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Accurate estimation of terrestrial water storage (TWS) is critically important

for the global hydrologic cycle and the Earth′s climate system. The space-based

Gravity Recovery and Climate Experiment (GRACE) mission and land surface

models (LSMs) have provided valuable information in monitoring TWS changes.

In recent years, geodetic measurements from the ground-based Global Positioning

System (GPS) network have been increasingly used in hydrologic studies based on

the elastic response of the Earth′s surface to mass redistribution. All of these tech-

niques have their own strengths and weaknesses in detecting TWS changes due to

their unique uncertainties, error characteristics, and spatio-temporal resolutions.

This dissertation investigated the potential of improving our knowledge in TWS

changes via merging the information provided by ground-based GPS, GRACE, and

LSMs. First, the vertical displacements derived from ground-based GPS, GRACE,

and NASA Catchment Land Surface Model (Catchment) were compared to analyze



the behavior and error characteristics of each data set. Afterwards, the ground-

based GPS observations were merged into Catchment using a data assimilation

(DA) framework in order to improve the accuracy of TWS estimates and mitigate

hydrologic state uncertainty. To the best of our knowledge, this study is the first

attempt to assimilate ground-based GPS observations into an advanced land surface

model for the purpose of improving TWS estimates. TWS estimates provided by

GPS DA were evaluated against GRACE TWS retrievals. GPS DA performance in

estimating TWS constituent components (i.e., snow water equivalent and soil mois-

ture) and hydrologic fluxes (i.e., runoff) were also examined using ground-based in

situ measurements. GPS DA yielded encouraging results in terms of improving TWS

estimates, especially during drought periods. Additionally, the findings suggest a

multi-variate assimilation approach to merge both GRACE and ground-based GPS

into the LSMs to further improve modeled TWS and its constituent components

should be pursued as a new and novel research project.
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Chapter 1: Introduction

1.1 Terrestrial Water Storage

Terrestrial water storage (TWS; Figure 1.1) is defined as the sum of all forms of

water on land, which includes surface water, soil moisture, snow, ice, groundwater,

and vegetation biomass [3, 4]. The spatial and temporal distributions of TWS and

its constituent components are critically important for the global hydrologic cycle

and the Earth′s climate system [4]. Systematic monitoring of TWS changes across

a variety of spatial scales (i.e., local, regional, continental, and global) is valuable

for studies in climate change, water resources management, hazard mitigation, and

food security [5].

It is challenging to monitor TWS variation using the traditional method of in

situ measurements, especially at a large spatial scale due to the constraints in tech-

niques, economy, and the limited data sharing among nations [5]. Ground-based

networks do not provide a direct measurement of TWS, instead, they measure

the constituent components of TWS such as snow, soil moisture, and groundwa-

ter. Moreover, the collocation issue among different networks (i.e., stations location

mismatch among different networks), as well as the small footprint that can be

represented by each measurement station (<10 m2), limits the feasibility of using

1



Figure 1.1: Definition of terrestrial water storage, which includes surface water, soil
moisture, snow, ice, groundwater, and vegetation biomass over land.

ground-based networks for TWS monitoring [6].

Land surface modeling has achieved significant progress in the past two decades

in representing terrestrial hydrologic variations [7] by providing continuous estimates

of TWS and its components in both space and time. However, it is still far short of

being able to provide accurate estimates of TWS at the global scale [7]. The common

problem for land surface models (LSMs) is the lack of complete, all encompassing

physical representations of the hydrological system such as groundwater pumping,

irrigation practices, or the management of reservoirs [8]. Many LSMs do not include

a deep (≥10 m) groundwater component, which generally results in incomplete

information about TWS changes [9]. In addition, the representation of interactions

between surface and subsurface components, land and atmosphere components, the

quality and availability of observations used in the models, and the computational

capability also impede the efficacy of using LSMs to study TWS changes [7, 10].

2



The launch of the Gravity Recovery and Climate Experiment (GRACE) mis-

sion in March 2002 has provided an unprecedented opportunity to study the spatial

and temporal variation of TWS at global and regional scales [11]. GRACE is a twin-

satellite mission that detects the Earth′s gravity field changes. GRACE provides

highly accurate (∼10–100 mm error) [12, 13], column-integrated TWS estimates at

a spatial resolution of approximately 400 km and an approximate temporal resolu-

tion of monthly [11]. GRACE-based TWS retrievals have been successfully used in

studies of drought monitoring [14, 15], flood potential [16, 17], groundwater deple-

tion [18,19], and ice mass loss [20,21]. With the great success achieved by GRACE,

the GRACE Follow-On (GRACE-FO) mission was launched in May 2018 as a suc-

cessor of GRACE to continue tracking the Earth′s water movement. However, the

coarse spatio-temporal resolution provided by GRACE and GRACE-FO retrievals

limits their application to to fine-scale (<105 km2; sub-monthly) TWS analyses.

In recent years, geodetic observations of surface displacement measured by the

ground-based Global Positioning System (GPS) network have been increasingly used

in hydrologic studies based on the elastic response of the Earth′s surface to mass

redistribution [22]. Ground-based GPS observations have been compared against

GRACE TWS retrievals in terms of vertical displacement and TWS anomaly (i.e.,

after removing long-term average) across a range of spatial scales, and a good con-

sistency was found in most regions [22–26]. The potential of using ground-based

GPS observations to bridge the gaps between GRACE and GRACE-FO missions

was also investigated [27, 28]. Unfortunately, GPS-based surface displacements are

not only influenced by the changes of TWS but also non-hydrologic loading effects
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such as atmospheric and non-tidal ocean loading and tectonic (e.g., earthquake) ef-

fects. Additionally, the ground-based GPS network is sparse in most regions across

the globe, which limits a broader application of ground-based GPS in estimating

TWS.

Therefore, it is found that different data sets bring different pieces of infor-

mation about TWS change based on their unique spatial and temporal resolution

along with measurement characteristics. A combination of information derived from

multiple data sources may provide an optimal estimate of TWS change.

1.2 Research Objectives

The overarching goal of this dissertation is to better understand the spatial

and temporal features of TWS, and its components, at a watershed scale (∼105

km2). Considering the aforementioned advantages and disadvantages of different

techniques in estimating TWS, this study proposed to merge ground-based GPS

observations into an advanced land surface model to improve the accuracy of esti-

mated TWS as well as reduce the prediction uncertainty. The point-scale measure-

ment nature of ground-based GPS observations provide the opportunity of charac-

terizing TWS changes at a finer resolution in space and time relative to GRACE.

By harnessing a Bayesian merger process, ground-based GPS can serve as a bridge

to fill the gaps in spatial resolution between point-scale measurements of TWS and

GRACE TWS retrievals, as well as the temporal gap between GRACE and GRACE-

FO. More specifically, the dissertation is aimed to address the following scientific

4



questions.

1. How much variability in ground-based GPS observations of vertical displace-

ment are associated with changes in TWS? Further, can ground-based GPS ob-

servations of vertical displacement be used as a proxy for representing changes

in TWS at the watershed scale after removing the effects of non-hydrologic

loading?

2. Will the merger of ground-based GPS observations of vertical displacement

into an advanced land surface model improve the accuracy of modeled TWS

estimates? Further, how will GPS assimilation perform in regions where snow

is a significant component of the hydrologic cycle?

1.3 Dissertation Structure

The dissertation is structured as follows. Chapter 2 provides a literature review

of the implementation of ground-based GPS, GRACE, and hydrologic models in

terrestrial hydrology.

Chapter 3 compares the vertical displacements derived from ground-based

GPS, GRACE, and an advanced land surface model to demonstrate the capabil-

ity of using ground-based GPS to represent TWS variation. The discrepancies be-

tween different data sets and the error sources in each data set were analyzed. This

chapter formed a manuscript entitled “Comparison of Vertical Surface Deformation

Estimates Derived from Space-based Gravimetry, Ground-based GPS, and Model-

based Hydrologic Loading over Snow-dominated Watersheds in the United States”
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which is under review with the Journal of Geophysical Research: Solid Earth.

Chapter 4 proposes an integration of ground-based GPS observations of ver-

tical displacement into an advanced land surface model using a data assimilation

(DA) framework to improve the accuracy of estimated TWS and its constituent

components, as well as mitigate the estimation uncertainty. This chapter formed

a manuscript entitled “Assimilation of Ground-based GPS Observations of Verti-

cal Displacement into a Land Surface Model” for submission to Water Resources

Research.

Chapter 5 summarizes the overall findings in this dissertation, highlighted new

and novel contributions made to the hydrologic research community, and discussed

future work directions.
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Chapter 2: Literature Review

2.1 GRACE in Terrestrial Hydrology

GRACE is a joint mission between the National Aeronautics and Space Ad-

ministration (NASA) and the German Aerospace Center (DLR) that was launched

in 2002 with the goal of mapping the Earth′s time-variable gravity field [29]. The

launch of GRACE has provided a remarkable opportunity to monitor TWS changes

across regional to global scales. GRACE consists of two identical satellites in iden-

tical, near-polar orbits at a altitude of ∼450 km and a separation distance between

the two satellites of ∼220 km [29]. Due to the separation distance, the two satel-

lites regularly experienced small, but different, orbital perturbations caused by the

local mass variations on the Earth directly below the satellites (Figure 2.1). The

range between the two satellites was measured using a K-band microwave ranging

(KBR) system. The K-band range rate (KBRR) measurements, which is the first

temporal derivative of KBR, was then used to solve for the spatial and temporal

mass variations associated with the gravity field. The non-gravitational effects in

the measurements (e.g., atmospheric drag, solar pressure) were removed using an

accelerometer mounted at the center of mass of each satellite [30].

The most common method used to process GRACE range rate measurements
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Figure 2.1: Diagram of how GRACE and GRACE-FO measure gravity based
on changes in satellite separation distance. The figure is accessible from
https://gracefo.jpl.nasa.gov/resources/50/how-grace-fo-measures-gravity/.

is via parameterization of the Earth′s gravity field using global spherical harmonics

(SH) functions [31]. In recent years, an alternative approach, the mass concentra-

tions (a.k.a., mascons) solution, has received increasing interest [32]. Scanlon et

al. [33] summarized the basic difference between the SH and mascons solutions; SH

solutions cannot distinguish between land and ocean areas, which results in a non-

negligible signal leakage effect along coastal areas. On the contrary, the mascons

solution can explicitly define land versus ocean regions, which can reduce the leakage

errors and increase the spatial localization of TWS anomalies.
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Another quandary in the processing of the range rate observations is that

as the degree of the SH increases, the spatial resolution in the recovered TWS

signal is improved, but the uncertainty also increases. Due to the poor observability

of the east-west component of the gravity gradient associated with the near-polar

orbit, GRACE data shows clear north-south stripes in the gravity field in the SH

solutions [33]. Therefore, various methods were used in post-processing steps to

reduce the noise in SH coefficients such as truncating high degree and order SH

coefficients and applying a destriping filter [33]. The method used to reduce the

noise in SH coefficients often causes signal loss [33]. Therefore, a scaling factor is

used to restore the lost signal associated with post-processing [34]. Mascons, on the

other hand, provide a more optimal solution to balance the trade-off between noise

reduction and signal loss. Constraint equations are applied during the least square

inversion in order to provide estimates of mascon parameters while suppressing

the correlated errors and minimizing signal attenuation. Therefore, there is no

requirement of post-processing for the mascons solution [35].

Numerous studies have been performed to investigate TWS changes at the

spatial and temporal scales that can be detected by GRACE, and the efficacy of

vertically disaggregating TWS into its components such as groundwater, soil mois-

ture, or snow was also examined [10, 36, 37]. Since the launch of GRACE, both

spherical harmonic solutions and mascons solutions have been used for hydrologic

studies. A number of research studies have been conducted to study the long-

term trends in TWS due to climate variability and anthropogenic activities [38].

Significant TWS depletion has been found in northwestern India [39–41], north-
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ern China [42], southwestern Australia [43], and California′s Central Valley [18, 44]

mainly associated with groundwater depletion as related to agricultural irrigation

and domestic consumption. Further, GRACE-based TWS can be used as a re-

mote sensing-based drought indicator to help monitor the climate change induced

TWS depletion such as the 2011 drought in Texas [15] and the multi-year drought in

southeastern Australia [43]. TWS depletion along the Greenland ice sheet [20,21,45],

Antarctica [20,46,47], and the Tibetan Plateau [48] caused by increased glacier melt

(and snow melt) were also revealed using GRACE TWS retrievals. There are also

regions exhibiting increasing trends in TWS. Ahmed et al. [49] investigated the

variation in water availability across Africa and found an increasing trend of TWS

over western and central Africa caused by the warming of the tropical Atlantic

Ocean, which intensified Atlantic monsoons and thus brought more precipitation on

shore. Rodell et al. [50] mapped the trend of TWS globally using GRACE TWS

retrievals, and categorized the driver for these trends into four categories as natural

interannual variability (e.g., El Niño and La Niña), unsustainable groundwater con-

sumption, climate change, and a combination thereof. Results showed an increase of

terrestrial water storage in far-northern North America and Eurasia, and significant

non-frozen-freshwater losses in the mid-latitudes. Human impact is also evident

in the world′s irrigated agricultural regions, where a rapid decrease of freshwater

storage was detected [50].

In addition to studying total freshwater changes, GRACE-based TWS has also

been used together with in situ measurements and/or hydrologic models to monitor

important elements of the hydrologic cycle such as soil moisture [51], evapotran-
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spiration [52], and precipitation [53]. However, due to the coarse spatial resolution

provided by GRACE, the application of GRACE TWS retrievals focused on regional,

continental, and global scales with difficulties at implementing the TWS retrievals

into smaller scale studies.

2.2 Land Surface Models in Terrestrial Hydrology

Prior to the launch of GRACE, there were few observations of TWS available,

especially for large spatial scale applications. Land surface model, which models

physically-based energy and water fluxes, is an important tool for global TWS stud-

ies. After the launch of GRACE, a retrieval of global TWS change with high accu-

racy became feasible for the first time. However, multiple GRACE TWS products

using different data processing approaches based on different assumptions became

available, and the efficacy of the different GRACE products have not been system-

atically investigated. Utilizing modeled TWS in a Bayesian merger can provide a

priori information to combine a suite of different TWS products so as to improve

the estimates of TWS change [38]. Further, the land surface models add value to

the GRACE TWS retrievals by providing estimates of the energy and water fluxes

along with estimates of the constituent components of TWS that GRACE does not

provide.

The earliest LSMs were rather simple and prescribed the land surface mois-

ture conditions, and did not explicitly include land-atmosphere interactions [54].

With developments over the past three decades, LSMs have become more compre-
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hensive in representing more interactions and feedback between physical, biological,

and chemical processes [55]. The Global Land Data Assimilation System (GLDAS)

product is a joint effort by scientists at the NASA Goddard Space Flight Center

(GSFC) and the National Oceanic and Atmospheric Administration (NOAA) Na-

tional Centers for Environmental Prediction (NCEP) [56]. GLDAS estimates land

surface states (e.g., shallow groundwater, soil moisture, and snow water equivalent)

by merging ground-based and space-based observations into a land surface model

using a data assimilation framework [56]. GLDAS-1 utilizes four different LSMs:

(1) Mosaic [57], (2) Noah [58], (3) the Community Land Model (CLM) [59], and (4)

the Variable Infiltration Capacity model (VIC) [60].

GLDAS simulations based on the four different LSMs have been successfully

used for estimating global and regional hydrologic cycles, spatiotemporal variations

of TWS, and monitoring climate extremes such as drought and flood [4, 15, 61, 62].

However, changes in TWS from the LSMs have many large uncertainties due to er-

rors in forcing (a.k.a, boundary conditions), parameterization of physical processes,

and initial conditions [15]. Long et al. [38] evaluated the uncertainty in TWS esti-

mates derived from the four LSMs (i.e., Mosaic, Noah, CLM, and VIC) using the

three cornered hat approach. In the three cornered hat approach, TWS derived

from GRACE, LSMs, and Global Hydrological Model (GHM) were used as three

different sets of data, and the individual variance was separated using the cross

correlation among the three data sets. Results show that Noah provides the low-

est uncertainty (23.7 mm) followed by VIC (27.3 mm), and Mosaic has the highest

uncertainty of 32 mm. To analyze the cause of the uncertainty in modeled TWS
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Figure 2.2: Conceptual schematic of the components of TWS in the NASA Catch-
ment Land Surface Model (Catchment) adapted from Forman et al. [1] where 1
represents the Catchment’s profile soil moisture deficit, 2 is root-zone soil moisture
excess, 3 is surface soil moisture excess, 4-6 are individual snow layers, and 7 is
canopy interception.

relevant to the boundary conditions, precipitation is considered to be the dominant

source of mass, and its impact on land surface states typically varies with season

and climate [63, 64]. All four LSMs include only a shallow (<10 m) groundwater

component and no dynamic surface water routing or representation of glaciers [65],

which hampered the performance of each model in estimating TWS. Furthermore,

the simple one or two-layer snow models in each of the LSMs can lead to unrealistic

runoff volume and timing. Dirmeyer et al. [66] assessed the representation of land

surface heat balance and water storage, and their mutual impact on the performance

of the four LSMs. It was shown that no individual model can accurately represent

the interaction between latent heat and soil moisture, and that the multi-model

mean generally provides a better estimate than most or all of individual models.

In an effort to improve the shortcomings of these LSMs, GLDAS upgraded
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the Mosaic model to the Catchment Land Surface Model (Catchment) [54,67] (Fig-

ure 2.2). Catchment is the land model component of the Goddard Earth Observing

System, version 5 (GEOS-5). It was developed in response to a weakness in conven-

tional LSMs that assume a soil-layer-based vertical discretization [68,69]. The con-

ventional, layer-based LSMs often assume a uniform horizontal structure of soil span-

ning over tens of kilometers, which neglects much of the horizontal variability of soil

type, soil moisture, and its subsequent effects on evaportranspiration and runoff [67].

