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Abstract

Traditional caches employ the LRU management policy to drive replacement decisions. However, previous

studies have shown LRU can perform significantly worse than the theoretical optimum, OPT [1]. To better

match OPT, it is necessary to aggressively anticipate the future memory references performed in the cache.

Recently, several researchers have tried to approximate OPT management by predicting last touch refer-

ences [2, 3, 4, 5]. Existing last touch predictors (LTPs) either correlate last touch references with execution

signatures, like instruction traces [3, 4] or last touch history [5], or they predict cache block life times based

on reference [2] or cycle [6] counts. On a predicted last touch, the referenced cache block is marked for early

eviction. This permits cache blocks lower in the LRU stack–but with shorter reuse distances–to remain in

cache longer, resulting in additional cache hits.

This paper investigates two novel techniques to improve LTP-driven cache management. First, we pro-

pose exploiting reuse distance information to increase LTP accuracy. Specifically, we correlate a memory

reference’s last touch outcome with its global reuse distance history. Our results show that for an 8-way 1

MB L2 cache, a 74 KB RD-LTP can reduce the cache miss rate by 11.5% and 14.5% compared to LvP and

AIP [2], two state-of-the-art last touch predictors. These performance gains are achieved because RD-LTPs

exhibit a much higher prediction rate compared to existing LTPs, and RD-LTPs often avoid evicting LNO

last touches [5], increasing the proportion of OPT last touches they evict. Second, we also propose predicting

actual reuse distance values using reuse distance predictors (RDPs). An RDP is very similar to an RD-LTP

except its predictor table stores exact reuse distance values instead of last touch outcomes. Because RDPs



predict reuse distances, we can distinguish between LNO and OPT last touches more accurately. Our results

show an 80 KB RDP can improve the miss rate compared to an RD-LTP by an additional 3.7%.

1 Introduction

The performance of the cache memory hierarchy is critical to the overall performance of modern computer

systems. In particular, the policies used to manage the contents of caches can have a major impact on

hit rates, and hence, memory hierarchy effectiveness. Traditional caches employ the LRU policy to drive

replacement decisions. However, previous studies have shown LRU can perform significantly worse than the

theoretical optimum, OPT [1], especially for large and highly associative caches commonly found at the L2

level [5, 7]. These studies suggest an opportunity exists for more sophisticated replacement algorithms to

provide higher performance.

To improve upon LRU and better match OPT, it is necessary to aggressively anticipate the future memory

references performed in the cache. In the case of OPT, perfect knowledge about the reuse distance of memory

references is available to the replacement algorithm, allowing it to always evict the block used furthest in

the future. Recently, several researchers have tried to approximate such omniscient OPT management by

predicting last touch references [2, 3, 4, 5]. On a predicted last touch, the referenced cache block is marked

for early eviction since it is unlikely to be re-referenced prior to becoming the LRU block. This permits

cache blocks lower in the LRU stack–but with shorter reuse distances–to remain in cache longer, resulting

in additional cache hits.

At the heart of such sophisticated replacement algorithms are the last touch predictors (LTPs) used to

predict last touch references and drive replacement decisions. To date, two major approaches have been

considered for LTPs. The first approach correlates last touch references with execution signatures. Signature

types that have shown the greatest promise include instruction traces [3, 4] and last touch history [5]. The

second approach identifies last touches by predicting cache block life times based on either reference [2] or

cycle [6] counts. In this approach, a last touch is assumed whenever the predicted life time of a block in the

cache expires.

This paper investigates two novel techniques for improving LTP-driven cache management. First, we

propose exploiting reuse distance information to increase LTP accuracy. Like last touches, reuse distances
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associated with individual memory references also exhibit repeating patterns which can be captured by a

hardware predictor. Specifically, we correlate a memory reference’s last touch outcome with its global reuse

distance history and the memory instruction’s PC, and store the correlation in a hardware table. We call

such a hardware structure a reuse distance last touch predictor (RD-LTP). To determine reuse distances,

RD-LTPs observe a cache block’s position in the LRU stack at reference time. Consequently, RD-LTPs can

track reuse distances for blocks that remain in the cache. By augmenting the cache with shadow tags [8],

RD-LTPs can also monitor the reuse distances of recently evicted cache blocks. This enables RD-LTPs to

track LRU last touches even when cache management deviates from a true LRU policy due to early evictions.

Our results show that for an 8-way 1 MB L2 cache, a 74 KB RD-LTP can reduce the cache miss rate by

11.5% and 14.5% compared to LvP and AIP [2], two state-of-the-art last touch predictors. These performance

gains are achieved for two reasons. First, RD-LTPs exhibit a much higher prediction rate, predicting 64.0%

of the LRU last touches compared to only about 17% for LvP and AIP. Second, by using a simple MRU

policy to select blocks for early eviction, RD-LTPs often avoid evicting LNO last touches [5], increasing the

proportion of OPT last touches they evict.

Second, we also investigate techniques to further improve how we distinguish between LNO and OPT last

touches, thus enabling even higher quality early eviction decisions. Specifically, we propose predicting actual

reuse distance values using reuse distance predictors (RDPs). An RDP is identical to an RD-LTP except

its predictor table stores exact reuse distance values instead of last touch outcomes. To be effective, RDPs

must track reuse distances larger than the cache’s natural LRU stack depth. We rely on the same shadow

tags in RD-LTPs to provide the deeper reuse distance information. Because RDPs predict reuse distances,

we can more exactly determine which cache blocks are used the farthest in the future, thus identifying OPT

last touches more accurately. Our results show a 80 KB RDP can improve the miss rate compared to an

RD-LTP by an additional 3.7%.

