic evaluations for economically important traits in 

United States dairy cattle. Such studies can enhance research to improve the health and 

efficiency of cattle, including the study of recombination features across multiple cattle 

breeds with high statistical power. Using the large cattle genomic database maintained by 

AGIL and the Council on Dairy Cattle Breeding (CDCB), we have previously 
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characterized the recombination features and their genetic control in dairy cattle. As 

mounting evidence has shown, meiotic recombination rates respond to both intrinsic and 

extrinsic conditions. Therefore, this study aims to determine how recombination rates 

vary in relation to advancing maternal age and common environment factors, such as 

temperature. 

Results and Discussion 

Identification of recombination events in genotyped cattle pedigree 

Using a method developed in our previous studies (Ma et al., 2015; Wang et al., 2016), 

we identified recombination events by constructing three-generation families from a large 

cattle pedigree that included an offspring, parents, and grandparents. We phased the SNP 

genotypes of the focal offspring and its parents within each three-generation family. We 

then inferred maternal crossover events by comparing phased genotypes between dam-

offspring pairs. To ensure optimal data quality, we excluded the X chromosome and used 

the SNP coordinates that have been corrected for potential mapping errors (Null et al., 

2019; Rosen et al., 2020). In total, we extracted 305,545 three-generation families and 

identified 6,677,618 maternal crossover events. All the animals have birth dates 

available, so we used the age of parent at birth of the focal offspring to study the effect of 

maternal age. Farm location and temperature information were available for 36,999 

parents, which were included in the temperature effect analysis. 

Effects of maternal age on recombination rate in cattle 

Previous studies have suggested a relationship between maternal age and the number of 

recombination events in plants, mice, and humans. However, even within the same 
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species, the direction of this correlation remains inconsistent. To investigate how 

recombination rates are related to maternal age in cattle, we first modeled this 

relationship with a continuous variable of maternal age and the recombination rate 

residuals in cattle (Figure 1A). The recombination rate residuals were obtained by 

adjusting recombination rates with SNP chip density and the number of informative SNP 

markers within each of the 305,545 three-generation families. As a result, we observed a 

quadratic trend where recombination rate initially decreased from 20 to 65 months old 

parents and then increased as the cow grew older than 65 months. Note that we have 

more statistical support for the decreasing trend of recombination rate from 20 to 65 

months since it consists of 91.8% of our records with much smaller standard errors. 

Parents that gave birth between 65 and 100 months old consist of 21,798 (7.1%) cases of 

our data, and we only have 3,321 (1.1%) cows giving birth above 100 months age. Still, 

the increasing trend after 65 months of maternal age is supported with a reasonable 

sample size (>25,000). This increasing trend of recombination rate in older parents is 

consistent with maternal age’s positive effect on recombination rate in the latest 

multicohort human study (Martin et al., 2015). 

Since 65 months is the age that separated two groups of cows by the direction of 

maternal age effect, we divided the cows into ten age groups starting from 20 months old 

with an increment of 10 months and plotted the relationship (Figure 1B). Consistently, 

the same quadratic trend was observed when using maternal age as groups. Note that the 

last age group consists of all the records of parents giving birth over 120 months of age. 

To the best of our knowledge, this is the first such study in a mammalian species that 

reported a U-shaped relationship between maternal age and recombination rate. However, 
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a quadratic relationship was also identified for the effect of temperature on the 

recombination rates in plants, fruit flies, and grasshoppers (Church and Wimber, 1969; 

Phillips et al., 2015), although the underlying mechanisms of meiotic recombination are 

completely different between cattle and these species. And this increasing of 

recombination after 65 months of age can also be due to culling and data representation 

issues because only the most fertile cows can survive on a farm for more than 65 months. 

Effects of temperature on maternal recombination rates in cattle 

Previous studies have shown that temperature affects meiotic recombination rates in 

many poikilothermic organisms, including yeast, plants, worms, grasshoppers, and large 

reptiles such as crocodiles (Church and Wimber, 1969; Isberg et al., 2006; Phillips et al., 

2015). However, the direction of the effect remains inconclusive. Utilizing the extensive 

cattle pedigree data from the United States National Cooperators Database, we 

characterized meiotic recombination features in dairy cows and integrated them with the 

environmental temperature information. Using the NOAA National Weather Database, 

we obtained temperature data for the months when the calves were conceived by the 

parents of interest. In total, we have 36,999 records with both the environmental 

temperature and recombination rate data. 

We fitted a model to explore the temperature effect on maternal recombination 

rates in cattle. THI (temperature humidity index) has been widely used to indicate heat or 

cold stress in cattle (Gaughan et al., 2008). An environment with THI exceeding 78 can 

be considered as a heat stress condition for cattle because both the productive and 

reproductive performance of cows would be seriously affected (Bohmanova et al., 2007). 
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There is no predetermined THI index for cold stress conditions as cattle’s wellness in a 

cold environment depends on several factors such as management practices and their hair 

coats. Based on the THI index in cattle, we chose two temperatures as the threshold of 

hot and cold conditions. Temperatures above 26.67ºC were considered as hot conditions 

and temperatures below 4.44ºC as cold conditions. In this study, we tested the effect of 

temperature rather than THI on recombination rate as most of previous studies reported 

the effect of temperature rather than THI (Church and Wimber, 1969; Loidl, 1989; 

Phillips et al., 2015). Still, it is interesting to investigate whether THI may have a larger 

impact than temperature only on recombination in future studies. 

The cows were divided into three groups based on the temperature condition 

during the fetal development of the offspring. Over 6 K cows were conceived under hot 

conditions, over 25 K cows were conceived in a mild temperature environment, and 6 K 

cows were conceived under cold environment. To characterize the effect of this 

temperature, we reported box plots of the recombination rate residuals against those three 

conditions (Figure 2). We observed that cows under hot temperatures during pregnancy 

showed an elevation of recombination rate while cows under cold conditions showed 

decreased recombination rate. An increase of recombination events under hot 

environment is consistent with many previous studies across several species, which found 

an increase in recombination frequency under heat stress conditions (Lim et al., 2008; 

Jackson et al., 2015; Modliszewski and Copenhaver, 2017; Arrieta et al., 2021). 

However, the temperature effect identified here was for the fetal development stage of the 

offspring, instead of the female parent. Note that it is the fetal development stage of the 

female parent that is crucial for meiotic recombination in mammals. Therefore, the 
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temperature effect reported here could possibly be due to an indirect effect on the fitness 

of the offspring with more or less crossovers, rather than on the meiosis process itself. 