Catchment improved the conventional LSMs by employing a topographically-based

hydrologic catchment as the fundamental land surface unit with an average area of

approximately 4000 km2. Sub-grid soil moisture heterogeneity was then treated ex-

plicitly by dividing the catchment into dynamic fractions of saturated, unsaturated,

and wilting areas [68]. In addition, a three-layer snow model was used in Catchment,

which accounts for snow melting and refreezing, dynamic changes in snow density,

and other snow-related processes [54].

2.3 Ground-based GPS in Terrestrial Hydrology

The Earth deforms in an instantaneous, reversible, elastic fashion to surface

loading variations caused by either hydrological components such as snow and ice, or

non-hydrologic loading such as changes in atmospheric pressure. In terms of TWS

changes, ground-based GPS observes downward motion (i.e., negative vertical dis-

placement) of the Earth′s surface when water loading increases, and uplift displace-

ment (i.e., positive vertical displacement) when water loading reduces (Figure 2.3).
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Figure 2.3: Conceptual model of hydrologic loading impact on crustal deformation
that can be directly measured with ground-based GPS sensors

Farrell [70] proposed the loading theory in the form of Green′s function to quan-

tified the relationship between mass variation and three-dimensional (3D) surface

displacement. Therefore, terrestrial hydrologic mass redistribution can be resolved

using ground-based GPS observations of surface displacement after accounting for

the effects of non-hydrologic loading (e.g., atmosphere, non-tidal ocean, and plate

motion). More details of the Green′s function were discussed in Section 3.2.4. Due

to the larger response in vertical displacement (relative to horizontal displacement)

for the same concentrated mass load, vertical displacement is much more frequently

applied in hydrologic studies [71].

2.3.1 GPS-based Displacement Study

A number of studies have been conducted to compare surface displacements

derived from ground-based GPS with that from GRACE in order to explore the us-
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age of geodetic deformation in representing continental-scale water storage changes.

GRACE-based vertical displacement was computed based on the elastic response

of the Earth′s surface to TWS change by using GRACE TWS retrievals. Non-

hydrological loadings embedded in the GPS observations were explicitly separated

as a part of post-processing routine. However, systematic discrepancies between

surface displacements derived from GRACE and GPS still exist. The surface dis-

placements computed from GRACE retrievals are spatially smoothed, which only

reflect the water loading changes that induce effects over large spatial areas. On

the other hand, the GPS-based displacements are point-scale measurements that

are significantly influenced by local effects, technical artifacts, and inadequate envi-

ronmental models used for removing non-hydrologic loading effects [72].

2.3.1.1 Early GPS-based Surface Displacement Applications

Early studies showed that vertical displacements computed from GRACE

TWS retrievals are in good agreement with GPS-based observations of surface dis-

placements only in regions with high mass changes. Davis et al. [73] demonstrated

the high-consistency between the vertical displacements derived from GRACE and

ground-based GPS over the Amazon River Basin where GRACE suggests a ∼13 mm

annual change in vertical displacement. King et al. [74] compared GRACE-based

and GPS-based vertical displacements across multiple locations where GRACE-

derived signals are large or small. Results showed good agreement between GRACE

and GPS for sites that are surrounded mainly by land, but not for sites with moder-
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ate to small GRACE signals such as islands. van Dam et al. [23] compared vertical

displacements over Europe, and a poor agreement was found between GRACE-based

and GPS-based vertical displacements in terms of both amplitude and phase. The

largest discrepancy was detected at stations near the coast, suggesting the presence

of systematic errors in the GPS processing procedure (e.g., the mismodeling of ocean

tidal loading signals).

With improved GPS measurement and processing techniques, a more accurate

estimate of GPS positioning in three-dimensional space and more precise modeling

of atmospheric pressure and tidal loading became available. Using GPS data with

reduced spurious signals, Tregoning et al. [75] compared three-dimensional displace-

ments derived from GRACE and GPS. A far greater consistency was achieved than

the results from van Dam et al. [23] and King et al. [74]. However, a number of

stations still showed poor consistency between the vertical displacements derived

from GPS and GRACE. A potential explanation was that GPS observations are

dominated by local water mass change, which does not cause large-scale influence

that can be easily detected by GRACE. Therefore, Tesmer et al. [76] compared the

vertical deformation derived from GRACE and GPS at locations where the surface

displacements are not dominated by local effects or technical artifacts. Due to the

pre-selection of GPS stations, as well as the improved accuracy in GPS processing

techniques, a considerable enhancement was found compared to previous studies.
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2.3.1.2 GPS Applications in the Himalayas

Bettinelli et al. [77] compared the three-dimensional displacements derived

from GPS with GRACE in the Himalayas by assuming an elastic, half-space Earth

model. Results showed that it is difficult to simultaneously find agreement in both

amplitude and phase of displacements derived from GPS and GRACE for both

vertical and horizontal components. Chanard et al. [78] further explored the incon-

sistency between GRACE-based and GPS-based surface displacements, and found

that using the PREM (Preliminary Reference Earth Model) layered spherical Earth

model (instead of an elastic half-space model) can enhance the agreement of dis-

placements derived from GRACE and GPS. Other studies [26,79] compared surface

displacements between GRACE and GPS in both vertical and horizontal direc-

tions and revealed a good consistency in terms of both amplitude and phase in the

Himalayas region. Additionally, long-term mass loss in the Himalaya region de-

tected by GRACE was reported and explained by increased melting of snow and

ice [26,79]. Saji et al. [80] also found subsidence in the sub-Himalaya region with the

surrounding areas showing uplift, which is related to the unsustainable consumption

of groundwater associated with anthropogenic activities.

With different Earth models, the load love numbers used to represent the

response of the Earth′s structure to surface mass loading variations will be different.

Wang et al. [81] compared the load love numbers computed for the elastic Earth

models between PREM [82], iasp91 [83], and ak135 [84]. Results showed that the

load love numbers for iasp91 and ak135 models are very close, but they both showed
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large differences with the load love numbers as computed from the PREM model

for degrees around 200 and higher. The large differences can be explained by the

difference in elastic structure between PREM and iasp91 (or ak135) in the near-

surface portion of the Earth′s crust, especially for a discontinuity at a depth of

220 km shown in the PREM model but not represented in the iasp91 or ak135

models [81]. Gu et al. [85] computed GRACE-based vertical displacements based

on these Earth models (i.e., PREM, ispa91, and ak135) and found that the influence

of these different Earth models is small in terms of mean annual amplitudes of the

computed vertical displacements.

2.3.1.3 GPS Applications in the Western United States

Due to the severe drought in the western United States starting around 2012, as

well as the existence of a dense GPS network [86], the region has been well-studied

using GPS observations. Wahr et al. [71] monitored the level of Lake Shasta in

northern California using GPS data, and demonstrated that incorporating horizon-

tal motion (along with vertical displacement) can improve and extend the analysis

related to water mass variation. The combination of horizontal and vertical dis-

placements helps to infer whether the nearby hydrologic loading (i.e., water mass)

is concentrated in a small region such as a single lake. Amos et al. [87] explored

the groundwater loss in central California (including a large portion of California′s

Central Valley) using GPS-based displacements. The vertical displacement uplift

rate derived from GPS is slightly larger than the value derived from GRACE, but
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they are in overall good agreement. Tan et al. [88] compared the vertical displace-

ments derived from GRACE, GPS, and hydrologic models in California′s Central

Valley. In general, a good agreement was found between the three data sets at most

station locations. However, irregular peak periods were detected in the GPS-based

vertical displacement time series at some stations, which was explained as the result

of local groundwater pumping. Therefore, the application of GPS observations in

regions with large groundwater changes needs to be carefully considered. In regions

where surface displacement changes are caused by groundwater losses, the Earth′s

surface exhibits a poroelastic response to groundwater changes in the near-field (i.e.,

region close to groundwater pumping location) above the aquifer, but is dominated

by the elastic response in the far-field (i.e., region far from groundwater pumping

location). Therefore, Green′s functions based on elastic response assumption can

only be correctly used to estimate groundwater mass variation when the GPS sta-

tion is located far from localized groundwater pumping activities [89]. More details

of the poroelastic and elastic response were discussed in Section 3.3.5. Knappe

et al. [90] separated GPS-based observations of vertical displacement into regional

and local components, and then compared them with both GRACE-based vertical

displacements and in situ SWE measurements from the SNOw TELemetry (SNO-

TEL) network in the northern Rockies. Results demonstrated the potential of using

GPS-based observations of surface displacement to bridge the spatial scales between

point-scale measurements from SNOTEL and relatively coarse-scale retrievals from

GRACE.

GPS-based surface displacements were also used to study hydrologic loading
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variations in other parts of the globe, such as western African (which has a distinct

monsoon season) [24], the North China Plain (which has smaller seasonal varia-

tions) [91–93], and Australia (which experienced a significant water cycle budget

imbalance over 2010-2015) [2]. Overall, a good consistency was detected between

GPS-based, GRACE-based, and model-based surface displacements, which provides

a solid empirical foundation for the proposed study of using GPS-based observation

of surface displacement to estimate hydrologic loading variations with a particular

focus on snow.

2.3.2 GPS-Based Terrestrial Hydrologic Loading

Research has shown repeatedly that terrestrial water mass change signals em-

bedded in ground-based GPS observations of surface displacement can be inverted

for use in hydrologic loading studies. The estimation of TWS change using GPS

observations of surface displacement independently is referred to more simply as “in-

version process” hereafter in this dissertation. Due to the limited accuracy and res-

olution of monthly GRACE gravity solutions at low degrees, many studies have at-

tempted to use the global spherical harmonics parameterization technique to jointly

use GPS measurements along with GRACE observations to provide estimates of

mass redistribution across the globe. Kusche et al. [94] used a physically-motivated,

regularized least squares method to invert GPS measurements into hydrologic load-

ing space up to degree and order 7. It has been shown that after removing the

effects of atmospheric loadings (associated with changes in surface pressure), the
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remaining GPS signal provides similar patterns as the GRACE TWS retrievals as

well as estimates from a global hydrologic model. Rietbroek et al. [95] estimated

weekly hydrologic loading variations up to spherical harmonics degree and order 30

by combining data from GRACE gravimetry, GPS-based deformation, and modeled

ocean bottom pressure. The strategy used by Rietbroke et al. [95] simultaneously

solves for low degree surface loading, geocenter motion, and mitigates mass conser-

vation effects related to the ocean model. Rietbroek et al. [28] further explored the

plausibility of using GPS-derived surface loading to fill in the temporal gaps between

the GRACE and GRACE-FO missions. Results from Rietbroek et al. [28] showed

that the accuracy of the mass redistribution derived from ground-based GPS is lower

than that derived from GRACE, but there is no doubt that GPS-based observations

of surface displacement contain valuable information related to hydrological loading

phenomena that can be used in hydrologic studies [28].

2.3.2.1 GPS-based TWS using Green′s Function

In recent years, an increasing number of studies have attempted to use ground-

based GPS observations of vertical displacement to estimate TWS changes based

on Green’s functions proposed by Farrell [70]. Most studies are conducted across

relatively small regions where a relatively dense GPS network exists, most notably in

the western United States. Argus et al. [89] used GPS-based vertical displacements

to resolve TWS changes across California with a spatial resolution of 50 km. The

GPS-based TWS anomaly revealed that the seasonal variations in California were
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dominated by the loading of snow and surface water. Additionally, changes in

TWS derived from GPS are, on average, 50% larger than from the NLDAS-Noah

hydrology model, which is explained by the larger amounts of snow and surface water

storage that are not properly captured by the hydrologic model. Argus et al. [22]

continued to use GPS-based observations of vertical displacement to study the severe

drought in California between 2012 and 2015. The combination of GPS-based TWS

variations and SWE estimates from the Snow Data Assimilation System (SNODAS)

indicated a large loss of subsurface water (i.e., soil moisture and groundwater) in

the Sierra Nevadas. However, the large loss of subsurface water was absent in the

hydrology models. Borsa et al. [96] studied drought in the western United States

during the year 2013 by estimating TWS using GPS-based surface displacement with

a spatial resolution of approximately 200-300 km. Results showed that GPS can be

used to estimate hydrologic loading changes caused by both dry and wet climate

patterns. The GPS network in the western United States provides high precision

measurements of surface deformation along with high sampling density and sensor

stability, and thus, can be used to monitor long-term regional climate change [96].

By applying the Green′s functions, GPS has also been used to study TWS

changes across Washington and Oregon [27], southwestern United States [97], and

the lower Three Rivers headwater region in China [98]. It was shown that GPS

is capable of estimating TWS variations independently at a finer spatial resolu-

tion than GRACE-based TWS anomalies. Milliner et al. [99] inverted GPS-based

three-dimensional displacements for TWS to track daily changes in TWS caused by

Hurricane Harvey’s path across the Gulf Coast region. Results demonstrated that
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it is feasible to use ground-based GPS for near-real-time flood alerts and remote

monitoring of water storage during hurricanes and other severe storms. Ferreira et

al. [62] was the first large-scale attempt to infer TWS from GPS-based vertical dis-

placements using Green′s functions. The study was conducted over South America

where only a limited number of GPS stations are available for use. A synthetic

experiment was first performed; results showed the potential of using inverted TWS

to fill the temporal gaps between the GRACE and GRACE-FO missions while pro-

viding TWS estimates at a spatial resolution of about 300 km with a daily temporal

resolution. However, in the natural (i.e., non-synthetic) experiment using the ac-

tual ground-based GPS observations of vertical displacement, missing observations

of daily-averaged vertical displacement in the GPS record often occurred. Therefore,

the actual GPS-based TWS experiment performance was inferior to the synthetic

experiment. That is, the experiment yielded a large root-mean-square error (RMSE)

when compared against TWS estimates from GLDAS-Noah. Adusumilli et al. [100]

studied the TWS changes across the contiguous United States over a decade (2007

to 2017) using ground-based GPS vertical displacements. The study quantified the

influence of the El Niño/Southern Oscillation on TWS changes across the United

States as well as the impact of atmospheric rivers on water storage in the western

United States.
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2.3.2.2 Other Applications of GPS-based Terrestrial Hydrologic Load-

ings

The capability of using Green′s functions to estimate TWS using ground-

based GPS observations is limited when applied at a large spatial scale (>1,000,000

km2) where ground-based GPS coverage is not as dense as that available in Cal-

ifornia [101]. Han et al. [101] developed an algorithm to estimate mass loading

variation from GPS-based vertical displacement in Australia using regional spheri-

cal (Slepian) basis functions and a spectral domain approach. The inverted TWS

change reflects mass variation at not only seasonal and inter-annual time scales,

but also sub-monthly scales, thereby providing a good agreement when compared

against GRACE-based TWS anomalies and GLDAS-Noah estimates of soil moisture.

This consistency demonstrated the capability of the proposed method in resolving

hydrologic loadings via surface displacement when the GPS network is relatively

sparse. Instead of acquiring a direct estimate of TWS changes, ground-based GPS

observations can also be converted into a drought index in regions with a limited

number of GPS stations [6, 102]. Furthermore, a few studies explored the usage of

GPS-based data to infer TWS component information such as snow [103, 104] or

groundwater [105, 106]. The partitioning of TWS into its components using in situ

measurements [103] or modeled data [104] offers opportunities to further disaggre-

gate the GPS-based TWS change into its constituent components.
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2.4 Data Assimilation

GRACE provides retrievals of column-integrated TWS change across the entire

globe, but at a coarse spatial (∼400 km) and temporal resolution (∼monthly). Land

surface model estimates of land surface states and fluxes are provided consistently

at a fine spatial (∼1 km) and temporal (∼hourly) scale. The accuracy, however,

is limited by inadequate model physics as well as uncertainty in model parameters

and boundary conditions. In an effort to harness all of the available observations

while mitigating the errors and uncertainties in each data set, an optimal estima-

tion of terrestrial water storage change should integrate both the model estimates

and GRACE retrievals using a data assimilation technique [1,3,14,68]. Through an

assimilation framework, GRACE-based TWS can be effectively downscaled to finer

spatial and temporal scales, as well as disaggregated into its individual components

such as snow and soil moisture by leveraging the information content from a hydro-

logic (land surface) model. Meanwhile, the accuracy of modeled land surface states

can be improved, and model uncertainty can be simultaneously reduced by merging

GRACE TWS retrievals into the model.

Zaitchik et al. [68] was the first published study to assimilate GRACE TWS

retrievals into the NASA Catchment Land Surface Model using an ensemble-based

smoother. The study was conducted over the Mississippi River basin. The land

surface model integration was conducted twice over the course of the same month

(i.e., requires rewinding the land surface model): the first time to compute the

differences between the observed and modeled TWS over the course of an entire
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month, and the second time to update TWS for that month. DA-based estimates

of shallow groundwater suggested improved agreement with in situ groundwater

measurements in comparison to the case of using the model without assimilation

(a.k.a., Open Loop). That is, DA provided reduced errors and increased temporal

correlations relative to the Open Loop (OL). As the TWS change in the Mississippi

River basin is little influenced by snow, snowpack variables were simply updated

without direct calculation of SWE increments from the ensemble statistics. Forman

et al. [1] used a similar DA approach within a snow-dominated region in northwestern

Canada in order to explore the impact of GRACE TWS assimilation on regional

snowpack characterization. Model estimates from OL and DA simulations were

compared against independent SWE measurements, and a modest improvement

in SWE statistics was found for the GRACE DA simulations. The same method

was also applied across North America [14] and western and central Europe [65]

for drought monitoring. In these studies, GRACE TWS retrievals were averaged

over entire watersheds and a spatially- and temporally-uniform observation error

was assumed. A later study by Forman et al. [107] evaluated the impact of the

spatial scale of the GRACE TWS retrievals on DA performance, and provided some

guidance on the treatment of spatial error correlations in those TWS retrievals.