The remainder of this paper is organized as follows. After discussing related work in Section 2, Section 3

introduces our predictors. Then, Section 4 presents our experimental methodology. Next, Section 5 evaluates

cache management policies that use RD-LTPs, and Section 6 evaluates cache management policies that use

RDPs. Finally, Section 7 concludes the paper.
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Figure 1. A memory address trace, and various information as sociated with the trace used to predict
last touch and/or reuse distance. Information includes mem ory addresses, memory reference program
counters, last touch history, and reuse distance. Access an d live times are indicated for a sequence of
references to the memory address A.

2 Related Work

This paper is closely related to previous work on last touch prediction. Several proposals for predicting

a cache block’s last touch have been explored. To illustrate the different approaches, Figure 1 shows a

timeline of memory references performed on the memory location A (indicated by the boxes), beginning

with a cache-missing reference that allocates A’s block in cache, and ending with a last touch reference.

Memory references performed on other locations in between references to A are also shown, and various

runtime information associated with all the memory references is indicated below the timeline.

Existing LTPs predict last touches based on either signatures, life times, or access times. Signature-based

LTPs associate each last touch reference with an execution signature that captures the runtime context for

the last touch. In particular, Lai’s LTP [3, 4] forms a signature from instruction traces. Truncated addition

is performed on the sequence of program counter values for each memory reference to a cache block, thus

encoding the trace of memory instructions leading up to the block’s last touch. For example, in Figure 1,

the sum PC1 + PC3 + PC1 truncated to the desired length is an instruction trace signature for the last

touch reference performed by PC7. While effective for L1 caches, Lin and Reinhardt [5] show instruction

trace signatures are far less accurate for large and highly-associative caches commonly found at the L2 level.

Instead, they find L2 last touches are better correlated to last touch history. For each memory reference,

the last touch history specifies a single bit–”0” for not a last touch and “1” for last touch–as indicated in
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Figure 1. A memory reference’s last touch signature is formed by concatenating the history bits from the

N preceding memory references to the same cache block. For high prediction accuracy, N = 16 to 32 is

required [5].

The Inter-Reference Gap (IRG) model [9] is another signature-based predictor similar to our approach.

IRGs correlate predicted future reuse length (i.e. the number of memory references before the next reference

to the same location) values with histories of previous reuse length values. In that regard, it’s similar to our

RDP. The main difference is our signatures and predicted values are reuse distances, not reuse lengths. Also,

IRGs only accumulate history locally to a single memory block whereas our approach uses global history.

In contrast to signatures, Kharbutli and Solihin [2] predict last touches by observing either cache block

life times or access times. When the life time of a block in the cache expires, the memory reference at the

time of expiration is predicted as a last touch. Alternatively, if no reference to a cache block occurs after the

access time elapses, then the most recent reference is predicted as a last touch. To quantify life and access

times, Kharbutli and Solihin count memory references. In particular, the number of references to a cache

block from the first access to the last touch quantifies life time, while the number of interceding references

between two touches to the same cache block quantifies access time. For example, in Figure 1, the cache

block containing location A has a life time of 4 and an access time of 2 (the worst-case time value is chosen).

The counters for predicting life and access times are stored in hardware predictors, called LvP and AIP,

respectively.

In addition to using memory reference counts, cache block life times (and hence last touches) can also be

predicted based on cycle counts. Cache Decay [6] and Adaptive Mode Control [10] observe the number of

cycles that have elapsed since a block’s most recent reference, and marks the block as dead when the elapsed

time exceeds a certain threshold. Another approach ties cache block liveness to program or runtime system

execution [11]. For example, after a method referencing a block’s data terminates or the block’s data has

been garbage collected, the cache block is assumed to have received its last touch. Such cycle-based and

program-based approaches have been used to save energy (e.g., predicted dead blocks are powered down to

eliminate leakage), but the goal of determining a cache block’s last touch is the same.

The predictors studied in this paper are signature-based predictors, but they differ from existing techniques
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in two major ways. First, instead of using instruction traces, last touch history, or reuse lengths, we form

signatures from sequences of reuse distance values. Moreover, our signatures are global in that they aggregate

information from different memory locations; previous signatures contain information from a single memory

location only. And second, compared to previous LTPs, we also predict more detailed reuse information.

LTPs essentially predict a binary reuse outcome: the distance to the next use of a cache block is either

greater than or less than the cache associativity, implying the current memory reference is a last touch or

not a last touch, respectively, assuming LRU. For LRU last touches, we also predict how far into the future

the next reference will be. This more exact information can be used to help distinguish between LNO and

OPT last touches.

3 Predictors

This section presents our predictors. We begin by discussing global reuse distance history (Section 3.1),

the key information used in our signatures. Then, we describe how predictions are performed in RD-LTPs

(Section 3.2). Finally, we discuss LNO last touches, and introduce RDPs (Section 3.3).

3.1 Global Reuse Distance History

All our predictors correlate predicted outcomes with sequences of reuse distance values, called reuse

distance history. Moreover, these sequences are global because they are formed from back-to-back memory

references, not just references to the same memory location. The bottom of Figure 1 shows the sequence of

reuse distance values for our example memory reference timeline. The sequence labels each memory reference

with its reuse distance, i.e. the number of unique memory locations referenced before the next reference to

the same location. For example, the first reference to B has a reuse distance of 3 because A, C, and D are

referenced before B is referenced again. Let us define the previous reuse distance of a memory reference as the

reuse distance of the most recent reference to the same location. For example, the second reference to C has

a previous reuse distance of 2 because its previous reference to C (performed by PC4) has a reuse distance

of 2. Given these definitions, a memory reference’s global reuse distance history contains the N previous

reuse distance values immediately preceding the reference, where N is the history length. For example, the

global reuse distance history of the last reference to A, assuming N = 2, is {2, 3} because the two preceding
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memory references to C and B have previous reuse distances of 2 and 3, respectively.