Finally, the reported temperature effect can be explained by the ‘production line’ 

hypothesis for female recombination (Henderson and Edwards, 1968; Kong et al., 2004). 

Full model analysis of recombination with genetics, maternal age, and 

temperature 

To fully understand the effect of genetic and non-genetic factors on recombination, we 

fitted a full model on recombination rate with all relevant factors available in our data. 

We modeled the genetic or animal effect as a random effect and temperature condition as 

a fixed effect with three levels. We included the temperatures during two important 

developmental stages of a female meiosis, one during the fetal development for the 

offspring (first generation in a three-generation family) and the other during the fetal 

development of the parent (second generation). Finally, we also included maternal age, 

the parent’s birth year, and the quadratic term of these factors in the model (Table 1). 

Based on the genetic effect, we estimated the recombination rate’s heritability to be 10% 

(SE = 0.03), consistent with other studies in livestock animals (Sandor et al., 2012; 

Johnston et al., 2016; Zhang et al., 2020). Our results from this full model showed that 

hot temperature during the fetal development of the offspring would increase 

recombination rate (P = 0.027), while cold conditions were associated with decreased 

recombination rate (P = 0.019). However, the temperature (hot and cold conditions) 

during the fetal development of parents were not significantly associated with 

recombination rate (P = 0.271 and P = 0.097, respectively), although that is when female 

meiosis arrests. We also found that maternal age has a negative effect on recombination 
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rates (P = 4.83 × 10−12) with a significant quadratic term (P = 5.68 × 10−4 ), confirming 

the U-shaped relationship between maternal age and recombination rate. We also noticed 

that a parent’s birth year would positively influence recombination rates (P = 1.51 × 

10−31) with a significant quadratic term (P = 1.01 × 10−40), indicating either an increasing 

trend of recombination rate in the dairy cattle population or some inherent confounding in 

the data. 

Potential Application of Recombination to Animal Breeding 

Theoretically, recombination should be beneficial for the long-term efficiency of 

selection through increasing genetic variation (Otto and Barton, 2001). However, in a 

short-term period, recombination may also break the combination of beneficial alleles in 

the haplotypes that were selected for breeding. Recent simulation studies have shown that 

the effect of modifying recombination rate on the improvement of traditional genomic 

selection is small (Battagin et al., 2016). Still, our recent work on gamete variance 

provided another way of using recombination on short term selection, especially for bull 

sires and bull dams (Santos et al., 2019). The quadratic effect of maternal age on 

recombination rate suggests that young bull dams with higher recombination rate will 

have larger gametic variance and a better chance of producing eggs with extreme genetic 

merit. Finally, recombination rate does not need to be included as an independent trait in 

selective breeding because it has no direct economic values. But it will be under indirect, 

positive selection when breeding program is effective and proper selection indices used 

because of the long-term benefit of recombination in promoting genetic and gametic 

variations. 
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Conclusion 

It has been shown that recombination rate can fluctuate in response to environmental 

changes. In this study, we used large pedigree data of dairy cattle to test the association 

between recombination rate and genetic and non-genetic factors, including maternal age 

and temperature. We discovered a non-linear association between maternal age and 

recombination rate in cattle, which has not been described before. Additionally, we found 

elevated recombination rates with increasing environmental temperature during 

conception. Taken together, our study provides clear evidence of an association between 

meiotic recombination with the non-genetic factors of maternal age and temperature. These 

results reveal useful insights into both the intrinsic and extrinsic effects on meiotic 

recombination. 
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Materials and Methods 

Estimation of recombination rate in cattle pedigree  

We used an approach similar to the one that was developed in previous studies (Ma et al., 

2015; Shen et al., 2018). First, we identified recombination/crossover events in genotyped 

cattle pedigree data from the national dairy genomic database hosted at the Council on 

Dairy Cattle Breeding (CDCB). Based on the millions of animals with genotype and 

pedigree data available, we extracted 305,545 three-generation families where an offspring 

(first generation), at least one parent (second generation), and at least one grandparent 

(third generation) were genotyped. We then phased the two haplotypes of an animal (first 

and second generations) based on the parental genotypes. We identified crossover events 

by comparing haplotypes in the first and second generations. Recombination events were 

assigned to an interval flanked by two informative SNPs (phased heterozygote SNPs in the 

second generation), and we estimated recombination rate between consecutive SNPs by 

the average crossover numbers per meiosis. We only used three-generation families that 

were genotyped by at least 50 K SNP chips. We used the ARS-UCD 1.2 genome assembly 

(Rosen et al., 2020) with updated SNP coordinates1 and removed the loci from problematic 

regions identified in previous studies (Null et al., 2019). We only used autosome data due 

to the quality issues with the sex chromosomes. We also removed animals with more than 

45 genome-wide recombination events based on the distribution of recombination across 

all animals, which is close to a normal distribution with mean 23.2 and variance 98.3. 
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Temperature data information from the NOAA database 

The National Oceanic and Atmospheric Administration (NOAA) is an American 

scientific agency that focuses on the conditions of the oceans and atmosphere. It’s also 

the largest database that contains the weather records of most United States cities since 

1970s. By accessing the NOAA database using the R package “rnoaa” (Edmund et al., 

2014), we extracted the weather conditions during two critical periods of a cow’s 

development that may affect the female meiotic recombination process (Table 1). The 

first temperature was the average temperature in the month prior to the birthdate of the 

offspring that measures the fetal development environment of the offspring (the first 

generation in a three-generation family). The second temperature was the average 

temperature during the month prior to the birthdate of the parent that measures the 

environment during the fetal development of the parent (the second generation). We then 

combined the temperature data with our recombination records for our mixed model 

analysis. By considering both the range of temperature and data availability, we divided 

the original temperature data into three levels: temperatures above 26.67ºC are 

considered to be “hot,” temperatures below 4.44ºC are considered as “cold,” and 

temperatures in between are “normal.”. 

A full model analysis of genetics, maternal age, and temperature 

From each of the 36,009 three-generation families, we estimated the total number of 

crossover events per meiosis of the female parent (second generation). We then adjusted 

the number of crossover events by SNP density and the number of informative markers 

(phased heterozygote SNPs) of each animal. We first checked the maternal age effect 
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using a smooth spline and boxplot. The smooth spline was fitted in R using the smooth 

spline function between recombination rate residuals and maternal age. Using the 

recombination rate residuals as phenotypes, we also fitted a linear mixed model to test for 

the effect of all available factors on recombination rate using the MMAP software 

(O’Connell, 2013). The model equation was fitted as following, 

𝐘 = 𝛂 + 𝑻𝟏 + 𝑻𝟐 + 𝐀 + 𝑨𝟐 + 𝐁 + 𝑩𝟐 + 𝐠 + 𝜺 ,                              (1) 

where Y refers to the recombination rate residuals of individuals, T1 and T2 are the fixed 

effects for low and high temperatures, A represents a fixed effect of maternal age, A2 

represents the squared effect of maternal age, B and B2 represents the fixed effect of 

parent’ birth year and its square, and g is a random effect for the genetic or animal effect 

on recombination rate with g ~ N(0, σ2G) and G being a genomic relationship matrix of 

the individuals calculated using the approach developed by VanRaden (2008). Both the 

temperatures during the fetal development of the parents and offspring were tested in this 

model. Statistical differences were declared as significant at P < 0.05.. 