Results demonstrated superior performance for TWS anomaly assimilation at sub-

basin scales compared to basin scales. It was also recommended that one assimilates

TWS retrievals at the smallest spatial scale that the observations errors can be

considered as uncorrelated, which for the spherical harmonics TWS retrievals is

generally ≥150,000 km2.
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There are also a number of studies investigating the merger of GRACE TWS

retrievals into land surface models using an ensemble Kalman Filter (EnKF), which

applies increments at the end of the assimilation window without the need for

rewinding the land surface model as in the smoother method [108–110]. Su et

al. [108] studied the impact of GRACE DA on SWE and snow depth estimates over

North America. Results revealed that in the basins where snowfall is a large con-

tributor to the water cycle, the inclusion of GRACE-based TWS anomalies into DA

can significantly enhance the estimates of SWE. However, in some high latitude re-

gions, DA did not improve, or mitigate, the accuracy of the estimated SWE. Eicker

et al. [109] successfully demonstrated the potential of including GRACE TWS as

a gridded product (5◦ × 5◦) instead of using basin or sub-basin average into the

data assimilation framework while explicitly computing the full error covariance

of GRACE TWS used over the Mississippi River basin. Moreover, the proposed

method allows one to simultaneously calibrate model parameters and perform state

updates. Tangdamrongsub et al. [110] added to the previous studies by investigating

the performance of GRACE TWS assimilation when a land surface model has sig-

nificant uncertainty due to unreliable forcing data or poor model parameters. It was

shown that GRACE assimilation is able to correct model errors associated with forc-

ing data and parameter calibration issues by drawing the estimated TWS toward the

observed TWS. Based on the method proposed by Eicker et al. [109], Schumacher et

al. [111] systematically evaluated the impact of GRACE error correlation structure

on GRACE assimilation. Results showed that the spatial error correlation used for

GRACE TWS retrievals has a substantial influence on the estimates of model states
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and model parameters. However, implementing a full GRACE error covariance ma-

trix does not always improve assimilation estimates, and thus, the specification of

the GRACE error correlation structure remains critically important.

Recently, GRACE data assimilation using an EnKF was further explored using

GRACE TWS retrievals on a finer 1◦ × 1◦ grid [3,112]. Besides the gridded GRACE

TWS product and the spatially-distributed GRACE error used, Kumar et al. [112]

also examined the impact of GRACE scaling factors used to recover (enhance) signal

amplitude that was damped during GRACE data pre-processing (prior to assimi-

lation). Girotto et al. [3] investigated the potential to improve soil moisture and

groundwater estimates using a GRACE assimilation framework by introducing a new

scheme to compute and apply the analysis increments (i.e., the amount of update

added to model prognostic variables) that is less sensitive to the specific conditions

on a single day within a single month. Results clearly showed improvement in the

estimates of shallow groundwater while the influence on root-zone and surface layer

soil moisture is relatively small. Girotto et al. [113] further investigated the benefits

and drawbacks of GRACE DA by conducting an assimilation experiment over In-

dia. The capability of GRACE DA in overcoming model errors caused by a lack of

representation of groundwater extraction and irrigation was specifically examined.

Results showed that GRACE DA provided an improved correlation coefficient be-

tween estimated and in situ measured groundwater compared to the OL simulation.

However, due to the lack of deep aquifer hydrological and irrigation processes in

model, the assimilation unrealistically reduced evapotranspiration, which suggested

the necessity of adding anthropogenic related processes (e.g., groundwater pumping
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applied in the context of agricultural irrigation) into the model. The merging of

GRACE TWS retrievals into different hydrologic models for different application

purposes has been increasingly explored across different parts of the globe such as

groundwater depletion in Iran [114] and surface soil moisture estimation in west-

ern Africa [115]. Similarly, Khaki et al. [116] assessed the performance of different

data assimilation techniques on merging GRACE data into a hydrologic model over

Australia. It was concluded that there was no single technique that can fit every

application and every model in an optimal manner. Therefore, it is crucial to find a

filter that is robust to the system error covariance as well as one that is able to gen-

erate representative ensembles that serve as a reasonable, low-rank approximation

of the true probability distributions [116].
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Chapter 3: Comparison of Vertical Surface Deformation Estimates

Derived from GRACE, Ground-based GPS, and the NASA

Catchment Land Surface Model over Snow-dominated

Watersheds in the Western United States

3.1 Motivation and Objectives

Ground-based GPS, GRACE, and land surface models all have their advan-

tages and pitfalls in representing TWS variations in accordance with their uncer-

tainties and spatio-temporal characteristics. In order to provide a more accurate

estimate of TWS anomaly (i.e., after removing the long-term mean; term is used in-

terchangeably with “TWS changes” hereafter) by combining these data sets through

a Bayesian merger, it is important to first carefully analyze the behaviors and error

characteristics of each data set. For ground-based GPS, it is critically important

to remove the non-hydrologic loading effects (e.g., tectonic motions, atmospheric

pressure, and non-tidal ocean loading) embedded in the observations. Therefore,

a comparison of displacements derived from GPS, GRACE, and the NASA Catch-

ment Land Surface Model (Catchment) was conducted to analyze the TWS variation

characteristics reflected by the different data sets, as well as demonstrating that the
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non-hydrologic loadings have been properly removed from the ground-based GPS

observations. Considering the relatively large amplitude of the vertical displacement

observations relative to the horizontal displacements [24, 79], vertical displacement

was made the focus of comparison and discussion in this study. Previous studies

compared vertical displacements derived from GPS and GRACE, and found that

ground-based GPS vertical displacements can be used to represent TWS changes

over the western United States. However, most studies focused on California where a

very dense ground-based GPS network is available [71,88,89]. Relatively few studies

have been conducted over regions of complex terrain (i.e., mountains) where snow

is a significant source of water supply [117, 118] and only moderate ground-based

GPS networks are available. Therefore, two snow-dominated regions in the western

United States – the Great Basin and Upper Colorado watersheds – are studied in

this work.

Data sources as well as the processing procedure of each data set are intro-

duced in Section 3.2. The comparison of seasonal and seasonally-adjusted changes

in vertical displacements derived from different data sources are provided in Sec-

tions 3.3.1 and 3.3.2. The connection between hydrologic processes and vertical

displacement is discussed in Section 3.3.3. The influence of atmospheric circulation,

particularly the La Niña event in 2010-2011, on vertical displacement of the land

surface is discussed in Section 3.3.4. Section 3.3.5 summarizes the possible explana-

tions for discrepancies between vertical displacements derived from GPS, GRACE,

and the LSM as well as the error sources in each data set.
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3.2 Study Area and Methodology

3.2.1 Study Area

The study was conducted in the western United States and includes the Great

Basin and Upper Colorado watersheds as shown in Figure 3.1. The watershed shape-

files used in Figure 3.1 were acquired from the Watershed Boundary Dataset pro-

vided by United States Geological Survey (USGS; https://water.usgs.gov/GIS/huc.html).

The Great Basin watershed covers a total area of about 367,000 km2 and includes

almost all of Nevada, a large portion of Utah, and a small region of California, Ore-

gon, Idaho, and Wyoming. The Great Basin watershed is bounded by the Sierra

Nevadas in the west and the Wasatch Mountain range in the east, and the less

distinct ridges of the Snake River Plain in the north [119]. The Upper Colorado wa-

tershed is to the east of the Great Basin watershed and covers a large area of Utah

and Colorado and portions of Wyoming, New Mexico, and Arizona with a basin

area of approximately 293,000 km2. The Upper Colorado watershed is bounded by

the Rocky Mountains in the east, Wasatch Mountain Range in the west, and drains

to Lees Ferry in Arizona [118]. The two watersheds generally have warm summers

and cold winters with snow being a critical reservoir of fresh water [120].

3.2.2 GPS Data

The ground-based GPS data used in this study is the Level 2 daily position

data from the Plate Boundary Observatory (PBO; https://www.unavco.org/data/data.html)
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Figure 3.1: Study area including the Great Basin and Upper Colorado watersheds
along with the GPS permanent stations shown as light blue dots. Three represen-
tative stations in each of the two watersheds used for discussion in Section 3.3.1 are
shown as red upper triangles along with their four letter codes.

project aimed at quantifying Earth′s three-dimensional deformation across the bound-

ary between the Pacific and North American plates [86]. Data was archived by the

Geodesy Advancing Geosciences and EarthScope (GAGE) Facility at UNAVCO.

Data processed by the New Mexico Tech analysis center was used instead of the

combined data solution from the two data analysis centers because a network-wide

vertical shift in December 2011 was observed in the GPS data processed by the

Central Washington University analysis center [96], but not in data processed by

the New Mexico Tech analysis. In order to ensure that the vertical displacements

observed in the GPS record reflects only variations in hydrologic loading, and thus,

can be compatible with GRACE-derived vertical displacements, all non-hydrologic

loading effects must first be removed.

In this study, GPS stations providing records during the study period from

January 2003 to March 2016 in the study area were first found. Afterwards, only
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stations with continuous displacement records (i.e., without an offset event) that

cover at least 50% of the study period were selected for use. The offset in dis-

placement is a sudden step-like shift of displacement associated with an earthquake,

changing of antenna, or other miscellaneous reasons. The occurrence of offsets was

provided by UNAVCO [86]. Earth vertical displacement caused by non-hydrologic

variations such as glacial isostatic adjustment (GIA) and tectonic effects can, at

times, appear in the GPS record of vertical displacement. The ground-based GPS

data provided by the New Mexico Tech analysis center included the removal of some

of the non-hydrologic loading (e.g., solid earth tide), this study continued remov-

ing the remaining non-hydrological loadings effects that are not accounted for in the

Level 2 GPS observations of vertical displacement as follows. For example, based on

previous studies [2,6,96], a long-term linear trend can be used to remove the secular

trend effect (e.g., plate motion) without an evident impact on the analysis of sea-

sonal and inter-annual change. In addition, the GRACE retrieval used in this study

accounted for the effects of atmosphere and non-tidal ocean using the atmosphere

and ocean de-aliasing (AOD) model. Therefore, the AOD model was similarly used

to remove atmosphere and non-tidal ocean effects from the ground-based GPS obser-

vations using the monthly-averaged AOD Level-1B Release 05 (GAC solution with

degree and order 100) from the German Research Centre for Geosciences (GFZ;

https://www.gfz-potsdam.de/en/aod1b/) [121]. Due to the strong sensitivity of

GPS observations to crustal movement, GPS observations larger than three times

the standard deviation of the time series (relative to the mean) were considered as

outliers and removed from the record. Afterwards, the processed daily GPS vertical
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displacements were converted into monthly-averages in accordance with the dates

used in the corresponding GRACE solutions. The processed, monthly GPS vertical

displacements were then used to compare against GRACE and the hydrologic model

(more details in Section 3.3.1). Figure 3.2 illustrates the general processing stream

of the ground-based GPS observations. One factor that has considerable influence

on the observed vertical displacement is groundwater pumping with more details

discussed in section 3.3.5. However, according to Konikow et al. [122], most of the

Great Basin and Upper Colorado watersheds do not have significant groundwater

pumping issues, and therefore, the groundwater pumping effect is not explicitly

considered in this study.

In the Great Basin, there are 109 GPS stations with vertical displacement

records between January 2003 and March 2016. After removing stations with rela-

tively short time spans (i.e., records less than half of the period from January 2003

to March 2016), a total of 77 GPS stations remained that were then used in the

study. For the Upper Colorado region, 14 GPS stations are available, and after

completing quality control, a total of 10 GPS stations remained. The locations of

the GPS stations used in the study are shown in Figure 3.1.

3.2.3 GRACE Data

GRACE Level 2 monthly TWS mass concentration (mascon) solutions from

NASA′s Goddard Space Flight Center (GSFC; https://neptune.gsfc.nasa.gov/grace/)

[123] were used in this study. The rationale for utilizing the GRACE mascons in this
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Figure 3.2: Flowchart of GPS, GRACE, and NASA′s Catchment model data pre-
processing.
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study is the ability to optimally reduce errors by using the data noise covariance [124]

when inverting for the gravity parameters, as opposed to estimating unconstrained

spherical harmonic estimates that then need to be filtered, where the filter tends

to indiscriminately reduce both noise and signal. Therefore, the mascon technique

provides a more optimal solution to balance the trade-offs between noise reduction

and signal attenuation compared to the spherical harmonics (SH) solutions. The

GSFC mascon product provides monthly estimates of time-variable gravity in the

form of equivalent water height (EWH) for a global set of 1◦ ×1◦ mascons. The

monthly mascon solution for the period from January 2003 to March 2016 (without

GIA removed) was used, and it was converted into normalized spherical hamon-

ics up to degree 60 to prepare for the computation of vertical displacement. The

geocenter correction (i.e., replacing spherical harmonic coefficients of degree 1) has

been applied in the GSFC mascon product [12], which allows for the comparison of

vertical displacement derived from GPS and GRACE in the center of figure (CF)

frame. GRACE C20 terms (spherical harmonic coefficients of degree 2 and order 0)

have also been replaced using results from the Satellite Laser Ranging measurements

in the mascon product in order to obtain a higher accuracy in the C20 terms [125].

Assuming a homogeneous reaction of the Earth′s crust to mass loading changes,

the induced vertical displacement was represented [23,94] using spherical harmonic

coefficients for the gravity field and load Love numbers via:

dr(θ, φ) = R
∞∑
l=1

l∑
m=0

P̃lm(cosθ)(∆C̃lm cosmφ+ ∆S̃lm cosmφ)
h

′
l

1 + k
′
l

(3.1)
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where dr(θ, φ) is the vertical displacement in the radial direction; θ and φ are co-

latitude (i.e., the difference between 90◦) and the latitude) and east longitude, re-

spectively; R is the average Earth radius; P̃lm is the fully normalized Legendre

functions of degree l and order m; ∆C̃lm and ∆S̃lm are the spherical harmonic co-

efficients of the time-variable Earth′s gravity field relative to a long-term average

derived from GRACE; and h
′
l and k

′
l are the elastic load Love numbers (i.e., dimen-

sionless parameters that characterize the elastic response of the Earth to surface

mass loading). After converting the GRACE TWS retrieval into vertical displace-

ments at each GPS station location, a linear trend was also removed from each

displacement time series in the same way as for GPS data in order to remove any

remaining secular trend artifacts.

3.2.4 Land Surface Model

The NASA Catchment Land Surface Model [54, 67], a process-simulating nu-

merical model, was used to calculate the redistribution of hydrological mass loadings

that was then used to compute vertical displacement. Traditional LSMs discretize

soils into vertical layers, but the horizontal structure of soil is assumed to be uniform

spanning over tens of kilometers [67]. This assumption neglects the impact of hor-

izontal variability of soil moisture and its effects on evapotranspiration and runoff.

Catchment improves upon traditional LSMs by importing an explicit treatment

of subgrid soil moisture variability, and thus, explicit modeling of evaportranspi-

ration and runoff mechanisms [54, 67]. Hydrological catchments were used as the
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fundamental land surface unit instead of a traditional grid in order to account for

subgrid heterogeneity. Modeled daily TWS was projected to the Equal-Area Scal-

able Earth (EASE) grid with a spatial resolution of 25 km × 25 km. Catchment

was run on the University of Maryland supercomputing cluster (Deepthought2) us-

ing meteorological fields provided by the Modern Era Retrospective Analysis for

Research Application version 2 product (MERRA-2) [126] as boundary conditions.

Catchment-derived TWS was converted into vertical displacement using Green′s

function [70, 71] based on the Preliminary Reference Earth Model (PREM) [82].

Assuming a disc loading with angular radius α (i.e., half of the angular diameter, a

angular measurement of how large the disc appears from the center of the Earth),

the vertical displacement with respect to the distance to the center of the disc can

be calculated as:

dr =
∞∑
l=0

h
′

lΓl
4πGR

g(2l + 1)
Pl(cosλ) (3.2)

Γl =
1

2
[Pl−1(cosα)− Pl+1(cosα)] l > 0

Γ0 =
1

2
(1− cosα)

where Pl is the Legendre polynomials for degree l ∈ [0,∞], G is Newton′s gravita-

tional constant, g is the gravitational acceleration at the Earth′s surface, and λ is

the angular distance of the observation location to the center of the disc loading. In

this study, h
′
1 = -0.269 was used corresponding to the CF frame [94].

The spatial resolution of 25 km× 25 km at which Catchment was run is roughly

the same area as a disc with a radius of 14 km. The vertical displacement in elastic
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Figure 3.3: Vertical displacements caused by adding a uniform disc load with radius
of 14 km and equivalent water height (EWH) of 1m. The vertical dashed line
represents the edge of the disc.

response to adding a uniform disc load with radius 14 km and equivalent water

height (EWH) of 1 m is shown in Figure 3.3. The negative vertical displacement

value represents a downward motion of the surface. Crustal deformation caused by

the disc load is most significant at the center with vertical displacement around 2.7

mm and then decreases rapidly away from the center. At the edge of the disc, the

resulting vertical displacement change is about 1.5 mm, and when the distance from

the disc center becomes 400 km, the influence becomes less than 0.01 mm. Based on

the vertical displacement change versus distance relationship, the Catchment-based

vertical displacement at each GPS station within the study domain was computed

by summing up the impact of TWS change of each 25 km × 25 km pixel on land

onto this GPS stations. The Catchment-derived daily vertical displacements were

then converted to monthly vertical displacements using the same time span as used

in the GRACE solutions.
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3.2.5 SNOTEL Data

Ground-based measurements of SWE provided by the SNOwpack TELemetry

(SNOTEL; https://www.wcc.nrcs.usda.gov/snow/) network were used to analyze

the relationship between the hydrologic loading and surface deformation in Section

3.3.3. SNOTEL is operated by the Natural Resources Conservation Service (NRCS)

National Water and Climate Center, with most stations installed in high mountain

areas where access is difficult or restricted. Stations located inside the study area

providing SWE records less than half of the study period were excluded from the

analysis, and 105 and 106 stations were remained for the Great Basin and Upper

Colorado watersheds, respectively, as shown in Figure 3.11. The daily measurements

of SWE were averaged to monthly SWE according to the GRACE retrieval dates.