To enable the use of global reuse distance history in hardware predictors, we make two simplifications.

First, we consider reuses at cache block granularity rather than individual memory words–i.e., A–D in

Figure 1 represent cache block addresses. This makes sense since cache management decisions are made at

the cache block level anyways. And second, we compute each reuse distance value across references to the

same cache set rather than across all memory references–i.e., A–D in Figure 1 map to the same set.

With these simplifications, we can easily compute the previous reuse distance for certain memory references

in hardware, and hence form global reuse distance histories, as long as the cache maintains LRU ordering

between cache blocks. In particular, on a cache hitting memory reference, the per-set reuse distance of the

previous memory reference to the same cache block is simply the block’s position in the cache set’s LRU

stack. This permits us to track memory references’ reuse distances so long as the associated cache blocks

remain in cache. (Equivalently, we can observe any reuse distance between 0 and CA − 1, where CA is the

cache associativity). Unfortunately, we cannot track the reuse distance for memory references whose blocks

leave the cache since their associated LRU stack information is lost. When a cache block leaves the cache,

we assign a reuse distance of CA to the last memory reference performed on the block (i.e., its last touch),

signifying the true reuse distance is unknown but is at least CA. For example, in Figure 1, the global reuse

distance history for the last reference to D, assuming N = 2, CA = 8, and the reference to E is a cache miss,

is {2, 8}.

3.2 Predictor Hardware

Having discussed global reuse distance history and how it’s computed, we now present our predictors. We

begin by describing how we predict last touches using RD-LTPs. Our other predictor, the RDP, employs

very similar hardware, and will be discussed in Section 3.3.

Figure 2 shows the hardware organization of an RD-LTP, and illustrates the different steps involved in

performing predictions and updating predictor state. An RD-LTP requires four additions to a conventional

cache. First, a global reuse distance history array (GRDH array) is needed to store the per-set global reuse

distance histories. Second, each cache tag is augmented with a last touch (LT) bit as well as a signature
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Figure 2. Reuse distance last touch predictor organization and actions. Steps 1–7 perform a prediction.
Steps 8–10 update the predictor.

field containing the signature observed during the block’s most recent reference. (In Figure 2, we assume

an 8-way set associative cache, so there are 8 tag, LT, and signature fields in the main tag array). Third, a

shadow tag array [8] is included to extend the LRU stack depth of the cache. Like normal tags, each shadow

tag also includes a signature field as well (but no LT bit). Finally, a central predictor table is needed to store

the prediction outcomes.

Labels “1” – “7” in Figure 2 illustrate the different steps for a last touch prediction on a cache hit. First,

we read the GRDH array entry corresponding to the referenced cache set (label “1”). This entry contains

the concatenated reuse distances for the N memory references prior to the current reference that map to the

referenced set. We construct the N -lengthed global reuse distance history for the current memory reference

by observing the LRU stack position of the referenced cache block (label “2”), and appending it to the

GRDH entry (label “3”). (In Figure 2, we assume N = 2). Next, we XOR the global reuse distance history

with the memory reference’s PC (label “4”) to form the signature for the current reference. This signature

is used to index the predictor table (label “5”), producing a saturating counter whose value is compared

against a threshold (label “6”). If the counter value is greater than the threshold, a last touch outcome is

predicted; otherwise, a not lost touch outcome is predicted. The predicted outcome is written into the cache

block’s LT field (label “7”). In addition to cache hits, RD-LTPs also make predictions on cache misses. The

same 7 steps in Figure 2 are performed, except CA is appended to the GRDH entry instead of the cache

block’s LRU stack position (see Section 3.1).

Labels “8” – “10” illustrate the different steps for updating the predictor. In particular, the hit/miss

outcome of the current memory reference validates the correctness of the last touch prediction for the previous
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reference to the same cache block. To permit updating the predictor with this actual outcome information,

the signature associated with the previous prediction is stored along with the tag of the referenced cache

block. This signature is used to index into the predictor table (label “8”) so that the previous prediction’s

saturating counter can be updated (label “9”). If the current reference is a cache hit, the update can occur

at reference time; in this case, the counter is decremented to reflect the cache hit. If the current reference is

a cache miss, then the cache block (and hence its signature) is no longer in cache, and thus the update must

occur at eviction time before the signature is lost. In this case, the counter is incremented to reflect the

impending cache miss. Lastly, the current memory reference’s signature is stored with the cache tag (label

“10”) to enable a predictor update on the next reference to the same cache block.

As Figure 2 shows, the ability to monitor the position of cache blocks in LRU stacks is critical to RD-LTPs.

Unfortunately, once cache blocks leave the cache, RD-LTPs cannot track their reuse distances. This can

become problematic when the cache acts on predictions to evict blocks early. In particular, if an incorrect

last touch prediction leads to an early eviction, it is impossible to detect the misprediction and update the

predictor accordingly since the cache block is no longer in cache when the next reference to the block (which

would have been a cache hit) occurs. The cache not only suffers an additional miss, but the predictor will

likely make the same misprediction in the future. Worse yet, the additional cache misses that such incorrect

last touch predictions trigger also corrupt the global reuse distance history, inserting CA values into the

history instead of the actual reuse distances. This can cause additional mispredictions and cache misses

down the road.

To address this problem, we augment the cache with shadow tags, as shown in Figure 2. In particular,

we implement a shadow tag array containing SA shadow tags. When a cache block is evicted, we remove

its data from the cache, but retain its tag in a shadow tag entry. We maintain LRU ordering between all

tags (normal and shadow), thus extending the cache’s LRU stack depth by SA. This allows us to track the

reuse distances of recently evicted cache blocks, including those evicted early due to last touch predictions,

for as long as they remain in the shadow tag array (i.e., until they become the least recently used among

both normal and shadow blocks). The extended reuse distance visibility provided by the shadow tags allows

us to identify premature evictions caused by last touch mispredictions, and hence, avoid corruption of global
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reuse distance history and improve cache performance.