Data availability statement 

The original contributions presented in the study are included in the article. Further 

inquiries can be directed to the corresponding author. 

Ethics statement 

Ethical review and approval was not required for the animal study because no live 

animals are used.   
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Table 

Table 1. Results of the mixed model analyses of eight factors related to the recombination 

rates in cattle. 
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Figures 

 

 

 

Figure 1. Trend of recombination rate residuals against maternal age in cattle. 

(A) Fitted smooth spline of recombination rate residuals along with maternal age. The 

smooth spline was fitted in R using the smooth spline function between recombination 

rate residuals and maternal age. 

(B) Recombination rate residuals in different maternal age groups. Blue dots are means, 

and bars are standard errors. 
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Figure 2. Boxplot of recombination rate residuals in three temperature conditions during 

the fetal development of offspring. Cold: temperatures below 4.44ºC; Normal: 

temperatures between 4.44 and 26.67ºC; Hot: temperatures above 26.67ºC 
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Chapter 5: Conclusions 

The objective of this research was to understand the genetic architecture of complex traits 

and apply the understanding to investigate the biological relationship between genetics 

and disease in dairy cattle. The studies in Chapters 2-4 were all focused on addressing 

this objective. 

 In Chapter 2, the aim was to investigate the genetic basis of health and 

related traits in dairy cattle. We ran a GWAS and fine-mapping analysis on livability and 

six health traits in Holstein cattle and reported significant associations and candidate 

genes relevant to cattle health. Additionally, we combined our results with transcriptome 

data across multiple tissues in cattle, which will facilitate future functional studies on 

cattle health. Overall, our study provides insight on the biological relationship between 

genetics and disease susceptibility in cattle. 

 In Chapter 3, our aim was to evaluate genome-wide and region-specific 

changes in a U.S. dairy cattle population over a period of time. We identified candidate 

variants under selection, which are associated with biological traits and economically 

important traits in cattle. In addition, I proposed a gene dropping simulation program in R 

software to identify the genome changes that occurred due to selection from those due to 

random genetic drift. I demonstrated that gene dropping is an applicable method to 

investigate changes in the cattle genome over time. This method and software program 

will be useful to visualize genes that are significant and study them for their effect on 

genomic selection in dairy cattle. 

 In Chapter 4, the aim was to study meiotic recombination and demonstrate 

the effect of maternal age and temperature on recombination rate in cattle. From this 
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study, we provided novel information regarding the plasticity of meiotic recombination in 

cattle. We also showed a positive correlation between environmental temperature at 

conception and recombination rate in Holstein-Friesian cows. Collectively, our results 

indicate clear evidence of an association between meiotic recombination with maternal 

age and temperature. This study may facilitate follow-up work on the effects of other 

factors on meiotic recombination in cattle and other mammalian species. 

 In summary, the studies in these three chapters specifically focuses on the 

genetic architecture of complex traits. Future perspectives include conducting functional 

studies to test the candidate genes associated with complex diseases in cattle that we 

identified in Chapter 2. Additionally, the fine-mapped regions from our study in Chapter 

2 can be analyzed by integrating other functional annotation data to identify biologically 

meaningful information about those regions and complex traits. From Chapter 3, the 

development of a gene dropping simulation program in Python will be able to obtain 

expected absolute allele frequency changes between any two generations. This program 

can be compared for consistency to our current gene dropping simulation results in U.S. 

dairy cattle. Furthermore, the results from Chapter 4 can be extended to investigate the 

association between the genetic architecture of meiotic recombination with other non-

genetic factors to determine its implications for genetic studies of complex traits. 

  



95 
 

Bibliography 

Abdullah MF, Borts RH: Meiotic recombination frequencies are affected by 

nutritional states in Saccharomycescerevisiae. Proceedings of the National 

Academy of Sciences of the United States of America 2001, 98(25):14524-14529. 

 

Arrieta, M., Willems, G., DePessemier, J., Colas, I., Burkholz, A., 

Darracq, A., et al. (2021). The effect of heat stress on sugar beet recombination. 

Theor. Appl. Genet. 134, 81–93. doi: 10.1007/s00122-020-0 

3683-0. 

 

Auer, P.L., Lettre, G. Rare variant association studies: considerations, challenges 

and opportunities. Genome Med 7, 16 (2015). 

 

Backman JD, O’Connell JR, Tanner K, Peer CJ, Figg WD, Spencer SD, Mitchell 

BD, Shuldiner AR, Yerges-Armstrong LM, Horenstein RB. Genome-wide 

analysis of clopidogrel active metabolite levels identifies novel variants that 

influence antiplatelet response. Pharmacogenet Genomics. 2017; 27(4):159. 

 

Barbaux S, Gascoin-Lachambre G, Buffat C, Monnier P, Mondon F, Tonanny M-

B, Pinard A, Auer J, Bessières B, Barlier A. A genome-wide approach reveals 

novel imprinted genes expressed in the human placenta. Epigenetics. 2012; 

7(9):1079–90. 

 

Bartlett PC, Kirk JH, Wilke MA, Kaneene JB, Mather EC: Metritis complex in 

Michigan Holstein-Friesian cattle: incidence, descriptive epidemiology and 

estimated economic impact. Preventive veterinary medicine 1986, 4(3):235-248. 

 

Battagin, M., Gorjanc, G., Faux, A.-M., Johnston, S. E., and Hickey, J. M. (2016). 

Effect of manipulating recombination rates on response to selection in livestock 

breeding programs. Genet. Sel. Evol. 48, 1–12. 

 

Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, de 

Massy B: PRDM9 is a major determinant of meiotic recombination hotspots in 

humans and mice. Science 2010, 327(5967):836-840. 

 

Bohmanova, J., Misztal, I., and Cole, J. (2007). Temperature-humidity indices 

as indicators of milk production losses due to heat stress. J. Dairy Sci. 90, 

1947–1956. doi: 10.3168/jds.2006-513. 