3.2.6 Evaluation Metrics

In order to analyze the agreements between different vertical displacement

time series derived from ground-based GPS, space-based GRACE, and model-based

Catchment, the correlation coefficients (R) of vertical displacement of (1) GPS ver-

sus GRACE; (2) GPS versus Catchment; and (3) GRACE versus Catchment were

computed. The same computation was repeated after removing the mean seasonal

cycle from each data set, respectively, in order to evaluate the agreement between

the inter-annual variations of the three different data sets. Note that the correlation

coefficient can only reflect the agreement of two time series in terms of variations

in phase, whereas the differences in amplitudes are not assessed. Therefore, the
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weighted root mean square (RMS) reduction as defined in equation 3.3 [23], which

takes both amplitude and phase differences into consideration, was also used. RMS

reduction computes the variance reduction of subtracting one time series from an-

other and thus can be used to analyze the seasonal agreement between the vertical

displacements derived from two data sets (e.g., GPS and GRACE). A large posi-

tive RMS reduction value represents a good agreement between two time series in

amplitude and phase.

RMSreduction =
RMSA −RMSA−B

RMSA

× 100% (3.3)

where RMSA is the variance of data set A (i.e., GPS), RMSA−B is the variance of the

time series after subtracting data set B from A where data set B is either GRACE-

or Catchment-based monthly time series in this study.

3.3 Results and Discussion

3.3.1 Monthly Vertical Displacement Analysis

Monthly vertical displacements derived from GRACE, GPS, and Catchment

in the Great Basin and Upper Colorado watersheds were acquired through the pro-

cedure outlined in Section 3.2. For each watershed, three different GPS stations cor-

responding to the maximum, median, and minimum correlation coefficient between

GRACE- and GPS-based vertical displacements were selected as representative ex-

amples as shown in Figure 3.4. Selected station information and statistical values
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are summarized in Table 3.1. The six representative stations shown in Figure 3.4 all

display the expected seasonality in vertical displacement time series, with negative

values found during the winter due to snow accumulation, and positive values in the

summer due to snow ablation. For the Great Basin, the lowest R between GRACE-

and GPS-derived vertical displacement is found at station MPUT with a value of

0.59, whereas the highest R is found at station FORE with a value of 0.89. For the

Upper Colorado watershed, the corresponding lowest and highest R values are 0.48

at station RG09 and 0.86 at station P728, respectively. The exceptionally small

R values related to GPS-based vertical displacement at station RG09 is notable.

From the time series of GPS vertical displacement at station RG09 in Figure 3.4,

an obvious decrease of annual peak displacement from 2003 to early 2011 followed

by an increase of upward deformation until 2016 can be observed. However, this

change is not captured by GRACE or Catchment.

Time series amplitudes estimated from GPS are consistently larger than for

GRACE or Catchment. For all 77 GPS stations located in the Great Basin wa-

tershed, an average annual response amplitude of 4.7±2.6 mm (shown as mean ±

standard deviation) was derived from the GPS-based vertical displacement records,

which is on average 2.4 times larger than the amplitude from GRACE (1.9±0.8

mm). The amplitude of vertical displacements estimated from Catchment (2.6±0.9

mm) is between the scale of GPS and GRACE. Similar amplitude characteristics are

found for the stations in the Upper Colorado watershed of which the corresponding

amplitudes are 4.3±2.3 mm, 1.7±0.6 mm, and 2.1±1.0 mm for GPS, GRACE, and

Catchment, respectively. The phase differences between the vertical displacement
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Figure 3.4: Comparison of monthly-averaged vertical displacements derived from
ground-based GPS (blue), GRACE TWS retrievals (dark green), and Catchment
estimates (red) for GPS station locations in column (a) the Great Basin watershed
and column (b) the Upper Colorado watershed.
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Table 3.1: Correlation coefficient, R, of vertical displacement time series derived
from (1) GPS versus GRACE, (2) GPS versus Catchment, and (3) GRACE versus
Catchment, and RMS reduction after removing GRACE and Catchment from the
GPS signal, respectively. The selected stations correspond to the minimum (MPUT
and RG09), median (LMUT and MC01), and maximum (FORE and P728) corre-
lation coefficient between GPS- and GRACE-derived vertical displacement in the
Great Basin and Upper Colorado watersheds.

R (unitless) RMS reduction (%)

Station Location GPS
vs.
GRACE

GPS
vs.
Catch-
ment

GRACE
vs.
Catch-
ment

GPS
vs.
GRACE

GPS
vs.
Catch-
ment

FORE 40.51◦N
111.38◦W

0.89 0.80 0.86 31 33

Great
Basin

LMUT 40.26◦N
111.93◦W

0.77 0.70 0.86 23 27

MPUT 40.02◦N
111.63◦W

0.59 0.61 0.86 13 17

P728 39.18◦N
106.97◦W

0.86 0.84 0.81 22 27

Upper
Colorado

MC01 39.09◦N
108.53◦W

0.75 0.83 0.79 29 38

RG09 36.30◦N
107.06◦W

0.48 0.35 0.77 11 6
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time series derived from three data sets were also investigated. The timing of the

maximum vertical displacement (i.e., less water loading) and minimum vertical dis-

placement (i.e., more water loading) varies by year and station location. For each

station, if over 50% of the yearly peak or yearly trough values are found in the same

month, the station is defined to experience a maximum or minimum, respectively, in

that month. For GRACE-based vertical displacement, all examined station locations

experienced maximum displacement during September or October, and minimum

displacement during March or April. For Catchment, the peaks are found in August

or September, and the troughs are in February or March for all station locations,

which are both one month earlier than for the GRACE-based time series. The one

month earlier peak found in the Catchment-based vertical displacement could be

attributed to a lack of a dynamic surface water routing module, differences in snow

melt processes (e.g. Catchment snow often melts earlier than snow-covered area

retrievals suggest) [127], precipitation errors in the boundary conditions, or model

structure errors related to other physical processes in Catchment [128]. A combi-

nation of these errors likely results in surface water exiting the basin earlier than

in reality. As for GPS, the maxima and minima timings show slightly greater vari-

ability than GRACE or Catchment, with peaks ranging from August to October,

and troughs ranging from February to April. It is difficult to say with certainty,

but the larger spread in the GPS maxima and minima is likely due to the enhanced

spatiotemporal resolution of the GPS observations.

The correlation coefficient maps of: (1) GPS versus GRACE, (2) GPS versus

Catchment, and (3) GRACE versus Catchment including all examined GPS stations
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in the two watersheds are shown in Figure 3.5. The average correlation coefficient

between GPS and GRACE pairs is 0.77 for the Great Basin and 0.73 for the Up-

per Colorado watershed. Over 89% of all the examined GPS stations in the study

area (i.e., in both Great Basin and Upper Colorado watersheds) provide an R value

greater than 0.70. The correlation coefficient between GPS and Catchment is com-

parable but slightly lower as compared to GPS versus GRACE, with the averaged

values of 0.76 and 0.72 in the Great Basin and Upper Colorado watersheds, respec-

tively. The percentage of stations that provide a R value larger than 0.70 is 80%.

The consistency between GRACE and Catchment is generally the highest among

the three comparison cases for both the Great Basin (R = 0.87) and Upper Colorado

(R = 0.81) watersheds. All stations located in the study area yield R values larger

than 0.75. In all three comparison cases, a consistently lower agreement was found

in the Upper Colorado watershed, which is due to the limitation of Catchment in

modeling dynamic surface water routing of the Colorado river [3]. Most stations

with large R values are found in the north of the Great Basin watershed located in

the Bear and Great Salt Lake sub-basins that experience longer snow seasons than

in areas at lower elevations and closer to the basin outlet.

The RMS reduction as introduced in Section 2.5 is another metric used to

indicate the agreement between two data sets through the subtraction of one data

set time series from the other. Removing the GRACE and Catchment time series,

respectively, from the GPS signal for each station leads to the computation of the

RMS reduction (Figure 3.6). A positive RMS reduction suggests a decrease in

variance, and the larger the RMS reduction value, the better the agreement. For
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Figure 3.5: Correlation coefficient maps of vertical displacements derived from (a)
GPS versus GRACE; (b) GPS versus Catchment; and (c) GRACE versus Catchment
for all examined GPS stations in the Great Basin and Upper Colorado watersheds.
m = watershed-averaged R; GB = Great Basin; and UC = Upper Colorado.
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all of the examined stations in the two watersheds, there are no negative RMS

reduction values found for either the GRACE or Catchment cases, which indicates a

general agreement between the GPS, GRACE, and Catchment datasets. Removing

Catchment from the GPS signal (Figure 3.6b) shows relatively larger RMS reduction

values in comparison with the case of removing GRACE (Figure 3.6a) from the GPS

signal. This behavior is slightly different from the results of the correlation analysis

that suggested better consistency between GPS versus GRACE as compared to GPS

versus Catchment. This difference is attributable to the fact that the correlation

coefficient R considers only the seasonal phase consistency between two data sets,

while RMS reduction takes both seasonal phase and amplitude into consideration.

When the amplitude difference between two different data sets is significant, RMS

reduction will be small even when the seasonal phase is identical. The relatively

larger R values and smaller RMS reduction between GPS and GRACE (as compared

to GPS versus Catchment) indicates that GPS and GRACE are in good agreement in

terms of seasonal variation, whereas the amplitude differences cannot be neglected.

Following Knappe et al. [90], the network-wide mean vertical displacement

time series derived from ground-based GPS, GRACE, and Catchment using all sta-

tions were calculated as to represent the regional signal as illustrated in Figure 3.7.

In the Great Basin watershed, the network mean time series derived from ground-

based GPS shows a relatively consistent variation before 2011 and then an abrupt

step that can be observed in early 2011 that is then followed by an increase of upward

deformation after 2011. In the Upper Colorado watershed, a similarly abrupt step

in the 2010-2011 winter can be detected from the GPS time series, but the following

50



Figure 3.6: Maps of RMS reduction of vertical displacements derived from (a) re-
moving GRACE time series from GPS time series; (b) removing Catchment time
series from GPS time series. A large RMS reduction value represents a better con-
sistency between two data sets.

rebound is not as apparent. The correlation coefficients of (1) GPS versus GRACE,

(2) GPS versus Catchment, and (3) GRACE versus Catchment were computed using

the network mean time series. The computed R values are 0.83, 0.83, and 0.88 in

the Great Basin, and 0.81, 0.81 and 0.82 in the Upper Colorado Basin, respectively.

A slightly higher consistency is found in the Great Basin than in the Upper Col-

orado watershed, which is consistent with the previous individual station analysis.

As discussed earlier, an approximately one month phase lag was found between the

GRACE and Catchment time series. Adjusting for the one month phase lag and

re-computing the correlation coefficients between mean vertical displacement time

series derived from GRACE and Catchment, the R values increased from 0.88 to

0.91 in the Great Basin, and from 0.82 to 0.89 in the Upper Colorado.
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Figure 3.7: Network-wide mean vertical displacement time series derived from
ground-based GPS (blue), GRACE (dark green), and Catchment (red) in the (a)
Great Basin watershed and (b) Upper Colorado watershed. The mean±1 std (stan-
dard deviation) are shaded with corresponding transparent colors.

3.3.2 Seasonally-Adjusted Variation Analysis

The potential of using ground-based GPS vertical displacements to represent

TWS inter-annual variations was investigated via the removal of the mean seasonal

cycle (i.e., the multi-year average of each month) of vertical displacement embedded

within the time series derived from GPS, GRACE, and Catchment. Figure 3.8(a)-

(c) used GPS station LMUT located in the Great Basin watershed as an example to

explain the process of removing the mean seasonal cycle. Again, the network-wide

mean of seasonally-adjusted vertical displacement time series following Knappe et

al. [90] were calculated for GPS, GRACE, and Catchment as shown in Figure 3.9.

A positive, residual vertical displacement (i.e., after removing the mean seasonal

cycle) represents a larger than multi-year averaged displacement for that particular

month, which indicates less hydrologic loading than during expected climatology.

On the contrary, a negative residual vertical displacement corresponds to more hy-

drologic loading for that particular month. For both the Great Basin and Upper
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Figure 3.8: Example of removing mean seasonal cycle from processed monthly verti-
cal displacement derived from ground-based GPS (blue), GRACE (dark green), and
Catchment (red), of which (a) the processed monthly vertical displacement time
series; (b) the mean seasonal cycle to be removed from (a); and (c) the seasonally-
adjusted vertical displacement time series. The right column shows scatter plots of
the seasonally-adjusted vertical displacements derived from (d) GPS versus GRACE;
(e) GPS versus Catchment; and (f) GRACE versus Catchment at the example sta-
tion. The correlation coefficient R values are listed in the lower right-hand corner,
and the black lines in (d)-(f) represent the 1:1 line.

53



Figure 3.9: Network-wide mean seasonally-adjusted vertical displacement time series
derived from ground-based GPS (blue), GRACE (dark green), and Catchment (red)
in the (a) Great Basin watershed and (b) Upper Colorado watershed. The mean±1
std (standard deviation) are shaded with corresponding transparent colors.

Colorado watersheds, two distinguishable negative troughs were captured during the

2004-2005 winter and 2010-2011 winter from estimates derived from GPS, GRACE,

and Catchment. The residual displacement before and after the two evident troughs

(i.e., minimum, negative vertical displacements) are continuous, positive values in-

dicating potential drought periods, which are coincident with the percent area of

drought time series provided by the U.S. Drought Monitor [129] (data accessable

from https://www.drought. gov/drought/states).

Considering the consistency of residual vertical displacements derived from

GPS, GRACE, and Catchment, the seasonally-adjusted correlation coefficient was

calculated. Figure 3.8(d)-(f) shows the scatter plots and R values between the

seasonally-adjusted vertical displacements derived from GPS, GRACE, and Catch-

ment at station LMUT. The same analysis was conducted for all examined stations

and the R values were subsequently mapped as shown in Figure 3.10. In all three

comparison cases, a relatively good consistency was found in the northeastern areas
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Figure 3.10: Correlation coefficients of seasonally-adjusted vertical displacement af-
ter removing the mean seasonal cycle for (a) GPS versus GRACE; (b) GPS versus
Catchment; and (c) GRACE versus Catchment for all examined GPS station lo-
cations in the Great Basin and Upper Colorado watersheds. The gray dots in (b)
represent stations that provides a seasonally-adjusted correlation coefficient not sta-
tistically different from zero. m = watershed-averaged seasonally-adjusted R; GB =
Great Basin; and UC = Upper Colorado.
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of the Great Basin watershed. The seasonally-adjusted R between GPS and Catch-

ment generally provides the lowest agreement in representing the inter-annual vari-

ation of vertical displacement, and shows a clear southward decreased consistency.

For the Great Basin watershed, the average seasonally-adjusted R between GPS and

GRACE is 0.58, and the value for GPS versus Catchment is 0.42. The agreement

between GRACE and Catchment is the highest (R = 0.74). The comparison results

are similar in the Upper Colorado watershed with average seasonally-adjusted R

values of 0.57, 0.49, and 0.73, respectively for the cases of (1) GPS versus GRACE,

(2) GPS versus Catchment, and (3) GRACE versus Catchment.

3.3.3 Surface Deformation and Hydrologic Loadings

Processed GPS observations of vertical displacement (i.e., after removing non-

hydrological loadings) can help reflect TWS changes across local and regional scales.

Knappe et al. [90] found that seasonal precipitation patterns dominate the displace-

ment observed by individual GPS stations. Therefore, in order to better to inves-

tigate the hydrologic cause of seasonal changes in the GPS time series, the most

important hydrologic boundary condition – precipitation – is further explored here.

Note that during the winter season in this region most of the mass (precipitation)

falls as snow. Hence, precipitation runoff is minimal during the winter season. Fur-

ther, most vegetation is dormant during this period, hence, evaportranspiration is

minimal during the winter season. Therefore, careful consideration of precipitation

(snowfall) is most important in the context of hydrologic loading (mass accumula-
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tion) because there are relatively few outflows of water during the winter season.

SNOTEL-based SWE were used to examine the impacts of snowfall on the

vertical displacement time series at both watershed- and sub-watershed scales. The

annually-averaged maximum magnitude of SWE derived from SNOTEL at each sta-

tion is shown in Figure 3.11(c) in order to illustrate which areas receive the most

snow relative to other measured areas. Additionally, the annual amplitude of GPS

vertical displacement and the annually-averaged maximum magnitude derived from

Catchment SWE estimates are also plotted in Figure 3.11(c) as auxiliary informa-

tion sources. Generally speaking, deep snow can be detected in the western and

northeastern regions of the Great Basin, and the northern and eastern part of the

Upper Colorado watershed, which are mostly mountainous. Meanwhile, a larger

GPS amplitude was observed in these areas, especially in the western Great Basin

watershed. For each watershed, the SNOTEL-based SWE time series for each station

were stacked from which the computed mean time series was as the network-wide

mean SWE as shown in Figure 3.11 (note that the SNOTEL-based network-wide

mean SWE do not represent watershed-averaged SWE due to the bias associated

with most SNOTEL stations being installed in regions with deep snow). Both wa-

tersheds exhibit clear seasonality in snow accumulation during the winter and snow

ablation in the spring. The network-wide mean SWE and network-wide mean ver-

tical displacement time series derived from GPS, GRACE, and Catchment yield a

large, negative correlation indicating that snow is an important hydrologic loading

in the study area. More specifically, R values against SNOTEL-based SWE in the

Great Basin watershed are -0.74, -0.80, and -0.88 for GPS, GRACE, and Catchment,
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Figure 3.11: SWE time series derived from ground-based SNOTEL stations in
the (a) Great Basin and (b) Upper Colorado watershed, with individual station
time series in gray and station ensemble mean time series in red. (c) shows the
annually-averaged, maximum SWE derived from Catchment (gray scale), SNOTEL
(red circles), and the annually-average amplitude of ground-based GPS vertical dis-
placement (blue squares). The annual amplitude of GPS vertical displacement is
calculated by dividing the difference between the maximum and minimum of each
year by two.

respectively. R values in the Upper Colorado watershed are -0.73, -0.77, and -0.81

for GPS, GRACE, and Catchment, respectively.