3.3 LNO vs OPT Last Touches

Like all previous LTPs, RD-LTPs predict the last touches observed under an LRU policy, a natural

consequence of the fact that the underlying cache management policy is itself LRU. However, many LRU

last touches are not last touches under OPT. These references are referred to as LRU non-OPT, or LNO,

last touches [5]. LNO last touches typically have a reuse distance that is only slightly larger than CA, so

they can be converted into cache hits if the referenced blocks are kept in cache a bit longer. In particular,

when multiple cache blocks are marked as LRU last touches simultaneously, evicting those blocks with larger

reuse distances in favor of those with shorter reuse distances can keep the soon-to-be-referenced blocks in

cache longer than an LRU policy would, perhaps long enough to convert what would be cache misses under

LRU into cache hits.

In this paper, we propose two methods for distinguishing LNO and OPT last touches. The first method

works with our RD-LTP, and employs a very simple heuristic: when multiple cache blocks are marked by

the RD-LTP as LRU last touches, pick the most-recently-used block that has been marked. We find the

MRU marked block is often an OPT last touch. In Section 5, we will present results that validate this claim,

and provide more intuition behind why it works. The second method takes a more direct approach: predict

the actual reuse distance for each marked LRU last touch block. Then, we can simply pick the block with

the largest predicted reuse distance. One challenge of the second method is the reuse distances we need

are necessarily larger than CA since the cache blocks of interest are guaranteed to be LRU last touches.

Observing such long reuse distances requires LRU stacks larger than CA. Recall from Section 3.2 that

RD-LTPs already extend the LRU stack using shadow tags to improve prediction accuracy. Such shadow

tags can also track reuse distances beyond CA for distinguishing LNO and OPT last touches.

To enable the second method, we propose reuse distance predictors, or RDPs. Our RDPs predict the exact

reuse distance up to depth CA + SA. They are very similar to RD-LTPs. In particular, they use signatures

based on global reuse distance history, so all the mechanisms in Figure 2 for creating signatures and indexing

into the predictor table remain the same. The main difference is RDPs store actual reuse distance values in

10



the predictor table instead of saturating counters. Notice, on a cache hit, we actually know the exact reuse

distance value by observing the position of the referenced cache block in the LRU stack. An RD-LTP uses

this information to form signatures (label “3” in Figure 2), but ignores it when updating the predictor (label

“9”). An RDP updates its predictor with this exact reuse distance value. Specifically, the predictor entry is

set to the observed LRU stack position of a cache block on a hit to the cache tags (including both normal

and shadow tags); otherwise, it is set to CA + SA, signifying a miss in all the tags. Another (more minor)

difference is the LT field must be replaced with a reuse distance value field to store predicted reuse distances.

It is important to emphasize that RDPs can only provide limited reuse distance information (between 0 and

CA + SA). However, as we will see in Sections 5 and 6, this is an important range.

4 Experimental Methodology

The remainder of this paper conducts an in-depth evaluation of our predictors from Section 3, applying

them for cache management and quantifying the resulting cache performance. Our evaluation focuses on

managing the L2 cache since this is an especially critical part of the memory hierarchy for modern high-

performance CPUs. As part of our evaluation, we also compare our techniques against existing LTPs and

several ideal cache management algorithms.

Our evaluation employs trace-driven simulation. We use the in-order processor model from the M5

simulator [12] configured with an L1 and L2 cache to simulate several uniprocessor benchmarks. The M5

simulator was instrumented to record the post-L1 memory address trace seen at the input to the L2 cache

during execution-driven simulation. Along with each traced L2 reference, we also record the PC of the

instruction performing the reference. After running all the M5 simulations, we replayed the L2 memory

traces on a trace-driven cache simulator. The top portion of Table 1 reports the parameters we used for the

L1 and L2 caches in the M5 simulations. The same L2 cache configuration used in M5 was also used in the

trace-driven cache simulations.

The cache simulator includes architectural models for an RD-LTP and an RDP. In the bottom portion of

Table 1, we report the configuration parameters for the predictors. We use a global reuse distance history

of length 2. Since the simulated cache is 8-way set associative, each reuse distance value in the history is

between 0–8 (0–7 encode the 8 positions in the LRU stack, while 8 encodes references not found in the LRU
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Cache Parameters

L1 I-cache 16 Kbyte, 2-way set associative, 64 byte blocks
L1 D-cache 16 Kbyte, 2-way set associative, 64 byte blocks
L2 U-cache 1 Mbyte, 8-way set associative, 64 byte blocks

Predictor Parameters

History Length 2 Shadow Tags 8 per cache set, 15 bits each
Reuse Distance Values 3 bits RD-LTP Table Entries 2 bits
Predictor Table 1024 entries RDP Table Entries 4 bits
Signature Size 10 bits

Table 1. Cache and predictor parameter settings.

stack). We encode reuse distances of 0 and 1 using the same value, thus enabling a compact 3-bit encoding.

(We did not notice any performance degradation due to this simplification). This results in a 6-bit global

reuse distance history. For the predictor table, we assume 1024 entries. To form the 10-bit signature needed

to index the table, we pad the 6-bit history with 4 leading 0s, and XOR the result with the 10 least significant

bits of the memory reference’s PC.1 For each set in the cache, we augment the normal tags with 8 shadow

tags. Puzak’s thesis [8] shows many references have reuse distances slightly beyond the cache associativity.