 

Boyle, A. P., et al. (2012). Annotation of functional variation in personal genomes 

using RegulomeDB. Genome research, 22(9), 1790–1797. 

 

Buzanskas ME, do Amaral Grossi D, Ventura RV, Schenkel FS, TCS C, Stafuzza 

NB, Rola LD, SLC M, Mokry FB, de Alvarenga Mudadu M. Candidate genes for 



96 
 

male and female reproductive traits in Canchim beef cattle. J Anim Sci 

Biotechnol. 2017; 8(1):67. 

 

Canela-Xandri, O., Rawlik, K., Woolliams, J. A., & Tenesa, A. (2016). Improved 

Genetic Profiling of Anthropometric Traits Using a Big Data Approach. PloS one, 

11(12), e0166755. 

 

Capon, Francesca et al. (2004). “A synonymous SNP of the corneodesmosin gene 

leads to increased mRNA stability and demonstrates association with psoriasis 

across diverse ethnic groups.” Human molecular genetics vol. 13, 20. 2361-8. 

 

Cavestany D, el-Wishy AB, Foote RH: Effect of season and high environmental 

temperature on fertility of Holstein cattle. Journal of dairy science 1985, 

68(6):1471-1478. 

 

Chen, W., et al. (2015). Fine Mapping Causal Variants with an Approximate 

Bayesian Method Using Marginal Test Statistics. Genetics, 200(3), 719–736. 

 

Chowdhury R, Bois PR, Feingold E, Sherman SL, Cheung VG: Genetic analysis 

of variation in human meiotic recombination. PLoS genetics 2009, 5(9):e1000648. 

 

Church K, Wimber DE: Meiosis in the grasshopper: chiasma frequency after 

elevated temperature and x-rays. Canadian journal of genetics and cytology 

Journal canadien de genetique et de cytologie 1969, 11(1):209-216. 

 

Cole J, VanRaden P, O’Connell J, Van Tassell C, Sonstegard T, Schnabel R, 

Taylor J, Wiggans G. Distribution and location of genetic effects for dairy traits. J 

Dairy Sci. 2009; 92(6):2931–46. 

Cole JB, Wiggans GR, Ma L, Sonstegard TS, Lawlor TJ, Crooker BA, Van 

Tassell CP, Yang J, Wang S, Matukumalli LK: Genome-wide association analysis 

of thirty one production, health, reproduction and body conformation traits in 

contemporary US Holstein cows. BMC genomics 2011, 12(1):408. 

Collins F, Brooks L, Chakravarti A. A DNA polymorphism discovery resource 

for research on human genetic variation. Genome Research, (1998); 8(12): 1229-

31. 

 

de Bakker, P. I., Ferreira, M. A., Jia, X., Neale, B. M., Raychaudhuri, S., & 

Voight, B. F. (2008). Practical aspects of imputation-driven meta-analysis of 

genome-wide association studies. Human molecular genetics, 17(R2), R122–

R128. 

Doekes, H.P., Veerkamp, R.F., Bijma, P., Hiemstra, S.J., and J.J. Windig. “Trends 

 in the genome-wide and region specific genetic diversity in the Dutch-Flemish 

 Holstein-Friesian breeding program from 1986 to 2015.” Genetics Selection 

 Evolution (2018) 50:15. BMC. Web. 



97 
 

Duffield T: Subclinical ketosis in lactating dairy cattle. Veterinary clinics of north 

america: Food animal practice 2000, 16(2):231-253. 

 

Edmund, H., Chamberlain, S., Ram, K., and Edmund, M. H. (2014). rnoaa: 

‘NOAA’ Weather Data from R. R Package Version 1.3.2. Available online at: 

https://CRAN.R-project.org/package=rnoaa. 

 

Eichler EE, et al. (2010). Missing heritability and strategies for finding the 

underlying causes of complex disease. Nat Rev Genet 11:446–450. 

 

Fang L, Jiang J, Li B, Zhou Y, Freebern E, VanRaden PM, Cole JB, Liu GE, Ma 

L. Genetic and epigenetic architecture of paternal origin contribute to gestation 

length in cattle. Commun Biol. 2019; 2(1):100. 

Fang, L., Sahana, G., Ma, P. et al. Exploring the genetic architecture and 

improving genomic prediction accuracy for mastitis and milk production traits in 

dairy cattle by mapping variants to hepatic transcriptomic regions responsive to 

intra-mammary infection. Genet Sel Evol 49, 44 (2017). 

Faye, L. L., Machiela, M. J., Kraft, P., Bull, S. B., & Sun, L. Re-ranking 

sequencing variants in the post-GWAS era for accurate causal variant 

identification. PLoS genetics 9, 8 (2013). 

Finucane HK, Reshef YA, Anttila V, Slowikowski K, Gusev A, Byrnes A, Gazal 

S, Loh P-R, Lareau C, Shoresh N. Heritability enrichment of specifically 

expressed genes identifies disease-relevant tissues and cell types. Nat Genet. 

2018; 50(4):621. 

 

Francis KE, Lam SY, Harrison BD, Bey AL, Berchowitz LE, Copenhaver GP: 

Pollen tetrad-based visual assay for meiotic recombination in Arabidopsis. 

Proceedings of the National Academy of Sciences of the United States of America 

2007, 104(10):3913-3918. 

 

Frischknecht, M., Pausch, H., Bapst, B. et al. Highly accurate sequence 

imputation enables precise QTL mapping in Brown Swiss cattle. BMC Genomics 

18, 999 (2017). 

 Gaddis KP, Megonigal J Jr, Clay J, Wolfe C. Genome-wide association study 

for ketosis in US jerseys using producer-recorded data. J Dairy Sci. 2018; 

101(1):413–24. 

 

Garrick DJ, Taylor JF, Fernando RL. Deregressing estimated breeding values and 

weighting information for genomic regression analyses. Genet Sel Evol. 2009; 

41(1):55. 

 

Gaughan, J., Mader, T. L., Holt, S., and Lisle, A. (2008). A new heat load index 

for feedlot cattle. J. Anim. Sci. 86, 226–234. doi: 10.2527/jas.2007-0305. 



98 
 

 

Gowane G, Vandre R, Nangre M, Sharma A. Major histocompatibility complex 

(MHC) of bovines: an insight into infectious disease resistance. Livestock Res Int. 

2013; 1(2):46–57. 

 

 Griffin DK, Abruzzo MA, Millie EA, Sheean LA, Feingold E, Sherman SL, 

Hassold TJ: Non-disjunction in human sperm: evidence for an effect of increasing 

paternal age. Human molecular genetics 1995, 4(12):2227-2232. 