Considering the point-scale nature of ground-based GPS measurements, ver-

tical displacement derived from GPS is expected to better represent local (∼10 km)

hydrologic loading variations than GRACE and Catchment, which have coarser

spatial resolution. The Great Basin watershed is used as a representative exam-

ple to investigate the capability of GPS-based vertical displacement in inferring

local hydrologic loading changes due to snow. Following the methods described in

Knappe et al. [90], the local variability in vertical displacement was extracted by

subtracting the network-wide mean, vertical displacement time series from individ-
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ual GPS-based monthly vertical displacement time series. The correlation coefficient

between the residual vertical displacement (i.e., residual after removing the network-

wide mean vertical displacement) and SWE time series was then calculated for all

GPS-SNOTEL pairs whose separation distance is less than 10 km in the watershed.

Note that watershed-averaged SWE was not removed from individual SNOTEL

SWE time series because at each SNOTEL station, the measurements of SWE rep-

resent the truly local snow mass changes rather than the spatially-integrated effects

as measured by ground-based GPS. The same procedure was also conducted for

vertical displacement derived from GRACE and Catchment. The correlation coef-

ficients that are statistically significant to a level of significance α=0.05 are used

for analysis. It is found that the residual vertical displacement is generally nega-

tively correlated with SNOTEL SWE, with network-wide averaged R values of -0.46,

0.04, -0.28 using the residual vertical displacement derived from GPS, GRACE, and

Catchment, respectively. The anti-correlated behavior is not detected when using

GRACE-derived residual vertical displacement due to the relatively coarse spatial

resolution of GRACE TWS retrievals (∼400 km) that cannot resolve local hydrolog-

ical loading variations at ∼10 km spatial scale. On the contrary, the more negative

correlation between GPS-derived residual vertical displacement and SNOTEL SWE

demonstrates the capability of ground-based GPS observations in providing infor-

mation related to local-scale changes in TWS.

However, the negative correlations between residual vertical displacement and

SWE are not especially strong for a variety of reasons including: (1) vertical displace-

ment is influenced by changes in TWS, of which SWE is only a small component,
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hence, changes in TWS not related to SWE could weaken the correlation between

vertical displacement and SWE; (2) the method of extracting local variability in dis-

placement by removing the network-wide mean time series from all of the stations

is not always ideal; (3) SNOTEL SWE measures mass loading resting on a snow

pillow, and any mass moving off the sensor (e.g., via snow melt or wind redistri-

bution) generally remains in the surrounding region, and by construct, is measured

in the integrated TWS signal but not measured in the local SNOTEL SWE sig-

nal [90]; and (4) the separation distance between GPS and SNOTEL stations is not

the only factor that influences the correlation, e.g., other factors such as elevation

difference between the stations should also be considered. Errors in the collection

and processing of GPS and SNOTEL measurements can also introduce additional

discrepancies.

3.3.4 Inter-annual Change Since Late 2010

As discussed in Section 3.1, a significant, negative vertical displacement fol-

lowed by an increase in upward deformation can be clearly observed in the GPS

vertical displacement time series starting in late 2010. A similar negative vertical

displacement (and a corresponding rebound) can also be detected in most of the

GRACE signals even though they are not as pronounced as for GPS. In Catchment-

derived vertical displacement, the abnormally large, negative displacements seen in

late 2010 as well as the prolonged vertical rebound is not captured at most loca-

tions. According to the National Climate Report [130] for December 2010, Nevada
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and Utah had the wettest December in the 116-year record due to winter storms

resulting from deep low pressure systems that developed in a strong west-to-east

flow in the jet stream circulation. The movement of cold fronts and low pressure

systems were influenced by two large-scale atmospheric circulation patterns, which

are the La Niña and the Arctic Oscillation.

In order to quantitatively compare the increase of upward deformation since

late 2010 as shown in the vertical displacement time series derived from GPS,

GRACE, and Catchment, an uplift rate was fitted to the vertical displacement

time series from October 2010 to March 2016 using the seasonally-adjusted vertical

displacements derived from GPS, GRACE, and Catchment. A statistical t test was

then conducted on the fitted uplift rate to examine if the rate is statistically different

from zero or not. Based on the t test (level of significance α = 0.05), 90% of GPS

station locations yielded a positive uplift rate that is statistically different from zero

using GPS-derived time series. The percentage when using GRACE-derived time

series was 97%. For Catchment-derived time series, none of the station locations

provided an uplift rate that is significantly different from zero. Hammond et al. [131]

studied vertical motions in Nevada using GPS observations and a similar increased

uplift velocity was observed; the reason for the step before and after 2011 was ex-

plained by heavy precipitation in the winter of 2010-2011 with a five-year drought

that followed. According to Adusumilli et al. [100] there was a strong La Niña event

during 2010 to 2011. A negative correlation coefficient between the Oceanic Niño

Index (ONI) and TWS anomaly was reported in most regions of our study area,

which suggests an increased TWS anomaly during the La Niña event.
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In order to have a more straightforward view of the effect of La Niña on TWS

changes, the TWS change rates before (2003-2009) and after (2012-2016) the La

Niña event were estimated individually following a method from Han [2] using TWS

retrievals from GRACE. The estimated characteristics of TWS changes before, dur-

ing, and after La Niña are shown in Figure 3.12. Before La Niña (2003-2009), there

is no significant water mass loss or gain in either of the two watersheds. Most regions

experience a negative water balance (i.e., less precipitation than evapotranspiration)

∼-0.5 cm/yr except for the eastern portion of the Upper Colorado watershed. Dur-

ing the La Niña event (2010-2011), a significant increase in TWS was observed in

all areas of the Great Basin and over half of the Upper Colorado relative to the

water storage during 2008-2009. The magnitude of increase in water storage decays

when moving from west to east, which is consistent with previous studies showing

a weaker anti-correlation between ONI and TWS anomaly towards the east [100],

and is relatively uncorrelated in the Colorado basin [132]. The TWS changes in the

western portion of the Great Basin was around 8 cm/yr whereas the southeastern

corner of the Upper Colorado had a negative water balance of around -3 cm/yr.

After La Niña (2012-2016), the region effectively begins to dry out with a decrease

of TWS of approximately -2.5 cm/yr in the western Great Basin. The areas less

influenced by La Niña undergo a relatively smaller decrease in TWS. In areas show-

ing a negative TWS change in the Upper Colorado during La Niña, an increase in

TWS around 1.5 cm/yr is observed after the La Niña event (2012-2016).

The TWS changes before, during, and after the La Niña event that occurred

in 2010-2011 using GRACE-derived TWS retrievals show good consistency with
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Figure 3.12: Slope of linear regression fitted to GRACE-derived TWS change in
units of cm/yr (a) before (2003-2009), (b) during (2010-2011) and (c) after (2012-
2016) the 2010-2011 La Niña event following the method described in Han [2].
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the changes in vertical displacement derived from GPS. During the La Niña event

(2010-2011), a significant water increase resulted in an extreme, negative vertical

displacement detected in most of GPS observations. The extended water loss after

the La Niña event (2012-2016) resulted in the increase of upward deformation in

GPS observations of vertical displacement. The good agreements between TWS

change and GPS-derived vertical displacement demonstrates that GPS observations

can be a good indicator of TWS change at relatively fine spatial scales. Catchment-

derived vertical displacements show better consistency with GRACE-derived vertical

displacements with larger R values; however, the prolonged drought after the La

Niña event cannot be accurately reflected by the Catchment-based estimates even

though some stations show an extremely large negative water balance in early 2011.

Therefore, ground-based GPS deformation observations are a valuable data source

for investigating TWS variations, especially at a relatively fine spatial resolution.

3.3.5 Analysis of Discrepancies and Error Sources

The comparison of vertical displacements derived from GPS, GRACE, and

Catchment shows that a good agreement often exists with GPS time series showing

a larger amplitude, which is approximately 2.4 times larger than the GRACE-derived

vertical displacement time series amplitude. The amplitude difference between ver-

tical displacement derived from ground-based GPS and space-based GRACE is also

found in other studies. Khan et al. [133] estimated a scale factor of ∼2.5 between the

vertical displacement derived from GPS and GRACE in Greenland. Fu et al. [79]
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provides a scale factor of ∼1.1 in the Amazon and ∼1.2 in Southeast Asia between

the GPS- and GRACE-based vertical displacement. The relatively larger amplitude

in the GPS signal (relative to GRACE and Catchment) is anticipated as GPS is more

sensitive to short wavelength (i.e., at the spatial scale of less than ∼100 km) local

mass load variations as compared to long wavelength variations [76,79]. On the con-

trary, GRACE can only sense long wavelength loading variations at monthly time

scales, which results in a broader spatial scale (but smaller amplitude) of vertical

displacement. Tesmer et al. [76] compared vertical deformations from GRACE and

GPS across the globe using 131 GPS stations whose vertical displacement time se-

ries are not dominated by local effects, and an improved consistency between GPS

and GRACE was witnessed. As for Catchment, the model only includes shallow

groundwater storage, and hence, when converted, does not consider vertical defor-

mation associated with changes in deep groundwater storage. Therefore, a smaller

amplitude of vertical displacements via Catchment (relative to GPS) is anticipated.

The errors in GPS observations, GRACE retrievals, and Catchment estimates

as well as the errors introduced during the processing procedure were investigated.

GPS provides a direct measurement of surface deformation, which includes not only

TWS variation but also non-hydrologic changes that may not be removed precisely

or completely [86, 96]. A number of studies explored the possible causes of errors

in the ground-based GPS observations such as orbit mismodeling [134], errors in

ocean loading model [23, 76], and height changes caused by a negative relationship

between the tropospheric zenith delay and the station heights in the original GPS

system of equations [76]. In many studies comparing GRACE and GPS vertical
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displacements, the atmospheric and non-tidal ocean loadings were added back to

GRACE to maintain consistency between the comparisons [2, 76, 135]. However, in

this study, the focus is on the hydrologic loadings in the GPS signals, and thus,

the AOD Level 1B product (GAC) used to remove atmospheric and non-tidal ocean

loading effects from GRACE was removed from the GPS signal instead. Considering

the scale difference in the AOD model relative to the GPS observations, the removed

atmospheric and non-tidal ocean loading may not properly capture the local effects,

and thus, may result in a discrepancy between the GPS and GRACE estimates.

Another factor that may cause errors in the estimates of vertical displacement,

but one that is not explicitly accounted for in this study, is groundwater pumping.

GPS stations located on top of aquifers can, at times, respond non-elastically to

large groundwater changes due to land subsidence and subsurface consolidation,

which is opposite to Earth′s elastic response to snow [22]. When land consolida-

tion occurs, the soil porosity decreases irreversibly in an non-elastic manner, and

the Earth′s crust will not rebound correspondingly. Therefore, a careful selection

of GPS stations is required in order to remove stations located in areas where land

surface subsidence occurs, especially in regions with significant groundwater pump-

ing activities such as the Central Valley in California. Although the study area

used here is not significantly influenced by groundwater pumping activities, there

will still be some scattered regions with groundwater pumping activities that merit

further investigation. Therefore, a closer investigation into each single GPS station

will help remove those stations influenced by local groundwater storage changes.

During the conversion of GRACE-derived TWS to vertical displacement, a
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homogeneous reaction of the Earth′s crust to mass loading is assumed, which is

not always appropriate and may result in some systematic regional effects [76].

Further, as discussed before, GRACE-based TWS only detects mass load variations

that cause long wavelength effects. Therefore, local mass variations may not be

detected by GRACE, and thus, may not be represented in the GRACE-based vertical

displacement time series.

As for the Catchment-derived vertical displacement, two main sources of error

that should be highlighted are: (1) error in Catchment-modeled TWS and (2) error

in vertical displacement estimates via Green′s function. Catchment only simulates

shallow groundwater, which may result in significant errors especially during severe

drought years [14, 65]. As for the second error source, the conversion of Catchment

TWS to vertical displacement is conducted using Green′s function assuming a PREM

Earth model. The reaction of crustal deformation to changes in mass loading is

assumed homogeneous, which may be unrealistic in some areas.

3.4 Conclusions

This study compared vertical displacements derived from ground-based GPS,

space-based GRACE TWS retrievals, and model-based Catchment TWS estimates

for the Great Basin and Upper Colorado watersheds in the United States. A

good agreement between vertical displacements derived from the three distinct data

sources was found, i.e., the RGPS−GRACE, RGPS−Catchment, and RGRACE−Catchment val-

ues are greater than 0.8 using the network-wide mean vertical displacements derived

67



from GPS, GRACE, and Catchment. When considering just GPS and GRACE, over

89% of all stations show a correlation coefficient of R>0.70. The RMS reduction

after removing GRACE from the GPS signals is consistently positive, indicating a

good agreement between GRACE- and GPS-based vertical displacement time series.

The highest consistency is found between GRACE and Catchment with all exam-

ined stations providing R>0.70. As the information embedded in the GRACE TWS

retrieval is related to TWS changes associated with hydrologic loading only, the pos-

itive correlation between GPS and GRACE indicates potential in merging the two

distinct, yet complementary, information sources to better characterize TWS.

A noticeable change in vertical displacements in early 2011 was observed in

most GPS time series, followed by an extended period of upward deformation. A

similar pattern was observed in a number of GRACE-derived vertical displacement

time series, but not in the Catchment-derived time series. Through an analysis

of water balance inter-annual variation using TWS retrievals from GRACE, it was

found that heavy precipitation induced by a strong west-to-east flow in the jet stream

circulation from 2010 to 2011 influenced a large portion of the study area, especially

the Great Basin, causing large, negative vertical displacements from late 2010 to

early 2011 associated with a La Niña event. A prolonged drought after the La Niña

event resulted in a rebound of vertical displacements. When accounting for the

capability of GPS vertical displacement observations in reflecting TWS variability,

ground-based GPS is considered a valuable source of information for water storage

change at a finer spatial and temporal resolution relative to GRACE or global-scale

land surface models. The ground-based GPS sensors can also help bridge the spatial
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scales between point-scale (e.g., SNOTEL) and satellite-scale (e.g., GRACE-FO)

estimates of terrestrial mass change.

Additional research on the improvement of GPS processing procedures is

needed to reduce the potential errors discussed in section 3.5 (e.g., atmospheric load-

ing modeling and groundwater changes) in order to provide a more accurate time

series of vertical displacement in response to changes in hydrologic loading. An

investigation of incorporating horizontal displacement measured by ground-based

GPS into the hydrologic loading analysis should also be explored in order to better

resolve hydrologic loading changes in smaller regions such as lakes or other surface

water impoundments [71]. Despite their limitations, given the related information

content found in the GPS observations and the GRACE TWS retrievals, this work

suggests that there is great potential to combine the two distinct information sources

as part of a Bayesian merging procedure to be completed in a follow-on study with

the ultimate goal of improving TWS estimation at finer spatial and temporal scales.
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Chapter 4: Assimilation of Ground-based GPS Observations of Ver-

tical Displacement into the NASA Catchment Land Sur-

face Model

4.1 Motivation and Objectives

The comparison of vertical displacements conducted in Chapter 3 demon-

strated the capability of ground-based GPS in representing TWS changes. In this

chapter, the utilization of ground-based GPS observations to improve the accuracy

of modeled TWS estimates, and its constituent components, is explored. Previous

studies have successfully merged GRACE TWS retrievals into land surface models

using a data assimilation (DA) framework. Through the DA technique, GRACE

TWS retrievals were effectively downscaled in horizontal (i.e., finer spatial resolu-

tion) and vertical (i.e., into constituent TWS components) directions, as well as in

time (i.e., finer temporal resolution) [1,3,68]. Ground-based GPS observations pro-

vide point-scale measurements that are difficult to use in the context of spatially-

continuous TWS variations. Additionally, as with GRACE TWS retrievals, GPS

observations of vertical displacement reflect column-integrated effects of hydrologic

loading (i.e., TWS changes). Therefore, DA is anticipated to be an effective tech-
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nique in bridging the spatial gap between GPS point-scale observations and gridded

TWS retrievals, as well as make full use of TWS change information as represented

by GPS in order to provide individual TWS component estimates such as snow and

soil moisture.

The purpose of this study is to further demonstrate the capability of using

ground-based GPS observations of vertical displacement to generate a more accurate

TWS estimates as well as reduce TWS uncertainty using a DA approach. The

potential of GPS DA to improve TWS and terrestrial hydrological components at

sub-regional and sub-monthly scales is explored. To our knowledge, this is the

first attempt to merge ground-based GPS into a DA framework to improve the

prediction accuracy of TWS. The DA experiments are conducted over the same

two snow-dominated basins in the western United States (i.e., Great Basin and

Upper Colorado watersheds) studied in Chapter 3. Estimated TWS anomalies and

their individual component in the terrestrial water cycle are assessed using satellite

data and in situ measurements. Data sets and the DA framework are introduced

in Section 4.2. The TWS anomaly analysis is conducted in Section 4.3.1. Snow

water equivalent (SWE), soil moisture, and runoff evaluations are conducted from

Section 4.3.2 to Section 4.3.4. Analysis increments and the normalized innovation

(NI) sequence are discussed in Sections 4.3.5 and 4.3.6. Section 4.4 summarizes the

work and proposes directions for future work.
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4.2 Data and Methods

4.2.1 Prognostic Land Surface Model

The prognostic land surface model used in this study is the NASA Catchment

Land Surface Model (Catchment) [54,67], which is the land model component of the

Goddard Earth Observing System, version 5 (GEOS-5). Different from conventional

soil-layer-based LSMs, Catchment explicitly models the horizontal heterogeneity of

soil moisture and its impact on evapotranspiration and runoff within each hydro-

logic catchment [54]. Catchment hydrology model such as TOPMODEL [136] was

used to diagnose root zone soil moisture distributions from the morphology of the

catchment and prognostic variables of soil moisture. The derived distributions allow

the separation of the catchment into hydrological regimes and therefore the hetero-

geneity of soil moisture horizontally was accounted for in this Catchment model.