Using SA = CA enables RDPs to track these important short reuses. 8 shadow tags is probably overkill

for RD-LTPs; nevertheless, we use the same number of shadow tags to maintain uniformity. Finally, the

predictor table entries differ in size depending on the type of predictor. RD-LTP table entries contain a

2-bit saturating counter while RDP entries contain a 4-bit reuse distance value. (The 4-bit RDP table entry

encodes reuse distance values between 0–16 using the same compact encoding trick described earlier; 0–15

encode the 16 positions in the LRU stack including shadow tags, and 16 encodes references not found in the

LRU stack).

During trace-driven simulations, the modeled predictors are used to drive cache management decisions.

For the RD-LTP, the predictor marks the LT bit for all predicted last touch blocks (see Section 3.2). On a

cache miss, we first consider marked blocks for eviction, then we consider all remaining blocks in LRU order.

If more than one block is marked, we evict the MRU block among them, as discussed in Section 3.3. For

the RDP, the predictor provides a reuse distance value for each cache block (see Section 3.3). On a cache

miss, we first consider for eviction the blocks with reuse distance = 16 in MRU order (similar to the MRU

ordering in RD-LTPs). If no such block exists, we evict the block with the largest reuse distance value. If

there are multiple blocks with the largest reuse distance value, we evict the MRU block among them.

1Since M5 instructions are 4 bytes wide, we divide the PC by 4 prior to truncating to 10 bits. This removes the two least
significant 0 bits in all instruction PCs.
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High Potential Low Potential

App Skip Ins Type App Skip Ins Type

ammp 2,600M FP perlbmk 1,700M Int
art 200M FP eon 100M Int

bzip2 1,100M Int gzip 200M Int
gcc 2,100M Int gap 200M Int
mcf 2,100M Int apsi 2,300M FP
mesa 500M FP fma3d 1,900M FP
parser 1,000M Int equake 400M FP

sixtrack 3,700M FP lucas 800M FP
twolf 2,000M Int swim 400M FP
vortex 100M Int applu 800M FP
vpr 300M Int

wupwise 3,400M FP

Table 2. SPEC CPU2000 benchmarks used to drive our cache simu lations.

We selected 22 SPEC CPU2000 benchmarks to drive our simulations. Table 2 lists these benchmarks. As

Section 5 will explain, we identified 12 “interesting” benchmarks out of this original 22 (the ones in the High

Potential column) to focus on in our study. For all the benchmarks, we use the pre-compiled Alpha binaries

from Chris Weaver2 which are built with the highest level of compiler optimization. All of our benchmarks

use the reference input set. We selected simulation regions by using SimPoint [14] to analyze the first

16 billion instructions (or the entire execution) of each benchmark, and picked the earliest representative

region reported by SimPoint. When acquiring our memory traces in M5, we fast-forward each benchmark

to its representative region (the columns labeled “Skip Ins” in Table 2 report the number of fast forwarded

instructions). Then, we turn on tracing, and simulate for 2 billion instructions. Lastly, the columns labeled

“Type” in Table 2 report each benchmark’s type, either integer or floating point.

To enable a comparison against existing LTP techniques, we implemented the AIP and LvP last touch

predictors [2] described in Section 2. To the best of our knowledge, these predictors represent the state-

of-the-art for LTP-driven cache management, both in terms of performance and hardware cost. They have

been shown to outperform several other existing LTPs [2]. To provide more insight into our predictors’

performance, we also implemented the OPT policy [1] as well as several other oracle predictors which we

will explain in Section 5.

Finally, an important issue is the hardware cost of our technique. Given the configuration parameters

in Table 1, our RD-LTP and RDP incur 74 and 80 Kbyte of additional storage, respectively, on top of a

2These SPEC CPU2000 Alpha binaries are distributed as part of the SimpleScalar tools [13], and are available at the
SimpleScalar website.
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conventional cache. This extra hardware is needed to implement the per-block prediction and signature

fields, shadow tags, GRDH array, and predictor tables illustrated in Figure 2. Compared to the 1 Mbyte

L2 cache these predictors are used to manage, this represents less than 8% overhead for both predictors. In

comparison, Kharbutli and Solihin report 61 and 57 Kbyte of additional storage for AIP and LvP, respectively,

assuming a 512 Kbyte L2 cache [2]. For a 1 Mbyte L2 cache, this overhead increases to 82 and 73 Kbytes,

respectively, which is very similar to our overhead. Unfortunately, the predictor table suggested in Kharbutli

and Solihin’s previous study achieved poor performance for several of our benchmarks. Hence, in our study,

we use infinite predictor tables for LvP and AIP. (With infinite tables, our LvP and AIP performance is

similar to what is reported in [2]).

5 Last Touch Prediction Results

We begin our evaluation by studying the performance achieved when driving cache management decisions

using our RD-LTP predictor. Later, in Section 6, we will evaluate the RDP predictor.

5.1 Performance Evaluation

Figure 3 presents the cache miss rates achieved by RD-LTP, and compares them against LvP, AIP, and

OPT. (The bars labeled “RD-LTP-rand” will be explained later in Section 5.2). All of the miss rates in

Figure 3 have been normalized to the miss rate achieved by an LRU policy for the same benchmark. Our
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first result is that intelligent cache management provides very little benefit in several SPEC benchmarks,

especially when LRU and OPT are separated by a small difference in performance. Since OPT is theoretically

optimal, a small LRU-OPT difference implies there isn’t much opportunity for improvement. We divide our

benchmarks into two categories based on this observation. Benchmarks with an LRU-OPT difference of

10% or less are placed in the low potential category, while benchmarks with an LRU-OPT difference greater

than 10% are placed in the high potential category. The 10 benchmarks in Figure 3A are the low potential

benchmarks, and the bars labeled “AVG-LOW” report the geometric mean across these benchmarks. As

the AVG-LOW bars show, RD-LTP, LvP, and AIP are all within 1% of the performance achieved by LRU.