 

 Grisart B, Coppieters W, Farnir F, Karim L, Ford C, Berzi P, Cambisano N, Mni 

M, Reid S, Simon P, et al. 2002. Positional candidate cloning of a QTL in dairy 

cattle: identification of a missense mutation in the bovine DGAT1 gene with 

major effect on milk yield and composition. Genome Res 12: 222–231. 

  

Gurdasani, D., Barroso, I., Zeggini, E. et al. Genomics of disease risk in globally 

diverse populations. Nat Rev Genet 20, 520–535 (2019). 

 Haidich, A.B. (2010). Meta-analysis in medical research. Hippokratia, 14(Suppl 

1), 29–37. 

 

Hassold T, Hunt P: To err (meiotically) is human: the genesis of human 

aneuploidy. Nature reviews Genetics 2001, 2(4):280-291. 

 

Hassold, T., Merrill, M., Adkins, K., Freeman, S., and Sherman, S. (1995). 

Recombination and maternal age-dependent nondisjunction: molecular studies 

of trisomy 16. Am. J. Hum. Genet. 57, 867–874. 

 

Hayes, B.J. & Daetwyler, H. D. 1000 Bull Genomes project to map simple and 

complex genetic traits in cattle: applications and outcomes. Annu. Rev. Anim. 

Biosci. 7, 1 (2018). 

 

Hayes, B. J., Pryce, J., Chamberlain, A. J., et al. (2010). Genetic architecture of 

complex traits and accuracy of genomic prediction: coat colour, milk-fat 

percentage, and type in Holstein cattle as contrasting model traits. PLoS genetics, 

6(9), e1001139. 

 

Heidaritabar, M., Vereijken, A., Muir, W.M., Meuwissen, T., Cheng, H., Megens, 

H.J., Groenen, M.A.M., and J.W.M. Bastiaansen. “Systematic differences in the 

response of genetic variation to pedigree and genome-based selection methods.” 

Heredity (2014) 113: 503-513. 

 

Henderson, S., and Edwards, R. (1968). Chiasma frequency and maternal age in 

mammals. Nature 218, 22–28. doi: 10.1038/218022a0. 

 

Heringstad B, Gianola D, Chang YM, Odegård J, Klemetsdal G. Genetic 

associations between clinical mastitis and somatic cell score in early first-lactation 

cows. J Dairy Sci. 2006 Jun; 89(6):2236-44. 



99 
 

 

 Hindorff L, Sethupathy P, Junkins H, Ramos E, Mehta J, Collins F, et al. 

Potential etiologic and functional implications of genome-wide association loci 

for human diseases and traits. Proceedings of National Academy of Sciences of 

the United States of America. (2009); 106(23): 9362-7. 

 

 Hiroki T, Liebhaber SA, Cooke NE. An intronic locus control region plays an 

essential role in the establishment of an autonomous hepatic chromatin domain 

for the human vitamin D-binding protein gene. Mol Cell Biol. 2007; 27(21):7365–

80. 

 

 Höglund, J., Rafati, N., Rask-Andersen, M. et al. Improved power and precision 

with whole genome sequencing data in genome-wide association studies of 

inflammatory biomarkers. Sci Rep 9, 16844 (2019). 
  

 Horst R, Goff J, Reinhardt T. Role of vitamin D in calcium homeostasis and its 

use in prevention of bovine periparturient paresis. Acta Vet Scand Suppl. 2003; 

97:35–50. 

 

 Hu Z-L, Park CA, Wu X-L, Reecy JM. Animal QTLdb: an improved database 

tool for livestock animal QTL/association data dissemination in the postgenome 

era. Nucleic Acids Res. 2012; 41(D1):D871–9. 

  

Hunter CM, Robinson MC, Aylor DL, Singh ND: Genetic Background, Maternal 

Age, and Interaction Effects Mediate Rates of Crossing Over in Drosophila 

melanogaster Females. G3 2016, 6(5):1409-1416. 

 

Hussin J, Roy-Gagnon MH, Gendron R, Andelfinger G, Awadalla P: Age-

dependent recombination rates in human pedigrees. PLoS genetics 2011, 

7(9):e1002251. 

 

Ioannidis, N. M., et al. (2017). FIRE: functional inference of genetic variants that 

regulate gene expression. Bioinformatics, 33(24), 3895–3901. 

 

Isberg, S. R., Johnston, S. M., Chen, Y., and Moran, C. (2006). First evidence 

of higher female recombination in a species with temperature-dependent sex 

determination: the saltwater crocodile. J. Hered. 97, 599–602. doi: 10.1093/ 

jhered/esl035. 

 

Jackson S, Nielsen DM, Singh ND: Increased exposure to acute thermal stress is 

associated with a non-linear increase in recombination frequency and an 

independent linear decrease in fitness in Drosophila. BMC Evol Biol 2015, 15. 

 

Jiang, J., Cole, J.B., Freebern, E. et al. Functional annotation and Bayesian fine-

mapping reveals candidate genes for important agronomic traits in Holstein bulls. 

Commun Biol 2, 212 (2019). 



100 
 

 

Johnston SE, Berenos C, Slate J, Pemberton JM: Conserved Genetic Architecture 

Underlying Individual Recombination Rate Variation in a Wild Population of 

Soay Sheep (Ovis aries). Genetics 2016, 203(1):583-598. 

 

 Jostins, L., Ripke, S., Weersma, R. et al. Host–microbe interactions have shaped 

the genetic architecture of inflammatory bowel disease. Nature 491, 119–124 

(2012). 

 

 Kaiser, Jocelyn. “‘Landmark’ Study Resolves a Major Mystery of How Genes 

Govern Human Height.” Science, 3 Nov. 2020. 

 Khatkar MS, Nicholas FW, Collins AR, Zenger KR, Cavanagh JA, Barris W, 

Schnabel RD, Taylor JF, Raadsma HW. Extent of genome-wide linkage 

disequilibrium in Australian Holstein-Friesian cattle based on a high-density SNP 

panel. BMC Genomics. 2008; 9(1):187 

Kircher, M., Witten, D., Jain, P. et al. A general framework for estimating the 

relative pathogenicity of human genetic variants. Nat Genet 46, 310–315 (2014). 

Kong A, Barnard J, Gudbjartsson DF, Thorleifsson G, Jonsdottir G, Sigurdardottir 

S, Richardsson B, Jonsdottir J, Thorgeirsson T, Frigge ML et al: Recombination 

rate and reproductive success in humans. Nature genetics 2004, 36(11):1203-

1206. 