Further, Catchment employs a three-layer snow model [137] to estimate snowmelt

and refreezing processes, which provides the opportunity to estimate TWS in re-

gions where snow is a significant contributor to the hydrologic cycle. In addition,

Catchment can model shallow groundwater variations [3, 138], but during an ex-

tended drought period, Catchment may fail to capture the complete dynamic range

of groundwater, and hence, TWS [14, 65]. Additionally, Catchment does not ac-

count for surface water impoundments, anthropogenic water management, or dy-

namic surface water routing [1, 3], which weakens its performance in regions where

surface water storage change is an important component of TWS change.
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Table 4.1: Ensemble perturbation parameters for meteorological boundary condi-
tions and model prognostic variables a.

Cross-correlations

Unit Type Standard Deviation tcorr(day) pcp sw lw

pcp M 0.5 3 - -0.8 0.5
sw M 0.3 3 -0.8 - -0.5
lw W m−2 A 20 3 0.5 -0.5 -

catdef mm A 0.15 1
swe mm M 0.0012 1

a pcp = precipitation; sw = shortwave radiation; lw = longwave radiation; catdef = catchment
deficit; swe = snow water equivalent; M = multiplicative perturbation; A = additive

perturbation; tcorr = temporal correlation

Three prognostic variables are used to represent the vertical soil moisture pro-

file and include the catchment deficit (catdef), root-zone excess (rzexc), and surface

excess (srfexc) variables. catdef is the primary subsurface prognostic variable in

Catchment and it is defined as the average depth of water that would be needed to

bring the catchment to full saturation [54,68]. Additionally, rzexc and srfexc rep-

resent the amount of water in the root-zone layer (0-100 cm) and surface layer (0-5

cm), respectively, in excess of the water that would be present if the soil moisture

profile was at equilibrium.

In this study, Catchment was run with a time increment of 7.5 minutes from

1 January 2003 to 31 December 2015 on the 25 km Equal-Area Scalable Earth

Grid 2.0 (EASE-Grid 2.0) [139]. Meteorological fields provided by the Modern Era

Retrospective Analysis for Research Application version 2 product (MERRA-2) [126]

are used as the boundary conditions to Catchment. The perturbation settings for

selected meteorological forcing and model prognostic variables are shown in Table 4.1

following Girotto et al. [3]. Model prognostic variables were perturbed in order to
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Figure 4.1: Study area including the Great Basin and Upper Colorado watersheds
along with ground-based stations of GPS (circle), SNOTEL (triangle), and GRDC
(diamond) used in the study marked. The red squares indicate the location of the
example pixels discussed in Section 4.3.2 for the SWE analysis.

represent the uncertainties associated with model structure.

4.2.2 GPS Observations

Level 2 daily position data processed by the New Mexico Tech analysis center

from the Plate Boundary Observatory (PBO; https://www.unavco.org/data/data.html)

project was used to provide ground-based GPS observations of vertical displacement.

It is noted that the variations in vertical displacement observations are not only

influenced by water mass changes but also non-hydrologic loadings such as atmo-

spheric and non-tidal ocean loading effects. Therefore, a pre-processing procedure

as outlined in Chapter 3 was conducted to remove the impact of non-hydrologic

loadings.

Due to the point-scale observational nature coupled with limited spatial avail-
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ability of the ground-based GPS networks, inverse distance weighting (IDW) interpo-

lation was used to fit a continuous surface of GPS estimates of vertical displacement

onto the EASE-Grid 2.0. An interpolation technique was needed here in order to

provide a spatially-continuous estimate of vertical displacement (i.e., without gaps

associated with GPS data sparsity) as to yield an updated estimate of TWS (see

discussion in Section 4.2.3.1) without spatial discontinuities thereby yielding a more

realistic, posterior estimate of TWS across the entire study domain. The spatially

interpolated fields of vertical displacement were then utilized in the DA framework.

It is understood that the IDW interpolation is a deterministic method, which

does not provide estimates of error uncertainty and is sensitive to outliers. More ad-

vanced, stochastic interpolation methods such as kriging could provide interpolation

results with indicators of errors. However, considering the sparsity of observations in

space in conjunction with the uncertainty in the fitted variograms used by the kriging

algorithm, IDW was considered as the most applicable and appropriate technique

for use here. Future work on the impact of spatial interpolation methods on the DA

results could be explored, but was considered secondary in terms of importance in

this study and well beyond the scope of work.

To predict the vertical displacement at a single pixel, all available GPS obser-

vations within a distance of 400 km are used during interpolation with the weight

given to each observation based on the square of the inverse distance (Equation 4.1).

dr(p) =

∑n
j=1wjdrj∑n
j=1wj

(4.1)
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Figure 4.2: Average changes (computed as difference between September 1 and
March 1 estimates) across the years 2003 through 2015 in (a) interpolated GPS-
based vertical displacement and (b) modeled TWS using Catchment. Note that the
average vertical motions in (a) are all positive given the general loss of mass from
the near-peak period of the snow season in March through the end of the summer
in September.

wj =
1

d2j

where dr(p) represents the interpolated vertical displacement at pixel location p; n

is the number of GPS stations located within a distance of 400 km to the pixel p

with available observations of vertical displacement; wj is the weight given to each

observation; drj represents vertical displacement at each available station j; and dj

is the distance between the GPS station j and the pixel p. A total of 145 GPS

stations located in the area range of 35◦N to 44◦N, and 105◦W to 121◦W (locations

shown in Figure 4.1) were used during spatial interpolation after the non-hydrologic

loading contributors were removed. The vertical displacement changes from March

1 to September 1 were calculated for each year using the interpolated results, and

the average changes across the years 2003 through 2015 are shown in Figure 4.2. An

uplift motion in the vertical displacement from March through August was found

across the entire study area, which indicates a decrease of TWS associated with
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snow ablation and runoff processes. The spatial characteristics of the uplift motion

are generally in good agreement with the TWS changes reflected by the ensemble

mean of the Open Loop simulation as shown in Figure 4.2(b). A large amount of

uplift (∼8-10 mm) was found in the western and northeastern portions of the Great

Basin as well as the eastern Upper Colorado where a significant amount of snow

accumulation occurs during the winter season and subsequently ablates between

March and September, which results in the corresponding uplift during this time

period.

4.2.3 Data Assimilation Framework

4.2.3.1 Ensemble Kalman Filter

In order to assimilate the spatially-interpolated, daily vertical displacements

derived from the ground-based GPS observations into the land surface model, a one-

dimensional (1-D) ensemble Kalman filter (EnKF) framework was applied in this

study. The EnKF is a Monte-Carlo based approximation of the Kalman filter, and

it is suitable for moderately nonlinear land surface models [140,141]. The EnKF has

been successfully used for soil moisture and snow data assimilation [142,143], but this

is the first known attempt at applying it to GPS observations of vertical displacement

in the context of TWS. Estimates of model state and error covariance matrices

(required for determining the relative weights of the model forecast and observations)

based on the mean and spread of ensemble members are used during the Bayesian

merger of the land surface model with the ground-based GPS observations.
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The EnKF performs propagation and update steps sequentially over the course

of the study period. During the propagation phase, the prior estimate of model

states at time t for each ensemble replicate i (i.e., xi−t ), is computed with the land

surface model by using the posterior (a.k.a. updated) estimates of model states at

time t− 1 (i.e., xi+t−1). When an observation becomes available at time t, an update

step is performed such that the updated estimate of model states at time t (i.e.,

xi+t ) is computed as

xi+t = xi−t +Kt[yt + vi −H(xi−t )] (4.2)

where i ∈ [1, N ] represents each ensemble replicate of the ensemble size N ; Kt is the

Kalman gain matrix; yt is the observation vector; vi is a temporally uncorrelated,

Gaussian-distributed random perturbation with zero mean added to the observation

that represents the observation error; and H(·) is the observation operator that

maps the model states to the observations space. Kt controls the partitioning of the

update assigned to each model state variable and can be calculated as

Kt = Cov[x−t , H(x−t )][Cov[H(x−t ), H(x−t )] + Cvv]
−1 (4.3)

where Cov[x−t , H(x−t )] is the error covariance between the prior estimates of model

states and the predicted observations; Cov[H(x−t ), H(x−t )] is the error (sample) co-

variance of the predicted observations; and Cvv is the observation error covariance.

In this study, N=24 ensemble replicates were used and the increments (i.e.,

Kt[yt + vi −H(xi−t )]) were only applied to catdef and swe explicitly following the
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GRACE TWS data assimilation procedure outlined in Girotto et al. [138]. An

observation error standard deviation of 5 mm, including errors associated with GPS

data pre-processing, was used in this study. More discussion on the selection of the

observation error standard deviation is provided in Section 4.3.6.

4.2.3.2 Observation Operator

Previous studies demonstrated that Green′s function can serve as an effective,

linear operator to map TWS changes into vertical displacement in order to quantify

the elastic response of the Earth′s surface to mass redistribution [22,96]. Therefore,

in this study, a forward model based on Green′s function [70, 71] was used as the

observation operator, H(·), to convert modeled TWS anomaly (geophysical model

state space) into vertical displacement (observation space) using the Preliminary

Reference Earth Model (PREM) [82]. More details on Green′s function used in this

study are found in Section 3.2.4. Prior to applying the observation operator, the

modeled TWS via Catchment was converted into TWS anomaly by subtracting the

long-term average from 1 January 2003 to 31 December 2015 at each grid cell. The

obtained TWS anomaly was subsequently used to calculate the model prediction of

vertical displacement.

4.2.4 Evaluation Approach

Modeled TWS estimates from the OL and GPS DA are evaluated using GRACE

TWS retrievals. Modeled SWE, soil moisture, and runoff were evaluated against in
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situ measurements. A notable gap in the results analysis is the lack of a groundwater

measurement comparison. Based on results from Fan et al. [144], the groundwater

table depth in the study area is deep with most areas having a groundwater ta-

ble depth greater than 80 m. However, the capability of Catchment in modeling

groundwater is limited [14] with the main focus of Catchment in modeling ground-

water limited to the top few meters. Therefore, an in situ groundwater analysis is

not conducted in this study, but rather is implicit in the TWS retrievals discussed

below.

4.2.4.1 GRACE TWS Retrievals

The Level-3 GRACE monthly 1◦ × 1 ◦ land gridded TWS retrieval based on the

Release-05 (RL05) spherical harmonics provided by the Center for Space Research

(CSR) at the University of Texas Austin is used in this study (http://grace.jpl.nasa.gov)

[145]. The GRACE solution from CSR were truncated to degree 60 and smoothed

using a 300 km wide Gaussian filter. The GRACE solution is used to evaluate the

skill of modeled TWS anomaly derived from the OL and GPS DA. Daily estimates

of TWS anomaly derived from the OL and GPS DA are converted into a monthly-

average based on the GRACE TWS retrieval time periods, and then these results

are evaluated using GRACE TWS retrievals. Additionally, a GRACE DA exper-

iment following the methods of Girotto et al. [3] was similarly conducted to help

evaluate GPS DA performance. Similar as GPS DA, only variables catdef and swe

were update explicitly in the GRACE DA simulation [138].
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4.2.4.2 SNOTEL SWE Measurements

Ground-based measurements of SWE provided by the SNOwpack TELemetry

network (SNOTEL; https://www.wcc.nrcs.usda.gov/snow/) were used to evaluate

the skill of modeled SWE from the OL and DA simulations, including both GPS DA

and GRACE DA. SNOTEL is operated by the Natural Resources Conservation Ser-

vice (NRCS) National Water and Climate Center. Stations providing SWE records

for less than half of the study period were excluded from the analysis, and as a re-

sult, 105 and 106 stations were found in the Great Basin and Upper Colorado basins,

respectively, as shown in Figure 4.1. OL and DA estimates of SWE are compared

against SNOTEL SWE measurements at a monthly timescale. If there is more than

one SNOTEL station located inside a given model pixel, the station-average SWE

measurements were used in the evaluation. When using statistical metrics to eval-

uate the consistency between modeled SWE and SNOTEL-based SWE, coincident

zeros were excluded. That is, statistics were only computed when SWE was present

in the model estimates or the SNOTEL measurements, which provides a more rig-

orous statistical snow comparison by excluding coincident snow-free periods.

4.2.4.3 SCAN Soil Moisture Measurements

Comparing modeled soil moisture with in situ measurements is complex due to

the localized nature of the in situ measurements of soil moisture coupled with mea-

surement network sparsity [146]. With that said, surface soil moisture measurements

measured at top 5 cm depth provided by the Soil Climate Analysis Network (SCAN;
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https://www.wcc.nrcs. usda.gov/ftpref/) were used to evaluate modeled surface soil

moisture (0-5 cm surface layer) at a monthly timescale. Following quality control

steps in Liu et al. [147], measurements that exceed a physically plausible range (i.e.,

0-100%) or measured during frozen soil conditions were excluded. Stations provid-

ing records less than three years during the study period were similarly excluded

from the evaluation in order to yield a statistically meaningful evaluation. Addi-

tionally, stations with inconsistent records that are most likely caused by changes

in sensor calibration and/or sensor re-installation, or other miscellaneous factors,

were excluded from the analysis. After completing the quality control procedure, 19

and 11 stations were retained in the Great Basin and Upper Colorado watersheds,

respectively. Due to the relatively sparse SCAN network, there are no model pixels

collocated with more than one SCAN station.

It is worth noting that a root zone soil moisture evaluation was not conducted

here. The root zone soil moisture in Catchment is highly dependent on the ground-

water table depth [54]. However, Catchment only considers shallow groundwater,

and as a result, the interface between root zone soil moisture and groundwater

may not be adequately represented in this study domain given the relatively deep

groundwater conditions as mentioned earlier in Section 4.2.4.

4.2.4.4 GRDC Runoff Measurements

Model estimates of runoff were also evaluated using ground-based measure-

ments. Monthly-averaged runoff data provided by the Global Runoff Data Center
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(GRDC; https: //www.bafg.de/GRDC/EN/Home/homepage node.html) was used

in the study. Ten GRDC stations (Figure 4.1) corresponding to a range of upland

areas, including four stations in the Great Basin and six stations in the Upper Col-

orado watersheds, were used in this study. Station 4152450 located in the southwest

of the Upper Colorado basin is noted to be the outlet gauge of the Upper Colorado

watershed. The ability of model estimates to represent runoff at different spatial

scales was also explored. Due to the lack of a dynamic river routing scheme in

Catchment, for each runoff station, a three-month average surface runoff was used

during evaluation in order to better mitigate the phase lag between model estimates

and the in situ measurements [1, 148]. More discussion on runoff comparison is

provided in Section 4.3.4.

4.2.4.5 Evaluation Metrics

For the TWS analysis, both OL and GPS DA results are compared against

GRACE-based TWS retrievals. As for the SWE, soil moisture, and runoff analyses,

estimates of SWE, surface soil moisture, and runoff derived from the OL, GPS DA,

and GRACE DA are evaluated against in situ measurements. Table 4.2 summarizes

the evaluation strategy for each of the modeled variables. To quantify the per-

formance of model estimates versus measurements, the correlation coefficient (R)

and unbiased root-mean-square difference (ubRMSD) are used. R is used to re-

flect the agreement in variations between model estimates and measurements, but

the amplitude differences between different data sets are not accounted for. The
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Table 4.2: Experimental design and evaluation strategy.

Variable Experiment Evaluation Data Source

TWS Anomaly OL and GPS DA GRACE TWS retrieval
SWE OL, GPS DA, and GRACE DA SNOTEL

Surface Soil Moisture OL, GPS DA, and GRACE DA SCAN
Runoff OL, GPS DA, and GRACE DA GRDC

ubRMSD considers both amplitude and phase difference; a large amplitude differ-

ence between different data sets results in a large ubRMSD. Because satellite-based

and in situ measurements both contain errors and cannot represent the “truth”, the

term “difference” is used here rather than “error”. The ubRMSD is computed as the

RMSD after removing the long-term mean difference between the model estimates

and measurements [149] and can be computed as

ubRMSD =

√√√√ 1

Nt

Nt∑
t=1

(xest,t − xmeas,t)2 − (xest − xmeas)2 (4.4)

where Nt denotes the total number of months; xest,t is the ensemble mean estimate

derived from the OL or DA at time t; xmeas,t is the measurement obtained at time

t; xest and xmeas represent the time-averaged variables obtained from the model

estimates and measurements, respectively.

The statistical difference in watershed-averaged skill (i.e., R and ubRMSD)

between the OL and DA simulations are tested using the student′s t-test as shown

in Section 4.3.1. As for testing the difference in two dependent correlation coeffi-

cients derived from the OL and DA (Section 4.3.4), the Hotelling-Williams test [150]

is used. For the Hotelling-Williams test, the null hypothesis is that two dependent

correlations are equal (i.e., H0 : R12 = R13). In this study, R12 represents the corre-
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lation coefficient between the measurements (in situ or satellite retrievals) and the

OL results, and R13 represents the correlation coefficient between the measurements

and the DA results. A t-statistic can be calculated as

tNt−3 = (R12 −R13)

√√√√ (Nt − 1)(1 +R23)

2Nt−1
Nt−3 |R|+R

2
(1−R23)3

(4.5)

where R23 is the correlation between the OL and DA results; R = R12+R13

2
; and

|R| = 1 − R2
12 − R2

13 − R2
23 + 2R12R13R23. If the p-value based on the computed t-

statistic for a given Nt is less than the given level of significance, the null hypothesis

(H0) is rejected, indicating that correlation coefficient R values from the OL and

DA are statistically different.

4.3 Results and Discussion

4.3.1 Terrestrial Water Storage

The watershed-averaged TWS anomaly derived from the OL and GPS DA

simulations, as well as the independent GRACE TWS retrievals are shown in Fig-

ure 4.3. The daily estimates from the OL and GPS DA are converted into monthly

averages in accordance with the GRACE TWS retrieval periods. The three different

data sets show good consistency in capturing the seasonal variation of TWS changes.

The amplitude of TWS anomaly provided by GPS DA is generally larger than the

OL, with a tendency to add water mass during the winter season and remove mass

during the summer season. The ensemble range in the GPS DA case is much more
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narrow than in the OL case thereby suggesting reduced uncertainty in the estimated

TWS when using the DA approach.