Since there’s no room for improvement, we do not consider these benchmarks further in this paper.

The 12 benchmarks in Figure 3B are the high potential benchmarks, and the bars labeled “AVG-HIGH”

report the geometric mean across these benchmarks. Unlike the low potential benchmarks, there is significant

opportunity for performance gains in the high potential benchmarks as the LRU-OPT difference is nearly

50%. As the AVG-HIGH bars show, RD-LTP capitalizes on this opportunity, reducing the miss rate over

LRU by 22.8%. In addition, compared to existing LTPs, RD-LTP achieves a miss rate that is 11.5% and

14.5% lower than LvP and AIP, respectively. In particular, RD-LTP outperforms both LvP and AIP in 8

out of the 12 benchmarks, outperforms AIP alone in 1 benchmark, and matches the performance of LvP and

AIP in 1 benchmark. These improvements reduce by 28.0% the performance gap separating LvP/AIP from

OPT.

To provide insight into how RD-LTP achieves its performance gains, Figure 4 shows the accuracy of

the predictions performed by RD-LTP, LvP, and AIP. Each bar in Figure 4 breaks down the last touch

outcomes for each predictor into 3 categories. Components labeled “Correct Prediction” report predictions

that correctly identify LRU last touch references; components labeled “Not Predicted” report LRU last

touch references that are not identified by the predictor; and components labeled “Wrong Prediction” report

the predictions that incorrectly identify LRU last touch references (i.e., these references are not LRU last

touches). All bars are normalized to the total number of LRU last touch references in the corresponding

benchmark, with the last group of bars reporting the average across the 12 benchmarks.

As Figure 4 shows, RD-LTP correctly predicts a much larger fraction of the LRU last touch references
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Figure 4. Prediction accuracy of RD-LTP, LvP, and AIP.

than either LvP or AIP. On average, RD-LTP identifies 64.0% of the LRU last touches compared to only

16.0% and 17.4% for LvP and AIP, respectively. Because RD-LTP correctly identifies a greater number of

LRU last touches, it has the potential to perform a larger number of beneficial early evictions. (In a moment,

we will discuss how RD-LTP capitalizes on this potential). Unfortunately, the higher prediction rate is also

accompanied by a larger number of mispredictions. As the “Wrong Prediction” components in Figure 4

show, RD-LTP incurs 15.1% mispredictions whereas LvP and AIP incur only 5.5% and 4.9%, respectively.

Such mispredictions can lead to premature evictions, converting some LRU cache hits into cache misses.

However, RD-LTP’s higher prediction rate far outweighs the negative consequences of its mispredictions.

These prediction accuracy results demonstrate RD-LTP is a more effective predictor than LvP and AIP.

We credit three factors. First, last touch events are highly correlated to global reuse distance history. Our

signatures simply identify more last touches. Second, RD-LTP’s shadow tags improve predictor training. As

discussed in Section 3.2, once the cache management hardware begins acting on predictions and performing

early evictions, the LRU last touch outcomes of blocks that leave the cache early cannot be observed. Our

shadow tags allow us to continue tracking recently evicted blocks, thus permitting us to observe LRU last

touches even when replacement deviates from a strict LRU order. Finally, because RD-LTP’s accuracy is

inherently higher than LvP and AIP, it can be applied more aggressively. RD-LTP predicts all memory

references; in contrast, LvP and AIP avoid predicting memory references with low accuracy (both predictors

employ confidence mechanisms). The smaller pool of predicted memory references in LvP and AIP further

reduces their total correct predictions.
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Figure 5. Last touch reference histograms under LRU, OPT, Lv P, AIP, and RD-LTP cache management for
the A. AMMP and B. MCF benchmarks. CRD = 17 and 44 for AMMP and MC F, respectively.

5.2 Quality of Evictions

While RD-LTPs achieve high prediction rates, this alone does not explain their performance advantage.

As discussed in Section 3.3, not all LRU last touch evictions are profitable. In particular, LNO last touches

can be converted into cache hits by retaining them in cache a bit longer. Hence, simply predicting a large

number of LRU last touches and evicting them does not guarantee high performance. It’s also important to

select the best last touch candidates for eviction.

To provide further insight, Figure 5 shows several histograms of last touch references under different cache

management policies. For different reuse distances (X-axis), each histogram plots the number of last touch

references exhibiting that reuse distance (Y-axis). The histograms for LRU and OPT include actual last

touch references (i.e., all of these lead to evictions); the histograms for RD-LTP, LvP, and AIP include

predicted LRU last touch references (i.e., only a subset of these lead to evictions). The rightmost point in

each histogram reports the cumulative count for all reuse distances beyond the end of the X-axis. Figures 5A

and B report histograms for two typical benchmarks, AMMP and MCF, respectively.

First, let us consider the LRU and OPT histograms in Figure 5. Notice the number of OPT last touches is

always smaller than the number of LRU last touches. The difference between the LRU and OPT histograms

constitutes the LNO last touches (the evictions that are last touches under LRU but not under OPT). Most

importantly, notice that beyond some reuse distance, practically all OPT last touches are also LRU last

touches, i.e. there are very few LNO last touches. For example, in AMMP, beyond a critical reuse distance
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% LRU Predicted > CRD % OPT Predicted < CRD