Kong A, Thorleifsson G, Stefansson H, Masson G, Helgason A, Gudbjartsson DF, 

Jonsdottir GM, Gudjonsson SA, Sverrisson S, Thorlacius T et al: Sequence 

variants in the RNF212 gene associate with genome-wide recombination rate. 

Science 2008, 319(5868):1398-1401. 

Lango Allen, H., Estrada, K., Lettre, G. et al. Hundreds of variants clustered in 

genomic loci and biological pathways affect human height. Nature 467, 832–838 

(2010). 

Laven R, Peters A: Bovine retained placenta: aetiology, pathogenesis and 

economic loss. Veterinary Record 1996, 139(19):465-471. 

Levine RP: Chromosome Structure and the Mechanism of Crossing Over. 

Proceedings of the National Academy of Sciences of the United States of America 

1955, 41(10):727-730. 

 

Lewinger, J.P., Conti, D. V., Baurley, J. W., Triche, T. J., & Thomas, D. C. 

(2007). Hierarchical Bayes prioritization of marker associations from a genome-

wide association scan for further investigation. Genetic epidemiology, 31(8), 871–

882. 

 



101 
 

Liang D, Arnold L, Stowe C, Harmon R, Bewley J: Estimating US dairy clinical 

disease costs with a stochastic simulation model. Journal of dairy science 2017, 

100(2):1472-1486. 

 

Lim, J. G., Stine, R. R., and Yanowitz, J. L. (2008). Domain-specific regulation of 

recombination in Caenorhabditis elegans in response to temperature, age and 

sex. Genetics 180, 715–726. doi: 10.1534/genetics.108.090142. 

 

Linders PT, van der Horst C, ter Beest M, van den Bogaart G. Stx5-Mediated ER-

Golgi Transport in Mammals and Yeast. Cells. 2019; 8(8):780. 

 

Lipkin SM, Moens PB, Wang V, Lenzi M, Shanmugarajah D, Gilgeous A, 

Thomas J, Cheng J, Touchman JW, Green ED et al: Meiotic arrest and aneuploidy 

in MLH3-deficient mice. Nature genetics 2002, 31(4):385-390. 

 

Liu, S., Yu, Y., Zhang, S. et al. Epigenomics and genotype-phenotype association 

analyses reveal conserved genetic architecture of complex traits in cattle and 

human. BMC Biol 18, 80 (2020). 

 

 Loidl J: Effects of Elevated-Temperature on Meiotic Chromosome Synapsis in 

Allium-Ursinum. Chromosoma 1989, 97(6):449-458. 

 

 Lozada-Soto, E. A., Maltecca, C., Wackel, H., Flowers, W., Gray, K., He, Y., et 

al. (2021). Evidence for recombination variability in purebred swine populations. 

J. Anim. Breed. Genet. 138, 259–273. doi: 10.1111/jbg.12510. 

 

  Lund MS, Sahana G, Andersson-Eklund L, et al. Joint analysis of quantitative 

 trait loci for clinical mastitis and somatic cell score on five chromosomes in three 

 Nordic dairy cattle breeds. J Dairy Sci. 2007 Nov; 90(11):5282-90. 

 Ma, L., Cole, J. B., Da, Y., & VanRaden, P. M. (2019). Symposium review: 

Genetics, genome-wide association study, and genetic improvement of dairy 

fertility traits. Journal of dairy science, 102(4), 3735–3743. 

 

Ma L, O'Connell JR, VanRaden PM, Shen B, Padhi A, Sun C, Bickhart DM, Cole 

JB, Null DJ, Liu GE et al: Cattle Sex-Specific Recombination and Genetic 

Control from a Large Pedigree Analysis. PLoS genetics 2015, 11(11):e1005387. 

 

 Makowsky R., Pajewski N. M., Klimentidis Y. C., Vazquez A. I., Duarte C. W., 

et al., 2011. Beyond missing heritability: Prediction of complex traits. PLoS 

Genet. 7: e1002051. 

 Manolio, T.A. et al. 2009 Finding the missing heritability of complex diseases. 

Nature 461, 747–753. 

 Marchini, J., Howie, B. Genotype imputation for genome-wide association 

studies. Nat Rev Genet 11, 499–511 (2010). 



102 
 

 Marete AG, Guldbrandtsen B, Lund MS, Fritz S, Sahana G, Boichard D. A 

metaanalysis including pre-selected sequence variants associated with seven traits 

in three French dairy cattle populations. Front Genet. 2018; 9:522. 

Martin HC, Christ R, Hussin JG, O'Connell J, Gordon S, Mbarek H, Hottenga JJ, 

McAloney K, Willemsen G, Gasparini P et al: Multicohort analysis of the 

maternal age effect on recombination. Nature communications 2015, 6:7846. 

 

 Maurano MT, Humbert R, Rynes E, et al. Systematic localization of common 

disease-associated variation in regulatory DNA. Science. 2012; 337(6099):1190-

1195. 

 McKay SD, Schnabel RD, Murdoch BM, Matukumalli LK, Aerts J, Coppieters 

W, Crews D, Neto ED, Gill CA, Gao C. Whole genome linkage disequilibrium 

maps in cattle. BMC Genet. 2007; 8(1):74. 

 

 Modliszewski JL, Copenhaver GP: Meiotic recombination gets stressed out: CO 

frequency is plastic under pressure. Current opinion in plant biology 2017, 36:95-

102. 

 

Nalaila S, Stothard P, Moore S, Li C, Wang Z. Whole-genome QTL scan for 

ultrasound and carcass merit traits in beef cattle using Bayesian shrinkage 

method. J Anim Breed Genet. 2012; 129(2):107–19. 

 

Nayeri S, Sargolzaei M, Abo-Ismail M, Miller S, Schenkel F, Moore S, Stothard 

P. Genome-wide association study for lactation persistency, female fertility, 

longevity, and lifetime profit index traits in Holstein dairy cattle. J Dairy Sci. 

2017; 100(2):1246–58. 

 

  Nguyen T. T., Huang, J.Z., Wu, Q., Nguyen, T.T., and M.J. Li. “Genome-wide 

 association data classification and SNPs selection using two-stage quality-based 

 Random Forests.” BMC Genomics (2015) 16: 21-23. 

Null, D., VanRaden, P. M., Rosen, B., O’Connell, J., and Bickhart, D. (2019). 

Using the ARS-UCD1. 2 reference genome in US evaluations. Interbull Bull. 55, 

30–34. 