Figure 4.3: Watershed-averaged TWS anomaly time series from the OL (red), GPS
DA (blue), and GRACE TWS retrievals (black dots) for the (a) Great Basin and (b)
Upper Colorado watersheds. Each line represents the respective ensemble mean, and
the ensemble range is shaded with corresponding transparent color. The error bars
represent the time-invariant standard deviation of the GRACE observation error.

Both GRACE TWS retrievals and GPS DA estimates reveal a larger than

normal TWS anomaly in the 2010-2011 winter, which was followed by a reduction

in the amount of total water mass after 2011. The relatively larger TWS anomaly

is represented in the OL, but the corresponding decrease in TWS was not wit-

nessed. According to NOAA National Centers for Environmental Information [151],

Nevada and Utah experienced one of the wettest October-to-March six-month pe-
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Table 4.3: Watershed-averaged correlation coefficient (R) and unbiased root-mean-
square difference (ubRMSD) computed between modeled TWS anomalies (i.e., the
OL and GPS DA) and GRACE TWS retrievals. Bold font indicates statistically
significant differences between the OL and DA at a 5% significance level based on
the t-test.

Periods Basins OL GPS DA

R ubRMSD (mm) R ubRMSD (mm)

2003/01 - Great Basin 0.76 36 0.79 43
2015/12 Upper Colorado 0.64 42 0.74 44

2010/09 - Great Basin 0.46 36 0.82 31
2015/12 Upper Colorado 0.36 41 0.70 36

riods between October 2010 and March 2011. Hammond et al. [131] also reported

particularly heavy precipitation in the Sierra Nevadas in the winter of late 2010

to early 2011 that was followed by a five-year drought until late 2015. Therefore,

it is reasonable to suppose that GRACE TWS retrievals and GPS DA estimates

successfully detected the drought period from 2011-2015, but that the OL failed.

The correlation coefficient R and ubRMSD between modeled TWS anomalies

(i.e., OL and GPS DA) and GRACE TWS retrievals are computed for each GRACE

pixel for the entire study period and the drought period (i.e., after mid-2011). After-

wards, the watershed-averaged R and ubRMSD are computed as shown in Table 4.3.

For the Great Basin watershed, GPS DA exhibits a slightly larger R than the OL (R

= 0.79 for GPS DA and R = 0.76 for the OL), but also a larger ubRMSD (ubRMSD

= 43 mm for GPS DA and ubRMSD = 36 mm for the OL) for the entire study

period. However, for the drought period, GPS DA greatly improves the consistency

between modeled TWS anomaly and GRACE TWS retrievals, yielding an R value

of 0.82 as compared to R = 0.46 for the OL estimates and a smaller ubRMSD value
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of 31 mm relative to the ubRMSD = 36 mm for the OL simulation.

As for the Upper Colorado watershed, modeled TWS anomaly derived from

GPS DA consistently shows better agreements with the GRACE TWS retrievals

than did the OL. GPS DA provides a slightly larger ubRMSD relative to the OL

(ubRMSD = 44 mm for GPS DA and ubRMSD = 42 mm for the OL) at the Upper

Colorado watershed for the entire study period, but the difference is not statisti-

cally significant at the 5% level based on the t-test. It is also noticed that both

the OL and GPS DA exhibit relatively inferior performance (i.e., smaller R values)

for the Upper Colorado watershed than for the Great Basin watershed, which may

be explained by the larger impact of surface water storage changes (e.g., rivers and

reservoirs) on TWS that is not fully represented in the physics of Catchment [3]. In

addition, the less dense GPS measurement network in the Upper Colorado water-

shed could also account for the smaller improvements relative to the more densely-

instrumented Great Basin watershed. The significant improvements in the TWS

anomaly estimates provided by GPS DA during the drought period help compen-

sate for the limited dynamic range of the Catchment model in reproducing extreme

TWS anomalies due to a lack of deep (i.e., >10 meters) groundwater storage.

4.3.2 Snow Water Equivalent

Monthly averaged SWE estimates derived from the OL and DA at the 625 km2

EASE-Grid 2.0 pixel scale are compared against point-scale (∼1 m2) SNOTEL-based

measurements. The number of pixels with at least one SNOTEL station collocated
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are 63 and 74 in the Great Basin and Upper Colorado watersheds, respectively. In

addition to the OL and GPS DA results, GRACE DA estimates of SWE using the

methods of Girotto et al. [3] are also presented in the evaluation of GPS DA per-

formance. For each watershed, a typical, example pixel was used to illustrate the

temporal variation of SWE derived from the OL, GPS DA, and GRACE DA simu-

lations in conjunction with the SNOTEL measurements (Figure 4.4). The locations

of the selected pixels are shown in Figure 4.1.

Figure 4.4: Time series of SWE derived from the OL (gray solid line), GPS DA
(blue solid line), GRACE DA (red dash line), and SNOTEL measurements (black
dots) at (a) pixel 1 located in the northeast of Great Basin; (b) pixel 2 located in
the east of Upper Colorado basin. Pixel locations are highlighted in Figure 4.1.
The monthly-averaged ensemble means from the OL and DA simulations are shown
relative to the monthly-averaged SNOTEL SWE measurements.

Modeled SWE (both OL and DA) and SNOTEL measurements present similar

seasonal variations of snow accumulation and ablation, but the amplitude derived

from the model estimates is consistently smaller than for the SNOTEL measure-
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ments (Figure 4.4). SWE estimates from the OL and GRACE DA do not show

much difference from one another except that GRACE DA tends to reduce the peak

SWE in some years such as the 2014 winter season. On the contrary, GPS DA

consistently increases the peak SWE as compared to the OL, thereby attempting

to better match the amplitude of the modeled SWE toward the in situ measure-

ments. An example of this amplitude increase is displayed in the 2010-2011 winter

at both example pixel locations in Figure 4.4. Additionally, GPS DA consistently

extended the peak SWE occurrence to one or two months later relative to the OL

and GRACE DA simulations in many years, especially for pixel #2 located in the

Upper Colorado watershed, thereby yielding better agreement with the SNOTEL

measurements. That is, GPS DA had a tendency to extend the snow season relative

to the OL and GRACE DA simulations.

The spatial distribution of the statistical metrics (i.e., R and ubRMSD) for

the OL and DA estimates versus SNOTEL SWE, as well as the differences in skill

between DA and OL, are shown in Figure 4.5 and Figure 4.6. The consistency

between modeled SWE and SNOTEL measurements shows considerable variation

across space with R values in the range of 0.05 to 0.86 for the OL and GRACE

DA, and 0.05 to 0.87 for GPS DA. Modeled SWE derived from the OL, GPS DA,

and GRACE DA all suggest better agreement with the SNOTEL measurements in

the Upper Colorado watershed, especially in the northern and eastern regions where

deep snow regularly occurs during the winter season. Smaller correlation coefficients

between model estimates and in situ measurements are mostly found in the central

portion of the Great Basin watershed where there is little (ephemeral) or no snow.
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Figure 4.5: Spatial distributions of correlation coefficient, R, for SWE between (a)
the OL and SNOTEL; (b) GPS DA and SNOTEL; (c) GRACE DA and SNOTEL,
and the difference in R calculated as (d) GPS DA minus OL; and (e) GRACE DA
minus OL. In (d) and (e), a positive difference (blue color) suggests that DA has a
better agreement with the SNOTEL measurements as compared to the OL. On the
contrary, a negative difference (red color) suggests the OL agrees better with the
SNOTEL measurements.

It is important to note that the existence of representativeness error between the in

situ measurements (spatial support of ∼1 m2) versus the model estimates (spatial

support of ∼108 m2) and that it is not expected that the measurements and model

estimate would be in perfect agreement. Furthermore, errors in the boundary condi-

tions (i.e., precipitation) and model structure error (e.g., no blowing snow processes

included) can result in further discrepancies between the two.

Comparing the performance of the OL and DA simulations by subtracting

the R value obtained via the OL case from the DA simulations (i.e., GPS DA and

GRACE DA), a positive difference in R suggests that DA enhanced the consistency

between modeled SWE and the SNOTEL measurements. For the GPS DA case,

improvements are found in 76% and 69% of pixels with collocated SNOTEL stations
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in the Great Basin and Upper Colorado basins, respectively. The improvements are

mainly located in mountainous areas with deep snow during the winter season. For

GRACE DA, the percentages of improved pixels are only 54% and 41% in the Great

Basin and Upper Colorado basins, respectively.

A similar analysis was conducted using ubRMSD as the evaluation metric

(Figure 4.6). It is found that large ubRMSD values are mostly located in mountain-

ous areas such as the northern and eastern regions of the Great Basin watershed

(Figure 4.6(a) through 4.6(c)). Comparing the skill differences between the OL and

DA simulations, GPS DA again shows improved consistency with the in situ mea-

surements in areas covered by deep snow during the winter season, especially in

regions where large ubRMSD values were originally detected in the OL. There is no

significant skill difference in the middle of the Great Basin watershed where there

is little (ephemeral) or no snow during the year. The percentages of pixels showing

improved skill (i.e., reduced ubRMSD) as compared to the OL are 81% and 92% for

the Great Basin and Upper Colorado basins, respectively, in terms of the GPS DA

case. As for GRACE DA, slight reductions in ubRMSD can be found in the western

Great Basin relative to the OL, whereas in the Upper Colorado basin almost all

pixels collocated with SNOTEL stations show increased ubRMSD (i.e., DA worse)

when assimilating the GRACE TWS retrievals. The corresponding percentages of

improvement via GRACE DA are only 46% and 9%, indicating inferior performance

in SWE estimation, in general, as compared to OL.

Both R and ubRMSD results demonstrated the capability of GPS DA in im-

proving SWE estimates relative to SNOTEL-based measurements, especially in re-
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Figure 4.6: Spatial distributions of unbiased root-mean-square difference, ubRMSD,
for SWE between (a) the OL and SNOTEL; (b) GPS DA and SNOTEL; (c) GRACE
DA and SNOTEL, and the difference in ubRMSD calculated as (d) GPS DA minus
OL; and (e) GRACE DA minus OL. In (d) and (e), a positive difference (blue
color) suggests that DA has a better agreement with the SNOTEL measurements
as compared to the OL. On the contrary, a negative difference (red color) suggests
the OL agrees better with the SNOTEL measurements.

gions with deep snow. The better performance of GPS DA relative to the OL and

GRACE DA highlights the advantages of incorporating information content from

the GPS observations into the land surface model. Despite the fact that GPS DA

improved SWE estimates in many pixels relative to the OL or GRACE DA, there

are still a number of pixels exhibiting relatively weak consistency (i.e., R < 0.5)

between modeled SWE and SNOTEL-based SWE. Analogously, poor consistency

between modeled SWE and in situ measurements were also found in Xue et al. [143]

and were partially explained by the presence of representativeness error between

Catchment and SNOTEL. Model structure error in Catchment can also account for

some of the inconsistencies. Furthermore, the highly heterogeneous and complex
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terrain across the study area can introduce large spatial variations in the relatively

coarse-scale meteorological boundary conditions (e.g., precipitation and tempera-

ture) used for model simulation, which can result in further exacerbation of the

differences between model estimates and in situ measurements.

4.3.3 Soil Moisture

Modeled surface (top 0-5 cm) soil moisture were compared against SCAN mea-

surements of soil moisture at 5 cm depth from the surface. The maps of evaluation

metrics of correlation coefficient R and ubRMSD for both the OL and DA simlations,

as well as the difference in skill between DA and the OL, are shown in Figure 4.7

and Figure 4.8. It is noted that comparing model estimates (at 625 km2 pixel grid)

against sparse, point-scale measurements is difficult due to representativeness error,

especially for surface soil moisture that is highly variable in space and time. Ad-

ditionally, modeled surface soil moisture is a depth-averaged soil moisture content

estimated across the top 5 cm whereas SCAN measures the soil moisture at a depth

of 5 cm from the surface, which results in further discrepancies between the modeled

and measured soil moisture.

Based on the statistical skill, both DA simulations did not improve the surface

soil moisture estimates relative to the OL. The R values for the OL are in the

range of 0.42 to 0.91 for the study area with a network mean R value of 0.72.

GRACE DA provides a smaller network-mean R value of 0.64, but does not differ

in a statistically significant sense based on a t-test with a significance level of 5%.
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Figure 4.7: Spatial distributions of correlation coefficient, R, for surface soil moisture
between (a) the OL and SCAN; (b) GPS DA and SCAN; (c) GRACE DA and SCAN,
and the difference in R calculated as (d) GPS DA minus OL; and (e) GRACE DA
minus OL. In (d) and (e), a positive difference (blue color) suggests that DA has
a better agreement with the SCAN measurements as compared to the OL. On the
contrary, a negative difference (red color) suggests the OL agrees better with the
SCAN measurements.

For GPS DA, a statistically degraded network mean R (R = 0.56) was detected

relative to the OL, and there is one negative R (R = -0.01) value found at one

SCAN station location. Considering the ubRMSD, the network mean ubRMSD

derived from the DA simulations are both not statistically different from the OL

with ubRMSD values of 4.2%, 4.5%, and 4.9% respectively for the OL, GRACE

DA, and GPS DA. Comparing the skill between the OL and DA at each SCAN

location, only three out of a total of 30 stations examined show improved R values

via GRACE DA while the number for GPS DA is four. When considering ubRMSD,

the number of stations with improved ubRMSD (i.e., smaller ubRMSD) relative to

the OL are three and eight for GRACE DA and GPS DA, respectively. Although

the OL shows a better consistency with SCAN measurements, it is found that the
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OL shows a limited variation range of surface soil moisture relative to the in situ

measurements (figure not shown). However, GPS DA tends to add a larger dynamic

range to the surface soil moisture estimates, which provides a better agreement with

in situ measurements in terms of amplitude.

Figure 4.8: Spatial distributions of unbiased root-mean-difference, ubRMSD, for
surface soil moisture between (a) the OL and SCAN; (b) GPS DA and SCAN; (c)
GRACE DA and SCAN, and the difference in R calculated as (d) GPS DA minus
OL; and (e) GRACE DA minus OL. In (d) and (e), a positive difference (blue color)
suggests that DA has a better agreement with the SCAN measurements as compared
to the OL. On the contrary, a negative difference (red color) suggests the OL agrees
better with the SCAN measurements.

The degraded surface soil moisture estimates provided by GRACE DA relative

to the OL are similar to the results reported in in previous studies [3, 152]. Surface

soil moisture content is strongly influenced by the relatively high-frequency meteo-

rological boundary conditions. However, GRACE TWS retrievals are provided at a

monthly timescale, that include components other than surface soil moisture, and

in turn, are less impacted by changes in surface soil moisture. As for GPS DA,

GPS observations of vertical displacement are influenced by the amount of TWS
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change as well as the distance between the locations where TWS change occurs and

where the GPS station is installed. In other words, GPS observations are more

sensitive to TWS changes close to the GPS station location (i.e., short-wavelength

mass changes; see Figure 3.3). Since the water content in the top 5 cm of soil is not

a dominant component of TWS coupled with the fact that there are no GPS station

located close to the SCAN stations, the influence of the surface soil moisture changes

may be rather unsubstantial on the GPS observations of vertical displacement, and

thus, may not be easily disentangled from the GPS observations. Therefore, it is

hypothesized here that the ground-based GPS observations have limited sensitiv-

ity to surface soil moisture changes, which results in the degraded performance, in

general, to the surface soil moisture estimates. However, an increase in surface soil

moisture dynamics via GPS DA simulation demonstrates the potential for future

work to evaluate GPS DA surface soil moisture estimates in a region with a more

spatially-dense GPS network.

4.3.4 Runoff

Improving hydrologic flux estimates through data assimilation is often more

challenging than improving hydrologic state estimates [68]. For example, an in-

creased estimate of soil moisture via data assimilation may lead to an overestima-

tion of evaporation in order to calibrate the model simulation [153]. Additionally,

Catchment does not include dynamic surface water routing or lake storage routines,

which makes it difficult to appropriately evaluate the estimated runoff against river
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gauge measurements. In order to better compensate for a lack of dynamic surface

routing in Catchment, a number of adjustments were made prior to conducting a

runoff analysis. Namely, for each measured river gauge location, the upland con-

tributing pixels to that gauge were first located, and then the daily-averaged runoff

at that gauge was computed by summing up the surface runoff estimates from the

upland contributing pixels. Afterwards, a three-month average was computed for

the runoff time series derived from the simulations (both OL and DA) and subse-

quently compared against the corresponding three-month averaged GRDC in situ

measurements. The quarterly runoff analysis was used instead of daily or monthly

analysis because Catchment routes runoff to the outlet instantaneously without ex-

plicitly considering the residence time due to river routing that can be on the order

of weeks to months [1]. A quarterly average helps mitigate the phase difference

between the in situ measurements and model estimates without altering the vol-

umetric flow. The location information of stations used in this study, along with

the R values computed between three-month average model estimates and in situ

measurements at these stations, are listed in Table 4.4.

Overall, runoff estimates provided by all simulations (both the OL and DA)

are not consistent with the GRDC in situ measurements at most stations in terms of

seasonal variation. The mediocre agreement between the simulations and the in situ

measurements can be largely explained, in part, by the strong regulation of rivers

in the study area that are extensively dammed, which is not explicitly modeled in

Catchment. In addition, errors in the boundary conditions (i.e., precipitation) in

conjunction with model structure error further exacerbate the differences between
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Table 4.4: Correlation coefficient, R, for three-month averaged runoff estimates
derived from the OL, GPS DA, and GRACE DA simulations relative to the in
situ GRDC measurements. Bold font indicates statistically significant differences
between the OL and DA at a 5% significance level.

Watershed Station Lat Lon Upland Area R

ID (◦N) (◦W) (km2) OL GPS DA GRACE DA

4118110 39.15 119.10 6734 0.33 0.32 0.39
Great 4118410 40.61 116.20 13088 0.59 0.47 0.60
Basin 4118850 39.37 112.04 13377 -0.15 0.05 -0.09

4118440 40.69 118.20 40155 0.39 0.31 0.39

4152553 42.19 110.16 10127 0.30 0.22 0.31
4152620 38.09 110.41 10772 0.71 0.37 0.71

Upper 4152650 38.75 108.08 14577 0.47 0.47 0.52
Colorado 4152600 37.15 109.86 59570 0.38 0.26 0.45

4152550 38.99 110.15 116160 0.52 0.50 0.55
4152450 36.86 111.59 289562 -0.06 0.20 0.03

modeled and measured runoff.