CRD Type %OPT RDLTP LvP AIP RDLTP LvP AIP Ratio

ammp 17 A 36.2% 70.0% 21.6% 12.2% 209.9% 73.8% 62.1% 5.0
art 14 A 37.2% 98.7% 3.8% 4.1% 439.0% 21.6% 4.2% 7.3
bzip2 29 A 33.1% 59.9% 12.6% 13.5% 103.6% 28.9% 21.1% 3.4
gcc 17 A 4.2% 38.3% 2.6% 5.1% 362.9% 121.5% 127.1% 171.6
mcf 44 B 66.7% 88.8% 16.9% 16.2% 183.2% 138.2% 129.4% 1.0
mesa 54 B 75.0% 87.3% 65.4% 57.0% 126.9% 67.8% 79.6% 0.5
parser 21 B 51.6% 90.7% 1.1% 2.8% 116.6% 2.3% 4.8% 1.1
sixtrack 11 A 0.5% 68.5% 68.5% 68.5% 65.8% 69.6% 72.1% 4.0
twolf 12 A 19.9% 9.3% 5.1% 5.0% 14.5% 8.1% 8.3% 6.3
vortex 35 B 79.6% 14.2% 0.5% 3.7% 62.0% 12.0% 11.4% 1.1
vpr 12 A 6.8% 13.7% 11.6% 8.3% 16.5% 13.6% 12.2% 14.3
wupwise 64 B 98.8% 95.9% 0.0% 0.0% 1653.1% 3.8% 3.7% 0.2

AVG 27.5 42.5% 61.3% 17.5% 16.4% 279.5% 46.8% 44.7% 18.0

Table 3. Statistics related to last touch reference histogr ams for all 12 high potential benchmarks.

(CRD) of 17, 90% or more of the LRU last touches are also OPT last touches. The same happens for MCF,

but at CRD=44. This makes sense: LRU last touches with large reuse distances have no hope of becoming

cache hits, so they are also likely to be OPT last touches. This implies that beyond CRD, it doesn’t matter

which LRU last touches we evict–all of them are profitable. We find that all benchmarks exhibit this property,

though the exact CRD value is application dependent. In Table 3, the column labeled “CRD” reports the

CRDs for all our benchmarks. As the last row in Table 3 shows, on average, there are very few LNO last

touches beyond a reuse distance of 27.5.

An important question then is what fraction of the OPT last touches occur beyond CRD? If a large number

do, then predicting LRU last touches essentially predicts most of the OPT last touches as well. However, if

many OPT last touches occur below CRD, then LRU last touch prediction alone does not uniquely identify

the OPT last touches since there are lots of LNO last touches in that case. We will call a benchmark “type

A” if 50% or more of its OPT last touches occur beyond CRD; otherwise, we will call it “type B.” In Figure 5,

we see AMMP is a type A benchmark, while MCF is a type B benchmark. In AMMP, only 36.2% of the

OPT last touches occur beyond CRD, whereas in MCF, 66.7% of the OPT last touches occur beyond CRD.

The two columns in Table 3 labeled “Type” and “%OPT” report each benchmark’s type and percentage of

OPT last touches beyond CRD. As Table 3 shows, there are 7 type A benchmarks and 5 type B benchmarks.

On average, 42.5% of the OPT last touches occur beyond CRD. These results show a little less than half

of OPT last touches are directly predictable via LRU last touch prediction; however, the other half occur

side-by-side with a significant number of LNO last touches.
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Now, let us consider the RD-LTP, LvP, and AIP histograms in Figure 5. First, we examine how many

of the LRU last touches occurring beyond CRD are correctly predicted by each predictor. As Figure 5

shows, RD-LTP achieves a significantly larger coverage of the LRU last touches beyond CRD. For AMMP,

RD-LTP predicts 70.0% of these long-reuse LRU last touches, while LvP and AIP predict only 21.6% and

12.2%, respectively. For MCF, RD-LTP predicts 88.8% of the long-reuse LRU last touches, while LvP and

AIP predict only 16.9% and 16.2%, respectively. In Table 3, the three columns labeled “% LRU Covered >

CRD” report the percentage of LRU last touches beyond CRD predicted by RD-LTP, LvP, and AIP across

all our benchmarks. On average, RD-LTP predicts 61.3% of the long-reuse LRU last touches, while LvP

and AIP predict only 17.5% and 16.4%, respectively. From these results, we conclude that RD-LTP’s higher

prediction rate translates into a noticeably larger coverage of the long-reuse LRU last touches compared to

LvP and AIP. Note that for high performance, it is critical to predict these long-reuse LRU last touches

since they are all likely to be OPT last touches.

Next, we examine the LRU last touches that occur below CRD. Compared to LvP and AIP, Figure 5

shows RD-LTP makes significantly more short-reuse LRU last touch predictions. However, the number of

such short-reuse predictions exceeds even the number of OPT last touches. Consequently, many of the LRU

last touches that RD-LTP predicts are LNO last touches. In Table 3, the three columns labeled “% OPT

Predicted < CRD” report the number of predicted LRU last touches below CRD in RD-LTP, LvP, and AIP.

To convey the amount of “over-prediction,” we report these statistics as a percentage of OPT (instead of

LRU) last touches. As Table 3 shows, RD-LTP predicts more LRU last touches than OPT last touches in

8 benchmarks. LvP and AIP predict fewer last touches than OPT in all benchmarks except for two. On

average, RD-LTP predicts 2.80 times as many short reuse last touches as OPT, while LvP and AIP predict

slightly less than half as many as OPT.

These results show RD-LTP predicts a large number of LNO last touches amongst the short-reuse LRU

last touches. Hence, it is possible for RD-LTP to detrimentally evict these LNO last touches, thus missing

opportunities for cache hits. We find this does not happen frequently for the following reason. Because

RD-LTP makes a large number of LRU last touch predictions, it is almost always the case that multiple

cache blocks are marked at eviction time. As discussed in Section 3.3, we evict the MRU block amongst all
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the marked blocks. In many cases, the MRU block is an OPT last touch rather than an LNO last touch.