O’Connell, J. R. (2013). “MMAP: a comprehensive mixed model program for 

analysis of pedigree and population data,” in Proceedings of the 63th Annual 

Meeting of The American Society of Human Genetics (Boston, MA). 

 Olsen H, Hayes B, Kent M, Nome T, Svendsen M, Lien S. A genome wide 

association study for QTL affecting direct and maternal effects of stillbirth and 

dystocia in cattle. Anim Genet. 2010; 41(3):273–80. 

 

 Olsen HG, Knutsen TM, Lewandowska-Sabat AM, Grove H, Nome T, Svendsen 

M, Arnyasi M, Sodeland M, Sundsaasen KK, Dahl SR. Fine mapping of a QTL 



103 
 

on bovine chromosome 6 using imputed full sequence data suggests a key role for 

the group-specific component (GC) gene in clinical mastitis and milk production. 

Genet Sel Evol. 2016; 48(1):79. 

 

 Otto, S. P., and Barton, N. H. (2001). Selection for recombination in small 

populations. Evolution 55, 1921–1931. doi: 10.1554/0014-3820(2001)055[1921: 

sfrisp]2.0.co;2 

 

Parker Gaddis K, Tooker M, Wright J, Megonigal J, Clay J, Cole J, VanRaden P: 

Development of national genomic evaluations for health traits in U.S. Holsteins. 

Proc 11th World Congr Genet Appl Livest Prod, Auckland, New Zealand, Feb 

11–16 2018, Vol. Biol. & Species–Bovine (dairy) 1, p. 594. 

 

Phillips, D., Jenkins, G., Macaulay, M., Nibau, C., Wnetrzak, J., Fallding, D., 

et al. (2015). The effect of temperature on the male and female recombination 

landscape of barley. New Phytol. 208, 421–429. doi: 10.1111/nph.13548 

 

Polani PE, Jagiello GM: Chiasmata, meiotic univalents, and age in relation to 

aneuploid imbalance in mice. Cytogenetics and cell genetics 1976, 16(6):505-529. 

 

Price Alkes L., Spencer Chris C. A. and Donnelly Peter. 2015. Progress and 

promise in understanding the genetic basis of common diseases. Proc. R. Soc. B. 

282: 20151684 

 

 Pryce JE, Hayes BJ, Bolormaa S, Goddard ME. Polymorphic regions affecting 

human height also control stature in cattle. Genetics. 2011; 187(3):981–4. 

 

 Purfield DC, Bradley DG, Evans RD, Kearney FJ, Berry DP. Genome-wide 

association study for calving performance using high-density genotypes in dairy 

and beef cattle. Genet Sel Evol. 2015; 47(1):47. 

 

Raphaka, K., Matika, O., Sánchez-Molano, E. et al. (2017). Genomic regions 

underlying susceptibility to bovine tuberculosis in Holstein-Friesian cattle. BMC 

Genet 18, 27. 

 

Reinhardt TA, Lippolis JD, McCluskey BJ, Goff JP, Horst RL: Prevalence of 

subclinical hypocalcemia in dairy herds. The Veterinary Journal 2011, 

188(1):122-124. 

 

Rose AM, Baillie DL: The Effect of Temperature and Parental Age on 

Recombination and Nondisjunction in CAENORHABDITIS ELEGANS. 

Genetics 1979, 92(2):409-418. 

 

Rosen, B. D., Bickhart, D. M., Schnabel, R. D., Koren, S., Elsik, C. G., Tseng, E., 

et al. (2020). De novo assembly of the cattle reference genome with single-

molecule sequencing. Gigascience 9:giaa021. 



104 
 

 

Sahana G, Guldbrandtsen B, Thomsen B, Lund MS. Confirmation and 

finemapping of clinical mastitis and somatic cell score QTL in Nordic Holstein 

cattle. Anim Genet. 2013; 44(6):620–6. 

 

Sahana, G., et al. (2014). Genome-wide association study using high-density 

single nucleotide polymorphism arrays and whole-genome sequences for clinical 

mastitis traits in dairy cattle. Journal of dairy science, 97(11), 7258–7275. 

 

Sandor C, Li W, Coppieters W, Druet T, Charlier C, Georges M: Genetic variants 

in REC8, RNF212, and PRDM9 influence male recombination in cattle. PLoS 

genetics 2012, 8(7):e1002854. 

 

Santos, D., Cole, J., Lawlor, T. Jr., VanRaden, P., Tonhati, H., and Ma, L. (2019). 

Variance of gametic diversity and its application in selection programs. J. Dairy 

Sci. 102, 5279–5294. doi: 10.3168/jds.2018-15971. 

 

 Santos D, Cole J, Null D, Byrem T, Ma L. (2018). Genetic and nongenetic 

profiling of milk pregnancy-associated glycoproteins in Holstein cattle. J Dairy 

Sci. 101(11):9987–10000. 

 

 Sargolzaei M, Schenkel F, Jansen G, Schaeffer L. (2008). Extent of linkage 

disequilibrium in Holstein cattle in North America. J Dairy Sci. 91(5):2106–17. 

 

Sauna, Z., Kimchi-Sarfaty, C. (2011). Understanding the contribution of 

synonymous mutations to human disease. Nat Rev Genet 12, 683–691. 

Schaid DJ, Chen W, Larson NB. (2018). From genome-wide associations to 

candidate causal variants by statistical fine-mapping. Nat Rev Genet. 19(8):491–

504. 

 

Schlafer D, Fisher P, Davies C. (2000). The bovine placenta before and after 

birth: placental development and function in health and disease. Anim Reprod Sci 

60:145–60. 

 

Schrodi, S. J., Mukherjee, S., Shan, Y., et al. (2014). Genetic-based prediction of 

disease traits: prediction is very difficult, especially about the future. Frontiers in 

genetics, 5, 162. 

 

Schwefel, D., B. S. Arasu, S. F. Marino, B. Lamprecht, K. Ko¨chert, E. 

Rosenbaum, J. Eichhorst, B. Wiesner, J. Behlke, O. Rocks, et al. 2013. Structural 

insights into the mechanism of GTPase activation in the GIMAP family. Structure 

21: 550–559. 

 

 Seegers H, Fourichon C, Beaudeau F (2003). Production effects related to mastitis 

and mastitis economics in dairy cattle herds. Veterinary research, 34(5):475-491. 

 



105 
 

 Shen, B., Jiang, J., Seroussi, E., Liu, G. E., and Ma, L. (2018). Characterization of 

recombination features and the genetic basis in multiple cattle breeds. BMC 

Genomics 19:304. doi: 10.1186/s12864-018-4705-y. 