GRACE DA provides slightly larger R values when compared against the in

situ measurements relative to the OL, but these R values are not statistically dif-

ferent from the OL simulation using a significance level of 5%. GPS DA, in general,

shows the lowest consistency with the in situ measurements, yielding smaller R val-

ues. But it is also found that at the two stations (i.e., stations 4118850 and 4152450)

where the OL provides negative correlation coefficient with in situ measurements,

GPS DA shows positive R values although the R values are still small. A closer look

at the runoff time series at station 4152450, which is located at the outlet of the

Upper Colorado and downstream of the Glen Canyon Dam, the seasonal variation

in runoff can be detected, but is not clearly evident given the strong river regulation

applied. Considering the R values at stations with different upland areas, unfortu-

nately, there is no clear pattern that clarifies the impact of the size of the upland
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contributing area on the estimation accuracy of runoff.

4.3.5 Analysis of Assimilation Increments

Investigating the analysis increments (i.e., difference between posterior and

prior in Equation 4.2) provides valuable information for understanding when and

how much water is added to (or subtracted from) the state variables during the data

assimilation update. In this study, only catdef and swe are explicitly updated. As

a result, the watershed-averaged, monthly increments applied to these two variables

are analyzed here (Figure 4.9). GPS DA generally shows larger temporal variations

in the increments as well as larger amplitudes in comparison with GRACE DA for

both catdef and swe. It is revealed that GPS DA tends to add SWE during the

winter season in both the Great Basin and Upper Colorado watersheds whereas

GRACE DA, in general, removes mass by subtracting SWE during most winter

seasons. As discussed in Section 4.3.2, the SWE estimates derived from GPS DA

usually contains a larger amplitude than the OL or GRACE DA. Notably, GPS

DA and GRACE DA also exhibit different behaviors in the catdef increments that

control the amount of mass in the subsurface. GPS DA, in general, applied a

negative increment to catdef (i.e., added mass) during the winter season, thereby

increasing the subsurface water storage during the winter relative to the OL. On

the contrary, GRACE DA shows a positive or near-zero catdef increment during

most winter seasons, which resulted in decreasing the subsurface water storage.

Additionally, both GPS DA and GRACE DA applied positive increments to catdef
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during the no-snow season in most years, but GPS DA shows a two or three month

earlier application of these positive increments. As is clearly shown in Figure 4.9,

most of the analysis increments are directed toward catdef , which is intuitive given

that subsurface storage is by far the largest contributor to TWS when viewed across

the entire study period and entire study domain.

Figure 4.9: Watershed-averaged, monthly increments for state variables catdef
(gray) and SWE (black) in the (a) Great Basin watershed via GPS DA; (b) Upper
Colorado watershed via GPS DA; (c) Great Basin watershed via GRACE DA; and
(d) Upper Colorado watershed via GRACE DA.

Recall that in the GPS DA case, ground-based GPS observations of vertical

displacement were used during assimilation. Alternatively in the GRACE DA case,

the observation used for the model update was a satellite-derived GRACE TWS

retrieval. Examining the Kalman gain, K, computed for catdef and SWE at each
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pixel, GPS DA generally provides a positive K for catdef and a negative K for

SWE, which is in concordance with the physical relationship between the errors in

water mass changes and the errors in vertical displacement. As for GRACE DA, a

physically intuitive positive cross-correlation between the errors in SWE and TWS

and a negative cross-correlation between the errors in catdef and TWS are detected.

Based on results shown in Chapter 3, GPS-based observations generally provide the

largest amplitude while the GRACE-based retrievals exhibited the smallest ampli-

tude. During the winter season, the observed vertical displacement is more negative

than the model prediction, which results in a negative innovation, and thus, a posi-

tive SWE increments given the negative relationship manifested in the Kalman gain.

As for GRACE DA, GRACE-based TWS is usually smaller in magnitude than in

the model predictions, and thus, also results in a negative innovation; however, con-

sidering the positive Kalman gain as generally computed, a negative increment (i.e.,

Kt[yt + vi −H(xi−t )]) was ultimately added to the posterior model estimates. The

different signs of catdef increments derived from GPS DA and GRACE DA can

be similarly explained. The catdef increment phase difference between GPS DA

and GRACE DA is related to the phase difference in the seasonal, minimum TWS

as reflected by GPS and GRACE. Chapter 3 compared vertical displacements de-

rived between ground-based GPS and GRACE TWS at GPS stations located in this

study area, and it was found that GPS-based vertical displacements exhibited larger

variations during the seasonal minimum period from August to October while the

seasonal minimum period in the GRACE TWS retrievals generally occurred between

September and October.
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The time-integrated, watershed-averaged increments were computed for the

Great Basin and Upper Colorado watersheds, respectively, as
∑Nt

t=1(
1
Np

∑Np

p=1 incrp,t),

where incr is the increment for catdef or SWE andNp is the number of pixels located

inside the watershed. GPS DA exhibited positive SWE and catdef increments in

both the Great Basin (57 mm for SWE; 94 mm for catdef) and Upper Colorado

(94 mm for SWE; 77 mm for catdef) watersheds. GRACE DA, on the other hand,

collectively removed SWE in both the Great Basin (-10 mm) and Upper Colorado (-

16 mm) watersheds and increased catdef (i.e., reduced subsurface water storage) by

89 mm and 207 mm in the Great Basin and Upper Colorado watersheds, respectively.

If one only considers the drought period after 2011, both GPS DA and GRACE DA

effectively reduced the total water storage by -89 mm and -177 mm, respectively,

in the Great Basin watershed as compared to the OL. The corresponding change in

total water storage for the Upper Colorado watershed was -100 mm (GPS DA) and

-222 mm (GRACE DA).

4.3.6 Normalized Innovation Sequence

The normalized innovation (NI) sequence is used here to investigate the appli-

cability of the assigned error parameters used with the assimilated observations in

this study. Assuming that Catchment and the observation operator are both linear

(which is not the case for Catchment), and that all errors are mutually independent

and Gaussian (which may or may not be true), the NI sequence should possess a

standard Gaussian distribution with zero mean and a standard deviation of one if
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the assimilation was optimal in a minimized variance sense [154]. In this study,

given that these assumptions are not completely fulfilled, the investigation of the

NI sequence can still provide useful insight into the efficacy of the GPS DA proce-

dure [1,143]. Using the ensemble mean estimates as x−t , the watershed averaged NI

was computed as a function of time via

NIt =
yt −Hx−t√

Cov[H(x−t ), H(x−t )] + Cvv

(4.6)

where the numerator is the innovation representing the difference between the obser-

vations and the predicted (modeled) observations, and the denominator is the square

root of the combination of the observation prediction error covariance (background

error) and observation error covariance. Afterwards, the time-averaged mean (NI)

and temporal standard deviation of NI (σNI) were computed using the watershed-

averaged NI sequence. By testing different values of the observation error standard

deviation used during the GPS DA simulations (varying from 2 mm to 6 mm), the

corresponding NI and σNI were computed for the Great Basin and Upper Colorado

watersheds as illustrated in Figure 4.10.

The most notable feature to emerge from Figure 4.10 is the positive NI pro-

duced by all tests using different observation error standard deviations. The positive

NI suggests that model predictions contain a negative bias relative to the ground-

based GPS observations. Considering the σNI , when increasing the observation

error standard deviation, a decreased spread of NI was found with a smaller σNI

as expected. That is, as more noise is embedded in the GPS measurements during
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Figure 4.10: GPS DA innovation statistics for the Great Basin (open marker) and
Upper Colorado (filled marker) watersheds. Different marker shapes represent dif-
ferent observation error standard deviations varying from 2 mm to 6 mm.

the update, the assimilation procedure relies less heavily on the observation infor-

mation content, and in turn, yields a less variable posterior estimate. Figure 4.10

suggests that an observation error standard deviation of 6 mm may be too large

thereby causing too small of a weight given to the observations during the update

step. Conversely, an observation error standard deviation of 2 mm may be too

small, which yields too large of an update toward the GPS measurements. An error

observation standard deviation between 3 mm and 5 mm is suggested here as the

most appropriate selection based on the results of the innovation sequence analysis.

4.4 Conclusions

Ground-based GPS provides a geodetic measurement of vertical displacement

that is indirectly related to terrestrial water storage. Based on the elastic response
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of the Earth′s surface to mass redistribution, ground-based GPS was used to es-

timate TWS changes with unique spatial and temporal resolution characteristics.

This study was the first known attempt to assimilate spatially-interpolated, verti-

cal displacements derived from ground-based GPS observations into an advanced

land surface model in order to provide more accurate estimates of TWS and its

constituent components. GPS DA provides an unique opportunity to merge sub-

monthly localized information of TWS changes detected by GPS observations into

land surface models, which is not currently feasible using GRACE TWS retrievals.

GPS DA results were evaluated by using satellite-based retrievals of TWS and

in situ measurements of SWE, soil moisture, and runoff. It was found that GPS

DA can successfully enhance TWS anomaly estimates (relative to the OL) when

compared against GRACE TWS retrievals, especially during the drought period

after 2011 when Catchment failed to capture the full dynamic range in TWS. GPS

DA also provides improved SWE estimates when compared against SNOTEL-based

SWE measurements with approximately 76% and 69% of all pixels collocated with

SNOTEL stations showing improved R values in the Great Basin and Upper Col-

orado watersheds, respectively. The corresponding percentages of improved pixels

are 81% and 92% in terms of ubRMSD. The improved agreement between GPS DA

SWE estimates and SNOTEL-based SWE is generally found in regions with deep

snow where orographic precipitation effects are most pronounced.

Despite the encouraging results shown for TWS anomaly and SWE estimates,

GPS DA reveals reduced skill in surface soil moisture and runoff estimates. For

surface soil moisture, the reduced performance can be explained by the limited
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sensitivity of GPS observations of vertical displacement to changes in the top 5

cm of soil moisture content, especially when the GPS station is located far from

the location where the surface soil moisture is measured. In terms of runoff, both

the OL and DA simulations exhibited limited skill when compared against in situ

measurements of river discharge. This is, in part, due to river regulation that is not

explicitly modeled in Catchment. A lack of dynamic surface water routing and other

model structure errors in Catchment along with errors and uncertainty in the mete-

orological boundary conditions (i.e., precipitation) also contribute to the relatively

poor agreement. Additionally, the density and distribution of the GPS stations also

influences the TWS change information implicit in the spatially-interpolated verti-

cal displacements. Both the surface soil moisture and runoff comparisons suggest

the need for a dense, ground-based GPS network in order to achieve more accurate

results.

Due to the existence of a deep groundwater table [144] in the study domain

coupled with the limited capability of Catchment in modeling deep groundwater

[14], analyses of modeled groundwater (and modeled root zone soil moisture that

is closely linked to the modeled groundwater) were not conducted in this study.

More work towards evaluating GPS DA performance of root zone soil moisture

and groundwater estimates is needed in the future. Additionally, the impact of

the density and distribution of GPS stations on the spatially interpolated vertical

displacement observations, and on the GPS DA results themselves, needs further

exploration to provide more complete guidance on the use of ground-based GPS

observations during assimilation.
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Despite these potential pitfalls, the overall performance of GPS DA is en-

couraging given the improved model estimates of TWS anomalies and SWE. The

improvement in modeled SWE when compared against point-scale measurements of

SNOTEL SWE demonstrated the advantages of ground-based GPS observations in

representing localized water mass variations. The opposite behavior, yet potentially

complementary, witnessed between GRACE DA and GPS DA during the compar-

ison of in situ measurements of SWE and runoff highlights the potential to simul-

taneously merge both GPS-based vertical displacements and GRACE-based TWS

anomalies into a land surface model. Such a multi-variate assimilation framework

could further improve the accuracy of modeled TWS and its constituent components

while also reducing TWS uncertainty.
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Chapter 5: Overall Conclusions and Future Work

5.1 Overall Conclusions

This dissertation studied terrestrial water storage (TWS) using ground-based

GPS geodetic observations, space-based GRACE satellite retrievals, and an ad-

vanced land surface model. The scientific questions answered in this work include:

(1) Can geodetic observations (i.e., ground-based GPS observations of vertical dis-

placement) be used to reflect TWS changes based on the elastic response of the

Earth′s surface to water mass redistribution? (2) Does the merger of ground-based

GPS observations into an advanced land surface model improve the accuracy of

TWS estimates as well as reduce TWS uncertainty.

In Chapter 3, the potential of using ground-based GPS observations of ver-

tical displacement to represent TWS changes was demonstrated. Non-hydrologic

loading effects (e.g., tectonic motion and atmospheric loading) were first removed

from the GPS observations in order to ensure that the variations in ground-based

GPS observations are only caused by TWS changes. Afterwards, a comparison of

vertical displacements derived from GPS, GRACE, and Catchment was conducted.

Results showed a good consistency between the vertical displacements derived from

the three different data sets in terms of seasonal variation. Noticeably, a large in-
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crease in TWS in early 2011 followed by an extended drought period was reflected

by vertical displacement time series derived from GPS and GRACE, but not by the

vertical displacement time series derived from Catchment. The large increase in

TWS was caused by the heavy precipitation from late 2010 to early 2011 associated

with a La Niña event. These findings suggested that ground-based GPS can be used

to study TWS changes, and can help compensate for the limited capability of land

surface models in accurately representing a large dynamic change in TWS.

With the results derived in Chapter 3, Chapter 4 systematically merged the

ground-based GPS vertical displacements into an advanced land surface model (i.e.,

NASA Catchment) using a one-dimensional EnKF. Estimated TWS and its con-

stituent components (i.e., SWE and surface soil moisture) were evaluated against

GRACE TWS retrievals and in situ measurements. Additionally, GPS DA per-

formance in estimating hydrologic fluxes (i.e., runoff) was also examined. Results

showed that GPS DA improved the accuracy of estimated TWS anomalies, espe-

cially during an extended drought period after mid-2011. GPS DA also yielded

improved SWE estimates relative to OL and GRACE DA with the greatest im-

provements in agreement between the SWE estimates and the in situ measurements

generally found in regions with deep snow where orographic precipitation effects are

most pronounced. However, GPS DA subsequently degraded the performance in es-

timating surface soil moisture and runoff. The possible explanation for the reduced

skill is the limited sensitivity of GPS observations to water changes in the top 5 cm

soil layer as well as a lack of sufficient spatial density in the GPS network in this

study area.
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In summary, this dissertation demonstrated that ground-based GPS vertical

displacement can be used as an effective data source to study TWS changes. Sys-

tematically integrating the GPS observations into a land surface model using a data

assimilation framework can harness the information content in the GPS observa-

tions and, in turn, provide better estimates of TWS. The 2017 Decadal Survey for

Earth Science and Applications from Space identified the quantitative improvement

of our understanding of the hydrological cycle and water resource characterization

as a key scientific objective. The research discussed in this dissertation can help

contribute to achieving this objective while enhancing our knowledge of the hy-

drological cycle at basin and sub-basin spatial scales. Merging multiple sources of

information from ground-based GPS, GRACE, and a land surface model can be

used for broad-scale studies such as drought and large-scale hurricanes, as well as

local-scale studies such as reservoir storage monitoring. Furthermore, the DA ap-

proach can effectively downscale TWS information from the ground-based GPS and

GRACE data into TWS constituent components such as snow, soil moisture, and

shallow groundwater, as well as hydrological fluxes such as runoff, which provides

discretized information for water resource planning and management.
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5.2 Future Work

5.2.1 Using GPS as an Independent Measurement to Estimate TWS

Change

Ground-based GPS observations can be used to represent TWS changes af-

ter removing non-hydrologic effects. With a relatively dense GPS network, GPS

observations can be mapped into TWS space based on Green′s function that quan-

titatively explains the elastic response of the surface to mass redistribution. Future

work could investigate the potential of using ground-based GPS to estimate TWS

at a finer spatial and temporal resolution relative to GRACE. The impact of the

density and distribution of GPS networks could be explored using a synthetic exper-

iment. The anticipated results will provide an opportunity to further study TWS

changes at sub-regional scales.

5.2.2 Robustness Experiment of a GPS DA Framework

The performance of GPS DA is influenced by a variety of factors, including the

GPS observations used during the update step and the establishment of observation

errors and model parameters. Therefore, the robustness of the GPS DA system

could be examined by (1) applying GPS DA to different regions of the globe using a

variety of different GPS network densities and distributions; (2) altering the spatial

interpolation method used in this study (e.g., kriging versus IDW); and (3) tuning

the parameters related to the model and observation errors. The DA results could
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be evaluated using satellite observations and in situ measurements as done in this

dissertation, or could be explored as part of a synthetic experiment.

5.2.3 Multivariate Data Assimilation for Estimating TWS

Assimilating individual observations into a land surface model can improve

the estimates of some hydrologic variables, but at the same time, may degrade the

performance of other variables. For example, the assimilation of soil moisture infor-

mation from L-band Soil Moisture and Ocean Salinity (SMOS) and Soil Moisture Ac-

tive Passive (SMAP) satellites improved modeled surface soil moisture but degraded

groundwater estimates [155] whereas GRACE DA only enhanced groundwater es-

timates [3]. Results presented in this dissertation showed that GPS DA improved

SWE, but degraded runoff estimates. Considering the benefits and pitfalls of uni-

variate data assimilation, future work aimed at improving land surface models could

be explored by integrating multi-sensor observations into models. TWS retrievals

from GRACE and GRACE-FO missions, vertical displacements from ground-based

GPS, and soil moisture retrievals from SMOS and SMAP missions could be used

simultaneously in a multivariate DA framework. It is anticipated that multivariate

data assimilation can take advantage of each type of data as well as mitigate the

potential weaknesses introduced by each platform thereby leading to a more robust

DA system.
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