To understand why, we must look at the relative number of long-reuse and short-reuse predicted LRU last

touches. In Table 3, the column labeled “Ratio” reports the ratio of long-reuse (greater than CRD) to

short-reuse (smaller than CRD) LRU last touches among all LRU last touches predicted by RD-LTP. This

data shows that in 2 benchmarks, long-reuse predictions dominate (ratio > 1.0); in 7 benchmarks short-reuse

predictions dominate (ratio < 1.0); and in 3 benchmarks, neither dominates (ratio ≈ 1.0). For the first case,

most marked blocks have reuse distance > CRD. As already discussed, it doesn’t matter which blocks we

evict in this case since all are likely to be OPT last touches. MRU is just as good as any other policy. For

the second case, most marked blocks have reuse distance < CRD. Because these are short reuse distances,

marked blocks that are deeper in the LRU stack are significantly closer to their next reuse than marked

blocks higher up in the LRU stack. By evicting the MRU block, we dramatically increase our chances of

retaining the older block(s) long enough to experience a cache hit. Finally, for the last case, marked blocks

have an equal chance of exhibiting short or long reuse distances. The MRU policy does not provide any

benefit in this case (though it doesn’t hurt either). Fortunately, only 3 benchmarks fall into this category.

To illustrate the MRU policy is critical, the “RD-LTP-rand” bars in Figure 3 report the miss rate for our

RD-LTP predictor, but instead of picking the MRU block amongst marked blocks at eviction time, we pick

a block randomly. As Figure 3 shows, RD-LTP-rand performs significantly worse than RD-LTP. In fact,

RD-LTP-rand even performs slightly worse than LvP and AIP.

6 Reuse Distance Prediction Results

Figure 6 presents our RDP results. In Figure 6, the bars labeled “RDP” report the miss rates achieved

when driving cache management decisions using an RDP across our high potential benchmarks. For com-

parison, the miss rates achieved by RD-LTP and OPT have been included from Figure 3. All bars are

normalized to the LRU miss rate for each benchmark, and the group of bars labeled “AVG” report the

geometric mean across all the benchmarks. Comparing the RDP and RD-LTP bars, we see RDP provides

an additional 3.7% miss rate reduction over RD-LTP on average. And comparing RDP to the LvP and AIP

results from Figure 3, we see RDP improves the miss rate by 14.9% and 17.8%, respectively, over existing

LTP techniques.
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Figure 6. Cache miss rates achieved by OPT, RDP-LTP, LT-orac le, RDP, and RDP-oracle for the high po-
tential benchmarks.

The additional benefit achieved by RDPs is due to the detailed reuse distance information provided by

the predictor. As discussed in Section 5.2, while some predictions identify LRU last touches beyond CRD

which are likely to be OPT last touches, many predictions identify LRU last touches below CRD that may

possibly be LNO last touches. In the latter case, RDPs help by providing the exact reuse distance for marked

blocks. Hence, when multiple blocks are marked, the block referenced farthest in the future can be identified

directly, instead of using the MRU heuristic discussed in Sections 3.3 and 5.2.

To further understand our RDP result, Figure 6 also reports two ideal cache management algorithms,

LT-oracle and RDP-oracle. LT-oracle is RD-LTP with perfect last touch information. In LT-oracle, LRU

last touch blocks are always marked perfectly. But like RD-LTPs, LT-oracle still uses the MRU policy to

select a marked block for eviction.3 RDP-oracle is RDP with perfect reuse distance information. In RDP-

oracle, LRU last touch blocks are always labeled with their actual reuse distances perfectly. As Figure 6

shows, LT-oracle improves upon RD-LTP by 12.5%. This represents the performance lost by RD-LTP due

to predictor inaccuracy (i.e., the “Not Predicted” and “Wrong Prediction” components in Figure 4). In

addition, Figure 6 also shows RDP-oracle improves upon LT-oracle by 13.8%. This performance difference

represents the actual potential benefit of exact reuse distance information. Unfortunately, RDP does not

fully achieve this potential, as demonstrated by its 3.7% performance gain over RD-LTP. RDP’s inability to

achieve its full potential is due to inaccuracies in predicting the exact reuse distance.

3Although LT-oracle has perfect last touch information, the MRU policy may still mistakenly evict LNO last touches over
OPT last touches. In fact, LT-oracle may perform worse than RD-LTP if the additional correct last touch predictions expose
more LNO last touches for eviction.
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7 Conclusion

This paper advances the state-of-the-art in LTP-driven cache management by investigating two novel

techniques. First, we propose RD-LTPs, a new signature-based LTP that correlates last touch outcomes

with global reuse distance history and the memory instruction’s PC. To determine reuse distances, RD-

LTPs observe a cache block’s position in the LRU stack at reference time. By augmenting the cache with

shadow tags, RD-LTPs can also monitor the reuse distances of recently evicted cache blocks. Our results

show that for an 8-way 1 MB L2 cache, a 70 KB RD-LTP can reduce the cache miss rate by 11.5% and

14.5% compared to LvP and AIP, respectively. We find RD-LTPs exhibit a much higher prediction rate,

predicting 64.0% of the LRU last touches compared to only about 17% for LvP and AIP. Second, we also

find RD-LTPs often avoid evicting LNO last touches by employing a simple MRU policy to select blocks for

early eviction amongst all LRU last touches.

Second, we also propose RDPs, a new technique that predicts actual reuse distance values. An RDP is

very similar to an RD-LTP except its predictor table stores exact reuse distance values instead of last touch

outcomes. Because RDPs predict reuse distances, we can better determine which cache blocks are used

farthest in the future, thus distinguishing LNO and OPT last touches more precisely. Our results show an

80 KB RDP can improve the miss rate compared to an RD-LTP by an additional 3.7%.
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