 

Snelling W, Allan M, Keele J, Kuehn L, Mcdaneld T, Smith T, Sonstegard T, 

Thallman R, Bennett G. (2010). Genome-wide association study of growth in 

crossbred beef cattle. J Anim Sci. 88(3):837–48. 

 

Sonstegard, T. S. et al. (2013). Identification of a nonsense mutation in CWC15 

associated with decreased reproductive efficiency in Jersey cattle. PLoS ONE 8, 

e54872. 

Spindel, J., Begum, H., Akdemir, D. et al. (2016). Genome-wide prediction 

models that incorporate de novo GWAS are a powerful new tool for tropical rice 

improvement. Heredity 116, 395–408. 

 

Stephens, M., Balding, D. (2009). Bayesian statistical methods for genetic 

association studies. Nat Rev Genet 10, 681–690. 

 

Stern C (1926). An Effect of Temperature and Age on Crossing-Over in the First 

Chromosome of Drosophila Melanogaster. Proceedings of the National Academy 

of Sciences of the United States of America 12(8):530-532. 

 

 Takeshima SN, Aida Y. (2006). Structure, function and disease susceptibility of 

the bovine major histocompatibility complex. Anim Sci J. 77(2):138–50. 

 

Tetens J, Seidenspinner T, Buttchereit N, Thaller G. (2013). Whole-genome 

association study for energy balance and fat/protein ratio in German Holstein bull 

dams. Anim Genet. 44(1):1–8. 

 

 The 1000 Genomes Project Consortium., Corresponding Author., McVean, G. et 

al. (2012). An integrated map of genetic variation from 1,092 human genomes. 

Nature 491, 56–65. 

 The ENCODE Project Consortium., Overall coordination (data analysis 

coordination)., Dunham, I. et al. (2012). An integrated encyclopedia of DNA 

elements in the human genome. Nature 489, 57–74. 

 The Haplotype Reference Consortium., McCarthy, S., Das, S. et al. (2016). A 

reference panel of 64,976 haplotypes for genotype imputation. Nat Genet 48, 

1279–1283. 

 Toyofuku T, Yoshida J, Sugimoto T, Yamamoto M, Makino N, Takamatsu H, 

Takegahara N, Suto F, Hori M, Fujisawa H. (2008). Repulsive and attractive 

semaphorins cooperate to direct the navigation of cardiac neural crest cells. Dev 

Biol. 321(1):251–62. 

 



106 
 

 Trynka, G., Sandor, C., Han, B., Xu, H., Stranger, B. E., Liu, X. S., & 

Raychaudhuri, S. (2013). Chromatin marks identify critical cell types for fine 

mapping complex trait variants. Nature genetics, 45(2), 124–130. 

 

 VanRaden, P. M. (2008). Efficient methods to compute genomic predictions. 

J. Dairy Sci. 91, 4414–4423. doi: 10.3168/jds.2007-0980 

 

VanRaden PM, Sun C (2014). Fast Imputation Using Medium- or Low-Coverage 

Sequence Data. Proceedings, 10th World Congress of Genetics Applied to 

Livestock Production. 

 

 VanRaden, P.M., Sun, C. & O’Connell, J.R. (2015). Fast imputation using 

medium or low-coverage sequence data. BMC Genet 16, 82. 

 

VanRaden PM, Tooker ME, O'Connell JR, Cole JB, Bickhart DM. (2017). 

Selecting sequence variants to improve genomic predictions for dairy cattle. 

Genet Sel Evol. 49(1):32. 

  

Wang Z, Shen B, Jiang J, Li J, Ma L (2016). Effect of sex, age and genetics on 

crossover interference in cattle. Scientific reports 6:37698. 

 

Wang, Y., Zhang, F., Mukiibi, R. et al. (2020). Genetic architecture of 

quantitative traits in beef cattle revealed by genome wide association studies of 

imputed whole genome sequence variants: II: carcass merit traits. BMC Genomics 

21, 38. 

 

Witte J. S. (2010). Genome-wide association studies and beyond. Annual review 

of public health 31, 9–20. 

 

Wojcik, G.L., et al. (2018). Imputation-Aware Tag SNP Selection to Improve 

Power for Large-Scale, Multi-ethnic Association Studies. G3: Genes, Genomes, 

Genetics, 8(10), 3255-3267. 

 

 Won H, de la Torre-Ubieta L, Stein JL, et al. (2016). Chromosome conformation 

elucidates regulatory relationships in developing human brain. Nature. 

538(7626):523-527. 

 

Wright J, VanRaden P. (2016). Genetic evaluation of dairy cow livability. J Anim 

Sci. 94:178. 

 

Wu X, Lund MS, Sahana G, Guldbrandtsen B, Sun D, Zhang Q, Su G. (2015). 

Association analysis for udder health based on SNP-panel and sequence data in 

Danish Holsteins. Genet Sel Evol. 47(1):50. 

 



107 
 

Wu Y, Smas CM. (2008). Expression and regulation of transcript for the novel 

transmembrane protein Tmem182 in the adipocyte and muscle lineage. BMC Res 

Notes. 1(1):85. 

 

Xu, X., Yu, Y., Zong, K. et al. (2019). Up-regulation of IGF2BP2 by multiple 

mechanisms in pancreatic cancer promotes cancer proliferation by activating the 

PI3K/Akt signaling pathway. J Exp Clin Cancer Res 38, 497. 

 

Zadoks RN, Middleton JR, McDougall S, Katholm J, Schukken YH. (2011). 

Molecular epidemiology of mastitis pathogens of dairy cattle and comparative 

relevance to humans. J Mammary Gland Biol Neoplasia 16(4):357–72. 

 

 Zare, Y., Shook, G. E., Collins, M. T., & Kirkpatrick, B. W. (2014). Genome-

wide association analysis and genomic prediction of Mycobacterium avium 

subspecies paratuberculosis infection in US Jersey cattle. PloS one, 9(2), e88380. 

 

Zhang, J., Kadri, N.K., Mullaart, E. et al. (2020). Genetic architecture of 

individual variation in recombination rate on the X chromosome in cattle. 

Heredity 125, 304–316. 

 

Zhu, Z., Zhang, F., Hu, H. et al. (2016). Integration of summary data from GWAS 

and eQTL studies predicts complex trait gene targets. Nat Genet 48, 481–487. 

 

Zimin AV, Delcher AL, Florea L, Kelley DR, Schatz MC, Puiu D, Hanrahan F, 

Pertea G, Van Tassell CP, Sonstegard TS et al. (2009). A whole-genome 

assembly of the domestic cow, Bos taurus. Genome biology 10(4):R42. 


